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Summary

In the operation of an electricity grid, such as the Dutch transmission system operated by TenneT,

decisions need to be made on how to operate components in the grid. These decisions require a complex

weighing of the associated costs and effects on the operating state of the grid. Optimal Power Flow

(OPF) is a class of mathematical optimization problems that capture the effects of each decision, and

aims to find an optimal way of controlling the electricity grid.

OPF is well described in scientific literature, and both open-source and proprietary software exists to

perform OPF calculations. However, most implementations are limited in their capabilities. Furthermore,

applying existing methods to models of real-world grids is not always straightforward. During the

calculations, problems can occur that can either slow down or completely prevent the methods from

obtaining a solution. We call these convergence problems.

In this thesis, two such types of convergence problems have been identified. The first convergence problem

involves the modelling of switches, and the second involves the modelling of parallel transformers.

Both problems have been investigated and strategies have been found to resolve these problems.

The result is an OPF method that convergences on a model of the Dutch transmission network. The

implementation of this model is very flexible, allowing it to be applied to a wide variety of OPF problems.

This is an important step towards the application of OPF in operation of the Dutch transmission grid.

The method has been tested on two different models, one of which is a model of the Dutch transmission

grid. Both the computational performance and the resulting solutions have been compared for various

OPF calculations.
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1
Introduction

TenneT is a Transmission System Operator (TSO), responsible for the transmission grid in the Netherlands

and a large part of Germany. This responsibility includes maintaining, operating, and where necessary,

expanding the transmission grid. With the energy transition from fossil fuels to renewable energy

sources, which are mostly electric, the demand on the electricity grid increases. In addition to this, a

transition from centrally generated energy, with a few big power plants, to distributed generation, with

smaller scale solar and wind generation in many places, is taking place. Both of these transitions come

with big challenges in the operation and expansion of the grid. To make efficient use of the existing

assets and to ensure a stable and reliable operation of the grid, it is crucial to analyse the capabilities of

the grid and optimize the control of the grid.

In this chapter, we sketch the position and role of TenneT in the electricity system and give some

examples of challenges that TenneT faces in fulfilling these roles.

1.1. Position of TenneT
TenneT is the only TSO in the Netherlands. It is also one of the 4 TSO’s operating the German

transmission grid, but our focus will be on the Dutch grid. In figure 1.1 a map of the Dutch transmission

grid can be seen. As a TSO, TenneT is responsible for the maintenance and operation of the high voltage

transmission grid, that is, all parts of the grid that are 110 kV or higher.

Energy is traded on the electricity markets by suppliers and consumers of electricity, and this energy is

then transported over the grid. TenneT does not participate in this market by buying or selling energy,

but its responsibility is to transport this energy from suppliers to consumers. It can only intervene in

the market if the stability of the grid cannot be ensured. These responsibilities and possibilities are

determined by law, and TenneT is under supervision of the governmental agency Autoriteit Consument
en Markt.

Parties that are directly connected to the high voltage transmission grid of TenneT are large power

plants, or wind or solar parks with a generation of about 10 MW or higher, large industry with an energy

consumption of about 10 MW or higher, and Distribution System Operators (DSO) that further distribute

electricity to smaller scale industry and homes [41, sec. 2.1].

1.1.1. Ancillary Services
To ensure a stable and reliable transportation of energy, TenneT buys, builds and maintains its own

assets, such as transmission lines, substations, and a variety of electrical components. In addition to

this, it can however also make use of so-called Ancillary Services. These are services provided by parties

connected to the grid, that TenneT uses to operate the grid in a stable way. Examples of ancillary services

are: providing reserve generation capacity for active power balance and compensation of grid losses,

reactive power generation and scaling power generation up or down in case of redispatch. In section 1.2,

we elaborate on two situations in which the stability of the grid is at risk and how TenneT makes use of

ancillary services in these situations, to ensure the stability of the grid.

1
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Figure 1.1: Map of the Dutch transmission grid, including connections to neighbouring countries and offshore wind farms. The

dashed lines are planned connections. Reproduced from [5].

1.2. Operational Challenges
We introduce two challenges in operating the grid, that TenneT faces on a daily basis. Both challenges

illustrate how TenneT has to actively and optimally control the grid, to ensure a stable and reliable

transmission grid, at a low cost.

1.2.1. Grid Congestion
When the volume of power transported over the grid is high, and the locations of high supply (generation)

and demand (loads) are not well distributed over the grid, grid congestion can occur. This means that the

grid cannot transport all power without overloading components in the grid. An example of a country

where this happens frequently, is Germany, where high amounts of power are generated by offshore

wind parks in the north, and a lot of power is consumed by heavy industry in the south. When the

grid cannot safely transport all power, a redispatch is performed. This means that generation is scaled

down in parts of the grid far away from big loads, and power generation located closer to the loads is

scaled up. This ensures that all power demand is still satisfied, while relieving some strain on the grid,

because the power needs to travel less far. Both the party scaling down their generation and the party

scaling up their generation are financially compensated for this. These costs are paid by the TSO, which

in turn raises its tariffs to cover the costs. This means that optimally utilizing the grid, and reducing the

dependence on redispatch, can reduce costs for all electricity users. In practice, during redispatch, often

fossil fuel powered electricity generation is scaled up, and renewable generation is scaled down. This
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means that reducing the dependence on redispatch could also reduce strain on the environment, by

decreasing greenhouse gas emissions.

1.2.2. Reactive Power Balance
In contrast to active power, reactive power

1
is not traded on the energy market. Making sure supply and

demand of reactive power are matched, is a task of TenneT. A lack of supply of reactive power can lead

to voltage drops, and a surplus can lead to voltage rises. Voltages that are either too high or too low

are undesirable. The task of maintaining this reactive power balance is called reactive power dispatch, or

voltage control. Capacitive and reactive shunts can be activated to either supply or consume reactive

power, or ancillary service providers can be asked to supply or consume reactive power. Some ancillary

service providers can be asked to maintain a fixed voltage, and thus consume or supply reactive power

as needed to maintain this voltage, others can be asked to supply or consume a specified amount of

reactive power. Shunts can be activated without additional costs because they are owned by the TSO,

but ancillary service providers are compensated financially for the amount of reactive power they

provide or consume.

Operating lines and transformers at higher voltages reduces the current required to transmit the same

amount of power. Therefore, less power is being lost due to the generation of heat in the components.

The power that is lost, is paid for by the TSO. This is an additional factor that should be considered in

the operation of the grid.

Determining how shunts should be controlled, and how much reactive power should be requested from

ancillary service providers, ensuring stable voltage levels at minimal cost, is a challenging problem.

1.3. Optimal Power Flow
The two examples in Section 1.2 show some of the decisions that TenneT has to make in order to

safely and efficiently operate the high voltage grid. Making these decisions is not easy, and a careful

consideration of all the available options needs to be made every time. Optimal Power Flow captures

this complex problem in a mathematical model, in which the pros and cons of all available options can

be weighed against each other. A solution is then calculated, which specifies the choices that need to

be made in order to operate the grid in an optimal way, where optimal is according to some specified

objective.

1
For an introduction to active and reactive power, see sec. 3.1.2.



2
Research Goals

In this chapter, we start by sketching the context in which the research is taking place. Then we formulate

a research question, and elaborate on the requirements.

2.1. Research Context
At TenneT, there is a need for tools that can do fast, robust, and accurate network analysis calculations,

such as power flow calculations, analysis of the grid in contingency situations, and optimal power flow

calculations. These calculations sometimes need to be done as individual calculations, and sometimes

in bulk, calculating for hundreds of timestamps or different scenarios, or as part of automated processes.

For some types of calculations, proprietary software, such as PowerFactory (see Section 6.2) satisfies

all needs. However, PowerFactory is not suited for all uses cases, as is illustrated by the examples in

section 6.2.1.

In this context, the ODINA1
toolbox is being developed in-house at TenneT. This is a toolbox for

transmission network analysis. The aim of the toolbox is to implement fast and robust network

calculations, that can be used in automated processes. The toolbox can interface with PowerFactory,
so that existing network models that are created in maintained in PowerFactory can be imported into

the toolbox for calculations. So far, the toolbox is capable of doing fast power flow calculations, with

algorithms for bulk DC and AC power flow calculations. The ODINA toolbox provides an environment

that is well suited for the implementation of an OPF algorithm, since it provides methods to import grid

models, calculate admittance matrices, and perform power flow calculations.

2.2. Research Question
Our research question is:

Can we implement an OPF algorithm, with a focus on speed, robustness, and configurability,

that performs well on the Dutch transmission grid?

We elaborate on the requirements on speed, robustness, and configurability.

2.2.1. Requirements on Speed
In operation of the transmission grid, Optimal Power Flow could be used for calculating optimal

set-points for controllable components. In order for the result of OPF calculations to be used in real-time

operation of the grid, calculations have to be done in a limited timespan. Predictions of power generation

and consumption are not always known very far in advance, and reconfiguration of the grid is done on

an hourly basis. Therefore, calculations on the full grid, for 24 hourly timestamps, should ideally not

take longer than an hour.

In planning of the grid, OPF could be used to analyse possible configurations of the grid, and calculate

1
Open Developer Initiative for Network Analysis

4
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associated operating costs for many operation scenarios. To be able to effectively do these kinds of

analyses, TenneT should be able to perform OPF calculattions in bulk.

2.2.2. Requirements on Robustness
An important condition for the implementation of OPF calculations in business processes of TenneT, is

that the algorithms should be robust. The methods should work on a broad range of grid variations and

operating scenarios. Most importantly, it should always find feasible solutions, and although (proven)

strict optimality might not be realistic, results should always be near optimal. In the case that it cannot

be prevented that the method fails in some cases, it should clearly indicate to the user what went wrong

and suggest solutions. These requirements on robustness are focussed on models of the Dutch grid.

Robust convergence on grid models that are not similar to the Dutch grid would be an added benefit,

but this is of secondary importance.

2.2.3. Requirements on Configurability
As we will describe in chapter 5, Optimal Power Flow is a broad category of problems, and it can vary

between applications what the decision variables and constraints are and what the objective is. The

aim is to make an OPF module that is easy to configure for a broad range of types of OPF problems, so

that it is widely applicable. Furthermore, it should support bulk calculations, where calculations are

done with different power injection scenarios, grid topology scenarios, and contingency scenarios. The

support of configuration options may be restricted to use cases that are specific to the Dutch grid.



3
Modelling the Transmission Grid

To be able to mathematically analyse the grid, and to predict its behaviour, we introduce a mathematical

model of a transmission system. First we introduce some concepts from the theory of Alternating

Current (AC) circuits, then we describe how we can model a transmission grid as graph, and finally, we

introduce contingencies, an important concept in the operation and modelling of transmission grids.

3.1. AC Circuit Fundamentals
Since the transmission of power via the power grid is mostly done with alternating current, we give

an introduction to the behaviour of AC-circuits and how they can be modelled. We mostly follow the

reasoning and notation of [33], [45] and [18].

3.1.1. Voltage and Current
In an AC-circuit, voltage and current vary in time following a sinusoidal function. In steady state circuit

analysis, we assume that the frequency of these functions is fixed. Consider any part of a transmission

network, that is connected to the rest of the network at two terminals, such as a cable or a tranformer. We

can consider the voltage across the two terminals and the current through the component as a function

of time. The voltage is as follows:

𝑣(𝑡) = 𝑉max cos(𝜔𝑡 + 𝜓𝑉 ) (3.1)

and the current is as follows:

𝑖(𝑡) = 𝐼max cos(𝜔𝑡 + 𝜓𝐼). (3.2)

Here,

𝑉max = voltage amplitude, kV

𝐼max = current amplitude, kA

𝜔 = angular frequency, Hz

𝑡 = time, s

𝜓𝑉 = voltage phase shift, rad

𝜓𝐼 = current phase shift, rad.

The time is measured to some reference time, where 𝑡 = 0. In Europe, the electricity grid operates at a

frequency of 50 Hz, this means that the angular frequency is 𝜔 = 2𝜋 · 50 Hz. We define 𝜙 = 𝜓𝑉 − 𝜓𝐼 as

the phase difference between the voltage and current. If 𝜙 is positive, we say that the voltage is leading

the current and if 𝜙 is negative, the voltage is lagging the current.

In equations (3.1) and (3.2), 𝐼max and 𝑉max denote the amplitude of the current and voltage, respectively.

However, in the context of AC electronics, it is customary to work with the Root Mean Square (RMS) of

6



3.1. AC Circuit Fundamentals 7

power and current [45, p. 7]. They can be calculated as follows:

|𝑉| =

√
1

𝑇

∫ 𝑇

0

𝑣(𝑡)2𝑑𝑡 (3.3)

|𝐼| =

√
1

𝑇

∫ 𝑇

0

𝑖(𝑡)2𝑑𝑡 (3.4)

here 𝑇 = 2𝜋/𝜔 is the period of the sine waves. Substituting (3.1) and (3.2) in these formulas gives the

relations 𝑉𝑚𝑎𝑥 =
√

2|𝑉| and 𝐼𝑚𝑎𝑥 =
√

2|𝐼|.

Phasor Notation
If we rewrite equations (3.1) and (3.2) using Euler’s identity, we get the following:

𝑣(𝑡) =
√

2|𝑉| cos(𝜔𝑡 + 𝜓𝑉 ) 𝑖(𝑡) =
√

2|𝐼| cos(𝜔𝑡 + 𝜓𝐼)
=
√

2 Re

{
|𝑉|𝑒 𝑗𝜓𝑉 𝑒 𝑗𝜔𝑡

}
=
√

2 Re

{
|𝐼|𝑒 𝑗𝜓𝐼 𝑒 𝑗𝜔𝑡

}
=
√

2 Re

{
𝑉𝑒 𝑗𝜔𝑡

}
=
√

2 Re

{
𝐼𝑒 𝑗𝜔𝑡

}
.

Here 𝑉 = |𝑉|𝑒𝜓𝑉
and 𝐼 = |𝐼|𝑒𝜓𝐼

. Note that these equations can be used both ways, so we obtain the

following one-to-one relationship between the complex numbers, and steady state voltage functions:

𝑉 = |𝑉|𝑒 𝑗𝜓𝑉 ↔ 𝑣(𝑡) =
√

2|𝑉| cos(𝜔𝑡 + 𝜓𝑉 ) (3.5)

and, similarly, between the complex numbers and steady state current functions:

𝐼 = |𝐼|𝑒 𝑗𝜓𝐼 ↔ 𝑖(𝑡) =
√

2|𝐼| cos(𝜔𝑡 + 𝜓𝐼). (3.6)

We call 𝑉 and 𝐼 the voltage and current phasors, respectively. In the rest of this report, we will denote the

steady state voltage and current functions at some point in the grid by its voltage and current phasors.

For more information, and a derivation of calculation rules for phasors, we refer to [45, sec. 1.4].

3.1.2. Power
The instantaneous power 𝑝(𝑡) consumed by a load through which an alternating current 𝑖(𝑡) flows

across a voltage of 𝑣(𝑡), is calculated as follows:

𝑝(𝑡) = 𝑣(𝑡)𝑖(𝑡) (3.7)

=
√

2|𝑉| cos(𝜔𝑡 + 𝜓𝑉 )
√

2|𝐼| cos(𝜔𝑡 + 𝜓𝑉 − 𝜙) (3.8)

= |𝑉||𝐼| cos(𝜙)(1 + cos(2(𝜔𝑡 + 𝜓𝑉 ))) + |𝑉||𝐼| sin(𝜙) sin(2(𝜔𝑡 + 𝜓𝑉 )) (3.9)

= 𝑃(1 + cos(2(𝜔𝑡 + 𝜓𝑉 ))) +𝑄 sin(2(𝜔𝑡 + 𝜓𝑉 )) (3.10)

here 𝑃 = |𝑉||𝐼| cos(𝜙) and 𝑄 = |𝑉||𝐼| sin(𝜙). We call 𝑃 active power or real power, and we call 𝑄 reactive
power or imaginary power.

We see that active power and reactive power are dependent on the phase difference 𝜙 between voltage

and current. Furthermore, both terms oscillate with a frequency of 2𝜔𝑡, but the first term 𝑃(1+cos(2𝜔𝑡))
is unidirectional with an average value of 𝑃 and the second term 𝑄(sin(2𝜔𝑡)) is bidirectional with an

average of 0. If 𝜙 > 0, then 𝑄 > 0 and we say that the load consumes reactive power, conversely, if

𝜙 < 0, then 𝑄 < 0 and we say the load supplies reactive power.

We define the complex power 𝑆 = 𝑃 + 𝑗𝑄, and we can calculate this using the voltage and current phasors

with the following formula:

𝑆 = 𝑉𝐼∗ (3.11)

where ·∗ denotes complex conjugation. The apparent power |𝑆| is the magnitude of the current:

|𝑆| = |𝑉||𝐼| =
√
𝑃2 +𝑄2. (3.12)

For complex power and apparent power we use the unit MVA, for active power we use the unit MW

and for reactive power we use the unit Mvar.
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3.1.3. Impedance and Admittance
In an AC circuit, every component has an impedance, which characterizes the opposition that the

component poses to current. The impedance is expressed as a complex number 𝑍 = 𝑅 + 𝑗𝑋 with unit

Ω. Here, the real component 𝑅 is the resistance and the imaginary component 𝑋 is the reactance. If a

component is inductive with an inductance of 𝐿 Henry (𝐿 > 0), we have that 𝑋 > 0 and 𝑗𝑋 = 𝑗𝜔𝐿. If a

component is capacitive with a capacitance of 𝐶 Farad (𝐶 > 0), we have 𝑋 < 0 and 𝑗𝑋 = 1/𝑗𝜔𝐶. The

canonical examples of inductive and capacitive loads are the inductor (or coil) and capacitor.

We call the reciprocal of the impedance the admittance, and denote it by 𝑌. The real and imaginary

components of the admittance are called the conductance and susceptance. We write 𝑌 = 𝐺 + 𝑗𝐵. The

conductance and susceptance can be calculated with the following formula:

𝐺 + 𝑗𝐵 = (𝑅 + 𝑗𝑋)−1 =
𝑍∗

𝑍𝑍∗ =
𝑅

𝑅2 + 𝑋2

− 𝑗
𝑋

𝑅2 + 𝑋2

. (3.13)

When we view impedance as a complex number and combine this with the phasor notation for voltages

and currents, we get a useful extension of Ohm’s law for steady state AC-circuits [45, sec. 1.4.1], namely:

𝑉 = 𝑍𝐼 or 𝐼 = 𝑌𝑉. (3.14)

Here, 𝑉 is the phasor of the voltage across the component and 𝐼 the phasor of the current flowing

through the component.

Say we have a component with impedance 𝑍 = 𝑅 + 𝑗𝑋 with 𝑅 > 0, and across this component is a

voltage 𝑉 , which is purely real (i.e., 𝜓𝑉 = 0). Then the current looks as follows:

𝐼 = 𝑌𝑉 = 𝑉

(
𝑅

𝑅2 + 𝑋2

− 𝑗
𝑋

𝑅2 + 𝑋2

)
, (3.15)

or in polar notation:

|𝐼| = |𝑉|
𝑅2 + 𝑋2

and 𝜙 = −Arg(𝐼) = arctan(𝑋/𝑅) (3.16)

Hence, a purely resistive load only influences the amount of current flowing, and the current will be in

phase with the voltage (i.e., if 𝑋 = 0 then 𝜙 = 0). If, however, the reactance is non-zero, then the current

will not be in phase with the voltage. An inductive load, with positive reactance, causes the current to

lead the voltage and consumes reactive power (i.e., if 𝑋 > 0, then 𝜙 > 0). Conversely, a capacitive load

causes the current to lag the voltage and supplies reactive power (i.e., if 𝑋 > 0, then 𝜙 > 0). Therefore,

an inductive load consumes reactive power and a capacitive load supplies reactive power.

3.1.4. Nominal Voltage and Per Unit Normalization
Each component in an electricity grid is assigned a nominal voltage level, which is the voltage that the

component is designed to operate at. Typically, the grid consists of a few different nominal voltage

levels, and each part of the grid is assigned one of the levels. The physical equipment also needs to be

rated for this voltage level. The Dutch grid, for example, has four voltage levels in the transmission grid:

110 kV, 150 kV, 220 kV and 380 kV (line-to-line). In practice, voltages will not be exactly equal to the

nominal voltages, but will vary slightly around this nominal voltage.

In the study of power systems, it is common to normalize certain numerical values by dividing them by

some fixed base quantity [45, sec. 1.8]. The values are then not given in their normal unit, but “per-unit”.

This normalized quantity is a dimensionless quantity, and we denote it by “pu” (e.g., |𝑉| = 1.01 pu).

This is often done with voltages, currents, impedances, and powers. Since these quantities are related

via (3.11) and (3.14), choosing a base for two of these quantities determines the other two. We choose a

base for voltage and power.

For voltages, we select the nominal (line-to-line) voltage as a base, so that in normal operating conditions,

we expect the normalized voltage magnitude |𝑉| to be close to 1 pu. This makes it easy to check if the

voltages are within normal operating conditions, at a glance, without needing to compare them to the

nominal voltage level. The power exchanged by parties connected to the transmission grid is usually

on the order of 100 MVA, so we pick that as the basis for power. This fixes the base for impedances
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and currents. Suppose the nominal voltage is {𝑉nom} kV, then converting a current from pu to kA can

be done by multiplying with

√
3{𝑉nom}, and converting an impedance from pu to Ω can be done by

multiplying with {𝑉nom}2
. We refer to [45, sec. 1.8] for some examples.

3.1.5. Three Phase Power System
In AC transmission systems, power is usually provided in a three-phase system. However, in a balanced

three-phase system, we may instead consider an equivalent single-phase system [45, sec. 1.7]. These

networks can be represented in a one-line diagram, which only shows a single line per three-phase

connection.

Voltages in a three-phase system can be measured either line-to-neutral, or line-to-line. In power

systems, the convention is to use line-to-line voltages.

3.2. The Grid as a Graph
We can model the transmission grid as an undirected graph of points in the electrical grid (nodes)

that are connected by electrical components (edges). In this section, we describe how the different

components in the grid are represented in this graph model.

