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Summary

The empirical Darcy's law of water transport in porous media, Fick's law of

chemical diffusion, and Fourier's law of thermal transport have been widely

used in geophysics/geochemistry for over 150 years. However, the strong

couplings between water, temperature, and chemicals in a membrane porous

medium have made these laws inapplicable and present a significant hurdle

to the understanding of multiphase flow in such a material. Extensive experi-

ments over the past century have observed chemical osmosis and thermal

osmosis, but a model for understanding their underlying physicochemical basis

has remained unavailable, because of the highly cross‐disciplinary and

multiscale‐multiphase nature of the coupling. Based on the fundamental prin-

ciples of nonequilibrium thermodynamics and mixture coupling theory, a rigor-

ously theoretical and mathematical framework is proposed and a general model

accounting for all of the coupled influences is developed. This leads to a simple

and robust mathematical matrix for studying multiphase couplings in a mem-

brane porous medium when all chemical components are electrically neutral.

KEYWORDS

coupling, membrane porous media, mixture coupling theory, multiphase
1 | INTRODUCTION

In 1856, Henry Darcy developed a constitutive equation that describes the flow of a fluid through a porous medium
based on the results of experiments on the flow of water through beds of sand. It is known as Darcy's law1 and has
been widely used in earth and environmental sciences (eg, hydrogeology, groundwater pollution), civil engineering
(eg, geotechnical engineering and energy geotechnics), and so on. In 1855, Adolf Fick developed a constitutive equation
describing how chemical diffusion is driven by the concentration gradient, known as Fick's law.2 It is widely used in
geoscience (eg, geochemistry), pharmacy (eg, pharmaceuticals), materials science (eg, radioactive materials), biological
sciences (eg, transport in biological tissues), and so on. In 1822, Joseph Fourier developed a constitutive equation that
describes the relationship between the conduction rate in a material and the temperature gradient in the direction of
energy flow3, known as Fourier's law. It is widely used in engineering science (eg, geothermal energy).

However, because these 3 laws are based on the common assumption that no strong coupling exists with other phys-
ical/chemical fields, all the 3 laws become invalid in very low permeability porous media (eg, when the permeability
k ≤ 10−11 m/s) in which strong couplings between the multiphases/multiscales normally exist.4 For example, Figure 1
shows the water transport in, and deformation of, a porous medium at the macroscale, down to the mesoscale of a
membrane porous medium to limit the transport of large molecules, and further down to the molecular scale of chemical
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FIGURE 1 Multiphase‐multiscale porous medium [Colour figure can be viewed at wileyonlinelibrary.com]
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diffusion. In this illustration, the multiphases include water, heat, and chemicals. When a water pressure gradient
(grad p), a chemical mass fraction gradient (grad c), and a temperature gradient (grad T) are applied across the mixture
in a porous medium, the following situations are involved: (1) The pressure gradient causes the water molecules to
migrate (usually from high pressure to lower pressure) with a mass flux of u = − (k/v) grad p, in which k is the perme-
ability of the porous medium, v is the viscosity of the fluid, and u is the Darcy flux; (2) This water flow will be affected
simultaneously by the chemical (J = ρf D grad c, where ρf is the fluid mass density, D is the diffusion coefficient, and J is

the diffusion flux) and thermal (I′q ¼ λ grad T, in which λ is the thermal conduction coefficient and I′q is the thermal flux)

transport flows, and vice versa; (3) The secondary or tertiary coupled driving force may become the major driving force of
the flow in some circumstances (eg, grad c becomes the major driving force of water flow rather than grad p for chemical
osmosis in a membrane porous medium5); (4) Overall, the 3 flows (water, chemical, and thermal) and 3 driving forces
(grad p, grad c, and grad T) present a 3 × 3 matrix describing the cross‐couplings between each other (Figure 2), which
is the realistic condition of the multiphase porous medium system. Extensive experiments have been conducted in recent
decades,6,7 but little has been achieved regarding theoretical development in a strict mathematical way.

