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Abstract

The standard toolbox of modeling and characterizing quantum systems comes with a standard set of

assumptions as well. The two-level approximation replaces a many-level system with a qubit, and

the Markovian approximation assumes an environment with a short memory. In this thesis, these

assumptions are relaxed, and the dynamics of a single qutrit are reconstructed from a complete set

of measurement data, using maximum-likelihood estimation (MLE) to self-consistently infer a set of

state-preparation and measurement parameters (SPAM), along with a time-dependent process map.

The process map can then be used to quantify the non-Markovianity of the qutrit evolution. The

SPAM parameters and process maps produced by the MLE framework are compared to ground-truth

simulations, with good agreement found in all cases studied. A Markovian example, the amplitude

and phase damping channel, and a non-Markovian example, two transmons with a static coupling,

are investigated. With its ability to directly capture higher level effects such as leakage errors, and

also to detect non-completely positive evolution due to entanglement with the environment, this

framework improves upon existing characterization algorithms with the purpose of encouraging future

experimental work with qutrits.
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1
Motivation

The goal of this section is to motivate why this work is worthwhile and relevant to field of quantum

computing, and to that end, I have written the section in a fairly self-contained and semi-technical

manner.

Quantum computing is rapidly emerging as one of the most promising technologies of our time.

The current state of hardware has been dubbed “noisy intermediate-scale" [49] to denote that though

quantum error-correction and fault-tolerance are at least a few breakthroughs away, researchers have

managed to scale quantum devices to tens of qubits, with 100-qubit systems on the horizon. While

novel qubit designs and alternative hardware paradigms remain intense fields of research in the lab,

industry players have joined the fray, pouring resources into the full-stack development and system

engineering approach to quantum computers, encompassing quantum compilers, software frameworks,

user interfaces, and cloud access. Specialized variational algorithms for practical problems in chemistry

and optimization that can faithfully run on imperfect hardware have proliferated in the last two years,

and informative yet efficient characterization and benchmarking techniques are in high demand. Clearly,

quantum computing is here to stay, and while its proponents work diligently towards scalable systems

that can offer true quantum advantage, it is equally important to get as much as we can from quantum

computers as they stand today. For both the functionality of quantum error-correction, which can

only offer noise suppression below a certain maximum threshold, and for the execution of deeper

quantum circuits, it is critical to understand and mitigate quantum “bugs", encompassing the loss

of quantum information from the system via decoherence and imperfections in qubit control, gate

design, and system calibration. Though it may seem inconsequential, when it comes to their hardware’s

performance, quantum engineers care very much about the difference between 99% and 99.9%.

In modeling and characterizing any physical system, one always makes assumptions to get a solid, if

oversimplified, grasp of observed phenomena. Once understood, these assumptions can be progressively

relaxed to bring one’s understanding closer to reality at the price of increased complexity. Attending to

the details of quantum computers is no different, and even in systems that are generally well-understood,

we must be meticulous to diagnose remaining sources of error. Two assumptions that are commonly

made in treating quantum computers will be relaxed throughout this work. The first assumption is

known as Markovianity, which relates to certain properties of the noise experienced by a system of

qubits in a realistic “lab" setting. The second assumption refers to the word “qubit" itself, which denotes

the two logical states 0 and 1 and only approximates the physical system engendering the qubit. These

two concepts are now elaborated.

At a high level, the distinction between Markovian and non-Markovian noise is whether or not the

qubit environment has a memory. Interaction between the system (the qubit device of interest) and

the environment (everything else surrounding it) should be suppressed as much as possible, except, of

course, when we want to measure the system and extract information. This interaction can never be

completely removed, and the two are always coupled to some extent. If information leaks from the

system to the environment in the Markovian way, that information will be very quickly scrambled into

myriad environmental degrees of freedom and be effectively irretrievable. Future states of the system

will only depend on the particular dynamics occurring at some present time, and not on what happened

in the past. If, instead, this information leakage demands a non-Markovian description, it means that

1
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the environment does not scramble what it receives from the system so quickly, and may even import

some of that information back into the system at a future time. Thus, the time-evolution of a state in the

present can, in theory, depend on its state at some time(s) in the past, which has not been “forgotten".

It is no surprise that Markovian noise is much simpler to deal with, and many physical models and

characterization techniques make this assumption in their treatment of quantum devices [2, 57]. While

this has been fruitful in developing quantum hardware so far, in the quest for high-fidelity systems, we

will need to treat noise processes from the more general standpoint of non-Markovianity to improve our

understanding and control of quantum hardware.

Another common, and arguably more fundamental, assumptionmade about qubits is that they really

are qubits. When people rack their brains about Schrodinger’s cat and how wavefunctions collapse, they

are confronted with the duality of dead and alive, or 0 and 1. To the end-users of quantum hardware,

qubits obey this dichotomy, but to the physicist, they are often free to take on any number of values.

Qubits with three possible states should actually be called qutrits (0, 1, 2), and generally for 3 states

they are called @-dits (0, 1, 2, ..., 3). The number of allowed states depends on the physical system

in which the qubit is encoded. Though there are interesting protocols and uses for 3-level systems

[9, 17, 52, 58], quantum computing has typically relied on analogies and comparisons with classical

computing, and, thus, most research utilizes qubits. Therefore, excursions out of the computational

space defined by the 0 and 1 states represent “forbidden" transitions in the logical operation of the

system as a computer, and must be suppressed by careful design and control. These excursions are

known as leakage errors, and if some information is lost to these non-computational levels, then it is

even possible for that information to re-enter the computational space at a later time. Thus, leakage

errors could also result in non-Markovian behavior [56].

In light of these two properties, the goal of this thesis is to directly characterize the time evolution of

a quantum system comprised of a qutrit while subject to potentially non-Markovian noise. The methods

and code developed are then applied within the context of superconducting hardware. It is my hope

and intention that by characterizing a system in this general way, I can help shed light on how and when

non-computational states contribute to the failure rate of quantum logic gates, and furthermore, that I

can promote the more frequent use of qutrits in quantum information protocols and experiments.



2
Prior Work

In this section, we will summarize some previous work closely related to the topics just introduced. In

particular, we focus on experimental protocols using qutrits, and Markovianity measures applied to real

hardware.

2.1. Qutrits
Recent years have seen the emergence of more elaborate experiments and proposals that harness

states beyond the two-level approximation. Qudits offer many computational advantages, including

shortened gate compilations [23], improved error-correction schemes [52, 17, 4], and more secure

quantum cryptography [16]. In the realm of superconducting hardware, several groups have produced

in-depth characterizations of individual qutrit systems. In 2010, Bianchetti et al.[7] demonstrated

quantum state tomography for a complete basis of qutrit states, with an average state fidelity of 95%.

Their device was a transmon embedded in a coplanar microwave resonator. In 2015, Peterer et a. [46]

performed a more detailed analysis of the energy decay and phase coherence of the first five levels of a

transmon embedded in a 3D cavity. While they do not perform any kind of tomography, their analysis

of the dominant decay channels is quite informative for the simulations performed later in this thesis.

Going beyond the characterization of the higher states, in 2011 Fedorov et al. [23] reduce the gate

depth of a Toffoli gate on 3 transmon qubits by diabatically moving to the avoided crossing between

|11〉 and |20〉. This “hides" the occupation of the middle qubit in the state |11G〉 so that only the state

|011〉 picks up a conditional phase at one point during the gate decomposition of the Toffoli. Using the

|2〉 directly in this way, and also conventionally to perform a CZ gate, the authors achieved a Toffoli gate

of fidelity 65% with 3 two-qubit/qutrit gates and 2 single-qubit gates, as opposed to 6 two-qubit and

10 single-qubit gates in the usual all-qubit decomposition. Other proposals exist for the realization of

qutrit-assisted 3-qubit gates in superconducting hardware [8].

While the above example merely uses the |2〉 as an intermediary state to aid qubit logic, we now

consider two papers that go even further, executing gates and algorithms explicitly designed for

qutrit-based processors. In Wu et al. [61], a SWAP gate between the |0〉 and |2〉 states of a 3D transmon

is demonstrated, where the control waveform for the gate is found by solving a nonlinear optimization

problem that minimizes the distance to the target operation and the occupation of the non-computational

|3〉 state. The authors validate their result by applying the gate up to 21 times, fitting the diagonal

elements in the /-basis of the parametrized process to the actual diagonal probabilities. The authors

admit that this does not amount to real process tomography because they prepare neither a complete

input set, nor measure in a complete basis. They simply hope that the data is enough to constrain the

process. In Blok et al. [9], the authors demonstrate a unitary operation that can scramble quantum

information in a five-qutrit transmon-based processor. They use the scrambling unitary in a teleportation

scheme and achieve a success fidelity greater than 0.5, confirming the scrambling property of their gate.

They also perform full process tomography for the scrambling gate and its sub-component, the C-SUM

gate, and provide a detailed analysis of the control, coherence, and cross-talk of their qutrit device.

3



2.2. Markovianity 4

2.2. Markovianity
Now that we have concretely established the utility of qutrits, we turn to several examples of quantum

processes that have been characterized from the standpoint of Markovianity. We defer the theoretical

discussion of how to quantify Markovianity (section 3.2.6), and instead focus on experimental papers

that actually implemented some measure thereof.

Some early Markovianity experiments used photonic platforms [54, 39], showing that the coupling

between the polarization (system) and frequency (environment) degrees of freedom of a photon

could give rise to controllable non-Markovian dynamics. In these papers, the non-Markovianity is

quantified using the trace-distance measure of Bruer et al. [13]. More recently, efforts have shifted

towards superconducting platforms. In 2018, Pokharel et al. [47] investigate the use of dynamical

decoupling sequences to preserve various initial states over time, with data from IBM and Rigetti

devices. A non-monotonic decay of the fidelity indicates non-Markovianity. Interestingly, they find

that decoupling compensates for the non-Markovian environment of IBM devices, while it apparently

causes non-Markovianity to appear in Rigetti devices. In 2019, Morris et al. [43] characterize a 4-qubit

IBM device by determining to what extent a gate “remembers" the gate that preceded it, a clearly

non-Markovian effect. Their method is agnostic to the noise source and represents only an indirect

measure of non-Markovianity based on the context-dependence of a select set of accessible gates. In

2020, the same authors [60] follow up with a complete characterization of non-Markovianity using the

recently proposed process tensor framework of Pollock et al. [48]. They decompose a process of fixed

length into a set of “basis" processes, which can express both Markovian and non-Markovian evolutions.

Using IBM’s hardware, they find a non-zero correlation between state preparation and measurement

sequences that are separated by, among other things, a completely depolarizing channel that should

prevent such correlations. To explain the persistent correlations, they note that information must have

entered the environment (an adjacent qubit) with some memory, and then re-entered the system after

the depolarization. Lastly, also in 2020, Uriri et al. [55] explore the nonconvexity of quantum maps by

making non-Markovian channels out of Markovian ones, and vice versa, using both trace distance and

Choi matrix-based measures of non-Markovianity. Their methods (for photonic qubits) are similar to

those of this work, but they focus heavily on comparing Markovianity metrics, while we highlight one

metric in particular as a use case of our methods.

To my knowledge, there has been no explicit characterization of qutrits through the lens of

Markovianity to date. The methods in this work are used in the paper “Lindblad Tomography of a

Superconducting Qubit", which is currently in preparation [53].



3
Background

DiVincenzo [21] puts forth a set of seven criteria that any physical realization of a quantum computer

should satisfy.

1. A scalable, physical system with well-characterized qubits

2. The ability to initialize to a simple fiducial state

3. Decoherence times much longer than the gate times

4. A universal set of quantum gates

5. A qubit-specific measurement capability

6. The ability to interconvert stationary and flying qubits

7. The ability to faithfully transmit flying qubits

The explicit inclusion of the |2〉 state relates to point 1, as it helps us understand when our qubits might

deviate from a two-level space. The direct characterization of the time-evolution naturally connects

to points 3 and 4. If we characterize the system when left idle, only subject to environmental effects,

then we learn about potential sources of decoherence. If we characterize the time-evolution during

some external drive or gate trajectory, then we probe the ability to implement the gates of some chosen

universal set with high fidelity. Furthermore, as we will see later, imperfections in the state initialization

and measurement operators can also be included in the process characterization, which incorporates

points 2 and 5. Points 6 and 7 are not as relevant, as they pertain to quantum communication and

quantum key distribution, which are important for connecting quantum networks. These criteria

provide context for which aspects of quantum computing our results may inform.

This section will provide various pieces of theory that are needed to understand the results presented

in the following section. The natural flow of quantum computation generally has three steps: state

preparation, time evolution, and measurement. Thus, the background information and theory in the

following sections will adhere to this ordering. Mainstream characterization methods for these steps

are then explained. Lastly, a summary of superconducting device theory is provided.

3.1. Qubits and Qutrits
Any quantum state may be expressed as a density matrix, which is Hermitian, positive-semidefinite,

and has trace equal to 1. For a single qubit, the matrix is 2 × 2, and the elements of the Pauli group for 1

qubit form a basis for all 2 × 2 Hermitian matrices 1, of which the density matrices are a subset.

- =

[
0 1

1 0

]
. =

[
0 −8
8 0

]
/ =

[
1 0

0 −1

]
(3.1)

In this basis, the density matrix �may be expressed as

� =
1

2

(� + ®A · ®�) = 1

2

[
1 + AI AG − 8AH
AG + 8AH 1 − AI

]
(3.2)

1If the expansion coefficients are allowed to be complex (which is not physical), then the Paulis span all 2 × 2 matrices.

5



3.1. Qubits and Qutrits 6

The vector of Pauli operators is ®� = (-,., /), and the Bloch vector components A8 are the expectation
values of the Pauli operators %8 of the state �: A8 = Tr(%8�). Since -,., and / are all traceless, this

construction guarantees that � is a valid densitymatrix. BeingHermitian, the Paulis can be exponentiated

to generate rotations that live in SU(2). The mathematical form for qutrits is similar, but the basis is

formed by the Gell-Mann matrices, which are the generators of SU(3):

�1 =


0 1 0

1 0 0

0 0 0

 �2 =


0 −8 0

8 0 0

0 0 0

 �3 =


1 0 0

0 −1 0

0 0 0

 �4 =


0 0 1

0 0 0

1 0 0

 (3.3)

�5 =


0 0 −8
0 0 0

8 0 0

 �6 =


0 0 0

0 0 1

0 1 0

 �7 =


0 0 0

0 0 −8
0 8 0

 �8 =


1 0 0

0 1 0

0 0 −2

 (3.4)

Generally, one can extend this type on construction for any dimension 3, forming SU(2)-type Paulis

out of all 2-dimension subspaces, to get a set of generators for SU(3). For other basis choices in higher

dimensions, see Bertlmann and Kramer (2008) [6]. Three SU(2) subspaces are easily identifiable within

the Gell-Mann matrices, being the subspaces spanned by {|0〉 , |1〉}, {|1〉 , |2〉}, and {|0〉 , |2〉}. The /
operators for the 12 and 02 subspaces are obtained by linear combinations of �3 and �8. The density

matrix of a qutrit has the following form 
�00 �01 �02

�∗
01

�11 �12

�∗
02

�∗
12

�22

 (3.5)

where the main diagonal contains real numbers, and the off-diagonals are complex. Thus there are 8

free parameters, after accounting for the trace constraint. Any qutrit may then be expressed in terms of

an 8-dimensional generalized Bloch vector
®� [20]:

� =
1

3

(� +
√

3®A · ®�) =

1 +

√
3

2
(〈�8〉 +

√
3〈�3〉) 3

2
(〈�1〉 − 8〈�2〉) 3

2
(〈�4〉 − 8〈�5〉)

3

2
(〈�1〉 + 8〈�2〉) 1 +

√
3

2
(〈�8〉 −

√
3〈�3〉) 3

2
(〈�6〉 − 8〈�7〉)

3

2
(〈�4〉 + 〈�5〉) 3

2
(〈�6〉 + 8〈�7〉) 1 −

√
3〈�8〉

 (3.6)

The isomorphism between SU(2) and SO(3) allows for a convenient visualization of single qubit states

on the Bloch sphere, but qutrits lack a simple, low-dimensional representation. This is evident in the

following parametrization for a pure qutrit [20]:

|#〉 = sin

�
2

cos

�
2

|0〉 + 4 8)01
sin

�
2

sin

�
2

|1〉 + 4 8)01
cos

�
2

|2〉 (3.7)

Orthogonal states are not anti-aligned, but correspond to states of maximum opening angle 2�/3 on the

7-dimensional unit sphere S7 [20]. Interestingly, though all pure states still lie on the surface of this

hypersphere, unlike qubits, not all vectors that lie on such a sphere correspond to physical states [6]. It

is instructive to also ask what the X and Z qutrit operators should be.

/ =


1 0 0

0 4 8�/3 0

0 0 4 82�/3

 - =


0 0 1

1 0 0

0 1 0

 (3.8)

These are generally known as the 3 = 3 clock and shift operators [28]. The clock operator is the complex

exponential of a matrix whose diagonal keeps track of a clock that increments in unit time steps, and the

shift operator is a cyclic permutation of the basis elements by 1 step in space. These kinds of operators

are no longer idempotent, but become the identity when raised to the power 3. Note that only the qubit

X and Z operators are Hermitian. For qutrits, they are of course still unitary, but they do not generate

rotations upon exponentiation (they are not elements of the generalized Gell-Mann basis).

Since qutrits are three-level systems, there are three distinct ways that their level structure may

be ordered. If one starts with a two-level system, then a third level |4〉 could be added below, above,

or in between the existing two levels. These configurations are called V, ladder, and lambda systems,
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respectively, due to the appearance of transitions through the added level. Since the levels throughout

this report are energy states, we care about sequential transitions, and so we are always dealing with a

ladder system (in which case the level labels are 0, 1, 2, not 0, 4 , 1).

Figure 3.1: V, Λ, and ladder structures for three-level systems.

3.2. Time Evolution
3.2.1. Quantum Operations
The most general map we can apply to a quantum state is called a quantum operation, and we can

figure out the general structure of such an operation from some natural expectations of its behavior.

The operation obviously should be linear, because quantum mechanics is a linear theory. The operation

should also map physical states to physical states, which means that if the input is a valid density

matrix, so too should be the output. A valid density matrix is Hermitian, has trace equal to 1, and is

positive-semidefinite, so all three properties must be preserved by the action of the operation. Thus,

quantum operations are Hermiticity-preserving, trace-preserving (TP), and completely positive (CP).

