
ENABLING OBSTACLE AVOIDANCE FOR
GOOGLE MAPS’ NAVIGATION SERVICE

Simeon Nedkov *, Sisi Zlatanova

OTB Research Institute for the Built Environment, TU Delft, Jaffalaan 9, 2628 BX, Delft, The Netherlands –
s.b.nedkov@student.tudelft.nl, s.zlatanova@tudelft.nl

Commission IV, WG IV/8

KEY WORDS: Web based, Urban, Planning, Content-based, Hazards

ABSTRACT:

City infrastructures are sensitive to disasters. To aid rescue workers and citizens, a system is needed which determines the shortest
route to a certain location, taking the damages of the infrastructure into account. The biggest disadvantage of current navigation
systems is that they are “closed” i.e. they are built on top of commercial software packages and as such are only usable by rescue
organizations which own licenses for these software packages.

Modern web-technologies provide tools to ease information collection and to facilitate the dissemination of data. Recent successes of
crowdsourced platforms such as OpenStreetMap, Ushahidi and Wikipedia, suggest the deployment of the crowdsourcing
phenomenon to disaster management. The idea is to let the “crowd” in a disaster area collect information about the state of the
infrastructure. People on the street form a highly dispersed network of sensors which is able to provide information in real-time at no
cost to the rescue workers.

This paper proposes and implements a method for performing shortest path calculations taking crowdsourced information, in the
form of constraints and obstacles, into account. The method is built on top of Google Maps (GM) and uses its routing service to
calculate the shortest distance between two locations. Users provide the constraints and obstacles in the form of polygons which
identify impassable areas in the real world. The A* pathfinding algorithm is used to guide Google's Directions Service around
obstacles.

1. INTRODUCTION

Cities are vulnerable to disasters. Earthquakes, floods and
storms can cause severe damage to urban structures. In these
kinds of emergency situations, the timely arrival of rescue
workers is no longer a function of distance only, but it also
depends on the state and accessibility of roads, bridges and
tunnels (Cutter et al 2003, Kevany, 2008). To facilitate the
navigation of rescue workers and citizens, emergency support
systems should provide the shortest route to a certain location,
taking the damages of the infrastructure into account (Diehl et
al 2005, Zlatanova and Baharin 2008). Such systems are
currently available for emergency responders only (Torgt et al
2005, Johnson 2008, Parker et al 2008). These systems are
based on commercial or open standards (OGC) technology. The
recently developed Dutch system Eagle One (Jacobs et al 2009)
is a typical example of commercial solution. The system follows
a netcentric approach for information sharing (Boyd et al 2005).
It is based on ESRI, Microsoft and Geodan technologies and
offers a range of functionalities (drawing, editing, overlays,
analysis). Many systems have also been built on basis of OGC
web standards (Reichardt and Reed, 2010).

The biggest disadvantage of the above mentioned systems is
that they are “closed” i.e. they are built on top of commercial
software packages and as such are only usable by rescue
organizations which own licenses for these software packages.
These solutions are usually complex. Even if made accessible to

a larger user community they will require skilled operators to
function effectively. As a result, these systems have low
momentum: the rescue organization using the system has to take
the common GIS steps on its own i.e. they have to gather,
analyze and dispatch data/informaion to their users.

Recent successes of crowdsourced platforms such as
OpenStreetMap and Wikipedia, suggest the deployment of the
crowdsourcing phenomenon to disaster management
(Goodchild 2007, Pultar et al 2007). Modern web-technologies
provide tools to ease the information collection task and to
facilitate the dissemination of data to users. Ushahidi has been
actively used for support of several large disasters such as the
Pakistan floods of 2011 (http://pakreport.org/ushahidi/) and
Japan earthquake 2011 (http://www.sinsai.info/ushahidi/),
Google Maps has been used in the Pakistan Earthquake of
2005. Google Maps has been aslo investigated as a tool to assist
performing routine works of first responders (e.g. navigation of
fire trucks Vozenilek and Zajickova, 2010). However, the
functionality of these systems is still very limited. Users can
plot information, but they can hardly perform any analysis.
Although shortest/fastest route analyses are supported by
Google Maps and OpenStreetMap, these are not adapted for
emergency situations.