All points in the grid that satisfy one of the following characteristics, are nodes: all points that directly

connect to more than two lines, points that are directly connected to components such as transformers,

loads, generators or shunts, or points where specific quantities (e.g., voltage or current flow), are of

interest. In the context of transmission grids, nodes are called buses, since they usually represent a

physical busbar. We will use the terms bus and node interchangeably. The edges of the graph represent

connections between the buses, either in the form of high voltage lines or in the form of transformers.

Additionally, at each node, we can define a power injection. Components such as generators, loads, and

shunts are modelled as components that inject power at a specific bus.

We denote the set of all nodes by 𝒩 , and the set of all edges by ℰ. We denote the graph by (𝒩 ,ℰ).
Furthermore, we define 𝑁 = |𝒩 |, the total number of nodes in the grid. When we talk about the topology
of the grid, we mean the graph (𝒩 ,ℰ). For example, we might say: “the topology of scenario A and

scenario B is the same”, which would mean that the graph in the model of scenario A and scenario B is

the same
1
.

3.2.1. Nodes
In this section, we describe what buses exactly are, the types of buses there are, and the characteristics

of these types.

A bus represents a single component in the system. Physically, this point can be a busbar at a substation,

but it can also be a (hardwired) three-way junction somewhere in a transmission tower, a place where

a DSO or a customer connects to the grid, or a connection to another grid. Furthermore, a physical

substation can also include multiple buses, and the number of buses at a substation can depend on the

configuration of switches.

Power Injection and Current Injection
Generators and loads that are directly connected to a bus are modelled as power injections. The power

injection is the complex power that is supplied or consumed by the load or generator and is made up of

the active power injection and reactive power injection. The convention is that, when active (or reactive)

power is generated, the active (or reactive) power injection is positive, and when it is consumed, the

power injection is negative.

If some load or generator injects power at a node, this is of course in the form of a current at a specific

voltage. If the injected power is 𝑆 and the voltage at the node is 𝑉 (in phasor form), then the current
injection is the current flowing in or out of the generator or load. It can be calculated via (3.11).

Although shunts can also be considered as a component that injects power, we treat them separately in

section 3.2.3.

1
In this quote, we do not mean that the admittance matrix (see section 4.1) is the same between in scenario A and scenario B.
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Voltage and Power Injection
Each bus has four quantities that are of importance. For bus 𝑖, these are: total active power injection

𝑃𝑖 , total reactive power injection 𝑄𝑖 , voltage magnitude |𝑉𝑖| and voltage angle 𝛿𝑖 . If multiple loads

and generators are attached to the bus, 𝑃𝑖 and 𝑄𝑖 are the net generation or consumption of active and

reactive power. Since we assume all loads and generators are attached to the bus in parallel, there can

only be one bus voltage. The voltage magnitudes are in pu, and the voltage angle is the voltage phase

shift (or the angle of the voltage phasor). We can also treat voltage and power injection in their complex

form: 𝑉𝑖 = |𝑉𝑖|𝑒 𝑗𝛿𝑖 and 𝑆𝑖 = 𝑃𝑖 + 𝑗𝑄𝑖 . If these four quantities are known at every bus, the whole state of

the system is known.

If the four quantities 𝑃𝑖 , 𝑄𝑖 , |𝑉𝑖| and 𝛿𝑖 are known at each bus 𝑖 and the admittance of all components

is known, then all currents flowing through edges, and currents flowing in and out of buses can be

calculated. Therefore, the currents do not need to be known, to specify the full state of the system.

Types of Buses
Depending on the type of bus, some of these quantities can be directly controlled, or are fixed, and are

therefore always known. Others are dependent on the interaction with other parts of the grid. For all

buses, two of the four quantities are known, and two are unknown.

PQ Bus Loads do not have any control over voltage levels, but their active power and reactive power

consumption are known. These types of buses are therefore called PQ buses. Depending on how they are

connected to the grid, buses that have photovoltaic cells, wind turbines or certain types of generators
2

attached to them can also behave as PQ buses, so 𝑃𝑖 and 𝑄𝑖 are not necessarily negative. A bus with

neither generators nor loads attached is modelled as a PQ bus with 𝑃𝑖 = 𝑄𝑖 = 0.

PV Bus Synchronous generators3
are generators that have control over their output voltage and over

their active power output. These buses are therefore called PV buses. Any bus that has both loads

(i.e. components where the real and reactive power injections are known) and synchronous generators

attached to them is also considered as a PV bus.

Slack Bus Due to the conservation of energy, the sum of all power injected plus all power lost (e.g.

in transmission lines) should be 0. It is, however, not possible to know the exact amount of losses

beforehand. Therefore, we always assign at least one, so-called, Slack bus in every grid. This bus is

typically a synchronous generator, where we do not fix the power output 𝑃𝑖 , but allow it to vary, to

make sure this total sum of power is 0. In this way, it “picks up the slack”, which explains the name. For

a slack bus, the voltage level |𝑉𝑖| and voltage angle 𝛿𝑖 are fixed. This also defines a reference for voltage

angles, based on which all the angles are calculated. In some cases, the slack bus takes the form of a

connection to an external grid
4

instead of a synchronous generator.

3.2.2. Edges
Edges are connections between the buses. Physically, these are overhead transmission lines, underground

cables, transformers, or (very occasionally) series capacitors or series reactors. All edges have a series

impedance, a shunt impedance, and in the case of transformers, also a tap ratio. All edges are modelled

via the same model, which is described in appendix A.

Voltage and current over and through a general edge {𝑘, 𝑙} obey the following equation:
𝐼f

𝑘𝑙

−𝐼t

𝑘𝑙

 =


1

|𝑡𝑘𝑙 |2
(
𝑌sr

𝑘𝑙
+ 𝑌es

𝑘𝑙

2

)
− 𝑌sr

𝑘𝑙

𝑡𝑘𝑙
∗𝑡𝑙𝑘

− 𝑌sr

𝑘𝑙

𝑡𝑘𝑙 𝑡𝑙𝑘
∗

1

|𝑡𝑙𝑘 |2
(
𝑌sr

𝑘𝑙
+ 𝑌es

𝑘𝑙

2

)

𝑉𝑘

𝑉𝑙

 . (3.17)

2
In the rest of this thesis, we use the term PQ generator to refer to any power source that has control over both active and

reactive power output.

3
In the rest of this thesis, we use the term PV generator to refer to any power source that has control over both active power

output and voltage level.

4
E.g., a connection to the grid of a neighbouring country, or, when only part of a bigger grid is modelled, a connection to the

rest of the grid.
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Here
5
,

𝐼f

𝑘𝑙
= current flowing out of node 𝑘

𝐼t

𝑘𝑙
= current flowing into node 𝑙

𝑡𝑘𝑙 , 𝑡𝑙𝑘 = complex tap transformer ratios

𝑌sr

𝑘𝑙
= series admittance

𝑌es

𝑘𝑙
= edge shunt admittance.

A derivation of this formula can also be found in appendix A. We remark that 𝐼f

𝑘𝑙
= −𝐼t

𝑙𝑘
. The complex

tap ratio 𝑡𝑘𝑙 has magnitude 𝜏𝑘𝑙 , and angle 𝜃𝑘𝑙 . The latter is also referred to as the tap ratio phase shift. We

have two tap ratios, to model a transformer with a tap on both the high and low voltage side. With 𝑡𝑘𝑙 ,
we denote the ratio of the tap on the side of node 𝑘, and with 𝑡𝑙𝑘 , the ratio of the tap on the side of node

𝑙. When an edge is a transmission line, 𝑡𝑘𝑙 = 𝑡𝑙𝑘 = 1. Note that the matrix in (3.17) is only symmetric if

𝑡𝑘𝑙 and 𝑡𝑙𝑘 are real.

In a real-life electricity grid, there might be parallel lines or parallel transformers, that connect the

same two nodes. However, in our model, we only allow one edge per pair of nodes, as is common for

mathematical graphs. When there are parallel lines or transformers, they are combined into a single

edge. The matrix in (3.17) for such an edge can then be obtained by summing the admittances of the

individual lines together.

Usually, we split 𝐼f

𝑘𝑙
in the following two terms:

𝐼f

𝑘𝑙
=

(
𝑉𝑘

𝑡𝑘𝑙
− 𝑉𝑙

𝑡𝑙𝑘

)
𝑌sr

𝑘𝑙

𝑡𝑘𝑙
∗ +𝑉𝑘

𝑌es

𝑘𝑙

2|𝑡𝑘𝑙|2
(3.18)

and indicate the first term by 𝐼𝑘𝑙 :

𝐼𝑘𝑙 =

(
𝑉𝑘

𝑡𝑘𝑙
− 𝑉𝑙

𝑡𝑙𝑘

)
𝑌sr

𝑘𝑙

𝑡𝑘𝑙
∗ . (3.19)

The two complex tap ratios 𝑡𝑘𝑙 and 𝑡𝑙𝑘 of a transformer, are a function of a real variable, called the tap
position variable. We denote the tap variable by 𝑡

pos

𝑘𝑙
. It would be more accurate to write 𝑡𝑘𝑙 and 𝑡𝑙𝑘 as

functions of this single tap variable:

𝑡𝑘𝑙 = 𝑡𝑘𝑙(𝑡pos

𝑘𝑙
) (3.20)

𝑡𝑙𝑘 = 𝑡𝑙𝑘(𝑡pos

𝑘𝑙
). (3.21)

3.2.3. Shunts
A shunt is a connection between a bus and ground. Shunts are installed in the power grid by TSO’s to

either supply or consume reactive power, and can often be connected or disconnected when needed.

Just like a generator or load, it injects power at a node. However, unlike a generator or load, the amount

of power it injects is always dependent on the voltage at the node. This is why we cannot treat them the

same as loads or generators. The shunt typically has a conductance that is (almost) zero, and it is either

capacitive or inductive. We denote the admittance of a shunt connected to node 𝑖 with 𝑌ns

𝑖
(“ns” short

for “node shunt”).

Through a shunt flows the following current, denoted by 𝐼ns

𝑖
:

𝐼ns

𝑖 = 𝑉𝑖𝑌
ns

𝑖 . (3.22)

3.2.4. Switches and Breakers
In the physical electricity grid, there are switches and breakers that can connect and disconnect all types

of components. In [50, sec. III.D] some different ways of modelling switches are described.

5
Here, “f”, “t”,“sr” and “es” are short for “from”, “to”, “series” and “edge shunt”, respectively.
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We highlight a particular choice that can be made when modelling switches that do not connect to a

line or a transformer, but rather a switch that connects buses. Physically these are for example busbar

couplers. There are two common ways of modelling a grid with such a switch.

First, we can model such a switch as an edge with a very high admittance. This very admittance can

either be based on the admittance of the physical switch, or in some cases when this information is not

available, it is set to a very large number.

Secondly, it is also possible to represent the two components that the switch connects as a single node.

In operation of the grid, we expect the voltages at either end of the switch to be very close together, so

modelling them as a single node is a reasonable assumption.

A downside of the first method, is that it introduces edges to the model that have an admittance that is

many orders of magnitude bigger than other edges in the grid. This can lead to issues when performing

calculations on the grid. The second method does not have this downside, but it has another downside.

In some situations, especially for models that are used in operational scenarios, it might be relevant to

know how much current is flowing through a switch. With the first method, the current is calculated as

part of a power flow calculation (see chapter 4), with the second method however, this information is

lost.

3.3. Contingencies
During the operation of the transmission grid, sometimes equipment fails. We call this a contingency. To

assure a stable and uninterrupted operation of the grid, even in the case of contingencies, it is necessary

to study how the grid would behave if these contingencies were to occur. Common contingencies that

are studied are: the outage of a line or transformer, the outage of a shunt and the outage of a generator.

In this report, we assume there is a pre-defined list of contingencies that might occur. Say we have

a list of 𝐶 contingencies, then we index them by the integers 1, . . . , 𝐶, and we denote the set of all

contingencies by 𝒞 . The base situation, where no contingency has occurred, has index 0. The base

situation is also called the N-0 state, and when a single contingency has occurred, we are in an N-1 state6
.

Here the “N” stands for normal or nominal, and the “-1” means that there is a single contingency.

3.3.1. N-1 Secure
When the grid is operating in its N-0 state, without any unplanned outages, TSO’s usually operate their

grid in such a way that it is N-1 secure. This means that if any single piece of equipment fails, the grid

should still be able to operate normally, within all safety margins. For planning and design of the grid,

this often means that the grid is designed to be N-2 secure, so that equipment outages can be planned

(e.g., for maintenance) all while the grid is still operating in an N-1 secure state.

6
We can of course extend this to the general N-𝑘 state for any integer 𝑘.



4
Power Flow Modelling

In chapter 3, we introduced equations that describe the behaviour of individual components, and we

described how we can model a transmission network as a graph. In this chapter, we first introduce

the admittance matrix, then we derive a system of equations that describes the interaction between all

components in the grid. In section 4.3.2, we describe how to solve this system, to obtain an operating

state of the grid.

4.1. Admittance Matrix
We now construct the so-called Admittance Matrix, 𝑌. This is a complex 𝑁 ×𝑁 matrix, where component

𝑌𝑘𝑙 is defined as follows:

𝑌𝑘𝑙 =


− 𝑌sr

𝑘𝑙

𝑡𝑘𝑙
∗𝑡𝑙𝑘

if {𝑘, 𝑙} ∈ ℰ

𝑌ns

𝑘
+ ∑

𝑖∈𝒩
𝑖≠𝑘

1

|𝑡𝑘𝑖 |2
(
𝑌sr

𝑘𝑖
+ 𝑌es

𝑘𝑖

2

)
if 𝑘 = 𝑙

0 otherwise.

(4.1)

If we compare this definition with equation (3.17), we see some similarities. Where the matrix in equation

(3.17) describes the voltage and current for a single edge, this matrix combines all the interactions by

summing them together
1
. Furthermore, we add the shunt admittance to the diagonal elements.

The admittance matrix is, in general, not symmetric, since 𝑌𝑘𝑙 can differ from 𝑌𝑙𝑘 if 𝑡𝑘𝑙 is not real. For

large grids, the matrix is usually quite sparse, since the number of elements in row or column 𝑖 is the

number of edges that connect to 𝑖, plus 1. Note that for an edge {𝑘, 𝑙} in ℰ, equation (3.19) works out to:

𝐼𝑘𝑙 = 𝑌𝑘𝑙(𝑉𝑙 −𝑉𝑘). (4.2)

This equation actually holds for all distinct pairs of nodes, whether there is an edge connecting them or

not, because if {𝑙 , 𝑘} ∉ ℰ, then 𝐼𝑙𝑘 = 0 and 𝑌𝑘𝑙 = 0, so it also holds.

4.2. Power Flow Equations
In this section we derive the power flow equations, a system of equations relating the four quantities

|𝑉𝑖|, 𝛿𝑖 , 𝑃𝑖 and 𝑄𝑖 at all nodes 𝑖 ∈ 𝒩 . We mostly follow the reasoning of [18].

1
To make this precise, we can say that the matrix in (3.17) contains just the four components with indices (𝑘, 𝑘), (𝑘, 𝑙), (𝑙 , 𝑘), (𝑙 , 𝑙),

of a larger 𝑁 × 𝑁 matrix, with all other components 0. These larger matrices are then summed together.

13
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4.2.1. Current at a Single Node
We now consider a node 𝑘 with current injection 𝐼𝑘 . By Kirchhoff’s Current Law (KCL), the injected current

is equal to the sum of all current flowing out of the node, either via an edge or via a shunt:

𝐼𝑘 = 𝐼ns

𝑘
+

∑
𝑙∈𝒩
𝑙≠𝑘

𝐼f

𝑘𝑙
. (4.3)

Here 𝐼f

𝑘𝑙
is the current flowing out of node 𝑘 into edge 𝑘, 𝑙, if {𝑘, 𝑙} is an edge (see (3.17)) and 𝐼f

𝑘𝑙
= 0 if

{𝑘, 𝑙} is not an edge. Now we use (3.17) and (3.22):

𝐼𝑘 = 𝐼ns

𝑘
+

∑
𝑙∈𝒩
𝑙≠𝑘

𝐼f

𝑘𝑙
(4.4)

= 𝑌ns

𝑘
𝑉𝑘 +

∑
𝑙∈𝒩
𝑙≠𝑘

[
1

|𝑡𝑘𝑙|2

(
𝑌sr

𝑘𝑙
+
𝑌es

𝑘𝑙

2

)
𝑉𝑘 −

𝑌sr

𝑘𝑙

𝑡𝑘𝑙
∗𝑡𝑙𝑘

𝑉𝑙

]
(4.5)

=
©«𝑌ns

𝑘
+

∑
𝑖∈𝒩
𝑖≠𝑘

1

|𝑡𝑘𝑖|2

(
𝑌sr

𝑘𝑖
+
𝑌es

𝑘𝑖

2

)ª®®¬𝑉𝑘 +
∑
𝑙∈𝒩
𝑙≠𝑘

−
𝑌sr

𝑘𝑙

𝑡𝑘𝑙
∗𝑡𝑙𝑘

𝑉𝑙 (4.6)

= 𝑌𝑘𝑘𝑉𝑘 +
∑
𝑙∈𝒩
𝑙≠𝑘

𝑌𝑘𝑙𝑉𝑙 (4.7)

=

∑
𝑙∈𝒩

𝑌𝑘𝑙𝑉𝑙 (4.8)

In the third step we used (4.1). If we define the vectors Iinj = (𝐼1 , . . . , 𝐼𝑁 ) and V = (𝑉1 , . . . , 𝑉𝑁 ), then in

matrix notation we can rewrite this to Iinj = 𝑌V.

4.2.2. Power Injection
Equation (4.8) relates the current injection at each node to the nodal voltages, via the admittance matrix.

However, we would like to relate the power injection at each node to the nodal voltages. To do this we

take the conjugate of (4.8) and multiply both sides by 𝑉𝑘 :

𝑆𝑘 = 𝑉𝑘 𝐼𝑘
∗

(4.9)

= 𝑉𝑘

(∑
𝑙∈𝒩

𝑌𝑘𝑙𝑉𝑙

)∗
(4.10)

=

∑
𝑙∈𝒩

𝑉𝑘𝑉𝑙
∗𝑌𝑘𝑙

∗
(4.11)

=

∑
𝑙∈𝒩

|𝑉𝑘 ||𝑉𝑙|𝑒 𝑗(𝛿𝑘−𝛿𝑙 )
(
𝐺𝑘𝑙 − 𝑗𝐵𝑘𝑙

)
(4.12)

=

∑
𝑙∈𝒩

|𝑉𝑘 ||𝑉𝑙|(cos(𝛿𝑘 − 𝛿𝑙) + 𝑗 sin(𝛿𝑘 − 𝛿𝑙))
(
𝐺𝑘𝑙 − 𝑗𝐵𝑘𝑙

)
. (4.13)

Here we split 𝑌𝑙𝑘 into its real and imaginary components 𝑌𝑖𝑘 = 𝐺𝑖𝑘 + 𝑗𝐵𝑖𝑘 . Considering the real and

complex components separately gives us:

𝑃𝑘 =

∑
𝑙∈𝒩

|𝑉𝑘 ||𝑉𝑙|(𝐺𝑘𝑙 cos(𝛿𝑘 − 𝛿𝑙) + 𝐵𝑘𝑙 sin(𝛿𝑘 − 𝛿𝑙)) (4.14)

𝑄𝑘 =

∑
𝑙∈𝒩

|𝑉𝑘 ||𝑉𝑙|(𝐺𝑘𝑙 sin(𝛿𝑘 − 𝛿𝑙) − 𝐵𝑘𝑙 cos(𝛿𝑘 − 𝛿𝑙)). (4.15)

These equations are commonly known as the Power Flow Equations.
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4.3. Power Flow Problem
We now state the Power Flow problem (sometimes also known as the Load Flow problem). For a network

with admittance matrix 𝑌, given at every node 𝑖 two out of the four variables |𝑉𝑖|, 𝛿𝑖 , 𝑃𝑖 , 𝑄𝑖 , find the

remaining variables, such that equations (4.14) and (4.15) are satisfied for all 𝑘 in 𝑁 . The variables that

are known and unknown can be seen in table 4.1.

Bus type Known variables Unknown variables

PQ bus 𝑃𝑖 , 𝑄𝑖 |𝑉𝑖|, 𝛿𝑖
PV bus |𝑉𝑖|, 𝑃𝑖 𝛿𝑖 , 𝑄𝑖

Slack bus |𝑉𝑖|, 𝛿𝑖 𝑃𝑖 , 𝑄𝑖

Table 4.1: Known and unknown variables for node 𝑖 in the power flow problem, depending on the bus type.

This problem is a nonlinear system of 2𝑁 equations with 2𝑁 known, and 2𝑁 unknown variables. A

solution of the Power Flow Problem is sometimes called a power flow or a load flow.

As we mentioned in section 3.2.1, once the four quantities |𝑉𝑖|, 𝛿𝑖 , 𝑃𝑖 and 𝑄𝑖 are known at each bus 𝑖, we

know the whole state of the system, and the currents through each edge can be calculated from these

variables.

In the rest of this thesis, we assume that the stated power flow problems have a unique solution. For

more information on this assumption, we refer to [18, ch. 7].

4.3.1. Equivalent Formulations
Note that we have stated the problem here in terms of the voltage magnitude and angle (polar

coordinates), and the real and imaginary component of the power injection (Cartesian coordinates).

We can, however, also state the problem in terms of complex voltage and power, and complex power

injection, or any combination of either Cartesian or polar coordinates of both variables. Furthermore, we

could also state the problem in terms of complex voltage and complex current, satisfying (4.8). The most

widely used formulation is the formulation as stated here, but for a comparison of the formulations,

and their advantages and disadvantages in solving the power flow problem, we refer to [46].

