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Magnetic ordering in the spinel compound Li[Mn,_,Li,]O4(x=0,0.04)
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The two B-site ions Mn** and Mn** in the stoichiometric spinel structure LiMn,0, form a complex,
columnar ordered pattern below the charge-ordering transition at room temperature. On further
cooling to below 66 K, the system develops long-range antiferromagnetic order. In contrast, whereas
lithium-substituted Li[Mn,_,Li ]JO, also undergoes a charge-ordering transition around room
temperature, it only displays frozen in short-range magnetic order below ~25-30 K. We
investigate to what extent the columnar charge-order pattern observed in LiMn,0,4 can account for
the measured magnetic ordering patterns in both the pure and Li-substituted (x=0.04) compounds.
We conclude that eightfold rings of Mn** ions form the main magnetic unit in both compounds
(x=0,0.04), and that clusters formed out of these rings act as superspins in the doped compound.

© 2009 American Institute of Physics. [DOI: 10.1063/1.3073660]

The ground state properties of the known lithium-based
cubic spinel compounds LiT,O, range from BCS
superconductivity' [T=Ti], via heavy fermion behavior” [T
=V] to frustrated antiferromagnetism®* [T=Mn]. In these
systems, the divalent B-site ions (3+ and 4+) have an octa-
hedral oxygen surrounding, while the Li* ions occupy the
A-sites. In this paper we focus on the magnetism in the Mn
compound. Above ~300 K, LiMn,O, is an electron-
hopping conductor, and the system undergoes a charge-
ordering (CO) transition on cooling down. Similar to the CO
transition in magnetite,5 the B-site octahedra are slightly de-
formed and a structural transition accompanies the CO tran-
sition. However, unlike for magnetite, the Mn3*—Mn*
charge-ordered structure has (most likely) been resolved by
Rodriguez-Carvajal et al.’

In stoichiometric LiMn,O, the Mn>* ions line up in col-
umns along the c-axis® when cooled to below 300 K, see Fig.
1(a). Multiple types of Mn3* sites can be distinguished. One
type is located in cubes of four Mn** ions and four O~ ions
(Mn-O distance=2.05 A) stacked along the c-direction.
These cubes are at the center of eightfold rings of Mn** ions.
The Mn** ions within these rings couple antiferromagneti-
cally (AF) to each other through a 90° Mn—O-Mn exchange.
The spaces in between neighboring rings are filled with the
other types of Mn®* ions, which thus form columns in the
c-direction. The unit cell (a=24.74 A, b=24.84 A, and ¢
=8.20 A) houses eight eightfold rings.6 The Mn** rings only
interact with other rings via the intervening Mn>* ions. When
cooled to below 66 K, AF ordering develops,7 but the or-
dered structure has not been resolved yet.

The Li-doped material Li[Mn,_,Li JO, has also been
studied in detail®* because of its applications as a battery
material.® When a small amount of Li is substituted on the
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Mn sites, the material retains its capacity for removal of Li
from the A-sites without affecting the overall spinel structure
(hence its use in lithium batteries), but the ~300 K struc-
tural phase transition no longer takes place, even though the
CO transition is unaffected. (Suppression of the structural
transition greatly enhances the lifetime of the battery mate-
rial during charging/discharging cycles.8) Neutron scattering
studies® on the doped material have shown that long-range
magnetic order no longer takes place, but instead the mate-
rial appears to enter a spin glass phase around 25-30 K (de-
pending on the exact amount of Li substitution).

Schimmel et al.* described the short-range order in the
glass phase of Li{Mn,_,Li,]O4(x=0.04) by a network of non-
linear Mn** chains, with an average correlation length of

(a)
s

FIG. 1. (Color online) The proposed (Ref. 6) charge-ordered pattern for
LiMn,O,. The figures show a projection down the c-axis. (a) The Mn** ions
form eightfold rings, and the Mn** ions are located in between the rings and
inside of the rings. Shaded cubes signify lattice positions where the Mn ions
interact through the Mn—O-Mn exchange interaction. The numbers inside
the rings show their z position. (b) Upon Li substitution on the Mn sites or
Mn removal, some Mn>* ions will become Mn** ions, leading to modified
rings and linked rings, some possibilities of which are shown. The dashed
lines delineate the clusters.
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FIG. 2. The energy dependence of the scattered intensity I(¢q,E) for 12
g-values 0.8<g<1.9 A~! at T=50 K (Ref. 4). The energy resolution is
given by the sharp central line due to incoherent nuclear scattering. After
normalizing to I(q)=[}¢(q,E)dE (Ref. 9), all data points collapse onto a
single curve, showing that the time scale of the dynamics is independent of
g. The figure contains 1600 independent data points.

