O% oy~ 1
/4 ~7 L7
‘ ' ' '

~ Aircraft Disruption Management

7 Increasing Performance with Machine Learning Predictions

LK. Hassan

N

4
J
0
Q. &,
R &
@ TUDelft A
"% o - &
g W

Alrcraft
Sruptor
anagement

Increasing Performance with Machine
Learning Predictions

by

LK Hassan

to obtain the degree of Master of Science
at the Delft University of Technology,
to be defended publicly on 30th of April 2019 at 14:00.

Student number: 4165683
Project duration: February 12, 2018 — April 30, 2019
Thesis committee: Dr. ir. W.J.C. Verhagen, TU Delft, chair

Dr. ir. B.F. Santos, TU Delft, supervisor
Dr. D. Zarouchas, TU Delft

ir. H. Ritsema, ORTEC, supervisor
ir. J. Vink, ORTEC

An electronic version of this thesis is available at http://repository.tudelft.nl/.

]
TUDelft

http://repository.tudelft.nl/

Abstract

Airlines experience schedule disruptions on a daily basis. Poor weather conditions,
unscheduled aircraft maintenance and congested air spaces are just a few of the causes
that prevent airlines from operating their flight schedules as planned. In the third quarter of
2017 over 20% of all scheduled flights in Europe suffered from delays. Operation Research
based decision support systems (DSS) help airlines with their disruption management
processes and provide suggestions for recovery options.

For large hub-and-spoke carriers, with an extensive network and a large number of aircraft
and flights, the computation time required to find the optimal recovery solution after a
disruption increases rapidly. As airlines require fast recovery solutions when disruptions
occur, there is an ongoing trade-off between computation time and system sophistication. In
the majority of disruption cases, no or a limited number of undisrupted aircraft are required
to find the optimal recovery solution. By selecting a limited number of aircraft, flights and
airports used to find a recovery solution, the computation time is reduced exponentially.
The challenge is determining which aircraft and flights should be selected.

This research aims to develop a decision support system for the schedule and aircraft
recovery process that is able to present a feasible solution to a disruption in less than
120 seconds. An aircraft recovery model will be developed based on the integer linear
programming model that was created by Vink et al. (2019) and Vos et al. (2015). Crew
and passenger recovery are not considered. To recover disruptions, the optimization model
can delay and cancel flights as well as perform tails swaps, where the flights from two
aircraft are switched. The novelty of the work is that machine learning is used to predict
which undisrupted aircraft will help recover a disruption. Based on those predictions a
sub-network selection algorithm will select the subset of aircraft to be included in the
optimization instead of the entire aircraft fleet.

The performance of the system is tested on a case study for the domestic hub-and-spoke
network of Delta Airlines. The dataset for the study consists of 2200 daily flights, 147 airports
and 827 aircraft in 8 aircraft families. The results of the system are compared with the
optimal solution, where no aircraft selections were made. The case study shows that the
system is able to make an aircraft selection where 50% of the fleet is discarded, while still
finding the optimal solution in 98.9% of the 556 disruptions tested. Furthermore, the system
reduces the computation time by 45%, resulting in an average time of 48 seconds. For the
disruptions, the computation time varied between 9 and 180 seconds.

Preface

This report is the final deliverable for my Master of Science graduation thesis on aircraft
disruption management. The thesis project was performed in collaboration with the Air
Transport and Operations section of the faculty of Aerospace Engineering of the Delft
University of Technology and ORTEC. Over the course of the past year, I have worked on
a problem that controllers in Air Operations Control Centers face on a daily basis and is
an active field of research. Although my road to completing this work was a bumpy one, I
have thoroughly enjoyed working on the topic. Every challenge I faced was an opportunity
for personal and intellectual growth, and I am thankful for having been able to experience
such a challenging topic. The completion of this work would not have been possible without
certain people, whom I would like to thank.

In the first place, I would like to thank my thesis supervisors Bruno and Hendriena for our
constructive discussions throughout the project. On several occasions you were able to
shed some realism on my plans, thereby allowing me to reach my goals.

Jeroen, continuing your work was a daunting task. [am incredibly grateful for your
guidance, feedback and day to day coaching throughout this project. Whenever I was facing
set backs you were there to help me out. Even though it was utterly frustrating to see you
come up with a solution in 5 minutes, I am sure I would not have been able to deliver the
same quality of work without you. Thanks for keeping me sane!

Furthermore, I would like to thank Wouter, Daniel, Mor and Ronald at ORTEC for their
content and implementation suggestions. Moreover, a big thanks to all my colleagues
at ORTEC who were keen on helping me with the challenges I faced and for providing a
supportive work environment. Pieterbas, Arnoud, Guido, Frank, Eline, Denise, Jan, Steffie,
Annelies, Jasper, Astrid, Illy, Mireille, Bas, Jannigje, Eveline and Sandra, Thank youl!

Additionally, I would like to thank my parents for their continuing mental and financial
support throughout my studies which allowed me to develop personally and professionally.

Lotfy Hassan
Delft, April 2019

Cover photo - Copyright © http://delimiter.com.au/ 2016

ACO
AOCC
APD
ARP
ATC
B&B
B&P
BTS
CPM
CRP
Ccv
DFS
DOC
DPC
DPM
DSS
DV
FAA
GA
GRASP
IATA
KPI
LNS
LP
MAS
MCP
MIP
NAS
OF
OTP
STA
STD
TAT
TFO
TU Delft
XF
XP

Acronyms

Aircraft Assignment Problem

Ant Colony Optimization

Airline Operations Control Center
Average Passenger Delay

Aircraft Recovery Problem

Air Traffic Control

Branch & Bound

Branch & Price

Bureau of Transportation Statistics (US)
Connecting Passenger Matrix

Crew Recovery Problem

Constraint Violations

Depth First Search

Direct Operating Cost

Delayed Passenger Count

Delayed Passenger Minutes
Decision Support System

Decision Variable

Federal Aviation Administration (US)
Genetic Algorithm

Greedy Randomized Adaptive Search Procedure
International Air Transport Association
Key Performance Indicator

Large Neighborhood Search

Linear Programming

Multi-agent System

Missed Connection Passengers
Mixed Integer Programming
National Air System

Objective Function

On-time Performance

Scheduled Time of Arrival
Scheduled Time of Departure
Turn-Around-Time

Time Found Out

Delft University of Technology
Cancelled Flights

Cancelled Passengers

Vi

Contents

Abstract iii
Preface v
Acronyms vii
List of Figures Xi
List of Tables xiii
1 Introduction 1
2 Literature Review 3
2.1 Network Representations L 3
211 Connectionnetwork L 3

21.2 Time-Band network. L 4

21.3 Time-Spacenetwork L 4

2.2 Review of Aircraft Disruption Managemento 4
221 Aircraft Recovery. e e 5

2.2.2 Aircraftand Passenger Recovery oL 8

2.2.3 Aircraftand Crew Recovery. e 11

2.24 Integrated Recovery oL 12

2.3 Conclusion on Literature Review. oL 13

3 Research Framework 15
3.1 Research Scope. e 15
3.2 Research Objectives and Hypotheses 16
3.3 Methodology L 17

4 Model Framework 19
4.1 Pre-processing i e e e e e e e e 20
4.2 Classifier e e 25
4.3 Disruption Solver L L L e e 26
4.4 Post-processing Lo e e e e 27

5 Optimization Model 29
5.1 Objective Function. L L 30
51.1 Decisionvariables oL 30

51.2 Costfactors 31

52 Constraints L L e 32
5.2.1 Time-space continuity constraints.o L oL 32

5.2.2 Airlineconstraints oL L 33

5.2.3 Disruptionconstraintso L 33

5.3 Assumptions and Implications L 34

6 Machine Learning Classifier 37
6.1 Introduction to Machine Learning and Binary Classification 37
6.1.1 The Bias-Variance Trade-off 38

6.1.2 Learning Curvesand Bayeserrorrate 38

6.2 Classifier Framework L 39
6.2.1 Feature Generation. L. 40

6.2.2 Problem Characteristics and Algorithm Selection 41

6.2.3 Evaluation Metric Selection.o 43

6.2.4 DataPre-processing e e e e 45

6.2.5 Hyperparameter Optimization. L 48

6.2.6 Classifier Validation. 50

6.2.7 Feature Analyses. L e 50

6.2.8 Feature Engineering L 53

6.3 Final Random Forest Classifier and Model Analysis 54

ix

X Contents

7 Verification and Validation 57
7.1 Verification L e 57
711 CostFactors 57

7.1.2 \Verification of Optimization Model. 58

7.1.3 \Verification of Decision Support System.o L 0oL 64

7.2 Validation e 64
7.3 Concluding Remarks on Verification and Validation. 66

8 Case study: Delta Airlines 67
8.1 Delta Airlines Dataset Generation L 67
8.1.1 Flight Schedule Information. oL 67

8.1.2 FleetInformation 69

8.1.3 PassengerInformationo 70

8.1.4 Disruption Information L 72

8.2 CaseStudy e e 75
8.2.1 Introduction and Case Study Overview 75

8.22 CaseStudyResults 76

8.2.3 HighlightedRuns. e 79

8.2.4 Impact of Delaying Outbound Connecting Flights 83

8.3 Sensitivity Analyses L L L 84
8.3.1 Sub-network Selection Algorithm 84

8.3.2 Random Forest Classifier Generalization 85

8.3.3 Random Forest Classifier Hyperparameter Sensitivity 86

8.4 ConcludingRemarkson Case Study e 87

9 Conclusion and Recommendations 89
9.1 Conclusions. L e e 89
9.1.1 Random Forest Classifier and Sub-network Selection. 89

9.1.2 Improvements to Decision Support System (DSS). 90

9.2 Recommendations. e e 90
9.2.1 Random Forest Classifier and Sub-network Selection. 90

9.2.2 Aircraft Recovery. L L 91

9.2.3 Dataset L e 92

9.24 CrewandPassengerRecovery. o 93

9.2.5 Computational Performance e 93

9.3 ConcludingRemarksonResearch. 94
Bibliography 95
A Subset of IATA US Airport Codes 101
B Overview Input Data 103
C Delay cost 105
D Optimization Model 107
E Case Study Features 111
F Top 100 Feature Correlations 115
G Case Study Feature Histograms 117
H Case Study Data Processing Flowchart 119
I BTS Delay Causes 121
J Disruption Dataset Statistics per Type and Cause 123

List of Figures

2.1 Number of publications per recovery type peryear. 5
3.1 Airline planning framework L. L L e e 15
4.1 Flowchartof Model. e 19
4.2 Flowchart of Pre-processing o e e 20
4.3 Connecting flights example e 21
4.4 Example for crew recovery illustrating the concept of a time window for recovery. 22
4.5 Flowchartof Classifier. e 25
4.6 Flowchart of Disruption Solver e 26
4.7 Ground, flight and delay arcs in time-space network. 27
4.8 Flowchart of Post-processing L e e 27
6.1 A typical plot of a data set y with each instance (x;, y;)€ X plotted at its features and labeled
byitsclass. e 38
6.2 Example learning curves for two different classification algorithms 39
6.3 Machine Learning Framework L e 39

6.4 Flowchart for "Feature Engineering”, "Hyperparameter Tuning” and "Model Validation” steps 40
6.5 Framework used to generate the feature space for training the machine learning classifier 40

6.6 Average ranking of machine learning algorithms over all datasets 42
6.7 Confusion plot L e e e e 43
6.8 Example of typical ROC curves it e 44
6.9 Example of typical Precision-Recallcurves, 44
6.10AP scores for different class balancing strategies 47
6.11 Example of K-fold cross validation where K=5 49
6.12Impact of number of trees in random forest on model performance 49
6.13 Permutation feature importance of features in the dataset 51
6.14 Feature correlation matrix for top 25 correlated features. 52
6.15Histogram of feature: same_airport_min_after min 53
6.16Histogram of feature: c_pax_econ_vs_d_econ fl, 53
6.17Learning curves for the final random forest classifier. The shaded area indicates one
standard deviation.9 55
6.18 Specificity-Recall Curve for the initial and final random forest classifiers 55
6.19Recall and Discard% at different probability thresholds 55
7.1 Delay cost (soft, hard, total) graph o o 58
7.2 Optimal recovery solution given the delay of flight 1 59
7.3 Optimal recovery solution for tail swap verification 60
7.4 Optimal recovery solution graphs for connecting passenger verification 62
8.1 Histogram of the flight duration in minutes 69
8.2 Passenger Load factor distribution Mean = 75.9, std =17.45 72
8.3 Histogram of the number of connecting passengers per connection 72
8.4 Histogram of the number of connecting passengers per flight 72
8.5 Disruption Cause Share in terms of Occurrence 74
8.6 Disruption Cause Share in terms of Delay Minutes 74
8.7 Disruption duration histogram. Average duration: 37 minutes. 74
8.8 Disruptions per Day Histogram. Average number of disruptions/day: 366 74
8.9 Case Study Disruption Cause Share in terms of Occurrence 75
8.10Case Study Disruption duration histogram 75
8.11 Case Study Disruptions per Iteration Histogram 75
8.12Boxplot of time to best solution forallruns, 78
8.13 Boxplot of time to best solution for the 48 non-trivialruns 78
8.14 Computation time vs the number of aircraft in the sub-network selection 85

Xi

Xii

List of Figures

8.15Cost vs the number of aircraft in the sub-network selection. 85

8.16Number of disruptions per day in Q1 2015. Highlighted bars indicate days used for case
study in January and March. L e 86

8.17 Sensitivity of random forest classifier to changes in hyperparameters 87

J.1 Disruption duration histograms per disruption type andcause 123

List of Tables

4.1 Cost factor user settings L e 24
4.2 Layout of the Feature Space before classification 25
4.3 Layout of the Feature Space after classification 25
4.4 Key Performance Indicators for recovery solutions 28
5.2 Assumptions and corresponding implications L Lo 36
6.1 Qualitative comparison of classification techniques 42
6.2 Threshold metrics for classification evaluations 43
6.3 Imputed values for feature columns with missingvalues 46
6.4 Difference between label encoding and one-hot encoding 46
6.5 Feature replacements after feature analyses L. 53
7.1 Disruption cost breakdown for recovery solution shown in Figure 7.2 59
7.2 Disruption cost breakdown for recovery solution shown in Figure 7.3 60
7.3 Disruption cost breakdown for recovery solution shown in Figure 7.4 63
7.4 Disruption cost breakdown for recovery solution shown in Figure 7.4 63
7.5 Disruption cost breakdown for recovery solution shown in Figure 7.4 63
7.6 Comparison of the averaged results of 50 iterations for the full DSS compared to the
optimization model without classifier and sub-network selection algorithm. 64
8.1 Flight schedule dataset information overview 68
8.2 Delta Airlines fleet properties L 70
8.3 Connecting passenger itinerary dataset overview 71
8.4 Parametersused forcasestudy L L e 75
8.5 Comparison of key statistics for the 367 runs of thecasestudy 76
8.6 Comparison of key statistics for the 48 non-trivial runs of the case study 77
8.7 Combined original and recovered flight schedule for aircraft involved in the recovery
solution of iteration 386 run MD 79
8.8 Statistics and KPIs for the recovery solutions found for iteration 386 run MD 79
8.9 Combined original and recovered flight schedule for aircraft involved in the recovery
solution of iteration 482 run MD. L e 80
8.10 Statistics and KPIs for the recovery solutions found for iteration 482 run MD 80
8.11 Combined original and recovered flight schedule for aircraft involved in the recovery
solution of iteration 492 run A320. oL e 81
8.12 Statistics and KPIs for the recovery solutions found for iteration 492 run A320 81
8.13Combined original and recovered flight schedule for aircraft involved in the recovery
solution of iteration 493 run MD. L e 82
8.14 Statistics and KPIs for the recovery solutions found for iteration 493 run MD 82
8.15Example connecting flights schedule 0. 83
8.16Impact of delaying outbound connecting flightsonthe KPIs. 83
8.17 Sensitivity of Recovery solution to changes in the sub-network selection strategy 84
8.18 Performance statistics of sub-network selection strategies 85
8.19 Comparison of averages key statistics for 100 iterations in March. 86
C.1 Delay cost per passenger in USD per 10 minutesofdelay 105
E.1 Description of initial features for the classifier. 111
E.2 Description of features that were added after feature analysis 113
J.1 Disruption statistics per typeand cause Lo 123

xiii

Introduction

Poor weather conditions, congestion at hubs, and aircraft mechanical problems are just a
few of the causes that prevent airlines from operating their flight schedules as planned. As
a result departure/arrival delays, flight cancellations, and even airport closures can occur.
These irregularities in operations are called disruptions. Disruptions are very common in
the airline industry, greatly impacting the realized operational performance. To mitigate the
effect of these disruptions, intervention by the airline is necessary to repair flight schedules,
aircraft schedules, crew schedules and passenger itineraries. Consequently, any disruption
results in a significant increase to an airline’s operational costs, e.g.additional crew overtime,
increased fuel usage and passenger re-accommodation cost.

According to statistics from EUROCONTROL', in the third quarter of 2017 almost 24.0%
of all scheduled flights in Europe suffered from delays which equals around 6500 delayed
flights per day in Europe. Ball et al. (2010) shows that in 2007, the total delay cost in the
airline industry in the United States (US) was $32.9 billion from which $8.3 billion was of
increased expenses for fuel, crew and maintenance. Because of the significant associated
costs, the use of efficient and accurate recovery processes is of great importance to the
airline industry.

According to Clausen et al. (2010), airlines have two ways to mitigate the effect of disruptions.
The first way is to create robust flight schedules, where the goal is to make flight schedules
and aircraft rotations less sensitive to disruptions, for example by building in more slack
time between flights to absorb delays. The second way is to invest in disruption management
processes, where the goal is to make decisions, after a disruption occurs, to recover
scheduled operations as soon as possible. These decisions may include flight delays and/or
cancellations. Given the cost of disruptions, improving disruption management processes is
key.

The complete airline recovery process is a very large and complex problem that is commonly
broken into a number of sequential stages. These stages are broadly categorized as schedule,
aircraft, crew, and passenger recovery. Sequential optimization approaches do not fully
capture the inter-dependencies between aircraft, crew and passengers and therefor usually
result in sub-optimal recovery solutions. Both from a mathematical and computational
perspective, the integration of all recovery stages (schedule, aircraft, crew and passengers)
is a difficult task. With the increase in computing power in recent years, more and more
researchers are integrating two or all stages of the recovery process. Especially with larger
networks (e.g. the network of worldwide hub-and-spoke carriers), these integrated models
take a long time to solve (generally over 20 minutes). Disruption managers in Airline
Operations Control Centers (AOCC) cannot wait 20 minutes for a solution to a disruption,

"http://www.eurocontrol.int/articles/coda-publications

2 1. Introduction

since the state of the network will have changed when the solution is provided. According to
Vink (2016), from an AOCC perspective, solutions need to be provided within 120 seconds
after a disruption.

In this research the potential benefits of problem size reductions during aircraft recovery
within a real airline flight schedule are investigated. From the performed literature review,
it was found that machine learning based problem size reductions have not been addressed
and few researchers verified their model on real world airline schedules.

The objective of this research is to develop a decision support system for AOCCs that is able
to present a feasible solution to a disruption in less than 120 seconds while minimizing the
cost of the disruption. The novelty of the work is that machine learning is used to select
a sub-network of resources that will be included in the optimization instead of the entire
network.

Chapter 2 addresses the literature review that was performed for this research. In the end
of that chapter the gap in the body of knowledge is identified. Chapter 3 elaborates on
the framework that was used for the research, including the proposed methodology and
hypotheses. The framework for the decision support system is presented in Chapter 4. It
should be noted that the framework is largely similar to the framework presented by Vink
et al. (2019). The mathematical formulation of the optimization model, again largely similar
to the formulation presented by Vink et al. (2019), is discussed in Chapter 5. Chapter
6 will give an introduction into machine learning and will discuss the choices that were
made to construct the aircraft classifier used to reduce the problem size. Verification
and validation of the decision support system is presented in Chapter 7. A case study,
performed on a dataset for Delta Airlines, is discussed in Chapter 8 and the conclusions
and recommendations are given in Chapter 9.

This research is a continuation of the work carried out by Vos et al. (2015) and Vink et al.
(2019). This research adds the following to the decision support system (DSS) and literature:

* The machine learning classifier as presented in Chapter 6. Moreover, a quantification
of the potential benefits of problem size reductions using machine learning techniques
in terms of computation time and solution quality is presented in Chapter 8.

* The extension to the Connecting Passenger Matrix as discussed in Section 6.2.4.

* The generated schedule, aircraft and disruption datasets for Delta Airlines as presented
in Chapter 8, which allows for extensive verification and validation of the DSS.

This work is carried out as an Masters thesis for the Air Transport and Operations section
at the Aerospace Engineering faculty of the Delft University of Technology (TU Delft).

Literature Review

Chapter 1 introduced the topic of this research. This chapter will elaborate on the literature
review that was performed to gain better insight in the state of the art.

Section 2.1 will discuss common network representations used to model airline operations.
Section 2.2 will review the literature on aircraft recovery. Finally, Section 2.3 concludes the
chapter with a discussion on the gap in the body of knowledge and the position of this work
within the body of knowledge.

It should be noted that Hassan et al. (2019) have written a literature review paper on airline
disruption management. This chapter is a summary of that paper.

2.1. Network Representations

To translate real-world scheduling, routing and planning problems to mathematical models,
network representations are commonly used. In the airline recovery context, networks are
usually build for the duration of a recovery window, beginning at the time of disruption
and ending at the time the schedule is proposed to be recovered. Source nodes represent
the current positions of aircraft while sink nodes represent the possible positions at the
end of the recovery window. The schedules in the recovery window are repaired while the
scheduled flights outside of the recovery window remain unchanged. Three representations
are commonly used in literature regarding airline planning and recovery management:
connection networks, time-band networks and time-space networks. This section will briefly
present all network representations, while a more extensive explanation is given by Clausen
et al. (2010).

2.1.1. Connection network

A connection network is an activity-on-node network, where schedule information is used to
generate the nodes in the network. All flight legs are represented by nodes in the network,
which are defined by the origin airport, destination airport, departure time and date and
arrival time and date. Directed edges (arcs) represent the aircraft connection between flight
legs. Additionally, source and sink nodes represent the possible origin and destination
airports of the aircraft in a fleet at the beginning and end of a day of operations. Nodes i
and j are connected by an arc (i,j) if and only if it is feasible to fly flight leg j after flight leg i
with the same aircraft with respect to turn-around-times (TAT) and airport. A feasible day of
operations for an aircraft from origin to destination airport is represented in the connection
network by a path. One of the drawbacks of connection networks is that time information
is not presented. As a result it is unclear from the network what the location is of a specific
aircraft at a certain time. Connection networks are extensively used in literature, for example
by: Teodorovi¢ and Guberini¢ (1984), Maher (2015) and Wu et al. (2017c¢).

4 2. Literature Review

2.1.2. Time-Band network

Arguello (1998) presented the time-band network representation for airline disruptions,
which is an activity-on-edge network. Nodes in the network represent the time and location
(airport) of arriving or departing flights. There are two different sets of nodes: station-time
nodes and station-sink nodes. Activities at an airport are aggregated in discrete time
intervals, called time bands, and represented by the station-time nodes. The time coordinate
of the station-time nodes correspond to the availability time of the first available aircraft
in that time band. The end of the recovery period at each airport is represented by the
station-sink nodes. Each station-time node is connected to the station-sink node of that
location. For a flight from airport A to B, departure nodes are created at airport A for each
aircraft that becomes available for that flight. Arcs are created from each airport A node for
which there is an aircraft available that can fly the given flight within the recovery period.
These arcs will end in the corresponding airport B node at the time that aircraft becomes
available at airport B. Due to the aggregation of notes the size of the time-band network is
reduced. However, this is achieved at the cost of time accuracy. Examples of papers that use
the time-band network representation are: Bard et al. (2001), Eggenberg et al. (2010) and
Hu et al. (2015).

2.1.3. Time-Space network

Time-space, also referred to as time-line, networks are similar to time-band networks since
nodes correspond to a specific location and time. Unlike time-band networks, the nodes are
not aggregated in a time-band. Arrivals and departures of aircraft are represented by nodes
on the time-line of a specific airport. The time-space representation is an activity-on-edge
network, where arcs between nodes represent the activities of aircraft. Arcs between nodes
of different airports correspond to feasible flight legs while arcs between nodes of the same
airport correspond to grounded aircraft. Examples of applications of time-space networks
can be found in: Sinclair et al. (2014), Arikan et al. (2017) and Marla et al. (2017).

2.2. Review of Aircraft Disruption Management

The complete airline recovery process is a very large and complex problem that is commonly
broken down into a number of sequential stages. These stages are broadly categorized as
schedule, aircraft, crew, and passenger recovery, also defining clear boundaries for research
in this area. Schedule and aircraft recovery is commonly solved at once. Since Clausen
et al. (2010) have published an excellent literature review of the work until 2009, this
literature review focuses on reviewing the airline disruption literature between 2009-2018,
classifying them by solution methodology, i.e. exact optimization methods, (meta-)heuristics
or multi-agent systems.

Exact optimization methods, such as branch & bound and dynamic programming, guarantee
finding the global optimal solution. With most optimization problems, exact methods are
the method of choice. With NP-hard problems, such as the airline recovery problem,
the situation is different since the computation time grows exponentially with problem
size and exact methods become intractable. Even medium-sized problems use extensive
computation time to solve, which makes them unfit for operational use. To overcome
these problems, (meta-)heuristics can be used. These methods are commonly applied to
solve computationally intractable combinatorial optimization problems to a near-optimum.
The effectiveness and quality of solutions depend on the heuristic’s ability to adapt to a
particular problem, exploit the problem structure and avoid getting stuck in local optima. A
Multi-Agent System (MAS) is a software system composed of multiple interacting intelligent
agents. Here, intelligence may be algorithmic search, reinforcement learning or procedural
approaches among others. MAS typically refers to software agents, but could equally well
be humans. In the context of airline disruption management, MAS usually represent the
Operational Control Center of the airline.

2.2. Review of Aircraft Disruption Management 5

Figure 2.1 shows the number of publications per recovery type per year in the field of airline
disruption management. This chart provides some interesting insights: (1) the interest for
solving airline disruption management problems is increasing, (2) roughly 50% of papers
have been published after the last literature review paper (Clausen et al. (2010)), and (3)
since then, there is an increase in the number of publications that integrate two or more

resources in the recovery process.
HEEER] |II|I|||
| 111 i

1984 1990 1993 1994 1995 1996 1997 1998 2000 2001 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

10

M Aircraft B Crew B Aircraft & Crew B Aircraft & Passengers Integrated

Figure 2.1: Number of publications per recovery type per year. Papers that have been reviewed in previous publications are
shown as patterned.

Section 2.2.1 will present the literature focused exclusively on aircraft (and schedule)
recovery. There are several publications that integrate two or more stages of the recovery
process. Section 2.2.2 discusses papers that integrated aircraft and passenger recovery while
Section 2.2.3 discusses papers covering integrated aircraft and crew recovery. Literature
that integrates the full recovery process, that is schedule, aircraft, crew and passenger, is
presented in Section 2.2.4.

2.2.1. Aircraft Recovery

Before 2009, the majority of publications focused on aircraft recovery, in part because (1)
aircraft are the most constraining and expensive resource and (2) aircraft recovery is a
smaller and simpler problem than crew recovery. Despite this, aircraft recovery is still an
active research subject, where the efforts have been focused on increasing complexity to
better represent real-world networks and decreasing the computation time. In the following
subsections the literature on aircraft recovery after 2009 will be discussed and classified.

Initial efforts

Teodorovi¢ and Guberini¢ (1984) were the first authors that discussed the minimization of
passenger delays in the aftermath of schedule perturbations. Their methodology utilizes
branch & bound methods and is based on the assumption that the airline operates only one
aircraft type. Furthermore, maintenance constraints are ignored and the model was tested
on a network of 8 flights operated by 3 aircraft. Passengers are explicitly modeled, but they
assume that all itineraries contain only a single flight leg. Teodorovi¢ and Stojkovi¢ (1990)
extended this work by considering airport curfews. A dynamic programming based approach
is used where the goal was to minimize the total number of cancelled flights and the total
passenger delay. The model was tested on a network of 14 aircraft and 80 flights. Crew
constraints are included in the new work of the same authors, Teodorovi¢ and Stojkovic¢
(1995). This new paper presents a heuristic based on the First In, First Out (FIFO) principle
and a dynamic programming based sequential approach. The model determines aircraft and
crew rotations while minimizing the total number of cancelled flights. The model was tested
on 240 generated instances. Four to five different disturbances were arbitrarily generated
for each of the 240 numerical instances, so that the developed models were tested on over
1,000 different situations.

6 2. Literature Review

Exact Optimization methods

Eggenberg et al. (2010) extended the work of Bard et al. (2001) and presented a column
generation algorithm where a time-band network model is used to show the aircraft
routes. Each unit (an aircraft, crew member or passenger) is associated with a specific
recovery network and the model considers unit-specific constraints. The column-generation
algorithm ensures global feasibility according to the structural constraints of the problem.
The usual multi-commodity approach struggles with considering unit-specific constraints,
which the authors overcome with the proposed solution. While the presented results seems
promising and the majority of instances solve within 100 seconds, the authors report that
for the most computationally expensive case the run time exceeds 1 hour. Furthermore it
should be noted that the case instances are only tested with a single fleet type.

Akturk et al. (2014) were the first to successfully integrate cruise speed control to deal
with the Aircraft Recovery Problem (ARP). Due to the non-linearity of fuel burn in cruise
speed, the authors use a conic quadratic optimization approach to solve the problem with
minimization of recovery related costs like tail swap cost, increased fuel consumption and
passenger delay cost. Environmental cost and constraints were integrated next to the
additional fuel cost of speeding up flights. It is stated in the paper that significant cost
savings can be achieved with cruise speed control, making it a suitable recovery approach
to include in aircraft recovery studies.

Whereas other researchers validated models with a static disruption scenario, Vos et al.
(2015) established a dynamic framework, named Disruption Set Solver for the aircraft
schedule recovery. Instead of having full knowledge of all disruptions upfront, the
framework handles disruptions as they happen and builds on the solutions of previous
disruptions. The framework relies on the combined usage of an efficient aircraft selection
algorithm and a linear-programming model which is able to track the status of individual
aircraft on parallel time-space networks. The framework is applied to a set of real disruptions
in the operations of Kenya Airways. In 93.3% of the cases the system found solutions within
10 minutes. Furthermore, the authors showed that the disruption costs are underestimated
when using a static approach.

Given the inherent uncertainty of the aircraft recovery problem, several authors presented
(partially) stochastic approaches. Arias et al. (2015) combined constraint programming with
a simulation approach to solve the Stochastic Aircraft Recovery Problem. The goals of the
model is to restore the original flight schedule as much as possible, minimizing the total
flight delay and the number of cancelled flights. The robustness of the solutions is assessed
by comparing the standard deviation from the simulation results with the variation of the
probability distribution that was used for generating the stochastic delays and the expected
propagation. The proposed model is tested with real data from a commercial airline with
a total of 51 flights, 13 airports and 11 aircraft. The proposed model is able to match the
optimal solution in 14 cases out of 20. According to the authors, the results suggest that
the inherent uncertainty of the ARP makes it a suitable candidate for combining simulation
and optimization methods.

Xu et al. (2016) presented a time-band approximation model with approximate delay cost
considering a stochastic flying time. With data on the actual flying time and the planned
flying time from 400 flights in a day of Sichuan Airlines, the authors create a uniform
probability density function which predicts the flying time of flights. The model is tested
on a network of generated data with 3 aircraft and 11 flights. Xu and Han (2016) extended
the work by presenting the weighted time-band approximation model which incorporates a
simplex group cycle approach. Here the model is tested on data from China Airlines.

Wu et al. (2017c) were the first to adopt the iterative fixed-point method for integer
programming (presented by Dang and Ye (2015)) for the construction of feasible flight
routes. Two methods are presented to divide the solution space into independent segments
and solve them with distributed computation. Since the segments are independent, the
calculation of integer points can proceed parallel on each processor. Two division methods
were proposed. The first method attempts to divide the solution space in segments that
contain roughly equal integer points. The second method, specially proposed for long haul

2.2. Review of Aircraft Disruption Management 7

problems, takes the original flight routes as initial points. The algorithm is compared
to the solutions of CPLEX CP Optimizer. In the majority of cases, the number of partial
feasible flight lines, which have to be calculated for finding an optimized airplane schedule,
is much fewer compared with the number needed by CPLEX. This makes the method a
promising alternative to further develop in the future. Wu et al. (2017b) extended the work
by considering multiple fleets, while Wu et al. (2017a) focused on disruptions caused by
airport closures.

(Meta-)heuristics

Gao et al. (2009) developed a greedy simulated annealing algorithm, combining
characteristics of Greedy Randomized Adaptive Search Procedure (GRASP) and Simulated
Annealing. The combination of heuristics improves the efficiency of the neighborhood
selection and decreases the probability of falling into a local optimum. The objective of
the model is to minimize the total passenger delay time, which consists of delayed time in
delayed and cancelled passengers. One drawback of the model is that the objective function
does not take into account all cost incurred by irregular operations e.g. the cost of ferrying
and fleet substitution is not taken in to account.

Liu et al. (2010) presented a hybrid heuristic which combined an adaptive evaluated vector
(AEV) and an inequality-based multi-objective genetic algorithm (GA) formulation that was
used to search for Pareto solutions to the daily short-haul recovery problems. The AEV was
used to guide the search and the GA was to provide the multi-objective solution. The model
does not consider flight cancellations as a recovery method. The presented model is tested
on a daily plan of a Taiwanese airline with 7 aircraft (single fleet) during a 1 hour airport
closure, impacting 39 flights. The heuristic presents results in 3.6 minutes on average (7.5
minutes max). Due to the computation time, this model cannot be used in an operational
setting for larger problem sizes.

A hybrid heuristic was also used by Xiuli and Yanchi (2012), who combined a Greedy Random
Adaptive Search Procedure (GRASP) with Ant Colony Optimization (ACO). Compared to the
original GRASP algorithm, it provides a high global optimization capability. The authors
state that the model was tested on a multi-fleet network with 50 aircraft and more than 5
aircraft types. However, no results are presented.

Wu and Le (2012) developed a model based on flight strings instead of individual flights. They
transform these strings to a time-space model which considers maintenance constraints
and regulations. The model is solved with a heuristic that was developed by the authors
called the Iterative Tree Growing with Node Combination. The model is tested on a dataset
from China Airlines consisting of 170 flights, S fleets, 35 aircraft and 51 airports. Although
the solution method is able to obtain solutions that are near optimal (<1% optimality gap),
no computation times are given.

Zhu et al. (2015) presented a two-stage stochastic recovery model to deal with the ARP.
The first stage is a resource assignment model with the objective of minimizing delay and
cancellation cost. The second stage re-times the aircraft routings obtained in the first stage,
with the objective of minimizing the expected cost on the resource strategy of the first stage
plan due to uncertainty of aircraft recovery time. The authors use a stochastic algorithm
framework combining Greedy Simulated Annealing (GSA) and a simple re-timing strategy.
Based on different scenarios of restoration time, the second stage model can be decoupled
as several linear models.

Another research using ACO was presented by Sousa et al. (2015). The proposed algorithm
combines the Aircraft Assignment Problem (AAP) with the ARP and aims to minimize the
operational cost and (re-)scheduled flights dynamically by using a rolling time window. Two
different experiments, both using real data from a commercial airline, were conducted. On a

8 2. Literature Review

problem with 100 flights, the ACO outperforms (non-truncated) branch & bound and Depth
First Search (DFS) in terms of solution quality, although it takes 40% more time on average.

Hu et al. (2017) presented a solution approach for solving a multi-objective recovery problem
by combining e-constraints and neighborhood search methods. The e-constraints method
is in charge of seeking the Pareto front for the multi-objective ARP and the neighborhood
search algorithm is responsible for improving the local feasible solutions of the ARP in each
iteration of the e-constraints method. The problem includes three conflicting objectives,
the first objective minimizes the total deviation from original flight schedule, the second
minimizes the maximum flight delay time, and the third objective minimizes the number
of aircraft swapped. The methodology is tested on real-world empirical data for a Boeing
737 fleet consisting of 104 aircraft from a major Chinese airline covering 410 flights. The
computation times range between 12 and 20 minutes, depending on the disruption instance.

Zhang (2017) proposed to use feasible lines of flights (LOF) as the basic variables in the
model, where LOFs are defined as a sequence of flights flown by one aircraft within one day.
A two-stage heuristic is presented to reduce the number of included LOFs, thereby reducing
the run-time. In the first stage, LOFs are scored and selected based on the amount of swaps
(less is better) and the number of flights legs included in the LOF (more is better). In the
second stage, flow balance constraints for the aircraft are aggregated by creating constraints
for each airport only. The disruptions included in the model are airport closures and aircraft
unavailability due to unplanned maintenance. The approach is tested on five real-life test
scenarios. The largest instance included 44 aircraft and 638 flights, where the solution was
computed in 150 seconds.

From the literature on aircraft recovery it can be seen that there is a trade-off between
computation time, problem size and problem complexity. Since AOCCs require solutions
within approximately 120 seconds, some of the presented solutions, e.g. Arias et al. (2015),
Hu et al. (2017), Vos et al. (2015), cannot be implemented in practice. The methods proposed
by Gao et al. (2009), Eggenberg et al. (2010) and Sousa et al. (2015), for example, manage
to obtain reasonable computation times. Unfortunately, they only consider a single fleet,
which does not represent the reality at most airlines. Most other papers do not consider all
recovery options common at airlines or do not take maintenance and/or airport constraints
into account, thereby simplifying the problem. Xiuli and Yanchi (2012) consider all recovery
options, maintenance constraints and includes multiple fleets. However, it does not present
the number of flights in the case study nor the computation times. In the majority of
papers, the delay cost are calculated by using constants to express the average delay cost
per minute. Similarly a constant parameter is used to express the average cancellation cost
of a flight. This approach usually underestimates the cost, due to the non-linear relation
between goodwill loss and the amount of delay , as discussed by Arikan et al. (2017).

2.2.2. Aircraft and Passenger Recovery

In the last decade there has been a trend towards integrating more than one resource
in recovery models. Sequential optimization approaches do not fully capture the
inter-dependencies between aircraft, crew and passengers and, therefore, usually result
in sub-optimal recovery solutions. The papers in this section attempt to overcome these
downsides by simultaneously solving the aircraft and passenger recovery.

Exact Optimization methods

Jafari and Zegordi (2010) presented an assignment model for solving the aircraft recovery
problem and reassigning disrupted passengers simultaneously, using a rolling horizon
time framework. The objective is to minimize the sum of aircraft assignment costs, delay
costs, cancellation costs, and disrupted passenger costs. The proposed approach utilizes a
wide range of recovery actions. The model used aircraft rotations and passenger itineraries
instead of flights. The study did not consider maintenance constraints. Jafari and Zegordi
(2011) extended the work. Due to the high complexity of the algorithm, the method was only

2.2. Review of Aircraft Disruption Management 9

tested on disruptions with 13 aircraft of 2 fleet types. The authors do not demonstrate that
the method is computational efficient, nor do they show that the model is able to deal with
disruptions that reflect operations of a larger airline. Zegordi and Jafari (2010) solved the
same problem with an ACO heuristic. The experiments show that the ACO algorithm is able
to build a revised schedule in less than 26 seconds. According to the authors, the method
was implemented at an airline. The algorithm does not consider scenarios where aircraft
from different flight rotations recover each other, thereby limiting the solution space.

Hu et al. (2015) presented an integrated integer programming model based on an approximate
reduced time-band network and a passenger transiting relationship. The authors extend
their earlier work to model multi-fleet aircraft routing. The objective is to minimize the total
cost associated with the reassignment of aircraft and passengers to flights. One assumption
the authors make is that all passenger itineraries are comprised of a single flight leg. A
feasibility study is conducted to find the conditions under which aircraft and passenger
recovery is possible. The authors test the model on 10 scenarios with real data of a Chinese
airline with over 180 aircraft, 113 fleets and over 620 flights. All scenarios take less than
172 seconds to solve where the LP relaxation results in an maximum optimality gap of 8.53%.