Note that we say not just positive, but completely positive. An operator is positive if it preserves the

positivity of its inputs, so we at least require this property. However, we also require that if the system

is coupled with some environment, and the action of the operation on this environment is trivial (i.e. it

does what it is supposed to do on the system, and the identity elsewhere), the resulting output density

matrix of the universe must still be positive semi-definite. This stronger property–called complete

positivity–is what we actually need. By using the Choi isomorphism [38], these requirements can be

used to derive the following structure for a CPTP quantum operation:

ℰ(�) =
∑
8

 8� 
†
8 (3.9)∑

8

 †8  8 = � (3.10)

where the matrices { 8} are the Kraus operators of the quantum operation. See A.3 for more on the

Choi matrix. Quantum operations are able to describe unitary gates (where the Kraus set only has one

element), and also any other physical but non-unitary evolution, such as the evolution of open quantum

systems. The number of Kraus operators needed to describe a channel is # ≤ 32
, where 3 is the Hilbert

space dimension.

3.2.2. Open Quantum Systems
Let �( denote the Hilbert space of the system, which we have control over, and �� the Hilbert space

of the environment, which we do not. Together, �( ⊗ �� is assumed to be a closed system, and the

evolution of a closed system is always given by unitary evolution according to its total Hamiltonian,

which may or may not be time dependent. Experimentally, we typically only measure the system and

not the environment (or at least, we assume that the outcomes of measurements on the environment

are lost), which means our effective view of just the system must average over the environment, which

operationally is represented as

�((C) = Tr�[*C ,0(�((0) ⊗ ��(0))*†C ,0] (3.11)
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where ��(C) denotes a density matrix in a Hilbert space labeled � at some time C (( for system, � for

environment). The unitary*C ,0 evolves the joint state in �( ⊗ �� from some initial time (here taken to

be C = 0) to some final time C. Then we trace out the environment and obtain the state of just the system.

Our effective view of the system is no longer unitary. The action of the above process can be worked out

further if we assume that the environment begins in a pure state:

�((C) =
∑
:

〈4: |*C ,0(�((0) ⊗ |40〉〈40 |)*†C ,0 |4:〉 (3.12)

=
∑
:

〈4: |*C ,0 |40〉�((0)〈40 |*†C ,0 |4:〉 (3.13)

=
∑
:

":(C)�((0)":(C)† (3.14)

where {|4:〉} denotes an arbitrarily chosen basis for the environment. Projecting out the environment

part of the unitary results in the Kraus operators for the effective evolution of just the system. Since we

trace out the environment, it may be that two very different environments lead to the same effective

dynamics of the system. After taking the partial trace over the environment, if there is more than one

Kraus operator in the expansion, then the output of the quantum channel looks mixed, and there must

have been some kind of entanglement with the environment that was traced over (assuming the state of

the system was pure initially).

3.2.3. Time Evolution as a Quantum Operation
If we vectorize (A.1) the quantum operator-sum, we get the following linear equation for vec(�) = ®�:

vec(ℰ(�)) =
∑
8

vec( 8� †8 ) (3.15)

=
∑
8

( ∗8 ⊗  8)®� (3.16)

= Φ®� (3.17)

where Φ is the matrix form of the superoperator ℰ in the vectorized representation. If we vectorize the

particular Kraus sum representing time evolution from 0 to C, we obtain a linear equation for the state of

the system

®�(C) = ΦC ®�(0) (3.18)

where the vectorized notation will be suppressed unless stated otherwise. Everything we want to know

about our dynamics is encoded in the mathematical properties of ΦC . Since the underlying quantum

map is valid, the superoperator is also valid, in the sense that ΦC preserves the Hermiticity of input

density matrices, and is also CPTP. Now we will assume the that inverse of ΦC exists for all times 2,

which allows us to say two things. First, we can define a two-parameter family of maps by the relation

[12]

ΦC ,B = ΦCΦ
−1

B C ≥ B ≥ 0 (3.19)

where ΦC ,0 = ΦC , and ΦC ,B = Φ(C , B). Since the inverse exists for all positive times, we can write

ΦC ,0 = ΦC ,BΦB,0 (3.20)

Now, Φ(C , B)may not be CP or even P because it depends on the inverse of a CP map Φ−1

B , which may not

be P or CP. Thus, we can define two forms of divisibility which will be useful in framing Markovianity

later on:

• If Φ(C , B) is CP for all C ≥ B ≥ 0, then the map is CP-divisible.

2A process would not be invertible if two distinct initial quantum states evolved to the same final state in finite time, instead of

asymptotically [27].
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• If Φ(C , B) is P for all C ≥ B ≥ 0, then the map is P-divisible.

Next, we can use the existence of the inverse to obtain a time-local equation for the evolution of the

system:

¤�(C) = ( ¤ΦC)�(0) = ¤ΦCΦ−1

C �(C) ≡ K(C)�(C) (3.21)

The operatorK(C) generates the time evolution of the system, so the evolution operator Φ can be written

as

Φ(C , B) = T exp

( ∫ C

B

3C′K(C′)
)

(3.22)

and it can be shown that under the following conditions onK(C)

[K(C), �]† = K(C)�† Hermiticity-preserving (3.23)

Tr({K(C)�} = 0 trace-preserving (3.24)

that K(C) has the following form (derived from the time-convolutionless projection operator technique)

[14, 15]

K(C)�( = −8[�((C), �(] +
∑
8

�8(C)[�8(C)�(�†8 (C) −
1

2

{�†8 (C)�
†
8 (C), �(}] (3.25)

We will henceforth refer to Eq. 3.25 as the time-dependent master equation (TDME). This structure

guarantees Hermiticity and trace preservation, but does not guarantee positivity or the semigroup

property. However, if we stipulate that the rates are positive and constant for all times

�8(C) = �8 ≥ 0 (3.26)

and that �( , �8 are also time-independent, then we recover the celebrated Lindblad form for a quantum

dynamical semigroup:

ℒ� = −8[�( , �(] +
∑
8

�8[�8�(�†8 −
1

2

{�†8�
†
8 , �(}] (3.27)

in which case we renameK(C) → ℒ, and �8 are the Lindblad jump operators. The GKSL theorem states

that any ℒ of this form is the generator of a semigroup of completely-positive quantum dynamical maps

[15]. This is easily seen by solving for the evolution

Φ(C , B) = exp

(
ℒ(C − B)

)
(3.28)

If the positive rates are allowed to vary in time, then we lose the semigroup property but still retain

complete positivity 3, because in each timestep the evolution will adopt the Lindblad form, in which the

GKSL theorem will apply for small enough 3C (this is called time-dependent Markovian).

In summary, though Φ(C , 0) is CP by construction from the quantum channel, if we try to decompose

the evolution as a composition Φ(C , B)Φ(B, 0), we find that one of the constituent processes is not

necessarily also CP due to the inverse inside of Φ(C , B). We concluded that the process Φ(C , B) is still CP
if the rates in the TDME are positive, that is, that the process is CP-divisible. If the following weaker

condition holds ∑
8

�8(C)| 〈= |�8(C)|<〉 |2 ≥ 0 (3.29)

then the resulting dynamics need only be P-divisible.

3Positive rates are sufficient to guarantee positive evolution, but determining necessary conditions is an open problem [12].
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3.2.4. Recipe for Obtaining Lindblad Form
Before we continue on to Markovianity, it will be very insightful to first understand how the Lindblad

form might be obtained from our physical knowledge of a system, and not just general mathematical

theorems. Furthermore, experimental data is often fitted to the Lindblad form in a phenomenological

way, and it would be satisfying to derive it from some Hamiltonian (i.e. a microscopic description of the

system). Here I will summarize the main steps in this procedure [38], which will naturally introduce

the concept of Markovianity. First, denote the total Hamiltonian and its von Neumann equation by

� = �( + �� ++ (3.30)

3�

3C
= −8[�, �] (3.31)

We move to the interaction picture to focus on + :

�0 = �( + �� (3.32)

�̃ = 4 8�0C�4−8�0C
(3.33)

+̃ = 4 8�0C+4−8�0C
(3.34)

3�̃

3C
= −8[+̃ , �̃] (3.35)

From here on, the tildes will be suppressed. We assume that at C = 0, �(0) = �B(0) ⊗ ��(0), such that

the system and environment are initially separable. We also assume that the environment begins in a

thermal state

��(0) =
4−���

Z (3.36)

which helps some terms drop out in the details, andZ is the partition function. Lastly, we assume that

the interaction (in the lab frame) is linear in the bosonic operators 1:

+ =
∑

,:

6
,:"
1
†
:
+ 6∗
,:"

†

1: (3.37)

which is natural because most environments of interest are bosonic (i.e. phonons, photons). The "


terms are system operators. With all of this, the Nakajima-Zwanzig approach yields an exact equation

for the reduced dynamics of the system

3

3C
P� =

∫ C

0

3C′PVC�(C , C′)VC′P�(C′) (3.38)

where the projection superoperator P causes the state to be projected into a separable form where the

environment doesn’t “move".

P�(C) = �((C)��(0) = Tr�(�(C))��(0) (3.39)

This is reminiscent of the idea that bath is so large that it never drifts far from its initial state due weak

interaction with a tiny system, but the use of a projector keeps this step exact. �(C , C′) is a Green’s

function that depends on the projection ofV (the superoperator form of the interaction picture +) onto

the space orthogonal to P. This equation is nonlocal in time for �(C), and now some approximations are

in order.

Born approximation We parametrize the interaction by writing + → &+ , and then assume that & is
small enough that the bath is barely affected by its coupling to the system. This means the Green’s

function becomes �(C , C′) ≈ 1 if the whole equation is to be second-order in &.
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Markov approximation We assume that the dynamics of the environment are much faster than the

system. No future state of the system could depend on itself at previous times, because any record

of previous states is “forgotten" by the environment. Conceptually, this is the core assumption of

Markovianity. In this derivation, it means that we replace �(C′)with �(C) in Eq. 3.38, and change variables

B = C − C′ and integrate from 0 to∞.

Applying the projectors and expanding commutators to Eq. 3.38, we get

3

3C
�( =

∫ ∞

0

Tr�[+(C)�((C)��+(C − B) − �((C)��+(C − B)+(C)] + h.c. (3.40)

Plugging in the form of+ yields the Bloch-Redfield master equation [14, 38] 4. Working through Eq. 3.40

may sometimes result in time-dependent terms that would prevent the final derivation of a Lindblad

equation, in which case we apply our final approximation.

Secular approximation Time-dependent terms can be dropped using the secular approximation (also

known as the rotating-wave approximation), if it holds that the oscillation of those terms is fast with

respect to the strength of the system-environment coupling. The omission of fast terms is not new, since

we already assumed some timescale for the system to justify the existence of a faster bath timescale,

which was then used to justify Markovianity.

With this, we have our recipe for obtaining a Lindblad master equation. Just compute + in the

interaction picture, plug in to Eq. 3.40, and drop the time-dependent terms. Once the Lindbladian of a

system is known, it is easy to solve for the generator of the time evolution via vectorization (see A.2).

3.2.5. Alternate Derivation
The Lindblad form can also be derived in a quicker, albeit less fundamental way. The Nakajima-Zwanzig

method ultimately flows from the unitary evolution of the combined system-environment, but if we just

looked at the system, we assume that the time evolution has the form of a quantum operation:

¤�(C)3C ≈ �(C + �C) =
∑
<

 <(�C)�(C) †<(�C) (3.41)

This Kraus set causes infinitesimal time evolution and only depends on �C. We choose one Kraus

operator to have the particular form

 0 = � + �C(−8� + �) + O(�C2) (3.42)

where � is an arbitrary Hermitian matrix, and � is unknown. The other operators are redefined as

 < =
√
�C!< + O(�C) so that the resulting equation will be first-order in C. Plugging in these definitions,

we find that we can only obtain the Lindblad form if we assume that the unknown � is

� = −1

2

∑
<≠0

!†<!< (3.43)

which allows us to normalize the Kraus operators. Since we didn’t need to enforce our three big

assumptions (Born, Markov, secular), evidently these assumptions must already be built in to the ansatz

of infinitesimal time evolution in Eq. 3.41.

3.2.6. Markovianity
By this point, we have seen Markovianity from two different angles. In the first case, we saw that

assuming positive rates in the TDME led to CP-divisible dynamics. In the second, if we assume that the

environment’s dynamics are very fast compared to the system, it rapidly loses track of any information

it receives from the system, and forgets it before it can leak back into the system. Since these two

apparently different assumptions led to the Lindblad master equation, they must both be expressions

4This shows how to get the Redfield equation from the projection-operator approach, but it also follows more readily just by

plugging in the von-Neumann equation into itself and making the same approximations.
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of Markovianity. The form of the Kraus operators that generate infinitesimal time evolution in the

“alternate" proof completes the connection, because if you recall that themost general completely-positive

evolution takes the form of a quantum operation, then the ansatz of Eq. 3.41 is exactly the statement of

CP-divisibility.

To be precise, these two views are necessary conditions that must hold in their respective proofs if we

want to obtain Markovian dynamics, and certainly there were other pieces needed in both derivations

along the way. At the very least, we can say that the memory of the environment is definitely related to

the positivity of the time-dependent rates. We can summarize these views like so

1. A system undergoes Markovian dynamics if it is weakly coupled to an environment that quickly

forgets information it obtains about the system.

2. Markovian dynamics follow from positive rates in the time-dependent master equation. 5

Ostensibly, a non-Markovian environment is one that negates these points:

1. Non-Markovian environments do not evolve that quickly, and some information that leaks into

the environment may remain coherent long enough to then leak back into the system at some later

point in time. The evolution of �(C) depends on its past.

2. Non-Markovian dynamics correspond to time-dependent master equations with at least one rate

that becomes negative at least once during some evolution.

3.2.7. Quantifying Markovianity
Equipped with how to define non-Markovianity, we now turn to the problem of quantifying it. Point 2

appears more easily dealt with, since it already is a mathematical statement. If we could fit experimental

data to the TDME, then we could extract the rates and directly observe any negativity. There is a

problem with this, and it is a familiar sight in quantum mechanics: there exists a unitary degree of

freedom in how the rates 
8 and operators �8 are defined. The same TDME may be written in different

operator bases, leading to different conditions on the rates. The resolution is to fix the basis, and the

authors of Hall et al. [27] do this by diagonalizing a “decoherence" matrix 6. They use its eigenvalues as

canonical rates in the TDME, and its eigenvectors to form an orthogonal set of decoherence channels, i.e.
a set of canonical �8 operators. Having explained their approach, this is not the method we will use,

because the Kraus sets we will extract from our data later are a sequence of macroscopic time evolutions,

from which the infinitesimal evolution would first need to be derived (see A.5 for more details about the

canonical Lindblad form). Instead, we turn to point 1 and face the daunting challenge of measuring

how well our environment “remembers" things. We will follow the approach of Breuer et al. [13], and

begin with the concept of distinguishability.

We first must recall some properties of the trace distance (B.5.1)

�(�1 , �2) =
1

2

| |�1 − �2 | | (3.44)

The trace distance is bounded between 0 and 1, and is invariant under unitary transformations.

Importantly, the trace distance is also contractive under CPTP maps

�(Λ�1 ,Λ�2) ≤ �(�1 , �2) (3.45)

meaning that two distinct input states can only become closer after the action of the map Λ. Equality is

achieved when Λ is unitary, and the two states just rotate together. It is known that if Alice wants to

perform a single measurement to determine whether Bob sent her �1 or �2 (which are sent with equal

probability), then her maximal success probability is [24]

%<0G =
1

2

(1 + �(�1 , �2)) (3.46)

This makes sense, because if the trace distance is 0, then Alice can do no better than just guessing

randomly. If it is nonzero, then in principle there is some kind of difference between the states that

5CP evolution does not imply positive rates. There is at least one example of a system with CP evolution and negative rates [27].

6The decoherence matrix is the process matrix after removing its first row and column.



3.2. Time Evolution 13

Alice could use to her advantage. If the distance is 1, then the states are orthogonal, and Alice only

needs to make 1 clever measurement to tell them apart. So, if the trace distance can bias Alice’s success

probability, then we can interpret the trace distance as the “distinguishability" between the two states.

With this analogy, if we take two states �1(B) and �2(B) and evolve them in time, we can play the role

of Alice and ask how distinguishable �1(B + C) and �2(B + C) are. If the evolution is given by a CPTP

map, then the trace distance must contract, and our ability to distinguish them must at best stay the

same, or otherwise get worse over time. In terms of Φ, we have

�(ΦC ,B(�1(B)),ΦC ,B(�2(B))) ≤ �(�1(B), �2(B)) (3.47)

If the time evolution is CP-divisible, then at each moment in time our states undergo dynamics that can

only monotonically decrease their trace distance. In the language of memory, we imagine that whatever

information might differentiate them is slowly leaking from the system to the environment where it is

forgotten, never to return.

But what if the evolution is non-Markovian? Earlier, under very general conditions we wrote

ΦC ,0 = ΦC ,BΦB,0 (3.48)

It is possible that the evolution cannot be divided into CP steps ad infinitum (the composition with ΦB,0
is what keeps the whole process CP). When the CP condition is violated, the trace distance is no longer

required to contract, and the distinguishability between the two states could actually increase. Though
the full evolution from 0 out to time C is CP, and the trace distance cannot end higher than it started, the

decay can be non-monotonic, with periodic resurgences. At such times, at least one canonical rate must

be negative, and the environment leaks information back into the system. Thus, Markovianity in the

language of the trace distance becomes

1. An evolution is Markovian if the trace distance between any two pair of states monotonically

decays over time.

2. An evolution is non-Markovian if there exists a pair of input states whose trace distance does not

monotonically decay over time.

The quantity of interest, then, is the rate of change of the trace distance over time

�(C , �1,2(0)) =
3

3C
�(�1(C), �2(C)) (3.49)

and we wish to compute the total increase of distinguishability over the whole time-evolution. The

measure defined by Bruer et al. [13] is

N(Φ) = max�1,2(0)

∫
�>0

3C�(C , �1,2(0)) (3.50)

where the time integration is extended over all time-intervals (08 , 18) in which � is positive. The optimal

(i.e. most non-Markovian) pair of input states is the one that maximizes this integral. It can be shown [15]

that these two states are always orthogonal and lie on the boundary of the state space. If the evolution

is Markovian, then there is no domain for the integral because � is always negative, soN(Φ) = 0.

