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Abstract

Contemporary data is often supported by an irregular structure, which can be conve-
niently captured by a graph. Accounting for this graph support is crucial to analyze
the data, leading to an area known as graph signal processing (GSP). The two most
important tools in GSP are the graph shift operator (GSO), which is a sparse matrix
accounting for the topology of the graph, and the graph Fourier transform (GFT),
which maps graph signals into a frequency domain spanned by a number of graph-
related Fourier-like basis vectors. This alternative representation of a graph signal is
denominated the graph frequency signal. Several attempts have been undertaken in
order to interpret the support of this graph frequency signal, but they all resulted in a
one-dimensional interpretation. However, if the support of the original signal is cap-
tured by a graph, why would the graph frequency signal have a simple one-dimensional
support? Departing from existing work, we propose an irregular support for the graph
frequency signal, which we coin dual graph. A dual GSO leads to a better interpretation
of the graph frequency signal and its domain, helps to understand how the different
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graph frequencies are related and clustered, enables the development of better graph
filters and filter banks, and facilitates the generalization of classical SP results to the
graph domain.

Keywords Graph signal processing - Dual graph shift operator - Frequency support -
Graph Fourier transform

1 Introduction

Graph signal processing (GSP) has emerged as an effective solution to handle data with
an irregular support. Its approach is to represent this support by a graph, view the data
as signals defined on its nodes, and use algebraic and spectral properties of the graph
to study these signals [22]. Such a data structure appears in many domains, including
social networks, smart grids, sensor networks, and neuroscience. Instrumental to GSP
are the notions of the graph shift operator (GSO), which is a matrix that accounts for
the topology of the graph, and the graph Fourier transform (GFT), which transforms
a graph signal to the so-called graph frequency domain leading to a graph frequency
signal. These tools are the fundamental building blocks for the development of graph
filters [8,17], filter banks [14,24], node-varying filters [20], edge-varying filters [5],
graph sampling schemes [2,11], statistical GSP [12], and other GSP techniques [23].

Motivated by the practical importance of the GFT, some efforts have been made to
establish a total ordering of the graph frequencies [18,22,28], implicitly assuming a
one-dimensional support for the graph frequency signal. Such an ordering translates
into proximities between frequencies, which are critical for the definition of bandlimit-
edness and smoothness as well as for the design of sampling and filter (bank) schemes.
However, the basis vectors (or modes) associated with graph frequencies that are close
in such one-dimensional domains are often dissimilar and focus on completely differ-
ent parts of the graph [25], suggesting that a one-dimensional support is not descriptive
enough to capture the similarity relationships between graph frequencies. To overcome
that limitation, we propose a (not necessarily regular) support of a graph frequency sig-
nal by means of a graph, which we denominate as dual graph,' and its corresponding
dual GSO. Note that the original graph is therefore often labeled as primal graph.

A dual graph helps in better describing the existing relations between graph fre-
quencies. It tells us how similar certain graph frequencies are and this not only based
on their value but also based on specific features of the related graph frequency modes.
For instance, two graph frequencies that are close in value could be less similar (and
hence less connected in a dual graph) than two graph frequencies that are further apart
but have related graph frequency modes (e.g, localized in the same area of the graph).
Therefore, clustering graph frequencies in a dual graph, as opposed to segmenting
the one-dimensional frequency domain, can lead to different subbands. This will for
instance have consequences when applying a subband-based compression scheme.
Also, predicting a graph signal for a particular graph frequency from the signal on

1 This is not related to the graph-theoretic notion of dual graph of a planar graph G, which is a graph that
has a vertex for each face of G [27].
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its “neighboring” graph frequencies depends on how we define these neighboring fre-
quencies, i.e., by merely considering the closeness of the graph frequencies or by using
a dual graph.

We first proposed this idea in [9], and the current work can be considered an exten-
sion of that paper. Similar concepts were also presented in [21] as well as [3,4,10,16].
Specifically, [21] considered the same framework as [9]. However, although the dual
graph presented in [21] specializes to classical temporal signal processing, it misses
certain desirable properties that we discuss in the current paper. For instance re-
ordering the nodes of the primal graph or re-ordering the graph frequency modes
and related graph frequencies, both lead to a different dual graph whereas the pri-
mal graph basically did not change. The papers [3,4,10,16], on the other hand, take
a different approach and try to embed the graph frequency modes in some lower-
dimensional Euclidean space (two- or three-dimensional for instance) instead of the
regular one-dimensional graph frequency domain determined only by the graph fre-
quencies themselves. This embedding is based on computing some type of similarity
between the graph frequency modes. Although this method reveals some interest-
ing relations between the frequency modes, different similarity functions exist and it
depends on the graph which one is more appropriate. Furthermore, the method is not
reciprocal, i.e., we cannot go back to the original graph domain.

In this paper, after providing some basics and defining the problem statement
(Sect. 2), we first derive the eigenvectors of a dual GSO (Sect. 3) and then estab-
lish how the eigenvalues of such a dual GSO can be computed (Sect. 4). For this, we
consider an axiomatic approach as well as an optimization approach. According to
this framework, we observe that a Laplacian primal GSO can never lead to a Laplacian
dual GSO. However, we prove that this does not hold for an adjacency matrix without
self-loops. In other words, if the primal GSO has zero diagonal entries, then it is always
possible to find a dual GSO with zero diagonal entries. Simulation results (Sect. 5)
support the claims made in this work. First, we show that graph frequencies that are
close in value are not necessarily well-connected in a dual graph, and we illustrate this
for several dual graph constructions. Next, the property that an adjacency shift without
self-loops can be preserved going from the primal to the dual domain is corroborated
and the dimension of the resulting class of potential dual adjacency shifts is illustrated
for different types of graphs. Finally, we demonstrate that running a prediction graph
filter on a dual graph outperforms predicting the graph signal adopting a traditional
convolution in the one-dimensional graph frequency domain.