The focus of this paper is to develop a general constitutive equation for thermo‐hydro‐chemical coupled transport in
a porous medium and thereby modify centuries of understanding. The attention is limited to a transient flow, with a
steady state of nonreactive chemical transport and a restriction to electrically neutral components, in a membrane
porous medium, and does not consider the deformation of the medium (eg, soil compaction can drive water out).
2 | OVERALL DISSIPATION FUNCTION

In a multiphase‐multiscale porous medium, the dynamic movement of the mixture causes dissipation. For example, the
friction between solids and fluids slows down the water transport. Such dissipation can be expressed using entropy
production (γ) through the expression Tγ, in which T is the temperature. The entropy production may be defined as
the sum of the products of the flows with their conjugated forces,8
FIGURE 2 Water (W), thermo (T), and chemical (C) couplings [Colour figure can be viewed at wileyonlinelibrary.com]
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0≤ γ ¼ Iq⋅ grad
1
T

� �
þ ∑

N

i¼1
Ii ⋅ grad −

μi
T

� �
(1)

where Iq is the thermal flux; N is the total number of chemical components; Ii = ρi(vi − vm) is the ith (i = 1,…N) chemical
flux, in which ρi and vi are the mass density and velocity of the ith chemical, respectively, and vm is the velocity of the

solid matrix; and μi is the chemical potential of the ith chemical. In Equation 1, the driving force of Iq is grad
1
T

� �
and

the driving force of Ii is grad
−μi
T

� �
.

The term grad −
μi
T

� �
in Equation 1 may be transformed following the rules of ordinary differentiation as

grad
−μi
T

� �
¼ 1

T
grad −μið Þ − μi grad

1
T

� �
(2)

in which gradμi may be denoted as8

gradμi ¼ −Si grad Tð Þ þ grad μci
� �þ Vi grad pð Þ (3)

where Si ¼ ∂S
∂ni

is the partial molar entropy of the ith component (in which S denotes entropy and ni is the number of

moles of the ith component); Vi ¼ ∂V
∂ni

� �
T;p;nj

is the partial molar volume of the ith component (in which V denotes

volume, while nj is the number of moles of the jth chemical); and μci is the concentration dependent part of μi, which
is usually written as μci ¼ RT lnai (in which ai is the chemical activity, which equals the solute mole fraction in the case
of an ideal solution). Note that for the convenience of the cross‐disciplinary expression, both mass quantity and molar
quantity have been used. These 2 types of quantities can be directly linked with each other through a simple equation:

ie, the mass fraction of the ith chemical ci can be obtained from ci ¼ niMi= ∑
N

i¼1
niMi

� �
, whereMi is the molar mass of the

ith component.
If the system is assumed to be in mechanical equilibrium, which leads to grad(p) = 0 (p is the pore fluid pressure),

Equation 3 can then be simplified as

gradμi ¼ −Si grad Tð Þ þ grad μci
� �

(4)

The relationship between entropy Si and enthalpy Hi is
9

Hi ¼ TSi þ μi (5)

By introducing Equations 4 and 5 into Equation 3, it leads to

grad
−μi
T

� �
¼ −Hi grad

1
T

� �
−

1
T
grad μci

� �
(6)

Then, by substituting Equation 6 into Equation 1, the entropy function can be written as

γ ¼ Iq−∑
N

i¼1
HiIi

� �
⋅grad

1
T

� �
þ ∑

N

i¼1
Ii ⋅

grad −μci
� �
T

¼ I′q⋅grad
1
T

� �
þ ∑

N

i¼1
Ii ⋅

grad −μci
� �
T

(7)

where I′q ¼ Iq−∑
N

i¼1
HiIi, which can be defined as the difference between the “total” heat flow Iq and that caused by the

flows of mass transport∑
N

i¼1
HiIi. Following the rules of ordinary differentiation, grad

1
T

� �
in Equation 7 may be written as
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grad
1
T

� �
¼ −

1
T2 grad T

By substituting this expression into Equation 7, the dissipation function Tγ can be written as

Tγ ¼ I′q ⋅
grad −Tð Þ

T
þ ∑

N

i¼1
Ii ⋅ grad −μci

� �
¼ Tγq þ Tγche

(8)

where γq and γche are the entropy production of heat and chemical, respectively.
3 | LOCAL ISO ‐THERMAL DISSIPATION FUNCTION

In a microscale local region within a porous medium, it can be assumed that the temperature is constant, and then,
grad(−T) becomes 0 in Equations 4 and 8. This leads to grad −μið Þ ¼ grad −μci

� �
and γ = γche. To focus on the interactions

between chemicals and water, Equation 1 can be written as

0≤ γche ¼ ∑
N

i¼1
Ii ⋅

grad −μið Þ
T

(9)

The dissipation function is then

Tγche ¼ ∑
N

i¼1
Ii ⋅ grad −μið Þ (10)

The flux Ii defines the mass flow relative to the solid mass for the ith chemical. However, it may be more convenient to
use the diffusion flux Ji, which describes the mass flow relative to the mixture's barycentric velocity.

