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The origin of amplitude reduction in Tapping Mode Atomic Force Microscopy (TM-AFM) is

typically attributed to the shift in resonance frequency of the cantilever due to the nonlinear tip-

sample interactions. In this paper, we present a different insight into the same problem which,

besides explaining the amplitude reduction mechanism, provides a simple reasoning for the rela-

tionship between tip-sample interactions and operation parameters (amplitude and frequency).

The proposed formulation, which attributes the amplitude reduction to an interference between

the tip-sample and dither force, only deals with the linear part of the system; however, it fully

agrees with experimental results and numerical solutions of the full nonlinear model of TM-AFM.

Published by AIP Publishing. https://doi.org/10.1063/1.5016306

The origin of the amplitude mechanism in Tapping

Mode Atomic Force Microscopy (TM-AFM) was a funda-

mental research question in the late 1990s and was already

answered at that time.1 Briefly, The amplitude reduces
because the resonance frequency of the cantilever-surface
system changes. Moreover, the energy dissipation between

the tip and the sample during the contact contributes to the

amplitude reduction. This explanation is graphically demon-

strated in Fig. 1, and more details can be found in Ref. 2.

Although many aspects of TM-AFM are well described by

this explanation, several recent observations on Tip Sample

Interaction (TSI) force are not very easy to explain, in partic-

ular, the relationship between the TSI force and the operation

parameters (excitation frequency and set-point amplitude).

In this letter, we present a different description for the origin

of amplitude reduction in AFM that also rigorously explains

the recent observations.

It must be acknowledged that the traditional explanation

based on the resonance frequency shift is mathematically

precise and is based on a nonlinear dynamics study of the

cantilever in the presence of the Derjaguin-Muller-Toporov

(DMT) force model.3 The only two simplifications which

have been used in the formulations of the existing theory are

(i) the cantilever is modeled as a one degree of freedom

(DOF) resonator and (ii) the motion of the cantilever is

assumed harmonic, even in the presence of strongly nonlin-

ear TSI. There are exceptional cases for which the motion of

the cantilever is not harmonic, and hence, the aforemen-

tioned assumptions are not valid anymore (such as multi-

frequency AFM, transient situations, and aqua medium

measurements4–7). Yet, experiments and numerical simula-

tions confirm that for the single harmonic TM-AFM in air,

none of these assumptions are restricting, and the existing

theory, i.e., based on the frequency shift, is precise.8

However, with this theory, the relationship between the oper-

ation parameters and the TSI force is not easily explained.

For example, the maximum interaction force during each

cycle, i.e., the Peak Repulsive Force (PRF), is commonly

considered to be a function of the amplitude and stiffness of

the cantilever.9–11 Nonetheless, recent observations show

that the excitation frequency is predominantly more impor-

tant than the amplitude.12 Without considering the excitation

frequency, Xue et al.10 reported a contradiction between

their experimental results and the ones presented by Su

et al.,11 which is not explained with the existing theory. Xue

et al.10 observed a descending trend between the amplitude

ratio and the tip wear, whereas they expected an ascending

relationship based on the previous TSI force measurements

reported by Su et al.11 In fact, depending on the excitation

frequency, both could be valid. If the excitation frequency is

chosen slightly lower than the resonance frequency of the

FIG. 1. Graphical explanation of amplitude reduction based on the reso-

nance frequency shift. Since the nonlinear resonance frequency of the canti-

lever shifts (Dxn), the amplitude reduces (DA). The details of the model

used for this graph can be found in the supplementary material.a)Electronic mail: hamed.sadeghianmarnani@tno.nl

0003-6951/2018/112(16)/163104/5/$30.00 Published by AIP Publishing.112, 163104-1

APPLIED PHYSICS LETTERS 112, 163104 (2018)

https://doi.org/10.1063/1.5016306
https://doi.org/10.1063/1.5016306
https://doi.org/10.1063/1.5016306
ftp://ftp.aip.org/epaps/appl_phys_lett/E-APPLAB-112-011817
mailto:hamed.sadeghianmarnani@tno.nl
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5016306&domain=pdf&date_stamp=2018-04-20


cantilever, the trend of the TSI force resembles the ones

reported in Ref. 11, and if higher, the trend resembles Ref. 10.

To demonstrate the effect of excitation frequency,

Fig. 2(a) shows the PRF versus both the amplitude ratio and

the excitation frequency. The PRF is calculated using the

fully nonlinear multi-DOF model of the cantilever. As it can

be seen, the PRF has a saddle-shape trend with respect to the

amplitude ratio and the excitation frequency. Thus, the

amplitude-force relationship can be ascending or descending.