Notation Boldface capital letters are used for matrices, boldface lowercase letters for
column vectors and calligraphic capital letters for sets. The entries of a matrix X are
referred to either as X;; or [X];;. Similarly, the entries of a vector x are referred to
either as x; or [x];. The notation 7, # and  respectively correspond to transpose,
Hermitian, and complex conjugate. When applied to a vector X, the operator diag(-)
returns a square diagonal matrix whose diagonal elements are those in x. When applied
to a diagonal matrix, the operator diag(-) returns a column vector whose elements are
those in the diagonal on the input matrix. Finally, vec(X) returns a vector concatenating
the columns of X, Z = Y © X denotes the Khatri—Rao product (Z, Y, X have the same
number of columns and the ith column of Z is the Kronecker product of the ith column
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of Y with the ith column of X), and we recall that if Z = Ydiag(w)XT, then it holds
that vec(Z) = (X O Y)w.

2 Dual Graph

We start by reviewing fundamental concepts of GSP and then state formally the prob-
lem of identifying a dual GSO.

2.1 Fundamentals of GSP

Consider a (possibly directed) graph G of N nodes or vertices with node set N' =
{n1,...,ny}andedgesetE = {(n;, nj) | n; is connected ton ;}. The graph G is further
characterized by the so-called GSO, whichis an N x N matrix S whose entries [S];; for
i # j are zero whenever there is no edge from n; to n;. The diagonal entries of S can
be selected freely and typical choices for the GSO include the Laplacian or adjacency
matrices [18,22]. A graph signal defined on G can be conveniently represented by a
vectorx = [xq, ..., xy]7 € CN, where x; is the signal value associated with node n;.

The GSO S—encoding the structure of the graph—is crucial to define the GFT and
graph filters. The former transforms graph signals into a frequency domain, whereas
the latter represents a class of local linear operators between graph signals. Assume for
simplicity that the GSO S is normal, such that its eigenvalue decomposition (EVD)
can always be written as S = VAV where V is a unitary matrix that stacks the
eigenvectors and A is a diagonal matrix that collects the eigenvalues. To simplify
the exposition, we also assume that the eigenvalues of the shift are simple (non-
repeated), such that the associated eigenspaces are unidimensional. The eigenvectors
V = [vy, ..., vy] correspond to the graph frequency basis vectors whereas the eigen-
values A = diag(A) = [A1, ..., Ax]" canbe viewed as graph frequencies. With these
conventions, the definitions of the GFT and graph filters are given next.

Definition 1 Given the GSO S = VAV the GFT of the graph signal x € CV is
X =[%,..., %517 :=Vix.

Definition 2 Given the GSO S = VAV a graph filter H € CV*V of degree L is a
graph-signal operator of the form

H=H®,S) =Y " S = Vdiag(h)V¥, (1)

where h := [ho, ..., hy]and h := diag(}_j_, b A").

Definition 1 implies that the inverse GFT (iGFT) is simply x = VX. Vector h in
Definition 2 collects the filter coefficients and h € CV in (2) can be deemed as the
frequency response of the filter. The particular case of the filter being H = S, so that
h = A, will be subject of further discussion in Sect. 3. Graph filters and the GFT
have been shown useful for sampling, compression, filtering, windowing, and spectral
estimation of graph signals [2,8,11,12,17,20,23].

Birkhauser
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S = Vdiag(A\)V# G Gy Sy = Vydiag(Ap)VF

Fig. 1 The primal graph (left) represents the support of the vertex domain, while a dual graph (right)
represents the support of the frequency domain

2.2 Support of the Frequency Domain

The underlying assumption in GSP is that to analyze and process the graph signal
x € CV one has to take into account its graph support G via the associated GSO
S. Moreover, according to Definition 1, the graph frequency signal ¥ € CV is an
alternative representation of x. Thus, a natural problem is the identification of a graph
and GSO corresponding to X. More precisely, we are interested in finding a dual graph
G r—represented via the corresponding dual GSO S r—that characterizes the support
of the frequency domain.

Let N r=1{nyr1,...,ny n}denote the node set of the dual graph g . Each element
in Ny corresponds to a different frequency (1;, v;), thus, the edge set &5 indicates
pairwise relations between the different frequencies. We interpret X as a signal defined
on this dual graph, where X; is associated with the node (frequency) n 7 ;. As for the
primal GSO, the EVD of the N x N matrix S r associated with g  will be instrumental
to study X. We start from the assumption that normality of S implies the normality of
S r. Later on, we will see that this assumption is valid. Due to normality, we have then
thatS; = V ;A y VI and thus the dual graph has (dual) frequency basis vectors V =
[vf.1,..., Vs n]and (dual) graph frequencies A r = diag(A¢) = [Af 1, ..., )»f,N]T
(cf. Fig. 1).

Problem statement Given the GSO S = VAV find an appropriate dual GSO
Sy =VsAVY.

To address this problem we postulate desirable properties that we want a dual GSO
to satisfy. First, we start by identifying V ; (Sect. 3). We then proceed to determine
A ¢ (Sect. 4), which is a more challenging problem.