4.3.2. Power Flow Solvers
Finding the state of an electricity grid, equates to solving a nonlinear system of 2𝑁 equations for 2𝑁
unknowns. There are multiple numerical algorithms for solving this problem, both for obtaining

accurate and approximate solutions. Some of these methods are: the Newton-Raphson method, the Fast

Decoupled Load Flow method and DC approximation method [18, ch. 4]. We describe the most common

method, via the Newton-Raphson algorithm, in section 4.3.3. We will not treat the DC approximation

method here, but there are Optimal Power Flow methods (see chapter 5) that build upon this algorithm,

so for a treatment of this method, we refer to [18, sec. 4.3].

4.3.3. Newton Raphson Method
In this section we describe the Newton-Raphson method for solving the power flow problem. We mostly

follow the reasoning of [18].

We can solve the system with the Newton-Raphson method. Let 𝜹 be a vector containing all unknown

voltage angles (i.e., 𝛿𝑖 for all PV- or PQ buses) and let |𝑽 | be a vector containing all unknown voltage

magnitudes (i.e., |𝑉𝑖| for all PQ buses). Let x be a vector containing both:

x =

[
𝜹
|𝑽 |

]
. (4.16)
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Now we define the active and reactive power-mismatch functions Δ𝑃𝑖 and Δ𝑄𝑖 as follows:

Δ𝑃𝑖(x) = 𝑃
sp

𝑖
− 𝑃𝑖 (4.17)

= 𝑃
sp

𝑖
−

∑
𝑙∈𝒩

|𝑉𝑖||𝑉𝑙| (𝐺𝑖𝑙 cos(𝛿𝑖 − 𝛿𝑙) + 𝐵𝑖𝑙 sin(𝛿𝑖 − 𝛿𝑙)) (4.18)

Δ𝑄𝑖(x) = 𝑃
sp

𝑖
− 𝑃𝑖 (4.19)

= 𝑄
sp

𝑖
−

∑
𝑙∈𝒩

|𝑉𝑖||𝑉𝑙| (𝐺𝑖𝑙 sin(𝛿𝑖 − 𝛿𝑙) − 𝐵𝑖𝑙 cos(𝛿𝑖 − 𝛿𝑙)) . (4.20)

Here, 𝑃
sp

𝑖
and 𝑃

sp

𝑖
are the specified active and reactive power injection, and 𝑃𝑖 and 𝑄𝑖 are the computed

power injection that follow from (4.14) and (4.15). Note that Δ𝑃𝑖 can only be computed if 𝑖 is a PV- or

PQ bus, and Δ𝑄𝑖 only if 𝑖 is a PQ bus, because otherwise, 𝑃
sp

𝑖
or 𝑄

sp

𝑖
is not given. Now we construct the

total power mismatch function as follows:

F(x) =
[
ΔP(x)
ΔQ(x)

]
, (4.21)

where ΔP and ΔQ are the vectors containing all Δ𝑃𝑖 and Δ𝑄𝑖 that can be computed. We remark that

F(x) = 0, if and only if, x solves the system for all unknown voltage magnitudes and angles. Furthermore,

the remaining unknowns (all of the form 𝑃𝑖 or 𝑄𝑖) can be found by using (4.14) and (4.15). Therefore,

we have a solution of the power flow problem, if and only if, we have found x such that F(x) = 0. Solving

the Power Flow Problem can therefore be done by finding a zero of F.

Finding this zero of F can be done using the Newton-Raphson algorithm. Each Newton-Raphson

iteration then requires solving the following system to obtain the iteration step:

−

𝜕ΔP
𝜕𝛿

𝜕ΔP
𝜕|𝑉|

𝜕ΔQ
𝜕𝛿

𝜕ΔQ
𝜕|𝑉|


[
Δ𝜹
Δ|𝑽 |

]
=

[
ΔP
ΔQ

]
. (4.22)

Here, the left matrix is the Jacobian matrix of F. If we denote the 𝑛-th iterate by x𝑛 , then the next iterate

is calculated as follows: x𝑛+1 = x𝑛 + Δx, where

Δx =

[
Δ𝜹
Δ|𝑽 |

]
. (4.23)

Typically, the iteration is initialized by using a flat start. This means that for x0
, all voltages are set to 1 pu

and all voltage angles are set to 0. When a solution of an approximate method for solving the Power

Flow Problem is known, or a solution of a Power Flow Problem on a very similar network is known, it

might also be used as an initial value.



5
Optimal Power Flow Problem

In this chapter, we introduce the Optimal Power Flow problem (OPF).

As the name suggests, optimal power flow is about finding some sort of optimal way to operate the

grid. We have certain assets in the grid that we can control. A specification of how to control a variable

of such a component is called a set-point (for example, a voltage magnitude set-point for a PV bus).

The set-points are our decision variables
1
. Given the set-points, we can perform a power flow to get

some state of the system, which needs to satisfy certain constraints. Now we want to find the set-points

such that all constraints are satisfied, and do this optimally, which is, of course, characterized by some

objective function. We will formulate OPF as a constrained optimization problem.

5.1. Examples of OPF Problems
The OPF problem is not a single specific problem, but a range of problems. Different real life operational

scenarios come with different challenges and different available measures to tackle these challenges.

When we formulate such a problem as an optimization problem, different challenges are represented

by different objective functions, and different available measures are represented by different decision

variables or different constraints. To illustrate this, we describe two OPF problems that relate to the two

scenarios introduced in section 1.2.

A common problem in OPF literature is the Economic Dispatch Problem. This problem is often used as a

first example of OPF, see for example [53, Chap. 8]. In this example, the active and reactive power flow

demands at all loads are fixed. Each generator has a cost function that is usually a linear, piecewise

linear or polynomial function of the active power supplied. The decision variables are the active power,

reactive power or voltage set-points for each generator. Typically, there are bounds on the active and

reactive power output of all generators, the voltage levels at all nodes and the current through each

edge. In some versions of the problem, voltage set-points at PV buses are fixed, in others they are also

part of the decision variables. In some cases, transformer taps and shunts could also be part of the

decision variables, in others they might be fixed or not present. For TenneT, this problem is relevant in a

situation where redispatch (see section 1.2.1) is required.

Another OPF problem can be formulated based on the situation described in section 1.2.2. In this

scenario, all active power injections are fixed. For all loads, the reactive power injections are fixed and

for a few generators, the voltage magnitude (in case of a PV generator) or the reactive power output (in

case of a PQ generator) can be controlled. These generators represent the ancillary service providers.

TenneT can furthermore control all transformer taps and all controllable shunts. The goal is now to

minimize the cost of the ancillary services used, while keeping the voltage magnitudes within safe

limits. We call this problem the Reactive Power Dispatch problem.

1
The decision variables are the variables that can be directly controlled in the optimization process. In this case, they represent

the choices that the grid operator makes.

17
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5.2. Problem Statement
In this section, we state the OPF problem as a general (non-convex) Nonlinear Program (NLP) in the

following form:

minimizeu, v 𝑓 (u, v,w)

subject to g(u, v,w) = 0,

h(u, v,w) ≤ 0.

(5.1)

We mostly follow [35] in this formulation. For now, we assume the decision variables are allowed to

vary continuously, but in section 5.4, we will have a closer look at this assumption. We state the problem

in the Polar Power-Voltage Formulation, first described in [17] in the 1960s [12, p. 25].

5.2.1. Variables
In (5.1), u is the vector of decision variables or controllable variables

2
. These can be:

• 𝑃𝑖 , when 𝑖 is a PV bus or a PQ bus

• 𝑄𝑖 , when 𝑖 is a PQ bus

• |𝑉𝑖|, when 𝑖 is a PV bus or Slack bus

• 𝜏𝑘𝑙 and 𝜃𝑘𝑙 when {𝑘, 𝑙} is a transformer edge with controllable tap ratio

• 𝑌ns

𝑖
, when 𝑖 is a node with a controllable shunt attached

w is the vector of exogenous variables or fixed variables. These can be:

• 𝑃𝑖 and 𝑄𝑖 for each PQ-node 𝑖, when it is not a decision variable

• 𝑃𝑖 and |𝑉𝑖| for each PV-node 𝑖, when it is not a decision variable

• |𝑉𝑖| and 𝛿𝑖 , for each slack node 𝑖, when it is not a decision variable

• 𝑌sr

𝑘𝑙
and 𝐵es

𝑘𝑙
for each edge {𝑘, 𝑙}

• 𝑌ns

𝑖
for each node 𝑖, and 𝜏𝑘𝑙 and 𝜃𝑘𝑙 for each edge {𝑘, 𝑙}, when it is not a decision variable

v is the vector of state variables. These can be:

• 𝑃𝑖 , 𝑄𝑖 , |𝑉𝑖| and 𝛿𝑖 for each node 𝑖, when it is not a decision variable or exogenous variable

As a general rule, the exogenous variables are the variables that are fixed, the decision variables are the

variables that can be directly controlled, and the state variables are variables that cannot be directly

controlled, but that can change if the decision variables are changed. Since w is fixed, we will omit it in

the rest of this report. A solution of this problem is some uopt
that minimizes the objective. Note that

for a given decision vector u, we can always obtain the corresponding state v, by performing a Power

Flow calculation.

Note that the variables described under decision variables can be decision variables, but are not

necessarily decision variables. Whether they are decision variables or not depends on the exact scenario

that is modelled by the OPF problem (see section 5.1). Remember from section 3.2.1, that a bus without

loads or generators attached to it, is modelled as a bus where 𝑃𝑖 = 𝑄𝑖 = 0.

We remark that for the (ordinary) OPF problem, the distinction between decision variables and state

variables is sometimes arbitrary. Take for example those nodes where one of 𝑄𝑖 and |𝑉𝑖| is a decision

variable, and the other a state variable. It does not matter which of the two is the decision variable and

which is the state variable. On both state variables and decision variables we can define constraints,

and in the end, both are available in the OPF solution. Similarly, we also do not necessarily need a

designated slack bus, as long as we have at least one node where the active power output is either a state

or a decision variable [12, p. 25]. In Security Constrained OPF, however, this distinction is important, as

we will see in section 5.3.

2
We do not specify in what specific order these variables appear as the components of u, v and w, as this is not really relevant.

We never talk about a component of u, v or w at a specific index. The vectors are more meant as a shorthand for all variables that
are decision/state/exogenous variables.



5.2. Problem Statement 19

Formulation in Terms of Load and Generator Power Injection
In some cases, problem formulations state that voltage set-points and active or reactive power set-points

for generators or loads are controllable, instead of stating that either |𝑉𝑖|, 𝑃𝑖 or 𝑄𝑖 is controllable for a

bus. If all buses have at most one load or generator attached, this makes no difference. If a bus has

multiple loads and generators attached, then 𝑃𝑖 and 𝑄𝑖 are the net active and reactive power injections.

Therefore, we may formulate the problem in terms of generator and load power injections, instead of

nodal power injections.

Formulating the problem with load and generator power injections can be beneficial in situations where

it is more accurate to define constraints or cost functions for single loads or generators, to accurately

model real life situations. These constraints and cost functions could be combined to obtain constraints

and cost functions for nodal power injections, but this is not always a trivial task, and can lead to more

complex types of constraints or cost functions (e.g., two generators with a linear cost function can have a

piecewise linear combined cost function).

We can transform the variables for node 𝑖 in the following way:

• 𝑃𝑖 may be substituted as follows:

𝑃𝑖 =

∑
𝑙∈ℒ𝑖

𝑃𝑙 +
∑
𝑔∈𝒢𝑖

𝑃𝑔 (5.2)

• 𝑄𝑖 may be substituted as follows:

𝑄𝑖 =

∑
𝑙∈ℒ𝑖

𝑄𝑙 +
∑
𝑔∈𝒢𝑖

𝑄𝑔 (5.3)

• all synchronous generators that are connected to the same bus, must be operating at the same

voltage, so no substitutions for |𝑉𝑖| or 𝛿𝑖 are made

Here, we denote the set of all generators and loads attached to node 𝑖, by 𝒢𝑖 and ℒ𝑖 , respectively, and

𝑃𝑙 , 𝑃𝑔 , 𝑄𝑙 and 𝑄𝑔 are the active and reactive power injections for a single load or generator. Here again,

the power injections are exogenous variables if they are fixed, decision variables if they are controllable,

and state variables otherwise.

In the rest of this chapter, we continue to use the formulation in terms of nodal power injections for

simplicity of notation. We remark that when the problem is instead formulated in terms of load and

generator power injections, the objective and constraints may also be functions of the load and generator

power injections.

5.2.2. Equality Constraints
The equality constraints should enforce that all variables together correspond to a valid system, that is,

that they should satisfy the non-linear system of equations of the power flow problem. This means that

for each node 𝑘, equations (4.14) and (4.15) should be satisfied.

5.2.3. Inequality Constraints
The inequality constraints represent physical limits or safety limits on components in the grid. These

can be:

• limits on the voltage magnitude at each node

• limits on active or reactive power injections at each node

• limits on current through each edge

• limits on shunt impedance or transformer tap ratios

Often these limits will be simple upper and lower bounds on one of the state or decision variables, but

they can also be more complex. For example, the current through each edge is not explicitly included in

the decision or state variables, but we can calculate the current flowing through each edge via equation

(3.19). An upper bound on the current through an edge {𝑘, 𝑙} would then look as follows:

|𝑌𝑘𝑙(𝑉𝑙 −𝑉𝑘)| ≤ 𝐼max

𝑘𝑙
(5.4)
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for some number 𝐼max

𝑘𝑙
. In Appendix B, expressions of two type of current constraints are given.

5.2.4. Objective Function
The objective function can be a cost function that needs to be minimized, for example, the cost of

generators in the economic dispatch problem. In some cases, the objective might also be to minimize

losses, carbon emissions or some other measure of performance. We now list some examples.

Minimization of Costs Given a cost per MVA of active or reactive power output for each generator, we

can minimize the total cost. Similarly, given an amount of CO2 emissions per MVA of active or reactive

power output for each generator, we can minimize total CO2 emissions.

Minimization of Power Losses The sum of all active power injections is always non-negative, since

the power injections need to compensate for losses in the system. We can minimize the total losses in

the system by minimizing

∑
𝑖∈𝒩 𝑃𝑖 .

Reactive Power Reserve The reactive power reserve of a generator is the ability of a generator to supply

or consume extra reactive power compared to its operating condition. This reserve generating capacity

can be used to maintain the voltage level at a bus, in case extra reactive power supply or consumption is

needed due to a contingency. In [38], a generator reactive margins term is included in the objective, which

looks as follows: ∑
𝑔∈𝒢

(
𝑄𝑔

𝑄max

𝑔

)
2

. (5.5)

Here 𝒢 is the set of all generators, and

𝑄𝑔 = reactive power output of generator 𝑔

𝑄max

𝑔 = maximum reactive power output of generator 𝑔.

By minimizing this objective, the reserve capacity to produce reactive power is maximized. The grid

analysis software PowerFactory (see section 6.2) includes capabilities to minimize the deviation in

reactive power output of generators from either the minimum, the maximum, or some target reactive

power output. These are useful (in respective order) in scenarios where critical voltage drops, critical

voltage rises, or both might occur [26, sec. 38.2.1.1].

5.3. Security Constrained Optimal Power Flow
In Security Constrained Optimal Power Flow (SCOPF), we additionally consider the behaviour of the grid

under the influence of contingencies. As we mentioned in section 3.3, it is usually required that the grid

is operating in an N-1 secure state, meaning that if any contingency were to occur, all constraints are still

satisfied. To ensure this, we need to also look at the state that the system will go to once the contingency

has occurred, and see if it still satisfies all limits.

We have noted that we can prepare for certain contingencies (namely those that lead to critical voltage

drops or rises) by maximizing reactive power reserve. With this reactive power reserve, we could react to

any voltage issues that might occur in case of a contingency. However, such a method does not guarantee

that all voltage issues can be resolved, because we never check whether there actually is enough reserve

power capacity to resolve all problems. Another issue is that set-points for generators would have to be

changed quickly, if a swift restoration of voltage levels is required. This might not always be possible.

Furthermore, contingencies could also lead to other problems, such as edge overloading, that cannot be

resolved with extra reactive power generation capacity. This means that maximizing reactive power

generation is not a complete solution for SCOPF. Instead, we formulate the SCOPF problem as another

NLP.

5.3.1. Mathematical Formulation
From now on, we will denote the objective function, equality constraints, and inequality constraints

of the (non-security constrained) OPF by 𝑓0, g0 and h0, respectively. Given decision variables u0, we
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denote the state of the system by v0. Once a contingency occurs, we essentially obtain a different grid,

where the topology of the network might have changed, the admittance matrix might have changed, or

power injections might have changed. This new grid also has different constraint functions
3
, which we

denote by g𝑐 and h𝑐 for a contingency 𝑐.

We differentiate between two kinds of SCOPF, namely, preventive (or preventative) and corrective SCOPF.

We first introduce preventive SCOPF.

5.3.2. Preventive SCOPF
In preventive SCOPF we require that for every contingency 𝑐, if that contingency occurs, the state of the

system still satisfies all constraints g𝑐 and h𝑐 , with the pre-contingency decision variables u0. This leads

to the following constraints:

g𝑐(u0 , v𝑐) = 0 for 𝑐 ∈ 𝒞 (5.6)

h𝑐(u0 , v𝑐) ≤ 0 for 𝑐 ∈ 𝒞 . (5.7)

Note that here u0 are the same decision variables as the pre-contingency case, but that the state v𝑐

does change, since a contingency will change the voltages and power injections throughout the grid.

In section 5.2.1, we remarked that for ordinary OPF, in some cases, the distinction between decision

and state variables is arbitrary, but for SCOPF, this is not the case. A state variable can vary across

contingency states, but a decision variable can not.

We now obtain the following optimization problem:

minimizeu0; v0 , . . . , v𝐶
𝑓 (u0; v0 , . . . , v𝐶)

subject to g0(u0 , v0) = 0,

h0(u0 , v0) ≤ 0,

g𝑐(u0 , v𝑐) = 0 for 𝑐 ∈ 𝒞 ,

h𝑐(u0 , v𝑐) ≤ 0 for 𝑐 ∈ 𝒞 .

(5.8)

In general, the cost function can be any function of the control variables and all states. An obvious

example, is to take the cost function of the N-0 state (i.e., 𝑓0(u0 , v0)), because the grid is most likely to

operate in this state. Another example is to take a probability-weighted average of the cost function for

all contingency states (i.e.,

∑𝐶
𝑐=0

𝑝𝑐 𝑓0(u0 , v𝑐), where 𝑝𝑐 is the probability that contingency 𝑐 occurs).

We remark that this formulation leads to a considerable increase in constraints and state variables,

compared to a formulation with just the pre-contingency constraints. The number of constraints and

state variables are approximately multiplied by 𝐶 + 1. The amount of decision variables does not change.

This also means that there might not always be a feasible solution, even if the problem without security

constraints has a solution. If, for example, all lines are close to their maximal current rating in the

pre-contingency state, and all 𝑃𝑖 ’s are fixed (i.e. we do not allow redispatch), a contingency state where

a line fails could be unfeasible.

5.3.3. Corrective SCOPF
In corrective SCOPF we allow the decision variables to vary after the occurrence of a contingency, up to a

specified amount. This leads to the following optimization problem:

minimizeu0 , . . . u𝐶 ; v0 , . . . , v𝐶
𝑓 (u0 , . . . , u𝐶 ; v0 , . . . , v𝐶)

subject to g0(u0 , v0) = 0,

h0(u0 , v0) ≤ 0,

g𝑐(u𝑐 , v𝑐) = 0 for 𝑐 ∈ 𝒞 ,

h𝑐(u𝑐 , v𝑐) ≤ 0 for 𝑐 ∈ 𝒞 ,

|u0 − u𝑐| ≤ Δu for 𝑐 ∈ 𝒞 .

(5.9)

3
Many constraints will be the same. Some constraints might no longer be included, (e.g., the contingency is the removal of a

line, and therefore the constraint on the loading of that line is no longer relevant). Some constraints might have different bounds

(e.g., the contingency is the removal of one of two parallel lines, and therefore the edge can only transport half of the current).
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Note that the fact that the decision variables are allowed to change, is reflected in the argument u𝑐 in the

third and fourth constraint. The last constraint restricts by how much the decision variables are allowed

to change when a contingency occurs. Some set-points might be allowed to change freely, others might

only be allowed to change by a certain amount, or not at all, because of physical limitations on how

quickly these set-points could be changed in the case of a contingency.

When the same objective function is used, corrective SCOPF will always find a solution with a better

objective value, compared to preventive SCOPF, because the latter is a special case of corrective SCOPF

with Δu = 0. The number of state variables and constraints in this formulation is comparable to

preventive SCOPF, however, the number of decision variables is multiplied by 𝐶 + 1.

5.4. Continuity of Decision Variables
So far, all constraints that we have introduced were continuous. However, in real-world applications,

components such as shunts and transformer taps cannot always be controlled continuously, but have a

discrete set of possible set-points. This might be binary (i.e., on or off), or a finite amount of possible

set-points. In this case, the optimization problem becomes a Mixed Integer Nonlinear Program (MINLP).

This makes the problem harder to solve. When we have a (SC)OPF problem with discrete variables,

its continuous relaxation is the problem where all constraints that restrict a single decision variable to a

finite or countable set are dropped. In section 6.3.2, we have a look at some ways to deal with discrete

variables.

5.5. Other Formulations of the OPF Problem
In this chapter, we have formulated the (SC)OPF problem in terms of active and reactive power and

voltage angle and magnitude. This is however not the only way to formulate the problem. It can for

example also be formulated with real and imaginary voltages, or with complex currents instead of

complex powers [12]. The OPF problem (or slight relaxations of the problem) can also be formulated as

a quadratically constrained quadratic program or a semidefinite program [6].

Most scientific literature on SCOPF uses the formulation that we used here [12, sec. 6]. Since set-points

and ratings of real-life components are stated in active and reactive power, and voltage magnitude and

angle (e.g., specifications for a transformer will provide a range of voltage magnitudes in which it is safe

to operate, it will not provide a range for real and imaginary voltage), it is also the formulation that is

most easy to apply in a real-world application.