The trace distance is an intuitive quantity to work with, and is readily obtained from experimental

data. Thus, it is this metric that we will apply to the simulations later on. One downside, however, is

that the integration depends on the total evolution time, making the metric unbounded and difficult to

compare across different implementations (i.e. the protocol would need to be standardized before a

comparison could be made).

3.2.8. Markovianity - Loose Ends
The picture of Markovianity presented here is satisfying, but we comment here on a few things that

were brushed under the rug. It turns out that the contractive property also holds for processes that are

only positive, but not completely positive. Furthermore, if the classical definition of Markovianity is

translated into the quantum domain, then the condition obtained for the transition probabilities of the

so-called Chapman-Kolmogorov equation takes on exactly the same form as the P-divisibility condition
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for the canonical rates. Thus, it is argued by Breuer [15] that quantum Markovianity corresponds to

P-divisible, and not CP-divisible, evolution.

Figure 3.2: Relations between divisibility classes and Markovianity. The angled boundary indicates non-convex spaces. [15]

Not all are in agreement with this, for Rivas et al. [51] decide to quantify Markovianity by

maximally entangling the system with an ancilla, and then measuring that entanglement over time.

Non-Markovianity occurs whenever this entanglement increases, because it can only ever decrease

under local CPTP operations. Thus, their metric is explicitly based on CP, rather than P, evolution. It

has even been shown that a CP-divisible evolution could still result in memory effects given an initially

entangled environment state, suggesting that Markovianity should not be based on CP-divisibility, and

by extension, the trace distance [42].

In reality, there is no consensus in the literature on a single operational definition for Markovianity

(perhaps this is evident from the many approaches already described) . There are a multitude of

interpretations and as many quantifiers, and they are not all equivalent. Theorists have devised metrics

that base Markovianity on the Bures distance, Fisher information, Choi matrix, Bloch volume, and

added isotropic noise. To make matters more complicated, Hall et al. [27] provided a specific, simple

model with completely positive evolution, yet an eternally negative canonical rate. They showed that

only some of these various metrics were able to detect its non-Markovianity. Fortunately, if the jury is

out on a universal definition, then experimentalists should simply choose the definition they find most

accessible, and make clear their choice in their work.

3.3. Quantum Measurement
Here we briefly review the formalism of quantum measurement [44]. The measurement postulate states

that any quantum measurement can be described by a set of operators {"<} where

• The index < refers to each possible measurement outcome in consideration

• The probability of obtaining result < is

?< = Tr("<�"
†
<) = Tr("†<"<�) (3.51)

• The state of the system after obtaining result < is

�< =
"<�"†<

Tr("<�"†<)
(3.52)

• The completeness relation is satisfied ∑
<

"†<"< = � (3.53)

This postulate gives a recipe for computing measurement probabilities and results, but if we only care

about the probabilities alone (i.e. we don’t have access to the post-measurement state), then we discard
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bullet 3 above and see that all defined quantities depend on the set {"<} through the terms "†<"<

which we redefine as �< . Though seemingly simple, this redefinition produces a positive-operator

valued measure (POVM) described by the set {�<}. Given only some POVM {�<}, we can obtain

a measurement set that gives the same probabilities via "< =
√
�< (which is allowed because �<

is positive semi-definite). Going the other direction, we also note that there are infinitely many

measurement sets that obey the same POVM, because we can define "< → *<"< for some unitary

*< , and then form the same POVM �< = "
†
<*
†
<*<"< = "

†
<"< . To be clear, these two measurement

sets {"<} and {*<"<} will result in different post-measurement states, but for POVMs, we assumed

no interest in the states to begin with. Since probabilities are real numbers in the range [0, 1], and
since bullet point 2 must yield a probability for any input state �, we see that �< must be a positive

semidefinite matrix, and therefore the POVM operators are Hermitian.

Ideally, the measurements we perform in the lab are projective measurements (PVM). In this case, the

set of measurement operators "< is the same as the POVM �< , because (|<〉〈< |)2 = |<〉〈< |. In reality,

real measurements take finite time, during which noise processes corrupt our model. We must use the

experimental data to find not a PVM, but a POVM that best reproduces the measurement statistics.

It is interesting to note that with this definition of POVMs, there is a set of “dilation" theorems

regarding state preparation, evolution, and measurement.

• Every mixed state is a pure, possibly entangled state, in a larger Hilbert space (purification).

�( = Tr�[|#〉〈# |(�] (3.54)

• Every CPTP map is a unitary operation in a larger Hilbert space (Stinespring dilation [38]).

ℰ(�() = Tr�[*(�( ⊗ |0〉〈0|�)*†] (3.55)

• The measurement statistics of any POVM can be equivalently thought of as arising from projective

measurement in a larger Hilbert space (Naimark’s Theorem [45]).

?8 = Tr[(� ⊗ |8〉〈8 |)(* |#〉〈# |(�*†)] (3.56)

If the PVM consists of "8 = � ⊗ |8〉〈8 |, then the POVM can be obtained by finding the action of the

PVM on the reduced state of the system, if the outcome 8 was obtained on the ancilla/environment

�( = Tr�[� ⊗ |8〉〈8 |(* |#〉〈# |(�*†)� ⊗ |8〉〈8 |] (3.57)

= 〈8 |* |0〉|B〉〈B |〈0 |*† |8〉 (3.58)

where the total initial state was assumed to be separable. The operators 〈0 |*† |8〉〈8 |* |0〉 consitute
a POVM. If the result of the measurement 8 is forgotten, we take a sum over all outcomes, which

recovers the Kraus operator sum. So a quantum operation is effected whenever we measure with

a POVM, but toss out the result. This is intuitive, because one way of framing the effect of an

environment is to imagine that it performs some measurment on the system, which we never have

access to. Thus, we can only assume the environment’s result is thrown out, and we take a sum

over all outcomes. The evolution of our system is then modeled by a quantum operation.

3.4. Characterization
Until now, we have discussed how to model the preparation, evolution, and measurement of quantum

systems in the abstract, symbolically expressing them in terms of conditions that hold in an ideal,

theoretical picture. In the lab, nature only provides us with measurement outcomes. The purpose of

any characterization is to use these outcomes to estimate numerical representations (matrices) of the

real world that also conform to our abstractions (operators). In this section, we discuss four algorithms

commonly used to reconstruct quantum objects based solely on experimentally accessible data.

3.4.1. Quantum State Tomography
Quantum state tomography (QST) is an algorithm whose purpose is to use a set of measurement

outcomes to reconstruct an unknown quantum state �. To understand QST, we can use the vectorized
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density matrix |�〉〉 (see A.1). Projecting two vectorized matrices onto each other is defined through the

Hilbert-Schmidt inner product 〈〈� |�〉〉 = Tr{�†�}/3, where the division is for normalization. In this

notation, quantum state tomography is simply [26]

? 9 = 〈〈� 9 |�〉〉 =
∑
:

〈〈� 9 |:〉〉〈〈: |�〉〉 (3.59)

where the vectorized operator basis elements are {|:〉〉}. Conveniently, the Born Rule for obtaining the

probabilities is equivalent to computing the inner product between a POVM operator and a density

matrix. The operators � 9 are elements of a tomographically-complete POVMwhosemeasurement results

are sufficient to constrain �. Since � is 3 × 3 and Hermitian, it has 32
real parameters, and our POVM

will need 32
operators. For qubits, if we choose as our POVM the set {|0〉〈0|, |1〉〈1|, |+〉〈+|, | + 8〉〈+8 |},

this will be sufficient to constrain the unknown �:

〈〈�1 |�〉〉 = Tr(|0〉〈0|�)/2 = �00 (3.60)

〈〈�2 |�〉〉 = Tr(|1〉〈1|�)/2 = �11 (3.61)

〈〈�3 |�〉〉 = Tr(|+〉〈+|�)/2 = 1

2

(�00 + �01 + �10 + �11) (3.62)

〈〈�4 |�〉〉 = Tr(| + 8〉〈+8 |�)/2 = 1

2

(�00 + 8�01 − 8�10 + �11) (3.63)

The {|0〉〈0|, |+〉〈+|, | + 8〉〈+8 |} measurement data determines the projections of the state � onto

the axes of the Bloch sphere, and |1〉〈1| allows for trace normalization 7 If desired, the full set of

{|0〉〈0|, |1〉〈1|, |+〉〈+|, |−〉〈−|, | + 8〉〈+8 |, | − 8〉〈−8 |} can be used to overconstrain the system, which can

help compensate for some experimental imperfections 8. Actually, that data is necessarily obtained,

because we cannot choose to measure, say, just the projector |+〉〈+|, but only to measure in the - basis.

The smaller POVM simply represents one possible minimally-constraining subset of the measurement

data. Other than this difference–choosing states to prepare in “measurement tomography" and POVMs

to measure with in state tomography–the two procedures are identical, which is evident in the symmetry

of the Born rule:

?8 = Tr(�8�) (3.64)

Mathematically, "8 and � are just two Hermitian PSD matrices; physics dictates their distinction.

Returning to Eq. 3.59, since the POVM is assumed to be known, matrix inversion provides the result

�−1 |?̂〉〉 = |�̂〉〉 (3.65)

where � 9: = 〈〈� 9 |:〉〉 is known. In practice, maximum-likelihood estimation is used instead for this step

[30]. See Lundeen et al. [40] for an example of measurement tomography, and section 4.1.2 for more

details on POVM reconstruction for qutrits.

3.4.2. Quantum Process Tomography
Quantum process tomography (QPT) goes one step further than QST, where now both a set of input

states and a POVM are presumed known in advance, while some quantum channel or logic gate

separating the preparation and measurement in time is unknown. Quantum process tomography for a

process � is

?8 9 = 〈〈� 9 |� |�8〉〉 (3.66)

=
∑
:,;

〈〈� 9 |:〉〉〈〈: |� |;〉〉〈〈; |�8〉〉 (3.67)

7The implication is that the same number of trials is used for each basis, so in at least one basis we need to count both kinds of

outcomes. Counting the (-1)-type outcomes in each basis would implicitly be done by counting the (+1)-type outcomes, if the total

number of trials is known beforehand. If the trace is normalized in this way, then � only has 32 − 1 constraints.

8One can imagine a scenario where the 4 states of the minimal POVM all lie very close to each other, such that they are barely

linearly independent. One would need a large amount of data to resolve the different measurements, and this can be remedied

somewhat by using the full POVM. Of course, any imperfections in the POVM will still be falsely attributed to the state.
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Since 〈〈� 9 |� |�8〉〉 = Tr(� 9�(�8)), we see that in QPT, we perform QST for each �8 in a complete set of

inputs. By determining the action of� on the operator basis (which can bewritten as linear combinations

of the �8), we can determine how any state expressed in that basis will transform under �. The same

projectors of the POVM {� 9} can be used as the initial states {�8}. The superoperator � can be easily

found by vectorizing the Kraus form for the process:

vec(ℰ(�)) =
∑
8

( ∗8 ⊗  8)vec(�) (3.68)

If we then choose an operator basis {� 9} to express { 8} in, we get

 8 =
∑
9

� 90 98 (3.69)

vec(ℰ(�)) =
∑
8

((∑
:

�:0:8

)∗
⊗

(∑
9

� 90 98

))
vec(�) (3.70)

=
∑
8

∑
9 ,:

0 980
∗
:8(�

∗
: ⊗ � 9)vec(�) (3.71)

=
∑
9 ,:

[00†]9 ,:(�∗: ⊗ � 9)vec(�) (3.72)

Note that in writing 0 98 , we are assuming that the basis operators have been assembled into a row vector,

and the expansion coefficients are along the columns of the matrix 0. The process matrix is " = 00†,
and the matrix elements are "9: =

1

32

∑
8 Tr(�†9 8)Tr(�

†
:
 8)∗. The process matrix is unique once the basis

is fixed, and is Hermitian positive semidefinite. Thus, " has 34 − 32
free parameters, which are fixed

by obtaining 32 × 32
measurement probabilities from the complete POVM and input sets. Therefore,

QPT can also be framed in terms of ". Both QST and QPT can be solved with linear inversion (LI) or

maximum likelihood estimation (MLE), but only MLE allows for physicality constraints to be easily

enforced. [26].

It is well-known that the Kraus form is not unique. A new, equally valid, Kraus form for the same

operation ℰ(·) can be obtained via a certain linear combination of the old Kraus form:

"8 =
∑
9

 9D98 (3.73)

This is easily seen by substitution

ℰ(�) =
∑
8

"8�"
†
8 (3.74)

=
∑
8

∑
9 ,=

(D98 9)�(D∗=8 
†
=) (3.75)

=
∑
9 ,=

∑
8

D98D
†
8= 9� 

†
= (3.76)

If D is a unitary matrix, then

∑
8 D98D

†
8=
= [DD†]9 ,= = � 9 ,= , and we obtain

ℰ(�) =
∑
9

 9� 
†
9 (3.77)

which is the same as the original operation. Since there are an infinite number of unitary matrices from

which we can take our expansion coefficients, the form of the quantum operation is very malleable. It

would be hard to tell just by looking whether or not two different sets { 8} and {"8} might be unitarily

related. Since the process map is unique, if the two are really equivalent, then their vectorized forms

would have to be equal. Thus, one must be careful not to draw too many conclusions from the Kraus

sets alone.

If one chooses to use the Pauli basis instead of the natural basis, then the map � is known as the Pauli

transfer matrix (A.4), which has its own set of handy properties, but it is not relevant for our purposes.
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3.4.3. Gate Set Tomography
In QST, we assumed perfect measurements, in measurement tomography, we assumed perfect input

states, and in QPT, we assumed both to determine an unknown process. These perfect aspects are

also faulty in practice, and will pollute the estimates of the unknown quantities to some extent. In

particular, it is contradictory in QPT to characterize some presumably faulty gate from a gate set,

while at the same time using presumably perfect gates from the same set to prepare ideal inputs and

measurement pre-rotations during the characterization. All the methods we have seen so far are subject

to state preparation and measurement (SPAM) errors. Gate set tomography (GST) [11] self-consistently

estimates a gate set along with a fixed starting state (vacuum) and measurement POVM (/-basis):

G = {|�〉〉, 〈〈� |, �0 , �1 , �2 . . . } (3.78)

where one gate �0 is the null gate, which does nothing for no time. A set of SPAM gates �8 is used for

prepare other input states from |�〉〉, and to rotate into other bases for 〈〈� |. These SPAM gates must

themselves be composed from elements of the gate set:

�8 = �
5 ,8

1
◦ � 5 ,8

2
◦ . . . (3.79)

where {� 5 ,8

:
} is the specific subset of {�} needed to compile the specific SPAM gate �8 . Measurement

statistics are obtained for all possible SPAM choices and gates

?8 9: = 〈〈� |�8� 9�: |�〉〉 (3.80)

where 〈〈� | projects onto outcome < for all output counts of type <. To enforce physicality constraints,

MLE is used to find a parametrization of all unknown quantities G that is most likely to reproduce the

observed data. GST can also be solved via linear inversion (LGST), and it is suggested that although the

output of the inversion may not be physical, the closest physical model to LGST can provide a good seed

for the MLE routine [26]. While QPT will spread the error of one faulty gate over a whole gate set, GST

will correctly attribute imperfections to the faulty gate alone [26]. Likewise, if the only imperfection is in

|�〉〉 or 〈〈� |, QPT will spread that error over the gates, while GST will not.

3.4.4. Randomized Benchmarking
QST, QPT, and GST all provide detailed information about quantum hardware, but come with the

price of inefficiency: they all scale exponentially with the system size. Randomized benchmarking [34]

provides an estimate of the average Clifford gate error 9 in some quantum device (as opposed to the

native gate set). The procedure involves choosing a random string of Clifford gates, appying the inverse

of that string, and then measuring the output.

�1 ◦ �2 ◦ · · · ◦ �: ◦ �†: ◦ · · · ◦ �
†
2
◦ �†

1
|0〉 (3.81)

If the gates were implemented perfectly, the string should work out to the identity. In reality, the process

on the device becomes

�1 ◦Λ ◦ �2 ◦Λ ◦ · · · ◦Λ ◦ �: ◦Λ ◦ �†: ◦Λ ◦ · · · ◦Λ ◦ �
†
2
◦Λ ◦ �†

1
◦Λ |0〉 (3.82)

where noise processes prevent perfect cancellation. A sequence of lengths is chosen, and many Clifford

strings of each length are measured and averaged over. The final probability decays exponentially from

1 to 0.5, and the decay parameters can be used to estimate the gate fidelity (the random Cliffords “twirl"

the noise channel into a depolarizing channel with an error probability that depends on the gate fidelity

[26, 34]). The strength of RB is also its weakness: because it provides a single number to quantify the

gate fidelity, it is agnostic to the underlying error source, and may even underestimate the error strength

in certain cases [26]. Moreover, it is argued by Proctor et al. [50] that the average gate infidelity, being

representation-dependent, is ill-defined, while the output of the RB protocol is not. Therefore, whatever

RB measures, it cannot be the gate infidelity so often ascribed to it.

9Clifford gates are gates that normalize the Pauli group, i.e. �%� = %.
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Figure 3.3: (a) Quantum harmonic oscillator. (b) Harmonic level spectrum. (c) Capacitively-shunted Josephson junction. (d)

Anharmonic spectrum. [36]

3.5. Superconducting Quantum Hardware
So far, our discussions have been completely general. If characterization provides the tools to conform

our theories to nature ex post facto, then modeling is the reverse: the construction of theories that

may predict what nature does. The most ubiquitous and well-studied hardware platform for quantum

computing utilizes superconducting qubits, and it is this paradigm that we will work within. The theory

and modeling of superconducting devices will be introduced in the following sections.

3.5.1. Transmons
Theworkhorse ofmost superconducting quantum computers is the transmon qubit, which is a Josephson

junction (JJ) shunted by a capacitor. One first writes out the classical Lagrangian for a capacitor in

parallel with a JJ, performs a Legendre transform to obtain a classical Hamiltonian, and then canonically

quantizes the conjugate variables to obtain the following expression

� = 4��=
2 − �� cos) (3.83)

The behavior of the circuit is determined by the relative energy scale ��/�� , the ratio of the Josephson

and capacitor energies. Specifically, the transmon is a particular operating regime where the Josephson

energy dominates: �� � �� . This is achieved by using a large shunt capacitance, which reduces the

charging energy scale via �� = 4
2/2�. The transmon is an improved version of an earlier design known

as the Cooper-pair box (CPB). The CPB charge qubit was designed such that �� ≤ �� and, thus, its

dominant noise channel came from charge fluctuations. Over time, it was found that flux noise was

easier to mitigate, so designs shifted towards transmons. As one goes deeper into the transmon regime,

one obtains better and better resistance to flux noise (smoother energy levels) and the price of reduced

anharmonicity (poorly defined qubit space).