Using a mixed integer non-linear programming model, Arikan et al. (2016) modelled the
aircraft recovery problem and the passenger recovery problem. The authors employ several
recovery actions such as re-timing departures, cancelling passenger itineraries and flight
planning (cruise speed control). The goal of the model was to minimize the passenger related
costs and fuel costs. Due to the non-linearity of the cost associated with fuel consumption,
a LP model is no longer applicable. However, the authors reformulate the non-linear model
as a conic quadratic mixed integer programming model, similar to Akttrk et al. (2014), that
can be solved efficiently. The authors used a time-space network representation to model
the aircraft and passenger itineraries. The paper shows the impact of cruise speed control
on the airline disruption problem and the ability to reduce cost, showing that cruise speed
control is a feasible recovery technique. In a later paper (Arikan et al. (2017)), the authors
mentioned that the proposed formulation is not flexible, since it cannot be extended (easily)
with other entity types, such as aircraft crew and passengers, and recovery actions. In
the same paper the authors propose a more generalized network structure, which will be
discussed in Section 2.2.4.

Recently, Marla et al. (2017) extended the traditional recovery actions such as aircraft swaps,
flight cancellations and passenger re-bookings with flight planning. The same time-space
network representation from Bratu and Barnhart (2006) is utilized. Departure time decisions
are incorporated by creating copies of flight arcs at different departure time alternatives.
The cruise speed control alternatives are incorporated by generating a second set of flight
copies for different cruise speed alternatives for each departure time alternative. This
approach requires a discretization of the cruise speed options and increases the size of the
generated network. In the paper, the authors propose an approximation model that deals
with larger airline networks. The model is steered away from solutions that would result
in passenger disruptions, by explicitly assigning cost to delayed flight that carry connecting
passengers. A case study was performed on data from an European airline with about 250
daily flights in a hub-and-spoke network. The computation time is limited to 120 seconds.
The proposed model is compared to a baseline sequential recovery model, several variants
of an aircraft-centric model with flight planning and several variants of an passenger-centric
model without flight planning. Based on the airlines historical data, 60 scenarios are
considered. Based on the results the authors conclude that their enhanced recovery models
reduce total costs and passenger-related delay costs for the airline, compared to existing
approaches.

10 2. Literature Review

(Meta-)heuristics

In 2009, the French Operational Research and Decision Support Society (ROADEF)
organized an OR challenge regarding disruption management for commercial aviation,
which was proposed by Amadeus'. This challenge resulted in several publications. Bisaillon
et al. (2011) formulated a large neighborhood search (LNS) heuristic that combined fleet
assignment, aircraft routing and passenger assignment. The heuristic cycles through three
phases: construction, repair and improvement. These phases destroy and repair parts of
the solution in an iterative manner. The model constructs aircraft routes and passenger
itineraries for the recovery period with the goal of minimizing operating cost and impact
on passenger. The first two phases produce the initial solution, while taking into account
the operational and functional constraints. The third phase considers large schedule
changes and tries to improve the solution while maintaining feasibility. This work won
the ROADEF 2009 challenge. Sinclair et al. (2014) improved the work of Bisaillon et al.
(2011) by making changes in each of the three phases, in order to find better final solutions.
In the construction phase, the aircraft that caused the highest cost when cancelled were
prioritized. In the repair phase, the focus was on re-booking passengers with disrupted
itineraries as well as covering flights that were cancelled in the construction phase with
spare aircraft. In the improvement phase the authors attempt to accommodate disrupted
passengers by delaying flights. The improved model was tested on the ROADEF 2009
dataset. The algorithm found 17 best solutions for 22 instances in five minutes and 21
best solutions in 10 minutes. Sinclair et al. (2016) extended on the work in Sinclair et al.
(2014) and Bisaillon et al. (2011) by presenting a post-optimization column generation
heuristic that reduces the model size to improve solutions within reasonable run-times.
By defining dual variables after solving the LP relaxation, the reduces cost of the variables
are calculated. The variables with negative reduces cost are considered when re-solving
the LP problem. The model was tested on the ROADEF 2009 Challenge dataset and found
best known solutions to all scenarios. The authors suggest future research should focus on
implementing a rolling-time horizon with the column-generating algorithm.

Mansi et al. (2012) proposed a heuristic based on exact methods and an oscillation strategy.
In the first phase, the heuristic solves a relaxation of the problem in order to find a feasible
solution for aircraft and passengers close to the initial schedule. If no feasible solution is
obtained, a dynamic programming algorithm refines the alternatives and generates a feasible
solution. In the second phase, the oscillation strategy alternatively destroys and constructs
aircraft routes and passenger itineraries and assigns them to aircraft and passengers
simultaneously. This work received the second prize in the challenge.

Jozefowiez et al. (2013) presented a three-phase heuristic. In the first phase, the disruptions
are integrated in the schedule. Each disruption is solved by a separate algorithm, flight legs
are removed and passenger itineraries are cancelled in order to return a feasible solution.
The second phase attempts to re-assign disrupted passengers with the same origin and
destination to itineraries, using a shortest path problem. In the third phase, new flight legs
are added to the schedule in an attempt to recover the remaining disrupted passengers.
Passengers are grouped by itinerary and based on the size of the group a prioritization is
made. This work was also one of the finalists of the ROADEF 2009 Challenge. Although it
did not perform as well as Bisaillon et al. (2011), the algorithm did not keep iterating the full
10 minutes, but reached a feasible solution for all cases in less than 4 minutes.

Le et al. (2013) transformed the aircraft and passenger recovery problem into a vehicle
routing problem with time window modelling. The formulation considers aircraft recovery
and passenger delivery. In the model, aircraft are vehicles, passengers are commodities and
airports are nodes. Each aircraft rotation is considered a route. The model only considers
aircraft ferrying and departure delays as recovery options, while in reality more options are
available. The problem is solved with a genetic algorithm which is tested on a small network
from a regional Chinese airline. For three different disruption scenarios the GA solved within
100 seconds.

"http://www.roadef.org/challenge/2009/en/

http://www.roadef.org/challenge/2009/en/

2.2. Review of Aircraft Disruption Management 11

Zhang et al. (2016) developed a three-stage sequential heuristic framework to solve
the integrated aircraft and passenger recovery problem. In the first stage, the flight
schedules and aircraft rotations are recovered. The next two steps iteratively solve the
flight rescheduling problem and the passenger recovery problem. A time-space network
representation is used together with a mixed-integer programming formulation of the model.
The proposed algorithm is tested based on the same data sets used by the ROADEF 2009
challenge. The algorithm is able to beat the finalists of the challenge on all datasets.

Hu et al. (2016) proposed a mathematical model based on the flight connection network
and the passenger reassignment relationship. To solve the problem, a heuristic based on
a Greedy Randomized Adaptive Search Procedure (GRASP) is adopted. The heuristic is
tested through experiments based on generated and real datasets. For all test instances, a
solution was found within 100 seconds. The authors compare the results of the heuristic to
a sequential solution approach and show that their heuristic is able to find higher quality
solutions. However, the solution costs are not compared to a global optimum, so the
(near-)optimality of solutions is not presented.

From the literature review on aircraft and passenger recovery it can be concluded that the
ACO approach by Zegordi and Jafari (2010) seems promising for practical implementation,
since it considers all relevant recovery options and maintenance constraints while still
managing to solve a real life case in 26 seconds with <1% optimality gap. It is unknown
how the computation times scale with problem size. Another promising paper is Hu et al.
(2015), which, as discussed above, proposed an approximation approach that is able to solve
several real-life instances in under 172 seconds with an optimality gap <9%. Unfortunately,
the authors do not currently take maintenance constraints into consideration. A more recent
work by the same author(s) is Hu et al. (2016), which was able to solve several disruption
instances in less than 100 seconds. The authors mention that the results are near-optimal,
however the global optimal solution is not given for the instances. Most other papers either
do not include all recovery options that are common in real operations or take a long time to
solve.

2.2.3. Aircraft and Crew Recovery

The previous section presented the literature on the simultaneous aircraft and passenger
recovery. In this section, publications on simultaneous aircraft and crew recovery will be
discussed. To the best of the authors knowledge, there are no pre-2009 papers that present
solutions on the combined aircraft and crew recovery. Aguiar et al. (2013) was the first to
suggest a solution method for this problem, as will be discussed below.

Exact Optimization methods

Maher (2016) proposed a column-and-row generation framework that extends existing
branch & price (B&P) models and reduces the problem size. The model employs departure
delays and cancellations as recovery techniques. The proposed model is compared to a
column generation model. On average, the column-and-row generation model had a 27%
lower run-time. The authors tested the model on both a point-to-point and a hub-and-spoke
network with 262 and 442 flights respectively.

(Meta-)heuristics

Aguiar et al. (2013) used and compared several different meta-heuristics such as
hill-climbing, simulated annealing and genetic algorithm to solve the sequential aircraft
and crew recovery problem. For the aircraft recovery, a multi-objective approach that
optimized delays and other cost associated with aircraft was developed. Hill-climbing,
Simulated Annealing and Genetic algorithm were used to solve the ARP. Genetic algorithm
outperformed the other heuristics, although all heuristics performed well. The solution of
the ARP serves as the input for the crew connecting problem. To solve the CCP, hill-climbing
and simulated annealing algorithms were developed and tested on data from TAP Portugal.

12 2. Literature Review

For the crew connecting problem, the simulated annealing algorithm performed best in
terms of crew cost. None of the results are compared with the global optimum, so although
feasible solutions are given, the quality of those solutions cannot be determined.

Zhang et al. (2015) proposed a two-stage heuristic for the sequential aircraft and crew
recovery problem. In the first stage, the aircraft recovery with partial crew considerations
model is built. This model is based on the traditional multi-commodity network model for
the aircraft schedule recovery problem. In the second stage, the crew schedule recovery with
partial aircraft consideration model is build. The authors propose a new multi-commodity
model for the crew schedule recovery. The two stages are run iteratively until no improvement
is found. The proposed algorithm is compared to the integrated model of Abdelghany et al.
(2008) and a sequential algorithm. The proposed algorithm is able to improve the solutions of
the other two approaches in literature for all scenarios. Although the algorithm has a higher
run-time, it never exceeds 72 seconds.

2.2.4. Integrated Recovery

Both from a mathematical and computational perspective, the integration of all recovery
stages (fleet, aircraft, crew and passengers) is a difficult task. To the best of the authors
knowledge, the first proposal of a truly integrated approach is the PhD Thesis of Lettovsky
(1997), where the author formulated the ’Airline Integrated Recovery’ problem which consists
of: aircraft routing, crew assignment and passenger flow. The thesis presents a linear
mixed-integer mathematical problem that maximizes total profit to the airline while capturing
availability of the aforementioned resources. A decomposition scheme is presented where the
‘Schedule Recovery Model’ master problem controls the three sub-problems known as the
’Aircraft recovery model’, 'Crew recovery model’ and 'Passenger flow model’. The solution is
derived by applying Benders’ decomposition. An important limitation is that the model only
considers flight crew and not cabin crew. This subsection will present the fully integrated
recovery papers between 2009-2018.

Multi-Agent Systems

Castro et al. (2014) presented a 'Multi-Agent System for Disruption Management’ (MASDIMA)
and a related work analysis and comparison with MASDIMA. The proposed MAS is capable
of autonomously monitoring the operations of the airline and deciding whether an events
requires action or not. The MAS is adaptive to the environment and includes learning
capabilities. Furthermore, the MASDIMA allows for human-in-the-loop inclusion, which
improves user acceptance of the solutions by reacting and learning from the user preferences.
According to the authors, the main advantages of their approach are: generates integrated
(i.e. that included all parts of the problem) and more balanced solutions (in terms of the
objectives of each part).

Exact Optimization methods

Arikan et al. (2017) developed a new flight network representation for the integrated recovery
problem, based on the flow of each entity (aircraft, crew and passenger) through the network.
With the proposed flight network, the problem size is kept within limits so that real-time
solutions can be provided since it does not require discretization of departure times and
cruise speed decisions. Similar to Aktiurk et al. (2014), the authors implemented aircraft
cruise speed control and proposed a conic quadratic mixed integer programming formulation.
The model explicitly models passengers, thereby evaluating the passenger delay costs more
realistically. The authors test the model on a network of a major U.S. airline. The effect of
the the pre-processing methods, the cruise speed control, the passenger delay function, the
severity of the disruptions and the length of the recovery horizon on the optimality gap and
run-time are evaluated.

2.3. Conclusion on Literature Review 13

(Meta-)heuristics

Petersen et al. (2012) presented an integrated optimization approach that resembled the
one used by Lettovsky (1997), where they distinguish between four sequential phases:
schedule recovery, aircraft rotations, crew assignment and passenger assignment. In the
first phase, the schedule is repaired by flying, cancelling, delaying or diverting flights.
Then, in the second phase, aircraft are assigned to the new schedule. Third, the crew is
assigned to the aircraft rotations. In the last phase the passenger recovery ensures that
all passengers arrive at their final destination. The authors tested the model with data
from a regional US carrier that operates a hub-and-spoke network with 800 daily flights.
The results of the proposed integrated model are compared to the results of a sequential
approach. Where the proposed approach always finds a feasible solution, the sequential
model only finds a feasible solution in 75% of the cases. The results show that the costs of
the integrated approach are always equal or lower than the cost of the sequential approach.
The computation time of the proposed solution ranges between 20-30 minutes. Currently,
the network is rebuild with every disruption. The authors note that, by building the network
in advance, the computation time could be reduced.

Maher (2015) presented a column and row generation approach to solve the integrated
recovery model. The framework is based on general column generation and Bender’s
decomposition, which improves the run-time and quality of the solution. Using the Big M
method, costs are assigned to the objective function when disrupted passengers are not
assigned to a flight that recovers the itinerary. By using the Big M method, infeasibilities
due to conflicting constraints are prevented, while as much passengers as possible are
recovered. Due to the integration of passengers, the run-time increases. Solution times
range between 500-2700 seconds depending on the scenario.

Following the literature review presented in this section, it can be concluded that Maher
(2015) does not include swapping as an recovery technique and the model formulation
does not allow for multiple fleet types. The model formulations of Petersen et al. (2012),
Castro et al. (2014) and Arikan et al. (2017) are fit for use in an AOCC. Unfortunately, the
computation times for the given case studies are too long for operational implementation

2.3. Conclusion on Literature Review

From the literature review and the overview of publications in Figure 2.1 it can be concluded
that airline disruption management is an active field of research with an increasing interest
in integration of several resources in the recovery process.

With an increase in computing power and knowledge gained through research, it is likely
that larger more complex problems will be developed in future. These models may include
larger flight schedules, fleets or longer time windows. Furthermore, additional constraints
related to maintenance, airport operations or recovery options are likely to be included in
future work. To capture the full complexity of airline operations, researchers are integrating
more resources, such as crew and passengers, into the disruption management systems.
Moreover, recently, stochastic elements are included to capture the uncertainty of decision
making related to the future state of the network.

In the current body of knowledge, few researchers have been able to create systems that
accurately model reality and are computationally efficient enough to use in AOCCs. With the
projected increase in model size and complexity, more research has to be done on increasing
computational performance. This research aims to quantify the potential benefits of problem
size reductions using machine learning techniques in terms of computation time and solution
quality. Considering that, for most disruptions, the flight schedule of less than 10% of the
aircraft in the network are required to change, it would be beneficial to be able to classify
and identify aircraft based on their probability of aiding in the recovery solution.

Research Framework

The previous chapter presented the literature review and the conclusion regarding the current
state of the art and the position of this work in the body of knowledge. This chapter will
present the research scope, main research question, sub questions and research objectives.

3.1. Research Scope

Airline disruption management focuses on the operational phase of airline operations. Figure
3.1 shows the airline planning framework. Operations control focuses on the optimization of
the day-to-day operations. Given the position of operations control in the framework, most
data and decisions, such as fleet composition, flight schedule, aircraft assignment and crew
assignment, are already fixed. Furthermore, as tickets are already sold in this phase the
(re-)optimization focuses solely on cost minimization and not revenue maximization.

Airline Planning Framework

g 2]
S [Demand forecast] 3
« T
3 v Q
3 | = i ’
eet planning
v

[Network development]
¢ =
[Schedule planning] g
[8

Pricing] [Crew scheduling]
v v

» Revenue mngmt.] [Airport resource mngmt.] 9
2 [Sales and distribution] [Operations control | 3

Figure 3.1: Airline planning framework, focus of this research is highlighted. Adapted from Barnhart (2003)

The disruptions that will be taken into account will be in one of three categories: (single)
aircraft unavailability, flight delay or airport unavailability. Most of the common disruption
causes can be classified as either of those categories.

15

16 3. Research Framework

Within the broader field of airline disruption management, this research focuses on the
aircraft recovery problem (ARP). This research builds on the work of Vink et al. (2019), that
was focused on including maintenance constraints and connecting passenger cost in the ARP.
This research aims to extend the previous model by developing a classification algorithm that
predicts which subset of the aircraft in the network will aid in recovering the schedule after
a disruption. The research question for the MSc thesis can be formulated as follows:

Research question
How can machine learning techniques be incorporated into the aircraft recovery problem,
and how does this integration help the recovery solution in terms of solution cost and
computation time?

3.2. Research Objectives and Hypotheses

The research objective is formulated by incorporating the goals from an academic and
industry perspective. The academic objective is focused on solving the aircraft recovery
problem while considering the novelty of the machine learning methods. Based on
discussions with industry experts, Vink et al. (2019) stated that the industry objective is
focused on minimizing the cost following disruptions and obtaining a feasible solution within
120 seconds.

Research objective
Decrease the solution time of the aircraft airline recovery problem to less than 120 seconds
while minimizing the cost of disruptions by developing a machine learning based selection
algorithm that selects a sub-network to include in the optimization problem.

The research objective can be segmented into the following sub-goals:

1. Develop an efficient (near-)exact optimization model for aircraft recovery with all relevant
constraints and recovery techniques.

2. Pinpoint the inputs and outputs that are necessary for both the machine learning
algorithm and the exact optimization model.

3. Develop a machine learning algorithm which predicts, for each aircraft, the probability
that including that aircraft in the exact optimization model will positively impact the
feasibility and solution cost.

4. Train the machine learning model on a real airline schedule such that following the
recommendations of the algorithm will result in a feasible, near-optimal recovery
solution within 120 seconds.

S. Verify and validate the model.

Based on the literature review and the research questions, two hypotheses are formulated.
This research will investigate whether or not these hypotheses are correct.

The first hypothesis is related to the classifier and sub-network selection algorithm that are
to be developed. The primary objective of this thesis is to evaluate the performance of a
machine-learning based classifier and its effect on the solution quality.

Hypothesis one
Based on real schedule, disruptions, network and fleet data of an airline, a machine
learning model can be trained to select a sub-network that will result in a feasible recovery
solution.

If the first hypothesis is proven, the effect on the computation time and solution quality are to
be evaluated. Because the problem size is reduced, it is hypothesized that the computation
time will decrease, however the effect on the solution quality is to be determined.

Hypothesis two
Making a sub-network selection based on machine learning predictions will decrease the
computation time of the optimization model while not significantly deteriorating the
recovery solution.

The proposed method to test these hypotheses is discussed in the following section.

3.3. Methodology 17

3.3. Methodology

To test the hypotheses presented in the previous section, a decision support system
will be developed that presents a recovery solution given the current schedule and the
disruptions. An aircraft recovery model will be developed based on the integer linear
programming model that was created by Vink et al. (2019). The optimization model and
the (near-)optimal solution to each disruption will be used to train a machine learning model.

A case study with real airline data will be performed to test the newly developed decision
support system. The first hypothesis will be tested by having the machine learning algorithm
suggest a sub-network based on the current schedule and disruptions. The optimization
engine will use this sub-network to find a solution to the disruptions. If these sub-network
suggestions result in feasible recovery solutions, the hypothesis will be proven.

If hypothesis one is proven, the second hypothesis can be tested. The computation time
and solution of the developed decision support system will be compared with the recovery
solution found by using the (sub-)fleet in the optimization. The hypothesis will be proven
correct if the system can predict sub-networks that reduce the combined computation time
of the machine learning algorithm and optimization engine to less than 120 seconds.

In short, an experiment will be conducted. Specifically, a computer simulation will be
designed to imitate the aircraft recovery process. While this will result in a high level of
internal validity, it will not result in external validity. Some degree of external validity can
be achieved by performing the case study.

Given the research objective, the combined computation time of the machine learning
algorithm and the optimizer should be less than 120 seconds in an operational setting. While
most researchers test their models on desktops or laptops, this is far from an operational
setting. Most AOCC’s have dedicated servers for scheduling tasks and optimization.
Therefore, the computational set-up that will be used to run and time the program will be
a Microsoft Azure Standard F16s V2 server that is optimized for mathematical optimization.
This server has 16 vCPUs and 32 GB of memory.

Model Framework

In the previous chapter the thesis scope, objective and proposed methodology have been
presented. In this chapter the framework for the decision support system is explained. This
work is inspired and based on the work done by Vink et al. (2019). The model framework
developed in that research is modified and extended with the classifier. In the system, four
phases can be identified. In the pre-processing phase, the input data and disruptions are
loaded and user-specified settings are defined. From the data, a feature space is generated
and send to the classifier. The data and settings are send to the disruption solver. The
classifier scores every aircraft in the network based on its features and sends a subset
suggestion to the Disruption Solver. The disruption solver filters the schedule, network
subset and disruptions, based on the aircraft family and solves for the disruptions. The
solution is send to the post-processing phase where it is transformed into a format that is
readable by the decision maker. A flowchart of the model framework is presented in Figure
4.1.

E Current Schedule |
1 Disruption(s) e,

. i ' : h
i Cost Informan_on | ! Schedule and Disruptions ! poTTTTETETemEmmm
1 Fleet Information ' !

H H ! Feature Space N ' | Pre-trained Machine .
""""" someme ! User Defined Settings ! 1 Learning Model N

! Pre-Processing
E « Define recovery scope ' Classifier N
. « Load current schedule _-— - .
« Load d?srup(ions ! [. Generate probabilties for each aircraft

« Create connecting pax matrix ()
« Generate features V)

'
___________________________ [P

------- * Class Probabilities ™) | ! Recovery Solution |

__________________________ B —
'

Disruption Solver Post-Processing

« Create sub-network ™)

« Process solution :
. {
—)» .« Create time-space .netv(%)ork 0 —:—) « Calculate KPls
« Create LP fOl’l(Tl)Ula"Of\ . « Graphical representation of solution
« Linear solver

Figure 4.1: Flowchart of Model. Adapted from Vink et al. (2019). (N) Indicates new blocks developed for this research. (I)
Indicates blocks developed by Vink et al. (2019), that were improved.

In the following sections, the steps taken in the four phases of the model will be explained in
detail. In Section 4.1 the pre-processing phase is further explained. Section 4.2 discusses
the classifier and Section 4.3 discusses the disruption solver. Finally, Section 4.4 elaborates
on the post-processing phase.

19

20 4. Model Framework

4.1. Pre-processing

The pre-processing phase can be broken down into several parts: loading data sets, defining
settings and feature space generation. A schematic representation of the pre-processing
phase is given in Figure 4.2.

poTTTTTTETIEEA K Pre-Processing
. Input Data

! Current Schedule - !
| Disruption(s)) beee- Load Schedule, Cost & Load Disruptions Create connecting Iteratlor_1 Sch_edule l__.

! Cost Information ! Fleet Data passenger matrix and Disruptions U e e e

| Fleet Information Lo — '
. ! + 1 Schedule and Disruptions !

T =1 Feature Space
i1 User Defined Settings

| Solver Options | | Time Window |

I I User Defined Settings

Feature Space
Generation

| Cost Options | | Time-Space Options |

Figure 4.2: Flowchart of Pre-processing

Loading data sets

The decision support system requires several types of input data. A brief overview of the
different types of input data is given here, while an more extensive overview can be found in
Appendix B.

¢ Fleet Information

— Aircraft (Tail Numbers) in the fleet
Direct Operating Cost (DOC) per aircraft type

— Turn-around-Time (TAT) per aircraft type
— Range per aircraft type

— Passenger capacity in Economy and Business per aircraft type

¢ Schedule Information

Flight Schedule

Distances between all airports in the schedule

Connecting passenger itineraries
— Minimum required time for passenger to transfer flights for all airports

* Delay cost Information

— Cost of delay per minute of delay

Loading disruptions
Three different disruption types can be provided to the aircraft recovery model. For each
disruption the following information is required:

* Disruption type: Flight delay, Aircraft Unavailability or Airport Closure

» Affected Flight, Aircraft or Airport

* Delay in minutes

* Time Found Out (TFO): the time at which the disruption becomes known at the AOCC

In case of a flight delay, the Scheduled Time of Departure (STD) of the flight is delayed. Since
changing the cruise speed of the aircraft during the flight is not one of the options for recovery,
the Scheduled Time of Arrival (STA) is delayed as much as the STD. An aircraft unavailability
defines the time for which an aircraft is grounded and cannot be operated, for example due
to unplanned maintenance after a bird strike. Finally, airport unavailability disruptions can
be used to model airport closures, for example due to bad weather conditions.

4.1. Pre-processing 21

Connecting passenger matrix

The research done by Vink et al. (2019) aimed to include the effects of passengers who miss
their connection in the ARP. Based on the work done by Bratu and Barnhart (2006), Vink
et al. (2019) decided to implement a one-sided connecting passenger recovery, where only
the STA of the inbound flight will be changed and not the STD of the outbound flight.

In the approach described by Vink et al. (2019), “connecting passengers are grouped in sets
of passengers with the same itinerary. For all these groups, the effect of delay of the inbound
flight is determined. The determination of the cost of missed connections is illustrated in
Figure 4.3, which depicts a time-space network (further elaborated on in Section 4.3). In
the example Flight 1 from BTV to DCA carries passengers that transfer at DCA to their final
destination PHL. The scheduled connecting flight for these passengers is Flight 2. This flight
departs 40 minutes after the arrival of Flight 1. With a minimum connection time of 30 minutes
at DCA, a delay of Flight 1 of more than 10 minutes will cause the connecting passengers to
miss their flight. If the connecting passengers miss their scheduled connection, there is an
alternative flight that departs 80 minutes later, Flight 4. As a result, if Flight 1 is delayed
by more than 10 minutes, the delay for the connecting passengers is 80 minutes (at their
destination). Should Flight 1 be delayed by 100 minutes or more, then Flight 4 is missed as
well. This is the last flight of the day, so if this flight is missed the maximum delay is assigned.”

”Using the presented approach, all flights that have connecting passengers are evaluated.
For these flights, for every time step of delay it is determined what the delay is at the
end-destination of the connecting passenger. This results in the Connecting Passenger Matrix
(CPM), which contains the delay cost for all connecting passengers. The CPM is a matrix of
size F X T were F is the number of flights in the schedule, and T the number of delay steps the
airline wishes to consider.”

Flight arc Delay arc Min. connection time
—> ___________________)
BDL o<—>»0 (<) (<) o <) o (<) (<) o <) o [} o o o [}
10 min
PHL o o [¢)] 4, o] o
1] ,’I
t
(=] a
=
3
BTV o Q Q [} (<) o
. ‘X
% %
% i ”)/,')\
DCA o o o {u A

Min. connection time:
30 min

\4

Time

Figure 4.3: Connecting flights example. Passengers on Flight 1 need to connect to PHL at DCA. Flight 2 is the scheduled
connection, Flight 4 is an alternative connection. Some passengers need to connect from Flight 2 to Flight 3.

The approach considers itineraries with a maximum of two flight legs. Itineraries with more
than two flight legs, can be broken down into several two-flight itineraries. This limitation
is necessary since the additional delay cost of one flight is calculated with respect to the
departure of another flight and the connecting passengers between those flights.

This research extends the work by Vink et al. (2019) by allowing changes in the STD of the
outbound flights if the inbound flight is disrupted. Continuing with the previous example,

22 4. Model Framework

if Flight 1 is delayed by 20 minutes, the connecting passengers will miss Flight 2. However,
it can be seen in the schedule that Flight 2 can be delayed by 10 minutes without any
problems. Even if there are passengers that are transferring from Flight 2 to Flight 3 at PHL,
these passengers will make their connection if Flight 2 is delayed by 10 minutes. This delay
will ensure that the connecting passengers from Flight 1 will make their connection to Flight
2. It should be noted that this option is currently only available for the outbound connecting
flights of a disrupted inbound flight. In the example, Flight 1 is disrupted and delayed by
20 minutes. There are connecting passengers on Flight 1, so the decision support system
will incentivize the delay of the outbound connecting flights of those passengers (Flight 2).
Subsequent delay options will not be taken into account, i.e. delay Flight 3 if passengers
from Flight 2 were to miss their connection. Considering all subsequent delay options,
would exponentially increase the problem size and run-time, therefore this research limits
the added functionality to the outbound flights following an disrupted inbound flight.

As was the case by the approach proposed in Vink et al. (2019), ”it could occur that more
passengers are rebooked to a flight than the number of seats still available on that flight. The
reason for this limitation is that all flights with connecting passengers are assessed individually
and the delay of one aircraft is independent of the delay of another. In such a case the cost of
the missed connection are under-estimated by the recovery model. However, after a recovery
solution has been found, such a situation can be identified so that the decision maker is made
aware that additional action is required to re-accommodate passengers. For the purpose of the
aircraft recovery model with which this research is concerned, the implications of this limitation
are small. The goal of the proposed modelling approach is to penalize delaying flights that cause
missed connections, which is still done in this example of conflicting connecting flights.”

User defined settings

There are several settings and options that change the behaviour of the decision support
system. The settings can be divided into three categories: airline preferences, cost factors
and optimizer settings. Each of the settings will be discussed in this section.

Airline preferences

Vink et al. (2019) defined several user settings which determine the boundaries within which
a recovery solution is found. The system uses a time window, which defines the range of
time that is examined during the recovery. All flights that arrive or depart within the time
window are considered during optimization. By using a time window the problem size is
reduced which decreases computation time. Moreover, the time window defines an end time,
after which flights will no longer be affected by the disruption. This limits the effect of the
disruption. The concept of a time window is illustrated in Figure 4.4.

DELAY Minimum base
l / break violation

Crew #1 — Disrupted —{ | 1;{ 1 l—:l —{ —
/ \ ’
A \ 7
Crew #2 — Candidate —[__}—{ T} F—f —

Al
,’\ s A\

Crew#3—Candidate — 1 11— 1o ¥ M1

Crew #4 — Unaffected —] - Iemnal —{ > >
Crew #n — Unaffected —»{ F—{ —— | 1+ }—

CARRY-INS CARRY-OUTS
I]

la Disruption time window [,

Figure 4.4: Example for crew recovery illustrating the concept of a time window for recovery. Adopted from Clausen et al. (2010)

4.1. Pre-processing 23

The length of the time window is dependent on the type of flights under consideration. Since
long-haul flights have longer flights times, less of these flights will be included in one day
of operations. As a result, the time window can be longer without increasing the problem
size and computation time. There are three options regarding the time window setting in
the decision support system. The first is a fixed time window length starting at the first
disruption and ending TWn4¢, hours later. The second option is to always have the time
window end at a fixed time, for example 06:00. If a disruption happens in the beginning
of the day, the time window will be longer than if a disruption happens later in the day.
Airlines may choose this option if they which to start each day with a clean slate.

Since a time window is employed, flights beyond the time window are not included in the
model. The solution provided by the model could change flights in such a way that flights
beyond the time window cannot be flown. To prevent this, constraints are added to the
model, as discussed in Chapter 5, which ensure that a sufficient number of aircraft are
available at all airports at the end of the time window. This ensures that all flights beyond
the time window can be operated as scheduled. The airline can choose how aircraft are
constrained. Firstly, a specific aircraft can be constrained. For example, if Aircraft N234DL
is scheduled to end at ATL by the end of the time window, the model will ensure that this
specific aircraft ends at ATL. Alternatively, the aircraft type can be constrained. In this case,
the model will ensure that an aircraft of the same type as aircraft N234DL will end at ATL.
This ensures that all booked passengers can be accommodated and that crew is available to
execute the flight.

The decision support system discretizes time to limit the required computation time. The
time step setting defines the interval of this discretization. With a time step of 10 minutes,
all times in the model (e.g. departure and arrival times) are rounded to the nearest 10
minutes. The time step parameter should be chosen such that it balances the level of detail
in the recovery solution with the computation time required. The granularity of the time
step is discussed in Section 7.2.

One of the recovery options available to the system is to delay flights in the schedule.
However, different airlines may have different preferences regarding the maximum delay.
The maximum delay parameter defines by how many hours a flight can be delayed. A longer
maximum delay leads to a larger model, while a shorter maximum delay could lead to more
flight cancellations.

In addition to the parameters defined by Vink et al. (2019), this research includes the
tail swap time limit setting. There are several ground processes surrounding aircraft
turn-around. Ground operations need to be scheduled, passengers need to be notified of
their gate, etc. Therefore, swapping tails in the last minute before departure is not feasible.
With this parameter, airlines can fix a time block before departure in which an aircraft is not
eligible for swapping.

Cost factors

The implemented linear solver has the objective to minimize cost, therefore several aspects
of the recovery problem need to be expressed in monetary units. Section 5.1 explains the
objective function of the solver and a summary of the cost settings is given in Table 4.1.

Depending on local legislation, airlines could be faced with additional cost when cancelling
flights. The cancellation fee should be set to accurately represent these cost. The higher the
cancellation fee, the more the model will attempt to prevent cancellations. If, to the airline,
a business passenger is more valuable than an economy passenger, the business multiplier
can be set as a multiple of the cost for economy passengers.

Thengvall et al. (2000) noted that recovery solutions should affect the smallest number of
aircraft as possible. There exists a trade-off between the delay that can be prevented by

24 4. Model Framework

a tail swap, and the effect of changing aircraft routings. The schedule penalty cost can
be used as a threshold up to which a tail swap is not performed. Ideally, this cost factor
should represent the actual cost associated with a tail swap, e.g. changing crew routings
and ground operations. Alternatively, the cost factor can be based on the delay time up to
which a tail swap should not be performed. For example, if an airline has the policy to only
perform tail swaps for flights that are delayed by more than one hour, the penalty should
be set on the average cost of delaying a flight for 60 minutes. Either way, this cost factor
should not be set to 0, since that could result in random tail swaps.

As will be discussed in Section 5.2, slack variables are added to several constraints. These
variables ensure feasibility of the model by assigning penalties if the constraint is violated.
The magnitude of the penalty is equal to the Big M constraint violation cost factor. The Big M
method, which is also used by Maher (2015), is further explained in Chapter 5.

Table 4.1: Cost factor user settings

Cost factor Description

Cancellation fee Additional cost per passenger in case a flight is cancelled.

Business For business passengers, the delay and cancellation cost is calculated by multiplying
multiplier the delay for an economy passenger by this factor.

Schedule penalty Penalty assigned if, in the recovery solution, another aircraft than scheduled is used.

Big M constraint If constraints are violated in the recovery solution, this penalty is assigned. See Chapter
violation 5

Optimizer settings

There are several parameters that change the behaviour of the implemented linear solver,
IBM ILOG CPLEX Optimization Studio 12.8.00 through the Python 2.7 API. These parameters
will influence the computational performance and solution quality of the solver.

The linear solver attempts to solve the problem to an optimum solution. Optimality is
relative to whatever tolerance and criteria the user has set. One of these tolerances is the
Mixed Integer Programming (MIP) gap tolerance. The default value indicates to CPLEX to stop
when an integer feasible solution has been proved to be within 0.01% of optimality. On
difficult problems, where finding a proven optimum may lead to high computation time, the
AOCC controller might choose a larger MIP gap to allow early termination.

The linear solver knows different phases. During pre-processing, CPLEX applies a presolver
and aggregator several times to reduce the problem size of the MIP. This strengthens the
root relaxation and decreases the problem size before it is passed to the optimizer. It may
occur that, after a while, the presolver and aggregator take more time to reduce the problem
than it would have taken the optimizer to solver the larger problem. To mitigate this, the
controller can set a limit on the number of presolve passes made during pre-processing.

CPLEX offers several different LP optimizers for linear programming problems, e.g. Primal
Simplex, Dual Simplex, Barrier and Concurrent, which starts the previous optimizers on
different CPU cores. Depending on the problem characteristics, an optimizer may be better
suited to solve the problem. The CPLEX Knowledge Base' offers extensive documentation on
the different optimizers and the problems they are suited for. For the purpose of this thesis
the Concurrent option was used, since this resulted in the lowest average solve time.

Thttps://www.ibm.com/support/knowledgecenter/en

4.2. Classifier 25

Feature generation

After the data has been loaded, the Connecting Passenger Matrix has been created and
the User-settings have been defined, the flight schedule for the iteration can be created.
From this iteration schedule and the disruption(s) for the iteration, a feature space
needs to be created to feed into the classifier. Chapter 6 will elaborate on the concepts
of machine learning and features, however this section will describe the feature space layout.

Table 4.2 shows the layout of the feature space that needs to be created. (,, denotes the
candidate aircraft for the disrupted aircraft D,. Each C,,D, combination forms a row in
the feature space. The columns are reserved for the features F, that describe the C,,D,
combination. The values are denoted v,;,, and can be categorical, e.g. aircraft type, or
numerical data, e.g. passenger capacity. Table 4.3 shows the layout of the feature space
after classification. The last column in the feature space shows the labels y,,,. These are
not generated in this phase, but are the result of the classifier. These values denote the
probability of candidate aircraft C,, having a positive impact on the recovery solution for
disruption of aircraft D,,.

Table 4.2: Layout of the Feature Space before classification ~ Table 4.3: Layout of the Feature Space after classification

F, F, ... F,. Fi F, ... F. L
CiD1 | Vi11 Viiz - Viin CiDy | Vii1 Viiz -+ Vi | Y11
CoCi | V211 Vou2 - Vain CCy | V211 Voi2 -+ Vain | Y21
CsCqy | V311 V312 .- Viin CsCy | V311 V32 -+ Viin | Y3u
CiCs | Vizn Vizz - Vizn CiCy | Viz1 Vizz -+ Vizan | Y12
CoCy | Va21 Va22 - Voo CyCy | Va21 Va22 - Vaan | Y22
CiuDp | Vinpr Vmpz -+ Vmpn CnDp | Vmpr Vmpz -+ Vmpn | Ymp

4.2. Classifier

The created feature space is passed on to the machine learning classifier which will calculate
class probabilities for all the candidate aircraft in the network of the airline using a
pre-trained model. A schematic representation of the classifier phase is given in Figure 4.5.

Classifier

Feature Space ~ _______ Load Feature Space Transform
1 User Defined Settings ; & Settings Features ERSEEEEER P LT
------------------ ' Calculate Class et Class
rTTTTTTTTTTmmmy Probabilities E Probabilities
i Pre-trained Machine \ _____________________________ Load Machine | | — ___ TTTTTTTTTTTTYo
1 Learning Model . Learning Model

Figure 4.5: Flowchart of Classifier

Transform features

The feature space generated by the pre-processing phase is not always usable by the machine
learning model. Most machine learning algorithms require all features to be in numerical
form opposed to categorical form. To transform all features in the correct format, one-hot
encoding will be used, which will be discussed in Chapter 6. Furthermore, missing values
will be replaced by an appropriate number. Section 6.2.4 will further elaborate on the
pre-processing of data for machine learning.

Calculate class probabilities

The transformed feature space will be processed by a pre-trained machine learning model to
generate class probabilities. For the purpose of the decision support system the classifier will
produce probabilities per candidate aircraft to indicate the probability that the aircraft will

26 4. Model Framework

have a positive impact on solving the disruption and thus the solution quality. The quality
of the probabilities will highly depend on the quality and predictive power of the machine
learning model. Chapter 6 will discuss the machine learning framework that was used to
train the classification model.

4.3. Disruption Solver

After the classifier has assigned class probabilities to all the candidate aircraft in the network,
the ARP is solved by the disruption solver. In this section the functionality of the disruption
solver is described. A schematic representation of the disruption solver phase is given in
Figure 4.6.

pTTTTTTTmmmmTmmm . Disruption Solver

| Schedule and Disruptions . Load Schedule &

| User Defined Settings ! Disruptions

: iiti] Create Create Create [T H
1 Class Probabilities Lo-n —] - sovelP ke----r H
T Sub-Network Time-Space Network LP Formulation Solve LP i Solution fo LP Problem |

Figure 4.6: Flowchart of Disruption Solver

Three important steps can be distinguished in the disruption solver. First, a sub-network is
created based on the class probabilities from the classifier. Second, the problem is translated
into a time-space representation and LP formulation. Third, the linear solver attempts to
find a solution to the problem. When a feasible solution is found, the solution is send to
post-processing. Since the optimization model uses Big M variables, further elaborated upon
in Chapter 5, the model never actually becomes infeasible.