3 Eigenvectors of a Dual Graph

We want the GFT V? associated with a dual graph to map X back to the graph signal

x. Given that X = VH X (cf. Definition 1), the ensuing result follows.

Property 1 Given the primal GSO S = VAVY, the eigenvectors of a dual GSO Sy
areVy = VA,

As announced in the previous section, since we have that V;l = V? , then the

dual shift S7 is normal too. With e; € R denoting the ith canonical basis vector
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(all entries are zero except for the one corresponding to the ith node, which is one),
then vy ; can be written as vy ; = Vie, = &, i.e., the GFT of the graph signal e;.
Hence, the dual frequency vector v ¢ ; can be viewed as how node i expresses each of
the primal graph frequencies, revealing that each frequency of the dual graph G is
related to a particular node of the primal graph G. Moreover, we can also interpret the
dual eigenvalues from a primal perspective. To that end, note that A  is the frequency
response of the dual filter H=S 1 (cf. discussion after Definition 2); thus, the ith
entry of A s can be understood as how strongly the primal value at the ith node x; is
amplified when S is applied to X.

One interesting implication of Property 1 is that the dual of a Laplacian shift S =
VAV# is, in general, not a Laplacian. Laplacian matrices require the existence of
a constant eigenvector. Hence, for S to be a Laplacian, one of the rows of V—
corresponding to the columns of V j—needs to be constant, which in general is not
the case. Another implication of Property 1 is the duality of the filtering and windowing
operations, as shown next.

Corollary 1 Given the graph signal x € CVN and the window w € CV, define the
windowed graph signal Xy € CN as

Xy = diag(w)X. 2)

Then, recalling that X = VIx and Xy = VP xy, if S f does not have repeated eigen-
values it holds that

%w =H(hy, Sp)X, with Hhy,Sy) = Y[ ohri(Ss) A3)

for somehy :=[hy, ...,hf,L]T and L < N — 1.

Proof Substituting xy, = diag(w)x and x = VX into the definition of X, yields
%w = VHdiag(w)VX. This reveals that the mapping from X to Xy is given by the
matrix H = VHdiag(w)V. Since V¥ is normal and unitary, V¥ are the eigenvectors
of Hand w areiits ei genvalues. Because V# are also the eigenvectors of S 7 (cf. Property
1), to show that H is a filter on S r we only need to show that there exist coefficients
hy :=[hfo,....,hsn—1]" such that w = diag(3 ' hy1A%) [cf. (1)]. Defining
Ve CN*N a5 (Prlig = (kf’i)l_l, the equality can be written as w = ¥ rhy.
Since ¥ r is Vandermonde, if all the dual eigenvalues {A f,,-}f.vz | are distinct, a vector
hy solving w = ¥ rh ¢ exists. O

The proof holds regardless of the particular A ; and only requires S s to have non-
repeated eigenvalues. The corollary states that multiplication in the vertex domain is
equivalent to filtering in the dual domain—note that the GSO of the filter in (3) is
S r. Clearly, when the entries of w are binary values, multiplying x by w acts as a
windowing procedure preserving the values of x in the support w, while discarding
the information at the remaining nodes.

Birkhauser
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4 Eigenvalues of a Dual Graph

Given S = Vdiag(A\)V# and using Property 1 to write the dual shift as S r o=
VHdiag(A )V, the last step to identify S is to obtain A . Two different (comple-
mentary) approaches to accomplish this are discussed next.

4.1 Axiomatic Approach

Our first approach is to postulate properties that we want the dual shift S ¢ to satisty,
and then translate these properties into requirements on the dual eigenvalues A y. We
denominate these properties as axioms, which we state next. In the following, P denotes
an arbitrary permutation matrix.

(A1) Axiom of Duality The dual of the dual graph is equal to the original graph

Spyp=S. “)

(A2) Axiom of Reordering The dual graph is robust to reordering the nodes in the
primal graph
(PSPT); =S;. ®)

(A3) Axiom of Permutation Permutations in the EVD of the primal shift lead to
permutations in the dual graph

(VPdiag(P" M)PTVH) ; = PT (Vdiag(h) V) /P. (6)

Consistency with Property 1 is encoded in the Axiom of Duality (A1). More precisely,
since the GFT of the dual shift transforms a frequency signal X back into the graph
domain x, we want the associated shift to be recovered as well. The Axiom of Reorder-
ing (A2) ensures that the frequency structure encoded in the dual shift is invariant to
relabelings of the nodes in the primal shift. Specifically, the frequency coefficients of a
given signal x with respect to S should be the same as those of X' = Px with respect to
S’ = PSP’ . Finally, since the nodes of the dual graph correspond to different frequen-
cies, the Axiom of Permutation (A3) ensures that if we permute the eigenvectors (and
corresponding eigenvalues) of S, the nodes of the dual shift are permuted accordingly.

Axioms (A1)—(A3) impose conditions on the possible choices for the dual eigen-
values A r. More precisely, let us define the function ¢ : CN x CN*N — CN, that
computes the dual eigenvalues A y = ¢ (X, V) as a function of the eigendecomposition
of S. In terms of ¢, axiom (A1) requires that

A=0¢As, Vi) =d(dA, V), V7. (7

In order to translate (5) into a condition on ¢, notice that if the labels of the nodes are
permuted we have that PSP’ = PVdiag(A) V7P’ so that (PSP”) ; from Property 1
must be equal to v PTdiag()J YPV. Thus, for (PSPT) r to coincide with S  we need

Birkhauser
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A" = PA; which ultimately requires that
(A, PV) =1 =PrLs =Pp(A, V). ()
Lastly, in order to find the requirement imposed by axiom (A3) on ¢, we again leverage

Property 1 to obtain (VPdiag(PT M)PT V) ; = PTV# diag(X')VP. It readily follows
that to satisfy (6) weneed A’ = A, i.e.

dpPTA, VP) =1/ = Ar=9¢QA,V). ©)

It is possible to find a function ¢ that simultaneously satisfies (7)—(9), as shown
next.