The reason we add a JJ is apparent from Fig. 3.3. For a qubit to be well-defined, its Hilbert space

must be separated from surrounding states of the system that are not needed to encode quantum

computation. The quantum harmonic oscillator is as far as you can get from this, because every energy

level is equidistant, so for example, incident photons intended to drive gates via the $0↔1 transition

could just as well cause dynamics in the higher levels. The JJ adds much-needed non-linearity to the

level structure, so that $1↔2 ≠ $0↔1, and so the qubit space is better-defined.
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In quantizing the system, all the flux and charge fields are promoted to operators: )8 → )̂8 and
¤)8 → ¤̂)8 ≡ =̂8 , and then are made conjugate to each other by requiring [)8 , =8] = 8. The charge operator
=̂ encodes the difference in the number of Cooper pairs across the junction (i.e. the number of pairs

that have tunneled). The phase or flux operator )̂ encodes the phase difference of the superconducting

condensate across the junction. By comparison with the quantum harmonic oscillator, if we interpret

the phase and charge variables as position and momentum, we can introduce the raising and lowering

operators

)̂ ∝ 1† + 1 (3.84)

=̂ ∝ 8(1† − 1) (3.85)

To treat the transmons as qudits, we simply truncate the operators to be 3 × 3 shaped-matrices. For

qutrits, 3 = 3, and we can write

1 =


0 1 0

0 0

√
2

0 0 0

 )̂ =


0 1 0

1 0

√
2

0

√
2 0

 (3.86)

1† =


0 0 0

1 0 0

0

√
2 0

 =̂ = 8


0 −1 0

1 0 −
√

2

0

√
2 0

 (3.87)

With these operators, the transmon Hamiltonian can be rewritten in a more familiar basis. The cosine

term can be Taylor expanded to fourth-order, and after substituting in the 1-operators, all non-energy-
preserving terms are dropped (their first-order contributions to state-shifts must be small for this to be

valid). The resulting approximate Hamiltonian for the transmon in the basis of creation and annihilation

operators is

�) = (
√

8���� − ��)1†1 −
��

2

1†1†11 (3.88)

�)/ℏ = $1†1 − 

2

1†1†11 (3.89)

This Hamiltonian (a.k.a a Duffing oscillator) is now diagonal in the number basis. The anharmonicity is

defined as the difference in the energy level spacing between the second and first levels, to the first and

zeroth levels: 
 ≡ (�2 − �1) − (�1 − �0).
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3.5.2. Asymmetric Transmon Hamiltonian

Figure 3.4: (top) Asymmetric transmon circuit.

(bottom) Tunable spectrum of the asymmetric

transmon. [36]

The asymmetric transmon is one variant of the transmon,

which replaces the JJ with two JJs of different Josephson

energies in parallel. The presence of a loop allows the qubit’s

energy to respond to magnetic fields threading the loop.

The asymmetric transmon was introduced to suppress the

flux response of the symmetric transmon such that it could

have reduced flux noise, but still retain sufficient tunability

for gate operations and fabrication variation compensation.

The Hamiltonian of an asymmetric flux-tunable transmon

qubit is given by

�@8 = 4��=
2

8 − ��Σ
√

cos)4 ,8 + 32
sin)4 ,8 cos)8 (3.90)

where ��Σ = ��1 + ��2 and 3 = (� − 1)/(� + 1) is the junction
asymmetry parameter, with � = ��2/��1, and )4 ,8 is the

external magnetic flux applied to qubit 8. In the limit

3 = 0, the Hamiltonian reduces to that of a symmetric split

transmon

� = 4��=
2 − 2�� | cos)4 | cos) (3.91)

and when |3 | → 1 (by making one junction’s Josephson

energy much larger than the other), the term dependent on

the external flux )4 approaches 1, and the whole system

loses its flux-sensitivity and returns to a single-junction

transmon.

3.5.3. MIT Device
The physical device we have in mind in this report is a linear chain of 3 Xmons developed by Prof. Will

Oliver’s group at MIT, as described in Kjaergaard et al. [33]. Xmons are theoretically described just like

transmons, but they are fabricated in a particular cross-shape that allows for direct capacitive coupling

to a drive line, flux bias line, readout line, and other Xmons (earlier transmons had couplings mediated

by 2D and 3D cavities, or bus resonators). In the MIT device, each Xmon is capacitively coupled to its

nearest neighbors and also to a dedicated drive line and a shared readout resonator. Each Xmon also

has a dedicated flux bias line for tunability. The Hamiltonian for such a system is

� =
∑
8

�@8 +
∑
(8 , 9)

�28 9 + �A +
∑
8

�A,@8 (3.92)

where we assume that there is no driving and that the flux biases are parked at some operating

point(s). The first term is the sum of the individual transmon Hamiltonians, the second term is the

nearest-neighbor capacitive coupling of the transmons ((8 , 9) ∈ [(1, 2), (2, 3)]), the third term is the

readout resonator’s energy, and the fourth term is each transmon’s coupling to the readout resonator. On

top of this, there may be thermal bath effects such as relaxation and absorption by both the transmons

and resonators, requiring an open system treatment.



3.5. Superconducting Quantum Hardware 22

Figure 3.5: Three-transmon device fromMIT [33]. (a) Schematic of control and readout electronics. (b) SEMmicrograph of device.

Figure 3.6: Device parameters from Kjaergaard et al. [33].

Coupling two transmons with a capacitor gives rise to an interaction term in the Hamiltonian

proportional to the operator =̂1=̂2; in the case we are considering here, the coupling is

�28 9 = �
8=C
89 = 442

�6

�1�2

=1=2 ≡ 6=1=2 (3.93)

= 6(8(1†
1
− 11))(8(1†

2
− 12)) (3.94)

= −6(1†
1
1†

2
− 111

†
2
− 1†

1
12 + 1112) (3.95)

In these kinds of calculations, we usually move to the rotating frame (Appendix ??) to focus on the

dynamics created by couplings we impose and remove “bare" dynamics due to the natural precession

of the system. Moving to this frame causes terms that do not conserve energy (such as terms with

products of “like" operators, e.g. dagger-dagger) to oscillate rapidly relative to terms of unlike operators.

Since their fast movement averages out over the slower timescale of the other terms, we drop from the

expression (a.k.a the rotating-wave approximation). This results in the coupling

�A,@8 ≈ 6(111
†
2
+ 1†

1
12) (3.96)

We note that since these operators are purely-off diagonal, the interaction’s effect, generally, is to drive

transitions between different energy states, and so such an interaction is called transverse because in the

qubit approximation, the operators )̂ and =̂ become the Pauli - and . operators, which are “transverse"
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to the qubit’s quantization axis, /. The Hamiltonian for the readout resonator is simply that of a QHO

�A = ℏ$A 0
†0 (3.97)

A transmon can be coupled to a resonator in precisely the same way it can be coupled to another

transmon. Therefore, the transverse coupling is

�A,@8 ≈ 6(01† + 0†1) (3.98)

where the 0 operators belong to the resonator, and the 1 operators to the transmon.

3.5.4. Full Hamiltonian
We are interested in two-qubit gates and couplings, and so we focus on a subset of the aforementioned

device Hamiltonian. Specifically, consider just two adjacent transmons coupled by a capacitor. The

Hamiltonian for a circuit comprised solely of transmons and capacitive couplings between them is [63]

�/ℏ =
∑
8

$81
†
8 18 −


8
2

1†8 1
†
8 1818 +

∑
(8 , 9)

68 9(1†8 1 9 + 181
†
9 ) (3.99)

where 8 indexes the transmons and (8 , 9) refers to every coupled pair of transmons, $8 is the lowest

transition energy of the transmon, and 
 is its anharmonicity. In our case, there is a “left" transmon (1)

and a “right" transmon (2)

�/ℏ = $11
†
1
11 −


1

2

1†
1
1†

1
1111 + $21

†
2
12 −


2

2

1†
2
1†

2
1212 + 6(1†

1
12 + 111

†
2
) (3.100)

both of which will be treated as qutrits, so the joint Hilbert space is spanned by the states |#〉 ∈
{|0〉 , |1〉 , |2〉} × {|0〉 , |1〉 , |2〉}.

3.5.5. Two-Qubit Gates
The physical interaction engineered between qubits in a device can be utilized to perform a 2-qubit

logic gate. In superconducting hardware, two-qubit gates typically come in two flavors. If the qubits

are flux-tunable, magnetic fields can be used to bias them towards certain level-crossings, resulting in

state-dependent interactions. If the qubits are fixed-frequency, then carefully designedmicrowave drives

can, in some transformed basis (e.g via a Schrieffer-Wolff transform) give rise to an effective two-qubit

coupling. The drawback of using flux control is that it adds another channel by which noise can degrade

the fidelity of the system. Furthermore, flux control requires deviating from sweet-spots, exposing

qubits to more dephasing. All-microwave control can be used to circumvent these issues, and many

gates have been designed in this way to avoid flux-related issues (cross-resonance, microwave-activated

CPHASE, bSWAP, etc. [36]), arguably at the expense of greater complexity. Gate schemes involving

tunable couplers and hybrid designs of fixed-tunable qubits exist as well. Nonetheless, flux-based

gates remain standard in many superconducting systems, and in the next section the physics of the ZZ

interaction and how it can be used to generate a CZ gate will be presented.

3.5.6. ZZ-Interaction
To see the ZZ-interaction, we need to understand the effect of the coupling capacitor, which can be

treated perturbatively. Recall the equation for the second-order energy corrections [63]:

�
(2)
= =

∑
=≠<

〈= |+ |<〉〈< |+ |=〉
�
(0)
= − �(0)<

(3.101)

If we take the ground state |00〉 to have 0 energy, then we need to compute the new energies of the three

states {|01〉 , |10〉 , |11〉} in the presence of the capacitor, so + = 6(0†1 + 1†0). The single-occupation

states only can couple to each other via the exchange of 1 photon, while the state |11〉 can couple to

both |20〉 and |02〉, which lie outside the qubit space. The energies of the |0〉 , |1〉 , |2〉 states for a single
transmon are 0, $, 2$ − 
. The perturbed energies are given below:
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State Unperturbed Perturbations Approximate Values

|01〉 $(0)
01

62/Δ 215 kHz

|10〉 $(0)
10

−62/Δ -215 kHz

|11〉 $(0)
01
+ $(0)

10

262


1+Δ +
262


2−Δ 352 kHz

Table 3.1: Table of energy corrections. It is interesting to note that if the anharomicities are equal and opposite, then the |11〉
perturbation vanishes because the |11〉 level is pushed by equal and opposite amounts by the surrounding levels. This can be

used to exactly cancel the ZZ interaction [37].

In the table, Δ/ℏ ≡ $(0)
01
− $(0)

10
, the detuning between the two transmons’ 0-th order lowest transition

energies, and 
8 is the 0-th order anharmonicity of transmon 8. Note that the combined second-order

perturbation to the sum $01 + $10 is 0. Also, there are no first-order shifts because the perturbation is

purely off-diagonal in the basis of unperturbed states. Without considering the |2〉 level, the state |11〉
would not experience a shift because it doesn’t couple to other computational states. This shift means

that $11 ≠ $01 + $10, and there is a conditional shift only if both transmons are excited. We define � to

quantify this shift:

� = $11 − $01 − $10 (3.102)

= ($(0)
11
+ $(2)

11
) − ($(0)

01
+ $(2)

01
) − ($(0)

10
+ $(2)

10
) (3.103)

= $(2)
11

(3.104)

Since the coupling is weak, the computational states are only slightly perturbed from their zeroth-order

forms. They are approximately still the correct stationary states, so their Hamiltonian is approximately

diagonal, with small energy shifts that can be computed up to some order:

�/ℏ ≈

$00 0 0 0

0 $01 0 0

0 0 $10 0

0 0 0 $01 + $10 + �

 (3.105)

If one wants to obtain this result more rigorously, we refer to the derivation in Ku. et al [37]. There, the

authors investigate the ZZ interaction’s effect on the cross-resonance gate. Their device is a transmon

coupled to a capacitively-shunted flux qubit, with a coupling resonator. Via a Schrieffer-Wolff transform

(to remove the resonator from the effective dynamics), one obtains a Hamiltonian of the form [62]:

�4 5 5 = $̃10/1 + $̃01/2 + �/1/2 (3.106)

= $̃10/1 + ($̃01� + �/1)/2 (3.107)

= /1($̃10� + �/2) + $̃01/2 (3.108)

where $̃ indicates a dressed frequency. This result is transferrable in the sense that it was also derived

for two statically-coupled anharmonic systems. We see that the ZZ interaction causes a frequency shift

to one qubit whenever the other’s state is known. If one qubit is an equal superposition, then the other

qubit’s precession looks like a sum of the two possible frequencies, and they become entangled.
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Figure 3.7: Evolution of 〈+|- |+〉 over time, for three different environment states. Non-zero concurrence in the third plot

indicates entanglement due to the //-coupling (Eq. 3.105).

3.5.7. Controlled-Z Gate
Now we are ready to understand the design of a CZ-gate using the ZZ-interaction. One can slowly bias

the flux line of one transmon (in a coupled pair) to cause the |11〉 energy level to approach an avoided

crossing with the |20〉 level. The presence of this higher level affects the phase accrued by the state as it

undergoes this adiabatic trajectory. Though the states |01〉 and |10〉 accrue different phases themselves,

these may be transformed away with appropriate single-qubit /-rotations, which admit a virtual (i.e. in

software) implementation. However, if this trajectory is not perfectly adiabatic, the state of the qubit

may “leak” out of the logical subspace and into a higher level, such as |2〉. Furthermore, even without

leakage, the coupling that facilitates this gate is “always on" and contributes to spurious entanglement

between coupled qubits via state-dependent Larmor frequency shifts. Tuning the flux away from the

CZ operating point cannot turn off this interaction anymore than it can “turn off" the capacitors: the ZZ

interaction can only be suppressed.

To understand the flux-tuning, we can diagonalize the system’s Hamiltonian over a range of different

flux tunings. Though both transmons are flux-tunable, this example only requires tuning one of them;

from here on out, it is assumed that the “left" transmon (1) is tuned, while the “right" transmon is

parked at 0 flux bias. The resulting level structure in energy-flux space is plotted in Fig. 3.8. Observe

that as the flux on transmon 1 is increased, the |20〉 level drops down and “pushes" against the |11〉 level.
Normally, without coupling, these energy levels would simply cross unaffected, as the systems could be

treated independently of each other. With coupling, the levels cannot cross, and the strength of the

coupling determines how sharply the levels repel each other. Practically, what matters is that the energy

of the |11〉 level is no longer equal to the sum of the |10〉 and |01〉 levels. We can use this deviation to

perform the required gate. First, the flux bias is slowly tuned to the avoided crossing, and after some

time, the bias is turned off by returning along the same trajectory. Assuming the system started in some

fixed energy state, then the adiabatic theorem states that the system will remain in this state, even as the

energy of that state slowly changes in time. Thus, the total phase accrued by some state |8 9〉 is

�8 9(;(�)) =
∫ �

0

$8 9(;(�)) (3.109)

where ;(�) is some trajectory in flux-time space, and � is the total gate time. If sufficiently adiabatic,

then the unitary we obtain in the qubit space is

*(;) =


4 8�00(;)

0 0 0

0 4 8�01(;)
0 0

0 0 4 8�10(;)
0

0 0 0 4 8�11(;)

 (3.110)

This is just the time-evolution generated by the Hamiltonian argued at the end of the previous section.

It is important to note that this avoided crossing is the first to occur in the level diagram (when moving

out from 0 flux) for the 2-qubit level subspace, so that we do not have to worry about moving through

other operating points while performing the CZ. Earlier, we defined the difference in phase accrued by
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Figure 3.8: Level structure for coupled transmons, as the flux on the first transmon is tuned.

Figure 3.9: Zoomed level structure near relevant avoided crossing of |20〉 and |11〉, with dashed line showing the unperturbed

level.
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the |11〉 state relative to its single-occupation constituents

� = $11 − ($10 + $01) (3.111)

Whatever this � rate is, we can define our phase trajectory such that the total phase difference accrued is

�. With this, the above matrix becomes

*(;) =


4 8�00(;)

0 0 0

0 4 8�01(;)
0 0

0 0 4 8�10(;)
0

0 0 0 4 8(�+�01(;)+�10(;))

 (3.112)

No phase is accrued by the ground state |00〉 if we set it to be our reference, and redefine the other

frequencies accordingly. We can transform away the next two elements on the diagonal with single-qubit

Z-rotations

[
1 0

0 1

]
⊗

[
1 0

0 4−8�01(;)

]
=


1 0 0 0

0 4−8�01(;)
0 0

0 0 1 0

0 0 0 4−8�01(;)

 (3.113)

[
1 0

0 4−8�10(;)

]
⊗

[
1 0

0 1

]
=


1 0 0 0

0 1 0 0

0 0 4−8�10(;)
0

0 0 0 4−8�10(;)

 (3.114)

Compiling*(;)with these extra gates yields the CZ gate.

CZ =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 (3.115)

Of course, choosing � was deliberate, and we could just as well desire any controlled phase ), which

can be achieved in the same way

CZ()) =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 4−8)

 = exp(−8
)

4

(/ ⊗ / − � ⊗ / − / ⊗ �)) (3.116)

A similar method can be used to generate an iSWAP gate from the avoided level crossing of |01〉 and
|10〉, though it involves direct, diabatic oscillations across the crossing.

iSWAP =


1 0 0 0

0 0 −8 0

0 −8 0 0

0 0 0 1

 (3.117)

Both CZ and iSWAP can be used to generate entangled states. Figures 3.8 and 3.9 were generated

using with a Python library called scqubits[35], which is an open-source toolbox for simulating

superconducting circuits. This Python model is further investigated in section 4.3.3, where the

Hamiltonian built in scqubits is then simulated in QuTiP (Quantum Toolbox in Python) [32].