To limit the scope of the research, we stick to the formulation that is used in this chapter.
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Review of Existing Methods for OPF

In chapter 5, we have formulated the (Security Constrained) Optimal Power Flow problem. The aim of

this chapter is to review existing methods for solving the optimal power flow problem, and identify

the challenges that come with the problem. We first have a look at two existing software packages for

(SC)OPF, and then give an overview of the scientific literature on the problem.

6.1. pandapower
pandapower [50] is an open-source software package for the analysis and optimization of power

systems. It is entirely written in Python, it makes use of pandas [49], and it builds upon methods and

implementations from PYPOWER [36]. pandapower includes a way to formulate certain types of OPF

problems, and can interface with methods from PYPOWER and PowerModels.jl [19] for solving these

OPF problems. The specifics of the formulation are as follows:

• active and reactive power injections of loads and PQ generators are controllable

• active power injections of synchronous generators are controllable

• transformers and shunts are not controllable

• cost functions are quadratic polynomials or piecewise linear functions of 𝑃𝑖 and 𝑄𝑖 for all

controllable components

• upper and lower bounds can be defined on 𝑃𝑖 and 𝑄𝑖 for all controllable assets and |𝑉𝑖| for all

buses

• an upper limit can be defined on |𝐼𝑘𝑙| for all edges

We can see that this formulation lacks the ability to have voltage magnitudes as decision variables,

however, as we saw in section 5.2.1, there is a workaround for this, by modelling all PV buses as PQ buses.

The formulation also lacks control for more advanced components such as shunts or transformers.

When the PYPOWER solver is called, it makes use of a primal-dual interior point method, based on the one

described in [52]. When the PowerModels.jl solver is called, it uses the Ipopt [51] solver by default,

but it can also use other solvers, such as those of Gurobi [28].

6.2. PowerFactory
PowerFactory is a commercial software application for modelling and analysis of power systems. It

includes an extensive set of network analysis tools, including Power Flow and Optimal Power Flow

capabilities. PowerFactory is licensed by DIgSILENT GmbH.

The OPF module of PowerFactory does not distinguish PV generators and PQ generators, and only

allows active and reactive power output as decision variables (see section 5.2.1 on why this can be done).

We give an overview of the OPF capabilities of PowerFactory:

23
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• active and reactive power output of generators are controllable

• transformer tap positions are controllable (continuous or discrete)

• shunt admittances are controllable (continuous or discrete)

• the following types of objectives can be chosen: minimization of losses, minimization of costs,

minimization of load shedding, maximization of reactive power reserve, minimization of control

variable deviations

• upper and lower bounds can be set on generator active and reactive power injections and |𝑉𝑖| for

all buses

• an upper limit can be defined on |𝐼𝑘𝑙| for all edges

PowerFactory also provides a solver for a simplified version of the model, based on the DC load flow

method. In this formulation, a linear approximation is made to the equality constraints. This version

is an (Integer) Linear Programming (ILP) formulation and is solved using the simplex method and a

branch-and-bound algorithm [26, sec. 25.2.1]. With this simplified model, it is also capable of doing

SCOPF.

PowerFactory is an application developed for Microsoft Windows, primarily designed to be run on

desktop computers. It has an extensive graphical interface, making it suitable for obtaining an overview

of large grid models and easy editing. It also has an application programming interface (API) in the

programming language Python, through which grid data, set-points and results of calculations can be

imported and exported.

6.2.1. Downsides of Closed Source Nature of PowerFactory
Since it is not possible to view or modify the source code of PowerFactory, it is not as flexible as open-

source software. We list some specific issues that TenneT has, that prevent the usage of PowerFactory
in some parts of its operation.

• Constraints and cost functions for OPF calculations have to be chosen from a specific list and have

to be provided in a specific form. This limits the types of OPF calculations that can be performed

with the software.

• Performing bulk calculations and working with time series in PowerFactory is slow and convoluted.

It is not straightforward to do bulk calculations where the grid configuration and power injection

scenarios are varied independently.

• There is no access to the details of internal algorithms and the output of intermediate statuses and

results in iterative algorithms is limited. This makes it less suited for scientific research because it

is hard to make comparisons with other methods.

• When algorithms in PowerFactory do not converge, the lack of output and insight into the internal

workings of algorithms makes it harder to find the cause of the convergence issues.

• Any additional functionality has to be requested from the manufacturer. There is no guarantee

that these features will be implemented, and when they will be available.

• The focus by the manufacturer on desktop use, makes it harder to integrate the software as part of

server-based toolchains or automated processes. It does not support the usage on Linux based

operating systems, for example.

6.3. Scientific Literature
In this section, we do a literature study on the OPF problem, focussing on three topics: reducing

computational complexity, handling of discrete variables and use of (MI)NLP solvers. We restrict our

attention to literature that uses a similar formulation of the OPF problem as we do.

6.3.1. Reducing Computational Complexity
When performing OPF calculations close to real time, or when performing large amounts of OPF

calculations, calculation time can be an important factor in the applicability of an OPF method. For

SCOPF, calculation time is an even bigger factor, as the computational cost of SCOPF calculations grows
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rapidly with an increase in the amount of considered contingencies. We quote from [16, sec. 4.1.1]: “The

major challenge of the SCOPF is the size of the problem, especially for large systems and [cases] where

many contingencies are considered. Trying to solve this problem directly for a large power system, by

imposing simultaneously all post-contingency constraints, would lead to prohibitive memory and CPU

times requirements.”

In the literature, a few methods are suggested to reduce the computational complexity. A first approach

is linearization of the problem. This approach can be used to reduce the computational complexity

of general OPF problems. For SCOPF problems specifically, three other common approaches can be

observed: contingency filtering, problem decomposition, and network compression [16, sec. 4.1].

Linearization of the Problem
Since linear programs are, in general, much easier to solve than nonlinear programs, some literature

suggests transforming the OPF problem into a linear program. Linearizing the OPF problem involves

finding a linear approximation for the cost function 𝑓 , and the constraint functions g and h. In [2,

sec. 4], two methods for linearizing g are suggested, one simply linearizes 𝑔 by use of a first order Taylor

approximation, the other method (which is used more often [47, sec. II.C]) does this too, but makes

some additional assumptions, leading to a simpler linear system. The second method shares much of

the assumptions of the DC power flow method, and is therefore referred to as the DC OPF problem.

The linear approach is, however, less suited for situations where accurate modelling of reactive power is

important, since the behaviour of reactive power tends to be more nonlinear [47, 13].

Methods for SCOPF
A first approach for reducing the computational complexity of SCOPF is called contingency filtering.

The idea behind this approach is to only consider binding constraints, that is, those constraints that would

lead to a better objective value if they were dropped. This is not known beforehand, but contingency

filtering techniques exist, that select contingencies that are likely to have binding constraints. Examples

of such techniques can be found in [22, 31, 42].

A second approach is based on the generalized Benders Decomposition. In this decomposition, the problem

is split into one master problem and a sub-problem for each contingency. In each sub-problem, binding

constraints are identified, and these are then incorporated in the master problem via a so-called Benders
Cut. This process greatly reduces the computational complexity, and it allows for parallelization of

certain parts of the computation, leading to an additional speedup. The downside is that on non-convex

problems such as the SCOPF problem, the Benders Decomposition solves an approximation of the

original problem, meaning that an obtained solution is not guaranteed to converge to an optimal solution

of the original SCOPF problem. This method has been described in [39, 35].

Another method to reduce the computational complexity of the SCOPF problem is the one presented

in [31]. It makes use of the fact that the effect of a contingency is usually only felt in a region around

the contingency. For each contingency, an active region is identified. This is the region where the

contingency has a significant impact on voltages and power flows. They then replace all nodes outside

the active region with a so-called REI-DIMO equivalent network. This means that the nodes outside the

active region are replaced by a reduced number of equivalent nodes, greatly reducing the size of the

constraints belonging to that contingency. In numerical experiments, a solution is obtained using this

method for a very large model (9241 buses, 12000 contingencies) of the European grid, while having

some method to deal with discrete variables, in just over an hour of calculation time [42].

6.3.2. Handling of Discrete Variables
Both in ordinary OPF and SCOPF, discrete variables make the problem significantly harder. For very

large SCOPF problems, classical MINLP methods such as branch and bound are incapable of obtaining

solutions in reasonable time frames [16, sec. 4.3]. Another complication is that some state-of-the-art

MINLP solvers do not support trigonometric functions [1]. In [23, sec. IV], it is mentioned that solving

the OPF and SCOPF problem directly with MINLP solver Bonmin was attempted for a grid with 60

nodes and 33 contingencies. The solver found a solution for the OPF problem, but did not provide a

feasible solution for the SCOPF problem after several hours of running. Instead of MINLP methods,

some algorithms use continuous relaxations of the problem, and then use rounding techniques to obtain
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solutions that are feasible for the discrete problem. These techniques cannot guarantee optimality of the

solution, however.

A simple rounding method for mixed integer OPF problems is described in [34, sec. 2.1]. First, a solution

of the continuous relaxation of the OPF is obtained. Then all variables that are required to be discrete,

are rounded to their nearest discrete value. The OPF problem is then solved again with the discrete

variables fixed to their rounded off values, the continuous decision variables are now the only decision

variables.

In [32, sec. II.D] a progressive round off method is suggested for SCOPF. This method first rounds off

those variables that are nearest to a discrete value. Then another round of optimization is done with

the rounded off variables fixed, and all other variables still considered as continuous. Then, again, the

variables that are closest to a discrete value are rounded off. This is iterated until all values are rounded

off. This method is also used in [42].

Another method is introduced in [34, sec. 3.3], the so-called objective feasibility pump. Once again, first a

solution is obtained of the continuous relaxation. Then, for each variable that is required to be discrete,

the distance of that variable to its closest discrete value is added to the objective as a penalty term. These

terms are called the feasibility pump. Now an iterative process starts, where in each iteration the OPF

with feasibility pump term added is solved, and after each iteration the weight of the feasibility term is

increased. The process halts when a solution is obtained that satisfies all discrete constraints (up to a

certain tolerance).

The method proposed in [23] uses a similar approach as the objective feasibility pump. First, it converts

every discrete variable into a set of binary variables. Then it relaxes the problem to a continuous

problem and adds a penalty term to the objective for every binary variable. The penalty term is based

on the Fischer Burmeister function and it penalizes the binary values for being away from zero or one. In

numerical experiments [23, sec. IV], the proposed method outperforms the simple rounding method,

both in finding feasible solutions and in finding more optimal solutions.

A downside to the latter three methods is that they all have one or multiple parameters that require

tuning. For the progressive round off method this is the bin size of which variables are considered close

enough to be rounded off each iteration. In the object feasibility pump method it is the initial weight of

the penalty terms. In the last method, it is a parameter for the Fischer Burmeister function and a weight

for the penalty terms.

6.3.3. (MI)NLP Solvers and Algorithms
The challenge of finding solutions of (MI)NLP problems is not exclusive to optimal power flow. Therefore,

a lot of literature makes use of existing solvers, or algorithms proposed in other literature, to obtain

solutions. These are some of the solvers that can be found in the literature:

• [22, 34, 23] use the Ipopt solver [51], an open-source software package for large-scale nonlinear

optimization. It implements an interior point line search filter method. PowerFactory and

pandapower also have the option to use Ipopt.

• The PYPOWER OPF solver is a primal-dual interior point method based on [52].

• [42] makes use of a solver based on [10], a primal-dual interior point method using projected

conjugate gradient iteration.

• [32] uses the commercial solver Knitro [11], which implements multiple algorithms, the two

relevant ones are both primal-dual interior point methods, one of them is based on [10].

• [35] uses a MATLAB solver.

• [14] refers to [15], which compares three interior point methods for OPF problems. It recommends

a predictor-corrector and a multiple centrality corrections based interior-point method.

• [23] mentions that the Bonmin [20] solver is able to solve non-security constrained OPF problems,

but is not able to solve SCOPF problems. Bonmin is an experimental open-source MINLP solver

for general MINLP problems.



6.4. Conclusion 27

6.3.4. Optimality of Solutions
The OPF problem is in general a non-convex, non-linear optimization problem. This means that local

minima might exist. In fact, these have been shown to exist [8]. Not many claims are made about the

optimality of the solutions that different methods obtain. Some claims are made about local optimality

for continuous relaxations of the SCOPF problem [42], but to the author’s knowledge, no methods claim

to be able to find globally optimal solutions, for all but very small-scale problems. We quote from [48,

sec. 2.3]: “It is unlikely that useful theories of convergence or global optimality can be developed for

non-trivial real-life OPF problem formulations.” Instead, the focus lies on reliably obtaining feasible

solutions, with acceptable objective values.

6.4. Conclusion
Both in literature and in commercial software, methods have been suggested and implemented to

perform (SC)OPF. It is, however, still an active area of research and no standard method exists that is

both fast and accurate and always finds globally optimal solutions for security constrained OPF with

discrete decision variables.

There are existing open-source methods, such as pandapower, but the capabilities and configurability

of these methods is quite limited. Commercial solutions such as PowerFactory have more capable

(SC)OPF methods, but their closed-source nature restricts their applicability to a specific set of OPF

problem types because cost functions and constraints can only be configured in a particular form.

Furthermore, implementing (SC)OPF calculations as part of an automated process, or as part of bulk

calculations, where (SC)OPF calculations are performed on large amounts of different scenarios and grid

variations, can be difficult with commercial solutions, since the configuration options of the software

can be limited.

From the scientific literature, it is clear that solving large scale (SC)OPF problems has two major

challenges: high computational costs, and treatment of discrete variables. On both of these challenges,

a lot of research has been done, and some methods for dealing with these challenges have been

suggested. Although some comparisons have been made between different methods, there is no

wide-spread consensus in the literature about which of these methods perform the best. In most

cases, the methods involve an iteration process for checking contingency states, dealing with violated

constraints in contingency states, possibly dealing with discrete variables and obtaining a new solution.

Part of this iteration process is also solving a (non-)linear program, which is often done using interior

point methods, either via existing solvers or by implementing algorithms found in the literature. Some

methods in the literature are capable of doing large scale SCOPF in reasonable timeframes, with some

way of dealing with discrete variables. In general, no claims are made about the global optimality of

solutions obtained by any of the methods.
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Methodology

In Chapter 6, various methods for OPF have been presented. For our implementation, we have opted for

a primal-dual interior-point algorithm, implemented in the open-source software package Ipopt [51]. We

implement the model as described in Chapter 5 in Pythonmaking use of the optimization modelling

framework Pyomo [9, 29]. In this chapter we describe the details of the implementation, and give a brief

introduction to the primal-dual interior-point method implemented by Ipopt.

7.1. Ipopt: a primal-dual interior point solver
To obtain a solution for the OPF problem, we use a primal-dual interior point algorithm with filter

line-search, as implemented in Ipopt1
[51], an open-source software package for nonlinear optimization.

The full algorithm is described in [51], but in this section we highlight some of its steps. For an

introduction to primal-dual interior point methods, we refer to [7, 40].

7.1.1. Introducing Slack Variables
The algorithm we describe can treat optimization problems of the following form:

minimizex, s 𝑓 (x)

subject to g(x) = 0,
h(x) + s = 0,

s ≥ 0,

(7.1)

where all functions and variables are real, and all functions are twice continuously differentiable. The

OPF problem, that we formulated in Section 5.2 is not in this form. However, we can add slack variables

to bring into this form.

We combine the decision variables u and the state variables v that were introduced in Section 5.2.1 into

a single vector x, which we call the vector of optimization variables. The exogenous variables are constant

and are therefore not treated as variables, but as parameters of the problem. We denote the number of

optimization variables by 𝑛1, and we write x = (𝑥1 , . . . , 𝑥𝑛1
).

Both constraint functios g and h are functions of the decision variables and state variables, so they can

be written as a function of x. For every inequality constraint, of the form ℎ𝑖(x) ≤ 0, we introduce a

slack variable 𝑠𝑖 , and replace the constraint by two new constraints: ℎ𝑖(x) + 𝑠𝑖 = 0 and 𝑠𝑖 ≥ 0. These

two constraints are equivalent to the original constraint. The slack variables make up the vector s. The

problem is now written in the form of (7.20), and it is equivalent to problem (5.1).

We denote the total number of equality constraints in the formulation by 𝑚1, the number of inequality

constraints by 𝑚2, and we write 𝑚 = 𝑚1 + 𝑚2. The number of slack variables is also equal to 𝑚2. The

total number of variables (i.e. optimization variables and slack variables) is denoted by 𝑛 = 𝑛1 + 𝑚2.

1
All experiments are performed with Ipopt version 3.14.17.
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We claim that 𝑚 < 𝑛. Since 𝑚 = 𝑚1 + 𝑚2 and 𝑛 = 𝑛1 + 𝑚2, this is the case if and only if the number of

optimization variables is bigger than the number of equality constraints. In OPF we have 2 equality

constraints per node, so we require at least 2𝑁 optimization variables. In chapter 4 we saw that the

number of state variables (which are also optimization variables) is 2𝑁 , so if there is at least 1 decision

variable, we indeed have 𝑚 < 𝑛.

7.1.2. Lagrangian and Modified KKT Equations
In this section, we formulate the Lagrange dual function (or Lagrangian), the barrier problem and the

modified KKT conditions of the problem. For an introduction to these topics, we refer to [7] and [40].

The Lagrangian of this problem is 𝐿(x, s;𝝀, z) = 𝑓 (x) +𝝀Tg(x) + zT(h(x) + s), with dual variables 𝝀 ∈ R𝑚1
,

and z ∈ R𝑚2
.

This problem has the following log-barrier problem, for a barrier parameter 𝜇:

minimizex, s 𝜙𝜇(x, s) = 𝑓 (x) − 𝜇
𝑚2∑
𝑖=1

log(𝑠𝑖)

subject to g(x) = 0,
h(x) + s = 0

(7.2)

The idea of the log-barrier problem is that optimal solutions x★(𝜇) for (7.2) approach the optimal solution

of the original problem (7.20) as 𝜇 goes to 0. We can therefore find a solution to our orignal problem

by solving the barrier problem for smaller and smaller 𝜇. To solve the barrier problem we consider its

Lagrangian and first order optimality conditions.

The barrier problem has the following Lagrangian:

�̃�𝜇(x, s;𝝀, z) = 𝑓 (x) − 𝜇
𝑚∑

𝑖=𝑚1+1

log(𝑠𝑖) +
𝑚1∑
𝑖=1

𝜆𝑖 𝑔𝑖(x) +
𝑚2∑
𝑖=1

𝑧𝑖 (ℎ𝑖(x) − s) . (7.3)

The gradients of �̃�𝜇 with respect to x and s are the following:

∇x�̃�𝜇(x, s;𝝀, z) = ∇x 𝑓 (x) +
𝑚1∑
𝑖=1

𝜆𝑖∇x𝑔𝑖(x) +
𝑚2∑
𝑖=1

𝑧𝑖∇xℎ𝑖(x) (7.4)

∇s�̃�𝜇(x, s;𝝀, z) = −𝜇
𝑚2∑
𝑖=1

1

𝑠𝑖
e𝑖 +

𝑚2∑
𝑖=1

𝑧𝑖e𝑖 , (7.5)

where e𝑖 denotes the 𝑖-th standard basis vector.

The first order optimality conditions for 7.2 are then:

∇x 𝑓 (x) +
𝑚1∑
𝑖=1

𝜆𝑖∇x𝑔𝑖(x) +
𝑚2∑
𝑖=1

𝑧𝑖∇xℎ𝑖(x) = 0 (7.6)

𝑠𝑖𝑧𝑖 − 𝜇 = 0 for 𝑖 = 𝑚1 + 1, . . . , 𝑚 (7.7)

g(x) = 0 (7.8)

h(x) + s = 0 (7.9)

Here (7.6) and (7.7) are obtained by setting (7.4) and (7.5) to 0.

These are the first order optimality conditions for the barrier problem, meaning that, under some

conditions on the constraints, a solution x of the barrier problem with parameter 𝜇, is a local optimum,

only if there exist some 𝝀 such that the equations (7.6) to (7.9) are satisfied
2
. Therefore, we search for a

solution of the barrier problem, by applying the Newton-Raphson algorithm to the equations (7.6) to

(7.9).

2
For a more precise statement, we refer to [40, Thm. 12.1].
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At each iteration, this involves solving the following system for the Newton step (Δx(𝑘) ,Δs(𝑘) ,Δ𝝀(𝑘) ,Δz(𝑘)),
given a current iterate (x(𝑘) , s(𝑘) , 𝝀(𝑘) , z(𝑘)) and the current barrier parameter 𝜇:

𝑊 (𝑘)
0 𝐴

(𝑘)
g 𝐴

(𝑘)
h

0 𝑍 0 𝑆

(𝐴(𝑘)
g )T 0 0 0

(𝐴(𝑘)
h )T 𝐼 0 0



Δx(𝑘)
Δs(𝑘)
Δ𝝀(𝑘)

Δz(𝑘)

 = −

∇x 𝑓 (x) +

∑𝑚1

𝑖=1
𝜆𝑖∇x𝑔𝑖(x) +

∑𝑚2

𝑖=1
𝑧𝑖∇xℎ𝑖(x)

𝑆z − 𝜇e
g(x)

h(x) + s

 , (7.10)

where

e = (1, . . . , 1)
𝑋(𝑘) = diag(x(𝑘))
𝑆(𝑘) = diag(s(𝑘))
𝑍(𝑘) = diag(z(𝑘))
𝐴

(𝑘)
g = 𝐽g(x(𝑘))T = Transpose of Jacobian of g at x(𝑘)

𝐴
(𝑘)
h = 𝐽h(x(𝑘))T = Transpose of Jacobian of h at x(𝑘)

𝑊 (𝑘) = ∇2

x𝐿(x, s;𝝀, z) = Hessian of 𝐿 w.r.t. x at (x(𝑘) , s(𝑘) , 𝝀(𝑘) , z(𝑘)).

Here we used that ∇2

x𝐿 = ∇2

x�̃�𝜇.

Obtaining a solution of this system is one of the crucial steps in the algorithm, and in section 7.1.3 we

have a closer look at how this system is solved.

We do not continue the Newton steps until we have found an optimal solution for the barrier problem

for a fixed value of 𝜇, but instead we continuously update the barrier parameter, driving it to 0.