Sub-network selection

Based on the class probabilities produced by the classifier, a sub-network needs to be
created. The goal of this step is to reduce the problem size in order to increase computational
performance of the decision support system. Therefore, the sub-network needs to consist
of the lowest number of aircraft while maintaining feasibility and without significantly
deteriorating the solution quality. There are several strategies for selecting the aircraft in
the sub-network:

* Top X% aircraft This strategy selects the X% aircraft with the highest probability of
helping solve the solution, e.g. top 15% of aircraft).

* All aircraft above threshold This strategy selects all aircraft that have a probability
above a threshold X. With this strategy it could be hard to control the problem size,
since it is hard to predict the number of aircraft in sub-network.

For each of these strategies, the value of X needs to be tested, which will be discussed in the
sensitivity analysis in Section 8.3.

Time-space network

As can be determined from an overview of aircraft recovery methods discussed by Clausen
et al. (2010) and Hassan et al. (2019), the time-space network is the most used network
representation for such problem. As explained by Vink et al. (2019), "a series of parallel
time-space networks is required to be able to distinguish between individual aircraft. As a
result, a separate time-space network is created for each aircraft in the sub-network.” An
example of such a time-space network is given in Figure 4.7. In this figure, each node
represents an airport at a point in time. Nodes are created for all airports in the network
and at every time step t; in the time window. Different arcs are used to model aircraft
movements as time advances. Flight arcs represent flights from one airport to another. The
origin node of the arc represents the origin airport at the departure time and the terminating
node represents the destination airport and the arrival time. Delay arcs are used to model
delayed flights. Delay arcs are created for each delay time step t. Ground arcs represent

4.4. Post-processing 27

the ground time spend at an airport, where the aircraft stays on the same airport as time
progresses.

PHL o o o—»0—P0—P0

A A
! E o Node

e i i —> Flight arc

g BTV o o o ," o / o o

< / et » Delayed flight arc

, ‘.’ —>» Ground arc
DCA o—>e—P»o—P0 o o
tO t1 t2 t3 ta ts

Time

Figure 4.7: Ground, flight and delay arcs in time-space network.

LP formulation and linear solver

Based on the time-space network, the objective function, decision variables and constraints
will be formulated for the CPLEX linear solver. The formulation will be elaborated on in
Chapter 5. The linear solver will use this LP formulation and the user defined settings to
attempt to find a feasible solution to the problem. On a high level, the linear solver will go
through the following phases:

1. Pre-processing During this phase the goal is to improve the formulation provided to
CPLEX and to reduce the problem size. This is achieved by identifying in-feasibility
and/or redundancy in the model. Furthermore, using probing techniques, binary
variables will be fixed and logical implications will be checked.

2. Solve the root relaxation problem After the re-formulation of the problem, the
linear solver will remove all integrality restrictions, resulting in the linear-programming
relaxation of the MIP. Unlike the original problem formulation, the relaxed LP problem
can be solved in polynomial time. The solution is used to gain information about the
original mixed-integer problem.

3. Branch-and-Bound Usually, the solution of the LP relaxation does not satisfy the
integrality restrictions. During the Branch-and-Bound (B&B) phase, the linear solver
picks one relaxed variable and restricts it to be integer, while its LP relaxation value is
fractional. For example, variable x has a LP relaxation value of 8.7. The B&B algorithm
will impose the restrictions x < 8.0 and x = 9.0. This creates two new sub-problems.
This process is repeated until a feasible solution has been found or all variables have
been exhausted.

4.4. Post-processing
A schematic representation of the post-processing phase is given in Figure 4.8. This phase
is largely unchanged from the phase proposed by Vink et al. (2019).

Post-Processing

! Solutionto LP problem ------ Read Solution || Create Recovered L1 o0 1000 KPIs Create Graphics
' ' Schedule of Solution

Figure 4.8: Flowchart of Post-processing

28 4. Model Framework

In the post-processing phase the LP solution found by the system is processed to an
understandable suggested recovery solution and flight schedule. Key Performance Indicators
(KPIs) summarize the recovery solution and allow an AOCC operator to determine the quality
of the solution at a glance.

Vink et al. (2019) developed the KPIs presented in Table 4.4. The On-time performance (OTP)
KPI describes the punctuality of airlines and is widely used in the airline industry. The
Delayed Passenger Count (DPC) and Average Passenger Delay (APD) quantify the severity of
delays. Flight cancellations disrupt (connecting) passenger itineraries. The number of Missed
Connection Passengers (MCP), Cancelled Passengers (XP) and Cancelled Flights (XF) serve as
an indicator for disrupted passengers. The number of Constraint Violations (CV) represent
the constraints in the optimization model that could not be satisfied. This indicates that flight
schedule after the window cannot be flown as scheduled, e.g. due to an aircraft missing at
an airport at the end of the time window. The cost of the disruption KPI summarizes overall
solution quality.

Table 4.4: Key Performance Indicators for recovery solutions

KPI Description Unit
OTP % of flights operated with <15 minutes of delay [%]
DPC Number of delayed passengers [#]
APD Average delay per delayed passenger in minutes [min/pax]
XP Number of passengers on cancelled flights [#]
XF Number of cancelled flights [#]
MCP Number of passengers that missed a connection [#]
cv Number of constraints violated in recovery solution [#]
Cost Cost of the disruption [$]

The last step of the post-processing phase is to automatically update the current schedule
with the recovery solution. This ensures that the recovery solution is taken into account
when a new disruption needs to be solved.

Optimization Model

Using the inputs discussed in Section 4.3, the optimization model attempts to find the
optimal (minimum cost) solution to the aircraft recovery problem. This chapter will elaborate
on the model used to find this optimal solution. The mathematical formulation of the
optimization model is also summarized in Appendix D.

The following sets, indices and parameters will be used by the solver and will be used
throughout this chapter:

Sets Indices

F set of flights i flight index

A set of airports t delay time index

E set of aircraft types a airport index

P set of aircraft p aircraft index

P(e) set of aircraft p of type e e aircraft type index

N set of all nodes = N, UN; U N; U N n node index

No set of origin nodes j artificial variable index

N; set of intermediate nodes
Ng set of sink nodes

T set of delay steps

S set of slack variables

Parameters

Bous Cost multiplier for business passengers

Ceanx Additional hard cost per passenger in case of cancellation
Cconn;, ~ Delay cost for connecting passengers on flight i, for delay time step t
Cpy, Cost of delay for flight i, for delay time step ¢t

Cps, Soft cost of delay for delay time step ¢t

Cou, Hard cost of delay for delay time step t

Co Ppi Operating cost of flight i with aircraft p

Ce, Cancellation cost of flight i

Ce, Cost of operating ground arc originating from node n
Cesen Penalty for operating a different aircraft than scheduled
CDocp Direct operating cost of aircraft p, per block hour

dist; Distance of flight i

orig; Origin airport of flight i

dest; Destination airport of flight i

STA; Scheduled Time of Arrival of flight i

STD; Scheduled Time of Departure of flight i

29

30 5. Optimization Model

FT; Flight time of flight i, in hours
PaxY; Economy passengers on flight i
PaxJ; Business passengers on flight i

range, Range of aircraft p
seatsY, Economy seats on aircraft p
seatsJ,, Business seats on aircraft p

h¢ Number of aircraft belonging to fleet e that should terminate at sink node n € Ny
™ Number of time steps in time window

M Big M cost factor

Tswap Tail swap limit in minutes

5.1. Objective Function

The objective value function of the optimization model is given in Equation 5.1. The objective
of the model is to minimize the sum of the following cost:

* Flights operated as scheduled - direct operating costs (DOC) only

* Flights operated with a delay - DOC and cost of delay

* Cancelled flights - cancellation cost

* Ground arc cost - cost of operating a certain ground arc

* Schedule consistency cost - additional cost for operating a different aircraft

* Big M cost - costs that indicate infeasibility of the problem

mlnz Z 6Fp,i . COPp,i + Z ZZ 6Dp,i,t . (COPp,i + CD”) + Z 6Ci . CCi

DEP iEF DEP i€EF teT i€EF

+ZZ66p'n'CGn+Z6FL('CCSCH+ZSJ”M

PEP nEN i€F JES

(5.1)

5.1.1. Decision variables

All decisions the model can make are represented by decision variables (DVs), shown below.
All decision variables are binary, unless stated otherwise. The decision variables are denoted
by a §, or, in case of the slack variable, by a s.

8p,;, = 1, if flight arc i is flown by aircraft p without delay

6Dw_'t =1, if flight arc i is flown by aircraft p with delay time step ¢

d¢, =1, if flight i is cancelled

(SGM =1, if aircraft p uses ground arc originating from node n

Spr = 0, if flight i is flown by same aircraft p as scheduled

Y l =1, if the problem is infeasible, one or more slack variables are part of the basic solution

The § Fp define whether a flight i is flown by aircraft p without delay. For all flight-aircraft
combinations, a decision variable is created. The cost for the decision variable is defined by
the DOC of the aircraft and the flight duration.

The & Dpit variables define whether a flight i is flown by aircraft p with delay t. Similar to the
previous decision variable, a DV is created for all flight-aircraft-delay combination, where
the delay is discretized to time steps, e.g. 10 minutes. Therefore, if the maximum allowed
delay is 8 hours, 48 decision variables are created for all flight-aircraft combinations. The
cost associated with these DVs equal the direct operating cost and a delay cost factor that

5.1. Objective Function 31

depends on the delay duration.

Flight cancellations are defined by the §¢, variables. The cost of cancelling a specific flight
are associated with the variable for that flight. Finally, the 6Gp,n defined whether an aircraft
uses the ground arc that originates in node n.

If the model assigns a different aircraft to a flight than originally scheduled, it is indicated
by the 8F{ variables. If required by the airline, this may impose a penalty (cost).

The s; slack variables are artificial variables needed for the Big M method as discussed by
Hillier and Lieberman (2015). By assigning a high cost to these decision variables (M for
Million), the model will only make these variables part of the solution if and only if the
problem is otherwise infeasible. Since not all constraints may cause infeasibilities, Section
5.2 elaborates on which constraints contain the slack variables and the applicability to that
constraint.

5.1.2. Cost factors

The different cost factors shown in the objective function will be discussed in this section.

The cost of flying a flight with an aircraft, C 0Py;» equals the direct operating cost of the aircraft
(per minute) DOC, multiplied with the flight time FT;.

Cop,; = Cpoc, " FT; (5:2)

The cost of flying a delayed flight equals the sum of the cost of flying the aircraft with the
assigned aircraft as given in Equation 5.2, and the delay cost Cp,,. This delay cost depends
on the number of economy and business passengers booked on the flight, and the delay
time step. Byus is the business multiplier that is used, since business passengers are more
expensive to delay. Cps, equals the soft cost and Cpy, equals the hard cost for the delay. If
the flight contains passengers that are connecting to another flight at the destination, and
the delay causes them to miss their transfer, an additional cost factor Cconp, . is assigned as
well. This cost factor is obtained from the Connecting Passenger Matrix (CPM)

CDi‘t = Cconnilt + (CDSt + CDH,;) - (PaxY; + Byus - Pax];) (5.3)

When a flight is cancelled, the maximum soft and hard delay cost will be incurred.
Furthermore, a cancellation penalty is included, which represents the additional cost related
with an cancellation, e.g. hotel accommodation.

CCL = (CDSmax + CDHmax + Ceanx) - (PaxY; + Byys - Pax];) (5.4)

It should be noted that the current implementation of the cancellation cost may cause
cancellations of flights with a low passenger load factor, since it may happen that the cost
of cancelling those flights is lower than the actual direct operating cost of the flight. Even
though airlines are pushing for high load factor flights, it is assumed that all scheduled
flights should be flown, since other considerations could play are role. To avoid these
cancellations, it should be ensured that the cost of cancelling a flight is always higher than
the cost of operating that flight.

Ground fees imposed by airports, e.g. for parking, can be included in the model through the
cost of operating a ground arc, Cg,, .

Since airlines have a preference to minimize the number of deviations from the original
schedule, a penalty Cc,,, is incurred when the original scheduled aircraft is not assigned
to a flight. By doing so, the model will prefer assigning the scheduled aircraft. This penalty
should be chosen such that it equals the cost of a tail swap.

32 5. Optimization Model

The cost associated with the artificial variables is denoted M, and usually equals a large
cost (millions). This cost is included in the objective value if all other solutions lead to
infeasibilties. The magnitude of M should be large enough to ensure the model will not make
it part of the solution in any other case than to prevent infeasibilities.

5.2. Constraints

The objective function of the previous section is subjected to multiple constraints, which will
be discussed next. The constraints can be divided into several groups: time-space continuity
constraints, airline constraints and disruption constraints.

5.2.1. Time-space continuity constraints

The constraints in this section are necessary when working with a time-space network.
Even when using a time-space network for another problem type, these constraints will be
necessary in some form.

Flight coverage

A trivial low-cost solution to the aircraft recovery problem would be to ground all aircraft.
To prevent this, the flight coverage constraint, presented in Equation 5.5, ensures that all
flights in the schedule are either flown as scheduled, delayed or cancelled. This constraint
ensures that the lowest cost solution is to operate all flights as scheduled, although this
may not always be possible due to disruptions.

Z |65, + Z 8p,]+6c, =1 VieF (5.5)

pPEP teT

Node continuity

In the time-space network, aircraft are constrained by following a path between nodes. The
node continuity constraints ensure that all aircraft entering a node through flight or ground
arcs also leave the node. Put differently, all aircraft that arrive at an airport must either stay
on the airport or depart from the airport. The constraint in Equation 5.6 covers most of the
nodes in the network. However, the nodes at the start at the time window are covered by the
constraint in Equation 5.7.

[661,'”_1 + Z 8Fp,i + Z 5Dp,i.t] - [SGp,n + Z SFp,i + Z 8Dp,i,t] = O Vp € P,n € NI (56)

i€Fp [€F i teT i€Fout [€F oyt tET
86pn T Z Op,, + Z 6p,;, =1 Vp €P,n=scheduled Ny of p (5.7)
i€Fout i€F oyt tET

Like the nodes at the beginning of the time window, the nodes at the end of the time window,
the sink nodes, are covered by a different constraint. Since only the aircraft and flights within
the time window can be changed, by the end of the time window the flight schedule should
be operated as scheduled. Airlines have the option to either fix specific aircraft by the end
of the time window, e.g. if an aircraft was scheduled to be located at ATL at the end of the
time window, that specific aircraft will be constrained to be there, this constraint is given in
Equation 5.8. Alternatively, airlines can choose to fix the aircraft type instead of the specific
aircraft. This option gives more flexibility to the model, since tail swaps within aircraft types
are allowed. The formulation for this constraint is given in 5.9.

86pn s T Z Op,; + Z 8p,;, +Sj=1 VpE€P,n=scheduled N of p (5.8)
i€EFin iE€EFn,teT
D eyt D Srpt D Sn |+ ke veeEneNs (5.9)

pEP(e) i€Fin iEFn,tET

5.2. Constraints 33

Both sink node continuity constraints, Equation 5.8 and Equation 5.9, contain a slack
variable s;, since given a disruption, these constrains may not be satisfied. If the last flight
of the day is cancelled, that aircraft will no longer reach its planned airport within the time
window. Without these slack variables, the problem would be infeasible, however with this
problem, the model results in a high objective value, which can be shown to the AOCC
controller. The slack variables are not binary, but integer, since it could occur that multiple
aircraft that were planned to end at an airport will not be able to reach the airport. For each
of those aircraft M cost will be incurred.

Since the number of aircraft within the time window will not change, if an aircraft does
not reach its intended end airport, there must me a surplus of aircraft at another airport.
Therefor, the sink-node constraints are of the "equal or greater than” type, to allow more
aircraft at the airport than planned.

5.2.2. Airline constraints
The following constraints are specific to the aircraft recovery problem and/or the preferences
of airlines.

Aircraft seat capacity

Tail swaps should only be allowed if the new aircraft can transport the number of economy
and business passengers on the flight. Equation 5.10 ensures that the new aircraft has the
capacity to transport the passengers.

6pp,l. + Z 6Dp,i,t =0 Vp,i where (seatsY, < PaxY; A seatsJ, < PaxJ;) (5.10)
ter

Aircraft range
Similar to the previous constraint, Equation 5.11 ensures that the new aircraft’s range is
sufficient to fly the distance of the flight leg.

6FW. + Z 6Dp,i,t =0 Vp,i where (range, < dist;) (5.11)

teT

Original schedule penalty
If a different aircraft than originally planned is scheduled on a flight in the recovery solution,
Equation 5.12 ensures that § = 1 and C¢,,, is included it the objective value.

8, + Z 8p,, 8 =1 Vi€ F,p = aircraft scheduled for i (5.12)

teT

Tail swap time limit constraint

Due to turn-around processes planning and gate allocation schedules, aircraft cannot be tail
swapped T4, minutes before departure. Equation 5.13 ensures that aircraft will not be
assigned to a different flight Ty,,,, minutes before their scheduled time of departure (STD).

8, + Z 8p,, =0 Vp € P,i where STD; — Tnp < Tougp and i # flight for p (5.13)
teT

5.2.3. Disruption constraints

The constraints discussed so far are related to regular airline operations. If disruptions occur,
these are added to the model in the form of constraints as well. This section will elaborate
on the disruption constraints.

34 5. Optimization Model

Flight delay
If flight i is delayed, the decision variable associated with flying that flight as scheduled,d Fpi>
is set to zero for all aircraft. Furthermore, all delay arcs associated with a departure time

earlier than the delay, § D> are set to zero for all aircraft. The constraint is shown in Equation
5.14. B

Z 8p,, +8p,, =0 VEET <delay,i = delayed flight (5.14)
pPEP

Flight cancellation
If flight i is cancelled, decision variable §, is set to one. Equation 5.15 works with the flight
coverage constraint, Equation 5.5, to ensure all flight and delay arcs for this flight are set to
Zero.

8¢, =1, i=cancelled flight (5.15)

Aircraft unavailability
Equation 5.16 ensures that, if aircraft p is unavailable for a certain time, all decision variables
for the flight and delayed flight arcs of that aircraft are set to zero.

an,i +Z 6Dp,i,t =0

iEF
Vi € F where (tstart < STDL <tend Y tstart = STAL Stend),
vVt € T where (tsrqre < STD; +t <teng U teng < STA; +t <tgpnaq)

(5.16)

Airport unavailability

Similar to the previous constraint, Equation 5.17 ensures that, if an airport is unavailable
for a certain period of time, all flight and delay arcs that are set to arrive or depart from the
airport within that time, are set to zero.

D @yt) 85,0 =0

pEP iEF
Vi € F (where (tgiqre < STD; <teng U tsrare < STA; <tgngq)) N (orig; U dest;) = a (5.17)
vVt € T (where (tgiqre < STD; +t <topg U teng < STA; +t <t.,q)) N (orig; U dest;) = a
where a = unavailable airport

5.3. Assumptions and Implications

The aircraft recovery model proposed by Vink et al. (2019) and the ARP proposed by this
research are a simplification of reality, hence some aspects of airline operations are not
considered or simplified. An overview of these assumptions and their implications are given
in Table 5.2. Most of the assumptions are based on the previous work by Vink et al. (2019).
The validity of these assumptions is discussed in Section 7.2.

For most short to medium-haul flights, the cruise speed differences are negligible for
different aircraft types. Therefore, it is assumed that the flight duration is not dependent on
the scheduled aircraft. In reality, the arrival time of a flights may change by 10-20 minutes.
According to Vink et al. (2019), "This can have a small effect on the results, because the
earlier or later arrival time also has an effect on subsequent flights scheduled for the aircraft.”
Another benefit of this assumption, besides simplification of the model, is that only the
schedule penalty parameter affects tail swaps. With differences in flight times, the model
may choose to perform a tail swap to recovery some of the delay. As a result, the swapping
behaviour can no longer be controlled using a single parameter.

Arikan et al. (2016) showed that implementing a trade-off between accelerated fuel burn and
reduced flight time is not straightforward due to the non-linear relationship between fuel
consumption and cruise speed. Therefore, the option to recover some delay time by flying

5.3. Assumptions and Implications 35

at a higher cost index is not available to the model. On long-haul flights, flying at a higher
cost index could significantly decrease flight times. This could have a large effect on the
cost of a disruption, especially if connections which are otherwise missed are possible again.
Vink et al. (2019) presented recommendations concerning the inclusion of this aspect in the
recovery model, which are repeated in Chapter 9

Explicit crew recovery is considered to be beyond the scope of this research. Therefore it is
assumed that crew is always available. Recommendations about explicitly including crew in
the recovery model are presented in Chapter 9.

Airport capacity and slot availability information was not available for this research,
and it is assumed that flights are not constrained by reduced flow rates or airport close
times. Constraining illegal flight arcs due to limited airport capacity or slot availability
is straightforward. The current model could suggest a recovery solution where a flight is
delayed to a time with no slot availability. This could have a large effect, since in reality this
flight would be cancelled.

Section 4.1 discussed the time discretization used to reduce computation time by reducing
the number of nodes in the time-space network. However, as a result arrival, departure and
delay times are rounded to the nearest time step. This could lead to differences between the
flight schedule as presented by the system and actual operations.

Due to limited information availability, it is assumed that the Turn-Around-Time (TAT) per
aircraft type is a constant. In reality, TAT may be reduced by 5-10 minutes by assigning
additional ground staff, especially on hub airports. To make this decision, a trade-off would
have to be made between the additional cost for ground staff and the saved disruption cost.
Therefore, ground staff cost and availability would have to be known. This aspect of the ARP
is beyond the scope of this research.

For this research no information was available on aircraft maintenance schedules and
resource availability. As a result, it cannot be reliably determined which maintenance tasks
need to be scheduled for each aircraft. This assumption can potentially have large effects
on the results. The recovery model currently does not schedule maintenance tasks, while in
reality aircraft are legally required to have periodic maintenance. By not taking maintenance
into account, the decision support system is less constrained than reality and the solution
cost will be underestimated.

Due to limited data availability, only the results of aircraft disruptions are available. Section
8.1 elaborates on the dataset generation. Due to this limitation in disruption data, delays
are not updated. For example, at time t; a delay disruption of 30 minutes could be known
to the AOCC and at any time > t; the AOCC might find out that the flight will actually
be delayed 50 minutes. Since these disruption updates are not available, only the final
disruption is taken into account. The implication of this simplification is that there will
be less changes to the schedule. Furthermore, in reality it may occur that due to previous
disruption recovery solutions, certain recovery options become unavailable for following
disruptions.

Changes in the Scheduled Time of Arrival (STA) due to weather conditions, except for
disruptions, are assumed to have no effect on the flight schedule. In reality, especially
on long-haul flights, having head or tail wind could significantly impact flight times.
Because weather information and the effect on flights is not readily available, the decision
support system currently does not take this effect into account. Furthermore, periodically
determining the effect weather has on the flights in the network is computationally expensive.

36

5. Optimization Model

Table 5.2: Assumptions and corresponding implications

Assumption Implication Expected
effect on
results

Assumptions adapted from Vink et al. (2019)

Equal flight time for all The flight duration that was scheduled for a flight remains the Minimal

aircraft types same, even if in the recovery solution it is flown by an aircraft

with a higher cruise speed.

No cruise speed A trade-off between delay cost and accelerated fuel burn is Minimal

changes to recapture not made in the model. Shorter than scheduled flight times as

time during flight a result of change in cruise speed are not considered.

Crew is always available Limits on flying times for crews, or the availability of crews Large

at airports is not considered. It is assumed that there is
always a crew available to perform the flights in the recovered
schedule.

Airport capacity and The capacity at airports and slot availability are not considered Large

slots are always in the model. It is assumed that a flight can always be

available scheduled to depart or arrive at an airport at a later time than

scheduled.

Time discretization still Times (e.g. STD or STA) are rounded to nearest time step. Minimal

provides sufficient detail Delays smaller than the time step are not considered for

for airline operations recovery.

TAT is constant per Delays cannot be mitigated as a result of time recapture during Minimal

aircraft type TAT. The choice to assign more ground staff for shorter TAT

cannot be made in the recovery model.
New Assumptions

Maintenance is not (Scheduled) maintenance tasks are not constraining the Medium

considered model. Unscheduled maintenance is considered as an aircraft

unavailability.

Delays are not updated Only initial available information about delays and delay Medium

duration is taken into account.
updated if it becomes available.

Delay information is not

Machine Learning Classifier

Section 4.2 presented a high level overview of the classifier and its place in the decision
support system framework. This chapter will elaborate on machine learning based
classification in general and the systematic process undertaken to create the pre-trained
machine learning classifier that is used in the DSS framework.

Section 6.1 will briefly introduce machine learning and binary classification. Section 6.2 will
discuss the framework and process that was followed to create the classifier. Finally, Section
6.3 will present the final classifier parameters and model analyses.

6.1. Introduction to Machine Learning and Binary Classification

Machine learning techniques are often used to create the decision function for classification.
The machine learning domain can be divided into one of three categories: supervised
learning, unsupervised learning and reinforcement learning.

In supervised learning, a set of fully labeled training data is available. Fully labeled means
that each instance in the dataset comes with the label or category it belongs to. So, a labeled
dataset of pictures of fruit, would tell the model which photos depict apples, bananas and
oranges. When presented with a new photo, the model attempts to predict the correct label
based on what it has learned from the training dataset. Hence, supervised learning is well
suited for problems where a fully labeled dataset is available. However, clean and perfectly
labeled data is not always available.

When a fully labeled dataset is not available, researchers may still use machine learning
techniques. In Unsupervised learning, a model is given a training dataset without a specific
label or preferred outcome. The model’s task is to find structure in the data, which can
be done in different ways, e.g. clustering, association, anomaly detection. Because labeled
data is unavailable with unsupervised learning, it is hard to measure the performance of an
algorithm.

Finally, reinforcement learning algorithms have agents that attempt to discover the optimal
way to reach a particular goal. The agents take actions or decisions, and when these actions
lead towards the set goal, the agent receives a reward. The overall aim of the model is to
earn the biggest final reward. In its pursuit of reward, the model balances exploration of new
tactics/decisions with exploitation, learnings from past experiences. Reinforcement learning
is an iterative process where the model improves with more rounds of feedback. This class
of machine learning is particularly useful for teaching robots autonomous decision making,
e.g. self-driving vehicles. Especially when each iteration is computationally expensive,
reinforcement learning may take a long time before producing promising results.

37

38 6. Machine Learning Classifier

Since fully labeled data is available for this research and optimization is computationally
expensive, the remainder of this research and thesis will focus on supervised learning.
With supervised learning, the interest lies in finding the relationship between the independent
variables X and the dependent variables Y. The goal of binary or binomial classification is
to separate the elements of a given dataset y = (xi,yi)illv , where x; are features and y; € 0,1
the corresponding binary class labels, into two groups (predicting which group each one
belongs to) using a decision function. In probabilistic terms, classification is computing
the posterior p(y|x) and performing an operation like argmax (e.g. classifying instances by
argmaxyeo1p(y|x)). A typical plot of y is given in Figure 6.1.

Xo

A

A
A\ 4

X4

Figure 6.1: A typical plot of a data set y with each instance (x;, y;)€ X plotted at its features and labeled by its class.

6.1.1. The Bias-Variance Trade-off

With supervised learning, a relationship between feature(s) and labels is assumed and
estimated. If the assumption is true, there must be a model f which exactly describes the
relationship. In practice, this model f is often unknown and an attempt will be made to
estimate it with model f. Model f is obtained by training on a particular training dataset. If
a different training set is used, it is likely that model f will be different as well. The amount
by which f varies with different training sets is called the variance.

Besides often being unknown, the relationship between features and labels is complex
for most applications. Assumptions and simplifications give bias to model f. The more
erroneous the simplifications and assumptions with respect to the true relationship, the
higher the bias.

There exists a myriad of supervised learning algorithms with the aim of finding an f. For all
algorithms, the expected error on an unseen instance X was derived by Hastie et al. (2001)
and will be:

E[(y — ()] = (Bias[f ()])? + Var[f (x)] + o* with,
Bias[f ()] = E[f ()] - f(x) (6.1)
Var[f (0] = E[f ()] - E[f ()]
For an expected error, it is clear that there is a trade-off between bias and variance. A choice

has to be made between lower complexity models, with low variance but high bias, and higher
complexity models, with low bias and higher variance.

6.1.2. Learning Curves and Bayes error rate

The previous section presented the basic concepts of bias and variance. This section will
discuss how these concepts can be used to determine model performance and, if necessary,
how to improve classification.

6.2. Classifier Framework 39

Given the explanation of bias and variance, it should be clear to the reader that the
performance of the model on the training data cannot be generalized to unseen data. Hence,
in practice available data is often split in a training data set and a test data set. The
performance of a model trained on the training data set will be tested on the test data
set, which should given the practitioner a better understanding of the model performance.
Thus, there are two performance scores to monitor: one for the test data set and one for the
training data set. The evolution of these two scores plotted against the size of the training
set (in terms of instances), are called learning curves. Learning curves show how model
performance changes as the size of the training data set increases.

Figure 6.2 shows an example of learning curves for two different classification models. The
model on the left indicates a low variance, since the model performs similarly on the training
and validation data set. Furthermore, the model shows a final performance of around 85%,
meaning that 85% of instances were classified correctly, indicating a moderate bias. Adding
more training instances here is unlikely to result in better performance, however a more
complex model may improve performance. The model on the right indicates a high variance,
since there exists a substantial gap between the performance of the model on the training
and validation dataset. Adding more training instances here is likely to reduce the variance.

100% 100%

—®—Training error —@— Training error

95% —e—Validation error 95% —e— Validation error

90% 90%
85% 85%
80% 80%

75% 75%

Model Performance
Model Performance

70% 70%

65% 65%

60%
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Training dataset size Training dataset size

60%

Figure 6.2: Example learning curves for two different classification algorithms. Left: Model with low variance and moderate bias.
Right: Model with high variance and moderate bias. Adapted from: www.dataquest.io/blog/learning-curves-machine-learning/

In the example given above, the final model performance is around 85%. Attempting to reduce
this error with a more complex algorithm is a valid follow up, based on the learning curves.
As mentioned by Hastie et al. (2001), the reader should be warned that in practice a perfect
model does not exist, due to the irreducible or Bayes error rate. In most real-world situations,
the relationship between the features and labels is not perfect, for example due to the fact
that not all features X that influence Y are captured in the data set. For many situations, the
features may also contain measurement errors. For classification problems, the Bayes error
rate gives an upper bound for error metrics that describe how good a model is.

6.2. Classifier Framework

The previous section presented a brief introduction to machine learning. This section will
elaborate on the framework that was used to construct the machine learning classifier for
the final DSS. A flowchart of the machine learning process is presented in Figure 6.3. A
more detailed flowchart of the "Feature Engineering”, "Hyperparameter Tuning” and "Model
Validation” steps is shown in Figure 6.4. These steps are described in Sections 6.2.4, 6.2.5

and 6.2.6, respectively.

Featur_e > l:lglorn_hm —> ﬁMlelrl_c > Fgaturt_e > Hyperpar_ameter —> M_ode_l —> fea:urg —> ,.MO.deI-
Generation Engineering Tuning aly y

Figure 6.3: Machine Learning Framework

40 6. Machine Learning Classifier

Bayesian Hyperparameter Tuning

i in- Train | 4
) In:lputlng > One H_ot > Train: 1_'est 1 > SMOTE > Hyperpara_\meter N K- Ifo_ld > Train Fold
Missing Values Encoding Split ! Selection ' Splitting

| |

Fit o
Random Forest .

Evaluate <

Random Forest

Test Validation Fold

) e 1 Best Update
Trained Model <€— Model Validation 4—'—: Hyperparameters < Surrogate Model

Figure 6.4: Flowchart for "Feature Engineering”, "Hyperparameter Tuning” and "Model Validation” steps

6.2.1. Feature Generation

The first step in the machine learning framework is data gathering, i.e. feature generation.
The quality and quantity of the data will largely determine the quality of the final machine
learning algorithm. The aim of the classifier is to predict the probability that a candidate
aircraft will help recover a disrupted flight or disrupted aircraft. Therefore, the features need
to provide information on the candidate and disrupted aircraft and the schedule of these
aircraft. Section 4.1 already presented the layout of the feature space. The features were
generated based on domain knowledge and can be divided in the following categories:

* Candidate aircraft related features
* Disrupted flight/aircraft related features
* Features combining candidate aircraft and disrupted flight/aircraft characteristics

¢ Schedule related features

Table E.1 in Appendix E presents a detailed description of all features that were generated.
These features were used to train a machine learning classifier, as discussed in the following
sections. Based on the results of this classifier, feature analyses was performed as discussed
in Section 6.2.7. Based on the analysis several changes were made to the feature space,
which will be discussed in Section 6.2.7.

The feature space was generated by solving 1000 iterations of disruptions to a global
optimum. The 1000 iterations covered about 6 days of disruptions in January. The
aircraft that helped solve that disruption could be determined from the recovery solution,
the disruption information and the schedule before the disruption. Figure 6.5 shows the
framework that was used to generate the training set that contained the features.

Update

Original Current
Schedule Schedule Time [— .
Q window j—
Disrupted Recovered
[Schedule Schedule
Disruptions
Training
Set

Figure 6.5: Framework used to generate the feature space for training the machine learning classifier

6.2. Classifier Framework 41

A single iteration can contain several disruptions, which will be solved at once. This
complicates identifying which candidate aircraft helped solve which disruption. The following
logic was used to relate candidate(s) to the correct disruptions:

* If the schedule of the candidate aircraft was changed, it helped solve one of the
disruptions:

1. If a candidate aircraft was tail swapped with one of the disrupted aircraft, the
candidate was identified as helping solve that disruption. If more than one tail
swap occurred, this logic was applied recursively on all tail swaps. For example,
if disrupted flight DL220 was tail swapped from tail N9580 to tail N541DL, and
flight DL988 was swapped from N541DL to N252S, both N541DL and N2525 are
identified as helping solve the disruption.

2. If the candidate was not tail swapped: for all flights of the candidate aircraft the
origin and destination were checked. If any of the flights departed or arrived at
the origin or destination airport of the disrupted flight/aircraft, the candidate was
identified as helping solve that disruption.

* If the schedule of the candidate aircraft was not changed, it did not help solve any of
the disruptions.

It should be noted that the described logic may not be sophisticated enough to correctly
identify all candidate-disruption combinations. The labels in the feature space are expected
to have some noise, which may impact the performance of the classifier. The results of the
case study in Chapter 8 will determine to what extend the performance of the trained classifier
is satisfactory.

6.2.2. Problem Characteristics and Algorithm Selection

The previous section described the framework that was used to create the feature space
and the features that were created. This section will discuss the characteristics of the
feature space and the logic that was used to select a machine learning algorithm. Nowadays,
supervised classification is prevalent in research and industry, and a vast number of
techniques have been developed. The most common of these techniques belong to one
of four families: tree based algorithms, neural networks, statistics based algorithms and
support vector machines.

Based on the feature dataset that is generated a few observations can be made:

* The instances in the feature dataset are labeled. Hence, supervised learning is possible
and preferred.

* The feature dataset is dense, e.g. most features do not contain missing values or zeros.

* The dataset consists of both categorical (e.g. aircraft type) and numerical (e.g. direct
operating cost) features.

* The features are not on the same scale. For example, the direct operating cost are in
the thousands while the passenger load factor of the candidate aircraft is expressed
between O-1.

* The dataset is highly imbalanced. Only 0.25% of the instances belong to the "True”
class (i.e. candidate aircraft that helped), while the majority belongs to the "False” class
(i.e. candidate aircraft that did not help).

Olson et al. (2018) bench marked 13 state-of-the-art commonly used machine learning
algorithms on a set of 165 publicly available classification problems. Each algorithm is fully
hyperparameter optimized. Figure 6.6 shows the average ranking of the machine learning
algorithms over all datasets. The paper demonstrates the strength of state-of-the-art,
tree-based ensemble algorithms.

42 6. Machine Learning Classifier

Figure 6.6: Average ranking of the algorithms over all datasets (lower is better). Error bars indicate the 95% confidence
interval. Adapted from Olson et al. (2018).

Mean Ranking
=] [ie]

w
f

o

Gradient Tree Boosting
Random Forest
Support Vector Machine
Extra Trees

Stochastic Gradient
Descent

Decision Tree

Logistic Regression
K-Nearest Neighbor
AdaBoost

Passive Aggressive
Classifier

Bernoulli Naive Bayes
Gaussian Naive Bayes
Multinomial Naive Bayes

Based on the results of Olson et al. (2018), the Gradient Tree Boosting, Random Forest and
Support Vector Machine algorithms are expected to perform best for the aircraft classification.
Table 6.1 presents a qualitative comparison of different supervised learning algorithms. The
reader is referred to Kotsiantis et al. (2006) for a more thorough discussion on supervised
classification algorithms.

Table 6.1: Qualitative comparison of classification techniques. Adapted from Kotsiantis et al. (2006)

Decision Random Boosted Neural Naive
kNN SVM
Trees Forest Trees Networks Bayes
Speed of learning w.r.t. no. of i ** * * i i *
features and instances
Speed Of C|aSSIflcat|0n Fekkk *kkk Fekkk *kkk *kkk * *kkk
Tolerance to missing values o > > * o * **
Tolerance to redundant features > > > > * > el
Dealing with danger of overfitting * i i * e i **
kkkk *% *%k * *kkk *kk *

Interpretability

Table 6.1 shows that Support Vector Machines (SVM) perform worse than Tree based
algorithms regarding the speed of learning and the interpretability, while not scoring
significantly better on other characteristics. Comparing the Random Forest and Boosted
Trees algorithms, no distinction can be made based on the table. However, Boosted Trees
are generated sequentially while Random Forest are generated in parallel. Therefore it is
expected that Random Forests are generally slightly faster. Moreover, based on discussions
with data scientists at ORTEC, it was found that the performance of Boosted Trees are
generally more sensitive to the hyperparameters than Random Forests. In other words,
the performance of Boosted Tree algorithms is very dependent on identifying the optimal
hyperparameters, while Random Forests are less sensitive.

Based on this qualitative comparison, the Random Forest algorithm is chosen as the best
starting point for the machine learning classifier. However, as mentioned by Olson et al.
(2018), it should be noted that algorithm performance is strongly dependent on the problem
specifics. The algorithm choice will be evaluated in Section 6.3.

6.2. Classifier Framework 43

6.2.3. Evaluation Metric Selection

The correct choice of evaluation metric plays a critical role during algorithm training, since it
defines the goal for the algorithm. Hence, aligning the evaluation metric with the overall goal
of classification is important to obtain a valid classifier. According to Hossin and Sulaiman
(2015), threshold and ranking metrics are the most common metrics used by researchers.

For binary classification problems, the threshold metrics to identify the best solution during
training can be defined based on the confusion plot shown in Figure 6.7. In this plot, TP
(true positive) and TN (true negative) denote the number of positive and negative instances
that were correctly classified. Meanwhile, FP (false positive) and FN (false negative) denote
the number of misclassifed negative and positive instances, respectively. Table 6.2 presents
several common threshold metrics, based on the confusion plot, to evaluate the performance
of classifiers.

All scores below threshold will be predicted as Negative All scores above threshold will be predicted as True

shold

™

Observations

A\
FN X/ FP

ASNS\N 77

Prediction Score

Figure 6.7: Confusion plot

By default, most binary or multi-class classifiers use accuracy or the error rate as the
evaluation metric. Ranawana and Palade (2006) demonstrated that the simplicity of accuracy
leads to sub-optimal performance when dealing with imbalanced class distributions. For
example, when dealing with a dataset where 3% of the instances belong to class A and 97%
of instances belong to class B, a classifier that classifies all instances as B will have a 97%
accuracy score.

Table 6.2: Threshold metrics for classification evaluations. Adapted from Hossin and Sulaiman (2015)

Metric Formula Evaluation Focus

TP+TN . .
Accuracy (acc) The accuracy metric measures the ratio of correct

TP+TN +FP+FN predictions over the total number of instances evaluated.

FP+FN . . .
Error Rate (err) The error rate measures the ratio of incorrect predictions

TP+TN+FP+FN over the total number of instances evaluated.

TN
Specificity (sp) - This metric is used to measure the fraction of negative
TN +FP predictions that are correctly classified.
. TP C " o
Precision (p) _— Precision is used to measure the positive predictions that
TP+ FP are correctly predicted from the total predictions in a
positive class.
TP . . .
Recall (r) TPIFEN Recall is used to measure the fraction of positive

predictions that are correctly classified

44 6. Machine Learning Classifier

When choosing a threshold evaluation metric, it is important to think about what type of
error should be minimized. For example, with a cancer detection problem, where out of
100 people only 5 people have cancer, the false negatives should be minimized. All people
with cancer should be diagnosed as such, while it is fine to misdiagnose some healthy
people, since further examination will declare them healthy. In contrast, with spam e-mail
detection, false positives should be minimized. Here, important non-spam e-mails should
not be classified as spam, while spam e-mails that are classified as not spam, can be
manually deleted.

