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ABSTRACT: 

 

Rubble mound breakwaters are coastal defense structures that protect harbors and beaches from the impacts of both littoral drift and 

storm waves. They occasionally break, leading to catastrophic damage to surrounding human populations and resulting in huge 

economic and environmental losses. Ensuring their stability is considered to be of vital importance and the major reason for setting 

up breakwater monitoring systems. Terrestrial laser scanning has been recognized as a monitoring technique of existing 

infrastructures. Its capability for measuring large amounts of accurate points in a short period of time is also well proven. In this 

paper we first introduce a method for the automatic extraction of face geometry of concrete cubic blocks, as typically used in 

breakwaters. Point clouds are segmented based on their orientation and location. Then we compare corresponding cuboids of three 

co-registered point clouds to estimate their transformation parameters over time. The first method is demonstrated on scan data from 

the Baiona breakwater (Spain) while the change detection is demonstrated on repeated scan data of concrete bricks, where the 

changing scenario was simulated. The application of the presented methodology has verified its effectiveness for outlining the 3D 

breakwater units and analyzing their changes at the millimeter level. Breakwater management activities could benefit from this initial 

version of the method in order to improve their productivity.  

  

 

                                                                 

*  Corresponding author. 

1. INTRODUCTION 

Structural monitoring has become nowadays an important 

research area involved in the structural integrity assessment of 

civil infrastructures. Engineering communities have shown an 

increasing interest to monitor bridges (Enckell et al., 2011; Ye 

et al., 2013), tunnels (Lindenbergh et al., 2005; Puente et al., 

2014; Sharma et al., 2001) and other structures (Valença et al., 

2013) and to detect damage at the earliest stages. Specifically, 

rubble mound breakwaters (Corredor et al., 2013) are 

commonly employed to protect important coastal areas such as 

ports, marinas or beaches from the effects of attacking ocean 

waves.  

Some studies have described fairly extensively the fluid-

structure interaction (Altomare et al., 2014) and the breakwater 

monitoring (Del Grosso et al., 2003; Yoon et al., 2012).  It is 

crucial to detect local defects on time, such as displacements, 

breakage or removals of the concrete armor units (CAUs), 

before they become a real threat to the safety of breakwaters. 

The observed damages in these structures can be divided into 

sliding, settlement or toppling, directly causing displacements, 

breakage or removals of the concrete armor units. Other defects 

such as scouring at dike foundations can also occurr and tend to 

propagate into more serious damages under extreme wave 

forces. Therefore, it is advantageous to develop a methodology 

which identifies local movements in these coastal defense 

structures. 

Detection of changes using LiDAR data is growing quickly in 

many engineering applications (Lindenbergh, 2010; Monserrat 

and Crosetto, 2008). This technology allows for low risk and 

rapid collection of accurate geospatial information as an 

alternative for traditional surveying techniques. It has been 

proved that an easy procedure to map and monitor topographic 

changes is by using repeated LiDAR measurements from a fixed 

position (Van Goor et al., 2011) or any mobile platform (Puente 

et al., 2013).  

 

This work presents a novel approach to automatically evaluate 

changes in rubble mound breakwaters using point clouds of 

different epochs. The method first identifies single segments 

from each armour unit and their face geometry is outlined. 

Secondly, the algorithm looks for corresponding cuboids in 

different epochs and estimates their rigid body transformation 

parameters. The paper has been organized into four main 

sections. The second reflects the formal description of the 

algorithm. In section three, the results are presented and 

discussed. Finally, some conclusions are provided. 

 

 

2. METHODOLOGY 

In this section, we focus on the identification of individual 

planar segments representing the cuboid faces. Those segments 

are later grouped together to form individual cuboids (or 

breakwater units), which are used to monitor changes in the 

structure. 

The algorithm overview summarizes the following steps, as 

shown in Figure 1. 
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Figure 1. Algorithm overview for 3D outlines of the CAUs 

 

2.1 Surface normal estimation 

The raw point cloud data is originally represented by the 3D 

Cartesian coordinates and the intensity value (X, Y, Z, I).  We 

use the location of the laser scanner as the origin of each scan’s 

local coordinate system. However, the segmentation procedure 

described in Section 2.2 will require surface normal estimates as 

a prerequisite. We first determine the local neighbors of each 

point p in point cloud. There are several nearest neighbor 

methods available, such as K-Nearest Neighbours search 

(KNNsearch), Approximate Nearest Neighbour (ANN) or its 

variant FLANN (Fast Library for Approximate Nearest 

Neighbour), each of them implementing a number of different 

search strategies and data structures, based on kd-trees and box-

decomposition trees. For this case study, we used FLANN 

(Muja and Lowe, 2009), written in C++ but with binding for the 

Matlab language. 