Since the OPF problem is non-convex, a point satisfying equations (7.6) to (??) is not guaranteed to

be a (local) minimum of the barrier problem, but it could also be a maximum or a stationary point.

However, under certain conditions, we can guarantee that the algorithm iterates towards a minimum.

We briefly touch on these conditions in section 7.1.3, but a more detailed explanation can be found in

[40, sec. 19.3.4].

The next step is to determine step sizes 𝛼(𝑘)
and 𝛼(𝑘)

z and calculate the next iterate as follows:

x(𝑘+1) = x(𝑘) + 𝛼(𝑘)Δx(𝑘) (7.11)

s(𝑘+1) = s(𝑘) + 𝛼(𝑘)Δs(𝑘) (7.12)

𝝀(𝑘+1) = 𝝀(𝑘) + 𝛼(𝑘)Δ𝝀(𝑘)
(7.13)

z(𝑘+1) = z(𝑘) + 𝛼(𝑘)
z Δz(𝑘). (7.14)

The step sizes are determined with a so called line-search filter method, which tries to find a step size such

that both the objective and the constraint violation are minimized. The details of this method can be

found in [51, sec. 2.3].

The algorithm requires a first iterate (x(0) , 𝝀(0) , z(0)). An initial guess x(0) needs to be provided by the user.

The vectors 𝝀(0)
and z(0) can also be provided by the user, or they are calculated via the initialization

procedure, which is described in [51, sec. 3.6]. In Section 7.3 we describe which initial guess we provide.

This process keeps iterating, until the iterate (x(𝑘) , 𝝀(𝑘) , z(𝑘)) satisfies equations (7.6) to (7.9), with 𝜇 = 0,

up to a specified tolerance.
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7.1.3. Solving for the Iteration Step
A crucial step of the Ipopt algorithm is obtaining a solution for the linear system (7.10). This is done,

equivalently, by solving the following system that is symmetric:
𝑊 0 𝐴g 𝐴h
0 𝑆−1𝑍 0 𝐼

(𝐴g)T 0 0 0

(𝐴h)T 𝐼 0 0



Δx
Δs
Δ𝝀
Δz

 = −

∇x 𝑓 (x) +

∑𝑚1

𝑖=1
𝜆𝑖∇x𝑔𝑖(x) +

∑𝑚2

𝑖=1
𝑧𝑖∇xℎ𝑖(x)

z − 𝜇𝑆−1e
g(x)

h(x) + s

 , (7.15)

where Σ = 𝑆−1𝑍. Here, we fix 𝑘 and drop the superscript · (𝑘) that indicates the iteration number, to

simplify notation. To further simplify the notation, we define the following matrix

𝐴 =

[
𝐴g 𝐴h
0 𝐼

]
, (7.16)

and we extend the matrices 𝑊 and Σ with zeros, so that they are both 𝑛 × 𝑛 matrices:

𝑊 =

[
∇2

x𝐿(x, s;𝝀, z) 0

0 0

]
(7.17)

Σ =

[
0 0

0 𝑆−1𝑍

]
. (7.18)

The matrix in (7.15) then becomes: [
𝑊 + Σ 𝐴

𝐴T
0

]
(7.19)

We call the linear system in (7.15) the iteration system and call the matrix (7.19) the iteration matrix. It

is indeed a symmetric matrix: the upper right and lower left blocks are each other’s transpose, and

the upper left block is the sum of two symmetric matrices. The first, 𝑊 , is the Hessian of a twice

continuously differentiable function (assuming that 𝑓 , g, and h are twice continuously differentiable).

The second, Σ, is the product of two diagonal matrices, and therefore diagonal.

This iteration system is solved using a direct solver for sparse symmetric matrices, such as MUMPS [3, 4],

or MA27 from the HSL collection [30]. When the iteration matrix is not singular, the system has a solution.

This is the case when 𝐴 has full rank (i.e., rank(𝐴) = 𝑛) and the matrix 𝑊 + Σ is positive definite on the

null space of 𝐴T
(i.e., if for all v such that 𝐴Tv = 0, we have vT (𝑊 + Σ)v > 0) [40, Lemma 16.1].

There are two situations in which solving the system becomes problematic. The first is when the iteration

matrix is singular, or very ill-conditioned. In that case, either the system doesn’t have a solution, or

errors induced due to finite precision arithmetic become very large, leading to inaccurate Newton steps.

The second case, is when 𝑊 +Σ is not positive definite on the null space of 𝐴T
. In that case, it cannot be

guaranteed that the Newton step obtained from the system is moving towards a minimum. The step

might instead be towards a maximum, or a stationary point that is neither a maximum nor a minimum

[40, sec. 19.3.4].

Both of the problematic situations can be detected by looking at number of positive, negative and zero

eigenvalues of the matrix. The linear solvers that are used to solve the iteration system, also produce the

number of positive, negative and zero eigenvalues. When either of the problematic situations arise, the

iteration matrix is modified, by adding a diagonal matrix to the iteration matrix and trying to obtain a

solution to the modified problem. The solution of this modified problem is then used as the Newton

step. Details of the modification can be found in [51, sec. 3.1].

In some cases, the iteration matrix remains very ill-conditioned, even after modification. In that case,

the so-called restoration phase is entered, in which the algorithm first tries to move to a more feasible

solution, before continuing with the regular Newton steps. The details of the restoration phase can be

found in [51, sec. 3.3].

A particular situation in which very ill-conditioned matrices can occur is studied in Section 8.2.
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7.1.4. Scaling of OPF Problems
We have noticed that a very ill-conditioned iteration matrix can lead to problems. This can be remedied

with so-called scaling methods. These are methods that modify the iteration system into an equivalent

system that is better conditioned. We differentiate between two scaling methods: scaling of the NLP,

and scaling of the iteration system.

NLP Scaling
Instead of solving problem (7.20), we can equivalently solve the following problem:

minimize

x̃
𝑑 𝑓 𝑓 (𝐷xx̃)

subject to 𝐷gg(𝐷xx̃) = 0,
𝐷hh(𝐷xx̃) + s = 0,

s ≥ 0,

(7.20)

minimize

x̃
𝑑 𝑓 𝑓 (𝐷xx̃)

subject to 𝐷cc(𝐷xx̃) = 0,
x̃ ≥ 0.

(7.21)

for some 𝑑 𝑓 > 0 and diagonal positive definite matrices 𝐷x , 𝐷g and 𝐷h. Then, once an optimal solution

x̃∗ is obtained for (7.21), we can multiply the solution by 𝐷x to obtain the optimal solution for our

original problem.

If we denote the blocks in the iteration matrix of the scaled problem by �̃� and �̃� , then by applying the

chain rule we get:

�̃�g = 𝐷g𝐴g𝐷x (7.22)

�̃�h = 𝐷h𝐴h𝐷x (7.23)

�̃� =
(
𝑑 𝑓∇2

x 𝑓 (𝐷xx) + 𝐷g∇2

x𝝀
Tg(𝐷xx) + 𝐷h∇2

xzTh(𝐷xx)
)
𝐷2

x . (7.24)

This means that the columns of �̃� and �̃� are scaled by the diagonal elements of 𝐷x and 𝐷2

x , respectively.

Furthermore, 𝐷g and 𝐷h scale the rows of �̃�g and �̃�h and the constraint terms of �̃� , and 𝑑 𝑓 scales the

objective term of �̃� . The right-hand side of the iteration system scales similarly. The Newton step

obtained at each step of the algorithm is invariant under the scaling (when we do not consider floating

point inaccuracies) [51, sec. 3.8], however, the magnitude of the components of the iteration matrix and

the condition number of the iteration matrix are not invariant under the scaling. We could therefore

choose 𝐷x , 𝐷g , 𝐷h and 𝑑 𝑓 in such a way that the condition number of the iteration matrix is minimized.

The implementation of Ipopt uses a rather conservative scaling by default, only scaling the objective

and constraint functions when the first partial derivatives become very big [51, sec. 3.8].

Iteration System Scaling
Instead of scaling the whole problem, the iteration system could also be scaled. This is a common

method in the solution of linear systems, and is also known as matrix equilibration. In this method,

instead of solving the system 𝑀v = b for some matrix 𝑀 and vector b (e.g., the iteration system), the

equivalent system (𝐷−1

1
𝑀𝐷2)w = 𝐷−1

1
w is solved, and then obtaining v via v = 𝐷2w. Here, once again,

𝐷1 and 𝐷2 are diagonal positive definite matrices, that are picked such that the condition number of

𝐷−1

1
𝑀𝐷2 is minimal. Finding 𝐷1 and 𝐷2 such that the condition number is exactly minimal is difficult,

so usually a fast approximate method is used [27, sec. 3.5.2].

A major difference with the NLP scaling method, is that the iteration system scaling is performed every

iteration, as opposed to just once, at the beginning of the algorithm. Depending on which linear solver

is chosen, Ipopt will perform linear system scaling with one of a few different methods, such as the

MC19 procedure or the MC64 procedure, both part of the HSL collection [30].
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7.2. Implementation of the OPF Problem in Pyomo
In Section 7.1 we have noted that, to solve the OPF problem, we need a way to evaluate the objective

function, constraint functions and its first and second derivatives with respect to the optimization

variables. For this, we use Pyomo [9, 29]. This is an open-source package for modelling optimization

problems in the programming language Python. It provides classes for concepts commonly used

in the formulation of optimization problems, such as index sets, variables, parameters, constraints

and objective functions. It therefore allows for a relatively straightforward conversion from a purely

mathematical formulation of a problem, to an object in Python, representing this problem. Pyomo can

then interface with one of many solvers, to obtain a solution to the problem. Ipopt is one of those

solvers.

Implementing our OPF problem in Pyomo is straightforward. First the necessary variables need to be

defined. Then, to define the objective and constraint functions, an expression for each function needs

to be provided, in terms of the previously defined variables. An initial guess is provided by giving a

value to all variables. To solve the problem, an executable file of the solver needs to be provided, along

with any desired solver options. Pyomo will then handle all interactions with the solver and if the solver

indicates that it has found an optimal solution, it will provide the optimal solution to the user.

To calculate first and second derivatives of the objective and constraint functions, we use automatic

differentiation. Pyomo interfaces with Ipopt through the AMPL Solver Library [25], which provides

automatic differentiation capabilities.

Pyomo does not support expressions involving complex numbers, nor does it implement matrix-matrix

or matrix-vector operations. Therefore, all constraint functions and the objective function have to be

implemented using expressions of real variables, and matrix operations have to be implemented by

looping over components. In appendix B, expressions for all used constraints can be found, involving

only real numbers.

The lack of support for complex variables and matrix operations, makes the implementation slightly

more involved. However, this is made up for by the automatic differentiation capabilities that come

with Pyomo, eliminating the need for closed form formulas for derivatives of the objective and constraint

function. Especially derivatives of constraint functions with respect to tap variables can have very

complicated expressions.

7.3. Initial Guess
The algorithm described in Section 7.1 requires an initial guess x(0) for the optimization variables. All

OPF problems that we consider, are scenarios for which a power flow calculation can be performed,

meaning that all the exogenous variables are given, and that an initial value for the controllable variables

is provided (for exogenous and controllable variables, see Section 5.2.1).

With the fixed and controllable variables given, we can compute a power flow to obtain an initial guess

for the state variables. This ensures that the initial guess satisfies the power flow equation equality

constraints. It does not ensure that any other constraints are satisfied, however, and it therefore also

does not ensure a feasible solution to the OPF problem exists.

Alternatively, the state variables (and possibly the controllable variables) can be initialized with a flat

start, meaning that all power injections and voltage angles are set to 0, and that all voltage magnitudes

are set to 1.

We expect that an OPF calculation that is started from a power flow takes fewer iterations to converge,

than an OPF calculation that is started from a flat start, since a significant share of the constraints are

already satisfied.

7.4. Discrete Variables
In Section 5.4, we mentioned that sometimes variables cannot always take a continuos range of values,

but only a discrete set of values (e.g., only integer values). This is in particular the case for shunt step

variables and transformer tap variables. This makes the problem significantly harder.
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To obtain a solution for the discrete problem, we use the simple rounding method that is described

in [34, sec. 2.1]. To be able to use our method in practical applications, it is necessary to obtain a

discrete solution. However, to restrict the scope of this thesis, we did not consider any other methods.

This means that this method will most probably not obtain globally optimal solutions for the discrete

problem.

We assume that the problem is formulated in such a way that the discrete variables may only take

integer values. For example, a transformer whose tap position is indicated by some integer between -5

and 5 (rather than the variable representing the ratio and taking values from e.g. 0.95 to 1.05).

First we obtain a solution for the continuous relaxation. Now every variable that is required to be

discrete, is rounded to the nearest integer value, and is fixed to this value (i.e., it is now an exogenous

variable, as described in Section 5.2.1). Then another round of optimization is performed, where the

discrete variables are fixed, and the remaining variables are optimized once more. We use the solution

of the first optimization round as the initial guess for the second round. Optionally, the dual variables

can also be initialized with the resulting dual variables of the optimization round. This is supported

by Ipopt and is called a warm start. When the second optimization run uses a warm start, it can be a

good idea to start that round with a lower value of 𝜇, since we expect the initial guess to be close to the

optimal solution.



8
Convergence Problems

Although the methodology described in Chapter 7 performs well on some networks, it does not converge

on others. In this chapter, we look at what problems arise when performing OPF calculations, and how

they can be fixed.

8.1. What are Convergence Problems
The methodology presented in Chapter 7 could go wrong in a number of different ways. In this case, the

exit message of Ipopt will signal where in the algorithm an error occurred. This error message can give

a good indication of why no optimal solution was found. The error message could for example indicate

that the problem is locally infeasible, or that it is unbounded. In that case, an investigation is needed if

this is indeed the case, for example by manually trying to find a feasible point. The problem can then

be changed in such a way that it is no longer infeasible or unbounded (e.g. by relaxing constraints,

changing the objective or adding additional bounds to variables).

There are some situations in which an OPF problem is feasible, and has a bounded set of optimal

solutions, but still fails to converge. It might for example be the case that we have an initial guess that

satisfies all constraints, and that all variables are bounded below and above. We refer to behaviour,

where we know an optimal solution exists, but our algorithm struggles to find it, as convergence problems.
In this chapter, two causes of converge problems are treated.

8.2. High Admittance Edges
In Section 7.1.3, we have seen that an ill-conditioned iteration matrix can cause problems in the

calculation of the Newton step. In this section we run through a practical example of a grid model that

causes ill-conditioned iteration matrices.

A high condition number indicates that a matrix is almost singular
1
. Conversely, a matrix that is

almost singular, for example because it has columns that are very nearly linearly dependent, has a high

condition number. This mechanism is the reason that edges with an exceptionally high admittance,

compared to other edges can cause difficulties. As we will illustrate, edges with a high admittance (i.e.,

edges where |𝑌sr

𝑘𝑙
| is large relative to other edges) cause the columns of the matrix block 𝐴 to be nearly

linearly dependent.

We focus our attention on the first and second derivatives of the constraint function c. The constraints

that make up this function can vary, but in any case the nodal power equality constraints are included,

that is, equations (4.14) and (4.15). We have repeated them here for convenience, and denote them by

1
For the 2-norm this can be made precise, see e.g. [27, sec. 2.6.2].

35
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𝑔𝑃
𝑘

and 𝑔
𝑄

𝑘
respectively.

𝑔𝑃
𝑘
(x) := 𝑃𝑘 −

∑
𝑙∈𝒩

|𝑉𝑘 ||𝑉𝑙| (𝐺𝑘𝑙 cos(𝛿𝑘 − 𝛿𝑙) + 𝐵𝑘𝑙 sin(𝛿𝑘 − 𝛿𝑙)) = 0 (8.1)

𝑔
𝑄

𝑘
(x) := 𝑄𝑘 −

∑
𝑙∈𝒩

|𝑉𝑘 ||𝑉𝑙| (𝐺𝑘𝑙 sin(𝛿𝑘 − 𝛿𝑙) − 𝐵𝑘𝑙 cos(𝛿𝑘 − 𝛿𝑙)) = 0. (8.2)

In a state that resembles a standard operating state, we expect the voltage magnitudes |𝑉𝑘 | and |𝑉𝑙| to be

around 1. Therefore, the magnitude of the derivatives of these functions are very much dependent on

the magnitude of 𝐺𝑘𝑙 and 𝐵𝑘𝑙 , and therefore of the magnitude of the admittance matrix component

|𝑌𝑘𝑙|. Now suppose that for node 𝑘, there is one component 𝑌𝑘𝑖 that has a much higher magnitude

than any other component in row 𝑘, caused by a very high admittance of edge 𝑘, 𝑙. Then the functions

𝑔
𝑄

𝑘
and 𝑔𝑃

𝑘
will be dominated by the term that corresponds to column 𝑖. This, in turn, has the effect

that the partial derivatives of 𝑔
𝑄

𝑘
and 𝑔𝑃

𝑘
with respect to |𝑉𝑘 |, 𝛿𝑘 , |𝑉𝑖| and 𝛿𝑖 are much bigger than all

other partial derivatives of 𝑔
𝑄

𝑘
and 𝑔𝑃

𝑘
. A possible effect of this is that the rows of 𝐴 become very

nearly linearly dependent. We illustrate this with two examples. The first example shows that high

admittance edges can cause particular columns in the block 𝐴 of our iteration matrix to become very

nearly linearly dependent. The second example runs through two small scale OPF calculations, one

with a high admittance edge, and one without. We show that the model with the high admittance edge

indeed performs worse than the one without the high admittance edge.

8.2.1. Jacobian of Constraints
We first investigate the influence of a high admittance edge on the Jacobian matrix of the constraints.

We show with a calculation that this small grid leads to two nearly dependent columns in the Jacobian.

Note that we reason this in the context of optimal power flow, but that the reasoning also holds for

power flow calculations, since the Jacobian matrix in (4.22) is very similar to 𝐴.

Consider the scenario that is shown in Figure 8.1: a grid consisting of 4 nodes, connected by 3 edges.

One of the edges is a switch, with a very high admittance, the other two are lines with a much

lower admittance. Suppose line 0 and line 1 have a purely imaginary admittance of 𝐵1 · 𝑗 and 𝐵3 · 𝑗

Line 1

Switch

Line 0

N
od

e 
3

N
od

e 
2

N
od

e 
0

N
od

e 
1

Figure 8.1: A grid consisting of 4 nodes and 3 edges. Nodes 1 and 2 are connected by a switch with a high admittance.

respectively, and the switch has a purely imaginary admittance of 𝐵2 · 𝑗. Furthermore, we assume that

|𝑉0| = · · · = |𝑉3| = 1 and 𝛿0 = · · · = 𝛿3 = 0 (this corresponds to a flat start initial guess). Then the partial

derivatives of 𝑔𝑃
1

and 𝑔𝑃
2

are as follows:

𝜕𝑔𝑃
1
(x)

𝜕𝛿0

= −𝐵1 ,
𝜕𝑔𝑃

1
(x)

𝜕𝛿1

= 𝐵1 + 𝐵2 ,
𝜕𝑔𝑃

1
(x)

𝜕𝛿2

= −𝐵2 ,

𝜕𝑔𝑃
2
(x)

𝜕𝛿1

= −𝐵2 ,
𝜕𝑔𝑃

2
(x)

𝜕𝛿2

= 𝐵2 + 𝐵3 ,
𝜕𝑔𝑃

2
(x)

𝜕𝛿3

= −𝐵3.
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All other partial derivatives are 0. This leads to the following two columns in the Jacobian 𝐴, which

contain the partial derivatives of 𝑔𝑃
1

and 𝑔𝑃
2

:
−𝐵1 0

𝐵1 + 𝐵2 −𝐵2

−𝐵2 𝐵2 + 𝐵3

0 −𝐵3

 . (8.3)

Here we have excluded all 0 rows. These two columns are not linearly dependent. However, if the

admittance of the switch (𝐵2) is much bigger than the admittances of the lines (𝐵1 and 𝐵3), then we

could neglect 𝐵1 and 𝐵3, and make the following approximation:
−𝐵1 0

𝐵1 + 𝐵2 −𝐵2

−𝐵2 𝐵2 + 𝐵3

0 −𝐵3

 ≈


0 0

𝐵2 −𝐵2

−𝐵2 𝐵2

0 0

 . (8.4)

Note that the approximation has two linearly dependent columns. The matrix 𝐴, which contains the

columns in the left matrix, therefore has two columns that are very close to being linearly dependent,

and is therefore ill-conditioned, when 𝐵2 is much bigger than 𝐵1 and 𝐵3. The same phenomenon occurs

for the partial derivatives of 𝑔
𝑄

1
and 𝑔

𝑄

2
with respect to the voltage magnitudes.

8.2.2. Two Models of a Grid With a Switch
In Section 8.2.1 we have shown how the presence of a high admittance edge can cause the Jacobian of

the constraints to become ill-conditioned. In this section, we extend the example to a more complete

and slightly more realistic example of a grid, on which we can perform an OPF calculation. We study

the effect of the high admittance edge on the iteration matrix.

We compare two models of the 5 node grid shown in figure 8.2. The grid consists of 5 nodes, connected

by 4 edges. Two of the nodes have a load connected, and one has a PV generator attached. Two of the

edges represent a high voltage line and one represents a transformer. The middle edge represents a

switch, which has a very high admittance. We compare the model where we treat the grid as is, by

considering it as a 5 node grid with 1 high admittance edge, versus the model where we merge the

middle 2 nodes (Node 1 and Node 4 in the figure) and treat it as a 4 node grid. We show that our

method performs worse on the 5 node model, than on the 4 node model.
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Figure 8.2: A grid consisting of 5 nodes and 4 edges. Nodes 1 and 4 are connected by a switch and can be merged into a single

node.
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Both lines have a susceptance of 1, the transformer has a susceptance of 50, and the switch has a

susceptance of 10
10

. The conductance of each edge is 10% of the reactance of the edge. Below are the

admittance matrices of both models, in (8.5) of the 4 node model, and in (8.6) of the 5 node model.