about four to five ions. While this description gives a satis-
factory description of the observed elastic scattering, it is not
consistent with the level of Li doping, nor does it explain the
dynamics. As to the former objection, only 1 in 50 Mn** ions
will be substituted with Li for x=0.04, and even the inclu-
sion of vacancies should leave chains well in excess of 25
members. As to the latter, if the structural units were indeed
that small, we should expect to see a difference in the quasi-
elastic scattering between when the units are probed on a
length scale smaller than or larger than their size L, around
g=2m/L~1.2 A~'. However, the quasielastic scattering4’9
displays no length scale dependence, as shown in Fig. 2.
Instead, the scattering is what would be expected of much
larger structural units that are fully aligned within the units,
but that behave as superspins when it comes to unit-to-unit
interaction. Therefore, it is very likely that structural units
are present in the glass phase that are much larger than clus-
ters of four to five Mn** ions.

In this paper we investigate whether the ordering details
of this glass phase can be linked to the Rodriguez-Carvajal
(RC) structure for undoped LiMn,O, (Fig. 1). We argue that
the magnetic ordering in Li[Mn,_Li ]O, is indeed closely
linked to the CO pattern in the parent compound. At ~66 K
elastic magnetic scattering by the Mn** ions starts to
develop4 in the doped compound, which turns out to be as-
sociated with the eightfold rings. We argue that these ring
clusters act as AF superspins: The moments within a cluster
become fully AF-aligned below 66 K, but they can all flip in
unison similar to the more familiar ferromagnetic superspin.
Below ~25-30 K this superspin flipping becomes so slow*
that these clusters resemble static clusters without long-range
order between them. We discuss these claims in the follow-
ing.

Inelastic neutron scattering experiments showed that the
dynamics associated with Mn** ions is much slower than that
of the Mn3* ions, and freezes out below 25-30 K.* The scat-
tering associated with the Mn>* ions shows spin reorienta-
tions down to the lowest temperatures even though some
Mn** scattering becomes elastic. Thus, the Mn**—Mn*" AF
interaction must be stronger than the Mn**—Mn?* and the
Mn3*—Mn3* interactions. Based on this alone, it would make
sense for the Mn** ions in the eightfold clusters to line up at
some finite temperature. From the ordering transition in the
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FIG. 3. (Color online) The observed scattering in Li[Mn,_,Li ]JO, at 30 K
(Ref. 4) (circles). (a) A threefold cluster of Mn** ions (dashed line) or an
eightfold ring cluster (solid line) fail to capture the width of the observed
scattering. (b) Clusters consisting of two rings linked along the c-direction
(solid line, top right cluster in Fig. 1(b) where only half of it is shown) or
along the ab-direction [dashed line, top left cluster in Fig. 1(b)] capture most
of the observed scattering when the Mn spins are aligned in the ab-plane. (c)
same as (b), but with the spins aligned along the c¢-direction.

undoped cornpound,7 the temperature at which this happens
is apparently 66 K.

The doping with Li on the Mn sites changes Mn** ions
into Mn**. In a unit cell that has 144 Mn ions (Fig. 1) the Li
substitution is about 1:50, or roughly three Mn atoms per
unit cell. As a direct consequence, about eight Mn>* ions will
change to Mn**. This in turn leads to a unit cell that now has
ring clusters of 7, 8, and 9 members [Fig. 1(b)], as well as
larger clusters of 17 members, or perhaps even larger if the
substitution resulted in multiple rings being linked. This pat-
tern is further enhanced when vacancies appear on the Mn
sites. In Li{Mn,_,Li,]O,(x=0.04) as many as 1:40 Mn sites
may be Vacant,4 and these vacancies have a similar effect on
the Mn3*/Mn** ratio as Li substitution has. Thus, we can
expect that most eightfold rings are now linked to others, and
that they have either a Li ion or a vacancy embedded in
them.