4
Results

With all of the background elaborated, we now begin the main body of this report. The system in

question will be a single qutrit, and we seek to reconstruct its evolution from a set of measurement

data. In some experiment, one would first prepare a complete set of input states and immediately

measure them in a complete basis–this characterizes the “null" process. Then, any further experiments

(i.e. tomographies) could be run as desired. Before fitting the results of those experiments, one would

first use the null process data to estimate the initial ground state, measurement POVM, and rotation

pulses via maximum likelihood estimation, constituting a self-consistent set that describes all SPAM

parameters. We will assume that the SPAM parameters do not change significantly throughout the

following experiments, since the null process data is obtained just prior to executing them. Thus, once

the SPAM parameters are known, they can be fixed in subsequent fits.

Rather than implementing a particular gate or quantum circuit, the experiment we simulate is

simply the idle evolution of the qutrit, subject only to environmental noise. The motivation for this

task is simply that qutrits are relatively unexplored by experimentalists, and one would first like to

characterize their idle behavior before moving on to more complex situations like time-dependent drives

and logic gates. A total duration time ) and resolution ΔC is chosen, and quantum process tomography

is performed at each timestep =ΔC. The resulting set of processes can be used to probe the Markovianity

of the noise environment by applying the trace distance metric described in 3.2.7.

We first apply this method to the prototypical Markovian evolution of a qutrit subject to amplitude

and phase damping, and confirm that the results match our expectations. Next, we tackle the device

model described in section 3.5.3. The device consists of a linear chain of three capacitively coupled

transmons, and we simulate the idle evolution of two of them. Modeling both transmons as qutrits, and

treating one as the system and the other as the environment, we extract a set of idle processes over time,

and infer properties of the qutrit-qutrit coupling by quantifying the Markovianity of the evolution.

In Fig. 4.1, the blue tiles represent the mathematical structure of open quantum systems. The

green, yellow, and orange tiles represent the experiments described in this report that are necessary to

reconstruct the evolution.

4.1. Estimating SPAM Errors
4.1.1. State Preparation
In the qutrit experiments discussed here, we require the ability to prepare pure input states to characterize

the measurement POVM. In the MIT device, transitions between |0〉 and |2〉 require high power and

are assumed to be forbidden, so we will rely on X and Y rotations within the {|0〉 , |1〉} and {|1〉 , |2〉}
subspaces for state preparation. And since experimentalists do not typically characterize gates involving

the |2〉 level, we will explicitly introduce a coherent error parameter that controls the degree of

over/under rotation that occurs during pulses in the {|1〉 , |2〉} space. Single-qubit gates with high

fidelity (> 99.9%) are consistently achievable with current hardware, so these are assumed perfect [3,

33].

Specifically, of the Gell-Mann matrices, �1 ,�2 and �3 are the usual Paulis, �4 and �5 are forbidden

(so they must be compiled from other gates), and �6 and �7 are accessible but faulty. The faulty rotations

28
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Figure 4.1: Schematic of open quantum systems and characterization pipeline.

are assumed to have the following form

'12

G (�) = 4−
8
2
(�+&G )�6 ≈


1 0 0

0 cos ((� + &G)/2) −8 sin ((� + &G)/2)
0 −8 sin ((� + &G)/2) cos ((� + &G)/2)

 (4.1)

'12

H (�) = 4−
8
2
(�+&H )�7 ≈


1 0 0

0 cos ((� + &H)/2) − sin ((� + &H)/2)
0 sin ((� + &H)/2) cos ((� + &H)/2)

 (4.2)

(4.3)

We need to construct gate sequences for preparing a complete set of states. They are “complete" in the

sense that they constitute a minimal set of states whose measurement statistics are sufficient to constrain

the matrix elements of the qutrit POVM. For a qubit, one such complete set is {|0〉 , |1〉 , |+〉 , |+8〉} (3.4.1).
By analogy, then, one possible complete set for a qutrit is

{|0〉 , |1〉 , |2〉 , |+01〉 , |+801〉 , |+12〉 , |+812〉 , |+02〉 , |+802〉} (4.4)

where + and +8 indicate states that lie along X and Y-type axes of sub-Bloch spheres. The below table

contains the gate sequences {'̃8} needed to prepare the complete set. The tilde again refers to the fact

that some of the rotations are faulty.
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State Gate Sequence Restricted Gate Sequence

|0〉 � �

|1〉 -01

� -01

�

|2〉 -̃02

� -̃12

−�-
01

� -̃
12

�

|+01〉 .01

�/2 .01

�/2
|+801〉 -01

�/2 -01

�/2
|+12〉 .̃12

�/2-
01

� .̃12

�/2-
01

�

|+812〉 -̃12

�/2-
01

� -̃12

�/2-
01

�

|+02〉 .̃02

�/2 -̃12

−�.
01

�/2-̃
12

�

|+802〉 -̃02

�/2 -̃12

−�-
01

�/2-̃
12

�

Table 4.1: Table of state preparation sequences. Tildes indicate explicitly faulty rotations.

To unpack this table a bit, first note that the usual qubit 01 subspace rotations require no modification

from their usual forms. Any state preparation involving the |2〉 state is faulty by assumption. Preparing

(+)-type states requires rotating about a Y-axis, and (+8)-type states require rotations about an X-axis.

We always begin with the vacuum state |0〉, but the sub-Bloch sphere that contains |+12〉 and |+812〉
does not include the vacuum, so we must first use a pi-pulse (-01

� ) to access this subspace. The restricted

gate sequence column is the result of not being able to directly drive rotations in the 02 subspace. As an

example, consider the gate sequence responsible for converting |0〉 ↔ |2〉. If we apply this to a general

state, we get

-̃02

� |#〉 = -̃12

−�-
01

� -̃
12

� (0 |0〉 + 1 |1〉 + 2 |2〉) (4.5)

= -̃12

−�-
01

� (0 |0〉 + 1 ˜|2〉 + 2 ˜|1〉) (4.6)

= -̃12

−�(0 |1〉 + 1 ˜|2〉 + 2 ˜|0〉) (4.7)

= 0 ˜|2〉 + 1 |1〉 + 2 ˜|0〉 (4.8)

Indeed, |2〉 and |0〉 are swapped (albeit imperfectly), but since the error is in the rotation angle and

is assumed to remain constant after calibration and over the course of the subsequent experiment, it

cancels out on the |1〉 state, leaving it unchanged as it should, since |1〉 is not accessible via 02-type gates.

Below, we give similar proofs for the preparations of the other restricted states |+02〉 and |+802〉.

.̃02

�/2 |#〉 = -̃
12

−�.
01

�/2-̃
12

� (0 |0〉 + 1 |1〉 + 2 |2〉) (4.9)

= -̃12

−�.
01

�/2(0 |0〉 + 1 ˜|2〉 + 2 ˜|1〉) (4.10)

= -̃12

−�

( 0√
2

(|0〉 + |1〉) + 1 ˜|2〉 + 2√
2

( ˜|0〉 − ˜|1〉)) (4.11)

=
0√
2

(|0〉 + ˜|2〉) + 1 |1〉 + 2√
2

( ˜|0〉 − |2〉) (4.12)

-̃02

�/2 |#〉 = -̃
12

−�-
01

�/2-̃
12

� (0 |0〉 + 1 |1〉 + 2 |2〉) (4.13)

= -̃12

−�-
01

�/2(0 |0〉 + 1 ˜|2〉 + 2 ˜|1〉) (4.14)

= -̃12

−�

( 0√
2

(|0〉 + 8 |1〉) + 1 ˜|2〉 + 2√
2

( ˜|0〉 − 8 ˜|1〉)
)

(4.15)

=
0√
2

(|0〉 + 8 ˜|2〉) + 1 |1〉 + 2√
2

( ˜|0〉 − 8 |2〉) (4.16)

By conjugating the desired pulse with �-pulses in the 12 space, |1〉 and |2〉 are exchanged, and whichever

gate we have chosen for the 01 space (applied in the middle) gets mapped to the 02 space, as desired [9].

In Table 4.1, there are four faulty rotations: {-̃12

� , -̃
12

−� , -̃
12

�/2 , .̃
12

�/2 }. Since the second is the adjoint of the
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Figure 4.2: A mental picture for the qutrit space as considered in this work. Note: this image is not meant to be a faithful

representation of SU(3). Red indicates a forbidden transition.

first, there are three unique faulty rotations:

'12

G (�) ≡ -̃12

� = 4−
8
2
(�+&1)�6

(4.17)

'12

G (�/2) ≡ -̃12

�/2 = 4
− 8

2
(�/2+&2)�6

(4.18)

'12

H (�/2) ≡ .̃12

�/2 = 4
− 8

2
(�/2+&3)�7

(4.19)

Next, we also would like to account for imperfect vacuum state preparation, where the initial |0〉
that we start with is not pure, but mixed:

�vac = 0 |0〉〈0| + 1 |1〉〈1| + 2 |2〉〈2| (4.20)

If we assume that ground states are prepared via thermalizing with a cold environment, then we can

calculate the mixed state probabilities using the Boltzmann distribution [31]

%8 =
1

Z 68 exp(−�8/:�)) (4.21)

where the state degeneracy 68 is 1 for our purposes, andZ =
∑
8 %8 is the partition function. Using the

QuTiP transmon model 3.5.3, and assuming equilibrium with a ) = 50mK environment (typical range

for the effective temperature is 50-130mK [31], including hot quasiparticle noise), the following state

energies and occupations are obtained

State Energy %8(%)
|00〉 0 GHz 97.29

|01〉 4.27 GHz 1.62

|10〉 4.74 GHz 1.03

|02〉 8.32 GHz 0.03

|11〉 9.00 GHz 0.02

|20〉 9.28 GHz 0.01

|12〉 13.06 GHz ∼ 10
−4

|21〉 13.55 GHz ∼ 10
−4

|22〉 17.61 GHz ∼ 10
−6

Table 4.2: Thermal state populations of the two-qutrit transmon system.
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Natural reset (i.e. waiting) is slow and can be limited by hot photons from higher dilution fridge

stages [31, 22]. Active reset protocols use calibrated drive tones to pump out photons into lossy

resonators, quickly taking the system to its ground state. The best of these protocols can achieve ground

state initialization with excited state population (|1〉 and higher) less than 1% [41], corresponding to

an effective temperature of 40mK in our model. Though such low excited state populations can be

achieved, in the following simulations we will be very pessimistic and assume that the excited state

parameters 1 and 2 are both on the order of 10
−1
. This demonstrates the robustness of the simulation to

extremely faulty measurement schemes, and is “intentionally bad" in the sense that very small values

for 1 and 2 would produce data nearly indistinguishable from a perfect system, and we want to make

sure that the simulation can actually detect and estimate the faulty parameters.

4.1.2. Measurement
We also need to characterize the POVM of the measurement process. �̃8 will refer to the actual set

(POVM), and �8 to the ideal set (PVM):

�0 = |0〉〈0| �1 = |1〉〈1| �2 = |2〉〈2| (4.22)

The complete set of states chosen above will allow us to reconstruct the matrix elements of the qutrit

POVM. To justify its choice, first recall that the probability of obtaining a measurement outcome for

some state � is given by the Born rule:

?8 = Tr�8� (4.23)

These probabilities may be estimated via many repeated measurements, giving ?̂8 =
<8

# . In the limit of

an infinite number of experiments, the estimate ?̂8 approaches the true value ?8 . If the density matrices

we prepare are basis elements of this space, then the measured probabilities are estimates of the matrix

elements of �8 . Thus, we only need to chose a set of �s that can fix the all the matrix elements. The

natural basis {|8〉〈9 |} is one such operator basis–the Paulis are another–but since both bases contain

some traceless elements, neither as a whole constitute a set of physical states, and we need to pick some

density matrices such that linear combinations thereof form the chosen basis.

For a qubit, the projectors Tr(�̃ |0〉〈0|) = �̃00 and Tr(�̃ |1〉〈1|) = �̃11 are fine as is, so the diagonal

matrix elements are immediately obtained. For the others, we can use |+〉〈+| and |−〉〈−|:

Tr(�̃ |+〉〈+|) = 1

2

(�̃00 + �̃01 + �̃10 + �̃11) (4.24)

Tr("̃ | + 8〉〈+8 |) = 1

2

(�̃00 + 8�̃01 − 8�̃10 + �̃11) (4.25)

Normally the POVM elements are Hermitian (because they are PSD), so we could assume that �̃8 9 = �̃
∗
98
,

but this most likely won’t be true just based on the experimental data alone (these are �̃, not �). Instead,
we could first subtract the diagonal elements �̃00 and �̃11, and then proceed as below

Tr(�̃ |+〉〈+|) − 1

2

(�̃00 + �̃11) =
1

2

(�̃01 + �̃10) ≡ 0 (4.26)

Tr(�̃ | + 8〉〈+8 |) − 1

2

(�̃00 + �̃11) =
1

2

(8�̃01 − 8�̃10) ≡ 1 (4.27)

0 − 81 = �̃01 (4.28)

0 + 81 = �̃10 (4.29)

In this way, we can find the off-diagonals as well. We can easily extend this to the qutrit case. Since we

have decomposed the qutrit space into two Bloch spheres, the complete set of states is two copies of

what we just saw.
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Figure 4.3: Cyan states and projectors are complete for qubit measurement and state tomography, respectively. Orange states and

projectors (in addition to cyan) are complete for qutrit measurement and state tomography, respectively. Gold gates applied to the

base POVM produce new POVMs that contain at least one necessary projector for completeness.

|#〉 Tr (�̃ |#〉 〈# |)
|0〉 �̃00

|1〉 �̃11

|2〉 �̃22

1√
2

(|0〉 + |1〉) 1

2
(�̃00 + �̃01 + �̃10 + �̃11)

1√
2

(|0〉 + 8 |1〉) 1

2
(�̃00 + 8�̃01 − 8�̃10 + �̃11)

1√
2

(|1〉 + |2〉) 1

2
(�̃11 + �̃12 + �̃21 + �̃22)

1√
2

(|1〉 + 8 |2〉) 1

2
(�̃11 + 8�̃12 − 8�̃21 + �̃22)

1√
2

(|0〉 + |2〉) 1

2
(�̃00 + �̃02 + �̃20 + �̃22)

1√
2

(|0〉 + 8 |2〉) 1

2
(�̃00 + 8�̃02 − 8�̃20 + �̃22)

Table 4.3: Complete set of states and theoretical form of their measurement probabilities.

The measurement outcomes of a complete set of states are sufficient to solve for the matrix elements

of the POVM. Since each POVM matrix has nine degrees of freedom (3 real parameters on the diagonal,

and 3 complex off-diagonals of a Hermitian matrix), we must prepare at minimum nine input states

to create nine data constraints to fix those elements. For each input state, a set of measurements is

performed in the Z basis, yielding a measurement record that consists of some number of 0s, 1s, and 2s.

All of the 0 counts contribute to fixing the elements of �̃0, and likewise for the rest (if we obtain outcome

8, then by post-selection we have measured with the operator �̃8).

4.1.3. Measuring in Other Bases
To perform process tomography, we need to measure in a complete basis as well. To do this, we can just

apply the same set of state preparation rotations '8 that we found above to the POVM. We will need as

many different rotations as necessary to guarantee that among the operators of the rotated POVMs, the

same 9 projectors appear. This is best summarized by the following graphic: Only the gold gates in
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Fig. 4.3 are actually applied before measurement when simulating our procedure 1. Once we apply

the same rotations to both the ground state and the POVM to ensure completeness, we can express the

tomography of the null process as

?8 9: = Tr(' 9�:'†9'8 |0〉 〈0| '
†
8 ) (4.30)

which is the probability of getting result : from the 8th input state measured the basis accessed by the

9th rotation of the POVM. Of course, the model we have built assumes that the ground state is a thermal

state, the rotations involving |2〉 have a coherent (systematic) error, and the POVM is unknown. The

probabilities actually obtained are then

?̃8 9: = Tr('̃ 9�̃: '̃†9 '̃8 |0̃〉〈0̃|'̃
†
8 ) (4.31)

In QPT, the " matrix has 34 − 32
free parameters, which is 72 for qutrits. There are 9 input states and 9

necessary projectors, yielding 81 constraints. Including all 15 unique measurement projectors (2 --type

states × 2 .-type states × 3 sub-Bloch spheres, + 3 /-basis projectors), yields 135 constraints in total. In

the next section, we will use MLE to (over)constrain ".

4.1.4. Caveat
Referring to the theoretical form of the probabilities (Eq. 4.31), assume for a moment that the only

imperfection lies in the POVM

?̃8 9: = Tr(�̃:'†9'8 |0〉〈0|'
†
8 ' 9) (4.32)

= Tr(C(�:)'†9'8 |0〉〈0|'
†
8 ' 9) (4.33)

where C is some process that corrupts the :th ideal into the :th faulty POVM operator. In the vectorized

notation, we have

?̃8 9: = 〈〈�: |�†��
8 9

'
|0〉〉 (4.34)

where �� is the vectorized form of C, and �8 9
'
is the vectorized form of the two rotations applied to

the initial vacuum state. In general, it is impossible to distinguish whether the error stems from the

POVM, or, if [�8 9
'
, ��] = 0, it originates in a faulty initial vacuum state. It could also be misconstrued as

some error in the rotations �
8 9

'
, but a SPAM-insensitive procedure like randomized benchmarking could

help detect this case. This ambiguity is intrinsic to all characterization techniques (it is a form of gauge

freedom [26]), since we can never separate preparation and measurement from each other.

4.1.5. Maximum Likelihood Estimation
In section 3.4, we discussed different algorithms for extracting information about our quantum states

and gates. All of these involve fitting experimental data to some model; the more expressive methods

generally involve solving some kind of nonlinear optimization. One such optimization, called maximum

likelihood estimation (MLE), is frequently used for its ability to naturally incorporate physicality

constraints and overcomplete datasets.

In any experiment, we do not have access to the true, underlying probability distribution that

governs a set of values obtained from the measurement of a random variable. At most, we have a

mathematical model with some number of free parameters for the distribution, and a dataset that the

model must conform to. The goal of maximum likelihood estimation is to find the parametrization

of the model that is most likely to have produced the observed data. For our purposes, the unknown

distribution is parametrized by the set of all POVMmatrix elements, the thermal state parameters 0, 1, 2,
and the coherent error parameters &1 , &2 , &3. The distribution itself comes down to choosing a likelihood

function. We will simply define it as the probability to obtain the observed outcomes as independent

trials 2.