(0.1 + 1𝑗)

−1 1 0 0

1 −52 1 50

0 1 −1 0

0 50 0 −50

 (8.5)

(0.1 + 1𝑗)


−1 0 0 0 1

0 (−51 − 10
10) 1 50 10

10

0 1 −1 0 0

0 50 0 −50 0

0 10
10

0 0 −10
10


. (8.6)

The admittance matrix in (8.6) clearly has two columns with very big outliers in terms of the magnitude

of the components, caused by the high admittance of the switch.

8.2.3. The Iteration Matrix
We analyse the iteration matrix for both models. The iterate that is considered is the iterate after one

iteration, with a flat start as initial guess. In Figure 8.3 the magnitudes of the elements of both iteration

matrices can be seen. We can see that in the right iteration matrix, the range of magnitudes (approx.

10
−3

to 10
11

) is much larger than in the left iteration matrix (approx. 10
−3

to 10
4
). As we expect from the

reasoning in Section 8.2.1, the particularly large values in the top right block of the iteration matrix of

the 5 node grid (those in light green) are the partial derivatives of 𝑔P

1
, 𝑔

Q

1
, 𝑔P

4
and 𝑔

Q

4
with respect to

|𝑉1|, 𝛿1 , |𝑉4| and 𝛿4.

10
−3

10
0

10
3

10
6

10
9

10
12

Figure 8.3: Magnitude of the components of the iteration matrices. On the left for the 4 node model, on the right for the 5 node

model. White indicates a zero element.

Due to these very high values, some rows, and columns of the iteration matrix of the 5 node model are

very nearly linearly dependent. This is reflected in a very high condition number: 3.9 · 10
13

, compared

to 2.7 · 10
5

for the iteration matrix of the 4 node model (the condition numbers are in the 2-norm). When

we look at the top right block of both iteration matrices (i.e., block 𝐴), we can also see the difference. The
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condition number of the block 𝐴 is 8.34 · 10
10

for the 5 node model, compared to 4.78 · 10
2

for the 4 node

model. This confirms that the high condition numbers are indeed caused by an ill-conditioned block 𝐴.

8.2.4. Effect on Ipopt Iterations
The fact that this matrix is so ill-conditioned leads to problems in the calculation of the optimal solution

to this OPF problem. The method described in Chapter 7 converges within 9 iterations for the 4

node model, but fails to converge for the 5 node grid. At some point the algorithm encounters a very

ill-conditioned matrix, and enters the restoration phase, which fails.

When working with models with high admittance edges, we observed that the behaviour of the method

is very sensitive to changes in the input of the method. Small changes to the model (e.g., changes to

the fixed variables, admittance of lines, etc), the initial guess, or to the solver settings (e.g., changes to

initial value of 𝜇, changing scaling options, changing the used linear solver), can lead to totally different

outcomes. Such a small change could make the difference between Ipopt converging to an optimal

solution, exiting with an error message (for example because of an unsuccessful restoration phase), or

iterating seemingly indefinitely. When a model has high admittance edges, the behaviour of the method

is very unpredictable and results are difficult to reproduce.

8.2.5. Cut-off for High Admittance
What exactly counts as a high admittance edge? At what magnitude does the admittance of an edge

become problematic for convergence? There is no straightforward answer to this question, as it depends

on factors such as the size of the grid, the relative magnitude of the admittances in the grid, and the

ratio of the conductance and the susceptance of each edge.

To give a rough idea: we found that on a grid with around 1500 nodes and 2000 edges, our method

performed bad when the range of magnitudes of the non-zero components of the admittance matrix

was 1.5 · 10
−1

to 6 · 10
10

. However, when we applied our method to the same model, modified such that

the admittances were in the range 1.5 · 10
−1

to 1.5 · 10
6
, it worked well, without convergence issues.

In practice, our approach is not to have a cut-off value above which an edge is considered to be a

high-admittance edge, but rather to consider the physical component that the edge represents, to be an

indicator of whether the edge is considered a high admittance edge. In our experiments, the methods

proposed in Section 8.2.6 were applied to all edges representing a switch.

8.2.6. Dealing with High Admittance Edges
As already suggested by the comparison between the 4 and 5 node model, one way to remedy issues

with high admittance edges, is to consider nodes that are connected by a high admittance edge as

a single node. In this section, we introduce two more ways of dealing with high admittance edges.

However, first, we consider the effect of scaling.

Effect of Scaling
The comparison in Section 8.2 was done without performing NLP scaling or iteration system scaling.

When we enable the default NLP scaling that Ipopt performs, an optimal solution is found for the 5

node model in 9 iterations, the same amount as for the 4 node model. In some situations, scaling can

therefore help the algorithm converge. However, it is not a universal solution to the issues caused by

high admittance edges. The fact that it works in some situations and not in others, contributes to the

unpredictability of the Ipopt algorithm on networks with these issues.

Merging Nodes
In Section 8.2 we saw that by merging nodes (i.e., considering them as a single node) that are connected

by high admittance edges, we can get rid of the problematic edges. Merging of nodes is also commonly

done for power flow calculations, as high admittance edges can also cause issues during power flow

calculations. Procedures to obtain a grid model with merged nodes are readily available (see e.g., [50,

sec. 3.j] and [18, sec. 6.2.1]).

This method has two potential downsides. The first, is that it changes the underlying model. Two

nodes that can potentially have slightly different voltages, are suddenly represented by a single node,

and therefore a single voltage. This will change the voltages and currents throughout the model, and
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therefore, some error is introduced to the solution of an optimal power flow problem. In most situations,

however, this error is so small that it can be neglected. The voltage of nodes that are connected by edges

with a very high admittance are almost identical in normal operating conditions.

The second downside, is that there is no straightforward way to obtain the current flowing through the

high admittance edge in question. It is therefore not possible to put a constraint on the current flowing

through the edge, or to use the value in the objective function. If the amount of current flowing is only

required as part of the result, then a power flow calculation could be performed on the original model

with the OPF results (provided that the high admittances edges do not cause issues in the power flow

calculation).

Decreasing Admittance
Another way to get rid of high admittances, is simply by decreasing their admittance. This could for

example be done by scaling the admittance of all high admittance edges, so that the magnitudes of the

admittances are below some specified maximum.

Just like the node merging method, the underlying model is changed, and therefore this method also

has the downside that an error is introduced to the solution of the OPF. Whether the error is better or

worse than when using the node merging method, depends on the specific problem and the specified

maximum.

With this method, it is possible to put a constraint on the amount of current flowing through an edge, or

to use this value in the objective.

8.3. Parallel Transformers
A second issue that can cause convergence problems, is the optimization of the tap positions of parallel

transformers. When two transformers connect the same pair of nodes, and their tap ratios are optimized

with two independent variables, convergence of our method can be significantly hindered.

During our research, this behaviour presented itself in some situations on larger grids. However, it was

hard to reproduce on a smaller grid. Therefore, we study the behaviour on a particular grid, namely

the model of the Dutch high voltage grid. For comparison, we also consider a modified version of

the 118 Bus grid (see Section C.1). On the Dutch grid model, the parallel transformers caused very

slow convergence. On the 118 Bus grid model, the convergence speed was also impacted, but not as

significantly as on the Dutch grid.

Running an OPF calculation
2

on the Dutch grid, without optimizing parallel transformers (i.e., the

tap variables of those transformers were fixed), the method converges in 150 iterations. When the

parallel transformers are also included in the optimization, the number of iterations required increases

to 692. This is an increase of more than 300%, even though the number of transformer tap variables

increased by about 17% (129 tap variables vs. 151 tap variables), and the increase in the total number of

optimization variables is less than 1% (2475 optimization variables vs. 2497 optimization variables).

For the 118 Bus network, this is much less pronounced. The calculation requires 47 iterations without

parallel transformers and 59 iterations with parallel transformers.

One major difference with the convergence problems caused by high admittance edges, is that

the behaviour is much less unpredictable. In our experience, having separately controlled parallel

transformers can cause very slow convergence, but besides that, the method does generally still converge.

In the next section, we have a closer look at how parallel transformers behave in AC power flow

calculations.

8.3.1. Current Flow in Parallel Transformers
Suppose we have two identical parallel transformers, labelled 1 and 2, between two nodes labelled 𝑘 and

𝑙. Suppose they both have a tap on the side of node 𝑘 and the tap ratio of the transformers is denoted by

𝑡1 for transformer 1 and 𝑡2 for transformer 2. Both 𝑡1 and 𝑡2 are elements of C. We denote the current

2
The OPF calculation that was performed is very similar to the one in Chapter 9a. The only difference being that all transformers

were controllable, instead of only those between transmission nodes.
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flowing into transformer 1 and 2 by 𝐼f

1
and 𝐼f

2
, respectively. Then,

𝐼f

1
= 𝑉𝑘

𝑌sr + 𝑌es

2

𝑡2

1

+𝑉𝑙
𝑌sr

𝑡1
(8.7)

𝐼f

2
= 𝑉𝑘

𝑌sr + 𝑌es

2

𝑡2

2

+𝑉𝑙
𝑌sr

𝑡2
. (8.8)

We could consider the pair (𝐼f

1
, 𝐼f

2
) as a vector in C2

. The total current out of node 𝑘 into both transformers

is 𝐼f

1
+ 𝐼f

2
, this is the inner product of the vector with (1, 1). The component of the vector that is

perpendicular to (1, 1), (i.e., in the direction of (1,−1)), does not contribute anything to the current

from node 𝑘 towards node 𝑙. This means that a change of the vector (𝐼f

1
, 𝐼f

2
) in the direction of (1,−1)

does not change anything about the state of the system, except for the value of 𝐼f

1
and 𝐼f

2
. A more

physical interpretation of this is that the inner product of the vector with (1,−1) is 𝐼f

1
− 𝐼f

2
, which can be

interpreted as current flowing from transformer 1 into transformer 2, via node 𝑘.

In general, we want to avoid currents that are not contributing to the transmission of power. Unnecessary

currents cause components to heat up, and be closer to their operating limits. Therefore, we would like

to make sure that 𝐼f

1
− 𝐼f

2
= 0. For identical transformers, this is the case whenever 𝑡1 = 𝑡2. Operating

identical parallel transformers in such a way that their tap ratio is the same, is therefore optimal, in the

sense that no unnecessary currents are flowing through the transformers.

Now suppose we set 𝑡1 = 𝑡2. Then 𝐼f

1
= 𝐼f

2
, so

𝐼f

1
+ 𝐼f

2
= 2

(
𝑉𝑘

𝑌sr + 𝑌es

2

𝑡2

1

+𝑉𝑙
𝑌sr

𝑡1

)
(8.9)

= 𝑉𝑘

2𝑌sr + 2𝑌es

2

𝑡2

1

+𝑉𝑙
2𝑌sr

𝑡1
. (8.10)

This is equivalent to a single tapped transformer with twice the series admittance and twice the shunt

admittance as the original transformers. Therefore, the behaviour of two parallel transformers with the

same tap setting is the same as the behaviour of a single larger transformer.

8.3.2. Dealing with Parallel Transformers
We saw that we can dramatically speed up OPF calculations by excluding parallel transformers from the

optimization. However, unless the tap variables happen to be fixed to their optimal value, this will lead

to an optimal solution with a worse objective value. In Section 8.3.1 we have seen that when the tap

position of identical parallel transformers are equal, no currents are flowing that are not contributing to

the total power flow. Furthermore, the pair of transformers acts identically to a single transformer. This

suggests that we could set the tap positions to be equal, without worsening the objective value of the

optimal solution, and have a model that acts the same as a model without parallel transformers.

There are two obvious ways to ensure that the tap positions of parallel transformers are equal. The first

is by adding an equality constraint that ensures the tap variables are equal. The second way, is by using

a single tap variable per set of parallel transformers. The latter method has the benefit that it does not

need any extra constraints, and it decreases the amount of optimization variables.

This gives us three ways of modifying the OPF problem, to reduce the amount of calculation time: not

including parallel transformers, setting the parallel transformer taps equal with equality constraints,

and optimizing parallel transformers with a single tap variable. In Table 8.1, the three methods are

compared with the original OPF problem.

All three methods successfully decrease the number of iterations that is required. The first method, that

excludes the parallel transformers from the problem seems to work slightly better in decreasing the

number of iterations than the other two methods. For the 118 Bus model, the first, third, and fourth

calculation (parallel transformers, equality constraint and single variable) converged to the same optimal

solution, the OPF calculation with the parallel transformers excluded converged to a different solution,
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calculation Dutch Grid Model 118 Bus Model

# iterations # tap variables # iterations # tap variables

parallel transformers 692 151 61 18

no parallel transformers 150 129 39 0

equality constraint 155 151 43 18

single variable 170 138 40 9

Table 8.1: Number of iterations for the original OPF calculations, compared to the three modified OPF calculations.

with a worse objective value. This means that the equality constraint method and the single variable

method successfully decreased the number of iterations, without the objective value getting worse.

For the Dutch grid model, the first calculation had the best objective value, then the second calculation,

and then the third and fourth, which converged to the same solution. The fact that the second calculation

had a better result than the third and fourth is inconsistent with the reasoning that we can set the taps

of parallel transformers equal. However, when we redo the third calculation, with the solution of the

second calculation as an initial guess, it converges to a different solution, with an objective value that

is better than the second calculation. This suggests that the third and fourth calculation are a local

minimum of the OPF problem. The differences between all the obtained solutions was minor, however,

with the total reactive power injection (which was the objective for these calculations) differing less than

1.5 Mvar between the best and worst solution. It should also be noted that not all parallel transformers

are identical, with some pairs of transformers having slightly differing admittances.



9a
Results

In this chapter, we perform some calculations on an OPF problem that mimics a real life reactive power

dispatch scenario. We first describe the problem and then show the results of the OPF calculation.

Finally, we also perform OPF calculations after slightly modifying the OPF problem, to see the effect of

those modifications on the results.

9a.1. Problem Description
The situation that we mimic in this section, is one that might occur in the operating room of a high voltage

grid. For a specific hour of the day, a forecast has been made on the generation and the consumption of

all parties that are connected to the grid. A few hours ahead, the operators have to decide on how they

will operate the transformers and shunts, and they have to provide voltage set-points for all generators

for that hour. They would like to operate the grid with minimal cost, while satisfying all requirements

that ensure a safe and reliable operation of the grid.

9a.1.1. Grid Model
This simulation is done on a modified version of the IEEE 118 bus model [24], a model loosely based

on the American power system in December 1962. The model has been modified slightly, the details

of this can be found in Appendix C. The model consists of a total of 137 buses, split over 7 nominal

voltage levels: the transmission levels 230 kV and 500 kV, and the generation levels 13.8 kV, 15.5 kV,

20 kV, 22 kV and 24 kV. The grid has a total of 198 edges, 170 of which are lines, and 28 of which are

2-winding transformers.

9a.1.2. Variables
The model has a total of 581 variables, 227 of which are fixed, so 360 optimization variables. Table 9a.1

gives an overview of the amount and type of each variable.

variable total fixed controllable state

nodal voltage magnitude 137 0 54 83

nodal voltage angle 137 1 0 136

active power injection generator 54 44 10 0

reactive power injection generator 54 0 0 54

active power injection load 91 91 0 0

reactive power injection load 91 91 0 0

shunt step 14 0 14 0

transformer tap 9 0 9 0

Table 9a.1: Amount of variables of each type in the considered OPF problem.
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Nodal Voltages The voltage magnitude and voltage angle at each node are state variables, except at

the nodes where a generator is attached, there they can also be controllable or fixed, depending on the

generator that is attached (see the paragraph about generator injections and voltages). Bounds are only

applied to the voltage magnitudes at the nodes at transmission level (i.e., those with nominal voltage

230 kV and 500 kV). The voltage magnitude at these nodes should be between 0.9 and 1.1 pu.

Generator Injections and Voltages The model contains 54 generators, 20 of these model a synchronous

compensator, that can only inject reactive power.

The model includes a maximal active power injection for each generator
1

and a minimal active power

injection of 0. We use these as upper and lower bound of the active power injection of each generator.

To model a system with a distributed slack, we let the active power injection of the 10 generators
2

with

the highest maximal active power injection (which includes the slack generator) be controllable, and fix

the active power injection of all other generators.

All generators have controllable voltage magnitude. The reactive power injection of all generators

is a state variable, and it is bounded above and below
3
. The voltage angle is fixed to 0 for the slack

generator
4
, and is a state variable that is not bounded for all other generators.

Load Injections The model contains 91 loads, all attached to a node with a nominal voltage of 230 kV.

All loads have a fixed active and reactive power injection.

Shunt Steps The model contains 14 shunts, all of which are capacitive shunts, which means that they

can only supply reactive power. They are all attached to nodes with a nominal voltage level of 230 kV.

All of them are controllable, and their step variable can be between 0 and 1.

Transformer Taps The model contains 28 transformers, 9 of which have a tap shifter. All tap shifters

are real tap shifters (i.e., 𝑡𝑘𝑙 ∈ R), meaning that no phase shifting is done by the transformers. Only the

transformers between nodes at transmission levels have a tap shifter. In practice, all other transformers

are under control of customers connected to the transmission grid, not under control of the TSO

themselves, so this is a realistic scenario. The minimum and maximum tap positions for all transformers

are -1 and 1, respectively.

9a.1.3. Continuity of Variables
In this model, both the shunt step positions and transformer tap postions can only take integer values.

However, we mostly consider the continuous relaxation (i.e., we assume that all variables are continuous).

Only in Section 9a.2.3, we obtain a solution with the discrete variables at integer positions.

9a.1.4. Constraints
For each node, the nodal power equality constraints (as described in Section B.1.1) apply. For each edge,

the full current constraints apply (as described in Section B.1.3).

9a.1.5. Objective
We would like to minimize the following objective:

𝑓 (x) =
∑
𝑔∈𝒢

��𝑄𝑔

�� , (9a.1)

where 𝒢 is the set of all generators
5
. This models a scenario in which generators are compensated

equally for every unit of reactive power they consume or supply. This objective is also described in [12,

1
Attribute e:Pmax_uc in PowerFactory.

2
Only considering the generators that are modelled as a synchronous machine in the PowerFactory model.

3
Attributes t:Q_min and t:Q_max in PowerFactory

4
This is Gen 69 in the PowerFactory model.

5
Recall from Section 7.1.1 that x is the vector of all controllable and state variables. Therefore, all 𝑄𝑔 are components of x.



9a.2. Results 45

p. 23]. However, the absolute value is not differentiable at 0, so we use 𝑥 ↦→
√
𝑥2 + 𝜖 as an approximation

of the absolute value, where 𝜖 is a small positive number. This leads to the following objective:

𝑓 (x) =
∑
𝑔∈𝒢

√
𝑄2

𝑔 + 𝜖. (9a.2)

The smaller the value of 𝜖, the closer this function is to (9a.1). However, our method makes use of a

second order approximation of the objective function (i.e., the Hessian of 𝑓 is used to move towards a

minimum of 𝑓 ), and this second order approximation is less accurate around 0 if 𝜖 is small. Therefore, a

small 𝜖 can lead to slow convergence. We use the value
6

of 𝜖 = 10
−2

. In Section 9a.3.4, the behaviour of

the OPF calculations is compared for a few different values of 𝜖.

9a.1.6. Initial Guess
Before the OPF calculation, a power flow calculation is performed. The result of this calculation is used

as the initial guess for the OPF calculation.

The initial guess satisfies the nodal power equality constraints, since it is the result of a power flow

calculation. However, it is not a feasible point, since not all inequality constraints are satisfied. For 12 of

the generators, the initial reactive power injection is not within the bounds specified for that variable,

and 4 edges are loaded above the maximum, with a total of 8 current constraints that are violated (for

all edges both the to- and from- constraint are violated).

9a.1.7. Test Setup
All calculations in this chapter are performed with Ipopt version 3.14.17 [21], with linear solver MA27
[30]. The calculations are performed on a laptop with a 12 core Intel i5-1350P processor and 16 GB of

ram.

9a.2. Results
In this section, we present the results of an OPF calculation on the problem described in Section 9a.1.

Both the numerical cost and the resulting solution of the calculation are presented.

9a.2.1. Numerical Cost
Our method successfully obtains a solution to the OPF problem after 29 iterations. According to the

timing reported by Ipopt, this takes 0.031 seconds, 0.011 of which are spent evaluating the objective

and constraint functions, and its derivatives. If we also include the time it takes for Pyomo to send the

problem to Ipopt, and loading the result back into the model, solving the problem takes 1.16 seconds
7
.

There is some overhead setting up the problem as well, with the construction of the Pyomomodel taking

around 0.17 seconds, and the calculation of the initial guess taking around 0.25 seconds
8
.

9a.2.2. Variables and Objective
We compare the initial guess (before OPF) with the obtained solution (after OPF).

The objective value after optimization is 10.80, compared to 32.72 before optimization. This corresponds

to a reduction from 3139 Mvar to 855 Mvar of total reactive power injection. The net reactive power

injection (i.e., reactive power supplied minus reactive power consumed) is also reduced, from 575 Mvar

to 339 Mvar. In Figure 9a.1, a histogram of the reactive power injections before and after OPF can be

seen.

6
Recall from Section 3.1.4 that the unit for 𝑄 is 100 Mvar. So when a generator injects 1 Mvar, its contribution to the objective is√

0.01 + 𝜖 =
√

0.02.

7
This was measured by executing the solver via Pyomo in a Jupyter notebook cell with the timeit command.

8
This also includes the overhead of moving back and forth between nodal injections and load and generator injections, which

is described in Section 5.2.1.
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Figure 9a.1: Histogram of the reactive power injections of the generators. Values before and after the OPF calculation are shown.

The amount of reactive power injected by the capacitive shunts in the network is also reduced, even

though the objective function does not directly incentivize the reduction of reactive power injection

by shunts. The transformer tap ratios all increase after OPF, most of them to the max position of 1. In

Figure 9a.2 the shunt and transformer variables can be seen before and after OPF.
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Figure 9a.2: Histogram of shunt step position and transformer tap position before and after OPF.

A histogram of the voltage magnitudes at all transmission nodes can be seen in Figure 9a.3. Globally,

the nodal voltage magnitudes seem to become a bit higher after the OPF calculations. This seems

to disagree with the intuition that a reduced net reactive power supply leads to decreasing voltages.