Using these trends, we have previously demonstrated an

AFM-based nano-patterning technique, Fig. 2(b), in which

the TSI force was controlled via the excitation frequency,

without changing the amplitude or the excitation power.12

Without changing the excitation power and the set-point

amplitude, the desired patterns could be transferred to the

surface, without interrupting the imaging process. However,

it was not possible to explain the results in Fig. 2 with the

shift in resonance frequency. Therefore, this letter presents

another perspective for the origin of amplitude reduction in

TM-AFM, which also explains the frequency dependency of

the TSI force.

Consider the cantilever as a linear 1-DOF resonator

which is excited by a dithering force and nonlinearly inter-

acts with the surface through the TSI force. The normalized

governing differential equation for this 1-DOF model is

€x þ n _x þ x ¼ fd<ðejxtÞ þ ftsðx;…Þ; (1)

where x, n, x, fd, and fts 2 R represent the normalized tip-

displacement, the damping coefficient, the normalized exci-

tation frequency, the nondimensional dither force, and the

TSI force, respectively. A dot represents the time derivation,

< is the real operator, and j2¼ –1.

The TSI force depends nonlinearly on the tip displace-

ment and other physical and geometric parameters.

Nonetheless, without any loss of generality, it can be consid-

ered as an unknown signal in the time domain.

Figure 3 graphically explains this idea. Although there

exists a relationship between the TSI force and the displace-

ment of the cantilever, in this letter, we set the system

boundaries around the cantilever and keep the TSI force as

an unknown input which can have any nonlinear relationship

with the displacement of the cantilever. By keeping the TSI

force unknown during the derivation of the model, we aim to

present a formulation which explains the amplitude reduc-

tion mechanism in TM-AFM, independent of the interaction

models. Moreover, since all the nonlinearity is hidden in the

TSI force, we may benefit from the linear dynamics of the

cantilever itself.

In steady state conditions, both the displacement and the

TSI force are periodic in time. Hence, they both have a

Fourier decomposition, with a first component at the same

frequency as the excitation signal. The Fourier decomposi-

tion of the (unknown) TSI force and the tip displacement can

be written as

ftsðtÞ ¼
X1
n¼0

<ðFðnÞts enjxtÞ; (2a)

xðtÞ ¼
X1
n¼0

<ðXðnÞenjxtÞ; (2b)

where F
ðnÞ
ts ¼ jF

ðnÞ
ts je�juðnÞts 2 C is the n-th Fourier coefficient

of the TSI force (n 2N). F
ðnÞ
ts contains both the amplitude

[jFðnÞts j] and the phase [uðnÞts ] of the TSI force. In the same

manner, XðnÞ ¼ jXðnÞje�juðnÞx 2 C represents the amplitude

(jXjðnÞ) and the phase (uðnÞx ) of the nth Fourier component

(i.e., harmonic) of the motion of the cantilever. Considering

Eq. (2), the system represented by Eq. (1) has an analytical

solution for each of its frequency components as

XðnÞ ¼ e
�j arctan nnx

1�n2x2

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� n2x2Þ2 þ n2n2x2

q F
ðnÞ
tot ; (3)

FIG. 2. (a) Peak Repulsive Force

(PRF) versus amplitude ratio and nor-

malized excitation frequency. The PRF

is normalized with respect to the free

air amplitude multiplied by the spring

constant of the cantilever. The details

of the mathematical model for this can

be found in the supplementary mate-

rial. (b) An example of nanopatterning

using TM-AFM by tuning the TSI

force via changing the excitation fre-

quency. Reprinted with permission

from Keyvani et al., Proc. SPIE 9778,

977818 (2016). Copyright 2016 Wiley-

VCH Verlag GmbH & Co. KGaA.12

FIG. 3. Schematic representation of Eq. (1). The red (a) and green (b)

dashed lines represent the system boundaries used in previous theories and

the present model, respectively. The proposed model keeps the nonlinear

relationship between the TSI force and the displacement out of the bound-

aries of the system, by assuming the TSI force to be an unknown input.
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where F
ðnÞ
tot 2 C represents the n-th Fourier component of the

total force acting on the cantilever. Note that F
ð1Þ
tot ¼ fd þ F

ð1Þ
ts

and F
ðnÞ
tot ¼ F

ðnÞ
ts ; n ¼ 2; 3;….

In conventional TM-AFM configurations, only the ampli-

tude and the phase of the first harmonic motion [X(1)] can be

reliably measured and used in the control loop. Hence, in the

rest of this letter, we only consider the first Fourier component

of the force and displacement. Note that due to the (i) linearity

of Eq. (1) and (ii) the orthogonality of the harmonic functions,

the higher frequency content of the force does not have any

effect on the first Fourier component of the motion.