Shortly after a disaster strikes, the most valuable commodity is
information. Disaster managers want to know what the severity
and extent of the damages is and how quickly should rescue

* Corresponding author.

http://www.sinsai.info/ushahidi/
http://pakreport.org/ushahidi/
mailto:s.b.nedkov@student.tudelft.nl

workers and repair men be sent? Means to collect this
information exist and have become quite mature. Once an
overview of the damages is created, transportation and logistics
become an issue. Which parts of the infrastructure network are
still available? What is the fastest route to any given location
taking the condition of the infrastructure into account?

Information about the state of the infrastructure can be gathered
by rescue workers as they travel through the city. However, a
large part of the environment remains unmapped. As a result
only a small portion of the road network is used, namely the
stretches of road which have been surveyed in the early
moments of a disaster.

Information about infrastructure health is vital and, despite its
extent, easy to collect: everyone can judge whether a street is
accessible for a car or truck. It can therefore be collected by
unqualified personnel not directly involved in the rescue efforts
e.g. city inhabitants, journalists, idle rescue workers, volunteers,
etc. People on the ground can act as a spontaneous and dense
sensor network which provides real-time information about the
state of road network.

Once this information is gathered rescue workers in possession
of powerful GIS software packages as well as users lacking GIS
tools should be able to plan their route based on real-time
crowdsourced infrastructure health information.

The aim of this project is therefore to investigate a platform, by
way of building a prototype, which allows the easy recording of
infrastructure blockage information by the “crowd” and is able
to use this information to provide routing services. Making this
data and the means to collect it available to all through a
common and well understood interface will relieve rescue
workers from the task of road monitoring, while enabling the
public to aid the rescue process.

2. REQUIREMENTS AND OPTIONS

The above vision calls for an open, easy to access, easy to use
and light system. An open system is here defined as a system
which is accessible to a diverse set of people all having different
affiliations i.e. a license free system. A system which is easy to
use is in this context defined as a system which is familiar to
users and thus allows them to intuitively work with the system
without needing any extensive training or prior knowledge.
Ease of access is defined as the possibility to use the system
regardless of user's location or equipment. The system should
work on as many platforms as possible, especially modern
smartphones. The best way to achieve this is to build a light
web based application. Light in this context means that no large
software packages are to be installed on the client/rover and that
processing and analysis should be performed off the device as
much as possible.

The above requirements hint at using a web mapping
technology such as Google Maps, OpenStreetMaps, Microsoft
Bing Maps, etc. The advent of these web mapping technologies
have brought geographical information to the masses teaching
them what geographical information is, how to use it and what
to expect from it. Building an application on top of these
mapping technologies therefore shortens users' learning period.
Building the system on top of these web mapping technologies
guarantees that users will have access to the most up-to-date
information.

In the presented approach, Google Maps (GM) has been chosen
because of its wide acceptance. Users are visually accustomed
to it, know how to operate and what to expect from it.
Furthermore, routing calculations are performed at Google's
servers by the so called Directions Service. The Directions
Service's input parameters are the starting and ending
coordinates of the route and a list of waypoints through which
the route must pass. Also, GM's API is optimized for mobile
devices. The API is well documented which makes extending
the system easy.

3. OVERVIEW AND ALGORITHMS

The system discussed above is implemented using Google Maps
built-in functionality which has been extended where needed.
Implemented extensions are based on algorithms as described in
Worboys 1995.

Shortest route analyses are performed by GM's Directions
Service. The Directions Service runs on Google's servers and
calculates the shortest route between the provided start and end
points. Google Maps does not provide built-in mechanisms to
prevent the Directions Service result from intersecting user
defined polygons which are representations of real world
obstacles. To avoid the obstacle an external pahtfinding
algorithm must be implemented. The start and ending points for
this algorithms are the intersection points between the route
returned from the Directions Service and the obstacle polygon.
In this implementation the intersections are found by deploying
simple computational geometry algorithms. Ideally, shortest
path calculations are graph based. However, Google Maps does
not expose its vector data e.g. it is not possible to extract a
graph of the streets. Obstacle avoiding shortest path analyses
are therefore performed in the raster domain.

3.1 Deployed algorithms

Google Maps does not provide mechanisms to check whether a
point is contained by a polygon. It is only possible to perform
point-in-bounding-box checks. Point in polygon analyses are
used for intersection detection and rasterization of polygons.
Checking if a point is contained by a polygon is done using the
winding number algorithm. The winding numbers algorithm
calculates and sums the angles between a point and all polygon
edges. If the summation equals 2 π then the point is said to be in
the polygon.