 

The estimated surface normal for the point p is then the normal 

n = (nx, ny, nz) to the plane that best fits the neighboring data 

points in the least square sense. This plane is determined using 

Principal Component Analysis (PCA).The approximate surface 

normal, oriented outwards, is then the eigenvector associated 

with the smallest eigenvalue of the symmetric positive semi-

definite variance-covariance matrix of the neighboring data 

points (Castillo and Zhao, 2009). The authors will check if the 

cuboid surface normals have a positive orientation, that is, 

pointing towards the exterior of the surface, using the scanning 

direction and the dot product of both vectors. 

It should be noted that in general, computing the local 

neighborhood represents the main computational cost 

associated with surface normal estimation. 

  

2.2 Segmentation 

The resulting values of the PCA are used to reshape the original 

data matrix (X, Y, Z, I) into a new one, where each point of the 

cloud will now have 9 data values: X, Y, Z coordinates plus 3 

surface normal coordinates (nx, ny, nz) and 3 eigenvalues (λ1, λ2, 

λ3). Before the segmentation process starts, we first filter the 

dataset based on the third eigenvalue (λ3). Raw data points with 

a greater λ3 will be filtered out, as they mostly correspond to 

edges or noise. 

In the following step, we select a clustering method for 

grouping the previously filtered data based on their surface 

normal orientations. There are two common approaches: 

hierarchical clustering and k-means algorithm. For this case 

study, we used the latter. K-means clustering treats each 

observation ni = (nxi, nyi, nzi) as an object having a location in 

space. If the set N={ n1, …, ni} defines the i points to be 

clustered, we seek a collection of k mutually exclusive subsets 

of N, say, C1,….Ck, that minimizes the sum of distances from 

each point to its cluster centroid, over all clusters. Distances are 

measured using the squared Euclidean distance metric and the 

process is reiterated until the clustering processes stabilize, 

which basically means that no points swap cluster anymore 

(Spath, 1985). 

This method needs both k and the initial centroid positions (also 

known as seeds) to be specified to initialize it (Chiang and 

Mirkin, 2010). For the case study, we selected the seeds from N 

at random while the right number of clusters k was estimated by 

plotting all normal directions on a stereographic projection. 

Then, by applying some image processing techniques with 

Matlab, k is semi-automatically estimated. Intermediate steps 

include the image binarization, and the centroid and area 

computation for each cluster in the binary image. In fact, the 

only parameter provided by the user is the minimum number of 

pixels that compose each cluster area. 

It is therefore possible to segment point clouds into subsets, 

each one made of points with similar orientation. Then, for each 

cluster Ck, we applied a k-means clustering for the second time 

where the input data matrix is composed of X, Y, Z coordinates. 

We use an over-segmentation approach in some clusters but in 

this way, we assure one single segment per cluster and also, we 

can delete those small and unrepresentative clusters, classifying 

them as outliers.  

For each resulting cluster, we compute its centroid and the 

mean surface normal vector. The next step aims at merging all 

the clusters belonging to the same face. We use a standard 

region growing algorithm in 3D to cluster the points based on 

an angular threshold (αp) and a distance threshold (dp), similar 

to that presented in Rabbani et al., 2006. The threshold angle 

used specifies the maximum acceptable angle between the 

normal of the current seed and its neighbors. The latter are 

computed by searching all the centroids that are within distance 

dp of the current seed.  

 

2.3 Automatic geometry extraction 

When we process the clustered laser scanning data, we still need 

to remove some noisy points that clearly do not belong to a 

cube face (see Figure 2). To overcome this problem, we adjust a 

plane to each cluster, defined by the mean normal vector and its  
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Figure 2. Filtering of a noisy planar segment and resultant 2D convex hull 

 

centroid. The orthogonal distance from each cluster point, d, to 

the plane is then computed and a threshold value (dt) is chosen 

by the user to remove those noisy points. 

The reduction of each cluster into 2D using the previously 

defined plane is the next step. Then, we apply a convex hull 

algorithm (Preparata and Hong, 1977) in order to create the 

bounding polygon for each cluster. Finally, we convert the 2D 

polygons into 3D outlines of the cube faces.  

 

2.4 Identifying changes in concrete units 

The next step after the 3D outlining and segmentation processes 

is to identify possible changes in the breakwater armor units 

that could appear with time. In quasi-time-invariant 

environments, when a breakwater is scanned twice from the 

same scan position and under the same conditions, the 

segmentation results should be similar. Therefore, a segment in 

one scan that has no counterpart in the second scan would 

indicate a possible change.  

In practice, to monitor all the breakwater units along time, 

corresponding block pairs among epochs will be manually 

matched, as there is no intrinsic correspondence between 

segments based just on distance, size or orientation. To achieve 

the objective, a validation experiment is designed in which 

bricks with alphanumeric characters on their faces are 

considered (see Figure 4). 