Theorem 1 The following class of functions satisfies (7)—(9), leading to a generating
method for dual graphs that abides by axioms (Al)—(A3)

Ar =01, V)= D;‘Vm, (10)

where D = diag(g(v1), ..., g(vn)) and Dy = diag(g(vf 1), ..., 8(Vf n)), with g(-)
any permutation invariant function, i.e., g(Px) = g(x).

Proof We show that (10) satisfies (7), (8), and (9). Showing that (7) holds, requires
only substituting (10) into ¢ (¢ (A, V), V), which yields

$@(1. V). VH) =D'VID ;D ;'VDA) = 1.

In order to show (8), notice that a permutation of the rows of V (the columns of V y)
does not influence D and only permutes the diagonal entries of D r. Hence, we can
write ¢ (A, PV) as

¢(A, PV) = (PD,PT)"'PVDLA = PDJTIVDA =Pp(x, V).

Finally, since a permutation of the columns of V (the rows of V ¢) does not influence
D ; and only permutes the diagonal entries of D, we can write ¢ (PTA, VP) as [cf. (9)]

$(P"1, VP) = D} (VP)(P"DP)(P'1) = D' VDA
= (V).

O

Note that Theorem 1 proves the existence of a class of eligible dual graphs, but it
does not indicate that every dual graph falls in this class. If we restrict ourselves to the
class in (10), which can be described by the function g(-), the simplest choice for g(-)
is g(x) = 1. This results in A y = VA, but, e.g., any power of any norm is also a valid
function, i.e., g(x) = ||x||?,. A possible policy to design a dual graph could be to select
the function g(-) that optimizes a particular figure of merit (such as the minimization

Birkhauser
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of the number of edges in the dual graph G r) yet keeping faithful to (A1)—(A3). This
problem is discussed in more detail at the end of the following section.

Let us now Look at (10) for a few particular graph examples. First, it is clear that the
cycle graph with V the normalized DFT matrix does not directly lead to a cycle graph
but to a circular graph, which depends on how we pick g(-). It can also be shown that
the dual graph of a Kronecker product graph is the Kronecker product graph of the
related dual graphs, when g(x; ® X2) = g(x1)g(x2) (this is a reasonable assumption,
e.g., take g(x) = 1 or g(x) = ||x]||1). For the Cartesian and strong product this is
generally not the case.

To finalize this section, additional axioms can be imposed on S  to further winnow
the class of admissible functions ¢. A possible avenue, not investigated here, is to
impose a desirable behavior of S ; with respect to the intrinsic phase ambiguity of the
primal EVD. Tackling this issue requires fixing the phases of the eigenvectors in some
appropriate way. This can be dealt with by defining a canonical phase representation
for every basis of eigenvectors. More precisely, for any arbitrary V, we consider
its canonical phase representation to be Vi, (V) where ¥ (V) is a phase shift matrix
(diagonal matrix with unit norm diagonal elements) and ¥ (-) computes the shift needed
to turn V into its canonical representation Vi (V). Under some technical requirements
on v (here omitted) the dual shift construction can be made compatible with the
notion of a canonical phase shift. For the experiments here presented, we adopt the
default phase (or sign, when focusing on undirected graphs) convention in MATLAB’s
eigendecomposition function.

4.2 Optimization Approach

A different and complementary approach is to find a dual shift S s for which certain
properties of practical relevance are either enforced or promoted. For example, one may
be interested in obtaining the sparsest S 7, in recovering dual shifts without self-loops,
or in both. This can be achieved by formulating judicious optimization problems where
the variable to optimize is the dual shift, the constraints are designed to guarantee the
desired topological properties, and (combinations of) suitable objective functions are
used to promote convenient properties. To be rigorous, consider that the primal shift
S = VAV# is given. Then, upon setting V; = V¥ and v, ; = VHe; (cf. Property
1), the dual shift S ¢ is found by solving

min E(Sf') S. to Sf = ZzNzl )&f,in,iV?ia Sf eS. (11)
{Sr. Az} : ’ s

In the problem above, the optimization variables are effectively the eigenvalues
A ¢, since the constraint Sy = ZlNzl )\f,in,iV;{i forces the columns of V¢ to be the
eigenvectors of Sy. Two defining features of the problem in (11) are the objective
function £(-) and the constraint set S.

The objective £(S¢) in (11) promotes desirable network structural properties on
S ¢, such as sparsity or minimum-energy edge weights. The objective function can be
defined as the weighted sum of multiple functions £(S ) = Z,A,;Izl Nmtm (S ), so that
multiple properties are simultaneously promoted, with {nm}n"le being nonnegative
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weighting coefficients (hyper-parameters) that must be selected based on either prior
knowledge or numerical search. While using || - ||o (or a surrogate) as one of the
functions to minimize is a well-motivated approach (with the goal being minimizing the
number of pairwise relationships between the frequencies), other interesting choices
include the Frobenius norm of S ¢, the spectral norm, as well as smoothness metrics
that minimize the variability (maximizes the smoothness) of a given set of signals in
the dual domain [7,13].