Line intersections are found by applying the side operation. The
side operation is used to determine whether a point is located to
the left, right or on a line segment. The side test is defined by
Eq. 1.

side (L , p)=
1 if area (L, p)>0
0 if area (L , p)=0

−1 if area (L , p)<0
 (1)

where the area of the triangle formed by the point p and line L is
defined as

area (L, p)=
L1×L2+L2×p+ p×L1

2
 (2)

where Ln = line vertex
p = point

Point p is said to be to the left of line L if the side operation is
positive, collinear with L if the side operation is equal to zero
and to the right when the side operation is equal to 1. Two lines
intersect iff

side(L1, s2)≠side (L1, e2)
side(L2, s1)≠side (L2, e1)

 (3)

where Ln = is the n-th line
sn = the start vertex of line n
en = the end vertex of line n

So two lines intersect when the start and end vertices of the first
line are on both sides of the second line and vice versa.

Shortest path analyses are performed using the A* pathfinding
algorithm (Hart et al 1968). Lines are simplified with the
Douglas-Peucker algorithm (Douglas and Peucker 1973).

4. IMPLEMENTATION AND TESTS

The process can be split in the following major parts.

1. Obstacle, path and initial route calculation: the user
defines the obstacles as well as the start and end
points of the route. An initial route is calculated by
Google's Directions Service.

2. Route and constraint intersection: intersections
between the initial route and obstacles are found
using the algorithms described in section 3.1.

3. Shortest path analysis and visualization: the
intersections found in step 2 are passed to the A*
pathfinding algorithm which finds the shortest path
around the obstacle. A new shortest route is requested
from Google's Directions Service which is obliged to
pass through the points calculated by A*.

4. Result adjustment: the result from step 3 is not perfect
and needs minor manual adjustments.

4.1 Obstacle, path and initial route definition

Obstacles are defined by drawing a polygon on the map in a
clockwise order. Markers are displayed to identify the polygon
vertices. The obstacle creation process is ended by a right
mouse click. Next, the user needs to enter the route start and
end points. A left click identifies the start point while a right
click identifies the end point. The shortest route calculation is
performed by the Google Maps' Directions Service.

The Google Maps Directions service takes a begin and end
point and calculates the shortest route connecting both points.
The Directions Service returns turn-by-turn driving directions.
Each turn instruction has a latitude and longitude coordinate.
However, the driving instructions' main purpose is navigation.
As such, a turn instruction is given only when a turn actually
has to be made. It is therefore impossible to predict the number
and locations of received latitude/longitude pairs. The route
returned from the Directions Service is therefore defined by a
list of randomly placed coordinates. For example, long
stretches of road will be represented by two coordinates only:
one belonging to the instruction stating to get on the road and
another to the instruction stating to get off the road, since the
driving instruction is of the form 'Turn left on Rotterdamseweg'.

This behaviour makes finding intersections between the route
and obstacles difficult as it creates a number of intersection
scenarios which need to be treated separately.

4.2 Route and constraint intersection

The aim of the intersection detection procedure is to find the
two vertices which lie just outside the obstacle polygon. These
will function as start and end point for the A* pathfinding
algorithm.

Figure 1 identifies the different intersection possibilities
between the route and the obstacle polygon. The polygon is
represented by the black area. Its bounding box is also given in
the figure. The route segment coordinates returned by the
Directions Service are represented by the diamonds and white
dots in the polygon.

Fig. 1 Intersection modes between the obstacle polygon and
route returned from the Directions Service

Category A is characterized by the presence of a route vertex in
the polygon. Category B is characterized by the the presence of
one or more vertices in the polygon's bounding box but none in
the polygon. Case B.IV is special as no vertices are present in
the bounding box but the segment does intersect the polygon.
Two different intersection techniques are used for both cases.

Category A: The algorithm starts by checking whether any of
the returned route vertices (the diamonds in Fig. 1) lie within
the bounding box of the obstacle. This is determined using
Google Maps' built-in LatLngBounds object's contains()
function. For all vertices which intersect the bounding box a
point-in-polygon test, as described in section 3.1, is performed.
Cases A.I-A.III are handled in the same way. First, the first
vertex which lies inside the polygon is found. The previous
vertex is then set to be the A* starting point. The end point is
set to be the first point which is not contained by the polygon.
Case A.IV is a a variation on the previous cases since the end
point lies outside the bounding box.