 

First of all, all planar faces identified for each epoch are 

connected to represent individual rigid blocks. That is, an 

automatic algorithm recursively matches three or more 

corresponding faces of the same block. This procedure can be 

reached again through a region growing algorithm that clusters 

the faces based on a distance threshold (dmax) and the 

relationship between the convexities of connected segments. 

Every planar segment is defined by its normal vector n and the 

centroid of the points in the segment. If the intersection of the 

lines defined by the normal vector and centroid from two 

adjacent faces, lies within the block, both faces are grouped 

together. Otherwise, they are not grouped. Once the cuboids are 

individually identified for each epoch, the comparison is 

straightforward. We denote the set of all cuboids from the first 

epoch as CI and the set of all cuboids from the second epoch as 

CII. Cuboid 1 from epoch I is notated as CI
1 while the same 

cuboid from epoch II is notated as CII
1. 

 

In order to parameterize the location in 3D space, the centers of 

gravity and the Euler angles of the cuboids are computed. Euler 

angles are three angles used to represent the orientation of a 

rigid body relative to a coordinate system. For the sake of 

simplicity, we consider here the case of just one cuboid C1, 

monitored in epochs I, II and III. The method would be then 

extended in the same way to the rest of cuboids.  

We can define the centroid of the cuboid as the intersection of 

the lines formed by the normal vector and the centroid of each 

face forming the cuboid. The same orthogonal vectors are used 

to calculate the orientation of the cuboid in a fixed reference 

frame (which is the scanner coordinate system). The three 

resulting angles (α, β, γ) are computed as the dot product 

between each face normal unit vector n and its corresponding 

fixed axis (u, v, w) following the right-hand rule. 

The Cartesian coordinates of both centers of gravity from CI
1 

and CII
1 are used to determine the Euclidean distance (Equation 

1) and the translations tx, ty and tz along x, y and z- axes, 

respectively. Monitoring the rotations can be easily achieved by  

looking at the Euler angles and comparing them with the fixed 

coordinate system. 

 

 

(1) 

 

 

 

3. RESULTS AND DISCUSSION 

In this section, the methodology explained in section 2 is 

illustrated for two case studies. The 3D geometry extraction is 

demonstrated on armor units in a rubble mound breakwater. The 

change detection procedure was tested with a validation 

experiment of three cuboids where the scenario was simulated. 

 

3.1 Data description 

Baiona breakwater is the main defensive structure around the 

Port of Baiona, in northwestern Spain (Figure 3b). It is an old 

rubble mound breakwater with conventional concrete cubes as 

armor units. For testing the geometry extraction algorithm, 

authors selected an area of 14 x 5.5 m (Figure 3a), sampled by 

approximately 230 thousand points scanned with a Faro Focus 

3D (Faro, 2013a). This is a phase-based system, whose 

measurements are taken continuously. This fact makes it 

suitable for precise surveys. 

 

 
 

Figure 3. Baiona breakwater 
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For the change monitoring task, we considered concrete bricks 

(Figure 4) that were rotated and translated in a controlled 

manner during three consecutive epochs. The presented 

scenario was designed to be realistic under higher-than-design 

storm conditions, where concrete armors resist with only a few 

units being extracted from the breakwater. But generally, 

breakwater units will undergo very small dislocations. 

Individual scans were performed from the same scan position 

using the Faro Photon 120 phase-based scanner (Faro, 2013b). 

As a consequence, point clouds were already registered in a 

common coordinate system and no control points were required.  

 

 
 

Figure 4. Three concrete bricks employed in the validation 

experiment for change monitoring: (a, c) Epoch I; (b, d) Epoch 

III 

 

3.2 Surface normal estimation and segmentation 

The choice of the number of neighbors, s, is essential for the 

quality of the calculated normal. Low s values are sensitive to 

noise, while higher values may compensate the noise problem 

but also increase the processing time. Thus, PCA was 

performed using the 50 closest points of each point in the point 

cloud (Belton and Lichti, 2006).  

The point cloud from Figure 3a was segmented into planar 

patches after k-means clustering. The parameter value k=25 was 

first estimated by plotting all cluster orientations on a 

stereographic projection (Figure 5).This resulted in 25 segments 

for the first round k-means and in 125 segments for the second 

round k-means (Figure 6a).  

 

 

Figure 5. Stereoplot of all the orientations of the concrete armor 

faces in the 3D model 

 

Over-segmented patches were then clustered into cube faces 

using the region growing method described in detail in Section 

2.2. Here, the parameter values, αp = 20◦ and dp = 0.9 m were 

used. This setting resulted in 47 planar segments (Figure 6b). 