Figure 4 (Multimedia view) depicts a normalized version

of Eq. (3) as a phasor plot, in which the first Fourier coeffi-

cient of the forces and displacement [Fd;F
ð1Þ
ts ;X

ð1Þ] are repre-

sented. All the phase values are measured with respect to the

dither signal, and amplitudes are normalized. In this case,

the cantilever is excited exactly at its resonance frequency

(x¼ 1). Initially, i.e., in the absence of the TSI force (far

from the sample), the displacement has a normalized ampli-

tude equal to one and a phase delay of 90� (dashed green).

By bringing the cantilever closer to the sample, the tip

starts to interact with the sample and the TSI force depends

on the displacement. As mentioned earlier, the total har-

monic force at the frequency of interest [F
ð1Þ
tot , solid blue in

Fig. 4] is the summation of the TSI force and the dither

force, which generates the displacement [X(1), dashed blue].

Due to the linearity of the 1-DOF model, the amplitude of

the displacement scales linearly with the amplitude of the

total force, and its phase is 90� behind the total force.

Assuming that the contact between the tip and the sam-

ple is conservative [Fts¼Fts(x(t))], the first Fourier compo-

nent of the TSI force [jFð1Þts j] can be either 0� or 180� out of

phase with respect to the displacement X(1). In the repulsive

regime—which is the case for the majority of experiments

(Also Fig. 4)—this phase delay is 180�, whereas for the

attractive regime, it is 0. As shown in Fig. 4, since the TSI

force (purple) is more than 90� out of phase with the dither

force (solid green), the amplitude of total force [jFð1Þtot j, solid

blue] is less than the amplitude of the dither force alone

[jFð1Þtot j ¼ jF
ð1Þ
ts þ fdj < fd]. Consequently, the amplitude of

the motion in the engaged situation (dashed blue) is less than

the free air amplitude (dashed green).

In short, the following causality loop governs the TM-

AFM: (i) the phase of the TSI force depends on the displace-

ment via the force-distance relationship (180� in Fig. 4), (ii)

the phase of the displacement depends on the total force via

the linear dynamics of the cantilever (90� in Fig. 4), and (iii)

the total force is the summation of the dither force and the

TSI force. Since the TSI force is out of phase with respect to

the dither force, the amplitude of the total harmonic force is

less than the dither force. Consequently, the engaged ampli-

tude is less than the free air amplitude.

Translating the Fourier coefficients back to the harmonic

functions, the origin of the amplitude reduction in TM-AFM

can be explained as a destructive interference, i.e., partial

cancellation, of the dither force and the first Fourier compo-

nent of TSI force. The other Fourier components of the TSI

force may or may not induce a motion at their own frequen-

cies but certainly do not contribute to the amplitude or the

phase at the frequency of interest at which the cantilever is

driven and measured.

To generalize the above explanation for arbitrary excita-

tion frequencies and non-conservative forces, we rewrite Eq.

(3) with and without the TSI force. Considering the ampli-

tude ratio (Ar) which is also the ratio between the amplitude

of the total forces [jfd þ F
ð1Þ
ts j ¼ Arfd], the first Fourier com-

ponent of the TSI force [jFð1Þts j;u
ð1Þ
ts ] can be calculated from

Arfde
j uð1Þts �hts

X�arctan nx
1�x2

� �� �
¼ jFð1Þts jejuð1Þts þ fd; (4)

where hts
X is the phase between the TSI force and the dis-

placement which is governed by the force-distance relation-

ship. If the contact is not conservative, hts
X will slightly differ

from 180� or 0�.
Equation (4) is a complex equation which can be solved

for two unknowns by equating the real and imaginary parts

of the two sides of the equality. All the results in this letter

are calculated by solving Eq. (4) for the amplitude and phase

of the TSI force using a gradient decent method.

The phase delay of the cantilever [arctanð nx
1�x2Þ] also

determines the sensitivity of the amplitude to the TSI force,

which explains the relationship between the excitation fre-

quency and the TSI force. Consider Fig. 5 which shows

the phasor plot of the forces for two different excitation

FIG. 4. Phasor plot of the forces and displacement in TM-AFM: The TSI

force partially cancels the dither force, and hence, the amplitude reduces.