Category B: A different approach is needed for category B
since no vertices lie inside the polygon but an intersection
exists. A point-in-polygon test will not work. Therefore, a line
intersection algorithm has been implemented which intersects
all route edges with all polygon edges. The line intersection
algorithm is based on the side test as described in section 3.1.

In the current implementation cases I-IV are handled in the
same way. To optimize the algorithm, only route segments
having vertices contained by the bounding box should be
intersected with the polygon.

4.3 Shortest path analysis

As mentioned above obstacle avoidance shortest path analyses
are performed in the raster domain. Obstacles provided by the
user are rasterized. This is done by creating a grid around the
polygon and checking which grid cells are contained by the
polygon using the aforementioned winding numbers algorithm.
Once the intersection points, explained in section 4.2, are found
and the obstacle has been rasterized, the A* pathfinding
algorithm is used to calculate a path around the obstacle. A
result of the A* shortest path algorithm is shown in Fig. 2 (in
black).

Fig. 2 Result of the A* shortest path algorithm

As can be seen in Fig. 2, the A* algorithm returns many nodes.
These are not needed and are done away with using the
Douglas-Peucker (DP) simplification algorithm. The sensitivity
of the DP algorithm is controlled by a threshold: points which
are not significant for the shape of the line are removed. The DP
result is used as waypoints for the second Google Maps
Directions Service call.

4.4 Visualisation and result adjustment

The A* algorithm has no knowledge about the road network.
The returned results will be far from perfect. A certain amount
of modification will always be necessary. To facilitate this, the
DP result is plotted along side the Directions Service result.
Making adjustments to the initial result is done by dragging the
DP vertices to appropriate locations (see next section for more
details). It is also possible to vary the size of the grid and the
DP simplification threshold. Together, these variables control
the spacing and amount of waypoints. A larger value for the DP
threshold results in less waypoints as only points which are far
away from the line connecting the begin and end point. After all
modifications have been performed, the user can invoke the
Directions Service again to get a new shortest route.

The discussed application is built on top of Google Maps using
JavaScript. The GM API is used for defining the obstacles,
route begin and end points, thresholds (grid size and DP) and
adjusting the initial result.

5. TESTS AND RESULTS

Two examples are discussed in this section. The first example
shows the result of a routing request in Delft containing two
obstacles. The second example shows the result of a routing
request near the bridges of Rotterdam.

Fig. 3 shows the cleaned result of the first example. The DP
result is represented by the straight line segments marked by the
standard Google markers. In this case these are eight. A
Directions Service waypoint is located at every DP vertex. The
Directions Service result is the markerless route which snakes
through the streets and avoid the two obstacle polygons. The
obstacle polygons are represented by the light grey areas.

Fig. 3 Cleaned shortest route result

Fig. 4 shows the result presented in the figure above prior to the
quick manual adjustment. This initial result is, as explained
before, not perfect. A basic understanding of the workings of
the system is needed in order to correctly/optimally define the
obstacles and improve the initial result (shown below) and
obtain a cleaned route (shown above).

Fig 4. Initial result obtained after step 3 identified in section 4:
the route is intersecting both obstacle polygons

When defining obstacles, it should taken into account the way
A* works. Obstacle have to be extended to touch (but do not
cover) roads which are accessible for travel. The second
example illustrates this issue (Fig. 5). The obstacle defined on
top of the two bridges on the right is not extended far enough to
the left. Since it is not touching the bridge on the left, the DP
solution passes over the water to the left of the obstacle.
Although the DP result successfully avoids the obstacle, the
Directions Service is unable to calculate a path through the
supplied waypoints (identified by the markers) as these are
located over water. Fig. 6 shows the correct obstacle definition
i.e. the obstacle is touching the bridge on the left.

Fig. 5 Demonstration of an improperly defined obstacle

Fig. 6 Properly defined obstacle. The obstacle from Fig. 5 is
extended to touch the bridge on the left

The mentioned lack of access to vector data also influences the
shortest route result in several different ways. For instance,
some DP waypoints may simply fall on the wrong road. This
results in a spaghetti like route as shown in Fig. 4. Google Maps
automatically snaps waypoints to the closest street. While this is
a big advantage (the application would not work otherwise) it

tends to cause problems when the DP result snaps to a small
one way road instead of the neighbouring high way. Google
Maps is aware of street directions and the Directions Service
obeys these. Waypoints which happen to be on the wrong side
of the road cause the Directions Service to drive twice over the
road in order to pass over the given waypoint. Lastly, if the DP
threshold is too low i.e. the A* result is not simplified, a lot of
waypoints will be returned to the Directions Service. This is
troublesome in cities with small streets as the route will be
made to go through a large number of them.

