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ABSTRACT:

City infrastructures are sensitive to disasters. To aid rescue workers and citizens, a system is needed which determines the shortest  
route to a certain location, taking the damages of the infrastructure into account. The biggest disadvantage of current navigation  
systems is that they are “closed” i.e. they are built on top of commercial software packages and as such are only usable by rescue  
organizations which own licenses for these software packages.

Modern web-technologies provide tools to ease information collection and to facilitate the dissemination of data. Recent successes of  
crowdsourced  platforms  such  as  OpenStreetMap,  Ushahidi  and  Wikipedia,  suggest  the  deployment  of  the  crowdsourcing 
phenomenon to disaster management. The idea is to let the “crowd” in a disaster area collect information about the state of the  
infrastructure. People on the street form a highly dispersed network of sensors which is able to provide information in real-time at no  
cost to the rescue workers.

This paper proposes and implements a method for performing shortest path calculations taking crowdsourced information, in the  
form of constraints and obstacles, into account. The method is built on top of Google Maps (GM) and uses its routing service to  
calculate the shortest distance between two locations. Users provide the constraints and obstacles in the form of polygons which  
identify impassable areas in the real world.  The A* pathfinding algorithm is used to  guide Google's  Directions Service around  
obstacles.

1. INTRODUCTION

Cities  are  vulnerable  to  disasters.  Earthquakes,  floods  and 
storms can cause severe damage to urban structures.  In these 
kinds  of  emergency  situations,  the  timely  arrival  of  rescue 
workers  is  no  longer  a function  of distance only,  but  it  also 
depends  on  the  state  and  accessibility  of  roads,  bridges  and 
tunnels  (Cutter  et  al  2003,  Kevany,  2008).  To  facilitate  the 
navigation of rescue workers and citizens,  emergency support 
systems should provide the shortest route to a certain location, 
taking the damages of the infrastructure into account (Diehl et 
al  2005,  Zlatanova  and  Baharin  2008).  Such  systems  are 
currently available for emergency responders only (Torgt et al 
2005,  Johnson  2008,  Parker  et  al  2008).  These  systems  are 
based on commercial or open standards (OGC) technology. The 
recently developed Dutch system Eagle One (Jacobs et al 2009) 
is a typical example of commercial solution. The system follows 
a netcentric approach for information sharing (Boyd et al 2005). 
It  is based on ESRI,  Microsoft  and Geodan technologies and 
offers  a  range  of  functionalities  (drawing,  editing,  overlays, 
analysis). Many systems have also been built on basis of OGC 
web standards (Reichardt and Reed, 2010).

The biggest  disadvantage  of  the  above  mentioned  systems is 
that they are “closed” i.e. they are built on top of commercial 
software  packages  and  as  such  are  only  usable  by  rescue 
organizations which own licenses for these software packages. 
These solutions are usually complex. Even if made accessible to 

a larger user community they will  require skilled operators to 
function  effectively.  As  a  result,  these  systems  have  low 
momentum: the rescue organization using the system has to take 
the  common  GIS  steps  on  its  own  i.e.  they have  to  gather, 
analyze and dispatch data/informaion to their users.

Recent  successes  of  crowdsourced  platforms  such  as 
OpenStreetMap and Wikipedia, suggest the deployment of the 
crowdsourcing  phenomenon  to  disaster  management 
(Goodchild 2007, Pultar et al 2007). Modern web-technologies 
provide  tools  to  ease  the  information  collection  task  and  to 
facilitate the dissemination of data to users. Ushahidi has been 
actively used for support of several large disasters such as the 
Pakistan  floods  of  2011  (http://pakreport.org/ushahidi/)  and 
Japan  earthquake  2011  (http://www.sinsai.info/ushahidi/), 
Google  Maps  has  been  used  in  the  Pakistan  Earthquake  of 
2005. Google Maps has been aslo investigated as a tool to assist 
performing  routine works of first responders (e.g. navigation of 
fire  trucks  Vozenilek  and  Zajickova,  2010).  However,  the 
functionality of these systems is  still  very limited.  Users  can 
plot  information,  but  they  can  hardly  perform  any  analysis. 
Although  shortest/fastest  route  analyses  are  supported  by 
Google  Maps and  OpenStreetMap,  these  are  not  adapted  for 
emergency situations. 