To check whether this modified ring model can describe
the neutron scattering data, we plot the elastic scattering of
Mn** ions at 30 K,* in Fig. 3. We chose this temperature as it
is very close to the glass transition and well below the 66 K
ordering transition’ in undoped LiMn,0O, so that we can ex-
pect the Mn** ions within the rings (if present) to have lined
up. However, the temperature is still high enough that any
spin dynamics associated with the Mn>* ions should not have
frozen out. From the width I" of this scattering we find that
the Mn** spins are correlated over a distance of 27/T
~10 A~'. The nonzero level of the scattering at low ¢ is a
measure of how many Mn ions are missing (roughly 1 in 8).

We compare the measured scattering to the scattering of
various clusters in Fig. 3. The agreement between the ob-
served and calculated scattering of two linked rings [Fig.
3(b)] is encouraging since we expect these to be the domi-
nant clusters provided the RC model is correct, and even
more so, there are no adjustable parameters in the compari-
son. We can also distinguish between a spin orientation along
the c-axis or in the ab-plane, even though the data are pow-
der data. From the difference in agreement between Figs.
3(b) and 3(c), we conclude that the Mn moments lay in the
ab-plane. The total scattering will be a combination of the
clusters shown in Fig. 3(b), in addition to a few remaining
untouched eight-ring clusters as well as some clusters that
embody more than two rings. Clusters that have more than
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two rings in them are bound to be present; however, single
crystal data are required to determine the exact distribution.
From the data shown in Fig. 3(b) it would appear that mul-
tiple ring clusters linked in the ab-plane might be invoked to
yield a perfect agreement with the data. We did not pursue
this avenue of perfect agreement since this would involve
using the position of links between rings as adjustable pa-
rameters. Nonetheless, given the level of agreement [Fig.
3(b)] in combination with the lack of any length scale in the
dynamics, we can safely conclude that Mn** clusters are in-
deed present in Li[Mn,_,Li,]O,4, and that these clusters most
likely have eightfold rings as their main structural units with
the Mn moments in the ab-plane fully lined up within a
cluster below 66 K. Between ~25 and 66 K the clusters then
act as superspins, and the superspins freeze out below
~25-30 K.

Having established the ordering within the Mn** clus-
ters, it is interesting to speculate whether the long-range
magnetic ordering in pure LiMn,O, (Ref. 7) is also mainly
associated with the ordering of the Mn** ions. If so, then at
66 K the Mn** ions would line up AF within the rings, with
long-range order being associated with a particular stacking
pattern of these rings in the unit cell. The Mn** ions would
only act as mediators to establish the order among the rings.
We find that this speculation cannot describe all the details of
the measured diffraction pattern7 even though we find quali-
tative agreement. First, all but one (a small peak at 0.6 A
of the magnetic peaks indexes onto the RC-unit cell;® they do
not index onto a smaller sized unit cell. Second, a stacking
pattern wherein neighboring rings line up AF is able to re-
produce roughly the intensities of the main peaks, and the
absence of many other peaks. However, there is no stacking
pattern of the eightfold rings that can reproduce the exact
intensities of the allowed reflections. In addition, while there
still is diffuse scattering present at 2 K, this scattering is too
weak to account for all the Mn** ions. Therefore, it is likely
that some Mn3" ions partake in the ordered structure. At
present, we do not know whether these ordered Mn>* ions
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would be the Mn** cubes within the rings, or the Mn>* ions
located between neighboring rings. Overall, given the partial
agreement of a structure consisting of ordered eightfold rings
with the observed intensities, and the ability to index the
peak positions (and lack thereof) using the RC-unit cell, it is
highly likely that LiMn,O, has eightfold rings consisting of
AF-aligned Mn** ions in its structure.

In conclusion, we have shown that the CO pattern as
proposed for LiMn,O, survives in Li-doped Li[Mn,_,Li,]O,.
The main energy scale for magnetic ordering is that of the
antiferromagnetic Mn**—Mn** interaction. The Mn** ions in
the eightfold rings line up below 66 K, and in the undoped
sample these rings likely form the backbone of the long-
range ordered structure. In the doped sample, doping induced
linking between these rings results in clusters that act as
superspins, which freeze out below ~25-30 K.
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