Precision gives information about the classifier’s performance with respect to false positives,
while recall provides information about the performance with respect to false negatives.
However, it should be noted that when recall is chosen as the evaluation metric, this could
lead to an increase in false positives. The inverse is true when choosing precision.

The Area Under the Curve - Receiver Operating Characteristics (AUC-ROC) is one of the most
popular ranking metrics, opposed to threshold metrics. A Receiver Operating Characteristics
curve is plotting True Positives Rate (recall) versus False Positives Rate (FP/(FP+TN)). The area
under the curve indicates the overall ranking performance of a classifier. Figure 6.8 shows
typical ROC curves for two algorithms. An optimal classifier would reach the top left corner in
the AUC-ROC curve, where the true positive rate equals 1 and the false positive rate equals O.
Jin Huang and Ling (2005) showed that the AUC metric outperformed the accuracy metric for
classifier performance evaluation and for discriminating the optimal solution during training.
Although the performance of AUC-ROC was excellent, the computational cost of AUC-ROC
is high compared to threshold metrics.

! 1
Algorithm 1
Algorithm 2 -——
a L
4 0.8 0.8
[}
[+4
i} o .
0.6 £ .
A S 0.6
- 0
- -
w 5]
o]
S 0.4 S 00.4
[s¥}
a
3
M
= 0.2 0.2
Algorithm 1 ——
Algorithm 2 -
0 : :) 0) .) -
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
False Positive Rate Recall
Figure 6.8: Example of typical ROC curves. Source: Figure 6.9: Example of typical Precision-Recall
www.chioka.in (2014) curves. Source: www.chioka.in (2014)

The Area Under the Curve - Precision Recall (AUC-PR) is another popular ranking metric,
similar to the AUC-ROC. A PR curve is plotting Precision versus Recall. Since precision and
recall do not take true negatives (TN) into account, the AUC-PR metric can be used in class
imbalance problems where there is a 'False’ majority class. Figure 6.9 shows the AUC-PR
curves for two algorithms. An optimal classifier would reach the top right corner in the
AUC-PR curve, where the recall and precision are both equal to 1. Since the AUC-PR metric,
like the AUC-ROC metric, is computationally expensive to compute, the Average Precision
(AP) metric can be used instead. The AP summarizes the AUC-PR as the weighted mean of
precision achieved as each threshold, with the increase in recall from the previous threshold
used as the weight. The formula for the AP is shown in Equation 6.2, where B, and R,, are
the precision and recall at the n-th threshold.

AP = Z(Rn —R,_)P, 6.2)

6.2. Classifier Framework 45

The AUC-ROC does not apply to this research since, due to the class imbalance, the
dis-proportionally large number of true negatives (TN) will result in a low False Positive Rate
across the board. The same is true for the AUC-PR and Average Precision (AP), where the
large number of false positives (FP) will result in a low precision.

For the purpose of this research, the classification output will be used to construct a
sub-network selection. Section 4.3 discussed several strategies for determining which
aircraft to include in the sub-network. e.g. all aircraft with a probability above X. Moreover,
given the imbalance of the ARP dataset, where only 0.25% belongs to the minority class,
recall and specificity are important metrics to use when evaluating the quality of the classifier.

By replacing the precision with specificity in the AUC-PR and AP measures, the Area Under
the Curve - Specificity Recall and Average Specificity are created for this research. Specificity
measures the rate of correct predicted candidate aircraft that do not help with the recovery
solution and recall measures the rate of the correct predicted candidate aircraft that do help
with the recovery solution. Both specificity and recall should thus be maximized.

6.2.4. Data Pre-processing

Given that machine learning algorithms learn from data, data gathering and data quality are
crucial for obtaining good results. This section discusses the data (pre-)processing steps that
were taken before training the random forest classifier.

Dropping Columns

During feature generation several columns were added to the feature dataset that should not
be used when training the classifier. These columns were primarily added for trace-ability
and verification purposes, e.g. the iteration number, candidate aircraft tail number,
disrupted aircraft tail number and the disrupted flight number. Furthermore, a column
was added that verified that the candidate and disrupted aircraft belong to the same family.
After it was verified that this was indeed the case for the entire dataset, the column was
removed, since it did not hold any predictive value.

Moreover, after the random forest was trained and validated, feature analysis revealed that
several columns were highly correlated and some features had a negative impact on the
performance of the random forest. These features were also removed from the feature dataset
in following iterations. This will be discussed further in Section 6.2.7.

Imputing Missing Values

One common problem in real world situations is that of erroneous data, where the gathered
data is incomplete, noisy and/or inconsistent. In the generated features presented in Table
E.1 in Appendix E, several columns have missing values. The random forest classifier
presented by Breiman et al. (1984) and the implementation of Scikit-learn that was used
for this thesis do not handle missing values, hence they need to be imputed beforehand.
One obvious way of dealing with missing data is to delete those instances, however by doing
so valuable information for training will be lost from the other features. Imputing missing
values often leads to better results. There are several strategies for imputing values. It is the
practitioners task to choose the best method based on the data type. For numerical data,
the mean, mode or median of the column can be used to impute missing values. Another
common method is to replace missing values with a constant numerical value far outside
the normal range for the column, e.g. 9999. For categorical data, the missing data can be
replaced with the most frequent category value or can be given its own category. Finally, for
both numerical and categorical data, a separate prediction algorithm can be used to predict
the missing values. For the purpose of this thesis, the missing values were imputed with
a numerical value far outside the normal range of the feature. This way the instances with
missing values can be kept, while it should be straightforward for the classifier to filter out
these outliers. Table 6.3 shows the features that contain missing values and the values that
were used to impute the missing values.

46 6. Machine Learning Classifier

Table 6.3: Imputed values for feature columns with missing values

Feature Value Reason for NaN Imputed
Range value
c_econ_If_std 0-1 Single flight on flight string, so no std. dev. 0
c_buss_If std 0-1 Single flight on flight string, so no std. dev. 0
same_airport_min_before O-inf Candidate not on same airport as disrupted -999
same_airport_min_after 0-inf Candidate not on same airport as disrupted -999

One-Hot Encoding

The feature space consists of both numerical and categorical data. Since there exists an
imbalance between the minority and majority class, oversampling techniques are employed
to correct this imbalance, as will be discussed later in this section. The algorithm that
was used for re-sampling the instances only handles numerical data, hence the categorical
data needed to be converted to numerical data. Furthermore, the Scikit-Learn 0.20.1
implementation of the random forest classifier that was used for this research does not
accept categorical features. The most straightforward conversion technique is label encoding
where the categories are simply replaced by integers, e.g. 737’ becomes 1, ’A320’ becomes
2, etc...However, integer values have a natural ordered relationship between each other
and many machine learning algorithms will assume that a 5 is better than a 2. For most
categorical variables, where no ordinal relationship exists, label encoding is not advanced
enough and will likely result in poor performance.

For the categorical features in the dataset for this thesis, no ordinal relationship exists, and
one-hot encoding was used to convert the categorical data to numerical data. The idea behind
one-hot encoding is to apply binarization to the categorical data, where the label encoded
variables are removed and a new binary variable is added for all unique integer values. Table
6.4 shows the difference between label encoding and one-hot encoding.

Table 6.4: Difference between label encoding and one-hot encoding for converting categorical data to numerical data

Label encoding One-Hot encoding
Aircraft Type Categorical No. Range Is_A320-200 Is_737-700 Is_MD-88 Range
A320-200 1 3000 1 0 0 3000
737-700 2 2930 0 1 0 2930
MD-88 3 2045 0 0 1 2045

Splitting Data

The dataset available after one hot encoding is divided into a train and test set for validation
purposes. The classifier is trained on the train set and validated on the test set. The train-test
split is performed before training the classifier, since instances from the test set may not be
used during training of the model, to ensure objective validation after training the model.
Typically, the test set comprises 15%-30% of the total available dataset. For this thesis a
75%/25% Train/Test split was used.

Class Imbalance Corrections

The instances in the feature dataset where an aircraft helped with a disruption is
approximately 0.25% of the total instances. This can be explained in part by the fact
that for most of the disruptions, no other aircraft is needed for the optimal recovery solution.
For example, most disruptions cause a delay < 30 minutes. For the majority of these
disruptions, the best option would be to delay the flights on the flight string of the disrupted
aircraft. Furthermore, when additional aircraft are required to aid with the recovery of the
disruption, more often than not the number of aircraft will be small compared to the size of
the (sub-)fleet. In literature, e.g. Weiss (2013), a data set where the number of observations

6.2. Classifier Framework 47

of one class are significantly smaller than the observations of the other class, is called an
imbalanced dataset. This imbalance can lead to an underestimation of the probability of
belonging to the minority class.

Common approaches for handling class imbalance can be divided into data level methods
and algorithmic level methods. The basic idea of data level class balancing methods is
to re-sample the dataset to create a more equal class distribution. This can be done
by randomly replicating occurrences of the minority class, which is called random
over-sampling. Inversely, the dataset can be balanced by randomly deleting occurrences of
the majority class. Both methods have their flaws. Over-sampling increases computation
time, since the dataset becomes larger. Moreover, it increases the likelihood over overfitting,
since rules may be constructed that seem accurate but in reality only cover a single replicated
instance. Under-sampling risks discarding useful information which could be important
to the learning process. Moreover, the selected subset of instances could be biased and
therefore not representative of the entire class. Luckily, there exists a more intelligent way
to over-sample, where instances are generated using some interpolation technique. Chawla
et al. (2002) presented the Synthetic Minority Over-sampling Technique (SMOTE), which
is a popular method for advanced over-sampling. The idea is to create new minority class
instances by interpolating between multiple minority class instances that lie together. By
using SMOTE, overfitting is reduced and the minority class decision boundaries are spread
further into the majority class space.

One popular algorithmic level method for handling class imbalance is changing the probability
threshold between the classes. The output of a classification problem is usually a set of class
probabilities which describe the probability of an instance belonging to a class. For binary
classification, the threshold is 50% by default. All probabilities > 50% would be classified
as 1 or True and all probabilities < 50% as O or False. Changing this threshold affects the
output and performance of the classification model.

Another algorithmic level approach is called cost-sensitive learning. By default, all
misclassification is treated equally, without rewarding identification of of the minority class.
Cost-sensitive learning defines a matrix that specifies the cost of misclassifying an instance
of class A as class B. Using these cost the misclassification of the minority class can be
penalized more heavily than misclassification of the majority class. A common set-up is to
have the cost equal to the inverse of the proportion minority to majority class. This increases
the penalization as the class size decreases.

030 T =
c — —— —
o —— —
3 0.25 1
(5}
4
& 020 —_
(0]
&
€ 0.15
2
S 0.10
S
2 0.05
g
0.00 4 — — — — — — — —
N ‘\/'\ N “J'\ & .\é‘\ .;'-\Q RO (\:\ N 0: N .9"\ ,\'\Q
L L ELEEL oo Y LY o ow
F PP E J$ JFT PP PLPSE §9
S F S F S 5 ¢ S S5 S 5 S S5 @5
g & & &8s g & 2 2 °
9 L () () 9 9
P& F L FTFE §FFF o o &
*() S xo N xo S S S *C) *() *C) g
N v & < » v ® 5
N N N S N N N N
SO S N S >
Q Q Q $ Q 9 9 &
'S 'S 'S S N N N o
& & & & @ @ @ N
& & & & S
))) 3
$ & $ &
3 S 3 3
3

Figure 6.10: AP scores for different class balancing strategies

48 6. Machine Learning Classifier

For this research several combinations of the mentioned re-sampling techniques and
cost-sensitive learning were tested to identify the impact of each method and the (combination
of) method(s) best suited for the problem. Figure 6.10 shows the results of these technique
and parameter combinations. It should be noted that this was not an exhaustive search of
all possible parameter combinations, nonetheless it can be seen that including cost-sensitive
learning had the largest impact on the validation scores. Furthermore, SMOTE scored more
consistent than under sampling. Therefore, the combination of SMOTE and Cost-sensitive
learning was used when training the random forest classifier.

After the classifier was trained, the confusion matrix for different probability thresholds
was obtained to determine the recall and specificity at each threshold. The results will be
presented in Section 6.3.

6.2.5. Hyperparameter Optimization

The random forest classifier algorithm has specific hyperparameters that govern how the
algorithm works, such as the maximum depth of the trees or the number of trees. Unlike
the model parameters, such as the split points, hyperparameters are defined before training.
The goal of hyperparameter optimization is to find the set of hyperparameters that, given a
training dataset, will return the best possible performance on the test dataset, as measured
by the evaluation metric.

Since evaluating the objective function of an algorithm to find the validation score can be
expensive, trying all possible combinations of the hyperparameters is often impossible. For
each possible combination of hyperparameters, the model has to be trained, predictions
will have to be made and the score needs to be computed. With a large number of
hyperparameters, some of which are continuous, and complex models, this soon becomes
intractable.

The simplest way of performing hyperparameter optimization is by exhaustively searching
through a manually set discrete subset of the hyperparameter space, a so called grid
search. Although simple, grid search suffers from the ‘curse of dimensionality’, where the
computation time grows exponentially with the number of hyperparameters and the number
of options per parameter. Because the hyperparameter space is discretized, grid search
does not guarantee finding the optimal set of hyperparameters. Random search replaces the
exhaustive searching by selecting random combinations of hyperparameter values. Bergstra
and Yoshua (2012) showed that random search out performs grid search.

Both grid search and random search make uninformed decisions when choosing the next
hyperparameters to evaluate, and as a result, often spend significant time evaluating poor
performing hyperparameter combinations.

To optimize the hyperparameters of the random forest classifier for this research, Bayesian
optimization was used. The Bayesian Optimization algorithm builds a probabilistic
surrogate model that approximates the objective function f(x) of the machine learning
model. Typically, a Gaussian Process (GP) is used as the surrogate model. By sequentially
evaluating hyperparameter combinations, based on the surrogate model and then updating
the model, Bayesian optimization, gathers information with each iteration which leads to
the location of the optimum. The use of all available information from previous iterations of
f(x) instead of relying on the local gradient and/or Hessian approximations is what makes
Bayesian optimization powerful. The resulting procedure can find the minimum of complex
non-convex functions with relative ease, i.e. without extensively evaluating f(x), which is
typically expensive.

An acquisition function is used to determine the next hyperparameter combination to
evaluate. A popular choice is the Expected Improvement, which is the expected improvement

in the value of f(x) over the best value of f yet seen. This can be written as:

El(x) = E(max(f(x) — f,0)) where f is the maximum value of f seen so far (6.3)

6.2. Classifier Framework 49

This acquisition function tries to balance exploration, e.g. hyperparameter combination for
which the outcome is uncertain, with exploitation, e.g. combinations that are close to the
current best guess. Snoek et al. (2012) showed that Bayesian Optimization is able to obtain
better results compared to both grid and random search, in fewer evaluations.

Figure 6.4, in the beginning of this chapter, shows the process of Bayesian Hyperparameter
Tuning. Every iteration, a set of hyperparameters is chosen based on the acquisition function.
For every iteration, K-fold cross validation is used to evaluate the performance of the random
forest with the hyperparameters. An example of 5 fold cross validation where the training
set is divided into five equal-sized mutually exclusive subsets is given in Figure 6.11. For
each subset, the classifier is trained on the union of the other sets. The performance of the
classifier over all subsets is then averaged. By performing K-fold cross validation the training
set is kept larger and the sampling bias in the training set is decreased.

Iteration

1 |'i>51

|'=(>Ez

5
1
|=>E3 - E=§2Ei

|'=(>E4

|

|

|

|

| |'=(>E5
. U

Training folds Test fold

a
L

Figure 6.11: Example of K-fold cross validation where K=5

One of the hyperparameters that needs to be set for the random forest classifier is the number
of trees in the forest. In general, as many trees as possible should be used, since more trees
does not negatively impact the predictions of the classifier. However, a forest with more
trees does take longer to train and takes longer to generate predictions. Furthermore, the
incremental performance improvement decreases with a larger number of trees. To determine
the optimal number of trees for the random forest classifier, the performance of different sized
forests was compared. Figure 6.12 shows the impact of changing the number of trees. All
other hyperparameters were kept constant. The analysis was performed three times, where
the random state of every classifier was changed, to ensure the resulting optimal number
of trees holds across different random forests. From the graph, it can be seen that the
performance of the classifiers levels off around 200 trees. Therefore, the number of trees in
the random forest classifier was fixed on 200.

0,8

e Random_state=1 ¢ Random_state=2 Random_state=3
L]
0,7 P . @-------=--<
. - T e - - . °
T -

<
S -
w 06 °
>
2
S
=
‘S
e
& o5
[
oo
i
$
< 04

0,3

0 50 100 150 200 250 300 350

Number of Trees

Figure 6.12: Impact of number of trees in random forest on model performance

50 6. Machine Learning Classifier

After the number of trees in the forest was determined, the random forest classifier was
trained on the 75% Train Split for 100 iterations with 5-fold cross validation using Bayesian
Optimization. The following hyperparameters were tuned:

* max _depth: between 1-50
The maximum depth of each tree in the forest. Deeper trees capture more splits and
more information about the data. However, deeper trees also have a tendency to over
fit on the training data, which decreases their ability to generalize to new data.

* min_samples_split: between 10-100
Describes the minimum number of instances required to split an internal node in the
tree. A lower number of instances could result in overfitting or a tree capturing noise,
a higher number could result in underfitting.

* min_samples_leaf: between 10-150
A leaf is an end node in a tree. This parameter determines the minimum number of
instances that should be contained in one leaf. A low number could result in the tree
capturing noise, a higher number could result in underfitting.

e max features: between 1-all
Random forests consider only a random subset of features per tree. This parameter
determines the maximum number of features to include per tree. The power of Random
Forests is that they do not consider all features in every tree, however more features
allow for better splits in a tree.

Section 6.3 presents the optimal hyperparameters that were found after tuning. Section
8.3.3 discusses the sensitivity of the classifier’s performance to the hyperparameters. After
hyperparameter optimization, the optimal hyperparameters are used to construct a random
forest classifier. This model needs to be validated on the 25% Test Split to check the
performance of the classifier on new data. This validation is discussed in the next section.

6.2.6. Classifier Validation

The detailed framework in Figure 6.4 shows a train/test split where the training data is used
to optimize the hyperparameters of the classifier, as discussed in the previous section. The
test split is used to validate the trained classifier. Since the classifier was not trained on this
dataset, the validation score measures how well the classifier is able to generalize to new data.

The average specificity score of the classifier on the test split equals 0.7885. The score
shows that there is some predictive value in the feature space, however the performance can
probably be improved. If improvement is indeed possible, this can be achieved by increasing
the quality of the feature space (i.e. feature engineering), more elaborate hyperparameter
optimization or by using a more complex machine learning algorithm. The following section
will discuss the feature analyses, which aims to identify potential areas for improvement in
the generated feature space.

6.2.7. Feature Analyses

During feature generation, 46 features were created and added to the feature space. Most
likely, not all of those features are equally important for the final algorithm performance.
Unnecessary features decrease model speed and interpretability. @ Moreover, keeping
unnecessary features could decrease generalization performance of the final random forest
classifier. This section describes several analyses that were performed to determine feature
importance and to discover relationships. Section 6.2.8 will discuss how these analyses were
used to improve the feature space.

Feature Importance

The Scikit-Learn 0.20.1 implementation of the random forest classifier computes the Gini
importance, as described by Breiman et al. (1984), automatically. This method determines
the feature importance based on the number of times the feature is used in the random forest

6.2. Classifier Framework 51

and the level at which the feature is used, which is a measure of the discriminatory power of
the feature. However, Strobl et al. (2007) benchmarked several feature importance measures
and concluded that “the variable importance measures of Breiman’s original Random Forest
method ... are not reliable in situations where potential predictor variables vary in their scale
of measurement or their number of categories.” The paper showed that the model-agnostic
permutation feature importance, did not suffer from the same bias and performs better
on problems where the features vary in scale and/or their number of categories. Using
this method the difference in model performance is measured when one of the features
is permuted or randomized. If the performance decreases, the feature is important, since
the model relied on the feature for classification. If the feature in unimportant, permuting
its values should not impact the model performance. Figure 6.13 shows the permutation
importance of the features in the dataset.

0,20

, L1 1 1 T T

Figure 6.13: Permutation feature importance of features in the dataset

According to Figure 6.13, some features actually have a negative impact on the classifier’s
performance. The following can be deduced from the figure:

* Most features related to the candidate or disrupted aircraft type have zero importance.
Only if the candidate is of type MD-88 or if the disrupted aircraft is of the type MD-88,
A320-212, A320-211 or 757-232 does this have any significance for the predictions.
This could be due to specific differences in the characteristics of the aircraft types within
a family.

e The combination features that describe whether the candidate can take
over the disrupted flight are most important, i.e c_pax_buss_vs_d_buss_max,
c_pax_econ_vs_d_econ_max and c_range_vs_d_range.

* Interestingly, the combination features c_pax_buss_vs_d_buss_f{l and
c_pax_econ_vs_d_econ_fl have the most negative impact on the performance of
the classifier. This may be because, if two aircraft are tail switched the candidate
aircraft should be able to take over the entire flight string and not only the one disrupted
flight.

Feature Correlations

Since many of the features that are generated for this research are linear combinations of
each other, there is a high probability that the features in the dataset are correlated. Since a
lower number of features results in faster training, faster predictions and more interpretable
models, it is useful to determine which features are correlated. If two features are highly
correlated, one of those features can be removed without loosing much information. Figure
6.14 shows the feature correlation matrix for the top 25 correlated features. The features
regarding the aircraft types and families are excluded to ensure readability. Appendix F
shows the top 100 feature correlations.

6. Machine Learning Classifier

x
X] 9 S
g 9 o -
£ 5 5 2 &5 5 %
1 < VA i < =
3 IS g o 2 S £ =
K g S & o g o o @
N~ S S o o 9 L oF 2
e 5 5 ° T N S S s & & & g
3 g £ = = © ° 3 o ¥ ° < 9 = S 1] 1 3
3 , = Y X] x X X] ~ 1 < § T o R S
i o = DY o < T o o = </ ! i~ 2 i 1 1 1)
5 5§ 8 5 8 s g £ ¢ g 9 g 1 o & 5 oLg g o
53585 3 8 $835 & g3 3 8 8 5 g ¢ S8 ¢ ¢ 35
Q' X X X X = S X X S X X X X o] ~ IS IS ~ Q IS IS IS Q
5 & 5 5 S
& s § s § R &3 g £ 3 3 3 3 s 8 g8 & X o2 & & &
o B w o o o ol o J o o o oo of ol ot of
c_pax_econ_vs_d_cap_econ 0,96 0,94 0,93 0,97 0,88
c_TAT_vs_d_TAT 0,99 0,92 0,96 1,00 0,98 0,85 0,23 0,20 0,59
0,99 0,91 0,96 0,84

c_pax_buss_vs_d_cap_buss
¢_DOC_vs_d_DOC

0,91 0,81 0,89 0,92 0,86 0,75 0,91
0,95 0,69 0,53 0,45 0,45 0,43 0,55 0,57 0,37 0,41 0,56 0,52 0,49 0,37 0,29

0,10 0,09 0,25
0,34 0,32 0,36 0,36 0,14

d_cap_pax_econ| 0,87 0,86 0,92 0,82 0,82
c_cap_pax_econ 0,57 0,63 0,63 0,56 0,58 0,63 0,56 0,69 0,50 0,95 0,60 0,59 0,34 0,87
c_pax_econ_vs_d_econ_fl 0,82 0,91 0,77
c_TAT 0,59 0,60 0,65 0,58 0,57 0,60 0,58 0,53 0,54 0,52 0,34
c_cap_pax_buss 0,68 0,65 0,75 0,67 0,64 0,66 0,66 0,36 0,61 0,84 0,33 0,34 0,38
0,57 0,55 0,55 0,57 0,61 0,52 0,35 0,32

c_range_vs_d_range
d_cap_pax_buss
c_pax_buss_vs_d_buss_fl

0,98 0,82 0,94 0,71

0,84 0,35 0,63 0,55 0,23 0,52 0,66 0,64 0,45 0,51 0,66 0,17 0,60 0,17 0,07

0,97 0,86
0,88 0,56 0,48 0,57 0,42 0,39 0,53 0,55 0,46 0,42 0,53 0,41 0,47 0,33 0,26

0,14 0,05 0,09 0,38 0,13

0,28 0,21 0,26 0,33 0,12

d_pax_econ_max 0,77
d_pax_econ_fl 0,67 0,87 0,56 0,79 0,53 0,42 0,47 0,40 0,29 0,46 0,48 0,57 0,35 0,46 0,40 0,41 0,36 0,25 0,27 0,21 0,23 0,28 0,10
d_pax_buss_fl 0,95 0,73 0,78 0,34 0,61 0,48 0,22 0,57 0,62 0,60 0,34 0,48 0,62 0,17 0,56 0,15 0,06 0,13 0,05 0,09 0,36 0,12
d_pax_buss_max 0,83 0,37 0,64 0,50 0,23 0,53 0,64 0,62 0,41 0,50 0,64 0,19 0,59 0,17 0,08 0,15 0,07 0,11 0,38 0,13
c_DOC 0,48 0,41 0,49 0,47 0,44 0,41 0,47 0,51 0,57 0,04 0,01 0,12
d_TAT 0,55 0,46 0,46 0,58 0,56 0,39 0,58 0,44 0,53 0,33 0,30 0,28 0,29 0,35 0,07
d_range 0,60 0,14 0,00 0,62 0,08 0,13 0,14 0,02 0,14 0,13 0,89 0,05 0,55 0,44 0,53 0,65 0,66 0,25 0,18
c_range_vs_d_range_flight 0,19 0,30 0,22 0,19 0,21 0,32 0,90
c_range 0,14 0,26 0,18 0,14 0,15 0,26 0,15 0,07 0,60 0,82 0,82 0,22
d_DOC 0,57 0,45 0,41 0,41 0,47 0,44 0,36 0,46 0,20 0,51 0,03 0,09 0,06 0,09 0,13 0,11
0,87

c_pax_econ_vs_d_econ_max

Figure 6.14: Feature correlation matrix for top 25 correlated features. The features regarding aircraft types and families are

excluded.

From the feature correlation matrix and the top 100 feature correlations in the appendix the
following can be deduced:

* Either the Disruption_type_AC_Unavailable or Disruption_type_Delay can be dropped
since these are inversely correlated, e.g. a disruption is either caused by an aircraft

unavailability or by a delay.

* The business and economy load factor are highly correlated. Since load factor

information was not separately available for economy and business class, it was
assumed that these are equal. This does not necessarily hold for a real airline schedule.

* The features related to the Turn-Around-Time, Direct Operating Cost and passenger
capacities are highly correlated. This makes sense since larger aircraft can
accommodate more passengers, have a higher TAT and a higher DOC.

Feature Histogram Analysis
Some features have a direct relation with the target variable, i.e. class.

a figure was created which shows the histograms of both classes. The histograms for all
features can be found in Appendix G. Most of the histograms showed no clear relationship
between the feature value and the class. Figures 6.15, 6.16 show the histograms of
the same_airport_min_after_min and c_pax_econ_vs_d_econ_f{l features, respectively. These
histograms indicate a slight difference in the distribution of the two classes over the feature
value. Figure 6.15 shows that candidate aircraft that arrive or depart quickly after the STD
or STA of the disrupted aircraft/flight, have a higher probability of not helping solve the
disruption. Candidates that are on the same airport between 400-600 minutes after the STD
or STA of the disrupted aircraft/flight have a relatively high probability of helping solve the
disruption. Figure 6.16 shows that candidate aircraft that do not have enough capacity in
economy class for the number of passengers booked on the disrupted flight, i.e. a negative

value, have a close to zero probability of helping solve the disruption.

For all features

6.2. Classifier Framework 53

same_airport_min_after_min c_pax_econ_vs_d_econ_ﬂ
True
False 0.0175 True
0.005 1 False
0.0150

0.006

0.004 1 0.0125-
0.003 4 0.01001
i 0.00751
0.0024 & 1+

i
0.001 N ‘

0.00251

0.000 -

- v y y 0.0000-
0 200 400 600 800 1000 1200 1400 —-100 —50 50 100 150

Figure 6.15: Histogram of feature: Figure 6.16: Histogram of feature: c_pax_econ_vs_d_econ_fl
same_airport_min_after_min

6.2.8. Feature Engineering

The feature analyses resulted in a better insight into the importance and predictive value of
the features. Based on the analyses, several changes were made to the feature space. These
changes are discussed in this section.

The analyses showed that the features related to the schedule of the candidate aircraft with
respect to the origin and destination airport of the disruption has some importance and shows
some discriminatory power with respect to the classes. However, these features combined
information from the origin and destination airport of the disruption. Table 6.5 shows the new
features by which they have been replaced. These replacements features split the information
for the origin and destination airport. Descriptions of all added features can be found in Table
E.2 in Appendix E.

Table 6.5: Feature replacements after feature analyses

Initial Feature Replacement Feature(s)

same_airport_min_before d_origin_min_before_min
d_dest_min_before_min

same_airport_min_after d_dest_min_before_min

d_orig_min_before_min
same_airport_1/2/3hr_before d_orig_airport_1/2/3hr_before

d_dest_airport_1/2/3hr_before
same_airport_1/2/3hr_before d_orig_airport_1/2/3hr_before

d_dest_airport_1/2/3hr_before

After analyzing the features, it was noticed that not all information related to the disruption
was captured in the feature space. For that reason the following features were added:

* Disruption_cause: The cause of the disruption; Airline, NAS, Weather or
Weather_Group

* Disruption_duration: The duration of the disruption in minutes

Although the features related to the schedule of the candidate aircraft captured whether the
candidate was on the same origin or destination airport as the disrupted aircraft/flight, the
feature space did not contain any information on the availability of the candidate. For this
reason the following features were added:

* c_no_{flights: The number of flights scheduled for the candidate aircraft in the time
window

54 6. Machine Learning Classifier

* c_flights_duration: The sum of the flight duration for the flights scheduled for the
candidate aircraft in the time window

* c_ground_time_d_orig airport: The total time the candidate aircraft spends on the
ground at the origin airport of the disrupted aircraft/flight

* c_ground_time_d_dest_airport: The total time the candidate aircraft spends on the
ground at the destination airport of the disrupted aircraft/flight

The feature analyses also suggested that several features could be removed from the feature
space, either because they hold no predictive power or because they are highly correlated
with another feature. The following features have been removed from the feature space:

* c_pax_buss_vs_d_buss_fl and c_pax_econ_vs_d_buss_{fl, since they showed to have a
negative impact on the classifier’s performance.

* c_pax_buss_vs_d_buss and c_pax_econ_vs_d_econ, since they are highly correlated with
c_pax_buss_vs_d_buss_max and c_pax_econ_vs_d_econ_max, respectively. Intuitively,
relating the candidate’s capacity to the actual maximum number of passengers on the
flight string of the disrupted aircraft makes more sense than relating the candidate’s
capacity to the disrupted aircraft capacity.

* c_ac_family and d_ac_family, since they hold no predictive power. For all cases, the
aircraft family of the candidate and disrupted aircraft are equal.

* c_buss_lf mean and c_buss_If std, since they are highly correlated with the economy
load factor features.

After the changes to the feature space were made, a new training dataset was generated.
Using this new dataset another random forest classifier was hyperparameter optimized.
The next section will discuss the characteristics and performance of the new random forest
classifier.

6.3. Final Random Forest Classifier and Model Analysis

This section will present the characteristics of the random forest classifier that was
created and used in the case study, discussed in Chapter 8. Furthermore, the performance
of the classifier is discussed and the choice of using the random forest algorithm is evaluated.

The following optimal hyperparameters were found after 5-fold cross validation using
Bayesian hyperparameter optimization with the new feature space:

* n_estimators: 200 * max_features: 29 e min_samples_split: 67
* criterion = ’gini’ * max_depth: 33
* class_weights: 0:1, 1:10 * min_samples_leaf: 67

The sensitivity of the classifier’s performance to the hyperparameters is discussed in Section
8.3.3.

Section 6.1 of this chapter discussed the bias-variance trade-off and learning curves. Figure
6.17 shows the learning curves for the final random forest classifier. The curves indicate a
low bias but high variance which indicates that the model probably overfitted to the training
data and will perform worse on new data. Section 9.2 will present several recommendations
to decrease the overfitting and increase the model performance.

6.3. Final Random Forest Classifier and Model Analysis 55

e o o =
~ 3] © =}

Acerage-Specificity

o
o

Cross-Validation Score

= = Training Score

o
wn

o
»

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Training Instances

Figure 6.17: Learning curves for the final random forest classifier. The shaded area indicates one standard deviation.9

The final classifier has an average specificity score of 0.89, compared to 0.79 for the initial
classifier. Figure 6.18 shows the Specificity-Recall curves for both classifiers. The 0.89
average specificity score of the random forest classifier implies both a high specificity and
recall. This in turn means that, in most cases, the classifier is able to correctly predict
the class of an aircraft, i.e. if the candidate aircraft will help solve the disruption. Figure
6.19 shows the recall and discard% at different probability thresholds. The discard% is the
number of aircraft that are classified as not helping over the total number of aircraft. The
chart shows that at a probability threshold of 0.26, the recall equals 95% and 50% of the
aircraft are discarded. In other words, the random forest classifier can predict the aircraft
that helped solve a disruption with 95% certainty while allowing 50% of the aircraft to be
removed for optimization. This seems promising, but the case study will determine the overall
performance of the classifier when implemented in the final decision support system.

1,0
’ ——Recall

08) — — Discard %

0,8

o
o

Specificity
Score

0,4]

o
S

0,2 /

0,2 Final Classifier, AS: 0.89 \ ' ’

-=-=- Initial Classifier, AS:0.79 \ ,

0,0 0,0 ——
0,0 0,2 0,4 0,6 0,8 1,0 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0
Recall Probability Threshold
Figure 6.18: Specificity-Recall Curve for the initial and Figure 6.19: Recall and Discard% at different probability
final random forest classifiers thresholds

In the beginning of this chapter, the algorithm selection section discussed different
supervised learning algorithms and the choice for the random forest algorithm. The random
forest algorithm was chosen based on the results of Olson et al. (2018), the qualitative
comparison by Kotsiantis et al. (2006) and discussions with data scientists at ORTEC.
Based on the performance of the final classifier, the algorithm choice seems justified. The
performance difference of the initial and final random forest classifier shows the impact of
feature analyses and feature engineering. Further improvements to the feature space and
further investigation into the potential label noise are likely to result in a better classifier.
The case study in Chapter 8 will determine how the classifier performs when implemented in
the DSS with the sub-network selection algorithm. Moreover, the performance of the system
on a different time period than the period used for training the classifier, will determine the
classifier’s ability to generalize.

Verification and Validation

This chapter will discuss the verification and validation of the decision support system (DSS).
Section 7.1 will present the verification of the system with several examples for which the
results are easily verified. From these examples it can be determined whether the model
behaves as expected. Validation of the system is discussed in Section 7.2, which will
summarize discussions with an expert from industry.

7.1. Verification

Verification aims to prove that the developed DSS is constructed properly and behaves as
expected. The verification will be performed in two steps. Section 7.1.2 will discuss the
verification of only the optimization model, while Section 7.1.3 will discuss the verification of
the whole DSS. Throughout this section, verification will be discussed on the basis of several
examples which can be verified by hand. For each example a time space representation will
be shown and the objective value of the recovery solution will be verified by calculating the
disruption cost by hand. To better understand the objective function, Section 7.1.1 will first
present the different cost factors that are used in this objective function.

7.1.1. Cost Factors

Section 4.1 briefly discussed some of the different cost factors for the aircraft recovery model.
This section will further elaborate on the different cost factors to ensure full understanding
of the objective function, which will be be extensively discussed throughout this chapter to
verify different examples. The soft cost used in the model, which represent the delay cost
per passenger per minute of delay are given in Figure 7.1. These cost are equal to the soft
cost used by Vink et al. (2019) and based on the research on delay cost by Cook et al. (2012).
The hard cost correspond to the legal compensation passengers are entitled to under local
legislation, and are shown in Figure 7.1 as well. When a flight is cancelled, the soft cost
corresponding to 10 hours of delay and the hard cost corresponding to 8+ hours of delay are
combined.

57

58 7. Verification and Validation

$6,00
= Softcost
$5,00 = Hard cost
< 4,00 = Total cost
z)
~
& $3,00
[a
~
2 $2,00
§ s _— |
$1,00 |
/S
s
0 60 120 180 240 300 360 420 480 540 600
Delay [min.]
$1.200
= Soft cost
1.000
> = Hard cost
$800 ——Total cost
<
&
S $e00
]
o
o
$400
$200
4
0 60 120 180 240 300 360 420 480 540 600
Delay [min.]

Figure 7.1: [Top] Delay cost (soft, hard, total) per minute per passenger. [Bottom] Delay cost (soft, hard, total) per passenger.
Adapted from Vos et al. (2015)

7.1.2. Verification of Optimization Model

In this section the optimization model will be verified using several examples that can be
verified by hand. Network tests will explain the effect of different disruptions and, where
applicable, how these disruptions propagate through the network. Furthermore, an example
regarding the modified connecting cost matrix will explain the effect of allowing connecting
flight delays on the objective function. Additional verification scenarios are presented by Vink
(2016), which used the same optimization model.

One aircraft, one delay

In this verification scenario one aircraft is scheduled to fly five flights in the time window.
This flight schedule is shown in the top time-space graph in Figure 7.2. Flight 1, from PNS
to MIA, is delayed 90 minutes. The optimal recovery solution is depicted in the bottom graph
in the same figure.

As a result of the disruptions, all subsequent flights of the aircraft are delayed. Since there is
some slack between flights 1-2 and 3-4 to absorb the delay, flight 5 is not delayed and flown
as scheduled. The minimum turn-around-time of 30 minutes (for this aircraft) is respected
between all flights.

7.1. Verification 59

pNs—\
] 1

Airports

11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00

Time
™ \
) 1

g 2/ \3
2 n \ —. T~ ~ R
ona] T—~..7

11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00
Time

Figure 7.2: Optimal recovery solution given the delay of flight 1. [Top] Original schedule. [Bottom] Recovered flight schedule.

The optimizer found the solution within 2 seconds, with an objective function value of $29, 463.
Table 7.1 shows the cost breakdown for the recovery solution, which have been calculated
by hand from the recovery solution. The cost of the solution is $29,466, which is $3 more
than the solution found by the optimizer, this is due to rounding in the optimizer, where cost
are rounded to the nearest integer. In the original schedule, no flights are delayed, hence
the objective value of the optimizer consists of only the direct operating cost (DOC). The DOC
for this aircraft type, Embraer 170 (E70), equals $29,90/min. The cost of the disruption,
consisting of the soft cost and hard cost, equals $11,227. Since all flights are flown by the
original aircraft, and the aircraft reaches it’s final destination, no penalty cost are induced.

Table 7.1: Disruption cost breakdown for recovery solution shown in Figure 7.2

. Duration Pax. Pax. Delay Soft Hard
Flight [min] Economy Business [min] Cost Cost poc
1 100 60 8 90 $5.633 $840 $2.990
2 110 60 8 60 $2.356 $840 $3.289
3 120 60 8 50 $1.519 $1 $3.588
4 140 60 8 10 $38 $1 $4.186
5 140 60 8 0 - - $4.186
Total $9.545 $1.682 $18.239

Two aircraft, one delay

The following verification scenario has the same aircraft as the previous scenario, with the
same flight schedule. However, here, another aircraft has scheduled flights within the time
window as well. Flight 1, from PNS to MIA, is delayed by 100 minutes. Figure 7.3 shows the
original flight schedule in the top graph and the optimal recovered schedule in the bottom
graph. It can be seen that, instead of delaying the flight string of aircraft 1, a tail swap
between the two aircraft occurs on ORD. The minimum turn-around-time of 30 minutes (for
both aircraft) is respected between all flights. Moreover, the tail swap limit of 180 minutes
before scheduled departure is respected as well.

60 7. Verification and Validation

NN
N

-
"

11:00

— N
AN

16:00

Airports
2
I
v

17:00 18:00 19:00 20:00 21:00 22:00 23:00

Time

12:00 13:00 14:00 15:00

T
\4 5/
.../

21:00

\1 =
T
AN

16:00

MiA /
DCA 1

12:00

17:00 18:00 19:00 20:00 22:00

Time

13:00 14:00 15:00 23:00

Figure 7.3: Optimal recovery solution given the delay of flight 1. [Top] Original schedule. [Bottom] Recovered flight schedule
with tail swap.