The constraint set S imposes requirements on the dual shift, such as each entry
being non-negative, each node having at least one neighbor, or the dual graph having
no self-loops. Since the effective number of optimization variables in (11) is N (the
size of the vector of eigenvalues A ), imposing a high number of (equality) constraints
in S may render the problem infeasible.

Let us now come back to some earlier graph examples. Consider for instance the
cycle graph with V the normalized DFT matrix and let us solve (11) using £(-) = || - [lo
and S the set of fully connected graphs. Then it is easy to show that the cycle graph is
one of the solutions. For product graphs on the other hand, we can always make sure
that the dual graph is a product graph of the same type by constraining S accordingly.

Finally, since the constraint Sy = ZlNz LAFY f’,-v?’ ; 18 linear, the tractability of
the problem in (11) depends on the selection of costs and topological constraints
in §. If both £(-) and S are convex, then the resultant optimization problem can be
efficiently handled. Furthermore, if strict convexity is present, the solution will be
unique. Variations of the formulation in (11) have been analyzed in the literature for
problems different from the one considered in this paper and, in particular, in the
context of network topology inference from nodal observations [13,19].

4.2.1 Consistency with the Axiomatic Approach

An important question when implementing the approach in (11) is to investigate
whether the dual shift obtained from the optimization satisfies axioms (A1)—(A3),
already deemed as desirable properties. To analyze this, we will assume for simplicity
that the solution to (11), denoted as {S%, )»;i}, is unique. Under this assumption, the
following result holds.

Theorem 2 If ¢(-) and S in (11) are invariant to permutations, then the (unique)
solution {S*}, X"}Z} satisfies the Axioms of Reordering (A2) and Permutation (A3).

Proof We begin by showing that (A2) is satisfied, where it is required that S%,
the _dual shift obtained for S, is the same than that for _S = PSP7, denoted
by S?. For the permuted primal graph S we have that V = PV and, hence,
\Y f = VH = VHPT This implies that, when solving (11) for the permuted pri-
mal graph, the linear constraint Sf = ZlN:l Xf-,i\_'f,n_/?i = \_’fdiag():f)VJTc can
be written as Sy = V#PTdiag(X s)PV. Hence, if we set Ay = PL% we have that
S;=VvH PTdiag(iji.)PV =VH diag(PTPxf;.)V =VvH diag(A%)V = S%. Since the
pair {S%, P)ﬂ}} satisfies the linear constraint and both S and £(-) only depend on the
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GSO, we have that {S%, PA% } is the global minimizer of (11) for V,=VH =vVvHpT,

In other words, the dual ShlftS S? and S’} are the same, so that (A2) is satisfied.

To show the result for (A3), we begin with the primal graph S and consider that
its EVD is given by S = Vdiag(A)V. Using this decomposition, we solve problem
(1) with Vy = V# to obtain {S*, l?}. Then, we consider S = VPdiag(PA)PTV#
as an alternative (equally valid) EVD for the primal graph S, use Vy = PTVH as the
input to (11), and denote the obtained solution by {S* , )T'}} For (A3) to be satisfied,
we need to prove that S*. = PTS* P. The first step is to show that, when replacing V f

with VP and S* with PTS* P, the linear constraint is satisfied. Specifically, we have
that

S, =N le,vf, ._Vfdlag(xf)VH PTVfdiag(Xf)V?P.

Upon setting ):f = A%, we have that Sf = PTVfdiag()»?)V?P = PTS?P. In other
words, we have that the solution {PTS“}P, A%} is feasible. Finally, leveraging the

assumptions that £(-) and S are invariant to permutations, it follows that {PTS’;-P, X’}}
is also optimal.

Notice the permutation invariance of the constraints and the objective function
assumed in Theorem 2. In other words, when encoding the topological properties to
be enforced in the set S and those to be promoted in the function £(-), we need to focus
on encodings that depend on the properties of the underlying graph, but not on the
specific ordering selected for the nodes. As a result, formulations where the objective
promotes sparsity by setting £(-) = || - ||o, or those where the set S guarantees that
the entries of the dual shift are all non-negative, will satisfy (A3). On the other hand,
if either the objective or the topological constraint set is sensitive to the ordering of
the nodes (e.g., by enforcing that there must exist a link between nodes 1 and 2), then
(A3) will not be satisfied.

Finally, we shift focus to the Axiom of Duality (A1) and highlight that the solution
to (11) will, in general, not abide by this axiom. In particular, for axiom (A1) to hold,
it is necessary for the original shift S itself to be optimal in the sense encoded by
(11). To elaborate on this, consider the unitary matrix U and the associated shift set
Sy = {S = Vdiag(A)V# |V = U and A € CV}, where each selection of A gives rise
to a different element of Sy. Moreover, let S* denote the solutionto (11) when Vy = U
and S*} the solution when Vy = U# . Then, it holds that: (i) the dual shift for any
S € Sy is given by S}i, and (ii) the dual of S*% is S*. Hence, S* is the only element of Sy
that guarantees that the dual of the dual is the original graph and, therefore, that (A1)
holds. Alternatively, one can see Sy as a shift class whose (canonical) representative
is S*. With this interpretation any S € Sy is first mapped to S* and then S* serves as
input for (11). Under this assumption, the invertibility of the dual mapping is achieved.
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4.3 The Particular Case of Adjacency Shifts

The most widely used matrix representations of a graph are the adjacency and Lapla-
cian matrices. Section 3 discussed the case where the primal shift S was set to the
Laplacian, concluding that, in general, the associated dual shift will not have a Lapla-
cian form. Assuming that the primal shift S is set to an adjacency matrix with no
self-loops, the question discussed here is whether the dual shift can also have the form
of an adjacency matrix without self-loops. We formally answer this question in the
form of the following theorem.