Locally, the voltages seem to follow the intuition, with voltage magnitudes rising in the neighbourhood
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of generators with an increased reactive power injection, and vice versa. The global phenomenon could

be due to the increase in lines with a low load. The reactive power losses in a line depend on the amount

of current through a line. With a low amount of current flowing, a line will supply reactive power, but

above a certain threshold will start consuming reactive power instead [44, p. 13].
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Figure 9a.3: Histogram of the voltage magnitude of transmission nodes before and after OPF.

In Figure 9a.4, a histogram of the loading of all edges is shown. The loading of edge {𝑘, 𝑙} is calculated

as follows:

max{|𝐼f

𝑘𝑙
|, |𝐼t

𝑘𝑙
|}

𝐼max

𝑘𝑙

· 100%, (9a.3)

so that both the from- and to-constraint are satisfied when the loading is below
9

100%.

9
In the result of an OPF calculation it can occur that an edge is loaded slightly above 100%. This can happen when the edge

loading constraint is binding (i.e., it is at its upperbound). The edge loading is then indeed above 100%, but it is below 100% + 𝜖,

where 𝜖 is the tolerance for Ipopt up to which all constraints need to be satisfied. In figure 9a.4, the bin of 90% - 100% actually

runs until 100 + 10
−6

%, so that binding constraints fall within this bin.
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Figure 9a.4: Histogram of the edge loading before and after OPF.

9a.2.3. Simple Rounding Method
We now perform the simple rounding method, as described in Section 7.4. As we can see in Figure

9a.2, most of the discrete variables are either at their upper bound or lower bound in the result of the

optimization. This means that only 3 variables need to be rounded off, namely 3 tap position variables.

The second optimization round, with the discrete variables fixed, takes another 27 iterations, and 1.15

seconds. When we warm start the second optimization run with the initial value for 𝜇 set to 10
−6

, we

can bring this down to 8 iterations. However, this still takes about 1.13 seconds.

The effect on the objective is minimal, with the objective value now being 10.81, compared to the 10.80

of the solution of the continuous relaxation. The total reactive power injection is 855.18 Mvar, compared

to 1.5460 before rounding.

The solutions of the continuous relaxation and the solution after the simple rounding method are very

close. The biggest difference in reactive power injection by a generator is 0.7 Mvar, and the biggest

difference in nodal voltage magnitudes is 0.018 pu.

9a.3. Comparison Between Scenarios
In this section, we perform some variations of the OPF calculation of Section 9a.2. We change the

variables, constraints, and objective. The goal is to show the flexibility of the method, allowing it to be

applied in different scenarios. If, for example, not all components can be controlled, then this can be

incorporated into the model with a simple change. At the same time, this section indicates what effects

such changes might have on the performance of the method and the obtained solution.

In total, we compare 16 variations of the OPF calculation, labeled 1 to 16. Included in this are the

initial guess (i.e., before OPF), the original OPF calculation, which we described in Section 9a.1, and the

original OPF calculation with simple rounding, which we described in Section 9a.1. In Table 9a.2 we

describe how each variation differs from the original scenario. Table 9a.3 shows the computational cost

of each variation, as well as some numbers that characterise the solution of that variation.

The convergence time shown in Table 9a.3 is the average time of 7 runs
11

. The standard deviation

of these 7 runs was mostly between 0.02 and 0.06 seconds each time. Except for scenario 10., the

convergence times are therefore very close to each other, and the differences between them are not very

significant. It is therefore more reliable to look at the iteration count of each scenario if we want to

compare performance.

11
As measured by the timeit command in a Jupyter notebook.
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Variation Description

1. Before OPF

2. Original scenario

3. Original scenario with simple rounding method

4. A flat start is used as initial guess.

5. We fix all shunt step variables to their initial values

6. We fix all transformers tap variables to their initial values

7. We fix all shunt step variables and all transformer tap variables to their initial values

8. We fix the reactive power injection of 33 out of 53 generators
10

. The voltage magnitude

of these generators becomes a state variable.

9. We change the bounds for nodal voltage magnitude to 0.92 and 1.08.

10. We change the bounds for nodal voltage magnitude to 0.95 and 1.05

11. We reduce the current capacity for each edge to 90% of its original value

12. We reduce the current capacity for each edge to 87% of its original value

13. We set 𝜖 in the objective function to 10
−4

14. We set 𝜖 in the objective function to 10
−6

Table 9a.2: Description of all variations. The modifications are made to the original scenario, as described in Section 9a.1.

scenario

# optimiza-

tion variables

# iterations

convergence

time (s)

objective

value

∑
𝑔 |𝑄𝑔|

(Mvar)

1. - - - 32.72 3139

2. 360 29 1.16 10.80 855

3. 360 29 + 8 1.19 + 1.13 10.81 855

4. 360 38 1.17 10.80 855

5. 346 29 1.22 12.44 1033

6. 351 41 1.19 11.15 887

7. 337 57 1.17 12.79 1069

8. 327 29 1.18 21.42 1970

9. 360 23 1.17 10.89 864

10. 360 33 1.17 11.10 885

11. 360 41 1.19 11.28 885

12. 360 28 1.16 16.60 1428

13. 360 64 1.22 8.21 807

14. 360 1101 3.54 8.03 802

Table 9a.3: Results of all variations.
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9a.3.1. Initial Guess
In the original scenario, the result of a power flow calculation was used as an initial guess for the

OPF calculation. Variation 4, used a flat start initial guess (see Section 7.3) instead. In Section 7.3, we

explained that expect the calculation that starts from a flat start to take longer than one that starts from

the result of a power flow calculation. Both OPF calculations converge to the same solution, and when

we compare variation 4 with variation 2, we see that, indeed, the flat start takes longer to converge to

the solution.

9a.3.2. Effect of fixing variables
In variations 5 to 8 we exclude the shunts, transformers and a part of the generators from the optimization

by fixing their variables. We compare these variations with the original scenario (variation 2). Firstly,

we notice that a decrease in the number of variables can lead to an increase or decrease in the number of

iterations. When we fix the transformers (variation 5 and 6), the number of variables decreases, but

the number of iterations increases. When we only fix the shunts (variation 4), or we fix a subset of the

reactive power injections (variation 7), the number of iterations does not change. Whether each iteration

takes longer with more variables, is not possible to say from this data.

Fixing variables always makes the objective value larger. Keeping the transformers fixed (variation

6) has a lower impact on the objective value than keeping the shunts fixed (variation 5). This could

be explained by the fact that there are more shunts than transformers (14 shunt step variables vs. 9

transformer tap variables). However, the effects of fixing either or both the shunts and the transformers

on the objective value are small if we compare it to fixing a part of the reactive power injections of the

generators, which has a big impact on the objective compared to the other variations.

9a.3.3. Effect of Tighter Constraints
In variations 9 to 12 we made the constraints tighter. We also performed an OPF calculation with the

current capacity for each edge set to 85%, however, no feasible solution was found.

We see that tighter constraints lead to more iterations in some cases and to fewer iterations in other cases.

The objective value gets worse as the constraints get tighter. Especially in variation 12, the objective is a

lot worse.

Additionally, we see that tightening the constraints has a big effect on voltages. In Figure 9a.5 the voltage

magnitudes at all transmission nodes of variation 11 are compared with those of the original scenario.

The voltages are shifted closer towards the upper bound at 1.1 pu. This makes sense, since the same

power can be transferred with a lower current if the voltage is higher.
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Figure 9a.5: Histogram of voltage magnitude of transmission nodes after an OPF calculation for varaiations 2 and 11.
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9a.3.4. Effect of 𝜖 in Objective
In the original scenario, the objective function is the following:∑

𝑔∈𝒢

√
𝑄2

𝑔 + 𝜖. (9a.4)

In Section 9a.1.5, we explained that this is a surrogate for the actual objective, which is the following:∑
𝑔∈𝒢

��𝑄𝑔

�� . (9a.5)

When comparing the initial guess (variation 1) with the result of the OPF calculation (variation 2), we

can see that by minimizing (9a.4), the actual objective (9a.5) is also greatly reduced. This was done

with a value of 𝜖 = 10
−2

. When we decrease the value of 𝜖, the surrogate objective becomes a better

approximation for the actual objective, and this reflects in the results. Comparing scenario 2 with

scenarios 12 and 13, we see that the value of (9a.5) becomes smaller, as 𝜖 gets smaller. When we set

𝜖 = 10
−6

, the reactive power injected by generators is reduced by an extra 6%, compared to when

𝜖 = 10
−2

. However, we can also see that the number of iterations required to obtain this result greatly

increases. This aligns with our expectation, which we described in Section 9a.1.5.

9a.3.5. Minimizing Losses
In this section, we compare two more variations in which we change the objective. In the first we

minimize the grid losses, by minimizing the active power injection of all the generators for which the

active power injection is not fixed. The objective is as follows:∑
{𝑔∈𝒢 :𝑃𝑔 is not fixed}

𝑃𝑔 . (9a.6)

In the second we minimize the following objective:∑
𝑖∈𝒩

(|𝑉𝑖| − 1)2 . (9a.7)

With this objective, we try to get the voltage magnitude at all nodes as close to 1 as possible.

We compare the variations with the before OPF variation, and the original calculations. Table 9a.4 gives

an overview of the variations. The results can be seen in Table 9a.5.

Variation Description

1. Before OPF

2. Minimize Reactive power injection (original scenario)

15. Minimize grid losses

16. Minimize deviation of voltages from 1 pu.

Table 9a.4: Description of the variations to the objective.

scenario

# optimiza-

tion variables

# iterations

convergence

time (s)

∑
𝑔 |𝑄𝑔|

(Mvar)

∑
𝑔 𝑃𝑔

(MW)

∑
𝑖(𝑉𝑖 − 1)2

(pu)

1. - - - 3139 3802 0.112

2. 360 29 1.16 855 3792 0.335

15. 360 26 1.14 2108 3772 0.975

16. 360 26 1.13 2766 3793 0.018

Table 9a.5: Results of the variations to the objective.

The reactive power injection is significantly higher in variations 15 and 16, than in variation 2. It is

still lower than in variation 1, however. When we minimize the active power losses, the losses can be

reduced by 30 MW compared to variation 1 and 20 MW compared to variation 2.
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The change in objectives has a significant influence on the voltage magnitudes throughout the grid,

as we can see in Figure 9a.6. When we minimize the deviation from 1, the voltages are, of course,

concentrated around 1 pu. When we minimize the losses, the voltages are close to their upper bound

of 1.1 pu. This is the same behaviour as we saw in Section 9a.3.3 when the capacity of the edges was

reduced. If the reactive power injection is minimized, the voltages are more spread out than in the other

variations.

0.85 0.90 0.95 1.00 1.05 1.10 1.15

Voltage Magnitude (pu)

Variation 16

Variation 15

Variation 2

Variation 1

Figure 9a.6: Boxplot of the voltage magnitude of transmission nodes in variation 1, 2, 15 and 16.

In terms of computational cost, the three calculations are very similar.

9a.4. Conclusion
In Sections 9a.1 and 9a.2, we have walked through an example of an OPF calculation, that simulates a

reactive power dispatch scenario. Our method finds a solution in a few seconds. The solution indeed

reduces the reactive power injection by generators, and all constraints are satisfied.

In Section 9a.3, we made several modifications to our original OPF problem, and studied the effect of

these modifications on the performance of our method and the effects on the results. This provides

some insights into the behaviour of the method and the model, and shows the flexibilty of the

implemented method. General statements on how to optimally control this grid cannot be made from

these comparisons.



9b
Results on the Dutch Grid

This chapter is parallel to Chapter 9a. It shows the same calculations, but on a model of the Dutch high

voltage grid instead. The reason that not all calculations were done on the Dutch grid in the first place,

is that the model used in this chapter is a confidential model, and some results obtained by calculations

on this model are not suitable for publication. Any results that reveal or imply how the network is

operated, or how it could be operated, may be redacted. Results on the model’s computational cost are

not redacted, whenever possible.

9b.1. Problem Description
The constraints and objective are similar to those in section 9a. We describe the details.

9b.1.1. Grid Model
This simulation is done on the 2024_04_11 INTRADAYmodel. The calculations have been performed

on operation scenario 2024_04_11/6_12. Synchronous generator was selected as the reference

machine.

The model consists of a total of 1132 nodes. Of these, 816 nodes are at the transmission level, with

nominal voltages 110 kV, 150 kV, 220 kV and 380 kV. The grid has a total of 1502 edges.

9b.1.2. Variables
The model has a total of 4554 variables, 2070 of which are fixed, so 2484 optimization variables. Table

9b.1 gives an overview of the amount and type of each variable.

variable total fixed controllable state

nodal voltage magnitude 1132 0 81 1051

nodal voltage angle 1132 1 0 1131

active power injection generator 109 99 10 0

reactive power injection generator 109 0 28 81

active power injection load 985 985 0 0

reactive power injection load 985 985 0 0

shunt step 93 0 93 0

transformer tap 8 0 9 0

Table 9b.1: Amount of variables of each type in the considered OPF problem.

Nodal Voltages The voltage magnitude and voltage angle at each node are state variables, except at

the nodes where a generator is attached, there they can also be controllable or fixed, depending on the

generator that is attached (see the paragraph about generator injections and voltages). Bounds are only

applied to the voltage magnitudes at the nodes at transmission level (i.e., those with nominal voltage

53
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110 kV, 150 kV, 220 kV and 380 kV). The bounds on the voltage magnitude at each level are given in

Table 9b.2.

nominal voltage level lower bound (pu) upper bound (pu)

110 kV 0.9 1.1

150 kV 0.9 1.1

220 kV 0.95 1.1

380 kV 0.95 1.1

other - -

Table 9b.2: Bounds on the voltage magnitude for each nominal voltage level.

Generator Injections and Voltages The model contains 109 generators. The model includes a minimal

and maximal active power injection for each generator
1
. We use these as upper and lower bound. To

model a system with a distributed slack, we let the active power injection of the 10 generators with the

highest nominal power
2

(which includes the slack generator) be controllable, and fix the active power

injection of all other generators.

All generators have either a controllable voltage magnitude, or a controllable reactive power injection,

dependent on whether they are a PV or a PQ machine. When the voltage magnitude is controllable,

the reactive power injection is a state variable, and vice versa. The reactive power injection is bounded

above and below
3
. The voltage angle is fixed to 0 for the slack generator

4
, and is a state variable that is

not bounded for all other generators.

Load Injections The model contains 985 loads. All loads have a fixed active and reactive power

injection.

Shunt Steps The model contains 93 shunts, 37 of which are capacitive shunts, and 56 are reactive

shunts. All of them are controllable, and their step variable can be between 0 and 1.

Transformer Taps The model contains 205 (2-winding) transformers. Only the transformers between

nodes at transmission levels are controllable, all other transformers are fixed. In total 10 transformers

are controllable. Two of these are in parallel to each other, and they are controlled with a single tap

variable. This means that we have a total of 9 tap variables. Of the 10 controllable transformers, 5 have a

purely real tap changer, the other 5 have a complex tap changer. The transformers have between 21 and

32 possible tap positions.

9b.1.3. Constraints
For each node, the nodal power equality constraints (as described in Section B.1.1) apply. For each edge,

the full current constraints apply (as described in Section B.1.3).

9b.1.4. Objective
Just like in Chapter 9a, the objective function is as follows:

𝑓 (x) =
∑
𝑔∈𝒢

√
𝑄2

𝑔 + 𝜖, (9b.1)

with 𝜖 = 10
−2

.

1
Attributes e:Pmin_uc and e:Pmax_uc in PowerFactory.

2
Attribute Pmax_a in PowerFactory.

3
Attributes t:Q_min and t:Q_max in PowerFactory

4
This is in the PowerFactory model.
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9b.1.5. Initial Guess
Before the OPF calculation, a power flow calculation is performed. The result of this calculation is used

as the initial guess for the OPF calculation.

9b.1.6. Test Setup
The test setup is the same as in Chapter 9a.

9b.2. Results
In this section, we present the results of an OPF calculation on the problem described in Section 9b.1.

Both the numerical cost and the resulting solution of the calculation are presented.

9b.2.1. Numerical Cost
Our method successfully obtains a solution to the OPF problem after 34 iterations. According to the

timing reported by Ipopt, this takes 0.469 seconds, 0.264 of which are spent evaluating the objective

and constraint functions, and its derivatives. If we also include the time it takes for Pyomo to send the

problem to Ipopt, and loading the result back into the model, solving the problem takes 2.21 seconds.

There is some overhead setting up the problem as well, with the construction of the Pyomomodel taking

around 1.62 seconds, and the calculation of the initial guess taking around 2.8 seconds
5
..

9b.2.2. Variables and Objective
We compare the initial guess (before OPF) with the obtained solution (after OPF).

The objective value after optimization is

9b.1,

All shunt steps are either at their lower bound 0, or at their upper bound 1

after OPF.

For the transformers, 5 tap

positions are either at their upper or lower bound, and 4 are not. The increase or decrease in the shunt

step variables and the transformer tap positions can be seen in Figure 9b.2

A histogram of the voltage magnitudes at all transmission nodes can be seen in Figure 9b.3.

In Figure 9b.4, a histogram of the loading of all edges is shown.

9b.2.3. Simple Rounding Method
We now perform the simple rounding method, as described in Section 7.4. As mentioned in Section

9b.2.2, only 4 transformer tap variables need to be rounded off. All other discrete variables are at their

bounds, which is an integer position.

The second optimization round, with the discrete variables fixed, takes another 37 iterations, and 2.07

seconds. When we warm start the second optimization run with the initial value for 𝜇 set to 10
−6

, we

can bring this down to 14 iterations and 1.81 seconds.

5
This also includes the overhead of moving back and forth between nodal injections and load and generator injections, which

is described in Section 5.2.1.
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Figure 9b.1: Histogram of the reactive power injections of the generators. Values before and after the OPF calculation are shown.

The effect on the objective is minimal, with the objective value now being

9a.1.5.

9b.3. Comparison Between Scenarios
The convergence time shown in Table 9b.4 is the average time of 7 runs. The standard deviation of

these 7 runs was mostly between 0.02 and 0.1 seconds each time. The convergence times are therefore

very close to each other, and the differences between them are not very significant. It is therefore more

reliable to look at the iteration count of each scenario if we want to compare performance.

9b.3.1. Initial Guess
In the original scenario, the result of a power flow calculation was used as an initial guess for the OPF

calculation. In Section 7.3, we explained that the benefit of this, is that the intial guess already satisfies

the equality constraints. In variation 4, we used a flat start initial guess (see Section 7.3) instead, however,

this time the OPF calculation not converge. After 223 iterations the algorithm switches to emergency

mode, which fails. This indicates once again that our method performs better with an initial guess that

is the result of a power flow calculation.

9b.3.2. Effect of fixing variables
In variations 5 to 8 we exclude the shunts transformers and a part of the generators from the optimization

by fixing their variables. We compare these variations with the original scenario (variation 2). Similar to

Chapter to the 118 Bus grid, a decrease in the number of variables can lead to an increase or decrease in

the number of iterations.
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Variation Description

1. Before OPF

2. Original scenario

3. Original scenario with simple rounding method

4. A flat start is used as initial guess.

5. We fix all shunt step variables to their initial values

6. We fix all transformers tap variables to their initial values

7. We fix all shunt step variables and all transformer tap variables to their initial values

8. We fix the reactive power injection of 45 out of 109 generators
6
. The voltage magnitude

of these generators becomes a state variable.

9. We change the bounds for nodal voltage magnitude to
7

0.92 and 1.08.

10. We change the bounds for nodal voltage magnitude to 0.95 and 1.05

11. We reduce the maximum current for each edge to 90% of its original value

12. We reduce the maximum current for each edge to 85% of its original value

13. We set 𝜖 in the objective function to 10
−4

14. We set 𝜖 in the objective function to 10
−6

15. We change the objective to

∑
𝑖∈𝒩 (𝑉𝑖 − 1)2

Table 9b.3: Description of all variations. The modifications are made to the original scenario, as described in Section 9b.1.

scenario

# optimiza

tion variables

# iterations

convergence

time (s)

objective

value

∑
𝑔 |𝑄𝑔|

(Mvar)

∑
𝑖(𝑉𝑖 − 1)2

(pu)

1. - - -

2. 2484 34 2.21

3. 2484 34 + 8 2.21 + 1.81

4. 2484 - - - - -

5. 2391 85 2.99

6. 2475 28 2.18

7. 2382 67 2.65

8. 2439 37 2.19

9. 2484 42 2.25

10. 2484 45 2.46

11. 2484 50 2.41

12. 2484 38 2.14

13. 2484 84 2.78

14. 2484 257 5.90

15. 2484 29 2.02

Table 9b.4: Results of all variations. The OPF calculation of variation 4 did not converge.
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Figure 9b.2: Histogram of shunt step position and transformer tap position differences before and after OPF. A positive difference

means an increase after OPF.

9b.3.3. Effect of Tighter Constraints
In variations 9 to 12 we made the constraints tighter. We see that tighter constraints lead to more

iterations in some cases and to fewer iterations in other cases. The objective value gets worse as the

constraints get tighter. The tighter constraints do not have a very big effect on the objective. On the 118

Bus network, this effect was more significant.

9b.3.4. Effect of 𝜖 in Objective
In the original scenario, the objective function is the following:∑

𝑔∈𝒢

√
𝑄2

𝑔 + 𝜖. (9b.2)

In Section 9a.1.5, we explained that this is a surrogate for the actual objective, which is the following:∑
𝑔∈𝒢

��𝑄𝑔

�� . (9b.3)

When comparing the initial guess (variation 1) with the result of the OPF calculation (variation 2), we

can see that by minimizing (9b.2), the actual objective (9b.3) is also greatly reduced. This was done

with a value of 𝜖 = 10
−2

. When we decrease the value of 𝜖, the surrogate objective becomes a better

approximation for the actual objective, and this reflects in the results. Comparing scenario 2 with

scenarios 13 and 14, we see that the value of (9b.3) is smaller, when we set 𝜖 = 10
−4

, however when we

set 𝜖 = 10
−6

, it becomes slightly larger again. This could be due to a local minimum, because when we

warm start the calculation of variation 14 with the solution of variation 13, it converges to a solution

with objective and the value of (9b.3) is .