The optimizer found the solution within 2 seconds, with an objective function value of $47, 607.
Table 7.2 shows the cost breakdown for the recovery solution, which have been calculated
by hand from the solution. Both aircraft are the same type, Embraer 170 (E70), for which
the direct operating cost equals $29,90/min. The cost of the solution is $47,607. The cost of
the disruption, which is a sum of the soft cost, hard cost and penalty cost, equals $14,717.
The penalty cost are induced on all flights that have been tail swapped and equals $1000 per
swap in this scenario.

Table 7.2: Disruption cost breakdown for recovery solution shown in Figure 7.3

. Duration Pax. Pax. Delay Soft Hard Penalty

Flight [min] Economy Business [min] Cost Cost Cost poc
1 100 60 8 100 $6.877 $840 - $2.990
2 110 60 8 0 - - $1.000 $3.289
3 120 60 8 0 - - $1.000 $3.588
4 140 60 8 0 - - $1.000 $4.186
5 140 60 8 0 - - $1.000 $4.186
7 140 50 8 0 - - - $4.186
8 110 60 8 0 - - $1.000 $3.289
9 140 60 8 0 - - $1.000 $4.186
10 100 60 8 0 - - $1.000 $2.990

Total $6.877 $840 $7.000 $32.890

7.1. Verification 61

Connecting passengers - extension

Section 4.1 presented the Connecting Passenger Matrix developed by Vink et al. (2019) and
the extension of this research where the STD of outbound connection flights is allowed if the
inbound flight is disrupted and there are connecting passengers between the inbound and
outbound flight. The verification of the original Connecting Passenger Matrix is presented
by Vink et al. (2019). This verification scenario shows the impact of the extension, i.e. the
impact of delaying connecting outbound flights on the objective function value.

In the original flight schedule the following flight connections are present:

Flight1 Flight2 Origin Transfer Destination Economy Pax. Business Pax.

4528 4670b BTV DCA PHL 4 1
4670b 4606a DCA PHL BDL 6 2

Figure 7.4 shows the time space graphs for four different situations:
* [Top] The original flight schedule.

* [Middle-Top] The optimal recovery solution without the connecting passenger matrix
extension and where Flight 4528’ is delayed 40 minutes. Here only the flight string of
the disrupted aircraft is delayed. Flight 4670b is flown as scheduled and the connecting
passengers from flight 4528 to flight 4670b will miss their connection.

* [Middle-Bottom] The optimal recovery solution with the connecting passenger matrix
extension and where Flight 4528’ is delayed 40 minutes. Here, next to the flight
string of the disrupted aircraft, flight 4670b is delayed 30 minutes. This allows the
connecting passengers from flight 4528 to make their connection to PHL. The connecting
passengers from flight 4670b to 4606a will also make their connection. The disruption
cost breakdown for this recovery solution is presented in Table 7.4.

* [Bottom] The optimal recovery solution with the connecting passenger matrix extension
and where Flight 4528’ is delayed 60 minutes. Here flight 4670b is not delayed,
since the delay necessary to guarantee the connection for passengers on flight 4528
will also mean that passengers connecting from flight 4670b to 4606a will miss their
connection.The disruption cost breakdown for this recovery solution is presented in
Table 7.5.

In the first verification situation, which is shown in the Middle-Top graph in Figure 7.4, the
optimizer found an objective function value of $24,385. The disruption cost breakdown for
this recovery solution is presented in Table 7.3. All flights, except for flight 4606a, are flown
by the same type, Embraer 170 (E70), for which the direct operating cost equals $29,90/min.
Flight 4606a if flown by an Embraer 175 (E75) for which the direct operating cost equals
$25,92/min. The cost of the solution is $24,387 and the cost of the disruption equals $7,921,
which consists of the soft cost and the penalty cost. The penalty cost comes from the
connecting passengers that miss their transfer because of the disruption. As previously
mentioned, for connecting passengers that miss their transfer, the penalty cost will equal
the maximum delay cost, if no alternative transfer exists. Since no alternative connection
exists in this situation, the maximum soft cost of $822,58/pax and hard cost of $250 are
induced per connecting passenger.

62 7. Verification and Validation

PHL 1
ORD 4 \
4670b 4312a
v 1AH+ 3313 —
g 4606a
< pca
4528 —
BTV 1
BDL 1
09:‘00 10;00 11:‘00 12:‘00 13;00 14:‘00 15‘:00 16:‘00 17;00 15:‘00 19;00 20100
Time

PHL 1 /
ORD 1
4670b — 4312a
1AH 3313 \

£
g / 4606a
< pcad

4528

BDL -

09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00
Time

PHL 4
oro / —~—~
4670b 4312a
1AH %3313 \

4606a
DCA /
o/

4528

09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00
Time

ORD1 \

4670b 4312a

3313 —

£
g- / 4606a
< Dca /

4528

09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00
Time

Figure 7.4: Optimal recovery solution given the delay of flight 4528. [Top] Original schedule. [Middle-Top] Recovered flight
schedule without delaying outbound connecting flights. [Middle-Bottom] Recovered flight schedule with delaying outbound
connecting flights. [Bottom] Recovered flight schedule with delaying outbound connecting flights, but where delay of flight 4528
is too long.

7.1. Verification 63

Table 7.3: Disruption cost breakdown for recovery solution shown in Figure 7.4 [Top] and [Middle-Top]

Duration Pax. Pax. Delay Soft Hard Penalty

Flight [min] Economy Business [min] Cost Cost Cost poc

4528 110 26 1 40 $229 - $7.508 $3.289
3313 140 24 4 30 $185 - - $4.186
4312a 170 64 6 0 - - - $5.083
4670b 70 23 2 0 - - - $2.093
4606a 70 29 3 0 - - - $1.814
Total $413 $0 $7.508 $16.465

In the second verification situation, which is shown in the Middle-Bottom graph in Figure 7.4,
the optimizer found an objective function value of $17,090. The disruption cost breakdown
for this recovery solution is presented in Table 7.4. The direct operating cost and aircraft
types are equal to the first verification situation. The cost of the solution is $17,100 and the
cost of the disruption equals $635, which consists of the soft cost only. In this situation,
the outbound connecting flight, 4670b, is delayed by 30 minutes, inducing some soft cost.
However, since the connecting passengers can make their connection, the penalty cost
is avoided. Hence, allowing outbound connecting flights to be delayed, result in lower
disruption cost.

Table 7.4: Disruption cost breakdown for recovery solution shown in Figure 7.4 [Middle-Bottom]

. Duration Pax. Pax. Delay Soft Hard Penalty

Flight [min] Economy Business [min] Cost Cost Cost boc
4528 110 26 1 40 $229 - - $3.289
3313 140 24 4 30 $185 - - $4.186
4312a 170 64 6 0 - - - $5.083
4670b 70 23 2 30 $149 - - $2.093
4606a 70 29 3 0 - - - $1.814
Total $635 $0 $0 $16.465

For the final verification situation, which is shown in the Bottom graph in Figure 7.4, the
optimizer found an objective function value of $24,624. The disruption cost breakdown for
this recovery solution is presented in Table 7.4. The direct operating cost and aircraft types
are equal to the previous verification situations. The cost of the solution is $24,624 and the
cost of the disruption equals $9,159, which consists of the soft cost, hard cost and penalty
cost. In this situation outbound connecting flight delays are allowed. However, since the
inbound connecting flight, 4528, is delayed by 60 minutes, flight 4670b would need to be
delayed by 50 minutes. This would cause the connecting passengers from flight 4670b to
4606a to miss their transfer. Since there are more connecting passengers on that transfer,
the cost of those passengers missing their transfer is higher. Therefore, flight 4670b is not
delayed and the penalty cost is induced.

Table 7.5: Disruption cost breakdown for recovery solution shown in Figure 7.4 [Bottom]

. Duration Pax. Pax. Delay Soft Hard Penalty
Flight [min] Economy Business [min] Cost Cost Cost Doc
4528 110 26 1 60 $617 $220 $7.508 $3.289
3313 140 24 4 50 $651 - - $4.186
4312a 170 64 6 20 $163 - - $5.083
4670b 70 23 2 - - - - $2.093
4606a 70 29 3 0 - - - $1.814

Total $1.431 $220 $7.508 $16.465

64 7. Verification and Validation

7.1.3. Verification of Decision Support System

The previous section presented the verification of the optimization model using several
examples. This section will discuss the verification of the full decision support system
(DSS), i.e. the optimization model combined with the machine learning classifier and
the sub-network selection algorithm. The results of the full DSS are compared with the
optimization model without classifier and sub-network selection algorithm to ensure the
results are similar or equal.

The verification scenario consisted of 50 iterations in the disruption dataset, which captured
18 hours of operations. These iterations cover 79 disruptions of all types and causes. Out
of these disruptions 8% were ”Aircraft unavailabilities” and 92% were ”Flight Delays”. The
flight delay causes were distributed as follows: 60% Airline, 30% National Air System, 7%
Weather Groups and 3% Weather. Chapter 8 will further elaborate on the definitions of
these causes.

For the results of the "Optimizer”, the disruptions were solved per aircraft family and no
aircraft were discarded, hence giving the baseline results. For the "Full DSS”, the disruptions
were also solved per aircraft family. Here, the machine learning classifier was used to rank
all candidate aircraft per disruption and the sub-network selection algorithm was used to
select the top 30% ranking candidates.

Table 7.6 shows the average results over 50 iterations for the full DSS compared to the
optimization model without classifier. The full results of the DSS verification are published
online and can be found in Hassan (2019).

Table 7.6: Comparison of the averaged results of 50 iterations for the full DSS compared to the optimization model without
classifier and sub-network selection algorithm.

Time Aircraft Cost OTP DPC APD XP XF MCP cCV
[s] [pax] [min/pax]
Optimizer 95 128 $14.930 99,4% 182 41 0 0 10 0
Full DSS 46 39 $14.930 99,4% 182 41 0 0 10 0

From the results it was found that the solution to 8 out of the 79 disruptions was non-trivial,
i.e. other aircraft besides the disrupted aircraft were needed to find the optimal solution.
In these non-trivial cases the Full DSS still found the optimal solution. Table 7.6 and the
full results show that the DSS is able to find the same solution as the baseline optimizer for
each of the 50 iterations. This shows that the classifier is able to correctly rank the candidate
aircraft in the top 30% for these iterations. Section 8.3 will elaborate on the effect of changing
the sub-network selection algorithm.

7.2. Validation

Validation of the decision support system (DSS) was performed by two experts from industry.
Several results of the case study, discussed in Chapter 8, were discussed with Arjen Blom,
former flight captain and Director of Operations Management at KLM Royal Dutch Airlines.
Mr. Blom has over 15 years of experience with airline disruption management. Results of
the case study were discussed to determine whether the recovery solutions suggested by the
DSS are realistic. Furthermore, the extensions researched in this thesis and their added
value were discussed. The conclusions of the discussion are:

* The recovery solutions found by the DSS for the Aircraft Recovery Problem are realistic
and comparable to solutions found by AOCC controllers. However, the exclusion of
Crew Recovery and Passenger Itinerary Recovery, limit the applicability of the DSS
in reality, since the constraints imposed by those problems significantly impact the
recovery solution. Improving on the recovery model proposed by Vink et al. (2019), it is
appreciated that the minimum tail swap limit is respected in the recovery solutions.

7.2. Validation 65

* The extension to the connecting passenger matrix, where outbound connecting flights
can be delayed, is of added value to the DSS. Given the sometimes large number of
connecting passengers on a flight, it would be hard for an AOCC controller to investigate
opportunities for outbound flight delay. Automating this process and presenting
suggestions to the controller is therefore appreciated. Currently the DSS investigates
opportunities of outbound flight delay even if only a single connecting passenger is
on the inbound flight. In reality, outbound flights are only delayed if more than 30
connecting passengers are on the inbound flight. Therefore it is advised to include a
threshold to the DSS.

* The way the recovery solution is presented by the DSS is not easy to comprehend. More
effort should be made to intuitively show why certain aircraft are part of the recovery
solution and how they fit in the solution.

Additional investigation is required to fully validate the DSS. Preferably, the DSS would run
side by side in a real AOCC, where the DSS would generate recovery solutions in parallel to
the current operations. The solutions of the current process would need to be compared to
investigate the recovery solutions generated by the DSS.

Besides the results, the assumptions of Table 5.2 were discussed with Mr. Blom and
Frank Charlier. Mr. Charlier works for ORTEC and has over 12 years of experience with
airline operations at KLM. The goal of these discussions was to determine the validity of
the assumptions and the applicability to real airline operations. The conclusions of these
discussions are:

* [1 Equal flight time for all aircraft types: Valid] The impact of assigning a different
aircraft to a flight on the flight duration is minimal. Especially on short to medium haul
flights this difference is negligible. If an aircraft was to arrive earlier than scheduled, it
is likely that it will be placed in a hold position or will need to wait on the airport until
the reserved gate slot becomes available.

* [2 No cruise speed changes to recapture time during flight: Valid] The influence of cruise
speed on the flight duration is limited. This will likely have an effect on flights over
S hours, where it could have an impact of 15 minutes. For short to medium haul
flights, changing the cruise speed will not make a noticeable difference. Moreover, given
the case study for Delta Airlines, the US airspace is quite congested, which makes it
difficult to change the cruise speed. Furthermore, the daily fuel price will influence
the willingness of airlines to change the cruise speed, which is a complicated effect to
capture in the DSS.

* [3 Crew is always available: Not Valid] Besides aircraft, crew is a very limited resource
for airlines. Moreover crew legalities are complicated and severely limit the employability
and flexibility of crew. In daily operations and disruption management, crew restrictions
are likely to impact the available recovery options. Hub-and-spoke carriers, like Delta
and KLM, have more flexibility and recovery options available on their hubs, since
reserve crew is usually available. This assumption would be more valid for budget
airlines like Ryanair and Easyjet, since they usually operate a single aircraft type.

* [4 Airport capacity and slots are always available: Semi Valid] Regulations regarding
airport closures and operating flights after certain hours, are very airport dependent.
In the US, most airports do not close down during the night and flights can be operated
24 hours a day. However, especially on larger airports (e.g. JFK or LAX), the number of
flight movements is maximized. Hence, arriving after the scheduled slot is not always
possible. Several airports in Europe and Asia do close down during the night, which
should be taken into account when implementing the DSS for those regions.

* [5 Time discretization provides sufficient detail: Valid] ICAO uses 15 minute time steps
and most flight times are published with time steps of 5 minutes. Especially on larger
airports, aircraft can depart every 30 seconds. However, for disruption management

66 7. Verification and Validation

and flight rescheduling a time step of 10 minutes is deemed sufficient. Flight crew and
air traffic control will be responsible for finding a more specific departure or arrival slot.

* [6 TAT is a constant per aircraft type: Semi Valid] AOCC controllers regularly change
the number of ground personnel to speed up TAT after a delay. The decrease in TAT that
can be achieved depends on the aircraft type and the resources available on the turn
around airport. However, the TAT is usually decreased by no more than 10 minutes.

* [7 Maintenance is not considered: Not Valid] Maintenance requirements of aircraft
are heavily regulated and for most checks the maintenance schedule is fixed. This
maintenance schedule limits the recovery options available, since it decreases the
flexibility of changing flight strings of aircraft.

* [8 Delays are not updated: Semi Valid] In real operations, delay updates are regularly
available. However, once a flight has been cancelled or passengers have been informed
of a delay, this will not be undone. Delay times can be increased when disruptions
grow in severity, e.g. 20 minute delay to 40 minute delay, but the reverse almost never
happens.

7.3. Concluding Remarks on Verification and Validation

This chapter presented the verification and validation of the recovery solutions found by the
DSS. For verification, several small examples were tested for which the solution was verified
by hand. Besides proving that the optimization model behaves properly, the examples
highlight the decisions and trade-offs made by the DSS. One of the examples verified the
extension of this research to the Connecting Passenger Matrix. This verification scenario
showed the trade-off between delaying outbound connecting flights to ensure passengers
can make their transfer and the consequences of that delay for the passengers on the
outbound flight.

Validation of the DSS was performed by two experts from industry. In general, it was
concluded that the model’s results are valid and comparable to the solutions found by
AOCC controllers. It was noted that the recovery solutions to the aircraft recovery cannot
be interpreted without considering crew and passenger recovery, which were not part of
the scope of this research. Next to the results, the assumptions were validated. While
the majority of the assumptions are valid, it was concluded that the assumptions related
to crew availability and maintenance were not valid and limit the validity of the model.
Recommendations regarding the improvements of the model are presented in Chapter 9.

Case study: Delta Airlines

The previous chapter discussed the verification and validation of the decision support
system. This chapter will present a case study, where the DSS is tested on the domestic
network of Delta Airlines.

Delta Airlines is the second largest airline in the world and operates a worldwide
hub-and-spoke network. The airline performs roughly 2400 domestic flights per day
and serves 150 destinations in the US. Delta operates a fleet of over 800 aircraft and has
the largest Boeing 717, Boeing 757, Boeing 767, McDonnell Douglas MD-88, and McDonnell
Douglas MD-90 fleets in the world. The Airbus aircraft were added to the fleet after Delta
merged with Northwest Airlines. Performing a case study on the network of Delta airlines
is interesting because of the larger fleet size (roughly six times), the fleet composition (26
aircraft types instead of two) and the size of operations (roughly five times more daily flights)
than the airline used in the case study performed by Vink et al. (2019).

In Section 8.1 the dataset generation for the case study is discussed. Section 8.2.2 presents
the case study that was performed on the Delta Airlines dataset. In that section the results
of the decision support system (DSS) will be compared with the selection heuristic developed
by Vink et al. (2019). Section 8.3 will present the sensitivity analyses.

8.1. Delta Airlines Dataset Generation

Chapter 4.1 and Appendix B discuss the input data needed for the decision support system
(DSS). All data was obtained from public sources and other researchers. The following
sections will present how the data was obtained and manipulated to generate the required
input data. An overview of the data processing flowchart is given in Appendix H.

8.1.1. Flight Schedule Information

Flight schedule information for Delta Airlines was downloaded from the 'Reporting Carrier
On-Time Performance’ Database from the United States Department of Transportation -
Bureau of Transportation Statistics. (2018b). Besides flight information such as scheduled
and actual departure and arrival times, the database includes information on canceled and
diverted flights and the causes of delay and cancellation. The full flight schedule for Q1 2015
was downloaded as well as supporting look-up tables for the airline and airport codes. The
following processing steps were performed sequentially:

1. Convert local scheduled departure and scheduled arrival times (hhmm) to Coordinated
Universal Time (UTC) datetime format (yyyy-mm-dd hh:mm).
2. Correct the UTC times for Daylight Savings Time (DST)

3. Calculate the Flight Time as STA — STD in UTC.

67

68 8. Case study: Delta Airlines

4. Repair timing errors. The downloaded flight data did not come together as a correct flight
schedule. When looking at the flights per tail number, some flight strings were broken.
This was primarily due to timing errors (e.g. Flight 2 of Aircraft A departs before Flight
1 of Aircraft A arrives). These errors were corrected by recalculating the departure (and
arrival) times such that the schedule would adhere to minimal Turn-Around-Times.

S. Add missing flights. Not unlike the previous point, the downloaded flight schedule
did not include all flights by an aircraft. The data only showed flights that carried
passengers, hence ferry flights were not included. This resulted in broken flights strings
for most aircraft. To overcome this, ferry flights were added where necessary.

After these processing steps, the schedule data consisted of full flight strings for each aircraft
in the schedule. Next, the dataset was split into a flight schedule dataset and a disruption
dataset. The disruption dataset was further processed, which will be discussed in Section
8.1.4. An overview of the information consisted in the flight schedule dataset is given in Table
8.1.

Table 8.1: Flight schedule dataset information overview

Property

Description

Unique ID

Flight Number

Tail Number
Origin Airport
Destination Airport

Scheduled Time of
Departure (STD)

Scheduled Time of
Arrival (STA)

Delay

Cancelled

Passengers Economy
Class

Passengers Business
Class

Load Factor

Unique 6 digit identification number to help identify the flight throughout the process
and recovery process.

The Delta Airlines flight number, e.g. DL2336. The flight number is not unique.
The unique tail number of the aircraft scheduled on the flight, e.g. N958DN.
The three letter IATA code of the origin airport of the flight

The three letter IATA code of the destination airport of the flight

The Scheduled Time of Departure (STD) in Coordinated Universal Time (UTC) of
the format yyyy-mm-dd hh:mm

The Scheduled Time of Arrival (STA) in Coordinated Universal Time (UTC) of the
format yyyy-mm-dd hh:mm

The delay of the flight in minutes. Default is 0. This number will be updated during
the recovery process.

Boolean variable to identify if the flight has been cancelled. Default is False. This
flag will be updated during the recovery process.

The number of passengers in economy class that will be on the flight. See Section
8.1.3

The number of passengers in business class that will be on the flight. See Section
8.1.3

The passenger load factor of the flight as an percentage.

Flight Schedule Statistics

This section discusses some key statistics about the flight schedule dataset. In total there are
197 thousand Delta flights in Q1 2015, with an average of 2164 flights a day. The network
consists of 147 airports, which includes 8 hubs. Hub-to-spoke flights make up 86% of the
flights, 13% are from a hub to another hub, and finally 1% of flights is from an outbound
airport to another outbound airport. That last category includes flights from what Delta
calls "Focus Cities”, which primarily cater the local market instead of connecting passengers.
Figure 8.1 shows the histogram of the flight duration. The average flight duration is 2 hours
and 30 minutes.

8.1. Delta Airlines Dataset Generation 69

0.8%

0.6% 1

Probability

0.4% -

0.2% -

0.0% +
30 60 90 120 150 180 210 240 270 300 330 360 390 420 450
Flight Duration in minutes

Figure 8.1: Histogram of the flight duration in minutes. Average flight duration is 2 hours and 30 minutes.

8.1.2. Fleet Information

The flight schedule dataset from the previous section included the tail numbers assigned to
each flight, however aircraft information for these tail numbers was not included. Aircraft
manufacturer and type information belonging to the unique tail numbers included in the
dataset was obtained from the N-Number Database of the United States Federal Aviation
Administration (2018).

For all unique aircraft types obtained from the FAA database, additional information was
collected from the Fleet section on the Delta Website!. This information included the range
and seat capacity per class. Delta Airlines knows three cabin classes: ’Economy Class’,
‘Delta Comfort+’ and ’First Class’. For this research the seat capacity of 'Delta Comfort+’
and ’Economy Class’ were merged into ’Economy Class’. Information on the minimum
Turn-Around-Time (TAT) required per aircraft type was obtained from discussions with Arjen
Blom, former Captain and Director of Operations Management at KLM Royal Dutch Airlines.

The Direct Operating Cost (DOC) per aircraft type are estimated based on the Air Carrier
Financial Database of the United States Department of Transportation - Bureau of
Transportation Statistics. (2018a). This database includes information on the number of
registered flying hours and operating expenses per aircraft, from which an estimate on the
average DOC per flying hour can be derived.

Fleet Statistics

Table 8.2 shows the properties of the extracted fleet for Delta Airlines. The table shows a
total fleet of 827 aircraft, from 8 aircraft families. The three largest families are: McDonnell
Douglas (32%), Boeing 757 (17%) and Boeing 737 (17%).

"https://www.delta.com/us/en/aircraft/overview

70

8. Case study: Delta Airlines

Table 8.2: Delta Airlines fleet properties

Model Family Aircraft Passenger Capacity Range DOC/Hour TAT
Bus. Eco. [Miles] [$] [min]
MD-88 MD 117 16 133 2045 $5.062 45
717-200 MD 85 32 78 1510 $4.571 30
737-832 737 73 16 144 2930 $4.463 45
757-232 757 70 20 179 4334 $4.886 50
767-332 767 58 30 221 3515 $5.679 60
MD-90-30 MD 65 16 142 1992 $5.087 45
A319-114 A320 57 12 120 2015 $4.980 40
737-932ER 737 50 20 160 2870 $4.525 45
A320-212 A320 42 16 144 3000 $4.604 40
757-251 757 31 20 179 4334 $4.886 50
A320-211 A320 27 16 144 3000 $4.604 40
A330-323 A330 21 34 259 5343 $6.571 45
767-432ER 767 20 40 206 6336 $6.377 70
757-351 757 16 24 210 3228 $5.086 50
747-451 747 14 48 328 7365 $10.026 85
A330-223 A330 11 34 200 6536 $6.118 45
737-732 737 10 12 112 2925 $4.572 45
757-2Q8 757 10 20 179 4334 $4.886 50
777-232LR 777 10 37 254 10375 $7.162 70
767-332ER 767 9 30 221 5980 $5.679 60
757-231 757 8 20 179 4334 $4.886 50
777-232 777 7 37 254 8542 $7.162 70
767-3P6 767 6 26 200 6221 $5.679 60
757-212 757 4 22 153 4334 $4.886 50
A330-302 A330 4 34 259 5343 $6.571 45
757-26D 757 1 20 179 4344 $4.886 50
767-324 767 1 30 221 3515 $5.679 60

8.1.3. Passenger Information

Barnhart et al. (2014) developed methodologies to model historical travel and delay for U.S.
domestic passengers. Their dataset included information on the itineraries of (connecting
passengers) and was made available for this research. From this dataset, information on
the number of passengers on a certain origin-destination (O-D) pair, either on direct flights
or via multiple flight legs connecting at other airports, could be determined. The following
processing steps were performed sequentially:

1. Since the times in the flight schedule were corrected for the timing errors, the entries

in the passenger dataset needed to be matched to the new STD and STA times.

2. The passenger dataset did not contain flight numbers, these had to be extracted from

the flight schedule. For roughly 90% of the entries, matching flight numbers could be
found based on the origin and destination airports and the departure and arrival times.

. For the entries that could be matched, the number of O-D and connecting passengers

per flight was determined. From this data the Passenger Load Factors (LF) per flight
leg could be determined. This data was corrected for outliers (LF > 100%). The load
factor distribution per flight leg was used to generate passenger numbers for the 10%
entries that could not be matched in the previous step. This ensured realistic passenger
numbers for all the flights in the flight schedule.

. Only the total number of passengers per flight could be determined from the Barnhart

et al. (2014) dataset. Based on the Business/Economy seat ratio a random number
generator was used to determine the number of economy and business passengers per
flight. The average probability that a passenger is a business passenger is 12,7% for
the dataset.

8.1. Delta Airlines Dataset Generation 71

After performing the processing steps, a dataset with all connecting passengers per itinerary
was exported and the number of economy and business passengers per flight data was added
to the flight schedule. An overview of the information consisted in the connecting passenger
itinerary dataset is given in Table 8.3.

Table 8.3: Connecting passenger itinerary dataset overview

Property Description

Flight Number 1 The Delta Airlines flight number of the first flight leg.

Flight Number 2 The Delta Airlines flight number of the second flight leg.

Origin Airport The origin airport of the first flight leg.

Connecting Airport The airport where the passengers transfer from flight leg one to flight leg two.

Destination Airport The destination airport of the second flight leg.

STD Flight Leg 1 The Scheduled Time of Departure (STD) in Coordinated Universal Time of the first
flight leg.

STA Flight Leg 1 The Scheduled Time of Arrival (STA) in Coordinated Universal Time of the first flight
leg.

STD Flight Leg 2 The Scheduled Time of Departure (STD) in Coordinated Universal Time of the
second flight leg.

STA Flight Leg 2 The Scheduled Time of Arrival (STA) in Coordinated Universal Time of the second
flight leg.

No. of Economy The number of economy passengers on the itinerary.

Passengers

No. of Business The number of business passengers on the itinerary.

Passengers

Passenger Statistics

This section will present some key statistics about the passenger dataset. Figure 8.2 shows
the passenger load factor or occupancy rate histogram for all Q1 2015 flights. The average
passenger load factor is 75.9%, meaning that, on average, aircraft are 75.9% full. The peak
at 100% indicates that roughly 10% of all Delta flights were full or overbooked. The 100%
passenger load factor peak seems plausible, however the ’dip’ at 95% does not seem realistic.
A smoother increasing trend from 80-100% is expected to be realistic. This could be due to
small errors in the received passenger data or due to truncation of overbooked flights. It is
expected that this will not influence the research objective of this thesis negatively.

Out of all passengers that flew with Delta Airlines in Q1 2015, 26% were connecting
passengers. Figure 8.4 shows the histogram of the number of connecting passengers per
flight. On average, each flight transports 40 connecting economy and 6 connecting business
passengers. Figure 8.3 shows the histogram of the number of passengers transferring per
connection, e.g. the number of passengers transferring from inbound Flight A to outbound
Flight B. Clearly, roughly 50% of connections are for a single passenger.

72 8. Case study: Delta Airlines

10% 50%
8% 40%
>
2 6% £ 30%
S Qa
8 g
o S
£ 4% & 20%-
2% 10%
0% 0%
0 20 40 60 80 1 4 5 6 7 8 9 10
Load Factor [%] Number of Connecting Pax
Figure 8.2: Passenger Load factor distribution Figure 8.3: Histogram of the number of connecting passengers
Mean = 75.9, std = 17.45 per connection
Economy
Business
8%
2 6%
=
©
Q
o
& 4%
2%
0% v T v v . -
20 40 60 80 100 120

Number of Connecting Pax on Flight

Figure 8.4: Histogram of the number of connecting passengers
per flight

8.1.4. Disruption Information

This section discusses the processing steps that were taken to transform the delay dataset,
obtained as described in Section 8.1.1, to a dataset that contains disruptions. For the
purpose of this research only root causes were taken into account. For example, the delay
dataset contained a category ’Late Aircraft Delay’. Since there must have been a previous
disruption that caused the aircraft to be late, this category of delay was not taken into
account. The same logic hold for the aircraft cancellations, since these were caused by
another disruption or delay, e.g. an aircraft unavailability or weather delay.

The delay dataset only holds information on the duration of the delay in minutes and the
cause(s) of delay. The delay cause categories are: ’Carrier Delay’, 'Late Aircraft Delay’,
‘National Air System (NAS) Delay’, 'Security Delay’ and 'Weather Delay’. Definitions of these
categories are presented in Appendix I. The dataset contains no information regarding the
time at which the Delta AOCC was notified about the disruption, the Time Found Out (TFO),
thus this time needs to be generated and added to the dataset. In order to obtain realistic
disruptions, the following processing steps were taken:

1. To obtain aircraft unavailabilities, a logic had to be created to extract these disruptions
from the delay dataset. After discussions with Mr. Blom, it was decided that
’Airline Delays’ with a duration over 120 minutes would be reclassified as aircraft
unavailabilities. This logic was based on the category description contained in the BTS
database and the experience of Mr. Blom which led him to believe there would not be
many other reasons for an airline delay to take over 2 hours.

8.1. Delta Airlines Dataset Generation 73

2. The delay dataset contains data on weather delays, however only single flight delays
are contained. In reality, weather may impact several flights at once. Especially with
heavier weather conditions, the flow rate at an airport can be reduced or all aircraft can
be grounded. To capture the ’group’ effect of these heavier weather conditions, several
entries in the delay dataset need to be clustered. This is done with the following logic:

* Group flights with the same origin airport, with their STD’s within 2 hours of each
other and where 'NASDelay' +'WeatherDelay' = 50%-TotalDelayofFlight and where
TotalDelay = 15min.

* Divide Groups into subgroups with a duration of 3 hours. These subgroups will
have the same Time Found Out (TFO), which is a simulated time that describes the
time an AOCC controller is notified of the disruption.

3. Add all remaining single flight or single aircraft disruptions. If a delay is caused by
multiple factors, such as 'NAS’ and ’Airline”, these causes will be added as separate
disruptions.

An Airline Operations Control Center (AOCC) does not know when disruptions will happen,
rather, they are notified of each disruption when it is discovered. For example, if an aircraft
is hit by birds during landing, it may need some maintenance before continuing with the
next flight. The AOCC controller will be notified by the flight crew after landing, which could
be just 40 minutes before the next flight is scheduled to depart. To simulate this discovery
of disruptions, each disruption (or weather subgroup) will be assigned a random generated
Time Found Out (TFO), based on the delay cause. The following probability distributions,
which are based on discussions with Mr. Blom, are used to generate these TFOs:

Beta probability density function:
National Air System Delays
with ¢ =5and g =25
scaled to t,;, = 20 and t,,q, = 720

Weather Delays
x* (1 —x)B1 witha =5and g = 1.5
floap) = B(a,f) scaled to t,;;, = 30 and t;,q = 720
Security Delays
witha =5and =15
scaled to t,i, = 10 and t,,q, = 120

Uniform probability density function:
Airline Delays

with t,i, = 10 and t,,4, = 120
+ fora<x<bh
flx)= 8‘“ f b Aircraft Unavailabilities
ora<x=> with t,;;, = 40 and
tmax = max(time since STD previous flight, 240)

The TFO distributions show that NAS and Weather delays are usually known well in advance.
Even though the distributions range between 20-720 minutes and 30-720 minutes, they are
skewed towards the 720 minutes. Airline and Security delays are found out much closer
to the Scheduled Time of Departure of the flight. Most Airline delays are caused by ground
operations during turn-around, which typically starts 45-60 minutes before departure. Most
Security delays cannot be forecasted and impact a flight during turn-around. Finally,
disruptions caused by Aircraft Unavailabilties are typically reported to the AOCC after the
departure of the previous flight and are known before turn-around operations start.

74 8. Case study: Delta Airlines

Disruption Statistics

This section will present some key statistics about the disruptions dataset. In total there are
29.4 thousand disruptions for Delta Airlines in Q1 2015 included in the dataset. Figure 8.5
shows the share of the different causes in terms of occurrence, while Figure 8.6 shows the
share of the different causes in terms of delay minutes. Interesting to notice is that aircraft
unavailabilities represent only 3% of the delays in occurrence but are responsible for 20%
of delay in terms of duration. Detailed statistics on the disruptions per type and cause are
given in Appendix J.

Figure 8.7 shows the histogram of the disruption duration in minutes. The average disruption
has a duration is 37 minutes and a standard deviation of 65 minutes. Figure 8.8 shows the
histogram of the number of disruptions per day. The average number of disruptions per day
in Q1 2015 is 366, with a standard deviation of 219.

Delay - Aircraft
Weather Unavailable
5% 3%

Aircraft
Unavailable
20% Delay - Airline
30%

Delay -

Weather
Cluster

5%

Delay - Airline
449
% Delay -
Weather
7%

Delay - Weather
Cluster
11%

Delay - NAS
43%

Delay - NAS
32%

Figure 8.5: Disruption Cause Share in terms of Occurrence Figure 8.6: Disruption Cause Share in terms of Delay Minutes

3.5%
0.35%
3.0% :
0.30%
2.5%
0.25%

z >
=2.0% =
3 2 0.20%
0 1.5% 8
& £ 015%
o
1.0% 0.10 %
0.5% 0.05 %
0.0% 0.00 %
0 20 40 60 80 100 120 140 160 0 100 200 300 400 500 600 700 800 900
Disruption duration [min] Disruptions per day
Figure 8.7: Disruption duration histogram. Figure 8.8: Disruptions per Day Histogram.

Average duration: 37 minutes. Average number of disruptions/day: 366

8.2. Case Study 75

8.2. Case Study

The previous section presented how the Delta Airlines dataset was generated from public
sources. From the dataset, a case study is formulated to evaluate the performance of the
DSS. This section will elaborate on the case study iterations and the results.

8.2.1. Introduction and Case Study Overview

The case study consists of 200 iterations, which equals roughly 1 day of disruptions in
January. An iteration is a set of disruptions which have the same Time Found Out (TFO).
These disruptions are covered in the feature dataset that was used to train the random
forest classifier in the DSS. The sensitivity analyses, presented in the next section, will
evaluate the performance of the DSS on 100 iterations in March, which were not used to
train the random forest classifier. The 200 iterations of the case study consist of 367 runs,
where one run solves the disruptions for one aircraft family. For example, if iteration 1
has one delay in the MD fleet and two delays in the A320 fleet, iteration 1 will have two
runs. These 367 runs cover 565 disruptions: 556 flight delays and 9 aircraft unavailabilities.

Figures 8.9, 8.10 and 8.11 summarize the iterations of the case study. Figure 8.9 shows
the share of the different disruption causes in terms of occurrence. Figure 8.10 shows the
histogram of the disruption duration in minutes. The average disruption has a duration of
31 minutes, which is slightly lower than the average disruption duration for Q1 2015. Figure
8.11 shows the number of disruptions per iteration, i.e. the number of disrupted flights or
aircraft. Table 8.4 shows the parameter values for the optimizer, DSS and the heuristic of
Vink et al. (2019) that were used for the case study.

Weather
W 4% Table 8.4: Parameters used for case study
eather
Group
9% Parameter Value
’ TW length 12 hours
Time step 10 minutes
Tswap 3 hours
Ccanx $250
Airline Ce,n $1.000
53% ﬁbuss 3
NAS Big M cost $1.000.000
34% Max Delay 8 hours
Fix exiting aircraft or type = Type
Sub-network selection Top 50%
Heuristic test size k 10

Figure 8.9: Case Study Disruption Cause Share in terms of
Occurrence

i
:
X

w
2
BN

25%

w
I
X

20%

N
n
=

Probability
[T
n o
XX R
Probability
—
w
3

10%
1.0%

5%
0.5% ?

0.0% 0%
0 30 60 90 120 150 180 210 240 270 300 4 5 6 7 8 9 0 11 12
Disruption Duration [min] No. of Disrupted Aircraft/Flights

Figure 8.10: Case Study Disruption duration histogram. Figure 8.11: Case Study Disruptions per Iteration Histogram.
Average duration: 31 minutes. Average number of disruptions/iteration: 3

76 8. Case study: Delta Airlines

To evaluate the performance of the DSS, four cases will be compared:

1. [Optimum]| The optimization results where the disruption was solved per aircraft family
without filtering any aircraft.

2. [Trivial] The trivial solution where only the disrupted aircraft are used to solve the
disruption and no other aircraft are taken into account.

3. [Heuristic] The optimization results where the selection heuristic developed by Vink
et al. (2019) creates several aircraft selections. Based on the number of undisrupted
candidates C, the test size k and the number of disrupted aircraft d, the number of
runs N required to process all candidate aircraft is determined. After the first run,
which finds the trivial solution, N runs are performed, each with k+d aircraft. The k
undisrupted aircraft are drawn from the list of candidate aircraft based on a sorting
algorithm.

4. [Full DSS| The optimization results where a sub-network of aircraft is created with
the random forest classifier and sub-network selection algorithm developed for this
research.

5. [Full DSS-S] The optimization results where a sub-network of aircraft is created with the
random forest classifier developed for this research. Based on the number of candidates
in the sub-network C, the test size k and the number of disrupted aircraft d, N runs
are performed, similar to the heuristic developed by Vink et al. (2019). Instead of a
sorting algorithm, the probabilities from the random forest classifier are used to sort
the candidate aircraft.

For the case study, the flight schedule was not updated with the recovery solution, i.e. for
all runs the original flight schedule was used. The purpose of this research and of this
case study is to determine the performance of the Full DSS against the Heuristic and the
Optimum. Not updating the schedule ensures that the cases work with the same original
schedule and hence gives a clear one to one comparison of the cases. If the schedule would
be updated after each run, the schedules would diverge and the same run would start with a
different schedule for the cases since the cases sometimes make different recovery decisions.

8.2.2. Case Study Results

Table 8.5 summarizes the results of the case study. The table shows averaged key statistics
for the 367 runs. The full case study results are published online and can be found in Hassan
(2019).

Table 8.5: Comparison of key statistics for the 367 runs of the case study

Time[s] ATime Aircraft Cost A Cost oTP
(Avg.) (Avg.) (Avg.) (Avg.) (Avg.) (Avg.)

Optimizer 83 0% 140 $20.205 0% 99,33%
Trivial 32 -61% 2 $128.454 536% 99,30%
Heuristic 35 -58% 17 $24.096 19% 99,33%
Full DSS 48 -42% 71 $21.409 6% 99,34%
Full DSS-S 36 -57% 17 $23.907 18% 99,33%
DPC APD XP XF MCP cv
(Sum) (Avg.) (Sum) (Sum) (Sum) (Sum)
Optimizer 92.542 29 459 4 4.285 0
Trivial 88.098 29 10.305 84 3.952 26
Heuristic 91.975 29 1506 12 4.396 0
Full DSS 91.746 28 897 8 4.285 0

FullDSS-S 91.686 28 1668 14 4.180 0

8.2. Case Study 77

From Table 8.5 it can be concluded that the Heuristic, on average, presents a solution faster
than the Full DSS. However, the Full DSS outperforms the Heuristic in terms of average cost
and Key Performance Indicators (KPIs). More specifically:

The Full DSS increases the average solution cost by 6% compared to an average cost
increase of 19% for the Heuristic. Analysis of the full results show that the Full DSS is
able to find the optimal solution in all but 4 of the 367 runs, i.e. the optimal solution
is found in 98.9% of the runs. The Heuristic finds the optimal solution in all but 13 of
the runs, or 96.5%.