Shortly after a disaster strikes, the most valuable commodity is 
information. Disaster managers want to know what the severity 
and extent of the damages is and how quickly should rescue 
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workers  and  repair  men  be  sent?  Means  to  collect  this 
information  exist  and  have  become  quite  mature.  Once  an 
overview of the damages is created, transportation and logistics 
become an issue. Which parts of the infrastructure network are 
still available? What is the fastest route to any given location  
taking the condition of the infrastructure into account? 

Information about the state of the infrastructure can be gathered 
by rescue workers as they travel through the city.  However, a 
large part  of the environment  remains unmapped.  As a result 
only a small portion of the road network is used, namely the  
stretches  of  road  which  have  been  surveyed  in  the  early 
moments of a disaster.

Information about infrastructure health is vital and, despite its 
extent, easy to collect: everyone can judge whether a street is 
accessible for a car or truck.  It  can therefore be collected by 
unqualified personnel not directly involved in the rescue efforts 
e.g. city inhabitants, journalists, idle rescue workers, volunteers, 
etc. People on the ground can act as a spontaneous and dense 
sensor network which provides real-time information about the 
state of road network.

Once this information is gathered rescue workers in possession 
of powerful GIS software packages as well as users lacking GIS 
tools  should  be  able  to  plan  their  route  based  on  real-time 
crowdsourced infrastructure health information.

The aim of this project is therefore to investigate a platform, by 
way of building a prototype, which allows the easy recording of 
infrastructure blockage information by the “crowd” and is able 
to use this information to provide routing services. Making this 
data  and  the  means  to  collect  it  available  to  all  through  a 
common  and  well  understood  interface  will  relieve  rescue 
workers from the task of road monitoring,  while enabling the 
public to aid the rescue process. 

2. REQUIREMENTS AND OPTIONS

The above vision calls for an open, easy to access, easy to use 
and light system. An  open  system is here defined as a system 
which is accessible to a diverse set of people all having different 
affiliations i.e. a license free system. A system which is easy to  
use is in this context defined as a system which is familiar to  
users and thus allows them to intuitively work with the system 
without  needing  any  extensive  training  or  prior  knowledge. 
Ease of access  is defined as the possibility to use the system 
regardless of user's  location or equipment.  The system should 
work  on  as  many  platforms  as  possible,  especially  modern 
smartphones.  The best way to achieve this  is to build a light 
web based application. Light in this context means that no large 
software packages are to be installed on the client/rover and that  
processing and analysis should be performed off the device as 
much as possible.

The  above  requirements  hint  at  using  a  web  mapping 
technology such as Google Maps, OpenStreetMaps, Microsoft 
Bing Maps, etc. The advent of these web mapping technologies 
have brought geographical information to the masses teaching 
them what geographical information is, how to use it and what 
to  expect  from  it.  Building  an  application  on  top  of  these 
mapping technologies therefore shortens users' learning period. 
Building the system on top of these web mapping technologies 
guarantees that  users will  have access to  the most up-to-date 
information.

In the presented approach, Google Maps (GM) has been chosen 
because of its wide acceptance. Users are visually accustomed 
to  it,   know  how  to  operate  and  what  to  expect  from  it. 
Furthermore,  routing  calculations  are  performed  at  Google's 
servers  by  the  so  called  Directions  Service.  The  Directions 
Service's  input  parameters  are  the  starting  and  ending 
coordinates of the route and a list of waypoints through which 
the route must pass. Also, GM's API is optimized for mobile 
devices. The API is well  documented which makes extending 
the system easy.