Once again, the number of iterations and the execution time increases as 𝜖 gets smaller.

9b.3.5. Three Different Objectives
In this section, we compare two more variations in which we change the objective. In the first we

minimize the grid losses, by minimizing the active power injection of all the generators for which the
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Figure 9b.3: Histogram of the voltage magnitude of transmission nodes before and after OPF.

active power injection is not fixed. The objective is as follows:∑
{𝑔∈𝒢 :𝑃𝑔 is not fixed}

𝑃𝑔 . (9b.4)

In the second we minimize the following objective:∑
𝑖∈𝒩

(|𝑉𝑖| − 1)2 . (9b.5)

With this objective, we try to get the voltage magnitude at all nodes as close to 1 as possible.

We compare the variations with the before OPF variation, and the original calculations. Table 9b.5 gives

an overview of the variations. The results can be seen in Table 9b.6.

Variation Description

1. Before OPF

2. Minimize Reactive power injection (original scenario)

15. Minimize grid losses

16. Minimize deviation of voltages from 1 pu.

Table 9b.5: Description of the variations to the objective.

scenario

# optimiza-

tion variables

# iterations

convergence

time (s)

∑
𝑔 |𝑄𝑔|

(Mvar)

∑
𝑔 𝑃𝑔

(MW)

∑
𝑖(𝑉𝑖 − 1)2

(pu)

1. - - -

2. 2484 34 2.21

15. 2484 43 2.24

16. 2484 29 2.02

Table 9b.6: Results of the variations to the objective.

9a
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Figure 9b.4: Histogram of the edge loading before and after OPF.

In Figure 9a.6 the distribution of the voltages for all 4 variations can be seen.

Figure 9b.5: Boxplot of the voltage magnitude of transmission nodes in variation 1, 2, 15 and 16.

Just like for the 118 Bus grid, the three calculations are very similar in terms of computational cost.



9b.4. Conclusion 61

9b.4. Conclusion
The results in this Chapter are quite similar to those of Chapter 9a, however there are some differences.

The model of the Dutch grid seems to be slightly more challenging for OPF calculations. For example, in

this chapter, we observed the method converging to a local optimum, and the method did not converge

when starting from a flat start. Both of these behaviours where not observed during calculations on the

Dutch grid. Other behaviour, such as the behaviour of the model under the different variations was

very similar to the behaviour on the 118 Bus grid, however. Due to the slightly larger size of the model,

the calculations take longer, but they still finish within a reasonable time.

This chapter shows that our method is able to do OPF calculations on a realistic model of the Dutch

grid. The optimization can determine (locally) optimal set-points for components, for various objectives,

and with various modifications to the variables and constraints.



10
Conclusion and Discussion

10.1. Conclusion
The aim of this thesis project is to implement an OPF algorithm that can perform OPF calculations

on the Dutch grid. Quite some literature has been written on algorithms for Optimal Power Flow,

and a handful of proprietary and open-source software packages exist to perform such calculations.

Nonetheless, performing OPF calculations on models of real-world grids can still be difficult, because of

convergence problems. That is, the method converges very slowly, or fails to converge to a solution,

even though a solution exists.

In the implementation of an OPF algorithm for the Dutch high voltage grid, two causes of convergence

problems were identified. Both originate from particular situations that can occur in the grid. The first

is caused by components in the grid with a relatively high admittance (e.g., switches and breakers), that

are modelled as an edge. The second cause that was identified, was trying to separately optimize the

tap position of parallel tap transformers. Both of these convergence problems have been described in

Chapter 8 and for both problems, multiple solution strategies have been found.

The result is a robust OPF method, that is able to perform OPF calculations on a real life model of

the Dutch grid. This is an important step towards the application of OPF in operation of the Dutch

transmission grid. We can optimize the control of all basic assets, such as generators, loads, transformers,

and shunts. In Chapters 9a and 9b, the results of OPF calculations have been studied, along with the

performance of the method for different variations of OPF problems.

10.2. Expanding the OPF Method
Before this model can be used in operation, there are a few features that are not yet supported. Firstly,

we have not included a model for some of the more complex types of equipment that are being built

into the grid. Some examples of this are 3-winding transformers with tap control, high-voltage direct

current connections, synchronous compensators, FACTS devices, and secondary voltage or frequency

controllers. Furthermore, the current models might also need to be expanded for certain situations. In

unit commitment optimization, for example, generators can have a certain startup cost, which leads to a

non-continuous cost function. This is not supported with our current model.

Transmission networks are required to operate in an N-1 secure state. This cannot be ensured with

the current method. For this, the OPF model would have to be extended to a security constrained

OPF model. This would greatly increase the practical usability of OPF calculations. However, as we

explained in Section 5.3, this will come with new challenges, such as increased computational costs.

In the implementation of each of these expansions, new convergence problems might present themselves.

After each addition to the model, it is important to carefully test the new capabilities, identify convergence

problems, and find solutions. For an OPF method to have any applicability in real life operation of the

grid, the method must be robust and reliable.
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10.3. Topics for Additional Research
On the OPF problems that were tested, our method managed to obtain solutions that were at least

locally optimal. However, there is reason to assume that these local optimal solutions are not always

globally optimal. It is known that for certain types of OPF problems local optima exist, and in Section

8.3.2 we observed that an OPF calculation converged to a different solution, when the initial guess was

changed. This suggests that, indeed, a local minimum was obtained. In this particular case the objective

values of the obtained solutions were relatively close together, but we cannot rule out that there is a

global minimum with a much better objective value. For a specific OPF problem this could be done by

trying out different initial guesses and comparing the solutions that are obtained. Saying something

about globally optimal solutions for general OPF problems would be much harder, however.

On the area of discrete OPF problems, the question of optimality is even more present. We implemented

a method that was able to produce feasible solutions for the discrete problems on which we performed

our experiments. However, this method cannot provide any guarantee about optimality. Furthermore,

there might be discrete OPF problems for which a feasible solution exists, but where our method will

not be able to obtain a solution.

The topic of sensitivity analysis could also offer interesting insights into the grids that are studied with

OPF. The sensitivity of the objective function to the bounds of binding constraints, indicates which

bounds would be the most beneficial to relax. This could, for example, indicate which components

should be upgraded first to obtain a better objective value.

10.4. Applications of OPF
In Chapter 9a we restricted our attention to a single application of OPF, namely a reactive power dispatch

scenario. Some aspects of this calculation could be made more realistic. For example, the objective

function assumed an equal cost for the reactive power injection of all controllable generators. In practice,

this might vary per generator, depending on the contracts that are in place between the TSO and the

party operating the generator. Furthermore, the active power losses were not included in the objective

function, even though this is also a cost that comes with the operation of the network. Improving the

model by constructing more realistic objective functions could greatly improve the results that can be

obtained with this method.

Optimal power flow is a broad class of problems that can also have many other applications, such as

minimizing redispatch cost, or optimizing the placement of new assets. For these applications, an

objective needs to be constructed, that accurately represents the real-life objective, constraints have to be

determined, and a choice has to be made on which variables are controllable, and which should remain

fixed.
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A
Admittance Matrix for General Edge

In this chapter, we derive the admittance matrix for a general edge {𝑘, 𝑙} ∈ ℰ that is given in (3.17).

All transmission lines in the grid, whether overhead lines or underground cables, are modelled via the

standard pi-model for a transmission line. For the details of this model, we refer to [45, app. E]. We model

transformers as a pi-model line with an ideal transformer in series at one or both ends, as is shown in

Figure A.1. If we set the transformer taps 𝑡𝑘𝑙 = 𝑡𝑙𝑘 = 1, we obtain back the standard-pi model. Therefore,

the model in Figure A.1 can model both lines and transformers and is thus our model for a general edge.

Although we do not use the exact same model, information on modelling transformers can be found in

[45, app. B]. Since some transformers have a tap on both the low voltage and high voltage side, the

model includes two ideal transformers.

Note that when we are working in a per unit normalized system, the ratio is also normalized. If we

have, for example, a transformer between the buses 𝑘 and 𝑙 that are at their nominal voltages 110 kV

and 220 kV, respectively, then the non-normalized tap ratio is 𝑡𝑘𝑙 = 1/2, but the normalized tap ratio is

𝑡𝑘𝑙 = 1.

Figure A.1 contains all variables in (3.17). Additionally, currents 𝐼1 , . . . , 𝐼5 are introduced for use in the

derivation in this chapter (even though they share the notation, they are not related to current injections

at nodes). Furthermore, we have also introduced two temporary nodes, 𝑘′ and 𝑙′, for the derivation.

The voltages across these nodes are denoted by voltage phasors 𝑉𝑘′ and 𝑉𝑙′ , respectively.

𝑡𝑘𝑙 : 1 1 : 𝑡𝑙𝑘

node

𝑘
node

𝑙
node

𝑘′
node

𝑙′

𝑉𝑘

𝐼f

𝑘𝑙 𝐼1

𝑌es

𝑘𝑙

2
𝑉𝑘′

𝐼2

𝑌sr

𝑘𝑙 𝐼3

𝑌es

𝑘𝑙

2
𝑉𝑙′

𝐼4

𝐼5 𝐼t

𝑘𝑙

𝑉𝑙

Figure A.1: Model for general edge, with two ideal transformers in series with a standard pi-model line. Admittances are shown

for each load.

We note that voltages and currents on both sides of the transformers are related via the transformer tap
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ratios 𝑡𝑘𝑙 and 𝑡𝑙𝑘 :

𝑉𝑘 = 𝑡𝑘𝑙𝑉𝑘′ (A.1)

𝑉𝑙 = 𝑡𝑙𝑘𝑉𝑙′ (A.2)

𝐼f

𝑘𝑙
=

𝐼1

𝑡𝑘𝑙
∗ (A.3)

𝐼t

𝑘𝑙
=

𝐼5

𝑡𝑙𝑘
∗ . (A.4)

Now, KCL gives us the following:

𝐼1 = 𝐼2 + 𝐼3 (A.5)

𝐼5 = 𝐼3 − 𝐼4. (A.6)

For the shunt capacitance of the line, we use Ohm’s law:

𝐼2 = 𝑉𝑘′
𝑌es

𝑘𝑙

2

=
𝑉𝑘

𝑡𝑘𝑙

𝑌es

𝑘𝑙

2

(A.7)

𝐼4 = 𝑉𝑙′
𝑌es

𝑘𝑙

2

=
𝑉𝑙

𝑡𝑙𝑘

𝑌es

𝑘𝑙

2

. (A.8)

And similarly for the current 𝐼3:

𝐼3 = 𝑌sr

𝑘𝑙
(𝑉𝑘′ −𝑉𝑙′) = 𝑌sr

𝑘𝑙

(
𝑉𝑘

𝑡𝑘𝑙
− 𝑉𝑙

𝑡𝑙𝑘

)
. (A.9)

Now if we combine (A.3), (A.5), (A.7) and (A.9), we get:

𝐼f

𝑘𝑙
=

1

𝑡𝑘𝑙
∗

(
𝑉𝑘

𝑡𝑘𝑙

𝑌es

𝑘𝑙

2

+ 𝑌sr

𝑘𝑙

(
𝑉𝑘

𝑡𝑘𝑙
− 𝑉𝑙

𝑡𝑙𝑘

))
(A.10)

=
1

|𝑡𝑘𝑙|2

(
𝑌sr

𝑘𝑙
+
𝑌es

𝑘𝑙

2

)
𝑉𝑘 −

𝑌sr

𝑘𝑙

𝑡𝑘𝑙
∗𝑡𝑙𝑘

𝑉𝑙 . (A.11)

Similarly, we combine (A.4), (A.6), (A.8) and (A.9), to obtain:

𝐼t

𝑘𝑙
=

1

𝑡𝑙𝑘
∗

(
𝑌sr

𝑘𝑙

(
𝑉𝑘

𝑡𝑘𝑙
− 𝑉𝑙

𝑡𝑙𝑘

)
− 𝑉𝑙

𝑡𝑙𝑘

𝑌es

𝑘𝑙

2

)
(A.12)

= − 1

|𝑡𝑙𝑘 |2

(
𝑌sr

𝑘𝑙
+
𝑌es

𝑘𝑙

2

)
𝑉𝑙 +

𝑌sr

𝑘𝑙

𝑡𝑘𝑙𝑡𝑙𝑘
∗𝑉𝑘 . (A.13)

We can write this as the following matrix vector product:
𝐼f

𝑘𝑙

−𝐼t

𝑘𝑙

 =


1

|𝑡𝑘𝑙 |2
(
𝑌sr

𝑘𝑙
+ 𝑌es

𝑘𝑙

2

)
− 𝑌sr

𝑘𝑙

𝑡𝑘𝑙
∗𝑡𝑙𝑘

− 𝑌sr

𝑘𝑙

𝑡𝑘𝑙 𝑡𝑙𝑘
∗

1

|𝑡𝑙𝑘 |2
(
𝑌sr

𝑘𝑙
+ 𝑌es

𝑘𝑙

2

)

𝑉𝑘

𝑉𝑙

 . (A.14)

This is exactly (3.17).



B
Constraint Expressions

This chapter includes expressions for all used constraint functions. The expressions all involve only

real variables. All expressions involving voltages are expressed in terms of voltage magnitude |𝑉| and

voltage angle 𝛿, all expressions involving power, are expressed in terms of active power 𝑃 and reactive

power 𝑄, and all expressions involving complex admittances are expressed in terms of conductance 𝐺
and susceptance 𝐵.

For the derivation of the expressions in this chapter, we have made use of the symbolic mathematics

library SymPy [37].

B.1. Constraints
B.1.1. Nodal Power Constraints
The nodal power equality constraints are the power flow equations that are derived in Section 4.2.2. We

have repeated them here for completeness.

𝑃𝑘 =

∑
𝑙∈𝒩

|𝑉𝑘 ||𝑉𝑙|(𝐺𝑘𝑙 cos(𝛿𝑘 − 𝛿𝑙) + 𝐵𝑘𝑙 sin(𝛿𝑘 − 𝛿𝑙)) (B.1)

𝑄𝑘 =

∑
𝑙∈𝒩

|𝑉𝑘 ||𝑉𝑙|(𝐺𝑘𝑙 sin(𝛿𝑘 − 𝛿𝑙) − 𝐵𝑘𝑙 cos(𝛿𝑘 − 𝛿𝑙)). (B.2)

Here 𝑃𝑘 and 𝑄𝑘 are the nodal power injections. These may be substituted by the sum of the injections of

the loads and generators attached to each node. This is described in Section 5.2.1.

B.1.2. Simplified Current Constraint
Looking at Figure A.1, there are multiple ways we could bound the current flowing through an edge.

This constraint bounds the current 𝐼3 in Figure A.1. A bound on this current has a relatively simple

expression, and because of the symmetry of the edge model, only one bound is required to bound the

current flowing in either direction. We therefore call it the simplified current constraint. The downside is

that the current 𝐼3 does not have a direct physical meaning, and the current flowing in or out of the edge

(i.e. 𝐼f

𝑘𝑙
or 𝐼t

𝑘𝑙
in Figure A.1) could be much higher if the edge shunt admittance is high.

We use expression (A.9) and bound |𝐼3| by 𝐼max

𝑘𝑙
:����𝑌sr

𝑘𝑙

(
𝑉𝑘

𝑡𝑘𝑙
− 𝑉𝑙

𝑡𝑙𝑘

)���� ≤ 𝐼max

𝑘𝑙
(B.3)

We square both sides of this equation and express it in terms of real variables:(
𝐵2

𝑘𝑙
+ 𝐺2

𝑘𝑙

) (
|𝑉𝑘 |2 − 2|𝑉𝑘 ||𝑉𝑙| cos (𝛿𝑘 − 𝛿𝑙) + |𝑉𝑙|2

)
≤ (𝐼max

𝑘𝑙
)2 (B.4)
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B.1.3. Full Current Constraint
To obtain a more realistic bound on the current, it is better to bound the currents 𝐼f

𝑘𝑙
and 𝐼t

𝑘𝑙
in Figure

A.1. The expressions for these constraints are a bit more complicated, and we need two constraints per

edge
1

(one for 𝐼f

𝑘𝑙
and one for 𝐼t

𝑘𝑙
). We call these constraints the full current constraints.

First, we denote the four components in the matrix in (A.14) by 𝑌ff

𝑘𝑙
, 𝑌ft

𝑘𝑙
, 𝑌tf

𝑘𝑙
, 𝑌tt

𝑘𝑙
:

𝑌ff

𝑘𝑙
𝑌ft

𝑘𝑙

𝑌tf

𝑘𝑙
𝑌tt

𝑘𝑙

 =


1

|𝑡𝑘𝑙 |2
(
𝑌sr

𝑘𝑙
+ 𝑌es

𝑘𝑙

2

)
− 𝑌sr

𝑘𝑙

𝑡𝑘𝑙
∗𝑡𝑙𝑘

− 𝑌sr

𝑘𝑙

𝑡𝑘𝑙 𝑡𝑙𝑘
∗

1

|𝑡𝑙𝑘 |2
(
𝑌sr

𝑘𝑙
+ 𝑌es

𝑘𝑙

2

) . (B.5)

Then, (A.11) becomes 𝐼f

𝑘𝑙
= 𝑌ff

𝑘𝑙
𝑉𝑘 + 𝑌ft

𝑘𝑙
𝑉𝑙 . Now we apply the following bound:

|𝐼f

𝑘𝑙
| = |𝑌ff

𝑘𝑙
𝑉𝑘 + 𝑌ft

𝑘𝑙
𝑉𝑙| ≤ 𝐼max

𝑘𝑙
. (B.6)

We square both sides and write it completely in real and imaginary parts:(
(𝐵ff

𝑘𝑙
)2 + (𝐺ff

𝑘𝑙
)2
)
|𝑉𝑘 |2 +

(
(𝐵ft

𝑘𝑙
)2 + (𝐺ft

𝑘𝑙
)2
)
|𝑉𝑙|2

+ 2|𝑉𝑘 ||𝑉𝑙|
((
𝐵ff

𝑘𝑙
𝐵ft

𝑘𝑙
+ 𝐺ff

𝑘𝑙
𝐺ft

𝑘𝑙

)
cos (𝛿𝑘 − 𝛿𝑙) +

(
𝐵ft

𝑘𝑙
𝐺ff

𝑘𝑙
− 𝐵ff

𝑘𝑙
𝐺ft

𝑘𝑙

)
sin (𝛿𝑘 − 𝛿𝑙)

)
≤ (𝐼max

𝑘𝑙
)2. (B.7)

To obtain the bound for 𝐼t

𝑘𝑙
, we can interchange 𝑘 and 𝑙, since 𝐼t

𝑘𝑙
= −𝐼f

𝑙𝑘
.

1
Equivalently, we could have a single constraint of the form max{𝐼f

𝑘𝑙
, 𝐼t

𝑘𝑙
} ≤ 𝐼max

𝑘𝑙
, however this constraint is not differentiable

everywhere, therefore we opt for two separate constraints.



C
Modified 118 Bus Network

In Chapter 9a, calculations are performed on a modified version of the IEEE 118 bus model. In this

appendix we describe the modifications that were made to the model. Figure C.1 shows a single line

diagram of the grid.
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Figure C.1: Single line diagram of the 118 bus network.

The original model was downloaded as a PowerFactory model from [43], and the model is described in

[24]. We chose this model because it had a reasonable size, a PowerFactory model was available, and the

grid only included basic devices, such as generators, loads, transformers, and shunts. The model was

originally constructed to study the transient behaviour of power systems.

The model included all necessary data to be able to perform a Power Flow calculation, such as injections

and set points of all loads and generators, loading limits for edges and tap settings for transformers.
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Edge name # parallel edges

Line 4-5 3

Line 8-9 2

Line 9-10 2

Line 15-17 2

Line 23-25 2

Line 25-27 2

Line 34-37 2

Line 42-49 C1 2

Line 42-49 C2 0

Line 49-54 C1 0

Line 49-54 C2 2

Line 49-66 C1 3

Line 49-66 C2 0

Line 56-59 C1 2

Line 56-59 C2 0

Line 77-80 C1 0

Line 77-80 C2 2

Line 89-90 C1 2

Line 89-90 C2 0

Line 89-92 C1 0

Line 89-92 C2 2

Line 100-103 2

Table C.1: Number of times each edge was duplicated. A 0 indicates that the edge was removed.

However, when performing a power flow calculation, some edges were very much overloaded, in some

cases by more than 300%. Performing an OPF calculation with this data would in most cases lead to

an infeasible problem, unless a big part of the injections are controllable. Therefore, we made some

modifications to the grid, so that only a few edges were overloaded, and all edges were loaded below

115%.

We made the following modifications.

1. For all lines at the 500 kV level, the rated current
1
, was changed from 0.115 kA to 0.4 kA.

2. For all transformers between a 230 kV and a 500 kV node, the rated power
2

was changed from

100 MVA to 500 MVA.

3. For all transformers, the short circuit voltage
3

was set to 3%.

4. The active power injection of generator Gen 89 was changed from 607 mW to 450 mW.

5. The tap position of all transformers was set to 0.

6. Some edges were removed, while others were duplicated
4

(resulting in parallel edges). The details

of this can be seen in Table C.1.

C.1. Modification in Section 8.3
For the calculation in Section 8.3 we required a grid with parallel transformers. Therefore, we made the

following additional modifications.

1. For all transformers between a 230 kV and a 500 kV node, the rated power
5

was changed to

250 MVA (intead of 500 MVA).

1
Attribute t:sline in PowerFactory

2
Attribute t:strn in PowerFactory

3
Attribute t:uktr in PowerFactory

4
Duplicating the line was done using the e:nlnum attribute in PowerFactory.

5
Attribute t:strn in PowerFactory
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2. All transformers between a 230 kV and a 500 kV were duplicated
6
, resulting in 9 pairs of parallel

transformers.

6
Duplicating the transformer was done using the e:ntnum attribute in PowerFactory.
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