On average the Full DSS reduces the runtime by 42% compared to 58% for the Heuristic.
Moreover, the maximum runtime found in the case study is 180 seconds for the Full
DSS and 124 seconds for the Heuristic.

In terms of delay KPIs, the largest difference is found when comparing the number
of cancelled flights and cancelled passengers. The Heuristic tripled the number of
cancelled flights and consequent passengers while the Full DSS doubled the cancelled
flights, compared to the Optimum.

The Full DSS-S case performs roughly equal to the Heuristic but worse than the Full
DSS in terms of cost and delay KPIs. The Full DSS-S finds the optimal in all but 9 of
the runs, this equals 97.5% of all runs.

Out of the 367 runs, 48 (13%) are non-trivial, i.e. other aircraft besides the disrupted aircraft
are required to find the optimal solution. This shows that for the majority of disruptions, no
other aircraft are needed to find the optimal solution. Table 8.6 shows a comparison of the
key statistics for the non-trivial runs in the case study.

Table 8.6: Comparison of key statistics for the 48 non-trivial runs of the case study

Time[s] ATime Aircraft Cost A Cost OoTP
(Avg.) (Avg.) (Avg.) (Avg.) (Avg.) (Avg.)

Optimizer 124 0% 164 $59.624 0% 99,45%
Trivial 44 -65% 2 $887.282 1388% 99,19%
Heuristic 56 -55% 19 $89.356 50% 99,44%
Full DSS 68 -45% 83 $68.834 15% 99,46%
Full DSS-S 51 -59% 19 $87.927 47% 99,45%
DPC APD XP XF MCP cv
(Sum) (Avg.) (Sum) (Sum) (Sum) (Sum)
Optimizer 16.667 41 0 0 1.362 0
Trivial 12.223 41 9.846 80 1.029 26
Heuristic 16.058 42 1.047 8 1.468 0
Full DSS 15.871 38 438 4 1.362 0
Full DSS-S 15.623 35 1.209 10 1.257 0

From Table 8.6 the following additional points are concluded for the non-trivial runs:

The Full DSS increases the average solution cost by 15% compared to an average cost
increase of 50% for the Heuristic. Analysis of the full results show that the Full DSS
is able to find the optimal solution in 91.7% of all non-trivial runs. The Heuristic finds
the optimal solution in 72.9% of the non-trivial runs.

On average, the Full DSS reduces the runtime by 45% compared to 55% for the
Heuristic. When comparing the non-trivial runs, the Heuristic finds the optimal solution
in 56 seconds on average, while the Full DSS finds the optimal solution in 68 seconds
on average.

When comparing the delay KPIs it can be seen that the 4 flight cancellations in Table 8.5
come from trivial runs. The optimal recovery solution for the non-trivial runs require

78

8. Case study: Delta Airlines

no flight cancellations. The Heuristic cancels 8 flights while the Full DSS cancels 4
flights. Furthermore the Heuristic increases the number of passengers that miss their
connecting flight.

The Full DSS-S has slightly lower average cost for the non-trivial runs compared to the
Heuristic. Even so, 2 additional flights (and corresponding passengers) are cancelled.
The Full DSS-S finds the optimal solution in 81.3% of the non-trivial runs. However, for
all but one case where the Heuristic did not find the optimal solution, the Full DSS-S
found the same or a better solution than the Heuristic. The one case where the solution
was not better, the cost was 0.12% higher. Furthermore, in seven out of the nine runs
where the Full DSS-S did not find the optimal solution, the Heuristic also did not find
the optimal. In the other two runs, both the Heuristic and the Full DSS were able to
find the optimal.

Both the Heuristic and Full DSS-S usually find the best solution before all N runs are
complete, therefore the time column in Table 8.5 shows the time it took to find the best
solution and not the full runtime of the iteration. For the Optimum, Trivial and Full DSS,
the time to the best solution is equal to the time of the full iteration. Figure 8.12 shows
the boxplots of the time to the best solution for all cases and all iterations in the case study
and Figure 8.13 shows the runtimes until the best solution for the non-trivial runs. For all
runs the average time it takes to setup the iteration, e.g. load data, create the CPM, takes
32 seconds, which is the majority of the time for all cases except the Optimum. For the
48 non-trivial runs, the average iteration setup time equals 44 seconds, which is still the
majority of the runtime for most cases. Chapter 9 will discuss how this setup runtime could
potentially be reduced.

400

350

300

400

350 T

= =
8 250 . § 250
- 8 k]
= S
2 ; [
+ 200 % 200
[v
Qo o
[=] o
] 2
v 150 @ 150
£ : £
Ll o Ll X °
° ° 8
100 100 I
50 x 50 l % l %‘
0 l 0 *
@Optimizer @Trivial @Heuristic @ Full DSS @ Full DSS-S @ Optimizer @Trivial @Heuristic @ Full DSS @ Full DSS-S

Figure 8.12: Boxplot of time to best solution for all runs Figure 8.13: Boxplot of time to best solution for the 48

non-trivial runs

From the case study results it is clear that both the Heuristic and the Full DSS are able to
find the optimal solution in the majority of runs. In all 200 iterations, the Full DSS found
the same or a better solution than the Heuristic. The next section will highlight some of the
runs where the Heuristic and/or the Full DSS were not able to find the optimal solution.

8.2. Case Study 79

8.2.3. Highlighted Runs

This section will highlight some of the runs where the Full DSS or Heuristic was not able to
find the optimal solution and discuss the cause. The highlighted runs cover all reasons why
the Full DSS did not find the optimal solution.

Iteration 386 run McDonnell-Douglas

The original and recovered schedule for the aircraft involved in the recovery solution for
this run are summarized in Table 8.7. All aircraft are of the same type. In this run two
disruptions occurred within the McDonnell-Douglas family for iteration 386. The solution to
the first disruption is trivial and will not be discussed, the other disruption was the following:

* Flight DL2299a: Delayed for 20 minutes, flown by aircraft N987AT

Table 8.7: Combined original and recovered flight schedule for aircraft involved in the recovery solution of iteration 386 run MD.
Changes in schedule are shaded.

Flight No. Original Recovery Orig. Dest. STD STA TAT Original Recovery

Tail No. Tail No. Delay Delay
DL2225 N959AT N959AT PVD ATL 17:40 20:30 30 0 0
DL1142b N919AT N919AT ATL HOU 19:00 21:30 30 0 0
DL1771a NO987AT NO87AT MEM ATL 20:00 21:10 30 0 0
DL2299a N987AT N959AT ATL HOU 21:40 00:00 30 0 20
DL1142a N919AT N959AT HOU ATL 22:10 00:10 30 0 160
DL2195b N920AT N920AT MLB ATL 23:00 00:40 30 0 0
DL2299b N987AT N919AT HOU ATL 00:30 02:20 30 0 0
DL1464 N919AT N920AT ATL ORF 00:40 02:10 30 0 30
DL879 NO987AT NO987AT ATL DAL 03:00 05:20 30 0 0

Aircraft N987AT is scheduled to fly flight DL2299a from ATL to HOU and flight DL2299b
from HOU to ATL with minimal TAT in between. Flight DL2299b has 65 connecting economy
and 16 connecting business passengers on board. Since the TAT between flights DL2299a
and DL2299b is minimal, if flight DL2299a is delayed by 20 minutes, flight DL2299b would
also be delayed by 20 minutes. Delaying flight DL2299b has a high cost, since 15 connecting
passengers would miss their connecting flight. The tail swaps in the optimal recovery
solution ensure that both flight DL2299a and DL2299b can be flown as scheduled. This in
turn ensures that the connecting passengers on DL2299b can make their transfer. Through
the tail swaps, the recovery solution transfers the delay to flights that have a lower number
of connecting passengers which results in lower cost.

The Heuristic did not include aircraft N9S9AT and N919AT in the same selection and was
only able to identify the trivial solution. The trivial solution is to delay flights DL2299a
and DL2299b for 20 minutes. The Full DSS correctly included all necessary aircraft in the
sub-network and was able to find the optimal solution. Table 8.8 shows the solution statistics
and KPIs for this run.

Table 8.8: Statistics and KPlIs for the recovery solutions found for iteration 386 run MD

Time [s] Aircraft Cost ACost OTP DPC APD XP XF MCP CV

Optimum 143 208 $110.801 0% 99,2% 480 58 0 0 70 0
Trivial 38 2 $125.441 13% 99,3% 530 22 0 0 105 0
Heuristic 40 22 $125.441 13% 99,3% 530 22 0 0 105 0
Full DSS 67 106 $110.801 0% 99,2% 480 58 0 0 70 0
Full DSS-S 50 22 $110.801 0% 99,2% 480 58 0 0 70 0

80 8. Case study: Delta Airlines

Iteration 482 run McDonnell-Douglas

The original and recovered schedule for the aircraft involved in the recovery solution for this
run are summarized in Table 8.9. All aircraft are of type MD-88. In this run two disruptions
occurred within the McDonnell-Douglas family for iteration 482. The solution to the first
disruption is trivial and will not be discussed, the other disruption was the following:

* Flight DL845a: Delayed for 80 minutes, flown by aircraft N9O3DE

Table 8.9: Combined original and recovered flight schedule for aircraft involved in the recovery solution of iteration 482 run MD.
Changes in schedule are shaded.

Flight No. Original Recovery Orig. Dest. STD STA TAT Original Recovery

Tail No. Tail No. Delay Delay
DL2146 N925DL N925DL JFK PBI 13:20 16:20 45 0 0
DL616 N992DL N992DL MEM ATL 13:20 14140 45 0 0
DL845a N903DE N903DE ATL PBI 14:50 1640 45 0 80
DL2644 N925DL N903DE PBI JFK 17:10 19:550 45 0 100
DL1671 N911DL N911DL MIA JFK 17:30 20:30 45 0 0
DL845b N903DE N925DL PBI ATL 17:30 19:20 45 0 0
DL478 N903DE N992DL ATL JFK 20:10 22:30 45 0 0
DL2370 N925DL N911DL JFK MCO 21:30 00:40 45 0 0
DL2510 N903DE N903DE JFK ATL 23:20 02:00 45 0 0
DL2302 N911DL N992DL JFK MIA 23:20 0240 45 0 0
DL913 N925DL N911DL MCO MEM 01:30 0340 45 0 0

All flights on the flight string of aircraft N9O3DE, which includes flight DL845a as the first
flight, are flown with minimal TAT in between, hence delaying flight DL845a means delaying
all flights on the flight string by 80 minutes. Since that last flight on the flight string,
DL2510, is crossing the time window, the trivial solution of delaying all flights on the flight
string is not feasible. All flight swaps are necessary to ensure the schedule is feasible and
the constraint of Equation 5.9 is satisfied, which constrains the number of aircraft per type
required at the end of the time window at each airport.

The Full DSS did not include aircraft N911DL in the sub-network, since the airports on the
flight string of N911DL do not equal the origin or destination airport of the disrupted flight.
The flight string of the disrupted aircraft, N9O3DE, and the flight string of N911DL do cross at
JFK later in the time window. Nonetheless, the Full DSS was able to find a different solution
in which flights DL845a and DL845b are flown by N9O03DE and delayed by 80 minutes.
Flights DL478 and DL2510 are tail swapped to another aircraft to ensure the constraint of
Equation 5.9 is satisfied. Table 8.10 shows the solution statistics and KPIs for this run.

Table 8.10: Statistics and KPls for the recovery solutions found for iteration 482 run MD

Time [s] Aircraft Cost ACost OTP DPC APD XP XF MCP CV

Optimum 185 220 $124.772 0% 99,7% 366 78 0 0 65 0
Trivial 49 2 $1.817.198 1356% 98,5% 117 50 551 4 62 0
Heuristic 70 22 $143.530 15.0% 98,7% 383 70 0 0 134 0
Full DSS 79 112 $143.530 15.0% 98,7% 383 70 0 0 134 0
Full DSS-S 40 22 $143.705 15.2% 98,7% 383 68 0 0 134 0

8.2. Case Study 81

Iteration 492 run Airbus A320

The original and recovered schedule for the aircraft involved in the recovery solution for this
run are summarized in Table 8.11. In this run two disruptions occurred within the Airbus
A320 family for iteration 492. The solution to the first disruption is trivial and will not be
discussed, the other disruption was the following:

* Flight DL2175: Delayed for 60 minutes, flown by aircraft N358NW

Table 8.11: Combined original and recovered flight schedule for aircraft involved in the recovery solution of iteration 492 run
A320. Changes in schedule are shaded.

Flight No. Original Recovery Orig. Dest. STD STA TAT Original Recovery

Tail No. Tail No. Delay Delay
DL2175 N358NW N358NW LGA RSW 16:30 19550 40 0 60
DL2060 N340NB N340NB LGA MCO 17:00 20:10 40 0 0
DL2181 N360NW N360NW LGA MCO 19:.00 22:10 40 0 0
DL1334 N339NW N360NW MCO ATL 20:00 21:30 40 0 170
DL2604 N358NW N358NW RSW LGA 20:40 23:30 40 0 50
DL2056 N340NB N33ONW MCO LGA 21:.00 23:30 40 0 0
DL1776 N360NW N340NB MCO LGA 23.00 01:30 40 0 0
DL1485 N358NW N339NW LGA MCO 00:20 03:20 40 0 0
DL1147 N340NB N358NW LGA ATL 01:00 03:40 40 0 0
DL906 N370NB N360NW ATL LGA 01:40 03:50 40 0 0

The flight string of the disrupted aircraft, N358NW, has 20 minutes of slack time between
the delayed flight and the end of the time window. Since the delay of flight DL2175 is 60
minutes, the trivial solution of delaying all flights on the flight string is not feasible. The
last flight of N358NW, flight DL1485, is crossing the time window and needs to be flown as
scheduled. To ensure this, the flight is tail swapped to N339NW at LGA. For N339NW to
arrive at LGA, it itself needs to be tail swapped with aircraft N34ONB at MCO. All aircraft are
of type A320-212, except N340NB and N370NB, which are of type A319-114. The tail swaps
on flights DL1776 and DL906 are necessary to satisfy the constraint of Equation 5.9.

The Full DSS did not include aircraft N339NW in the sub-network, since the airports on the
flight string of N339NW do not equal the origin or destination airport of the disrupted flight.
The flight string of the disrupted aircraft, N358NW, and the flight string of N339NW do cross
at MCO later in the time window. The Full DSS only found the trivial solution, which is to
cancel flights DL2175 and DL2604. Table 8.12 shows the solution statistics and KPIs for
this run.

Table 8.12: Statistics and KPlIs for the recovery solutions found for iteration 492 run A320

Time [s] Aircraft Cost ACost OTP DPC APD XP XF MCP CV

Optimum 106 104 $130.654 0% 99,1% 503 73 0 0 55 0
Trivial 52 2 $358.614 174% 98,4% 128 10 239 2 0 0
Heuristic 50 22 $358.614 174% 98,4% 128 10 239 2 0 0
Full DSS 61 54 $358.614 174% 98,4% 128 10 239 2 0 0
Full DSS-S 52 22 $358.614 174% 98,4% 128 10 239 2 0 0

82 8. Case study: Delta Airlines

Iteration 493 run McDonnell-Douglas

The original schedule for the aircraft involved in the recovery solution for this run is presented
in Table 8.13. In this run two disruptions occurred within the McDonnell-Douglas family for
iteration 493. The solution to the first disruption is trivial and will not be discussed, the
other disruption was the following:

* Flight DL1891a: Delayed for 60 minutes, flown by aircraft N99SDN

Table 8.13: Combined original and recovered flight schedule for aircraft involved in the recovery solution of iteration 493 run
MD. Changes in schedule are shaded.

Flight No. Original Recovery Orig. Dest. STD STA TAT Original Recovery
Tail No. Tail No. Delay Delay

DL1067 N943DN N943DN MSP TPA 13:.00 16:20 45 0 0
DL1080 N955DN N955DN STL ATL 13:00 14:40 45 0 0
FERRY71 N952DL N952DL DTW MSP 1540 17:50 45 0 0
DL1891a N955DN N955DN ATL TPA 15:40 17:00 45 0 60
DL1148 N943DN N955DN TPA MSP 17:10 20:40 45 0 100
DL1891b N955DN N943DN TPA ATL 17:50 19:20 45 0 0
FERRY906 N929DN N929DN MIA ATL 18:20 20:20 45 0 0
DL1800 N955DN N929DN ATL BOS 21:20 23:50 45 0 0
DL959a N943DN N952DL MSP MCI 21:30 22:50 45 0 0
DL959b N943DN N952DL MCI MSP 2340 01:10 45 0 0

The flight string of the disrupted aircraft, N995DN, has 10 minutes of slack time between
the delayed flight and the end of the time window. Since the delay of flight DL1891a is 60
minutes, the trivial solution of delaying all flights on the flight string is not feasible. The
last flight of N955DN, flight DL1800, is crossing the time window and needs to be flown as
scheduled. To ensure this, the flight is tail swapped to N929DN at ATL. Flight DL1891b
has 11 business and 74 economy connecting passengers. If the flights was to be flown by
N955DN with 60 minutes of delay, 5 business and 16 economy passengers would miss their
transfer. Therefore, flight DL1891b is tail swapped to N943DN at TPA. The original flight
for N943DN, DL1148 is flown by N955DN with a delay of 100 minutes. This swap ensures
that the connecting passengers can make their transfer. Flights DL959a and DL959b are
tail swapped to N952DL, which arrived at MSP at 17:50 and does not have any more flights
planned after that.

The Full DSS did not include aircraft N952DL in the sub-network, since the flight string of
N952DL does not cross the flight sting of the disrupted aircraft. Nonetheless, the Full DSS
was able to find a different solution in which 6 tail swaps with different aircraft ensure the
connecting passengers can make their transfer. Table 8.14 shows the solution statistics and
KPIs for this run.

Table 8.14: Statistics and KPlIs for the recovery solutions found for iteration 493 run MD

Time [s] Aircraft Cost ACost OTP DPC APD XP XF MCP CV
Optimum 186 219 $71.248 0% 99,8% 520 48 0 0 18 0
Trivial 53 2 $474.810 566% 99,6% 285 60 259 2 65 0
Heuristic 69 22 $85.651 20% 99,8% 544 37 0 0 76 0
Full DSS 98 110 $82.319 16% 99,8% 520 48 0 0 18 0
Full DSS-S 63 22 $85.651 20% 99,8% 544 33 0 0 76 0

8.2. Case Study 83

8.2.4. Impact of Delaying Outbound Connecting Flights

Section 4.1 discusses the extension to the Connecting Passenger Matrix (CPM), which allows
changing the STD of the outbound connecting flights if the inbound flight is disrupted.
This option was not enabled when performing the case study, since delaying the outbound
connecting flights in combination with solving disruptions per aircraft family resulted in
trace-ability issues. This behaviour will be explained in this section. Furthermore, the
impact of the extension will be evaluated by comparing the averaged results over 100
iterations.

To explain the trace-ability issues, Table 8.15 shows two example connections. Aircraft
N309US belongs to the Boeing 737 family, N371DA belongs to the Airbus 320 family and
NI90OODE belongs to the McDonnell-Douglas family. When inbound flight DL2361 is delayed,
the DSS will incentivize the delay of flights DL247 and DL1238 to ensure the connecting
passengers can make their transfer on ATL. However, since aircraft N371DA and N90ODE
do not belong to the same family as the disrupted aircraft, N309US, these aircraft are not
included in the run that solves the disruption for flight DL2361. Only in a later run, when an
A320 or MD aircraft is disrupted, will these aircraft be included in the DSS and will the delay
be included in the recovery solution. This behaviour was deemed undesirable for the case
study where runs needed to be comparable and the cost need to be traceable and verify-able.

Table 8.15: Example connecting flights schedule

Flight1 TailNo.1 Flight2 TailNo.2 Orig. Conn. Dest. EconomyPax. Business Pax.

DL2361 N309US DL427 N371DA JAX ATL ORD 5 2
DL2361 N309US DL1238 N90ODE JAX ATL HOU 8 3

The impact of the extension to the CPM will be evaluated by comparing the results of the DSS
with and without the option enabled on iterations 0-100 of the disruption dataset, which
covers about 32 hours of operations in January. Furthermore, the same parameters as
presented in Table 8.4 will be used. Table 8.16 summarizes the results of the study. The
averaged results should give an indication of the cost reduction that the extension effectuates.
"No Delay” refers to the results without delaying outbound connecting flights, while "Delay”
refers to the results where the outbound flights could be delayed to recovery passengers.
In both cases, the random forest classifier and sub-network selection algorithm were not
enabled, hence all aircraft were included. Besides the Missed Connecting Passengers (MCP)
KPI, the table shows the Recovered Connecting Passengers (RCP). The RCP shows the number
of connecting passengers that can make their transfer due to an outbound connecting flight
being delayed.

Table 8.16: Impact of delaying outbound connecting flights on the KPIs

Time [s] Cost A Cost OTP DPC APD XP XF MCP RCP CV

No Delay 79 $1.967.344 0% 99,45% 25170 37 0 0 1.192 0 0
Delay 84 $1.126.036 -43% 99,32% 37.795 35 0 0 1307 213 0

From Table 8.16 the following conclusions can be drawn:

* The overall disruption cost decreases by over 40% when allowing outbound connecting
flights to be delayed in order to ensure passengers can make their connection.

* The number of delayed passengers (DPC) increases by 50%, since more flights are
delayed and therefore more passengers are delayed.

* The average passenger delay (APD) decreases slightly, this indicates that the outbound
connecting flights are usually delayed by less than 37 minutes.

* The passengers missing their connection (MCP) increases, which shows that the
outbound connecting flights that are delayed have some connecting passengers as well.
Some of these passengers might miss their connection. However, overall less passengers
miss their connection since 213 passengers are recovered by delaying outbound flights.

84 8. Case study: Delta Airlines

8.3. Sensitivity Analyses

The core of this research is the addition of the random forest classifier and the sub-network
selection algorithm to the DSS. The performance of the Final DSS is highly dependent on
the predictive performance of the classifier and the aircraft selections. This section will
investigate the sensitivity of the decision support system (DSS) to changes in the random
forest classifier and the sub-network selection algorithm. Furthermore, the classifiers ability
to generalize to unseen data will be assessed, i.e. how does the classifier perform on data it
was not trained on. Vink (2016) presented a sensitivity analysis that discusses the relation
between the size of the LP problem and the size of the inputs. Furthermore, the impact of
the schedule penalty is discussed.

8.3.1. Sub-network Selection Algorithm

One of the novelties of this research is the sub-network selection algorithm that uses the
class probabilities generated by the random forest classifier to create a sub-network of
aircraft. For the case study in the previous section the sub-network strategy was set on "Top
50%’, so that, for every iteration the top 50% aircraft with the highest predicted probabilities
of helping were selected to be included in the optimization. As discussed in Section 4.3 there
are two strategies that can be employed to select the aircraft. This section will discuss the
impact of the strategy on the recovery solution.

To determine the sensitivity of the solution to the selection strategy, several different
strategies and parameter settings have been used to solve the 200 iterations of the case
study. Table 8.17 summarizes the sensitivity analysis. The table shows the impact of
different strategies and different parameter values on the runtime, cost and KPIs. One of
the hypothesis of this research, discussed in Chapter 3, is that machine learning predictions
will have a positive impact on the computation time while not significantly deteriorating the
solution quality. Therefore, it is useful to determine the optimal strategy for the sub-network
selection. It should be noted that the results of Table 8.17 are specific to the random forest
classifier presented in Section 6.3. A different random forest classifier may require a different
sub-network selection strategy and parameter value.

Table 8.17: Sensitivity of Recovery solution to changes in the sub-network selection strategy

Time [s] Cost Aircraft OoTP DPC APD XP XF MCP Ccv
(Avg.) (Avg.) (Avg.) (Avg.) (Sum) (Avg.) (Sum) (Sum) (Sum) (Sum)

Full Fleet 83 $20.205 140 99,33% 92.542 28 459 4 4.285 0
Sub network selection strategy: Top X% of aircraft
Top 60 % 83 $20.205 140 99,00% 92.573 28 459 4 4.286 0
Top 50% 48 $21.439 71 99,34% 91.746 28 897 8 4.285 0
Top 40% 43 $22.316 57 99,34% 91.540 28 1.189 10 4.285 0
Top 30% 39 $23.383 43 99,34% 90.425 28 1.477 12 4187 0
Top 20% 36 $23.775 29 99,34% 90.944 28 1.477 12 4.344 0
Top 10% 33 $25.445 15 99,34% 90.610 28 2.008 16 4.241 0

Sub network selection strategy: All aircraft above threshold X

Thresh 0.10 60 $20.255 91 99,33% 92.370 28 459 4 4.286
Thresh 0.20 42 $22.621 43 99,33% 91.741 28 1.201 10 4.193
Thresh 0.30 36 $29.043 22 99,33% 90.624 27 2.368 18 4115
Thresh 0.40 34 $37.075 12 99,34% 89.492 28 2.982 23 4.181

w -~ 00

The analysis shows that the most selective strategies, i.e. Top 10% and Threshold > 0.40,
result in a deteriorated solution while not decreasing the computation time proportionately.
In fact, in some of the iterations these strategies resulted in constraint violations (CV) and
an increased number of cancelled flights (XF) and cancelled passengers (XF).

8.3. Sensitivity Analyses 85

Figures 8.14 and 8.15 show the computation time and cost vs the number of aircraft in the
sub-network selection, respectively. As expected, the computation time decreases and the
cost increases with a lower number of aircraft. However, Figure 8.15 shows that the cost
increases rapidly when there are less than 40 aircraft (on average) in the sub-network. It
can be concluded that the optimal number of aircraft lays between 40-80, depending on the
preferences of the airline. This corresponds to the strategies where either the top 40-60%
of aircraft are selected or where all aircraft with a probability above threshold 0.10-0.20 are
selected.

90 $45.000
[3
80 $40.000
b4

70 $35.000

60 0. $30.000 >
= 50 . & $25.000 o el .
@ - L
g 0..%] O g,
& a0 — & s20000 R ...

0o

30 $15.000

20 $10.000

10 $5.000

0 $-

0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160
Aircraftin Selection Aircraftin Selection

Figure 8.14: Computation time vs the number of aircraft in the Figure 8.15: Cost vs the number of aircraft in the sub-network
sub-network selection selection

Table 8.18 presents statistics about the computation time and number of selected aircraft in
the sub-network for different strategies and parameter values. From the table it becomes
clear that the Top X% strategies perform more consistent, or, in other words, with less
variance. Thus, for operational use in an AOCC the Top X% strategies may be preferred.

Table 8.18: Performance statistics of sub-network selection strategies

Computation Time Aircraft in Sub-network

Mean Var St.Dev Mean Var St.Dev

Sub-network selection strategy: Top X% of aircraft

X=60% 539 11243 33,5 84,2 11285 33,6
X=50% 48,0 827,8 28,8 70,5 787.9 28,1
X=40% 428 649,7 25,5 56,5 506,1 22,5
X=30% 39,1 579,1 241 42,6 288,7 17,0

Sub-network selection strategy: All aircraft above threshold X

X=020 424 987.,4 31,4 42,8 1788,6 42,3
X=0.10 604 19954 44,7 91,0 3352,0 57,9

8.3.2. Random Forest Classifier Generalization

The airline industry is subject to seasonality, which impacts both the number of daily flights
and the number of disruptions. In order for the random forest classifier and sub-network
selection algorithm to be useful, they need to be able to accurately predict which aircraft will
help solve a disruption throughout the year. The case study in the beginning of this chapter
discussed the performance of the Full DSS with the classifier. This classifier was trained
on training instances from January and assessed on disruptions in January. This section
will determine the ability of the classifier to generalize by assessing the performance of the
January classifier on disruptions in March. Figure 8.16 shows the number of disruptions in
Q1 2015, where the highlighted bars indicate the days in January and March that were used
in the case study. The Full DSS-Jdan (January classifier) will be compared to the Optimum,
Heuristic and the Full DSS with a classifier that was trained on March instances.

86 8. Case study: Delta Airlines

IS o @
S =} o
S S S

No. of Disruptions
N
15
3

‘?‘?‘?‘?‘?‘?‘?‘?‘?T"T‘"."‘.“T"T"‘."‘."‘.“T“T”‘.“‘."T“T“T‘“."7“7“7“‘:”‘?‘?‘?‘?‘?‘?‘?‘?‘?‘?"."7"7‘"."‘."‘.“T"T‘"."‘."‘.“T"T‘“."‘.“T“\“‘T“‘.“?‘?‘?‘?‘?‘?‘?‘?‘?"."T“T"T"T"T“T"T"T"T"T“T“T“‘.“T“T“T“T“‘.“?”f"""?
mm
855555555555555555555550060000055555888855885888856585888885855888338388388833838833883383883388883

Date

Figure 8.16: Number of disruptions per day in Q1 2015. Highlighted bars indicate days used for case study in January and
March.

The study comprised of 100 iterations near the end of March, which consisted of 147 runs
and 182 disruptions. Table 8.19 summarizes the results of the March disruptions.
Table 8.19: Comparison of averages key statistics for 100 iterations in March.

Time[s] ATime Aircraft Cost A Cost oTP
(Avg.) (Avg) (Avg.) (Avg.) (Avg.) (Avg.)

Optimum 123 0% 105 $28.608 0% 99,58%
Trivial 57 -54% 1 $197.873 592% 99,53%
Heuristic 61 -50% 8 $47.169 65% 99,58%
Full DSS-Jan 78 -37% 76 $39.183 37% 99,58%
Full DSS-Mar 75 -49% 76 $33.766 18% 99,58%
DPC APD XP XF MCP cv
(Sum) (Avg) (Sum) (Sum) (Sum) (Sum)
Optimum 35.419 38 289 2 1.910 0
Trivial 30.846 37 7.452 60 1.499 14
Heuristic 33.501 35 2.714 22 1.588 0
Full DSS-Jan 34.788 38 1.414 10 1.843 0
Full DSS-Mar ~ 35.368 38 924 7 1.874 0

From Table 8.19 it can be concluded that the March classifier outperforms the January
classifier on every KPI. Specifically on the cost, the Full DSS-Jan increases the cost by 37%
while the Full DSS-Mar increases the cost by 18%. In the 147 runs, 35 (24%) are non-trivial.
When comparing the non-trivial runs, the Full DSS-Mar finds the optimal solution in all but
2 runs, while the Full DSS-Jan finds the optimal solution in all but 5 runs. While it was
to be expected that the Full DSS-Mar outperforms the Full DSS-Jan, this difference shows
that the January classifier only has a moderate ability to generalize. The next chapter will
discuss these results and recommendations regarding generalization performance.

8.3.3. Random Forest Classifier Hyperparameter Sensitivity

Chapter 6 discusses the framework that was used to obtain the random forest classifier.
One of the crucial elements of the framework is the hyperparameter tuning. Section 6.3
presented the random forest classifier that was used for the case study, including the final
hyperparameters obtained after training. This section will elaborate on the influence of the
hyperparameters on the prediction performance, measured using the Average-Specificity
(AS) metric. The same hyperparameters that were used for training will be used for the
sensitivity analysis. For each hyperparameter the value was changed over a range while
keeping the value of the other parameters equal to the optimal value found during training.

Figure 8.17 shows the results of the hyperparameter sensitivity analyses. The figures
indicate that the performance of the random forest classifier is not very dependent on the
hyperparameter values, as long as the value is larger than 5-10. The min_samples_leaf

8.4. Concluding Remarks on Case Study 87

parameter shows the a slight trend upwards with an increasing parameter value for the
test dataset and a negative trend for the train dataset. This makes sense, since a larger
min_samples_leaf results in less overfitting. These results show that a parameter value of
150 instead of 67 would likely improve the performance of the classifier slightly.

H
°
8
8

4

Average Specificity
K e o9
S ® ™
a 3 &
s 8 &
Average Specificity
cooooo
[ERTRTRERTRT
QBB BB3
BSNEd e
-
w
»

1 3 5 10 14 18 24 28 30 33 36 40 42 45 47 50 10 14 18 24 28 30 33 36 40 42 45 47 50
max_features max_features

Average Specificity
cooo
JU® o
IH83
8888

Average Specificity
ooo
b © b
S8R
888

0,550 0,840
0,500 0,820
2 4 6 8 10 13 16 19 22 24 27 30 33 36 39 43 45 47 51 55 2 4 6 8 10 13 16 19 22 24 27 30 33 36 39 43 45 47 51 55
max_depth max_depth
0,950 1,0005
0,900 1,0000

0,9995 \

Average Specificity
o o o <

S

G

S
Average Specificity

2 4 6 8 10 15 20 25 30 35 40 45 50 55 60 70 80 90 100110120140150160 2 4 6 8 10 15 20 25 30 35 40 45 50 55 60 70 80 90 100110120140150160

min_samples_leaf min_samples_leaf

4

Average Specificity
oo 00
%

2
8
Average Specificity

o o
[ERERT
o &
- NN}

0,720 0,995
2 4 7 10 15 20 25 30 35 40 45 50 55 60 65 70 80 90 100 2 4 7 10 15 20 25 30 35 40 45 50 55 60 65 70 80 90 100
min_samples_split min_samples_split

Figure 8.17: Sensitivity of random forest classifier to changes in hyperparameters in terms of Average Specificity. The left
column shows the results on the test dataset, the right column shows the results on the train dataset. The shaded area
indicates one standard deviation of the 5-fold cross validated results. The diamond indicates the optimal hyperparameter value
found after training.

8.4. Concluding Remarks on Case Study

This chapter presented a case study where the performance of the Full DSS was compared
with the optimal solution and the heuristic developed by Vink et al. (2019). The case study
considered 200 iterations in January 2015 which covered 565 disruptions. Overall it was
found that the Full DSS is able to find the same or a better solution than the heuristic for
all disruptions. In 87% of all runs, the optimal solution equaled the trivial solution, where
only the disrupted aircraft was involved in the recovery solution. The Full DSS and heuristic
found the optimal solution in 91.7% and 72.9% of all non-trivial runs, respectively. Overall,
the Full DSS increased the cost by 6.0% compared to 19.3% for the heuristic. Compared
to the optimal solution, the Full DSS and the heuristic both decreased the time required to
present the best solution. However, on average the Full DSS presented the best solution 13
seconds later than the heuristic.

Another case combined the classifier and sub-network selection algorithm of the Full DSS
with an aircraft selection heuristic, similar to the one presented by Vink et al. (2019).
Compared to the Full DSS, the benefit of this setup is the decrease in the required time

88 8. Case study: Delta Airlines

to present the best solution. Nonetheless, the solution quality is lower since the pitfalls of
the random forest classifier and the selection heuristic are combined. The classifier does
not always identify the correct candidate aircraft required for the optimal recovery solution.
Even if the correct candidate aircraft are included in the sub-network, the selection heuristic
does not always include the correct combination of aircraft in the runs.

By further analyzing the 4 non-trivial cases in the case study where the Full DSS did not
find the optimal solution, it was found that the random forest classifier has some difficulty
identifying candidate aircraft required for tail swaps when the candidate is not on the
same origin or destination airport as the disrupted flight. Moreover, the classifier does not
correctly identify candidate aircraft if their flight string and the flight string of the disrupted
aircraft do not cross.

The impact of the extension to the Connecting Passenger Matrix (CPM) was evaluated.
For the 100 iterations that were tested the overall disruption cost decreased by over 40%
when allowing outbound connecting flights to be delayed in order to ensure passengers can
make their connection. However, since more flights were delayed, the number of delayed
passengers increased by 50%.

A sensitivity analysis determined the relation between the selection strategy for the
sub-network selection algorithm and the disruption cost and computation time. The
relations show that, for the current classifier, the solution quality rapidly deteriorated when
less than 40 aircraft (on average) are selected. This corresponds to the sub-network selection
strategies where the Top 40-60% of aircraft are selected.

Another sensitivity analysis assessed the generalization performance of the random forest
classifier by using the classifier to solve several disruptions in March. The analysis showed
that the January trained classifier is moderately able to generalize to the March disruptions.
A classifier trained on March data increased the cost by 18% on average, while the classifier
trained on January data increased the cost by 37% on average.

Lastly, the hyperparameter sensitivity of the random forest classifier was determined
by iteratively varying hyperparameters and determining the performance in terms of
Average-Specificity. The results show that the performance of the classifier is not very
dependent on the values of the tested hyperparameters as long as the value is larger than
10.

The next chapter of this report, Chapter 9, will present the conclusions of this research and
recommendations for further research and improvements.

Conclusion and Recommendations

The previous chapter presented the results of the case study and the sensitivity analyses
of the Full DSS, including classifier and sub-network selection algorithm. This chapter
presents the conclusions of the research and recommendations for further improvement.
The conclusions, based on the case study, are given in Section 9.1. Section 9.2 discusses
the limitations of the system and recommendations for further improvement. Finally, in
Section 9.3 the research question and hypotheses are evaluated.

9.1. Conclusions

Two categories of results are discussed. First, the results related to the inclusion of the
random forest classifier and sub-network selection algorithm in the DSS are discussed.
Second, the extensions and improvements to the modelling framework developed by Vink
et al. (2019) are discussed.

9.1.1. Random Forest Classifier and Sub-network Selection

This research presented an approach for reducing the size of the aircraft recovery problem.
Airlines require fast recovery solutions when disruptions happen. A random forest classifier
was trained to predict the probability of undisrupted candidate aircraft being able to
help solve a disruption. Features related to the characteristics of the candidate aircraft,
disruption and flight schedule were developed and a random forest classifier was trained on 6
days worth of disruptions in January. This classifier was used to predict the probability that
a candidate aircraft would have a positive impact on resolving a disruption. The classifier
was combined with a sub-network selection algorithm to discard part of the aircraft in the
fleet of the disrupted aircraft.

The developed decision support system (DSS) was compared with the optimal solution
and the heuristic developed by Vink et al. (2019) in a case study on the network of Delta
Airlines. The case study results show that the Full DSS is able to find the same or a better
solution than the heuristic for all disruptions. Compared to the optimal solution, the Full
DSS and the heuristic both decreased the time required to present the best solution. For
the non-trivial runs, the Full DSS presented a solution in 68 seconds on average, which is
13 seconds later than the heuristic. Furthermore, for the non-trivial runs, the Full DSS
increases the average solution cost by 15% compared to an average cost increase of 50% for
the heuristic.

Further analyses revealed that random forest classifier has difficulty identifying candidate
aircraft required for tail swaps when the candidate is not on the same origin or destination
airport as the disrupted flight. Moreover, the classifier does not correctly identify candidate
aircraft if their flight string and the flight string of the disrupted aircraft do not cross at
all. This can be explained by the fact that there were no features in the feature space that

89

a0 9. Conclusion and Recommendations

identified these candidate aircraft and relation between their flight string and the flight
string of the disrupted aircraft.

The generalization performance of the random forest classifier is a point of concern.
A sensitivity analysis showed that the classifier, which was trained on January data,
performed worse on disruptions in March. Furthermore, the learning curves of the classifier
showed that the classifier overfitted to the training data. The next section will present
recommendations to reduce the overfitting and increase the generalization performance of
the classifier.

9.1.2. Improvements to Decision Support System (DSS)
This thesis continued the previous work by Vink et al. (2019) and Vos et al. (2015). The
framework and implementation have been extended on several fronts:

* Outbound connecting flight delay - Vink et al. (2019) developed the Connecting
Passenger Matrix (CPM) where the cost of missed connections where taken into account
when considering delaying aircraft. However, delaying the outbound connecting flight
was not included in the recovery options. This research extended the work by allowing
the DSS to delay outbound connecting flights whenever possible to allow connecting
passengers to make their transfer. The case study showed that, on average, the
disruption cost decreased by 40% when allowing outbound connecting flights. However,
the number of delayed passengers increased by 50%, since more flights are delayed.
According to an industry expert, the addition made to the connecting passenger matrix,
where outbound connecting flights can be delayed, is of added value to the DSS. Given
the sometimes large number of connecting passengers on a flight, it would be hard for
an AOCC controller to investigate opportunities for outbound flight delay. Automating
this process and presenting suggestions to the controller is therefore appreciated.