3. OVERVIEW AND ALGORITHMS

The system discussed above is implemented using Google Maps 
built-in functionality which has been extended where needed. 
Implemented extensions are based on algorithms as described in 
Worboys 1995.

Shortest  route  analyses  are  performed  by  GM's  Directions 
Service. The Directions Service runs on Google's  servers and 
calculates the shortest route between the provided start and end 
points. Google Maps does not provide built-in mechanisms to 
prevent  the  Directions  Service  result  from  intersecting  user 
defined  polygons  which  are  representations  of  real  world 
obstacles.  To  avoid  the  obstacle  an  external  pahtfinding 
algorithm must be implemented. The start and ending points for 
this  algorithms  are  the  intersection  points  between  the  route 
returned from the Directions Service and the obstacle polygon. 
In this implementation the intersections are found by deploying 
simple  computational  geometry  algorithms.  Ideally,  shortest 
path calculations are graph based. However, Google Maps does 
not  expose  its  vector  data  e.g.  it is  not  possible  to  extract  a 
graph of the streets.  Obstacle avoiding shortest  path analyses 
are therefore performed in the raster domain. 

3.1 Deployed algorithms

Google Maps does not provide mechanisms to check whether a 
point is contained by a polygon. It is only possible to perform 
point-in-bounding-box checks.  Point  in  polygon  analyses  are 
used  for  intersection  detection  and  rasterization  of  polygons. 
Checking if a point is contained by a polygon is done using the 
winding  number  algorithm.  The  winding  numbers  algorithm 
calculates and sums the angles between a point and all polygon 
edges. If the summation equals 2 π then the point is said to be in 
the polygon.

Line intersections are found by applying the side operation. The 
side operation is used to determine whether a point is located to 
the left, right or on a line segment. The side test is defined by 
Eq. 1.

side (L , p)=
1 if area (L, p)>0
0 if area (L , p)=0

−1 if area (L , p)<0
 (1)

where the area of the triangle formed by the point p and line L is 
defined as

area (L, p)=
L1×L2+L2×p+ p×L1

2
 (2)

where Ln = line vertex
p = point



Point p is said to be to the left of line L if the side operation is 
positive, collinear with  L if the side operation is equal to zero 
and to the right when the side operation is equal to 1. Two lines 
intersect iff 

side( L1, s2)≠side (L1, e2)
side( L2, s1)≠side (L2, e1)

 (3)

where Ln = is the n-th line
sn = the start vertex of line n
en = the end vertex of line n

So two lines intersect when the start and end vertices of the first  
line are on both sides of the second line and vice versa. 

Shortest path analyses are performed using the A* pathfinding 
algorithm  (Hart  et  al  1968).  Lines  are  simplified  with  the 
Douglas-Peucker  algorithm (Douglas and Peucker 1973).

4. IMPLEMENTATION AND TESTS

The process can be split in the following major parts.

1. Obstacle, path and initial  route calculation:  the user 
defines  the  obstacles  as  well  as  the  start  and  end 
points of the route.  An initial  route is calculated by 
Google's Directions Service.

2. Route  and  constraint  intersection:  intersections 
between  the  initial  route  and  obstacles  are  found 
using the algorithms described in section 3.1.

3. Shortest  path  analysis  and  visualization:  the 
intersections  found  in  step  2  are  passed  to  the  A* 
pathfinding  algorithm which  finds  the  shortest  path 
around the obstacle. A new shortest route is requested 
from Google's Directions Service which is obliged to 
pass through the points calculated by A*.

4. Result adjustment: the result from step 3 is not perfect 
and needs minor manual adjustments. 

4.1 Obstacle, path and initial route definition

Obstacles are defined by drawing a polygon on the map in a 
clockwise order. Markers are displayed to identify the polygon 
vertices.  The  obstacle  creation  process  is  ended  by  a  right 
mouse click. Next, the user needs to enter the route start and  
end points.  A left click identifies the start point while a right 
click identifies the end point. The shortest route calculation is  
performed by the Google Maps' Directions Service. 