For the fluid, the total fluid mass density is

ρf ¼ ∑
N

i¼1
ρi

where ρi is the mass density of the ith chemical. The mixture's barycentric velocity is

vf ¼ ∑
N

i¼1
ρi=ρf
� �

vi

The diffusion flux can be defined as

Ji ¼ Ii − ρi vf − vm
� � ¼ ρi vi − vf

� �
The Gibbs‐Duhem equation,10 which describes the relationship between changes in chemical potential for compo-

nents in a thermodynamical system, is

ldf þ SdT − Vporedpþ ∑
N

i¼1
midμi ¼ 0

where Vpore is the pore space volume,mi is the mass of the ith chemical, S is the entropy, f is an external force, and l is the
distance over which it acts. To simplify the problem, it is assumed that df = 0 and dT = 0, so that the equation can be
written as

−Vporedpþ ∑
N

i¼1
midμi ¼ 0
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The relationship between pressure and chemical potential may then be derived as

∑
N

i¼1
ρi ⋅ grad μi ¼ grad p

where ρi ¼ ρi=ϕ, in which ϕ is the porosity of the medium and the fluid mass density ρi is expressed relative to the unit
volume of the fluid‐solid mixture.

The dissipation function (10) can now be rearranged as

Tγche ¼ −ϕ vf − vm
� �

∑
N

i¼1
ρi⋅grad μi−∑

N

i¼1
Ii − ρi vf − vm

� �� 	
grad μið Þ

¼ −ϕ vf − vm
� �

grad p−∑
N

i¼1
Ji grad μið Þ

(11)

As Darcy's velocity can be defined as

u ¼ ϕ vf − vm
� �

(12)

by introducing Equation 12 into Equation 11, the dissipation function becomes

Tγche ¼ −u grad p−∑
N

i¼1
Ji grad μið Þ (13)

Equation 13 summarizes the driving forces of Darcy flux (ie, water pressure) and the diffusion flux (ie, chemical
potential).

If it is assumed that the fluid comprises a solute (subscript s) and a diluent (subscript d), ∑
N

i¼1
Ji can then be

simplified as

∑
N

i¼1
Ji ¼ Js þ Jd ¼ ρs vs−vf

� �þ ρd vd−vf
� �

¼ ρsvs þ ρdvd− ρs þ ρdð Þvf
(14)

The term (ρs + ρd)vf in Equation 14 can be rearranged as

ρs þ ρdð Þvf ¼ ρs þ ρdð Þ∑
N

i¼1
ρi=ρf
� �

vi

¼ ρs þ ρdð Þ ρsvs
ρs þ ρd

þ ρdvd

ρs þ ρd

� �
¼ ρsvs þ ρdvd

(15)

By substituting Equation 15 into Equation 14, it can be concluded that Js and Jd are interdependent and that there is only
1 independent diffusion flux,

∑
N

i¼1
Ji ¼ Js þ Jd ¼ 0 (16)

Thus, the term ∑
N

i¼1
Ji grad μið Þ in Equation 13 can be converted into only 1 diffusion flux Js as follows:

∑
N

i¼1
Ji grad μið Þ ¼ Js grad μsð Þ þ Jd grad μdð Þ

¼ Js grad μsð Þ−Js grad μdð Þ ¼ Js grad μsð Þ−grad μdð Þ½ �
(17)
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Thus, by introducing Equation 17, the dissipation function (13) can be written as

Tγche ¼ −u grad p−Js ⋅ grad μs−μdð Þ (18)

The driving force of the diffusion flux Js becomes the difference between the chemical potential of the solute and that of
the diluent (water in this case).

The chemical potential can be described as

dμ ¼ ∂μ
∂T

dT þ ∂μ
∂p

dpþ ∂μ
∂c

dc (19)

Therefore, by substituting Equation 19 into the term grad(μs − μd ) in Equation 18, it leads to

grad μs − μdð Þ ¼ ∂μs
∂p

−
∂μd
∂p

� �
grad pð Þ þ ∂μs

∂cs
−
∂μd
∂cs

� �
grad csð Þ þ ∂μs

∂T
−
∂μd
∂T

� �
grad Tð Þ (20)

in which
∂μs
∂p

−
∂μd
∂p

� �
can be further simplified through the following steps11:

∂μs
∂p

¼ ∂V
∂cs

¼ Vs; Vs ¼ ∂ ρsð Þ
∂cs

and

∂μd
∂p

¼ ∂V
∂cd

¼ Vd; Vd ¼ ∂ ρdð Þ
∂cd

whereVs andVd denote the partial mass volumes of the solute and diluent, respectively. These quantities satisfy the ther-

modynamic identities.12 Thus,
∂μs
∂p

−
∂μd
∂p

� �
can be assumed to equal 0.