* Increased computational efficiency - Working with a larger dataset revealed several
implementation bottlenecks which increased the computational runtime. Several
major bottlenecks have been been resolved which decreased the runtime by 60-70%.
Recommendations regarding further improvements will be presented in Section 9.2.

* Tail swap time limit - Prior to this research the DSS allowed tail swaps close to the
scheduled time of departure of an aircraft. In reality, swapping tails before departure
is near impossible due to turn around operations and gate assignment schedules. This
research included a tail swap constraint with a limit of 3 hours, although this can be
set by the airline.

9.2. Recommendations

The previous section presented the conclusion to this research and extensions to the DSS.
From the work, several key areas of further improvement have been identified. These
recommendations for further improvements will be discussed in this section and can be
divided in the following categories: classifier, improvements to ARP, dataset, crew and
passenger recovery and computational performance.

9.2.1. Random Forest Classifier and Sub-network Selection

Although the case study showed that the random forest classifier was able to reduce the
computation time of the ARP without significant solution deterioration, there are several
recommendations that could lead to an improved classifier:

* Increase generalization performance - The learning curves of the final random forest
classifier in Section 6.3 indicate that the classifier has overfitted to the training data.
Furthermore, the sensitivity analysis regarding the generalization performance of the
classifier showed that the classifier trained on January data did not generalize well to
March data. There are several recommendations to decrease the overfitting and increase
the generalization performance:

9.2. Recommendations 91

1. Decrease model complexity, by decreasing the max_depth, min_samples_split
and/or min_samples_leaf hyperparameters

2. Gather more training data from diverse time periods, with more training data the
classifier might be able to better predict specific situations. Gathering data from
different time periods might increase the generalization performance.

3. Removing features, by removing irrelevant features the complexity of the model
is reduced further. The next recommendation will further discuss feature
engineering.

* Further feature analyses and engineering - The feature analysis, presented in Section
6.2.7, shows that the performance of the classifier was improved by adding new features
and removing non-performing and/or highly correlated features. Further research
into the features has the potential to improve the performance and robustness of the
classifier. The case study showed that the DSS was unable to find the optimal solution in
4 of the 367 runs. In these runs a critical candidate aircraft was not correctly identified.
In the current feature space contain features that identify candidate aircraft which are
on the same origin or destination airport as the disrupted flight. Other features quantify
their availability. In the 4 runs where the optimal solution was not found, the flight
string of the critical candidate aircraft did not touch the origin or destination airport
of the disrupted flight. Further research is needed to engineer features that will aid in
the identification of those aircraft, for example by extending the current features to the
entire flight string of the disrupted aircraft instead of the disrupted flight only.

* Hyperparameter Optimization - Bayesian optimization with 5-fold cross validation
was used to find the optimal hyperparameters for the random forest classifier. By
increasing the hyperparameter value ranges, increasing the number of iterations and
using 10-fold CV, a better set of hyperparameters may be obtained.

* Algorithm benchmark - Section 6.2.2 discussed the machine learning algorithm
selection and the choice for the random forest algorithm. However, the performance of
an algorithm is highly dependent on the problem specifics. Although Olson et al. (2018)
showed the strength of the random forest algorithm, a different algorithm may be better
suited for the aircraft recovery problem. Well trained boosting algorithms, like XGBoost
and LightGBM, are known to outperform random forests. Moreover, neural network
are known to capture complex relationships and may be able to find relationships in
the feature space that tree based algorithm are not able to find. It is recommended to
benchmark different machine learning algorithms.

9.2.2. Aircraft Recovery
The current aircraft recovery formulation and implementation can be improved upon with
several extensions:

* Airport flow rate reductions and closures - This research did not incorporate airport
close times or reduced flow rates, for example a difference in daytime and nighttime
operations. Therefore, the DSS is not limited by airport closures when considering
flight delays. In reality, aircraft may not be allowed to land after certain hours, thereby
limiting the delay options. Furthermore, airport flow rates (inbound and/or outbound)
may be reduced due to weather conditions, this reduction is currently not incorporated
in the research. Incorporating these limitations will require additional constraints
which describe and limit the number of departures and arrivals per time period. These
constraints will limit the number of flight slots for an airline, from which the DSS will
be forced to choose the best recovery solution.

* Connecting passengers rebookings - As mentioned in Section 4.1, with the current
implementation of the DSS and CPM), it could occur that more passengers are rebooked
to a flight than the number of seats available. It is recommended to implement available
seat updates after every iteration and to implement passenger spill constraints. This
combination of features will allow for added realism and hence more realistic decisions
by the DSS.

92

9. Conclusion and Recommendations

* Connecting passengers and flight cancellations - In the current implementation of
the DSS, the maximum delay cost is assigned per passenger when a flight is cancelled.
However, for connecting passengers an additional cost term is necessary to describe the
itinerary recovery options in case of an cancellation. For example, cancelling the last
flight of a day to a destination should be more expensive for connecting passengers then
cancelling the first flight of a day.

* Adding time window (TW) crossing flights flexibility - As discussed in Section 4.1
the time window concept keeps the problem size manageable and limits the snowball
effect of a disruption. Currently, all flights that cross the time window are constrained
to fly as scheduled. This is done to ensure that the flight schedule is not disrupted
after the end of the time window. However, this also constrains the recovery options
available. There could be situations where the flight that crosses the time window can
be delayed without problems, e.g. because the next scheduled flight for that aircraft
departs much later. A rule of thumb could be created that evaluates the delay options
and consequences of the flights that cross the time window and relaxes the constraint
where possible.

* Incorporating cost index (CI) decisions - Marla et al. (2017) have shown that
incorporating cost index decisions as a recovery technique can reduce the overall
passenger delay and disruption cost for an airline. However, this will increase the size
of the problem and hence increase computation time. Moreover, Arikan et al. (2017)
have shown that there is no linear relation between fuel cost and cruise speed. Either
the problem would have to be reformulated as an Mixed Integer Quadratic Programming
(MIQP) problem or a discretization of the additional cost and flight time would need to
be implemented. This could be achieved by creating additional flight and delay arc with
lower flight times and higher cost due to additional fuel burn. These additional arcs
(decision variables) will increase the problem size and hence computation time. The
number of decision variables to add will equal the current number of flight and delay
arcs times the discrete time steps of earlier arrival due to increased cruise speed, e.g.
for 4 discrete earlier arrival options the number of flight and delay arcs would grow
400%. As shown by Vink et al. (2019), there exists a non-linear relationship between
the number of decision variables and the runtime of the DSS, hence the runtime could
increase by more than 400%. Clearly, a more intelligent way of adding these arcs is
needed. Vink et al. (2019) suggested to only include these early arrival arcs for long
haul flights, where the difference in arrival time is more significant than for short-haul
flights.

9.2.3. Dataset

One of the contributions of this research is the generation of a realistic dataset for one of the
largest hub-and-spoke carriers in the world. To the best of the author’s knowledge, this is
the largest and most realistic dataset available to the ATO section at the faculty of Aerospace
Engineering. However, several opportunities for improvements still exist:

* Maintenance Data - Vink et al. (2019) extended the work by Vos et al. (2015) by adding
(flexible) maintenance constraints to the DSS. Due to data unavailability, maintenance
constraints were not included in this work. Since maintenance constraints limit the
options available to the DSS and are a vital part of airline operations, it is recommended
to obtain maintenance data and re-incorporate these constraints in further iterations of
the DSS. It is critical to obtain real-world information to ensure validity of the results.

* Disruptions dataset: disruption updates - Since disruption development updates were
not available, only the final disruption duration was evaluated in the DSS. In reality,
AOCCs receive updates on weather conditions and disruptions on a regular basis and
update these in their systems. For example, weather conditions may become more
severe over the course of the day, which necessitates re-optimization of the disruption.
If this data becomes available in future, it would be interesting to see how this would
impact the performance of the DSS.

9.2. Recommendations 93

* Disruptions dataset: aircraft unavailbilities - Currently, aircraft unavailabilties are
extracted with a simple rule-based technique, see Section 8.1. This rule is quite limited
and lacks realism, since only aircraft unavailabilities of >120 minutes are extracted. In
real world operations, aircraft could be unavailable for less then two hours. This rule
should be improved in future work.

* Schedule and Disruptions dataset - The dataset used for the case study includes
data on the first quarter of 2015. While this is already extensive, the data processing
logic (see Appendix H can be applied to the other quarters of 2015 as well. This would
create a dataset for the full year, allowing verification and validation in different months,
seasons and peak periods. Given the seasonality of the airline industry, this could result
in interesting findings and a more robust DSS.

* Delay cost - The current soft and hard cost are adapted from Vos et al. (2015), which
based them on the research done by Cook et al. (2012). In reality, countries may have
specific legislation, e.g. on passenger compensation in case of delays, which should be
taken into account. Incorporating this (country specific) legislation will allow the DSS
to make more realistic decisions.

9.2.4. Crew and Passenger Recovery

The aircraft recovery solution is only part of the solution required when a disruption occurs.
Crew (flight and cabin) and passenger recovery were not considered in this research, but are
vital for real life disruption management. However, including crew and passenger recovery
will increase the computation time since the number of decision variables and constraints will
increase. Since AOCCs prioritize fast solutions over perfect solutions, a sequential recovery
strategy is advised over a global recovery strategy. Furthermore, techniques like column and
row generation can improve the computational performance without significant deterioration
of the solution quality. A (draft) crew recovery model formation is included in Appendix D
and a partial implementation has been written for this research. However, it should be noted
that this work is not verified nor validated.

9.2.5. Computational Performance
As mentioned in Section 9.1.2 the computational efficiency of the DSS has been improved.
This section will discuss several options for further runtime reductions.

Implementation

Currently, the DSS is written in Python 2.7. While Python, like other interpreted languages,
has many advantages, computational performance is not one of them for most applications.
It is recommended to keep using Python for development due to the ease of development.
However, when efficiency of execution considerations start to weight more heavily, e.g. when
implementing the DSS in an operational setting, comparing Python, Java, C, Julia and other
language implementations may prove to be beneficial. Furthermore, it could be investigated
whether the current implementation of the DSS can be improved.

Parallel processing

Parallel computing allows to break down a problem into several similar subtasks that can
be processed concurrently and whose results can be combined after completion. This allows
for runtime reductions, since larger tasks can be split over multiple cores. There are several
variants of parallel processing which could be implemented in the DSS:

* Concurrent solving - As can be seen in Section 8.2.2, the trivial solution is the optimal
solution to the disruption in 87% of the runs. By starting two concurrent processing,
one finding the trivial solution and one using the DSS, the time required to present a
feasible solution can be reduced.

* Concurrent computation - The current implementation of the DSS consists of several
steps where variables or data structures are computed per flight or aircraft in the
selection. Runtime reductions can be achieved by performing these computations in

94 9. Conclusion and Recommendations

parallel instead of sequentially. Python has a mutex, the global interpreter lock (GIL),
that protects access to objects. This makes parallel computing in Python a difficult task,
which would also be an argument to rewrite the DSS in another language for real world
implementation. Within Python, several packages, such as DASK and NUMBA can be
leveraged to parallelize several computations.

9.3. Concluding Remarks on Research

This research investigated if machine learning predictions could be leveraged to reduce the
computation time required to find a solution for the aircraft recovery problem. Based on the
literature review and the research questions, two hypotheses were formulated for this thesis:

Hypothesis one
Based on real schedule, disruptions, network and fleet data of an airline, a machine
learning model can be trained to select a sub-network that will result in a feasible recovery
solution.

Hypothesis two
Making a sub-network selection based on machine learning predictions will decrease the
computation time of the optimization model while not significantly deteriorating the
recovery solution.

The case study supports both hypotheses. In the 565 disruptions that were tested, the
decision support system (DSS) was able to find a feasible solution without constraint
violations. Although only a limited case study was performed, the results are promising.
Further research is required to further improve the performance of the system and the
machine learning classifier. Nonetheless, hypothesis one is proven, since the case study
proves that machine learning based predictions can be leveraged to find a feasible recovery
solution.

Hypothesis two is related to both the computation time and the solution quality. First, the
case study results shows that the sub-network selections consistently result in computation
time reductions. On average the runtime is reduced by 42%. The computation times required
for the disruptions of the case study ranged from 9 to 180 seconds, averaging around 48
seconds. In 98% of the runs, the best solution was found within 120 seconds. Second,
on average the solution cost are increased by 6%. The DSS found the optimal solution in
98.91% of the runs and 91.7% of all non-trivial runs. These are strong indications that, by
improving the classifier, hypothesis two is correct.

The research question for this thesis was formulated as:

Research question
How can machine learning techniques be incorporated into the aircraft recovery problem,
and how does this integration help the recovery solution in terms of solution cost and
computational time?

This research demonstrated that a machine learning classifier can be incorporated into the
aircraft recovery problem. After a disruption occurs, all non-disrupted aircraft of the same
aircraft family are scored by the classifier, resulting in a probability that the non-disrupted
aircraft will help recover the disruption. Based on these probabilities, a sub-network selection
algorithm selects the aircraft with the highest probability. This subset of aircraft is used to
find a recovery solution to the disruption. The case study shows that this system is able
to reduce the computation time by over 43% while increasing the solution cost by 6% on
average.

Bibliography

Khaled F. Abdelghany, Ahmed F. Abdelghany, and Goutham Ekollu. An integrated decision support
tool for airlines schedule recovery during irregular operations. European Journal of Operational
Research, 185(2):825-848, 2008. ISSN 03772217. doi: 10.1016/j.€jor.2006.12.045.

Bruno Aguiar, Jose Torres, and Anténio J M Castro. Operational Problems Recovery in Airlines - A
Specialized Methodologies Approach. In Progress in Artificial Intelligence, volume 8154, 2013.
ISBN 978-3-642-40668-3. doi: 10.1007/978-3-642-40669-0. URL http://link.springer.
com/10.1007/978-3-642-40669-0.

M. Selim Akttirk, Alper Atamttirk, and Sinan Gurel. Aircraft Rescheduling with Cruise Speed Control.
Operations Research, 62(4):829-845, 2014. ISSN 0030-364X. doi: 10.1287/opre.2014.1279. URL
http://pubsonline.informs.org/doi/abs/10.1287/opre.2014.1279.

Michael Francis Arguello. Framework for Exact Solutions and Heuristics for Approximate Solutions to
Airlines Irregular Operations Control Aircraft Routing Problem. PhD thesis, University of Texas at
Austin, 1998.

Pol Arias, Miguel Mujica Mota, Daniel Guimarans, and Geert Boosten. A methodology combining
optimization and simulation for real applications of the stochastic aircraft recovery problem.
Proceedings - 8th EUROSIM Congress on Modelling and Simulation, EUROSIM 2013, pages 265-270,
2015. doi: 10.1109/EUROSIM.2013.55.

Ugur Arikan, Sinan Gurel, and M Selim Akttirk. Flight Network-Based Approach for Integrated Airline
Recovery with Cruise Speed Control. Transportation Science, 51(4):1259-1287, 2017. ISSN
15265447. doi: 10.1287 /trsc.2016.0716.

Ugur Arikan, Sinan Gurel, and M. Selim Akttrk. Integrated aircraft and passenger recovery with cruise
time controllability. Annals of Operations Research, 236(2):295-317, 2016. ISSN 15729338. doi:
10.1007/s10479-013-1424-2.

Michael Ball, Cynthia Barnhart, Martin Dresner, Kevin Neels, Amedeo Odoni, Everett Peterson, Lance
Sherry, Antonio Trani, and Bo Zou. Total Delay Impact Study. Technical report, 2010. URL
https://www.isr.umd.edu/NEXTOR.

Jonathan F. Bard, Gang Yu, and Michael F. Arguello. Optimizing aircraft routings in response to
groundings and delays. IIE Transactions (Institute of Industrial Engineers), 33(10):931-947, 2001.
ISSN 15458830. doi: 10.1080/07408170108936885.

Cynthia Barnhart. 1.206j airline schedule planning. http://ocw.mit.edu, 2003. [Online; accessed
09-October-2018].

Cynthia Barnhart, Douglas Fearing, and Vikrant Vaze. Modeling Passenger Travel and Delays in
the National Air Transportation System. Operations Research, 62(3):580-601, 2014. ISSN
0030-364X. doi: 10.1287/opre.2014.1268. URL http://pubsonline.informs.org/doi/abs/
10.1287/opre.2014.1268.

J. Bergstra and B. Yoshua. Random Search for Hyper-Parameter Optimization. Journal of Machine
Learning Research, 2012. ISSN 1532-4435. doi: 10.1162/153244303322533223.

Serge Bisaillon, Jean Francois Cordeau, Gilbert Laporte, and Federico Pasin. A large neighbourhood
search heuristic for the aircraft and passenger recovery problem. 40OR, 9(2):139-157, 2011. ISSN
16142411. doi: 10.1007/s10288-010-0145-5.

Stephane Bratu and Cynthia Barnhart. Flight operations recovery: New approaches considering
passenger recovery. Journal of Scheduling, 9(3):279-298, 2006. ISSN 10946136. doi:
10.1007/s10951-006-6781-0.

Leo Breiman, Jerome Friedman, Charles Stone, and RA Olshen. Classification and Regression Trees
(Wadsworth Statistics/Probability). New York: CRC Press, 1984.

Anténio J M Castro, Ana Paula Rocha, and Eugénio Oliveira. @A New Approach for Disruption
Management in Airline Operations Control, volume 562 of Studies in Computational
Intelligence. Springer Berlin Heidelberg, Berlin, Heidelberg, 2014. ISBN 978-3-662-43372-0.
doi: 10.1007/978-3-662-43373-7. URL http://link.springer.com/10.1007/
978-3-662-43373-17.

95

http://dx.doi.org/10.1016/j.ejor.2006.12.045
http://dx.doi.org/10.1007/978-3-642-40669-0
http://link.springer.com/10.1007/978-3-642-40669-0
http://link.springer.com/10.1007/978-3-642-40669-0
http://dx.doi.org/10.1287/opre.2014.1279
http://pubsonline.informs.org/doi/abs/10.1287/opre.2014.1279
http://dx.doi.org/10.1109/EUROSIM.2013.55
http://dx.doi.org/10.1287/trsc.2016.0716
http://dx.doi.org/10.1007/s10479-013-1424-2
http://dx.doi.org/10.1007/s10479-013-1424-2
https://www.isr.umd.edu/NEXTOR
http://dx.doi.org/10.1080/07408170108936885
http://ocw.mit.edu
http://dx.doi.org/10.1287/opre.2014.1268
http://pubsonline.informs.org/doi/abs/10.1287/opre.2014.1268
http://pubsonline.informs.org/doi/abs/10.1287/opre.2014.1268
http://dx.doi.org/10.1162/153244303322533223
http://dx.doi.org/10.1007/s10288-010-0145-5
http://dx.doi.org/10.1007/s10951-006-6781-0
http://dx.doi.org/10.1007/s10951-006-6781-0
http://dx.doi.org/10.1007/978-3-662-43373-7
http://link.springer.com/10.1007/978-3-662-43373-7
http://link.springer.com/10.1007/978-3-662-43373-7

96 Bibliography

Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer. SMOTE: Synthetic
minority over-sampling technique. Journal of Artificial Intelligence Research, 2002. ISSN
10769757. doi: 10.1613/jair.953.

Jens Clausen, Allan Larsen, Jesper Larsen, and Natalia J. Rezanova. Disruption management in
the airline industry-Concepts, models and methods. Computers and Operations Research, 37
(5):809-821, 2010. ISSN 03050548. doi: 10.1016/j.cor.2009.03.027.

Andrew Cook, Graham Tanner, and Adrian Lawes. The hidden cost of airline unpunctuality. Journal of
Transport Economics and Policy, 46(2):157-173, 2012. ISSN 00225258. doi: 10.2307/24396360.

Chuangyin Dang and Yinyu Ye. A fixed point iterative approach to integer programming and its
distributed computation. Fixed Point Theory and Applications, 2015(1), 2015. ISSN 16871812.
doi: 10.1186/s13663-015-0429-8.

Niklaus Eggenberg, Matteo Salani, and Michel Bierlaire. Constraint-specific recovery network for
solving airline recovery problems. Computers and Operations Research, 37(6):1014-1026, 2010.
ISSN 03050548. doi: 10.1016/j.cor.2009.08.006.

Qiang Gao, Xiao Wei Tang, and Jin Fu Zhu. Research on greedy simulated annealing algorithm
for irregular flight schedule recovery model. In 2009 IEEE International Conference on Grey
Systems and Intelligent Services, GSIS 2009, pages 1469-1475, 2009. ISBN 9781424449149.
doi: 10.1109/GSIS.2009.5408145.

Lotfy K. Hassan. Aircraft Disruption Management - Case Study Results and DSS Verification Results.
2019. URL http://doi.org/10.4121/uuid:aec54216-ef2f-4£08-978d-29a9cb3c3c46.

Lotfy K. Hassan, Bruno F. Santos, and J Vink. Airline Disruption Management: A Literature Review
and Practical Challenges. 2019. URL https://surfdrive.surf.nl/files/index.php/s/
PGnmB3vLjm3PUST.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning. Springer
Series in Statistics. Springer New York Inc., New York, NY, USA, 2001.

Frederick S. Hillier and Gerald J. Lieberman. Introduction to Operations Research. McGraw-Hill, New
York, NY, USA, tenth edition, 2015.

M Hossin and M.N Sulaiman. A Review on Evaluation Metrics for Data Classification Evaluations.
International Journal of Data Mining & Knowledge Management Process, 2015. ISSN 2231007X.
doi: 10.5121/ijdkp.2015.5201.

Yuzhen Hu, Baoguang Xu, Jonathan F. Bard, Hong Chi, and Min’Gang Gao. Optimization of
multi-fleet aircraft routing considering passenger transiting under airline disruption. Computers
and Industrial Engineering, 80:132-144, 2015. ISSN 03608352. doi: 10.1016/j.cie.2014.11.026.

Yuzhen Hu, Yan Song, Kang Zhao, and Baoguang Xu. Integrated recovery of aircraft and
passengers after airline operation disruption based on a GRASP algorithm. Transportation
Research Part E: Logistics and Transportation Review, 87:97-112, 2016. ISSN 13665545. doi:
10.1016/j.tre.2016.01.002.

Yuzhen Hu, Hong Liao, Song Zhang, and Yan Song. Multiple objective solution approaches for aircraft
rerouting under the disruption of multi-aircraft. Expert Systems with Applications, 83:283-299,
2017. ISSN 09574174. doi: 10.1016/j.eswa.2017.04.031.

Niloofar Jafari and Seyed Hessameddin Zegordi. The airline perturbation problem: Considering
disrupted passengers. Transportation Planning and Technology, 33(2):203-220, 2010. ISSN
03081060. doi: 10.1080/03081061003643788.

Niloofar Jafari and Seyed Hessameddin Zegordi. Simultaneous recovery model for aircraft and
passengers. In Journal of the Franklin Institute, volume 348, pages 1638-1655, 2011. doi:
10.1016/j.jfranklin.2010.03.012.

Jin Huang and C.X. Ling. Using AUC and accuracy in evaluating learning algorithms. IEEE
Transactions on Knowledge and Data Engineering, 17(3):299-310, 3 2005. ISSN 1041-4347. doi:
10.1109/TKDE.2005.50. URL http://ieeexplore.ieee.org/document/1388242/.

N. Jozefowiez, C. Mancel, and F. Mora-Camino. A heuristic approach based on shortest path problems
for integrated flight, aircraft, and passenger rescheduling under disruptions. Journal of the
Operational Research Society, 64(3):384-395, 2013. ISSN 01605682. doi: 10.1057/jors.2012.20.

S. B. Kotsiantis, I. D. Zaharakis, and P. E. Pintelas. Machine learning: a review of classification
and combining techniques. Artificial Intelligence Review, 26(3):159-190, 11 2006. ISSN
0269-2821. doi: 10.1007/s10462-007-9052-3. URL http://link.springer.com/10.1007/
s10462-007-9052-3.

http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1016/j.cor.2009.03.027
http://dx.doi.org/10.2307/24396360
http://dx.doi.org/10.1186/s13663-015-0429-8
http://dx.doi.org/10.1016/j.cor.2009.08.006
http://dx.doi.org/10.1109/GSIS.2009.5408145
http://doi.org/10.4121/uuid:aec54216-ef2f-4f08-978d-29a9cb3c3c46
https://surfdrive.surf.nl/files/index.php/s/PGnmB3vLjm3PU8T
https://surfdrive.surf.nl/files/index.php/s/PGnmB3vLjm3PU8T
http://dx.doi.org/10.5121/ijdkp.2015.5201
http://dx.doi.org/10.1016/j.cie.2014.11.026
http://dx.doi.org/10.1016/j.tre.2016.01.002
http://dx.doi.org/10.1016/j.tre.2016.01.002
http://dx.doi.org/10.1016/j.eswa.2017.04.031
http://dx.doi.org/10.1080/03081061003643788
http://dx.doi.org/10.1016/j.jfranklin.2010.03.012
http://dx.doi.org/10.1016/j.jfranklin.2010.03.012
http://dx.doi.org/10.1109/TKDE.2005.50
http://dx.doi.org/10.1109/TKDE.2005.50
http://ieeexplore.ieee.org/document/1388242/
http://dx.doi.org/10.1057/jors.2012.20
http://dx.doi.org/10.1007/s10462-007-9052-3
http://link.springer.com/10.1007/s10462-007-9052-3
http://link.springer.com/10.1007/s10462-007-9052-3

Bibliography 97

Meilong Le, Jinmin Gao, and Chenxu Zhan. Solving the Airline Recovery Problem Based on Vehicle
Routing Problem with Time Window Modeling and Genetic Algorithm. pages 822-828, 2013.

Ledislav Lettovsky. Airline Operations Recovery: An Optimization Approach. PhD thesis, Georgia Intitute
of Technology, 1997.

Tung Kuan Liu, Chiu Hung Chen, and Jyh Horng Chou. Optimization of short-haul aircraft
schedule recovery problems using a hybrid multiobjective genetic algorithm. Expert Systems with
Applications, 37(3):2307-2315, 2010. ISSN 09574174. doi: 10.1016/j.eswa.2009.07.068. URL
http://dx.doi.org/10.1016/7j.eswa.2009.07.068.

Stephen J. Maher. A novel passenger recovery approach for the integrated airline recovery
problem. Computers and Operations Research, 57:123-137, 2015. ISSN 03050548. doi:
10.1016/j.cor.2014.11.005.

Stephen J. Maher. Solving the Integrated Airline Recovery Problem Using Column-and-Row Generation.
Transportation Science, 50(1):216-239, 2016. ISSN 0041-1655. doi: 10.1287/trsc.2014.0552.
URL http://pubsonline.informs.org/doi/10.1287/trsc.2014.0552.

R. Mansi, S. Hanafi, C. Wilbaut, and F. Clautiaux. Disruptions in the airline industry: Math-heuristics
for re-assigning aircraft and passengers simultaneously. European Journal of Industrial
Engineering, 6(6):690-712, 2012. ISSN 17515254. doi: 10.1504/EJIE.2012.051074.

Lavanya Marla, Bo Vaaben, and Cynthia Barnhart. Integrated Disruption Management and Flight
Planning to Trade Off Delays and Fuel Burn. Transportation Science, 51(1):88-111, 2017. ISSN
0041-1655. doi: 10.1287 /trsc.2015.0609.

Randal S. Olson, William La Cava, Zairah Mustahsan, Akshay Varik, and Jason H. Moore. Data-driven
advice for applying machine learning to bioinformatics problems. In Russ B Altman, A Keith
Dunker, Lawrence Hunter, Marylyn D Ritchie, Tiffany A Murray, and Teri E Klein, editors,
Proceedings of the Pacific Symposium of Biocomputing 2018, pages 192-203. WORLD SCIENTIFIC,
2018. ISBN 978-981-3235-52-6. doi: 10.1142/9789813235533,018.

Jon D. Petersen, Gustaf Solveling, John-Paul Clarke, Ellis L. Johnson, and Sergey Shebalov. An
Optimization Approach to Airline Integrated Recovery. Transportation Science, 46(4):482-500,
2012. ISSN 0041-1655. doi: 10.1287/trsc.1120.0414. URL http://pubsonline.informs.
org/doi/abs/10.1287/trsc.1120.0414.

Romesh Ranawana and Vasile Palade. Optimized Precision - A New Measure for Classifier
Performance Evaluation. In 2006 IEEE International Conference on Evolutionary Computation,
pages 2254-2261. IEEE, 2006. ISBN 0-7803-9487-9. doi: 10.1109/CEC.2006.1688586. URL
http://ieeexplore.ieee.org/document/1688586/.

Karine Sinclair, Jean-Francois Cordeau, and Gilbert Laporte. Improvements to a large neighborhood
search heuristic for an integrated aircraft and passenger recovery problem. European Journal of
Operational Research, 233(1):234-245, 2 2014. ISSN 03772217. doi: 10.1016/j.ejor.2013.08.034.
URL http://linkinghub.elsevier.com/retrieve/pii/S0377221713007182.

Karine Sinclair, Jean-Francois Cordeau, and Gilbert Laporte. A column generation post-optimization
heuristic for the integrated aircraft and passenger recovery problem. Computers & Operations
Research, 65:42-52, 1 2016. ISSN 03050548. doi: 10.1016/j.cor.2015.06.014.

Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical Bayesian Optimization of Machine
Learning Algorithms. 6 2012. URL https://arxiv.org/abs/1206.2944.

Henrique Sousa, Ricardo Teixeira, Henrique Lopes Cardoso, and Eugénio Oliveira. Airline Disruption
Management - Dynamic Aircraft Scheduling with Ant Colony Optimization. In Proceedings of
the International Conference on Agents and Artificial Intelligence, pages 398-405, 2015. ISBN
978-989-758-073-4. doi: 10.5220/0005205303980405. URL http://www.scitepress.org/
DigitalLibrary/Link.aspx?doi=10.5220/0005205303980405.

Carolin Strobl, Anne Laure Boulesteix, Achim Zeileis, and Torsten Hothorn. Bias in random forest
variable importance measures: Illustrations, sources and a solution. BMC Bioinformatics, 2007.
ISSN 14712105. doi: 10.1186/1471-2105-8-25.

Dusan Teodorovi¢ and Slobodan Guberini¢. Optimal dispatching strategy on an airline network after
a schedule perturbation. European Journal of Operational Research, 15(2):178-182, 1984. ISSN
03772217. doi: 10.1016/0377-2217(84)90207-8.

DusSan Teodorovic and Goran Stojkovic. Model for operational daily airline scheduling.
Transportation Planning and Technology, 14(4):273-285, 1990. ISSN 0308-1060. doi:
10.1080/03081069008717431. URL http://www.tandfonline.com/doi/abs/10.1080/

03081069008717431?journalCode=gtpt20.

http://dx.doi.org/10.1016/j.eswa.2009.07.068
http://dx.doi.org/10.1016/j.eswa.2009.07.068
http://dx.doi.org/10.1016/j.cor.2014.11.005
http://dx.doi.org/10.1016/j.cor.2014.11.005
http://dx.doi.org/10.1287/trsc.2014.0552
http://pubsonline.informs.org/doi/10.1287/trsc.2014.0552
http://dx.doi.org/10.1504/EJIE.2012.051074
http://dx.doi.org/10.1287/trsc.2015.0609
http://dx.doi.org/10.1142/9789813235533_0018
http://dx.doi.org/10.1287/trsc.1120.0414
http://pubsonline.informs.org/doi/abs/10.1287/trsc.1120.0414
http://pubsonline.informs.org/doi/abs/10.1287/trsc.1120.0414
http://dx.doi.org/10.1109/CEC.2006.1688586
http://ieeexplore.ieee.org/document/1688586/
http://dx.doi.org/10.1016/j.ejor.2013.08.034
http://linkinghub.elsevier.com/retrieve/pii/S0377221713007182
http://dx.doi.org/10.1016/j.cor.2015.06.014
https://arxiv.org/abs/1206.2944
http://dx.doi.org/10.5220/0005205303980405
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0005205303980405
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0005205303980405
http://dx.doi.org/10.1186/1471-2105-8-25
http://dx.doi.org/10.1016/0377-2217(84)90207-8
http://dx.doi.org/10.1080/03081069008717431
http://dx.doi.org/10.1080/03081069008717431
http://www.tandfonline.com/doi/abs/10.1080/03081069008717431?journalCode=gtpt20
http://www.tandfonline.com/doi/abs/10.1080/03081069008717431?journalCode=gtpt20

98 Bibliography

DuSan Teodorovic and Goran Stojkovic. Model to Reduce Airline Schedule Disturbances.
Journal of Transportation Engineering, 121(4):324-331, 1995. ISSN 0733-947X. doi:
10.1061/(ASCE)0733-947X(1995)121:4(324).

Benjamin G. Thengvall, Jonathan F. Bard, and Gang Yu. Balancing user preferences for aircraft
schedule recovery during irregular operations. IIE Transactions (Institute of Industrial Engineers),
32(3):181-193, 2000. ISSN 0740817X. doi: 10.1080/07408170008963891.

United States Department of Transportation - Bureau of Transportation Statistics. Air carrier financial:
Schedule p-5.2. https://www.transtats.bts.gov/DatabaseInfo.asp?DB ID=135, 2018a.
[Online; accessed 12-November-2018].

United States Department of Transportation - Bureau of Transportation Statistics. Reporting
carrier on-time performance database (1987-present). https://www.transtats.bts.gov/
DatabaseInfo.asp?DB ID=120, 2018b. [Online; accessed 23-September-2018].

United States Federal Aviation Administration. N-number inquiry database. https://registry.faa.
gov/aircraftinquiry/, 2018. [Online; accessed 24-September-2018].

J Vink, B F Santos, and W J C Verhagen. Selection Heuristic for Solving the Dynamic Aircraft
Recovery Problem. Unpublished, 2019. URL https://surfdrive.surf.nl/files/index.php/
s/ yFwBQgIWDXRMxsn.

Jeroen Vink. Aircraft routing recovery. Master’s thesis, Delft University of Technology, 11 2016. https:
//surfdrive.surf.nl/files/index.php/s/czcqasHkWUgA7rb.

Hans Wieger M. Vos, Bruno F. Santos, and Thomas Omondi. Aircraft schedule recovery problem
- A dynamic modeling framework for daily operations. In Transportation Research Procedia,
volume 10, pages 931-940, 2015. doi: 10.1016/j.trpro.2015.09.047.

Gary M Weiss. Foundations of Imbalanced Learning. Imbalanced Learning, 2013. doi:
10.1002/9781118646106.ch2.

Cong Cong Wu and Meilong Le. A New Approach To Solve Aircraft Recovery Problem. In Proceedings of
the Second International Conference on Advanced Communications and Computation (INFO- COMP
2012), page 148-154. IARIA, 2012. ISBN 9781612082264.

Zhengtian Wu, Qing Gao, Benchi Li, Chuangyin Dang, and Fuyuan Hu. A Rapid Solving Method to
Large Airline Disruption Problems Caused by Airports Closure. IEEE Access, 5:26545-26555,
2017a. ISSN 21693536. doi: 10.1109/ACCESS.2017.2773534.

Zhengtian Wu, Benchi Li, and Chuangyin Dang. Solving Multiple Fleet Airline Disruption
Problems Using a Distributed-Computation Approach to Integer Programming. IEEE Access, 5:
19116-19131, 2017b. ISSN 21693536. doi: 10.1109/ACCESS.2017.2747155.

Zhengtian Wu, Benchi Li, Chuangyin Dang, Fuyuan Hu, Qixin Zhu, and Baochuan Fu. Solving
long haul airline disruption problem caused by groundings using a distributed fixed-point
computational approach to integer programming. Neurocomputing, 269:232-255, 2017c. ISSN
18728286. doi: 10.1016/j.neucom.2017.02.091.

www.chioka.in. Differences between receiver operating characteristic auc (roc auc) and precision recall
auc (pr auc). http://www.chioka.in/differences-between-roc-auc-and-pr-auc/, 2014.
[Online; accessed 13-January-2019].

Zhao Xiuli and Guo Yanchi. Study on GRAPS-ACO Algorithm for Irregular Flight Rescheduling. In
2012 International Conference on Computer Science and Service System, number 71073071, pages
266-269. IEEE, 8 2012. ISBN 978-0-7695-4719-0. doi: 10.1109/CSSS.2012.74.

Haiwen Xu and Songchen Han. Weighted Time-Band Approximation Model for Flight Operations
Recovery considering Simplex Group Cycle Approaches in China. Mathematical Problems in
Engineering, 2016, 2016. doi: 10.1155/2016/3201490.

Haiwen Xu, Songchen Han, Yong Zhang, and Jianguang Li. The Time-Band Approximation Model on
Flight Operations Recovery Model Considering Random Flight Flying Time in China. Proceedings -
2015 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2015, pages 695-700,
2016. doi: 10.1109/SMC.2015.131.

Seyed Hessameddin Zegordi and Niloofar Jafari. Solving the Airline Recovery Problem By Using Ant
Colony Optimization. International Journal of Industrial Engineering & Production Research, 21(3):
121-128, 2010. URL http://ijiepr.iust.ac.ir/article-1-214-en.pdf.

Cheng Zhang. Two-Stage Heuristic Algorithm for Aircraft Recovery Problem. Discrete Dynamics in
Nature and Society, 2017, 2017. ISSN 1607887X. doi: 10.1155/2017/9575719.

Dong Zhang, H. Y.K. Henry Lau, and Chuhang Yu. A two stage heuristic algorithm for the integrated
aircraft and crew schedule recovery problems. Computers and Industrial Engineering, 87:436-453,
2015. ISSN 03608352. doi: 10.1016/j.cie.2015.05.033.

http://dx.doi.org/10.1061/(ASCE)0733-947X(1995)121:4(324)
http://dx.doi.org/10.1061/(ASCE)0733-947X(1995)121:4(324)
http://dx.doi.org/10.1080/07408170008963891
https://www.transtats.bts.gov/DatabaseInfo.asp?DB_ID=135
https://www.transtats.bts.gov/DatabaseInfo.asp?DB_ID=120
https://www.transtats.bts.gov/DatabaseInfo.asp?DB_ID=120
https://registry.faa.gov/aircraftinquiry/
https://registry.faa.gov/aircraftinquiry/
https://surfdrive.surf.nl/files/index.php/s/yFwBQgIWDXRMxsn
https://surfdrive.surf.nl/files/index.php/s/yFwBQgIWDXRMxsn
https://surfdrive.surf.nl/files/index.php/s/czcqasHkWUqA7rb
https://surfdrive.surf.nl/files/index.php/s/czcqasHkWUqA7rb
http://dx.doi.org/10.1016/j.trpro.2015.09.047
http://dx.doi.org/10.1002/9781118646106.ch2
http://dx.doi.org/10.1002/9781118646106.ch2
http://dx.doi.org/10.1109/ACCESS.2017.2773534
http://dx.doi.org/10.1109/ACCESS.2017.2747155
http://dx.doi.org/10.1016/j.neucom.2017.02.091
http://www.chioka.in/differences-between-roc-auc-and-pr-auc/
http://dx.doi.org/10.1109/CSSS.2012.74
http://dx.doi.org/10.1155/2016/3201490
http://dx.doi.org/10.1109/SMC.2015.131
http://ijiepr.iust.ac.ir/article-1-214-en.pdf
http://dx.doi.org/10.1155/2017/9575719
http://dx.doi.org/10.1016/j.cie.2015.05.033

Bibliography 99

Dong Zhang, Chuhang Yu, Jitamitra Desai, and H. Y.K.Henry Lau. A math-heuristic algorithm for
the integrated air service recovery. Transportation Research Part B: Methodological, 84:211-236,
2016. ISSN 01912615. doi: 10.1016/j.trb.2015.11.016. URL http://dx.doi.org/10.1016/73.
trb.2015.11.016.