6. CONCLUSION

This paper proposes and implements an extension to Google
Maps which uses crowdsourced data about the state of the road
network to calculate the shortest path between two points. It
enables the collection of infrastructure health information by the
'crowd' i.e. rescue workers, journalists, inhabitants, etc by
letting them identify blocked roads by drawing polygons on a
map. Using this information, the application is able to calculate
the shortest path between two points by combining Google
Maps' Directions Service with the A* pathfinding algorithm.

Since all pathfinding analyses are performed in the raster
domain, the returned solutions will not be perfect i.e. the
shortest path around an obstacle will not adhere to the road
network as it has no information about it. A certain amount of
manual adjustments will always be needed. Some basic
understanding of the workings of the system is therefore needed
to ensure an optimal definition and positioning of obstacles and
modification of the initial result.

The proposed system works best in complex regions.
Complexity in this case means a large number of streets, a large
area of operations, many spread out obstacles. In these cases it
becomes impossible to manually define a route which is optimal
in a sense. A* guarantees that its result is the shortest possible
path around the obstacle. The Directions Service also finds the
shortest route. The obtained route is the result of the stacking of
two optimizers. Such a high degree of optimization is difficult
to achieve by map observation only.

The system is especially useful when used by people who are
not familiar with the layout of the city and the different types of
roads. What might look shorter on a map need not be so in
reality since, for instance, a shorter route may be slower in
terms of time due to a lower speed limit or limited vehicle
capacity.

The application is quickly able to find the shortest path given a
well constructed obstacles.

7. FUTURE WORK

It is currently not possible to save obstacles and paths for later
use. For the system to be accessible to different users it must be
possible to save the generated obstacles and paths on a server.
Implementing this functionality will open the system to many
users which can work together in real-time. Of course, once
obstacles have been stored in a database, they can be channelled
into any other application.

Rescue workers not familiar with the area will benefit most
from the application if they can receive routes created and

checked by someone familiar with the area and system.
Therefore, a mechanism needs to be implemented which allows
the sharing and sending of calculated routes to specific users.

To ensure the quality of stored obstacles, it would be preferable
if all obstacle are checked by an experienced operator prior to
publishing, preferably someone who is familiar with the disaster
area. Quality checking capabilities can be introduced by way of
an obstacle staging area in which all new obstacles are stored
and reviewed.

Currently it obstacles do not have any properties. Examples of
obstacle properties may be the type of blockage (rubble, mud),
inundation depth (in case of flooding, see Mioc et al 2010),
vehicle type (blocked for trucks but passable for cars), etc.
Introducing obstacle properties will increase the power of the
system. Rescue workers will be able to make better decisions.

The interface of the application needs to be polished and
extended to allow more thorough control of the objects after
they have been created. The current implementation has been
constructed as a proof of concept. Little time has been spent on
optimizing the interface and making it intuitive to use.

The application can further be optimized by making good use of
the Google Maps API as it is specially designed for mobile
devices.

REFERENCES

Boyd, C., W. Williams, D. Skinner and S. Wilson, 2005, A
Comparison of Approaches to Assessing Network-Centric
Warfare (NCW) Concept Implementation, in Proceedings of the
international conference 7-9 November Brisbane, Australia,
http://www.concepts.aero/system/files/private/NPI-SETE-
2005.pdf (last accessed April 2009)

Cutter, S.L., Richardson D. B. and Wilbanks T.J. (eds.) 2003,
The Geographical Dimensions of terrorism, Taylor and Francis,
New York, ISBN 0-415-94641-7

Diehl, S., Neuvel, J., Zlatanova, S. and Scholten, H. 2006,
Investigation of user requirements in the emergency response
sector: the Dutch case, in: Second Symposium on Gi4DM, 25-
26 September, Goa, India, CD ROM, 6 p.

Douglas, D.H., & Peucker, T.K. (1973). Algorithms for the
reduction of the number of points required to represent a
digitized line or its caricature. Cartographica: The
International Journal for Geographic Information and
Geovisualization , 10 (2), 112-122.

Goodchild, M.F., 2007, Citizens as sensors: the world of
volunteered geography. GeoJournal 69(4): 211-221.