Multimedia view: https://doi.org/10.1063/1.5016306.1

FIG. 5. Phasor plot of the forces in TM-AFM; Green: dither force, Blue:

excitation frequency lower than resonance, and Red: excitation frequency

higher than resonance frequency.
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frequencies. To achieve a certain amplitude ratio, the ampli-

tude of the total harmonic force should be Ar times the dither

force, i.e., F
ð1Þ
tot should lie on the Ar circle in Fig. 5. As seen,

there can be many different TSI forces, with different angles

that can achieve this. Although the phase angle is determined

by the displacement which itself depends on the total har-

monic force and the linear dynamics of the cantilever, the

TSI force should satisfy two conditions in a 2D space, a

phase and an amplitude condition. Geometrically, the phase

between the TSI force and the total harmonic force

[hts
X þ arctanð nx

1�x2Þ] determines the sensitivity of the cantile-

ver to the TSI force. As seen, if this phase delay is closer to

0� [arctanð nx
1�x2Þ is closer to 180], then a higher TSI force is

needed to reduce the total force and reach the Ar circle. In

Fig. 5, both frequencies have equal dither force, free air

amplitude, and amplitude ratio. However, for the red arrows,

the excitation frequency is higher than the resonance fre-

quency of the cantilever. Therefore, the phase delay of the

cantilever [arctanð nx
1�x2Þ] is closer to 180�, and consequently,

a larger TSI force is required.

Figure 6 shows the magnitude of the first Fourier com-

ponent of the force versus the amplitude ratio and the excita-

tion frequency as obtained from Eq. (4). Note that in Figs. 6

and 2(a), the free air amplitude is constant and not the dither

force. See supplementary material for more information on

these trends. As it can be seen, the trends resemble the ones

presented in Fig. 2(a). However, one should not compare the

two graphs because Fig. 2(a) shows the PRF, while Fig. 6

shows the first Fourier component of the TSI force. In fact,

Fig. 6 by its own cannot fully explain the nano-patterning

experiments presented in Fig. 2(b) because the relationship

between the damage/patterning and the first Fourier compo-

nent of the TSI force is not known. Assuming a certain force

model, one can estimate the PRF based on the first Fourier

component of the TSI force, which might be more useful in

estimating the damage. However, assuming a force model by

itself can introduce large errors because many parameters

and assumptions of the force models (e.g., tip-shape/size) are

not measurable or verifiable in practice. To verify the results

from the proposed formulation, we compare the first Fourier

component of the force [F
ð1Þ
ts ] calculated from Eq. (4) with

that of the numerical solution of the fully nonlinear problem.

See supplementary material for the details of the nonlinear

model.

Figure 7 compares the forces achieved with the pre-

sented linear model and the numerical solution of the nonlin-

ear model versus excitation frequency while keeping the

amplitude ratio constant (Ar¼ 0.7). As shown in Fig. 7, the

first Fourier component of the TSI force obtained by the lin-

ear model [Eq. (4)] agrees with the nonlinear model up to a

numerical roundoff error (regardless of the parameters of the

DMT model).

The presented model in Eq. (4) does not require the

parameters of the force model, and it does not provide the

PRF. However, at the frequency of interest (excitation and

measurement frequencies), there is no difference between Eq.

(4) and the fully nonlinear model. Hence, it can be concluded

that the DMT modulus of the sample, i.e., surface elasticity,

tip radius, Hamaker constant, etc., and the distance between

the cantilever and the sample surface do not individually

affect the amplitude and the phase of the cantilever at the fre-

quency of interest. Consequently, they cannot be measured

using conventional single frequency TM-AFM. This also

explains why the height image of soft samples often depends

on the imaging conditions and does not necessarily agree

with their theoretical value.13 The same reasoning holds for

calculating the peak repulsive force or any other details of the

TSI force. In general, since the amplitude and the phase of

the first mode of the cantilever (the only observable signals)

do not depend on the details of the tip-sample interaction

force (DMT modulus, etc.), it is impossible to extract these

details in TM-AFM without assuming a model for the force-

distance relationship or performing a sweep measurement.

In conclusion, the origin of amplitude reduction in TM-

AFM is explained by partial cancellation of the dithering

force with the first harmonic component of the TSI force. The

phase of the motion of the cantilever which is dominated by

the excitation frequency governs the geometry of this inter-

ference. Therefore, the excitation frequency predominantly

affects the TSI force. Moreover, only the first harmonic com-

ponent of the TSI force participates in the working mecha-

nism of the single-harmonic AFM. Hence, one cannot retrace

FIG. 6. Magnitude of the normalized first Fourier component of the tip-

sample interaction force vs. amplitude ratio (horizontal) and excitation fre-

quency (vertical).

FIG. 7. Peak Repulsive Force and first Fourier component of the force vs.

amplitude ratio (Ar¼ 0.7). The details of the full nonlinear mathematical

model can be found in the supplementary material.
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any information that is modulated on the higher harmonics of

the TSI force. This is why the single-harmonic AFM does not

even guarantee a correct measurement of the height profile, if

the sample is not homogeneous.

See supplementary material for the details of the non-

linear model used for the comparison. The supplementary

video shows the animated version of Fig. 4 for different

amplitude ratios and different excitation frequencies.

This research was supported by Netherlands Organization

for Applied scientific Research, TNO, Early Research

Program 3D Nanomanufacturing.
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