Bo Zhu, Jin Fu Zhu, and Qiang Gao. A Stochastic Programming Approach on Aircraft Recovery Problem.
Mathematical Problems in Engineering, 2015, 2015. ISSN 15635147. doi: 10.1155/2015/680609.

http://dx.doi.org/10.1016/j.trb.2015.11.016
http://dx.doi.org/10.1016/j.trb.2015.11.016
http://dx.doi.org/10.1016/j.trb.2015.11.016
http://dx.doi.org/10.1155/2015/680609

Subset of IATA US Airport Codes

IATA Code Airport City State
ATL Hartsfield-Jackson Atlanta Intl. Airport Atlanta GA
BDL Bradley Intl. Airport Windsor Locks CT
BNA Nashville Intl. Airport Nashville TN
BOS Gen. Edward Lawrence Logan Intl. Airport Boston MA
BTR Baton Rouge Metropolitan Airport Baton Rouge LA
BTV Burlington International Airport Burlington VT
DAL Dallas Love Field Dallas TX
DCA Ronald Reagan Washington National Airport Arlington VA
DTW Detroit Metropolitan Airport Detroit Ml
HNL Honolulu Intl. Airport Honolulu HI
HOU William P. Hobby Airport Houston TX
IAH George Bush Intercontinental Airport Houston TX
JFK John F. Kennedy Intl. Airport New York NY
KOA Kona Intl. Airport at Keahole Kailua/Kona HI
LAS McCarran Intl. Airport Las Vegas NV
LAX Los Angeles Intl. Airport Los Angeles CA
LGA LaGuardia Airport (Marine Air Terminal) New York NY
MCI Kansas City Intl. Airport Kansas City MO
MCO Orlando Intl. Airport Orlando FL
MEM Memphis Intl. Airport Memphis TN
MIA Miami Intl. Airport Miami FL
MLB Melbourne Intl. Airport Melbourne FL
MSP Minneapolis-Saint Paul Intl. Airport Minneapolis MN
ORD Chicago O’Hare Intl. Airport Chicago IL
ORF Norfolk Intl. Airport Norfolk VA
PBI Palm Beach Intl. Airport West Palm Beach FL
PHL Philadelphia Intl. Airport Philadelphia PA
PHX Phoenix Sky Harbor Intl. Airport Phoenix AZ
PNS Pensacola Intl. Airport Pensacola FL
PVD Theodore Francis Green State Airport Providence RI
RSW Southwest Florida Intl. Airport Ft. Myers FL
TPA Tampa Intl. Airport Tampa FL

101

Overview Input Data

Chapter 4 discussed the framework and inputs to the decision support system. This
appendix elaborates on the different files that are used by the DSS and their contents.

ACType.csv
Contains all information on the aircraft in the fleet. Within this file the following information
is required:

* Tail number, e.g. N429DL

* Aircraft type, e.g. A320-212

* Aircraft family, e.g. A320

* Number of seats for business class passengers - no distinction is made between business
& first class

* Number of seats for economy class passengers
OperatingCost.csv

This file contains the operating cost per aircraft type. The model uses direct operating costs
(DOC) per block hour. These should reflect the costs of the airline.

TAT.csv
This file contains the minimal turn-around time (TAT) required per aircraft type. This is
used to ensure that consecutive flights do not violate the required TAT for an aircraft.

RangesNM.csv
The range of all aircraft types in nautical miles. In combination with the distance between
airports, this information is used to check if an aircraft can fly a certain route.

Schedule.h5
Contains information on the scheduled flights. For each flight the following information is
required:
* Flight number, e.g. DL2340
e Tail number scheduled for flight
* Origin Airport IATA code, e.g. ORD
* Destination Airport IATA code
* Scheduled Time of Departure (STD) in UTC datetime format, e.g. 01-01-2015 17:10:00
* Scheduled Time of Arrival (STD) in UTC datetime format

* Economy passengers booked

103

104 B. Overview Input Data

* Business passengers booked

Disruptions.h5
Contains information on all disruptions in the dataset. This file should contain the following
information:
* Flight number
* Tail number scheduled for flight
* Disruption type, e.g. delay or aircraft unavailability
* Disruption cause, e.g. Weather
* Disruption minutes
* Time found out in UTC datetime format
* Origin Airport IATA code
* Destination Airport IATA code
* Scheduled Time of Departure (STD) in UTC datetime format
* Scheduled Time of Arrival (STD) in UTC datetime format
Connections.h5
Passengers on an itinerary that consists of multiple flight legs are provided to the model using
this file. This file contains the following information:
* Flight number of incoming flight
* Scheduled Time of Departure (STD) of incoming flight in UTC datetime format
* Scheduled Time of Arrival (STD) of incoming flight in UTC datetime format
* Flight number of connecting flight
* Scheduled Time of Departure (STD) of connecting flight in UTC datetime format
* Scheduled Time of Arrival (STD) of connecting flight in UTC datetime format
* Origin incoming flight
* Connecting airport
* Destination connecting flight
* Number of economy passengers on this itinerary
* Number of business passengers on this itinerary.
DistancesNM.csv

Distance between all airports in the schedule in nautical miles. Each flight leg of a route is
a row. So for example one for ORD-ATL, and one for ATL-ORD.

Airports.csv
This file contains the minimum time required, in minutes, for passengers to connect to
another flight at this airport.

Delay _cost_10min_split.csv

The resolution of the model is 10 minutes. This could be reduced to a smaller time step,
but this will increase the required run-time of the model, since the problem then becomes
more detailed. Within the delay costs, there is a split between soft and hard cost. Both are
presented in Appendix C.

Delay cost

Table C.1: Delay cost per passenger in USD per 10 minutes of delay

Delay [min] Soft cost Hard cost Total cost Delay [min] Soft cost Hard cost Total cost
10 $0,45 $0,00 $0,45 310 $392,97 $20,00 $412,97
20 $1,99 $0,00 $1,99 320 $407,78 $20,00 $427,78
30 $5,13 $0,00 $5,13 330 $422,60 $20,00 $442,60
40 $10,40 $0,00 $10,40 340 $437,41 $20,00 $457,41
50 $18,08 $0,00 $18,08 350 $452,22 $20,00 $472,22
60 $28,05 $10,00 $38,05 360 $467,04 $40,00 $507,04
70 $39,88 $10,00 $49,88 370 $481,85 $40,00 $521,85
80 $53,04 $10,00 $63,04 380 $496,67 $40,00 $536,67
90 $67,06 $10,00 $77,06 390 $511,48 $40,00 $551,48
100 $81,87 $10,00 $91,87 400 $526,30 $40,00 $566,30
110 $96,68 $10,00 $106,68 410 $541,11 $40,00 $581,11
120 $111,50 $15,00 $126,50 420 $555,92 $40,00 $595,92
130 $126,31 $15,00 $141,31 430 $570,74 $40,00 $610,74
140 $141,13 $15,00 $156,13 440 $585,55 $40,00 $625,55
150 $155,94 $15,00 $170,94 450 $600,37 $40,00 $640,37
160 $170,76 $15,00 $185,76 460 $615,18 $40,00 $655,18
170 $185,57 $15,00 $200,57 470 $629,99 $40,00 $669,99
180 $200,38 $15,00 $215,38 480 $644,81 $250,00 $894,81
190 $21520 $15,00 $230,20 490 $659,62 $250,00 $909,62
200 $230,01 $15,00 $245,01 500 $674,44 $250,00 $924,44
210 $244,83 $15,00 $259,83 510 $689,25 $250,00 $939,25
220 $259,64 $15,00 $274,64 520 $704,07 $250,00 $954,07
230 $274,45 $15,00 $289,45 530 $718,88 $250,00 $968,88
240 $289,27 $20,00 $309,27 540 $733,69 $250,00 $983,69
250 $304,08 $20,00 $324,08 550 $748,51 $250,00 $998,51
260 $318,90 $20,00 $338,90 560 $763,32 $250,00 $1.013,32
270 $333,71 $20,00 $353,71 570 $778,14 $250,00 $1.028,14
280 $348,53 $20,00 $368,53 580 $79295 $250,00 $1.042,95
290 $363,34 $20,00 $383,34 590 $807,76 $250,00 $1.057,76
300 $378,15 $20,00 $398,15 600 $822,58 $250,00 $1.072,58

105

Optimization Model

This appendix presents the mathematical formulation of the optimization model used in this
research. Chapter 5 explains the optimization model line-by-line.

Sets Indices

F set of flights i flight index

A set of airports t delay time index

E set of aircraft types a airport index

P set of aircraft p aircraft index

P(e) set of aircraft p of type e e aircraft type index

N set of all nodes = Ny UN; U N; U Ny n node index

No set of origin nodes j artificial variable index

N; set of intermediate nodes
Ng set of sink nodes

T set of delay steps

S set of slack variables

Parameters

Bous Cost multiplier for business passengers

Ceanx Additional hard cost per passenger in case of cancellation

Cconn;, Delay cost for connecting passengers on flight i, for delay time step ¢

Cp,, Cost of delay for flight i, for delay time step t

Cps, Soft cost of delay for delay time step ¢

Cou, Hard cost of delay for delay time step t

Co Ppi Operating cost of flight i with aircraft p

Ce, Cancellation cost of flight i

Ce, Cost of operating ground arc originating from node n

Cesen Penalty for operating a different aircraft than scheduled
poc, Direct operating cost of aircraft p, per block hour

dist; Distance of flight i

orig; Origin airport of flight i

dest; Destination airport of flight i

STA; Scheduled Time of Arrival of flight i

STD; Scheduled Time of Departure of flight i

FT,; Flight time of flight i, in hours

Paxy; Economy passengers on flight i

PaxJ; Business passengers on flight i

107

108 D. Optimization Model

range, Range of aircraft p
seatsY,, Economy seats on aircraft p
seatsJ,, Business seats on aircraft p

h¢ Number of aircraft belonging to fleet e that should terminate at sink node n € N
Dur,, Duration of maintenance task m, as number of required consecutive ground arcs
™ Number of time steps in time window

M Big M cost factor

Tswap Tail swap limit in minutes

Decision variables

(SFW =1, if flight arc i is flown by aircraft p

6Dp,i,t 1, if flight arc i is flown by aircraft p with delay time step ¢

¢, =1, if flight j is cancelled

d¢,, =1,ifaircraft p uses the ground arc originating from node n

6F{' = 0, if flight i is flown by same aircraft p as scheduled

Y L =1, if problem is infeasible, one or more slack variables are part of the basic solution

Objective Function

min 6}7 lCop L+ SD it (COP L+CDlt)+ SC CC + SG n CGn+ 5 CCSCH+ S]
D, b, b, b, b,

PEP IEF PEP IEF teT PEP neEN i€eF JES

COPW- = CDoc,, FT;
CDi_[= Cconni_t + (CDSt + CDHt) “(PaxY; + Byys - Pax];)
CCi = (CDSmax + CDHmax + Ceanx) - (PaxY; + Byys - Pax];)

Time-space continuity constraints Aircraft flight coverage

D66, + D G0,] +0c =1 vieF (D.1)

DEP ter
Origin node continuity
8Gpn + Z 5sz + Z 6Dpit =1 Vp€P,n=scheduled Ny of p (D.2)
i€Fout i€F oyt tET

Node continuity
[Bpnat Y Syt D Sop]=[0put D Gt D Op,,]=0 vpernen, 03
i€F {€F i LET i€F gyt {€F gy, t€T
Sink node continuity - fix specific aircraft
5Gp,n—1 + z 6Fp,i + Z SDW.I +s;=1 Vp€P,n=scheduled Ng of p (D.4)
iEFin iEFn,tET
Sink node continuity - fix aircraft type (i.e. allow tail swaps)

D eyt D Srpt DL Sn |+ ke veeEneNs (D.5)

pEP(e) i€Fin iEFn,tET

109

Airline constraints
Aircraft seats capacity

é Fpi T Z SDW.I =0 Vp,i where (seatsY, < PaxY; A seatsJ, < PaxJ;)

teT

Aircraft range

6FW. + z 6Dp,i,t =0 Vp,i where (range, < dist;)
teT

Original schedule penalty

6FW. + Z 6Dp.i.t -6 Fl = 1 ViE€F,p = aircraft scheduled for i
teT

Tail swap limit constraint

6Fp,i + Z 8Dp,i,t =0 Vp€P,iwhere STD; — Thow < Tswap
ter

Disruption constraints
Flight delay

Z 8p,; +6p,,, =0 VteT <delay,i = delayed flight
pPEP

Flight cancellation

5ci =1, i = cancelled flight

6Fp,l' + Z SDp,i,t =0

iEF

Aircraft unavailability

Vi € F where (tstart = STDi Stena U tstare < STAL' Stend):
Vt € T where (tgiqre < STD; +t <tepg U teng < STA; +t <topnq)

(D.6)

(D.7)

(D.8)

(D.9)

(D.10)

(D.11)

(D.12)

110 D. Optimization Model

Draft Crew Recovery Model

Sets Indices
Kr..n Setof scheduled flight crew k crew index
Kf,., setofreserve flight crew q pairing index

K set of all flight crew = K-, UK

f i fsch fres
set of scheduled cabin crew

ces Sl of reserve cabin crew
K. set of all cabin crew =K., UK,
K set of all crew members = K UK,
Qi set of eligible pairings for crew k

Csch

Pairing q is eligible for crew k if:
* pairing g starts at the source airport of crew k at beginning of time window
* pairing g ends at the sink airport of crew k at end of time window
* crew k can fly all aircraft types e included in pairing g
 all flight, duty and pairing legalities are satisfied

Parameters

Ciq Cost of assigning crew k to pairing q

Coup,i Cost of deadheading crew on flightj € F

Couppxr Cost of deadheading crew k back to base

%z =1, if flight j € F is part of pairing q

Ng minimum number of cabin crew needed on pairing g

Decision variables
0xq =1, if crew k is assigned to pairing q

Vi =1, if crew k is deadheaded back to base
X; = number of extra/surplus flight crew (deadheading) on flighti € F
Yi = number of extra/surplus cabin crew (deadheading) on flighti € F

Objective Function

minz Z Crq Orqt+ Z Cpup,i ~xi + z Cpup,i i + Z Yk - Cpupp ke

kEK qEQy i€F i€F keKg , UKc o

Constraints
Flight crew coverage constraint
All non-cancelled flights should have a flight crew assigned

Z Zy;-ak,q—xi=1—5ci VieF (D.13)

kEKf qEQk

Cabin crew coverage constraint
All non-cancelled flights should have enough cabin crew assigned

Z Z Yq Okq—Yi=ng (1-8¢) Vi€F (D.14)

k€K qeQg

Original crew constraint
All non-reserve crew that was originally scheduled, should either be assigned to flights or
deadheaded back to base

D Sigtu=1 VkeKs, UK, (D.15)
q€Qx

Case Study Features

Table E.1: Description of initial features for the classifier

Feature Description
Iteration The iteration number (for debugging purposes)
Candidate The tail number of the candidate aircraft

Disrupted_AC
Disrupted_Fl
Disruption_type
d_ac_type
d_ac_family
d_cap_pax_econ
d_cap_pax_buss
d_pax_econ_f{l
d_pax_buss_fl

d_pax_econ_max
d_pax_buss_max

d_range
d_range_flight

d_range_max

d_DOC

d_TAT
c_ac_type
c_ac_family
c_cap_pax_econ
c_cap_pax_buss

c_econ_If mean

c_econ_If std

The tail number of the disrupted aircraft

The flight number of the disrupted flight

The type of disruption

The aircraft type of the disrupted aircraft

The aircraft family of the disrupted aircraft

Economy passengers capacity of the disrupted aircraft
Business passengers capacity of the disrupted aircraft
Economy passengers on the disrupted flight

Business passengers on the disrtuped flight

Maximum No. Economy passengers on the flight string of the
disrupted aircraft

Maximum No. Business passengers on the flight string of the
disrupted aircraft

The range of the disrupted aircraft
The flight distance of the disrupted flight

Maximum flight distance on the flight string of the disrupted
aircraft

Direct Operating Cost per Hour of the disrupted aircraft
Turn Around Time of the disrupted aircraft

The aircraft type of the candidate aircraft

The aircraft family of the candidate aircraft

Economy passengers capacity of the candidate aircraft
Business passengers capacity of the candidate aircraft

The mean economy passenger load factor of all flights scheduled
for the candidate aircraft

The standard deviation of the economy passenger load factor of
all flights scheduled for the candidate aircraft

1M1

112

E. Case Study Features

Description of initial features for the classifier

Feature

Description

c_buss_If mean

c_buss_If_std

c_range
c_DOC
c_TAT

same_airport_min_before

same_airport_min_after

same_airport_lhr_before

same_airport_2hr_before

same_airport_3hr_before

same_airport_lhr_after

same_airport_2hr_after

same_airport_3hr_after

sameFamily

c_DOC_vs_d_DOC
c_TAT_vs_d_TAT

c_range_vs_d_range

c_range_vs_d_range_flight

C_range_vs_d_range_max

c_pax_econ_vs_d_cap_econ

c_pax_buss_vs_d_cap_buss

c_pax_econ_vs_d_econ_{l

c_pax_buss_vs_d_buss_fl

c_pax_econ_vs_d_econ_max

c_pax_buss_vs_d_buss_max

conn_pax_econ_d_to_c

conn_pax_buss_d_to_c

Result

The mean business passenger load factor of all flights scheduled
for the candidate aircraft

The standard deviation of the business passenger load factor of
all flights scheduled for the candidate aircraft

The ranfe of the candidate aircraft
Direct Operating Cost per Hour of the candidate aircraft
Turn Around Time of the candidate aircraft

The minimum number of minutes the canidate aircraft is on the
same airport of the disrupted flight before the STD/STA of the
disrupted flight

The minimum number of minutes the canidate aircraft is on the
same airport of the disrupted flight after the STD/STA of the
disrupted flight

Indicates if the candidate aircraft is on the origin airport of the
disrupted flight 1 hour before the STD of the disrupted flight

Indicates if the candidate aircraft is on the origin airport of the
disrupted flight 2 hour before the STD of the disrupted flight

Indicates if the candidate aircraft is on the origin airport of the
disrupted flight 3 hour before the STD of the disrupted flight

Indicates if the candidate aircraft is on the origin airport of the
disrupted flight 1 hour after the STD of the disrupted flight

Indicates if the candidate aircraft is on the origin airport of the
disrupted flight 2 hour after the STD of the disrupted flight

Indicates if the candidate aircraft is on the origin airport of the
disrupted flight 3 hour after the STD of the disrupted flight

Indicates if the candidate and disrupted aircraft are of the same
family (for debugging purposes)

d_DOC - ¢c_DOC

d_TAT - c_TAT

c_range - d_range

c_range - d_range_flight

c_range - d_range_max
c_cap_pax_econ - d_cap_pax_econ
c_cap_pax_buss - d_cap_pax_buss
c_cap_pax_econ - d_pax_econ_{l
c_cap_pax_buss - d_pax_buss_fl
c_cap_pax_econ - d_pax_econ_max
c_cap_pax_buss - d_pax_buss_max

The number of connecting economy passengers from the
disrupted aircraft to the candidate aircraft

The number of connecting business passengers from the
disrupted aircraft to the candidate aircraft

Indicates if the candidate aircraft was used to recover the
disruption

113

Table E.2: Description of features that were added after feature analysis

Feature

Description

Disruption_cause
Disruption_duration
c_no_flights

c_flights_duration

¢_ground_time_d_orig_airport

d_dest_airport_1_hr_before

d_dest_airport_2_hr_before

d_dest_airport_3_hr_before

d_dest_airport_1_hr_after

d_dest_airport_2_hr_after

d_dest_airport_3_hr_after

d_dest_airport_min_before_min

d_dest_airport_min_after_min

c_ground_time_d_dest_airport

d_orig_airport_1_hr_before

d_orig_airport_2_hr_before

d_orig_airport_3_hr_before

d_orig_airport_1_hr_after

d_orig_airport_2_hr_after

d_orig_airport_3_hr_after

d_orig_airport_min_before_min

d_orig_airport_min_after_min

The cause of the disruption
The duration of the disruption in minutes
The number of flights scheduled for the candidate aircraft

The sum of the flight durations for the flights scheduled for the candidate
aircraft

The total time the candidate aircraft spends on the ground at the origin
airport of the disrupted aircraft

Indicates if the candidate aircraft is on the destination airport of the
disrupted flight 1 hour before the STA of the disrupted flight

Indicates if the candidate aircraft is on the destination airport of the
disrupted flight 2 hour before the STA of the disrupted flight

Indicates if the candidate aircraft is on the destination airport of the
disrupted flight 3 hour before the STA of the disrupted flight

Indicates if the candidate aircraft is on the destination airport of the
disrupted flight 1 hour after the STA of the disrupted flight

Indicates if the candidate aircraft is on the destination airport of the
disrupted flight 2 hour after the STA of the disrupted flight

Indicates if the candidate aircraft is on the destination airport of the
disrupted flight 3 hour after the STA of the disrupted flight

The minimum number of minutes the canidate aircraft is on the
destination airport of the disrupted flight before the STA of the disrupted
flight

The minimum number of minutes the canidate aircraft is on the
destination airport of the disrupted flight after the STA of the disrupted
flight

The total time the candidate aircraft spends on the ground at the dest
airport of the disrupted aircraft

Indicates if the candidate aircraft is on the origin airport of the disrupted
flight 1 hour before the STD of the disrupted flight

Indicates if the candidate aircraft is on the origin airport of the disrupted
flight 2 hour before the STD of the disrupted flight

Indicates if the candidate aircraft is on the origin airport of the disrupted
flight 3 hour before the STD of the disrupted flight

Indicates if the candidate aircraft is on the origin airport of the disrupted
flight 1 hour after the STD of the disrupted flight

Indicates if the candidate aircraft is on the origin airport of the disrupted
flight 2 hour after the STD of the disrupted flight

Indicates if the candidate aircraft is on the origin airport of the disrupted
flight 3 hour after the STD of the disrupted flight

The minimum number of minutes the canidate aircraft is on the origin
airport of the disrupted flight before the STD of the disrupted flight

The minimum number of minutes the canidate aircraft is on the origin
airport of the disrupted flight after the STD of the disrupted flight

Top 100 Feature Correlations

Feature 1 Feature 2 Correlation
Disruption_type_AC_Unavailable Disruption_type_Delay -1,00
c_ac_type_777-232 c_ac_family 777 1,00
d_ac_family_757 c_ac_family_757 1,00
d_ac_type_777-232LR d_ac_family 777 1,00
d_ac_type_777-232LR c_ac_type_777-232 1,00
d_ac_type 777-232LR c_ac_family 777 1,00
d_ac_family MD c_ac_family MD 1,00
d_ac_family 737 c_ac_family 737 1,00
d_ac_family_A320 c_ac_family_A320 1,00
d_ac_family 777 c_ac_family 777 1,00
d_ac_family 777 c_ac_type_777-232 1,00
d_ac_family_767 c_ac_family_767 1,00
c_TAT vs_d_TAT c_pax_buss_vs_d_cap_buss 1,00
d_cap_pax_buss d_ac_type_717-200 0,99
c_cap_pax_buss c_ac_type_717-200 0,99
c_econ_If std c_buss_If std 0,99
c_econ_If_mean c_buss_If mean 0,99
c_pax_buss_vs_d_cap_buss c_pax_buss_vs_d_buss_max 0,99
c_TAT vs_d_TAT c_pax_buss_vs_d_buss_max 0,99
d_cap_pax_buss d_pax_buss_max 0,98
d_pax_buss_max d_ac_type 717-200 0,98
c_TAT vs_d_TAT c_pax_econ_vs_d_cap_econ 0,98
c_pax_buss_vs_d_buss_f{l c_pax_buss_vs_d_buss_max 0,97
c_pax_econ_vs_d_cap_econ c_pax_buss_vs_d_cap_buss 0,97
c_pax_buss_vs_d_cap_buss c_pax_buss_vs_d_buss_fl 0,96
c_TAT vs_d_TAT c_pax_buss_vs_d_buss_f{l 0,96
c_pax_econ_vs_d_cap_econ c_pax_buss_vs_d_buss_max 0,96
d_pax_buss_fl d_pax_buss_max 0,95
d_cap_pax_econ d_TAT 0,95
d_cap_pax_buss d_pax_buss_fl 0,94
c_cap_pax_econ c_TAT 0,94
c_pax_econ_vs_d_cap_econ c_pax_econ_vs_d_econ_max 0,94
d_pax_buss_fl d_ac_type_717-200 0,94
c_pax_econ_vs_d_cap_econ c_pax_buss_vs_d_buss_fl 0,92
d_cap_pax_econ d_pax_econ_max 0,92
c_DOC_vs_d_DOC c_pax_buss_vs_d_cap_buss 0,92
d_cap_pax_econ d_ac_type_717-200 0,92
c_TAT vs_d_TAT c_pax_econ_vs_d_econ_max 0,91
c_cap_pax_econ c_ac_type _717-200 0,91
c_DOC_vs_d_DOC c_TAT vs_d_TAT 0,91

115

116

F. Top 100 Feature Correlations

Feature 1 Feature 2 Correlation
c_DOC_vs_d_DOC c_pax_buss_vs_d_buss_max 0,91
c_pax_buss_vs_d_cap_buss c_pax_econ_vs_d_econ_max 0,90
c_pax_econ_vs_d_econ_{l c_pax_econ_vs_d_econ_max 0,90
d_ac_family 767 c_ac_type_767-332 0,90
c_ac_type_767-332 c_ac_family_767 0,90
d_range c_range 0,90
c_range_vs_d_range_flight c_range_vs_d_range_max 0,90
d_pax_econ_max d_TAT 0,89
d_TAT d_ac_type_717-200 0,88
c_DOC_vs_d_DOC c_pax_buss_vs_d_buss_f{l 0,88
c_TAT c_ac_type_717-200 0,88
d_cap_pax_econ d_cap_pax_buss 0,87
c_pax_econ_vs_d_econ_max c_pax_buss_vs_d_buss_max 0,87
d_cap_pax_econ d_pax_buss_max 0,87
c_pax_econ_vs_d_cap_econ c_pax_econ_vs_d_econ_{l 0,87
d_ac_type_767-332 c_ac_family 767 0,87
d_ac_type 767-332 d_ac_family 767 0,87
d_pax_econ_fl d_pax_econ_max 0,87
d_pax_econ_max d_ac_type_717-200 0,86
c_cap_pax_econ c_cap_pax_buss 0,86
c_pax_buss_vs_d_buss_{l c_pax_econ_vs_d_econ_max 0,86
c_DOC_vs_d_DOC c_pax_econ_vs_d_cap_econ 0,85
c_TAT vs_d_TAT c_pax_econ_vs_d_econ_f{l 0,84
d_cap_pax_buss d_TAT 0,84
d_pax_buss_max d_TAT 0,83
c_cap_pax_buss c_TAT 0,83
c_pax_buss_vs_d_cap_buss c_pax_econ_vs_d_econ_{l 0,83
d_cap_pax_buss d_pax_econ_max 0,83
d_cap_pax_econ d_pax_econ_f{l 0,83
c_range d_ac_family 757 0,83
c_range c_ac_family 757 0,83
d_range d_ac_family 757 0,82
d_range c_ac_family 757 0,82
c_range c_range_vs_d_range_max 0,82
c_range c_range_vs_d_range_flight 0,82
d_cap_pax_econ d_pax_buss_fl 0,82
d_ac_family_ 737 c_ac_type_737-832 0,81
c_ac_type_737-832 c_ac_family 737 0,81
c_pax_econ_vs_d_econ_fl c_pax_buss_vs_d_buss_max 0,81
c_DOC_vs_d_DOC c_pax_econ_vs_d_econ_max 0,80
d_pax_econ_f{l d_TAT 0,80
d_ac_type_767-332 c_ac_type_767-332 0,79
d_range d_ac_family MD 0,79
d_range c_ac_family MD 0,79
c_range d_ac_family MD 0,79
c_range c_ac_family MD 0,79
d_pax_buss_{l d_TAT 0,78
d_pax_econ_max d_pax_buss_max 0,78
d_range_flight d_range_max 0,78
d_ac_type 737-832 d_ac_family 737 0,76
d_ac_type_737-832 c_ac_family_ 737 0,76
c_pax_econ_vs_d_econ_{l c_pax_buss_vs_d_buss_{l 0,76
c_ac_type 757-232 c_ac_family 757 0,75
d_ac_family_ 757 c_ac_type_757-232 0,75
d_pax_econ_{l d_ac_type_717-200 0,75
d_pax_buss_fl d_pax_econ_max 0,75
c_DOC_vs_d_DOC c_pax_econ_vs_d_econ_{l 0,73
d_ac_type_757-232 c_ac_family 757 0,73
d_ac_type_757-232 d_ac_family 757 0,73

®

Case Study Feature Histograms

c_buss_If mean c_buss_If_std c_econ_If_ mean c_econ_If _std
4w True 25 — True
— False — False 4
20
3
15
2
10
5 1
[ol
0.2 0.4 0.6 0.8 1.0 00 01 02 03 04 05 06
c_cap_pax_buss C_cap_pax_econ c_bDoC c_TAT
e True e True 0.0150 e True e True
05 e False 0.08 e False e False 10 e False
0.0125
0.4 0.8
0.06 0.0100
0.3 0.6
0.04 0.0075
02 0.0050 04
0.02
0.1 0.0025 0.2 I I
0. 0.00- 0.
20 30 40 50 60 70 50 100 150 200 250 4500 5000 5500 6000 6500 7000 30 40 50 60 70
d_cap_pax_buss d_cap_pax_econ 014 d_pax_buss_fl d_pax_econ_fl
05 e True 007 e True e True 0.020 — True
e False 0.06 e False 0.12 e False
0.4
0.05 0.10
0.3 0.04 0.08
0.06
02 0.03
0.02 0.04
0.1
0.01 0.02
X 0.00- 0.00
20 30 40 50 60 70 50 100 150 200 250 20 40
d_pax_buss_max d_pax_econ_max d_range d_range_flight
0.20 — True w— True —True 0.0020 = True
— False 0.04 w— False 0.005 = False = False
0.15 0.004 0.0015
0.03
0.10 0.003 0.0010
0.02
0.002
0.05 0.0005
001 0.001
0.00 0.00 v 0.0000
20 40 60 50 100 150 200 2000 4000 6000 8000 10000 500 1000 1500 2000

117

118

G. Case Study Feature Histograms

d_range_max

c_range_vs_d_range

c_range_vs_d_range_flight

c_range_vs_d_range_max

0.0020

0.0015

0.0010

0.0005

0.0000

- True 0.0150 e True 0.0014 e True 00150 s True
un False n False m False w False
0.0012
0.0125 .00125
0.0010
0.0100 .00100
0.0008
0.0075 E
0.0006 00075
0.0050 0.0004 00050
0.0025 0.0002 .00025
0.f « 18 =+ 0.0000 00000+
500 1000 1500 2000 —2000 -1000 0 1000 2000 1000 2000 3000 4000 5000 6000 1000 2000 3000 4000 5000 6000
c_pax_buss_vs_d_buss_fl c_pax_econ_vs_d_econ_fl c_pax_buss_vs_d_buss_max c_pax_econ_vs_d_econ_max
e True 0.0175 — True - True 006 e True
010 - False - False e False e False
0.20 0.05
0.08
0.15 0.04
0.06
0.03
0.10
0.04 0.02
0.02 0.05 001
0.00-° 0.00-
-60 -40 -20 0 20 40 60 -100 =50 0 50 100

0.00-
-60 -40 -20 0 20 40 60

c_TAT_vs_d_TAT

c_DOC_vs_d_DOC

same_airport_min_before_min

same airport_min_after_min

I = True = Tre
. True e True
= Fa
14 e False 0.030 e False ‘ i | o
12 0.025
1.0 0008 0004
0.020
0.8 0003
0015 oo
- 0.010 0004 il 0002
04 01
0.2 0.005 0002 0001
0. - 0.000+ 0000 0000
215 10 s 0 5 0 15 600 —400 —200 0 200 400 600 0 100 200 300 400 S0 6w 700 20 40 60 0 1000 1200 14
c_flights_duration c_no_flights Disruption_duration Disruption_Cause
5
e True e True 0035 e True e False
e False o False 0.030 e False 0.4 e True
4 .
0.025
0.3
3 0.020
5 0.015 0.2
0.010
1 0.1
0.005
- - | 0.000 0.0 -
200 400 600 800 1000 1200 2 3 4 5 6 7 50 100 150 200 250 3 Airline NAS Weather Weather G
d_dest_airport_min_after_min d_dest_airport_min_before_min d_orig_airport_min_after_min d_orig_airport_min_before_min
0.006
e True e True - True w True
0.007 0.012
e False e False 0.005 e False - e False
0.006 -
0.010
0.005 0.004
0.008
0.004 0.004 0.003
0.006
0.003
0.002
0,002 0.002 0.004
0.001 0.001 0.002
0.000 0.000 0.000 0.000
0 200 400 600 800 1000 0 200 400 600 800 200 400 600 800 1000 1200 0 200 400 600
c_ground_time_d_dest_airport c_ground_time_d_orig_airport
0.0175 - True 0.0175 e True
00150 e False 0.0150 e False
0.0125 0.0125
0.0100 0.0100
0.0075 0.0075
0.0050 0.0050
0.0025 0.0025
0 . i, A
: 500 1000 1500 2000 500 1000 1500 2000

Mol ejeq paje|sy Mol ejeq paje|sy MO|4 ereq paje|sy

SSEqERQ / 80IN0S BlEq _H_ uonewuoyu) yesony uopewuoyuj suopdnusig ~ ~ T T T T T 7 uolewloyu| 8iNpayos ybi4

1
1 abuey - " . . d
1 uopewLosu| adAy Jad |1 fewiuly - noAe| uige - Awrey pue adA} yesouy - h_mwmysm_vj_ # Mm.:mw ..ﬁ_w:_ .—Mvom_ ﬂz_w__n_ B
! g._m._o.__e.] :uonewopu] yesosly € :uonewsojul yeodly € 1uoeWIOU| Yelody siequinN [feL anbiun 16/ @O Tallls VALY AL Bl
" > i ' 1 :uopjew.oju; uondnisiqg pue a|npayos
. 1039311@ DJ0 +dwio4 SlisgaM elea aseqejeq yeldlly vvd " alqel souBW.IOLSd WI-UQ S1g
1 A . !
! 1
! 1
1 adAy yeioue Jad JnoH/DOQ - 1
" :uonew.soju] [erdueuly aully (€ " \ 4
. a|qeL S[eIoURULS SUINIY S1g ' _ suondnisiq pue ajnpayds b4
! 1
o o o o o e e e e e a4 H
_ O1N 01 U8AUOD
S102 LD

v

suondnisi@ 614 eyeq

_ 1SQ Joj 1081100

1

v

suonnquisia (O41) INO punod swi si0113 Buwiy ireday

v

% % % % A A
(40019 Jyg) sbuug 1614 Jredey 03 swybil4 BuissIN ppy
sasne) Aejaqg Nds sdnoiBgns Jayreapy
ayealn
- skejeq dnoin seyreapy | saligelieAeuNn P P suondnisig
suondnisip JoYlo |IY |« v < el 1oenxg < suoIsIaAI] Joelixg < _ po10eLI0n |
.n suondnisiqg pue
.. 8|npayds 6|
B)lo@ paloslion
ssauisng pue Awouod3] Jano siabuassed apinig > a|npayos b4
Blj9Q Pa08.I0D Nl
uonew.ojul xed WM G0z 1O
a a|npayds bil4 Blea

pajew aq 1,up|nod 1eyl swybiyy 10} uoewIOU punoy si yorew

A

J1abusssed ayesousb 0} suonnquUisip 47 asn ou alaym eeg

g 0} v b1l woyy xed Bunosuuo) # -
% by} 1ad siebusssed # -
ured g-0 Jed 6114 Jed punoy si yojew S,0N 1ybi4 10e4X0 pue a|npayos b4 um«olm‘w:oo uopeuLioju) Asessup) seBusssed
uonnguisip 41 puy [€ SISNCBI0Y € 1 Gienoen aloum BleQ aInpeyos yum Aue yoep € UOTRW 0} SO} 108100 < ejeq (v102) [e 10 Yeyuieg

Case Study Data Processing Flowchart

BTS Delay Causes

The following delay cause classification and definitions were obtained from United States
Department of Transportation - Bureau of Transportation Statistics. (2018b).

Carrier Delay

Carrier delay is within the control of the air carrier. Examples of occurrences that may
determine carrier delay are: aircraft cleaning, aircraft damage, awaiting the arrival of
connecting passengers or crew, baggage, bird strike, cargo loading, catering, computer,
outage-carrier equipment, crew legality, damage by hazardous goods, engineering
inspections, fueling, handling disabled passengers, late crew, lavatory servicing,
maintenance, oversales, potable water servicing, removal of unruly passengers, slow
boarding or seating, stowing carry-on baggage, weight and balance delays.

Late Aircraft Delay
Arrival delay at an airport due to the late arrival of the same aircraft at a previous airport.
The ripple effect of an earlier delay at downstream airports is referred to as delay propagation.

NAS Delay

Delay that is within the control of the National Airspace System (NAS) may include:
non-extreme weather conditions, airport operations, heavy traffic volume, air traffic control,
etc. Delays that occur after Actual Gate Out are usually attributed to the NAS.

Security Delay

Security delay is caused by evacuation of a terminal or concourse, re-boarding of aircraft
because of security breach, inoperative screening equipment and/or long lines in excess of
20 minutes at screening areas.

Weather Delay

Weather Delay is caused by extreme or hazardous weather conditions that are forecasted or
manifest themselves on point of departure, enroute or on point of arrival.

121

Disruption Dataset Statistics per Type
and Cause

Table J.1: Disruption statistics per type and cause

Type Cause Count Share% Duration Mean Duration St.Dev Duration Max.
AC Unavailability Airline 773 3% 176 49 308
Delay Airline 12757 43% 28 24 119
NAS 13006 44% 29 28 306
Security 11 0% 79 78 241
Weather Cluster 1286 4% 39 50 306
Weather 1542 5% 70 56 308
AC Unavailable - Airline. Mean: 177 minutes Delay - Airline. Mean: 28 minutes Delay - NAS. Mean: 29 minutes
5% 5% 5%
4% 4% 4%
Z3% Z3% 23%
E 2% E 2% f:ﬁ 2%
1% 1% 1%
0%+ 0% 0%
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Delay in minutes Delay in minutes Delay in minutes
5% Delay - Weather Cluster. Mean: 71 minutes 5% Delay - Weather. Mean: 40 minutes
4% 4%
23% Z3%
3 3
& 2% 2%
1% 1%
0% 0%
50 100 150 200 250 300 0 50 100 150 200 250 300
Delay in minutes Delay in minutes

Figure J.1: Disruption duration histograms per disruption type and cause

123

	Abstract
	Preface
	Acronyms
	List of Figures
	List of Tables
	Introduction
	Literature Review
	Network Representations
	Connection network
	Time-Band network
	Time-Space network

	Review of Aircraft Disruption Management
	Aircraft Recovery
	Aircraft and Passenger Recovery
	Aircraft and Crew Recovery
	Integrated Recovery

	Conclusion on Literature Review

	Research Framework
	Research Scope
	Research Objectives and Hypotheses
	Methodology

	Model Framework
	Pre-processing
	Classifier
	Disruption Solver
	Post-processing

	Optimization Model
	Objective Function
	Decision variables
	Cost factors

	Constraints
	Time-space continuity constraints
	Airline constraints
	Disruption constraints

	Assumptions and Implications

	Machine Learning Classifier
	Introduction to Machine Learning and Binary Classification
	The Bias-Variance Trade-off
	Learning Curves and Bayes error rate

	Classifier Framework
	Feature Generation
	Problem Characteristics and Algorithm Selection
	Evaluation Metric Selection
	Data Pre-processing
	Hyperparameter Optimization
	Classifier Validation
	Feature Analyses
	Feature Engineering

	Final Random Forest Classifier and Model Analysis

	Verification and Validation
	Verification
	Cost Factors
	Verification of Optimization Model
	Verification of Decision Support System

	Validation
	Concluding Remarks on Verification and Validation

	Case study: Delta Airlines
	Delta Airlines Dataset Generation
	Flight Schedule Information
	Fleet Information
	Passenger Information
	Disruption Information

	Case Study
	Introduction and Case Study Overview
	Case Study Results
	Highlighted Runs
	Impact of Delaying Outbound Connecting Flights

	Sensitivity Analyses
	Sub-network Selection Algorithm
	Random Forest Classifier Generalization
	Random Forest Classifier Hyperparameter Sensitivity

	Concluding Remarks on Case Study

	Conclusion and Recommendations
	Conclusions
	Random Forest Classifier and Sub-network Selection
	Improvements to Decision Support System (DSS)

	Recommendations
	Random Forest Classifier and Sub-network Selection
	Aircraft Recovery
	Dataset
	Crew and Passenger Recovery
	Computational Performance

	Concluding Remarks on Research

	Bibliography
	Subset of IATA US Airport Codes
	Overview Input Data
	Delay cost
	Optimization Model
	Case Study Features
	Top 100 Feature Correlations
	Case Study Feature Histograms
	Case Study Data Processing Flowchart
	BTS Delay Causes
	Disruption Dataset Statistics per Type and Cause