Regarding the term
∂μs
∂T

−
∂μd
∂T

in Equation 20,

∂μs
∂T

¼ −Ss;
∂μd
∂T

¼ −Sd

where Ss and Sd denote the partial mass entropy of the solute and diluent, respectively. To simplify the discussion, it can

be assumed that ρf V s−Vd
� �

≪ 1, which leads to ρf Ss−Sd
� �

≪ 1, and thereby,
∂μs
∂T

−
∂μd
∂T

can be assumed to equal 0.

For the term
∂μs
∂cs

−
∂μd
∂cs

in Equation 20, at constant temperature and pressure in a local region, the relationship may

be described as8

csdμs ¼ − cddμd

dμd ¼ −
cs
cd

dμs

∂μd
∂cs

¼ −
cs
cd

∂μs
∂cs

Thus,

∂μs
∂cs

−
∂μd
∂cs

¼ ∂μs
∂cs

þ cs
cd

∂μs
∂cs

¼ cs þ cdð Þ
cd

∂μs
∂cs

¼ 1
cd

∂μs
∂cs

From the discussion above, Equation 20 can be further simplified as

grad μs−μdð Þ ¼ 1
cd

∂μs
∂cs

grad csð Þ (21)
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and the dissipation function (18) can be rewritten as11

Tγche ¼ −u grad p−Js ⋅
1
cd

∂μs
∂cs

grad csð Þ

 �

(22)

4 | PHENOMENOLOGICAL EQUATIONS

By introducing Equation 22 into Equation 8, the dissipation function can be summarized as

Tγ ¼ I′q ⋅
grad −Tð Þ

T
− u grad p−Js grad μs−μdð Þ½ � (23)

Because u is velocity, the term u grad p should be rewritten as

u grad p ¼ ρfu
� � grad p

ρf

 !

Also, by considering Equation 21, the term Js[grad(μs − μd )] can be rewritten as

Js grad μs − μdð Þ½ � ¼ Js
1
cd

∂μs
∂cs

grad csð Þ

 �

Thus, the dissipation function is defined as

Tγ ¼ − ρfu
� � grad p

ρf

 !
−Js

1
cd

∂μs
∂cs

grad csð Þ

 �

−I′q ⋅
grad Tð Þ

T
(24)

Using phenomenological expressions9 in Equation 24, to give linear relationships between the driving forces and
fluxes, leads to

ρfu ¼ −L11
grad p
ρf

 !
−L12 1

cd

∂μs
∂cs

grad csð Þ
� �

−L13
grad Tð Þ

T

� �
(25)

Js ¼ −L21
grad p
ρf

 !
−L22 1

cd

∂μs
∂cs

grad csð Þ
� �

−L23
grad Tð Þ

T

� �
(26)

I′q ¼ −L31
grad p
ρf

 !
−L32

1
cd

∂μs
∂cs

grad csð Þ
� �

−L33
grad Tð Þ

T

� �
(27)

where each flux has 3 driving forces, and Lij denotes a set of phenomenological coefficients.
Equation 25 describes the fluid flux (previously Darcy flux), which can be further reorganized in terms of familiar

earth science coefficients obtained from experimental study13 as

u ¼ −
L11

ρf
2 grad pð Þ − L12

ρf

1
cd

∂μs
∂cs

grad csð Þ
� �

−
L13

ρf

grad Tð Þ
T

¼ −
L11

ρf
2

 !
grad pþ L12

L11

� �
ρf
cd

∂μs
∂cs

grad csð Þ
� �

þ L13

L11

� �
ρf grad Tð Þ

T


 � (28)

By comparing with Darcy's law, u ¼ −
k
v
grad p, the coefficients can be further elaborated as

•
k
v
¼ L11

ρf
2, in which k is the permeability and v is the fluid viscosity.
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• rf ¼ L12

L11
, the chemical reflection coefficient, which serves as a measure of the efficiency of the osmotic transport.11,14

• rq ¼ L13

L11
, the thermal reflection coefficient, which serves as a measure of the efficiency of the osmotic transport.15

Thus, Darcy's law can be extended to give

u ¼ −
k
v
grad pþ rf

ρf
cd

∂μs
∂cs

grad csð Þ
� �

þ rq
ρf grad Tð Þ

T


 �
(29)

Equation 26 describes the chemical transport, which can be further defined in terms of coefficients obtained from
experimental study as

Js ¼ −L21
grad p
ρf

 !
−L22

1
cd

∂μs
∂cs

grad csð Þ
� �

−L23 grad Tð Þ
T

� �

¼ −
L21p
ρf 2

ρf
grad p

p
− ρf

L22

cdρf

∂μs
∂cs

grad csð Þ−L23 grad Tð Þ
T

� � (30)

where

• L ¼ L21p
ρf 2

, the pressure diffusion coefficient for chemical transport.