Theorem 3 Given a primal graph shift S = Vdiag(A\)V with [S];; = 0 for all i,
there always exists a dual graph shift S y that can be diagonalized by the eigenvectors
V= VH and whose entries satisfy [Srli i = 0 for all i.

Proof In showing this, the N x N matrix W defined as [W]; ; = |[V];, j|2, with | - |
denoting the absolute value, plays a critical role.

First notice that having [S]; ; = 0 requires WTXf = 0; that is, matrix W7 needs
to be singular and A y must be in the nullspace of W' To see why this is the case, recall
that V; = V# implies that Sy can be written as Sy = V#diag(X s)V. Vectorizing
matrix S ¢, we have that vec(Sy) = (VI o V) r» where © denotes the Khatri-Rao
(column-wise Kronecker) product. We can now focus on the N rows of the N Zx N
matrix VI © V# associated with the diagonal elements of S r. In particular, with T
denoting complex conjugate, the ith diagonal element of the dual shift can be written
as

[S1ii = Y0V D jIVE Y g s = S0 V1V ja g
= Y V1P = XY Wi g

This readily implies that the vector collecting the N diagonal entries of Sy can be
obtained as W7 A s and, as a result, [Sy]; ; = 0 requires W/ A, = 0.

A similar argument can be followed to show that having [S]; ; = 0 for all i implies
that WA = 0, so that matrix W is singular and A belongs to the null space of W.

Finally, the square matrix W being singular implies that W' is singular as well.
Hence, if [S];; = [Vdiag(k)VH]iJ = 0 for all i, then both W and W7 are singular
and, therefore, there exists a dual shift S y = vi diag(A y)V for which [S¢]; ; = O for
all i. m]

Theorem 3 shows that, given a primal shift with no self-loops, we can always
find a dual shift that shares that same feature. Moreover, from the proof technique of
the theorem, it also follows that when rank(W) = N — 1, the dual shift is unique
up to a scaling ambiguity. Specifically, let W = U ZUITe denote the singular value
decomposition of W with the columns of Uy denoting the left singular vectors and
those of Ug their corresponding right singular vectors and suppose, without loss of
generality, that uz | and ug ;| are the singular vectors associated with the (unique)
zero singular value. It then follows that A is a scaled version of ug 1 and A f is a scaled
version of uy, 1 and, as aresult, the dual shift can be writtenas S y = aVH diag(uz, 1)V,
with parameter o representing the scaling ambiguity.
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For (primal) adjacency matrices leading to rank(W) = N — 1, there is no guar-
antee that the dual adjacency Sy = aVHdiag(uy 1)V is sparse or that it satisfies
any property other than being diagonalizable by V# and its diagonal elements being
zero. An interesting point is, therefore, to identify families of primal graphs for which
rank(W) < N — 1. This would increase the degrees of freedom of A y, which lies
in a subspace of dimension D = N — rank(W), enlarging the feasibility set of the
optimization in (11) and opening the door to find dual shifts that achieve a lower cost
in the associated optimization.

5 lllustrative Simulations

We provide a few simple examples illustrating how representations of the frequency
domain that go beyond one dimension can be of interest. Throughout the simulations,
we consider three methods to find a dual graph. As explained in the paper, in all three
cases the eigenvectors are set to V, with the difference being on how the eigenvalues
are obtained. The first approach (dual graph A) corresponds to that in Sect. 4.1 and
sets the dual eigenvalues to Ay = VA (cf. discussion after Theorem 1). The second
approach (dual graph B) follows Sect. 4.2 and sets the objective in (11)to £(-) = || - ||1.
That is, we aim to obtain a sparse dual graph but replacing the non-convex 0-norm
with its convex surrogate. Finally, the third approach (dual graph C) forces the dual
graph to be an adjacency matrix as discussed in Sect. 4.3. If multiple graphs can be
obtained (i.e., if the dimension of the null space of matrix W is greater than one), then
we set the dual graph as the one with minimum 1-norm. Note that there can be cases
where the dual graphs B and C coincide.

5.1 Examples of Primal and Dual Graphs

We start by generating primal graphs as realizations of an Erd6s-Rényi (ER) ran-
dom graph model [1] with N = 10 and edge probability p = 0.15. The results
are shown in Fig. 2. The top row depicts one example of a primal graph along with
its three associated dual graphs as described above. The nodes in the dual graphs
are sorted according to a (decreasing) ordering of the entries of the eigenvalues
A = [Ar1,..., An]T of the primal graph. In particular, node 1 of Sy represents the
frequency (primal eigenvector) associated with the largest positive primal eigenvalue
whereas node N represents the frequency associated with the most negative primal
eigenvalue, so that A; > A > --- > Ay. Notice that dual graphs are not necessar-
ily sparse, specially those associated with method A where sparsity is not explicitly
promoted. The obtained representations suggest that one-dimensional frequency rep-
resentations where a frequency k is considered to be close to a frequency k” if [Ag — Ay
is small may not be able to capture the more complex relationships among frequencies.
Indeed, the plots of Sy reveal that the strongest connections in the dual graphs are
not necessarily between adjacent nodes, which are the closest in terms of the distance
between the associated primal eigenvalues.