ℒ =
∏
C∈trials

[(?0)<0(?1)<1(?2)<2]t =
∏
B,1

(Tr �̃0,1 �̃B)<0(Tr �̃1,1 �̃B)<1(Tr �̃2,1 �̃B)<2
(4.35)

1So technically in our MATLAB routine, the set of initial rotations contains 9 gates, but the set of measurement rotations only

contains 7, but we refer to both as {'8}.
2One can also derive from the central limit theorem a likelihood function in the form of least-squares minimization [26]



4.2. Verifying the Estimation 35

where C enumerates the trials used to build up the measurement results. A trial consists of choosing an

input state and a measurement pre-rotation, indexed by B and 1, respectively. The number of outcomes

of type 8 observed in a trial is <8 . Since the logarithm is monotonic, we can make the likelihood function

more “well-behaved” by replacing it with the log-likelihood

logℒ =
∑
B,1

<0 log(Tr �̃0,1 �̃B) + <1 log(Tr �̃1,1 �̃B) + <2 log(Tr �̃2,1 �̃B) (4.36)

Without the log, the likelihood ℒ would numerically approach zero, since 0 ≤ ?8 ≤ 1 and the number of

shots per trial is large. We use MATLAB’s fmincon solver with the default interior-point algorithm to

minimize the negative log-likelihood, subject to the following constraints:

0 + 1 + 2 = 1 (4.37)

0 ≤ 0 ≤ �0 0 ≤ 1 ≤ �1 0 ≤ 2 ≤ �2 (4.38)

|&1 | ≤ �4 |&2 | ≤ �5 |&3 | ≤ �6 (4.39)∑
8

�̃8 = � (4.40)

The initial state must be normalized, and �8 is an upper bound that should be chosen based on

one’s rough knowledge of the physical system (i.e. ground and excited state populations after some

initialization procedure, and gate fidelity of faulty rotations). The operators �̃8 must constitute a valid

POVM and sum to the identity. The positive semidefinite property of �̃8 is implicitly enforced because

we parametrize it in terms of a Cholesky decomposition (B.4):

�̃8 = !!
†

(4.41)

! =


C1 0 0

C2 + 8C3 C4 0

C5 + 8C6 C7 + 8C8 C9

 (4.42)

where all three sets of 9 C-parameters are optimized along with 0, 1, 2, &1 , &2 , &3 3.

In nonlinear optimization, we must also provide an initial guess for each unknown parameter. The

closer the guess is to the true optimum, the better our chances are of not getting stuck in a local minimum.

If the hardware is good enough, guessing 0 = 1, 1 = 2 = &1 = &2 = &3 = 0 should be fairly close to reality.

We initialize �̃8 with data from trials where each of the initial states is prepared, and then measured in

the /-basis–that is, we use a subset of the data that represents measurement tomography. The function

NearestSPD from the MATLAB library QETLAB (Quantum Entanglement Theory LABoratory) then

finds the closest PSD matrix to each estimated �̃8 . At this point, they do not sum to the identity, which is

sufficient because we only need a rough guess.

In the discussion of how to construct complete states and bases, we verified our choices by showing

how to fix all the unknown matrix elements essentially by performing experiments that simulate

operator projections. This is not to say that MLE literally is doing basic sums and differences under the

hood, but just that the data fed to MLE is sufficient to uniquely constrain the values of interest in some

way. In the next section, we evaluate how well the MLE methodology performs.

4.2. Verifying the Estimation
The goal of this section is to benchmark how well the MLE routine can estimate the SPAM parameters

described so far. We generated three data sets, where each data set consists of 100 samples of parameter

settings of the form [a,b,c,e1,e2,e3,nip]. NIP stands for “near-ideal" POVM, which is generated by

adding Gaussian noise (� = 0.1) to the ideal PVM. To ensure PSD, we again use NearestSPD. To enforce

the trace constraint, we can reset one element of the POVM in the following way to correct this

�̃: → � − �̃8 − �̃ 9 8 ≠ 9 ≠ : (4.43)

Of course, the difference between two PSD matrices may not be PSD, so we must use NearestSPD again,
and iterate the two fixes via the following pseudocode

3MATLAB’s “chol" function returns an upper triangular matrix instead.
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GENERATE_NIP():
nip = PVM + Gaussian noise
while nip is not valid:
nip[0] = I - nip[1] - nip[2]
nip[0] = NearestSPD(nip[0])
nip[1] = I - nip[0] - nip[2]
nip[1] = NearestSPD(nip[1])
nip[2] = I - nip[0] - nip[1]
nip[2] = NearestSPD(nip[2])

This loop typically takes 1-5 iterations to produce a valid POVM, but rarely can loop forever (reason

unknown). This case can be easily caught and the process restarted. The result is a valid ground-truth

POVM that we want to estimate.

The parameters 1 and 2 are both chosen uniformly between 0 and 0.1, and 0 = 1 − 1 − 2. The three
data sets differ in their scaling of the coherent errors, where &1 , &2 , &3 are all sampled from a normal

distribution centered at 0, with standard deviations � = 0.01, 0.05, and 0.1 for the three data sets,

respectively. Then, each parameter set is used to generate 5000 shots per rotation per initial state, and

these shots are used to create an estimated parameter set [a’,b’,c’,e1’,e2’,e3’,nip’]with fmincon
(primes indicate estimates). The pseudocode for the whole procedure is

FIT_DATA(sigma):
[a,b,c,e1,e2,e3,nip] = sample_parameters(sigma)
thermal_state = a|0><0| + b|1><1| + c|2><2|
Rs = rotations(e1,e2,e3)
initial_states = complete_states(Rs, thermal_state)
shots = get_shots(nip, initial_states, shots=1000, Rs);
[a’,b’,c’,e1’,e2’,e3’,povm’] = extract_params_from_shots(shots);

We will examine the second dataset, where � = 0.05, which corresponds to a coherent error of

roughly 2.9 degrees. All errors are computed with bounded norms that have been normalized to [0, 1].
All stated percentages refer to this range, scaled by 100 (i.e. we are not computing relative percent

errors that may exceed 100%). This convention is chosen to avoid situations where the relative error

is abnormally high, i.e. if the true value of a parameter is 0, then any nonzero MLE output for that

parameter technically would have infinite relative error.

In Fig. 4.4, the H-axis is the trace distance (B.5.1) between the estimated thermal state �(0′, 1′, 2′) and
the actual thermal state �(0, 1, 2), and the G-axis is the trace distance from the actual thermal state to the

ideal case �(1, 0, 0). The plot shows how the estimation error varies as a function of the non-ideality of

the simulated, ground-truth data. We see that the 100 samples span a range of 0 to 0.2, noting that 1 is

the maximum possible trace distance between any two states. Over this range, the estimation error is

roughly constant, with an average value of just below 10
−2
, so the thermal parameters discovered by

maximizing the likelihood result in initial states only 1% different from their true forms.

In Fig. 4.5, the H-axis is the spectral norm (B.5.2) of the difference between the estimated rotation

*(&′) and the actual rotation *(&), and the G-axis is the spectral norm of the difference between the

actual rotation *(&) and the ideal rotation *(0). For a difference of unitaries, the spectral norm is

bounded between 0 and 2 4, so the norms have been divided by 2 so that the error range is [0, 1]. We see

that the estimation error ranges from roughly to 10
−2

to 10
−4

at all values of the true deviation from the

ideal case, with an average value of around 0.1% for all three parameters. Recall that the three faulty

rotations are

'12

G (� + &1) (4.44)

'12

G (�/2 + &2) (4.45)

'12

H (�/2 + &3) (4.46)

The data appears clumped because the coherent errors that label the datasets are Gaussian-distributed.

In Fig. 4.6, the H-axis is the diamond norm (B.5.3) of the difference between the estimated POVM and

the actual POVM, and the G-axis is the diamond norm of the difference between the actual POVM and

4This was confirmed numerically, and also analytically in B.5.2.
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the ideal PVM. The diamond norm is a bounded metric used to compare quantum channels. As we saw

in section 3.3, a POVM defines a set of Kraus operators, where a measurement result lets us post-select

and choose which measurement operator to apply. If the measurement is lost, we must take a weighted

sum over the operators with their respective probabilities, which is a quantum channel. If we convert

the POVM operators to measurement operators via

√
�8 → "8 , we can then use the diamond norm to

compare the estimated and actual POVMs via their Kraus sets {"8}. The average error comes out to

around 7%, and is stable across the range of near-ideal-POVMs. If one simply averages over the spectral

norm of the differences between the estimated and actual POVMs, then the average error is 0.0324 for

this dataset. Although this measure seems more optimistic, it is harder to interpret because it is only

bounded from below by 0. We used the stated metrics because they are upper bounded as well, so their

outputs can be interpreted as percentages of some maximum possible distance. Furthermore, the trace

distance and diamond norm 5 represent “worst-case" situations, where a semidefinite program finds

either the measurement or the state that maximizes the distinguishability 6.

Figure 4.4: The H-axis is the trace distance between the estimated and actual initial states, and the G-axis is the trace distance
between the actual and ideal initial states. Symbolically, this is �(�′, �) vs. �(�, |0〉〈0|)

5For small coherent errors, the diamond norm is very nearly the same as the spectral norm.

6There are simpler ways of computing the trace distance, at least, without convex optimization.
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Figure 4.5: Each subplot shows the estimation error for one of the three coherent parameters &. The H-axis is the spectral norm of

the difference between the estimated and actual rotations, and the G-axis is the spectral norm of the difference between the actual

and ideal rotations. Symbolically, this is | |*(&′) −*(&)| |2 vs. | |*(&) −*(0)| |2.

Figure 4.6: With the POVMs converted to quantum channels, the H-axis is the diamond norm between the estimated and actual

POVM, and the G-axis is the diamond norm between the actual POVM and ideal PVM. Symbolically, this is | |ℰ{
√
�′
8
} − ℰ{

√
�8}| |�

vs. | |ℰ{
√
�8} − ℰ{|8〉〈8 |}| |�.
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Figure 4.7: Probabilities for each measurement outcome (0/1/2) for each initial qutrit state, MLE output (y) vs. ground truth (x).

Thus, we are plotting Tr("̃′
8
�̃′
9
) vs. Tr("̃8 �̃9), where 8 indexes the color (0:blue, 1:yellow, 2:green), and 9 the subplot. These results

would be sufficient to perform measurement tomography.

Lastly, in Fig. 4.7, we note that the fit quality of all the above parameters is best ascertained by the

measurement statistics obtained by each sampled model. That is, even if the estimated parameters

deviate from their true values, the estimated parameter set should agree quite well with the actual set in

terms of measurement probabilities, because this is the only quantity that MLE could access. Each color

in each plot corresponds to a different measurement outcome–the top row of plots indicates that blue is

for |0〉, yellow for |1〉, and green for |2〉. The ideal initial state before measurement is the title of each

subplot. To keep the plots readable, we only show the results for measurement without pre-rotation

(otherwise there are 63 possible plots). If MLE were perfect, plotting the estimated probability against

its ground truth should follow the line H = G, and we see that to within less than 1% percent, this is

indeed the case. Deviating from the above plots, here we are computing the relative percent error. Thus,

whenever the true probability is close to 0, then the error is amplified not because the fit itself is worse,

but because the scale of the data is simply small. This explains certain legend entries that exceed 1%

error.

We refer the reader to Appendix ??, where plots from the � = 0.01 (0.6 degrees) and � = 0.25 (14

degrees) datasets are tabulated. The performance of MLE in these regimes is comparable to the data

shown in this section (2.9 degrees). With the SPAM set [a’,b’,c’,e1’,e2’,e3’,nip’] known, in the

next section we fix these parameters and use MLE to estimate the process matrix over time.

4.3. Estimating the Quantum Operation
In this section, we apply the sameMLEmethod to extract the process matrix of some quantum evolution.

We first generate a set of ground-truth SPAM parameters: a = 0.9894, b = 0.0105, c = 1.3352e-4,
e1 = -0.0853, e2 = 0.1398, e3 = -0.0605, and near-ideal POVM

0.9386 + 0.0000i 0.0802 + 0.0574i 0.0300 + 0.0471i
0.0802 - 0.0574i 0.1055 + 0.0000i 0.0923 - 0.0262i
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0.0300 - 0.0471i 0.0923 + 0.0262i 0.0910 + 0.0000i

0.0034 + 0.0000i -0.0425 - 0.0327i 0.0001 + 0.0026i
-0.0425 + 0.0327i 0.8443 + 0.0000i -0.0260 - 0.0307i
0.0001 - 0.0026i -0.0260 + 0.0307i 0.0019 + 0.0000i

0.0580 + 0.0000i -0.0377 - 0.0247i -0.0302 - 0.0496i
-0.0377 + 0.0247i 0.0502 + 0.0000i -0.0663 + 0.0568i
-0.0302 + 0.0496i -0.0663 - 0.0568i 0.9071 + 0.0000i

and obtain a set of estimates via the method of the preceding section a’ = 0.9910, b’ = 0.0090, c’
= 0, e1’ = -0.0856, e2’ = 0.1433, e3’ = -0.0604, and estimated POVM

0.9366 + 0.0000i 0.0808 + 0.0565i 0.0309 + 0.0468i
0.0808 - 0.0565i 0.1060 + 0.0000i 0.0932 - 0.0266i
0.0309 - 0.0468i 0.0932 + 0.0266i 0.0927 + 0.0000i

0.0042 + 0.0000i -0.0437 - 0.0321i -0.0001 + 0.0024i
-0.0437 + 0.0321i 0.8449 + 0.0000i -0.0267 - 0.0293i
-0.0001 - 0.0024i -0.0267 + 0.0293i 0.0024 + 0.0000i

0.0592 + 0.0000i -0.0371 - 0.0244i -0.0309 - 0.0492i
-0.0371 + 0.0244i 0.0491 + 0.0000i -0.0666 + 0.0559i
-0.0309 + 0.0492i -0.0666 - 0.0559i 0.9049 + 0.0000i

These parameter sets are fixed for the remainder of this report. The true parameters are used in the data

generation, and the estimated parameters are used in MLE.

4.3.1. Maximum Likelihood Estimation
To estimate the a quantum process, the log-likelihood from earlier can be reused, but the density

matrices are now time-dependent.

logℒ(C) =
∑
B,1

<0 log(Tr �̃0,1 �̃(C)B) + <1 log(Tr �̃1,1 �̃(C)B) + <2 log(Tr �̃2,1 �̃(C)B) (4.47)

where

�(C) =
∑
8

 8(C)�(0) †8 (C) (4.48)

and { 8(C)} is the quantum channel that evolves the system from C = 0 out to some time C. For qutrits,
the set of Kraus maps consists of 9 complex-valued 3 × 3 matrices, which only must obey the trace

constraint ∑
8

 †8 (C) 8(C) = � (4.49)

which is passed as a nonlinear constraint to MLE. The only unknowns are the matrix elements of each

 8(C), all other parameters in the likelihood are fixed.

4.3.2. Amplitude and Phase Damping
For our first case study, we can apply the MLE fitting to simulated data from a qutrit undergoing both

amplitude and phase damping channels. To recap, for a qubit, the amplitude damping (AD) channel is

 ��
1

=

[
1 0

0

√
1 − ?��

]
(4.50)

 ��
2

=

[
0

√
?��

0 0

]
(4.51)
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and the phase damping channel (PD) is

 %�
1

=

[
1 0

0

√
1 − ?%�

]
(4.52)

 %�
2

=

[
0 0

0

√
?%�

]
(4.53)

where p indicates the probability that the respective term occurs in the channel. When the two channels

occur simultaneously, we can compose the maps

ℰ��(ℰ%�(�)) =
∑
8 , 9

 ��8  %�9 �( %�9 )
†( ��8 )

†
(4.54)

It turns out that these channels commute, so we are free to take products of the individual channel

operators to form the operators for the combined channel (AP):

 �%
1
=  %�

1
 ��

1
=

[
1 0

0

√
1 − ?��

√
1 − ?%�

]
(4.55)

 �%
2
=  %�

1
 ��

2
=

[
0

√
?��

0 0

]
(4.56)

 �%
3
=  %�

2
 ��

1
=

[
0 0

0

√
1 − ?��

√
?%�

]
(4.57)

 �%
4
=  %�

2
 ��

2
=

[
0 0

0 0

]
(4.58)

The fourth element is 0 because first the second AP operator leaves only 0 or |0〉, and then the second

PD operator sends |0〉 to 0. Since they commute, the products could be taken in reverse, and a different

Kraus set would be obtained (where the fourth element is not 0). This is fine, because we know the

Kraus form is not unique. The probabilities are usually taken to be exponential decays

?�� = 1 − 4−C/)1 ?%� = 1 − 4−C/)) (4.59)

because expanding the action of the channel for small time will lead to a first-order differential equation,

i.e. the Lindblad master equation [18]. Plugging in C = 0 yields the identity map, and C = ∞ yields the

ground state, so the limits check out as well. Many different quantum channels may give rise to the

same map–recall that for phase damping, the channel may be also rewritten as a random phase flip:

 %�
1

=
√



[
1 0

0 1

]
(4.60)

 %�
2

=
√

1 − 

[
1 0

0 −1

]
(4.61)

where 
 = (1 +
√

1 − ?)/2. The unitary freedom of the Kraus form shows that a continuous dephasing

process actually has a discrete interpretation in terms of random I or Z gates. Complete dephasing

C = ∞→ ? = 1 corresponds to either doing nothing or applying a phase flip with equal probability.

The amplitude and phase damping channels for qutrits are similar [59]. For AD, we add a decay

operator for each transition between 8 → 9 that we want to allow in our system, with some probability.

For PD, we add a dephasing operator for each state in the system, with some probability. In Peterer et al.

(2015) [46], it is experimentally and numerically confirmed for a transmon embedded in a 3D cavity, that

the dominant decay channels are between sequential levels–i.e. we should include decay from 1→ 0

and 2→ 1, but that 2→ 0 can be neglected. This also connects well with how we have decomposed the

qutrit space into 01 and 12 Bloch spheres. Therefore, our qutrit AD Kraus set is

 ��
1

=


1 0 0

0

√
1 − ?11 0

0 0

√
1 − ?12

  ��
2

=


0

√
?11 0

0 0 0

0 0 0

  ��
3

=


0 0 0
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and the PD Kraus set is
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where there are different probabilities to control the different state-dependent operators, and different

)1 and )) parameters for both the 01 and 12 subspaces. Explicitly, we have

?11 = 1 − 4−C/)01

1 (4.64)

?12 = 1 − 4−C/)12

1 (4.65)

?21 = 1 − 4−C/)
01

)
(4.66)

?22 = 1 − 4−C/)
12

)
(4.67)

The first subscript refers to the channel (1 for AD, 2 for PD), and the second to the subspace (1 for 01, 2

for 12). The two channels commute as in the qubit case, so we can compose them in whichever way

produces more null Kraus maps, which is to apply the amplitude damping first. The joint Kraus set is
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We choose realistic decay parameters for our simulations )01

1
= 84, )12

1
= 41, )01

) = 126, )12

) = 52, using

1/)2 = 1/2)1 + 1/)) (4.77)

to get the pure dephasing times from the )2 times listed in Petersen et al. [46] (all units in microseconds).