The  Google  Maps  Directions  service  takes  a  begin  and  end 
point and calculates the shortest route connecting both points.  
The Directions Service returns turn-by-turn driving directions. 
Each turn instruction has a latitude and longitude coordinate. 
However, the driving instructions' main purpose is navigation. 
As such, a turn instruction is given only when a turn actually 
has to be made. It is therefore impossible to predict the number 
and  locations  of  received  latitude/longitude  pairs.  The  route 
returned from the Directions Service is therefore defined by a 
list  of   randomly  placed  coordinates.  For  example,  long 
stretches of road will be represented by two coordinates only:  
one belonging to the instruction stating to get on the road and 
another to the instruction stating to get off the road, since the 
driving instruction is of the form 'Turn left on Rotterdamseweg'. 

This behaviour  makes finding intersections between the route 
and  obstacles  difficult  as  it  creates  a  number  of  intersection 
scenarios which need to be treated separately.

4.2 Route and constraint intersection

The aim of the intersection detection procedure is to find the 
two vertices which lie just outside the obstacle polygon. These 
will  function  as  start  and  end  point  for  the  A* pathfinding 
algorithm. 

Figure  1  identifies  the  different  intersection  possibilities 
between  the  route  and  the  obstacle  polygon.  The  polygon  is 
represented by the black area. Its bounding box is also given in 
the  figure.  The  route  segment  coordinates  returned  by  the 
Directions Service are represented by the diamonds and white 
dots in the polygon.

Fig.  1  Intersection  modes  between  the  obstacle  polygon  and 
route returned from the Directions Service

Category A is characterized by the presence of a route vertex in 
the polygon. Category B is characterized by the the presence of 
one or more vertices in the polygon's bounding box but none in 
the polygon. Case B.IV is special as no vertices are present in 
the bounding box but the segment does intersect the polygon. 
Two different intersection techniques are used  for both cases.

Category A:  The algorithm starts by checking whether any of 
the returned route vertices (the diamonds in Fig. 1) lie within 
the  bounding  box  of  the  obstacle.  This  is  determined  using 
Google  Maps'  built-in  LatLngBounds  object's  contains()  
function.  For  all  vertices which intersect the bounding box a 
point-in-polygon test, as described in section 3.1, is performed. 
Cases  A.I-A.III  are  handled  in  the  same way.  First,  the  first 
vertex which  lies  inside  the  polygon  is  found.  The  previous 
vertex is then set to be the A* starting point. The end point is 
set to be the first point which is not contained by the polygon.  
Case A.IV is a a variation on the previous cases since the end 
point lies outside the bounding box. 

Category  B:  A different  approach  is  needed  for  category B 
since  no  vertices  lie  inside  the  polygon  but  an  intersection 
exists. A point-in-polygon test will not work. Therefore, a line 
intersection algorithm has been implemented which intersects 
all  route  edges with  all  polygon  edges.  The line  intersection 
algorithm is based on the side test as described in section 3.1.



In  the  current  implementation  cases  I-IV  are  handled  in  the 
same  way.  To  optimize  the  algorithm,  only  route  segments 
having  vertices  contained  by  the  bounding  box  should  be 
intersected with the polygon. 

4.3 Shortest path analysis

As mentioned above obstacle avoidance shortest path analyses 
are performed in the raster domain. Obstacles provided by the 
user are rasterized. This is done by creating a grid around the 
polygon  and  checking  which  grid  cells  are  contained  by the 
polygon using the aforementioned winding numbers algorithm. 
Once the intersection points, explained in section 4.2, are found 
and  the  obstacle  has  been  rasterized,  the  A*  pathfinding 
algorithm is  used  to  calculate  a  path  around  the obstacle.  A 
result of the A* shortest path algorithm is shown in Fig. 2 (in  
black).