Birkhauser



49  Page 14 0f 20 Journal of Fourier Analysis and Applications (2021) 27:49

Primal graph 5 Dual graph A . Dual graph B 3 Dual graph C 3
2
& 05 05 05 05
] 4
@
S 0 0 0 0
-] 6
<
T8 05 8 05 05 05
10 L4 10 410 L 10 N
2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
8
S 04 04 4 4
ke, _ 2 . 2 p 2 ; 2
& o3 12 »3 22 o3 2 o3 12
2 1 1 1 1
2 l 07 l A7 l 7 / »7
g AL ) 0 / 0 o 0 Pad o8 0 Vo WL 0
2| 1 w65 1 w6 —es 1 w65 &1 _e6 o5
5 .9 g ‘9 K LE) 1 9 B

Fig. 2 The top row provides a (heat-map) representation of the weighted adjacency matrices of (left to
right): the primal ER graph, the dual shift obtained using the approach in Sect. 4.1 (Dual Shift A), the dual
shift obtained using the approach in Sect. 4.2 (Dual Shift B), the dual shift obtained using the approach in
Sect. 4.3 (Dual Shift C). The bottom row provides a node-edge representation of the primal graph (left-most
figure) along with representations of the eigenvalues of the dual graph as a signal over the primal graph for
each of the three methods considered in the simulations
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Fig. 3 The top row provides a (heat-map) representation of the weighted adjacency matrices of (left to
right): the primal DCT graph, the dual shift obtained using the approach in Sect. 4.1 (Dual Shift A), the dual
shift obtained using the approach in Sect. 4.2 (Dual Shift B), the dual shift obtained using the approach in
Sect. 4.3 (Dual Shift C). The bottom row provides a node-edge representation of the primal graph (left-most
figure) along with representations of the eigenvalues of the dual graph as a signal over the primal graph for
each of the three methods considered in the simulations

To gain further insights, the bottom row of Fig. 2 represents the eigenvalues of the
dual graph. From duality it follows that each of the frequencies of the dual graph is
associated with a particular node and, hence, the N eigenvalues of S y can be viewed as
a signal defined over the original primal graph S. As a result, we represent the obtained
eigenvalues over the original primal graph. The figure confirms that the methods give
rise to different estimations of the dual eigenvalues. From the eigendecomposition
of Sy and in accordance with the discussion following Property 1, the larger the
absolute value of [A r],, the more important the frequency pattern captured by node
n is to describe the dual graph S . To see that this is the case, we may write Sy =
Z,I,V:l[lf]an,nV?n = nyzl[kf]nénéf, where e, is the nth canonical vector and
¢, = Vlle, is the frequency pattern associated with node 7. This can be relevant, for
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Fig. 4 Primal and dual shifts for two additional random graph models: RBF (top row) and small-world
(bottom row)

example, in scenarios where one is forced to operate with only a subset of nodes of
the primal graph and the goal is to select the nodes that better preserve the interaction
between frequencies.

Figure 3 is the counterpart of Fig. 2 when the primal graph is given by the graph
associated with the discrete cosine transform (DCT) of type II [15]. As in the previous
case, the left-most panel in the top row depicts the primal graph, which is an undirected
path with a self-loop in the two extremal (i.e., first and last) nodes, guaranteeing that
the degree is two for all the nodes in the graph. The other three graphs in the top row
correspond to the dual graphs obtained using the algorithms presented in this paper.
The bottom row provides the representation of the dual eigenvalues as a graph signal
on the (primal) DCT graph. Focusing first on the top row, we observe that the dual
graphs B and C are the same, meaning that the sparsest graph does not have self-loops.
We also observe that while the dual graphs B and C are sparse, once again, the dual
graph A is not. Finally, it is also worth noticing that the dual graphs B and C, on top of
being sparse, are very regular. Indeed, these two graphs are also undirected paths, but
with positive and negative edges and without self-loops. Regarding the bottom row,
the most striking observation is that the eigenvalues of the dual graphs B and C are
perfectly ordered in the primal graph. This adds to the idea that the regularity of the
DCT graph in the primal domain leads to a regularly-structured dual graph.

Figure 4 replicates the analysis in Figs. 2 and 3 (top row) but for two new types
of graphs, namely, (i) a geometric radial basis function (RBF) graph where nodes
are randomly dropped in a unit square, edges are formed between nodes that are at
distance less than 0.75, and edge weights are given by a Gaussian kernel with standard
deviation 0.5 [6]; and (ii) a small-world graph with K = 2 and a rewiring probability
of 0.15 [26]. We first notice that, as already mentioned for the ER case, for none of the
primal graphs the axiomatic approach (Dual Graph A) gives rise to a sparse dual graph.
It is also evident that even the other two methods, which explicitly promote sparsity,
are in some cases unable to recover very sparse dual graphs, reinforcing the notion that
the interactions between frequencies are more complex than what can be represented
by a one-dimensional structure. These complex interactions could be relevant in a
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Fig.5 For each model, 100 graph realizations are drawn and the dimension of the null space of matrix W
(see Sect. 4.3) is computed. Each panel represents the histogram of that dimension. The top row corresponds
to ER graphs with a different number of nodes N and edge probability p. The bottom row considers non-ER
models, namely, RBF, SW, and a random tree, all with N = 20 nodes

number of problems including, for example, scenarios where one needs to estimate
the value (or the power) that a signal has in a particular frequency band using values
from other frequencies; see Sect. 5.3.