For example, in the following cube marked by a capital ‘A’, 

three segments in red, blue and yellow were grouped in one 

resulting green colored face while the set of purple, green and 

dark blue segments resulted in one cyan cube face. The other 

three segments remain unclustered as they don’t fulfill the 

conditions specified in the method. In fact, this approach 

requires both parameters to be defined precisely in order to 

succeed. On the contrary, nearly-parallel adjacent segments 

from different cubes but with the same normal orientation, 

could be wrongly group together.  

 

 
 

Figure 6. (a) Over segmentation of cube faces. (b) Segmented 

cube faces after Region Growing with their normal vector 

representation. 

 

 
 

Figure 7. 3D outlines of the cube faces 

 

Figure 7 shows the 3D outlines after the 2D reduction of the 

previously segmented cube faces and the convex hull 

implementation.   

 

3.3 Change monitoring in cuboids  

The workflow explained in Sections 2.1-2.3 was again applied 

to this dataset composed of three concrete bricks. The value k=4  
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Figure 8. Top view of the cuboids 1, 2 and 3 (from left to right) studied in three different epochs. The faces are not grouped in 

cuboids at this point. 

 

 
 

Figure 9. Identification of cuboids in epoch 1. The faces are 

now grouped. 

 

was used in the first k-means clustering. In Figure 8, every 

planar segment was identified and plotted in random color.  

The concrete bricks were modeled as cuboids, where each pair 

of adjacent faces or segments meets in a right angle. This 

process was achieved using the region growing algorithm 

described in Section 2.4. Two parameters were required: a 

distance threshold (dmax =0.010 m) and the relationship between 

the convexities of connected segments. Figure 9 illustrates the 

results from this step for CI. 

 

In order to define their placement in 3D, the linear position and 

orientation of the cuboids were computed. Typically, the 

reference point chosen is coincident with the centroid of the 

rigid body. The cuboid orientation is given by its three 

orthogonal vectors. 

In the following, the centers of gravity of each cuboid and its 

Euler angles were derived. The results only consider the case of 

just one cuboid C1, monitored in epochs I, II and III.  However, 

the procedure can be applied to the whole set of corresponding 

cuboid pairs identified by the user. 

 

Table 1. Centers of Gravity and Euler angles for CI
1, CII

1, CIII
1. 

Changes were manually applied to the cuboids. 

 

 CoG (m) α (0) β (0) γ (0) 

CI
1 (-2.062  -0.620  -0.735)  19.89 9.03 19.57 

CII
1 (-2.004  -0.614  -0.734)  19.74 10.08 15.31 

CIII
1 (-2.051  -0.653  -0.723)  325.9 333.22 18.08 

 

Therefore, it is now possible to determine the distances between 

centers of gravity of cuboids and the orientation (or relative 

orientation) with time. For example, the displacement relative to 

epoch I is dCI
1CII

1 = 0.058 m and the translations along the axis 

for CII
1 are tx = 0.058 m, ty = 0.006 m and tz = 0.001 m. The 

distance traveled for CIII
1 with reference to epoch II is dCII

1CIII
1 

= 0.062 m with tx = -0.047 m, ty = -0.039 m and tz = 0.011 m.  

 

Although there is no ground truth available for the resulting 

values in Table 1, they are as expected: in epoch II, the C1 

transformation consists of only a translation, so the Euler angles 

remain almost identical. In epoch III, C1 rotated mainly around 

the z and x axes and it was also translated (see Figure 8). 

 

The method presented here is an initial version using data 

acquired from a single scan position. It could be extended to 

larger breakwaters, though multiple scans from different 

standpoints in one epoch would be needed. In that case, datasets 

should be registered with a high accuracy using reflective 

targets (control points) placed on the scene. The result would be 

one point cloud per epoch. Moreover, occlusions would be 

mostly solved, when parts of the breakwater surface that were 

not visible from one scan position would be captured by another 

one.  

 

 

4. CONCLUSIONS 

In this paper a new methodology has been presented for the 3D 

outline of concrete armor units in a breakwater and the 

monitoring of their displacements and rotations. In an efficient 

manner, the original point cloud is segmented into planar 

patches that can be identified over time (after the manual 

marking of corresponding segments and cuboids). This method 

later compares two or more matched cuboids in different 

epochs, letting the user to monitor their 3D placement over 

time. This fact makes this method useful to detect local defects 

at early stages, avoiding them to affect the structural stability of 

the breakwaters. 

 

The method is computationally efficient and it can be easily 

adapted to other fields of application where block-like 

structures must be identified and tracked along time. 

The best segmentation parameters vary within a scene, 

depending on the objects present. However, some 

improvements can be made to enhance the segmentation 

process. These are linked to the varying point cloud quality 

(such as areas with lower point density or higher incident 

angles), plane fitting errors or measurement errors that will 

definitely affect the aforementioned process.  
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Other challenges are related to occlusions, that could prevent 

the monitoring of corresponding cuboids or the edge effect that 

results in noisy points that interfere negatively in the 

segmentation process.  
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