Fig. 2 Result of the A* shortest path algorithm

As can be seen in Fig. 2, the A* algorithm returns many nodes. 
These  are  not  needed  and  are  done  away  with  using  the 
Douglas-Peucker (DP) simplification algorithm. The sensitivity 
of the DP algorithm is controlled by a threshold: points which 
are not significant for the shape of the line are removed. The DP 
result  is  used  as  waypoints  for  the  second  Google  Maps 
Directions Service call.

4.4 Visualisation and result adjustment

The A* algorithm has no knowledge about  the road network. 
The returned results will be far from perfect. A certain amount 
of modification will always be necessary. To facilitate this, the 
DP result  is  plotted  along side  the Directions  Service result. 
Making adjustments to the initial result is done by dragging the 
DP vertices to appropriate locations (see next section for more 
details). It is also possible to vary the size of the grid and the  
DP simplification  threshold.  Together,  these variables control 
the spacing and amount of waypoints. A larger value for the DP 
threshold results in less waypoints as only points which are far 
away from the line connecting the begin and end point. After all 
modifications  have  been  performed,  the  user  can  invoke  the 
Directions Service again to get a new shortest route.

The discussed application is built on top of Google Maps using 
JavaScript.  The  GM API  is  used  for  defining  the  obstacles, 
route begin and end points, thresholds (grid size and DP) and 
adjusting the initial result.

5.  TESTS AND RESULTS

Two examples are discussed in this section. The first example 
shows the result  of a routing request in Delft containing two 
obstacles.  The second example shows  the  result  of a  routing 
request near the bridges of Rotterdam.

Fig.  3 shows the cleaned result  of the first example. The DP 
result is represented by the straight line segments marked by the 
standard  Google  markers.  In  this  case  these  are  eight.  A 
Directions Service waypoint is located at every DP vertex. The 
Directions Service result is the markerless route which snakes 
through the streets and avoid the two obstacle polygons.  The 
obstacle polygons are represented by the light grey areas. 

Fig. 3 Cleaned shortest route result 

Fig. 4 shows the result presented in the figure above prior to the 
quick  manual  adjustment.  This  initial  result  is,  as  explained 
before, not perfect. A basic understanding of the workings of 
the system is needed in order to correctly/optimally define the 
obstacles  and  improve  the  initial  result  (shown  below)  and 
obtain a cleaned route (shown above). 

Fig 4. Initial result obtained after step 3 identified in section 4: 
the route is intersecting both obstacle polygons



When defining obstacles, it should taken into account the way 
A* works. Obstacle  have to be extended to touch (but do not  
cover)  roads  which  are  accessible  for  travel.  The  second 
example illustrates this issue (Fig. 5). The obstacle defined on 
top of the two bridges on the right is not extended far enough to  
the left. Since it is not touching the bridge on the left, the DP 
solution  passes  over  the  water  to  the  left  of  the  obstacle.  
Although  the  DP  result  successfully  avoids  the  obstacle,  the 
Directions  Service  is  unable  to  calculate  a  path  through  the 
supplied  waypoints  (identified  by  the  markers)  as  these  are 
located over water. Fig. 6 shows the correct obstacle definition 
i.e. the obstacle is touching the bridge on the left. 

Fig. 5 Demonstration of an improperly defined obstacle

Fig. 6 Properly defined obstacle. The obstacle from Fig. 5 is 
extended to touch the bridge on the left

The mentioned lack of access to vector data also influences the 
shortest  route  result  in  several  different  ways.  For  instance, 
some DP waypoints may simply fall on the wrong road. This 
results in a spaghetti like route as shown in Fig. 4. Google Maps 
automatically snaps waypoints to the closest street. While this is 
a big advantage (the application would not work otherwise) it 

tends to cause problems when the DP result snaps to a small 
one  way road  instead of the  neighbouring  high  way.  Google 
Maps is aware of street directions and the Directions Service 
obeys these. Waypoints which happen to be on the wrong side 
of the road cause the Directions Service to drive twice over the 
road in order to pass over the given waypoint. Lastly, if the DP 
threshold is too low i.e. the  A* result is not simplified, a lot of 
waypoints  will  be  returned  to  the Directions Service.  This is 
troublesome  in  cities  with  small  streets  as  the  route  will  be 
made to go through a large number of them.