Finally, when observing Figs. 2, 3 and 4 jointly, it is worth noting that graphs with
a very strong structure in the primal domain can be associated with strong and regular
structures in the dual domain. This indicates that for markedly regular primal graphs,
such as the one of the DCT graph, a one-dimensional frequency representation could
be argued to be sufficient.

5.2 Uniqueness of the Adjacency Dual Shift

An interesting observation from Figs. 2, 3 and 4 is that it is often the case that the
dual method C, which forces the diagonal elements of S 7 to be zero, yields a matrix
that is sparse. Based on Theorem 3 and the subsequent discussion, this indicates that
the dimension of the null space of W must be larger than one and, hence, the set of
feasible dual graphs is sufficiently large so that a sparse one can be found. To confirm
this, we select different types of random graph models, for each of them we draw
100 realizations, compute the dimension of the null space of their W matrices, and
plot the corresponding histograms in Fig. 5. The top row corresponds to ER graphs
with different parameters (number of nodes N and edge probability), while the second
row corresponds to three other graph types. Recall that the null space of W being of
dimension 1 implies that the dual graph is unique (up to a trivial scalar ambiguity)
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whereas larger dimensions indicate that the set of feasible dual shifts with the form of
an adjacency matrix is large. Our experiments reveal that the specific graph type and
parameters defining the graph model strongly influence the dimension of the null space
of W and, thus, the size of the space of adjacency dual shifts. In particular, for none
of the realizations of tree graphs, the adjacency dual shift was uniquely determined
by the constraint of having no self-loops.

5.3 Frequency Estimation Using Dual Graphs

We now illustrate how the dual graph can be leveraged to address problems related to
the frequency domain. In particular, we consider a graph signal x € R defined on
the primal graph S = Vdiag(A)V# and whose frequency representation is given by
% = V#x. In this context, we want to estimate the value of X in a particular frequency k
by using a (graph) filter in the dual domain that relies on the values of X at frequencies
k' # k. To be more specific, we want to estimate X via the following dual graph filter
operation

L
%= S % =hok+mSk+ -+ h Si%, (12)
=0

where L < N. Clearly, to avoid the trivial solution of setting 4o = 1 and h; = O for
alll > 1, we force hg to be zero so that the problem to solve is

2

h* = argmin (13)

{(heRL)

L
%— ) [h]S)%
I=1

The frequency estimate is then obtained as X* = Zf:] [h*];Slfi and the associated

(normalized) estimation error as [|X* — X||%/||X/|.

We solve (13) for 4 different types of graphs: the dual graphs A-C as explained at
the beginning of Sect. 5 and the directed cycle graph, which implements the regular
convolution that tries to estimate the frequency coefficients using the values of adjacent
frequencies.

In Fig. 6, we present the results for two different types of primal graphs (ER and
RBF) and two different types of graph signals, namely, diffused sparse signals and
bandlimited signals. To generate the diffused sparse signals, we select uniformly at
random 3 seeding nodes, generate a non-zero signal value at each of the seeds from a
uniform distribution in [0, 1], and then diffuse those values using a low-pass filter of
degree 2 with an exponential response #;; = ' for 8 = 0.8. The bandlimited signals x
are generated as a linear combination of the top 4 eigenvectors (those associated with
the largest eigenvalues), where the combination weights are drawn from a uniform
distribution in [0, 1].

The results reveal that the approaches that leverage the relation between frequencies
provided by the dual shifts presented in this paper do a better job than the classical
convolution. As expected, as the number of filter taps increases, the error decreases.
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Fig. 6 Normalized Mean Squared Error (NMSE) as a function of the order (number of taps) of the filter
for the estimation of the frequency content of a signal using (low-order) graph filters defined over different
dual graphs. The errors are averaged over 100 (signal and graph) realizations. Each curve corresponds to
a different type of dual shift: the directed cycle plus the three dual graphs described at the beginning of
Sect. 5. The top row correspond to signals defined over a primal ER graph and the bottom row to signals
defined over a primal RBF graph. The left column considers signals that adhere to a diffused sparse signal
model while, for the right column, the signals were generated using a low-pass bandlimited model

However, in none of the scenarios considered, the approach based on regular convolu-
tions is able to attain zero error, while many of the approaches based on the dual shift
are able to achieve perfect estimation at all the frequency bands for filters with around
9 coefficients. While the particular filter that achieves the smallest error depends on
the configuration at hand, we observe that the “Dual Shift A” based on the approach
described in Sect. 4.1 yields in general good results. The poor performance achieved
by the estimate based on the standard convolution suggests, once again, that similar-
ity among frequencies goes beyond measuring proximity in terms of their associated
primal eigenvalues.

6 Conclusions and Open Questions

This paper investigated the problem of identifying the support associated with the
frequency representation of graph signals. Given the (primal) graph shift operator

A o . .
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supporting graph signals of interest, the problem was formulated as that of finding
a compatible dual graph shift operator that serves as a domain for the frequency
representation of these signals. We first identified the eigenvectors of the dual shift,
showing that those correspond to how each of the nodes expresses the different graph
frequencies. We then proposed different alternatives to find the dual eigenvalues and
characterized relevant properties that those eigenvalues must satisfy. Future work
includes considering additional properties for the dual eigenvalues so that the size of
feasible dual shift operators is reduced, and identifying additional results connecting
the vertex domain with the frequency domain. The results in this paper constitute a
first step towards understanding the structure of the signals in the frequency domain
as well as developing enhanced GSP algorithms for signal compression, frequency
grouping, filtering, and spectral estimation schemes.
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