Hart, P., Nilsson, N., & Raphael, B. 1968, A formal basis for
the heuristic determination of minimum cost paths. IEEE
Transactions on Systems Science and Cybernetics , 4 (2), 100-
107.

Jacobs, C. A Riedijk, A Scotta, P. Broojmans and H.J Scholten,
2009, Application of spatial data infrastructure and GIS for
disaster management, in Kreek, Rumor, Zlatanova&Fendel
(eds.), Urban and Regional Data Management, CRC Press,
Taylor & Francis Group, Boca Raton, pp. 277-287

Jafari M, I. Bakhadyrov, A. Maher, 2003, Technological
Advances in Evacuation Planning and Emergency Management:
Current State of the Art, Technical Report, US Department of
Transportation Research and Special Programmes
Administration, Available online at :
http://www.cait.rutgers.edu/finalreports/EVACRU4474.pdf

Johnson, R. 2008, GIS technology and application for fire
services, in Zlatanova&Li (eds.) Geospatial information
technology for emergency response, ISPRS book series,
Taylor&Francis, London, pp. 351-372,

Kevany, M., 2008, Improving geospatial information in disaster
management through action on lessons learned from major
events, in: Zlatanova& Li (eds.) Geospatial Information for
Emergency Response, Taylor&Francis,London, UK, pp. 3-19

Mioc, D., Nickerson, B., Anton, F., MacGillivray, E., Morton,
A., Fraser, D., Tang, P. and Kam, A. 2010 Early Warning and
On-Line Mapping for Flood Events, Geoscience and Remote
Sensing, New Achievements, pp: 147-162 In-Tech, Vukovar

Parker, C.J, R. MacFarlane and C. Phillips, 2008, Integrated
emergency management, experiences and challenges of a
national geospatial information provider, Ordnance Survey, in
Zlatanova&Li (eds.) Geospatial information technology for
emergency response, ISPRS book series, Taylor&Francis,
London, pp. 275-310,

Reichardt, M. and C. Reed, 2010, Mobolizing ulti-source
Geospatial Information for EW and EM: maximize sharing,
Enhance flexibility and minimise costs, in Konecny,
Zlatanova&Bandrova geographic Information and Cartography
for Risk and Crisis Management, Springer, Heidelberg, pp. 191-
208

Pultar E., M. Raubal, T.J. Cova, and M.F. Goodchild, 2009,
Dynamic GIS case studies: wildfire evacuation and volunteered
geographic information. Transactions in GIS 13 (Supplement
1): 85–104

Togt, R., E. Beinat, S. Zlatanova, and H.J. Scholten, 2005,
Location interoperability services for medical emergency
operations during disasters, in: van Oosterom, Zlatanova &
Fendel (Eds.), Geo-information for disaster management,
Springer Verlag, Heidelberg, pp. 1127-1141

Vozenilek, V. and L. Zajickova, 2010, Cartographic support of
fire engine navigation to operation site, in in Konecny,
Zlatanova&Bandrova geographic Information and Cartography
for Risk and Crisis Management, Springer, Heidelberg, pp. 114-
128

Worboys, M. F. 1995, GIS : A Computer Science Perspective,
Taylor and Francis, London.

Zlatanova, S. and S. Baharin, 2008, Optimal Navigation for
First Responders, in: Van der Walle, Song, Zlatanova&Li
(eds.), Information systems for crisis response and management,
Joint ISCRAM-CHINA, Gi4DM Conference, 4-6 August, 2008,
Harbin, China, pp. 529-542

http://www.space.dtu.dk/English/Staff/All.aspx?lg=showcommon&id=35751&type=person
http://www.space.dtu.dk/English/Staff/All.aspx?lg=showcommon&id=54857&type=person
http://www.cait.rutgers.edu/finalreports/EVACRU4474.pdf
http://www.concepts.aero/system/files/private/NPI-SETE-2005.pdf
http://www.concepts.aero/system/files/private/NPI-SETE-2005.pdf

	1. Introduction
	2. Requirements and options
	3. overview and algorithms
	3.1 Deployed algorithms

	4. Implementation and tests
	4.1 Obstacle, path and initial route definition
	4.2 Route and constraint intersection
	4.3 Shortest path analysis
	4.4 Visualisation and result adjustment

	5. Tests and Results
	6. Conclusion
	7. FUTURE WORK
	References