6. CONCLUSION 

This  paper  proposes and  implements  an extension  to  Google 
Maps which uses crowdsourced data about the state of the road 
network to  calculate the shortest  path  between two points.  It 
enables the collection of infrastructure health information by the 
'crowd'  i.e.  rescue  workers,  journalists,  inhabitants,  etc  by 
letting them identify blocked roads by drawing polygons on a 
map. Using this information, the application is able to calculate 
the  shortest  path  between  two  points  by  combining  Google 
Maps' Directions Service with the A* pathfinding algorithm. 

Since  all  pathfinding  analyses  are  performed  in  the  raster 
domain,  the  returned  solutions  will  not  be  perfect  i.e.  the 
shortest  path  around  an  obstacle  will  not  adhere to  the  road 
network as it has no information about it. A certain amount of 
manual  adjustments  will  always  be  needed.  Some  basic 
understanding of the workings of the system is therefore needed 
to ensure an optimal definition and positioning of obstacles and 
modification of the initial result. 

The  proposed  system  works  best  in  complex  regions. 
Complexity in this case means a large number of streets, a large 
area of operations, many spread out obstacles. In these cases it  
becomes impossible to manually define a route which is optimal 
in a sense. A* guarantees that its result is the shortest possible 
path around the obstacle. The Directions Service also finds the 
shortest route. The obtained route is the result of the stacking of 
two optimizers. Such a high degree of optimization is difficult 
to achieve by map observation only. 

The system is especially useful when used by people who are 
not familiar with the layout of the city and the different types of 
roads.  What  might  look shorter  on  a  map need not  be so in 
reality  since,  for  instance,  a  shorter  route  may be  slower  in 
terms  of  time  due  to  a  lower  speed  limit  or  limited  vehicle 
capacity. 

The application is quickly able to find the shortest path given a 
well constructed obstacles. 

7. FUTURE WORK

It is currently not possible to save obstacles and paths for later 
use. For the system to be accessible to different users it must be 
possible to save the generated obstacles and paths on a server. 
Implementing this functionality will  open the system to many 
users  which  can  work  together  in  real-time.  Of course,  once 
obstacles have been stored in a database, they can be channelled 
into any other application.

Rescue  workers  not  familiar  with  the  area  will  benefit  most 
from  the  application  if  they  can  receive  routes  created  and 



checked  by  someone  familiar  with  the  area  and  system. 
Therefore, a mechanism needs to be implemented which allows 
the sharing and sending of calculated routes to specific users.

To ensure the quality of stored obstacles, it would be preferable 
if all obstacle are checked by an experienced operator prior to 
publishing, preferably someone who is familiar with the disaster 
area. Quality checking capabilities can be introduced by way of 
an obstacle staging area in which all new obstacles are stored 
and reviewed.

Currently it obstacles do not have any properties. Examples of 
obstacle properties may be the type of blockage (rubble, mud), 
inundation  depth  (in  case of flooding,  see Mioc et  al  2010),  
vehicle  type  (blocked  for  trucks  but  passable  for  cars),  etc. 
Introducing obstacle properties will  increase the power of the 
system. Rescue workers will be able to make better decisions. 

The  interface  of  the  application  needs  to  be  polished  and 
extended to allow more thorough control  of the objects  after 
they have been created.  The current implementation has been 
constructed as a proof of concept. Little time has been spent on 
optimizing the interface and making it intuitive to use. 

The application can further be optimized by making good use of 
the  Google  Maps  API  as  it  is  specially designed  for  mobile 
devices. 
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