Both the Kraus operators (Fig. 4.8) and the process matrix (Fig. 4.9) for the qutrit amplitude-and-phase

damping channel with these decay parameters are shown below.
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Figure 4.8: Ground-truth Kraus matrices for qutrit AP channel over time.

Figure 4.9: Ground-truth process matrix elements for qutrit AP channel over time.

The goal is to reconstruct figures 4.8 and 4.9 from faulty data. The true (unprimed) parameters

are used to generate 10
4
shots per initial state per measurement rotation, and the AP channel takes
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Figure 4.10: MLE Kraus matrices for qutrit AP channel over time.

the system from C = 0 to C = C′ in between. Using MLE, we estimate the process at 40 times equally

spaced between 0 and 80 microseconds. Fig. 4.10 shows the reconstructed Kraus matrices, and Fig. 4.11

shows the reconstructed process matrix over time. Only the real component of the processes and Kraus

matrices are shown.

Each timestep represents a separate nonlinear optimization problem to solve. Ideally, we should use

an initial point that is as close as possible to what we believe the true optimum is. On the other hand,

we want the method to work for any process, so we can make two assumptions:

1. If the time evolution is smooth, then for small enough time intervals, the process map should not

change very much from C to C + 3C. We can use the output of the previous MLE to seed the initial

point of the current MLE.

2. The very first MLE should be initialized to the identity map, since for small enough time, all maps

appear close to the identity.

It is worth stressing that the sets of measurement counts must be obtained with a fine-enough time

resolution that the dynamics really do appear smooth. If the system has some fast components that are

undersampled, the output of one process fit may not be very close to the process of the next timestep,

resulting in a potentially poor initialization. The caveat here is that since each fit is initialized from the

prior fit, if even one fit is erratic, it could potentially throw off all subsequent fits.

From Fig. 4.10, the unitary freedom of the Kraus form is now quite apparent. The Kraus set found

for each time by MLE does not “know" about any of the other simulations (other than the initialization

just described), and in principle each output could be in another basis. As a result, the Kraus maps over

time look very unstable, but when the process map is formed from the Kraus set, the evolution remains

smooth, proving that the Kraus maps indeed correspond to the same evolution despite their irregularity.

There is one additional point to clarify, regarding the form of the initial identity process. There are

many ways of creating such a process. One way might take the Kraus set to be a set of 8 matrices, all of

which are 0, and the last matrix is the 3 × 3 identity matrix. Alternatively, each matrix could be
1

3
of the

identity matrix. In general, each matrix could be some multiple of the identity, provided that the trace

constraint is satisfied. It is conceivable that one form might seed the resulting optimization better than

another. In the case of the AP channel, if we set C = 0 we can determine exactly what “kind" of identity

channel we should start with, and use that for the first initialization. From Eq. 4.68, we see that the
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Figure 4.11: MLE process matrix elements for qutrit AP channel over time.

first option we considered (just one nonzero Kraus matrix) is the correct choice. In the absence of prior

knowledge regarding the Kraus set–such as the next case study–one may need check empirically which

form produces the most trustworthy result.

Figure 4.12: Diamond norm between estimated and actual AP processes over time.

Finally, in Fig. 4.12, we confirm the accuracy of the process estimation. The diamond distance
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between the MLE estimate and ground-truth processes for the AP channel (ladder system) is less than

4% over the simulated time. This inaccuracy is partially due to estimation error in the MLE routine

(i.e. the optimality of the minimum), and partially due to the difference between the estimated SPAM

parameters and their true values, tabulated in section 4.3.

4.3.3. Transmon Device Evolution
The purpose of the previous example was to validate the accuracy of the MLE routine when the

ground-truth channel was known, so we could have something to compare the fits to. In reality, any

experimental system that we model as closed will still interact with its environment to some extent, so

all datasets obtained will obey open system dynamics. Since the line between system and environment

is always arbitrarily chosen 7, we do not have the luxury of tracing over known, unitary dynamics.

Instead, we can directly estimate a series of Kraus maps from a set of measurements taken over time,

and trust that the results reflect the true, effective process that the system undergoes.

In this section, we focus on the transmon device from MIT previously explained in section 3.5.3,

which was simulated in scqubits. The system will be one transmon, and its environment will be

another transmon that it is capacitively coupled to, both modeled as qutrits. This is physically motivated

by current processor designs, which consist of transmon lattices. The same complete basis of states used

above was created in Python, and prepared for the left (tunable) qutrit. The right qutrit was prepared in

a fixed state, from the set {|0〉 , 1/
√

2(|0〉 + |1〉), |1〉 , 1/
√

2(|1〉 + |2〉), |2〉}. The joint evolution is simulated

using the mesolve function in QuTiP, which evolves the two-qutrit state under the unitary evolution of

the device Hamiltonian, subject to a set of noise channels passed in a Lindblad collapse operators. In

the following simulations, there are two collapse operators, a 3 × 3 annihilation operator for each qutrit,

which model excitation loss. Both operators are scaled by the same rate 0.001, which was arbitrarily

chosen based on the resulting timescale of the dynamics. The system is evolved for a set of times, and

the right qutrit is traced out of the final state at each time. The resulting density matrix of the left qutrit

is transferred to MATLAB, where it is measured in the same set of bases as usual. The counts are then

used by MLE to reconstruct the reduced evolution of the left qubit, which is generally non-unitary

due to the partial trace over the coupling between the system and environment qutrits, resulting in

non-Markovianity. Though superconducting circuits are usually analyzed in the interaction picture,

simulating the interaction Hamiltonian in QuTiP resulted in some technical difficulties, so the lab-frame

Hamiltonian was used in the end. See section C.1 for the analytical form of the interaction picture

Hamiltonian. The Hamiltonian is simulated for two distinct flux regimes. The first is when the flux is

roughly Φ4GC = 0.15 (Figs. 4.13-4.17), tuning the system to the avoided level crossing that gives rise to

the ZZ-interaction. The second is when the flux is 0 on the left transmon, suppressing the coupling

(Fig. 4.18). In the coming plots, again, only the real component of the processes are shown.

Figures 4.13-4.17 contain a lot of information, but a few main points may be gleaned. First, recall

from section 3.4.2
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1

32

∑
8

Tr(�†9 8)Tr(�
†
:
 8)∗ (4.78)

=
1
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∑
8

〈〈� 9 | 8〉〉〈〈 8 |�:〉〉 (4.79)

which just expresses the elements of the process matrix in terms of the elements of the vectorized Kraus

operator  8 in the natural basis (the process matrix is the transfer matrix in this basis, up to a basis

reordering) Vectorizing a projector associates two indices with one

vec(|<〉〈= |) = |=〉 ⊗ |<〉 ≡ |� 9〉〉 (4.80)

where there is a one-to-one mapping from the projective indices <, = to the vectorized index 9: 9 ∈ [1, 9]
corresponds to basis element | b(9 − 1)/3c〉〈9 − 1 mod 3|. In the plots, the row index refers to the output

element, and the column index to the input element. We see that the dynamics is divided between fast

and slow oscillating terms. The slow terms occur in elements (1, 5, 9) × (1, 5, 9), which correspond to

how the projectors |0〉〈0|, |1〉〈1|, |2〉〈2| are mapped into themselves. These are the qutrit occupations

that undergo decay due to the amplitude damping, in addition to some resonant exchange with the

7Technically, there never is an environment, and the whole universe is always the system.
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environment, which causes oscillations that are slowwith respect to the unitary dynamics. All of the fast

terms originate from coherences in superpositions that rotate quickly in the lab frame. These coherences

are also affected by the coupling, which manifests as a slow-varying envelope over the high-frequency

fringes. Generally, the unitary dynamics also are aliased, depending on the time-resolution of the data.

Though this will produce lower apparent frequencies, as long as they still remain much higher than the

coupling dynamics, there will be no ambiguities.

As an example, consider Fig. 4.13, specifically the three orange curves of the “diagonal" plots, i.e.

elements "19 , "59, and "99. Respectively, these terms describe how population in |2〉 is sent to |0〉 , |1〉 ,
and |2〉. The results match our expectations, because we see that in the "19 plot, the decay constantly

increases the population in |0〉 via decay from |2〉, in addition to a very low oscillation from the resonant

exchange between |20〉 and |02〉. This exchange is weak because it is a two-photon exchange which

must be mediated by a one-photon coupling. In "59 and "99, the |2〉 is directly swapped via |20〉 ↔ |11〉,
giving rise to strong oscillations induced by the flux-bias. The oscillations in "59 do not completely

reach zero for short times (hundreds of nanoseconds) because decay from |2〉 is temporarily populating

|1〉 on the way to |0〉. In "99, population can only return via the coupling, hence the overall decay in time.

Similar analysis holds for the other elements, plots, and environment states. Though the coherences are

harder to intuit due to their precession, notice that the plots mirrored across the plot-diagonal show

similar time evolution. This is because terms like |8〉〈9 | and | 9〉〈8 | undergo identical dynamics, since the

process takes states to states: ℰ(�†) = ℰ(�)† → ℰ(|8〉〈9 |) = ℰ(| 9〉〈8 |). Throughout all of this, remember

that there is also residual inaccuracy due to the estimated SPAM parameters differing from their true

values by some small amount, though this should be minimal.

Figure 4.13: Process map over time for left qutrit, right qutrit in |0〉 state.
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Figure 4.14: Process map over time for left qutrit, right qutrit in |1〉 state.

Figure 4.15: Process map over time for left qutrit, right qutrit in |+〉
01

state.
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Figure 4.16: Process map over time for left qutrit, right qutrit in |2〉 state.

Figure 4.17: Process map over time for left qutrit, right qutrit in |+〉
12

state.

Lastly, we consider an example where the flux bias is 0, so that the ZZ-interaction is turned off. In

this regime, the state of the environment has little observable effect, so all the dynamics are very similar.

Thus, we only show the results for the case of an environment in the |0〉 state, in Fig. 4.18.



4.4. Measuring Markovianity 50

Figure 4.18: Process map over time for left qutrit, right qutrit in |0〉 state (flux off).

The residual non-Markovianity due to the always-on ZZ-coupling described in section 3.5.6 is

small enough that it cannot be detected from these simulations, which were performed in the lab

frame. Additional simulations in a rotating frame were attempted, but difficult to interpret due to the

comparative smallness of 350kHz to the dynamics in the interaction picture (6 ∼ 10MHz). Having

established that the dynamics of a qutrit may be successfully reconstructed via MLE, we can now move

on to analyzing the dynamics themselves.

4.4. Measuring Markovianity
Since there are infinitely many ways of purifying a quantum operation (i.e. via a Stinespring dilation),

knowing the channel does not give any explicit information about the environment. However, certain

properties of the system-environment interactionmaybe inferred from the estimatedquantumoperations.

One such quantity is the Markovianity of the evolution, which can be computed via the method of Bruer

et al. [13].

4.4.1. Amplitude and Phase Damping
For our first example, we use the same AP channel found in section 4.3.2. Two random pure states

are selected 8 as initial states, and the extracted process is applied for each moment in time. The trace

distance between these two states over time is then evaluated, and this is looped over 10
4
randomly

chosen pairs of initial states. The non-Markovianity is assessed by finding the pair whose trace distance

increases the most throughout the evolution. The discrete derivative of the array of trace distances is

computed, and summed over all positive entries, yielding the non-Markovianity. This is the number

in the titles of the plots in this section. If no such pair shows an increasing trace distance, then the

evolution is Markovian, and the value is 0.

8The sampling is Haar-random, and is performed by a function from the QETLAB library.
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Figure 4.19: Trace distance over time for pair that displays the

“most" non-Markovianity, using the Λ-system ground-truth

AP channel. Since the channel is Markovian, the pair is

effectively random.

Figure 4.20: Trace distance over time for pair that displays the

“most" non-Markovianity, using the Λ-system AP channel

found by MLE. Since the channel is Markovian, the pair is

effectively random.

The two qutrit pure states to the left of the legend are the pair (�1 and �2) whose trace distance

increased the most out of the batch of 10
4
samples. In cases with true Markovian evolution, the optimal

pair should essentially be random, since all pairs produce the same value, namely, 0. In Fig. 4.20, noise

in the reconstructed process maps causes small amounts of fictitious non-Markovianity to appear, which

is sensed by the metric. To remedy this, one can first fit the reconstructed processes to some functional

form, such as the product of a decaying exponential and a sinusoid, in order to extract an analytic model

from the MLE routine. Here, we simply use a moving average window to smooth the data, which

improves the consistency of the pair found via sampling across multiple runs of the script.

Now, you might have noticed that the plot captions say Λ-system. The above plots were actually

simulated for a system identical to the one described in section 4.3.2, except that the |2〉 → |1〉 decay
channel was replaced with a |2〉 → |0〉 channel of the same strength, forming a Λ-system instead of a

ladder system. Below, we show the plots for the ladder system originally described.

Figure 4.21: Trace distance over time for pair that displays the

most non-Markovianity, using the ground-truth ladder

system AP channel.

Figure 4.22: Trace distance over time for pair that displays the

most non-Markovianity, using the ladder system AP channel

found by MLE.

Here, we observe an unexpected result. Amplitude and phase damping channels are prototypical

Markovian evolutions–they are useful precisely because they can be added to Lindbladmaster equations,

and phenomologically they describe observed data in experiements quite well. However, it is clear from
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the data that when the initial density matrices are close to |1〉 and |2〉, respectively, the evolution is

non-Markovian, because the trace distance begins to increase again around C = 40. The states become

mixed and approach each other, but their purity returns because there are two fixed points, with

|1〉 → |0〉 and |2〉 → |1〉. This behavior apparently comes from the amplitude damping component of

the channel, where we assumed that decay could only occur sequentially, so from 2→ 1 and 1→ 0.

Since the Kraus form represents a convex sum over different things that can happen to the system, in

the way we have rewritten it, technically either of the decays can occur, but not one after another, since it

describes macroscopic time evolution. In reality, when Kraus operators are imported into the Lindblad

equation, they are expanded for small time and are applied infinitesimally as collapse operators. The

interpretation of the Lindblad equation is that throughout the unitary evolution, it is as if we are

constantly measuring with the collapse operators with some rate, and indeed, the iterated application of

the channel would cause |1〉 to decay to |0〉, because the iteration allows for the composition of Kraus

operators (such as |2〉 → |1〉 → |0〉). For the sake of confirming that a Markovian evolution is recognized

as such, we modified the simulation after noticing this edge case, and presented the Λ-system results

first, which hopefully was not too confusing.

For the curious reader, the reason why the dip occurs at C ≈ 40 is because the trace distance is

computing the sum of the absolute values of a matrix of the form (if using |1〉 and |2〉 as the initial states)
1 − 0(C) 0 0

0 0(C) − (1 − 1(C)) 0

0 0 −1(C)

 (4.81)

where 0(C) and 1(C) are the populations of the |1〉 and |2〉 states over time. The trace distance is

1

2

(
1 − 0(C) + |0(C) − (1 − 1(C))| + 1(C)

)
(4.82)

At C = 0 and C = ∞, the trace distance is 1, but at some intermediate time, the remaining population in

|1〉 exactly cancels what has decayed from |2〉 causing the middle term to be 0. The trace distance then is

just 1(C) at this time, which is less than 1, proving that the trace distance must decay and then revive.

The value C ≈ 40 depends on the two decay times, and it turns out that

4−C/82 + 4−C/41 = 1 (4.83)

is satisfied if C = 39.8.

4.4.2. Transmon Device Evolution
In this section, we apply the trace-distance measure to the transmon process maps found in sec-

tion 4.3.3. The plots appear in the same order as before, with the environment qutrit in the state

{|0〉 , |1〉 , |+〉
01
, |2〉 , |+〉

12
}. Deviating from the random search used above, the pairs of states in this

section are found by solving a separate optimization problem using fmincon, where the objective to

maximize is the Markovianity defined via the trace distance, and the free parameters are the matrix

elements of pair of pure states, |#〉
1
and |#〉

2
. The initialization is random, which is sufficient for our

purposes, but in general, the best approach is to first obtain a coarse random sampling over initial

pairs (like in the previous section), followed by a nonlinear optimization at each random initial point.

Combining sampling and optimization allows one to accurately probe each local minimum, without

getting stuck in any particular one.
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Figure 4.23: Trace distance over time for left qutrit, right qutrit in |0〉 state.

Figure 4.24: Trace distance over time for left qutrit, right qutrit in |1〉 state.
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Figure 4.25: Trace distance over time for left qutrit, right qutrit in |+〉
01

state.

Figure 4.26: Trace distance over time for left qutrit, right qutrit in |2〉 state.
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Figure 4.27: Trace distance over time for left qutrit, right qutrit in |+〉
12

state.

|#〉4=E |#〉
1

|#〉
2

|0〉 0.50 |0〉 + 0.00 |1〉 + 0.49 |2〉 0.50 |0〉 + 0.00 |1〉 + 0.50 |2〉
|1〉 0.50 |0〉 + 0.50 |1〉 + 0.01 |2〉 0.49 |0〉 + 0.50 |1〉 + 0.01 |2〉

1/
√

2(|0〉 + |1〉) 0.01 |0〉 + 0.53 |1〉 + 0.46 |2〉 0.00 |0〉 + 0.46 |1〉 + 0.53 |2〉
|2〉 0.00 |0〉 + 1.00 |1〉 + 0.00 |2〉 0.00 |0〉 + 0.00 |1〉 + 1.00 |2〉

1/
√

2(|1〉 + |2〉) 0.01 |0〉 + 0.80 |1〉 + 0.18 |2〉 0.01 |0〉 + 0.20 |1〉 + 0.80 |2〉

Table 4.4: Pairs of input states that maximized the increase of their trace distance over time, while evolving in the presence of an

environment qutrit |#〉4=E , subject to the two-transmon device Hamiltonian. The state weights are probabilities.
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Figure 4.28: States of Table 4.4

We organize the results of the above plots, listing the pairs of initial

states that maximized the non-Markovianity in their respective cases

in Table 4.4. Each state is expanded in terms of its probabilities over the

qutrit basis. In each case, the optimal pair of states lies primarily within

one of the qubit subspaces, with little weight in the excluded state.