• D ¼ L22

cdρf

∂μs
∂cs

, the dispersion‐diffusion coefficient for chemical transport.

Thus, Fick's law can be extended in the form

Js ¼ −Lρf
grad p

p
− ρf Dgrad csð Þ−L23 grad Tð Þ

T

� �
(31)

Equation 27 describes the thermal transport and may be further rearranged as

I′q ¼ −L31
grad p
ρf

 !
−L32

1
cd

∂μs
∂cs

grad csð Þ
� �

−L33
grad Tð Þ

T

� �

¼ −
L31p
ρf 2

 !
ρf
grad p

p

� �
−ρf

L32

cdρf

∂μs
∂cs

 !
grad csð Þ−L33 grad Tð Þ

T

� �

¼ −Lq ρf
grad p

p

� �
−ρf Dq grad csð Þ− λ grad Tð Þ

(32)

where

• Lq ¼ L31p
ρf 2

 !
, the pressure diffusion coefficient for thermal transport.

• Dq ¼ L32

cdρf

∂μs
∂cs

 !
, the dispersion‐diffusion coefficient for thermal transport.

• λ ¼ L33

T
, the conduction coefficient.

Thus, Equation 32 is an extension of Fourier's law.
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5 | COUPLING MATRIX AND ITS EVALUATION

The final coupling matrix derived from Equations 29, 31, and 32 may be described as follows:

u

Js
I′q

0
B@

1
CA ¼ −

k
v

krf ρf
vcd

∂μs
∂cs

krqρf
vT

Lρf
p

ρf D
L23

T
Lqρf
p

ρf Dq λ

2
66666664

3
77777775

grad p

grad cs

grad T

0
B@

1
CA (33)

This new equation descibes the interdependence of water, chemical, and thermal fluxes in a porous medium.
If only single phase transport is considered, then no coupling exists, which means that the coupled coefficients

become 0. Thus, Darcy's law, Fick's law, and Fourier's law are special cases of matrix (33), ie,

u

Js
I′q

0
B@

1
CA ¼ −

k
v

0 0

0 ρf D 0

0 0 λ

2
664

3
775

grad p

grad cs

grad T

0
B@

1
CA (34)

Furthermore, when considering only the coupling between Darcy's flux and chemical transport, Equation 33 can be
simplified as16

u

Js

� �
¼ −

k
v

krf ρf
vcd

∂μs
∂cs

Lρf
p

ρf D

2
664

3
775 grad p

grad cs

� �
(35)

If only the coupling between Darcy flux and thermal osmosis is considered, Equation 33 can be simplified as15

u

I′q

 !
¼ −

k
v

krqρf
vT

Lqρf
p

λ

2
664

3
775 grad p

grad T

� �
(36)

It can be seen that the matrices obtained in Equations 33, 35, and 36 are asymmetric. Onsager's symmetry
relationship has not been used to give a further “simplification,” as it may not be applicable to continuum thermody-
namics according to some experimental results17 and theoretical analyses.18,19 Membrane porous media present a unique
environment in which the multiscale influence may be important (eg, the molecular‐scale influence has a more
significant impact on the macrotransport/friction mechanism than in normal porous media).20 These matrices
provide a general description of the couplings between the multiphases to guide further experimental investigation.
6 | CONCLUSION

This article has developed a new matrix Equation 33, describing the couplings between 3 fluxes (water‐thermo‐chemical)
and the combination of driving forces that may directly or indirectly affect the flux transport. Unlike the understanding
of 150 years ago, which was that water flux is only driven by water gradient, in a more complicated membrane porous
medium, the coupled influence between water, chemical, and heat becomes more and more important, especially for
contemporary geoscience and geotechnical engineering applications, such as radioactive waste disposal, carbon capture
and storage, shale gas, and landfill. The coupled matrix can also be used for highly cross‐disciplinary applications, such
as in chemistry/chemical engineering and biology/biological engineering.
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