These states are plotted in Fig. 4.28. The order of the Bloch spheres,

from top to bottom, is the same as the row order of the tables. For

example, the top Bloch sphere contains the optimal pair of states when

the environment is in the |0〉 state, which have virtually no weight in

the |1〉 state, so the 02-Bloch sphere is shown. The red and blue dots

are the projections of the orange and green vectors, respectively, which

help denote where the states actually lie within the spheres.

The particular states listed Table 4.4 allowus to connect the theory of

theMarkovianitymetricwith our physical intuition based on the device

Hamiltonian. Recall that the metric wants to find states that, assuming

they start distinguishable (say, on opposite sides of a sub-Bloch sphere),

will evolve to become nearly identical, and then later recover some of

their initial distinction. This will occur when the joint system becomes

entangled, such that tracing over the environment produces a mixed

state. When the two initial states become maximally entangled in their

own evolutions, their reduced forms will be maximally mixed, and

the trace distance between them will be 0, or at least small. When

the entanglement oscillates away, the states become distinguishable

again. Also, recall that the interaction Hamiltonian couples states

that differ by one photon, and that the trace distance between |8〉
and | 9〉 is 1, if 8 ≠ 9; 8 , 9 ∈ (0, 1, 2). The level structure of the system

(Fig. 3.8) at )4 = 0.15, when the coupling is turned on, indicates four

main near-resonances, listed in order of decreasing strength (roughly):

|11〉 ↔ |20〉 , |01〉 ↔ |10〉 , |12〉 ↔ |21〉 , |11〉 ↔ |02〉. The first is much

stronger than the other three, and the stronger the interaction, the

more completely the two states are swapped. Lastly, remember that

the amplitude damping in the simulation causes all initial states to
approach |0〉 eventually.

In the first case, the right qutrit (environment) is |0〉, and the most

entanglement occurs if the system states are orthogonal superpositions

of |0〉 and |2〉, so that during the strongest interaction, the Bell states |00〉 ± |11〉 are formed, resulting in

identical mixed states near C = 70ns.

In the second case, a similar situation arises, but the relevant entangled states are |01〉 ± |20〉. The
situation is complicated by the |11〉 → |02〉 transition, which is evident in Fig. 4.24, whose trace distance

does not dip as low as the first case. Extra kinds of entanglement, with their own timescales, will

generally prevent the system states from becoming maximally mixed at the same time.

When the environment is 1/
√

2(|0〉 + |1〉), this picture is even more complicated, and we see that

the system states struggle to ever be far from each other (the flattened fringes in Fig. 4.25), which is

presumably due to the states always being entangled via some component of the interaction. Interestingly,

superpositions of |1〉 and |2〉 now comprise the preferred pair.

The fourth case is apparently quite different, looking like a a small non-Markovian oscillation added

to a Markovian decay. The chosen pair is |2〉 (which doesn’t evolve at all) and |1〉. The non-Markovianity

is weak because the system has no way to access the strongest exchange, and ultimately relies on the

weaker coupling |12〉 ↔ |21〉, where the reduced state is able to slightly approach |2〉, causing small

resurgences.

In the last case, the environment is in the state 1/
√

2(|1〉 + |2〉). We would then expect the |2〉
component to contribute the small oscillations we just saw, while the |1〉 component allows access to

the strong exchange, causing large resurgences like in the first three plots. Fig. 4.27 shows that this is

indeed the case. We can also see this via Fig. 4.28, where in the first three cases, the pairs all lie within

their respective equators, but in the fourth, the states lie along the I-axis; it then makes sense that for

the fifth case, the pairs lie between the equator and the poles.
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Overall, the dynamics are most non-Markovian when the environment is in the qubit subspace,

which is evident in the strongest exchange term |11〉 ↔ |20〉. Paralleling our previous analysis, we also

show the non-Markovianity for the 0 flux case, when the environment is |0〉.

Figure 4.29: Trace distance over time for left qutrit, right qutrit in |1〉 state (flux off).

As expected, the evolution is mostly Markovian, but not completely, due to the always-on coupling.

The goal of all this analysis was to provide a convincing link between actual, physical systems of interest,

and the conclusions one could draw by using the MLE framework and Markovianity metric. This

further substantiates the correctness of the methods described in this report, and illustrates their use.

4.5. Analysis
Our work contrasts with the methods in section 3.4 in several important ways. The first step, fitting the

POVM, is something between QPT and GST, because though we characterize the null process, we end

up with a self-consistent parameterization of the SPAM procedure, where the error is neither attributed

entirely to the state preparation or measurement. Though it is still possible that such error could be

spread incorrectly across these parameters, using a physically informed model (i.e. initial state is not

totally unknown but mixed, rotations are not totally unknown but just are over/under-rotations) should

constrain the optimizer and limit the number of extraneous models that can mimic the data. The second

step, fitting the process map, is indeed equivalent to QPT, but performing it over the course of an

individual process–as opposed to characterizing a gate in its entirety, as is the usual case–provides crucial

information regarding the CP-divisibility of the dynamics, which in turn illuminates the Markovianity

of the system-environment interaction. Importantly, none of the methods in section 3.4, in their standard

incarnations, can probe non-Markovian processes.

Furthermore, we note that fixing the POVM parameters in the subsequent process estimation,

as opposed to simultaneously optimizing over them and the process as in GST, guarantees a lower-

order optimization problem. In the best case (Gaussian likelihood based on Pauli transfer matrix),

GST must deal with a 10th order polynomial [26]. Neither approach is very efficient, however, the

per-trial time of our method is quite fast. Each batch of SPAM parameters and snapshot of process

parameters was estimated in a few seconds. Obtaining the overall dynamics of some process could take

a while, depending on the desired temporal resolution. In essence, our method requires solving many

inexpensive MLE instances.

The validity of our assumption that the SPAM parameters may be fixed in the process estimation

entirely depends on the stability of the experimental device over time. For realistic device parameters,
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running 1000 shots takes a time on the order of O(1) seconds, assuming preparation and measurements

take a few microseconds, and that gate times are negligible, taking nanoseconds. There are 3
2
and 3

4

experiments to estimate qutrit states/POVMs and processes, respectively. The total timescale should

be upper bounded by several minutes per resolved timestep, whereas qubit T1/T2 lifetimes–and by

extension, their environments–typically fluctuate on the scale of hours. Therefore, our assumption

is justified if one takes up to around 60 snapshots of the time-evolution. This simply demonstrates

that realistic timescales do not completely prohibit our procedure; of course, a more careful analysis is

needed once a device has actually been selected, and these timescales better quantified.



5
Conclusion

5.1. Future Directions and Potential Improvements
Having completed and evaluated the framework presented herein, there are several avenues for

exploration, and also many potential improvements.

The experimental data used to estimate the process maps could also be fit directly to a Lindblad

master equation. If the evolution was already found to be sufficiently Markovian, then the reconstructed

evolutions under the process map and Lindblad ME should be very similar. Extra features present in

the process map evolution, but absent in the fitted master equation evolution, would represent non-

Markovian dynamics. This approach has previosuly been demonstrated for single[29] and two-qubit[53]

cases in a solid-state setting, but the qutrit case is unexplored.

Regarding further evaluation of the framework, different ansaztes for errors in the initial state and

rotationmatrices could be incorporated in theMLE objective function, and instead of the idle process, the

dynamics of quantum gates should be investigated. Other models known to be non-Markovian, such as

the damped-Jaynes Cummings Hamiltonian, or more complicated circuit QED device models, would be

worth simulating as well. With the time-dependent process in hand, other metrics of non-Markovianity

may be utilized, such as the negative canonical rate approach of Hall et al. [27]. Importantly, applying

the various metrics listed in section 3.2.6 to real data could cast the deciding vote on which to prefer,

basing their quality in terms of practicality, similar to the analysis of Uriri et al. [55].

Regarding the MLE procedure itself, the likelihood function could also be expressed in a Gaussian

form, instead of a product of independent probabilities. Furthermore, Bayesian mean estimation could

be used instead of MLE entirely, which remedies the conundrum that MLE might produce estimates

involving probabilities equal to 0, which are unphysical1 and impossible to obtain error bars for [10].

Speaking of error bars, when applying the MLE framework to real-world data, there will no longer

be any ground-truth to reference, so the error of the estimated quantities will need to be considered

differently. This is actually a subtle issue [26], because the variance of the MLE estimate due to sampling

error eludes the standard Hessian-based method, due to the lack of asymptotic normality 2. One way to

assess sampling error is to use a Monte-Carlo approach, which is essentially what was performed in this

report–i.e. generating many datasets within different error regimes, and evaluating the fit quality as a

function of that error. We did not, however, vary the sampling error, choosing instead to leave it built-in

to the procedure, and quantifying the effects of systematic deficiencies in the SPAM parameters.

Lastly, it would be remiss to not discuss the issue of scaling up, though any method based on

quantum process tomography does not bode well in this regard. However, there do exist bootstrapping

methods such as the pairwise perturbative ansatz (PAPA) [25], which trades accuracy for polynomial

efficiency, but still remains descriptive. PAPA expresses an =-qubit process in terms of an ansatz built

out of two-qubit processes, which are then informed via the tomographic method of choice, which

could be QST, GST, or a 2-qutrit extension of this work.

1In short, it should be impossible to say something occurs with 0 probability based on only a finite number of samples.

2We intentionally bias the output of MLE to be physical, which violates certain statistical assumptions.
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5.2. Summary
In this report, we built, validated, and then utilized a tomographic framework to reconstruct the

dynamics of a qutrit in time, self-consistently estimating the SPAM parameters of the system via

maximum-likelihood estimation. The time-dependent process map was then used to quantify the

Markovianity of an evolution based on the behavior of the trace distance between certain initial states.

Both Markovian and non-Markovian examples were studied, via the qutrit amplitude and phase

damping channel, and a system of two coupled superconducting qutrits, respectively.

Potential uses include pinpointing when and how a qubit state undergoes a leakage error (when

elements of the process matrix take the system out of the computational subspace); crosstalk errors due

to spurious entanglement (when the evolution becomes non-Markovian while an adjacent qubit/trit is

driven); and the strength and type of the dominant noise channels (when the decay and/or oscillation

of certain process elements fluctuate); all estimated in a manner consistent with the inherent SPAM

conditions (which can be informed based on one’s prior understanding of the system).

We hope that this framework represents a step towards more careful device characterization, as

hardware progresses from the NISQ regime to fault-tolerance, and also promotes the use of qutrits

as a computational resource in their own right, which may lead to more powerful demonstrations of

quantum advantage.
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A
Quantum Maps

A.1. Vectorization
The vectorization operation is extremely useful in expressing the action of a superoperator via matrix

multiplication. If an operator takes vectors to vectors, then a superoperator takes matrices to matrices.

There are many forms a superoperator might take, but the particular form we are interested is

ℰ(�) =
∑
8

�8��8 (A.1)

Vectorization is defined via the relation

vec(|8〉〈9 |) = |8〉| 9〉 = |8 , 9〉 ≡ |<〉〉 (A.2)

We see that because it takes two-index objects (matrices) to one-index objects (vectors), vectorized

operators live in a Hilbert space double the size of the space in which their kets live. where the

double-angle brackets remind us that the vector has double the dimension we might otherwise expect

from just a single bracket. We like to think of vectors as having only one free index, so the indices 8 and
9 are subsumed into some new index, <. If we are not using the natural outer-product basis, then the

notation for a matrix � is just

vec(�) = |�〉〉 (A.3)

Vectorization is the same as stacking the columns of a matrix

vec

[
0 1
2 3

]
=


0
2
1
3

 (A.4)

It is also possible to vectorize by stacking the rows of the matrix, and though the two conventions are

equivalent, it is important to always know which is being employed. The inner product between two

operators has a natural vectorized form:

Tr(�†�) = vec(�)†vec(�) = 〈〈�|�〉〉 (A.5)

In the same way that we normalized vectors, one can divide by the dimension, 3, in the above inner

product (i.e. if you want the norm of � to be 1). There are some neat identities involving vectorization,

which are listed below. Interestingly, vectorizing the identity gives a maximally entangled state

|�〉〉 =
∑
8

vec(|8〉〈8 |) =
∑
8

|88〉 (A.6)
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For the product of three operators,

vec(���) = (�) ⊗ �)vec(�) (A.7)

The expansion of a matrix into the outer-product basis

� =
(∑

8

|8〉〈8 |
)
�

(∑
9

| 9〉〈9 |
)

(A.8)

=
∑
8 , 9

|8〉〈8 |�| 9〉〈9 | (A.9)

|�〉〉 =
∑
8 , 9

(
| 9〉〈9 | ⊗ |8〉〈8 |

)
|�〉〉 (A.10)

Matrix transposition becomes

�) =
(∑

8

|8〉〈8 |
)
�)

(∑
9

| 9〉〈9 |
)

(A.11)

=
∑
8 , 9

|8〉〈9 |�|8〉〈9 | (A.12)

|�)〉〉 =
∑
8 , 9

(
| 9〉〈8 | ⊗ |8〉〈9 |

)
|�〉〉 (A.13)

So we have seen two different ways a superoperator can act, either via the “quantum operator" form, or

the vectorized matrix form. These are summarized below, for some superoperator ( in the outer-product

basis [19]:

((·) =
∑
8 , 9 ,:,;

(8 9 ,:; |8〉〈9 | · |:〉〈; | (A.14)

((·) =
∑
0,1

(01 |0〉〉〈〈1 |·〉〉 (A.15)

The first action looks like the usual quantum operator form, where a matrix is dropped in the middle

of two linear operators. If we want our basis to have a product state form, we must use the natural

basis, as opposed to the Pauli basis, which is equally valid but does not admit a nice two-to-one index

correspondence. The second action is the result of first vectorizing the operator basis and the operator

input, and then applying ( like a matrix. In terms of matrix elements, the following relations can be

obtained between the two actions

(01 = 〈0 |( |1〉 = 〈8 , 9 |( |:, ;〉 = vec(|8〉〈9 |)† · ( · vec(|:〉〈; |) (A.16)

= Tr

[
| 9〉〈8 |(

(
|:〉〈; |

) ]
(A.17)

= 〈8 |(
(
|:〉〈; |

)
| 9〉 (A.18)

= (8 9 ,:; (A.19)

A.2. Vectorized Lindblad Equation
One very important use of vectorization is that it gives the Lindblad master equation the form of a linear

system [18].

¤� = (ℋ + G)� (A.20)

ℋ = −8(� ⊗ � + � ⊗ �) (A.21)

G =
∑
8

!∗8 ⊗ !8 −
1

2

(� ⊗ (!†8 !8) + (!
)
8 !
∗
8 ) ⊗ �) (A.22)

whereℋ is the vectorized unitary evolution from the Hamiltonian, and G is the vectorized Lindbladian.

The solution is simply

�(C) = exp[(ℋ + G)C]�(0) (A.23)
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A.3. Choi Matrix
Similar to how the vectorization map relates vectors to matrices, the Choi matrix provides a way of

uniquely associating quantum channels (i.e. Kraus sums) to matrix superoperators. We have some

abstract channel Φ : ℒ(X) → ℒ(Y); in the specific case of density matrices, the output space is equal to

the input space (because they are square matrices), soX = Y, but generally Φ is just some superoperator

that takes linear operators on X to linear operators on Y (these spaces are Hilbert spaces). The Choi

matrix is defined as

�(Φ) = [� ⊗ Φ](|$〉〈$ |) (A.24)

where |$〉 is the maximally entangled state

|$〉 =
3−1∑
8=0

|88〉 (A.25)

Thus, the Choi matrix is the density matrix of a maximally entangled state, half of which is passed

through a channel whose effect is given by Φ. There is a choice of which “half" to run through the

channel: I have seen the “right", or second half, more commonly used in the literature, so I will keep

that convention here. We can expand out the Choi matrix:

�(Φ) = [� ⊗ Φ]
( 3−1∑
8 , 9=0

|88〉〈9 9 |
)

(A.26)

= [� ⊗ Φ]
( 3−1∑
8 , 9=0

|8〉〈9 | ⊗ |8〉〈9 |
)

(A.27)

=

3−1∑
8 , 9=0

|8〉〈9 | ⊗ Φ(|8〉〈9 |) (A.28)

without assuming anything else about Φ, this is as far as we can go. Now, let’s assume that Φ is a valid

CPTP quantum channel, which results in the operator-sum form for Φ:

Φ(�) =
∑
8

 8� 
†
8 (A.29)

With this, we can proceed with the Choi matrix:

�(Φ) =
3−1∑
8 , 9=0

|8〉〈9 | ⊗
∑
<

 <(|8〉〈9 |) †< (A.30)

=
∑
<

� ⊗  <
( 3−1∑
8 , 9=0

|88〉〈9 9 |
)
� ⊗  †< (A.31)

=
∑
<

( 3−1∑
8

� ⊗  < |88〉
) ( 3−1∑

9

〈9 9 |� ⊗  †<
)

(A.32)

Now, the operator � ⊗  < has a block diagonal form:

� ⊗  < =

[ <]

. . .

[ <]

 (A.33)

Moreover, it is acting on a maximally entangled ket, which in 3 dimensions has a 1 every 3 + 1 spaces

down its column, and 0s elsewhere. Acting the block matrix on this vector produces a new vector where
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the =th column of  < (1 ≤ = ≤ 3) appears in the =th subcolumn of the vector:

3−1∑
8

� ⊗  < |88〉 =


[col1]
[col2]
...

[col3]

 (A.34)

so that the columns are stacked. This is exactly the process of vectorization. With this, the Choi matrix

takes on a simple form:

�(Φ) =
∑
<

vec( <)vec( <)† (A.35)

This makes explicit that the Choi matrix is Hermitian (which also obviously follows from the fact that it

is a density matrix). So, to get the Choi matrix from the Kraus operators, we just compute the above sum

over outer products. To get the Kraus operators from the Choi matrix, we can use the spectral theorem

to decompose the Hermitian �(Φ):

�(Φ) =
∑
<

�< |<〉〈< | (A.36)

The Kraus operator  < , then, is just the un-vectorized form of |<〉, and the number of Kraus operators

is the rank of the spectral decomposition. The Kraus operators found in this way are the “canonical"

Kraus operators. Since the rank of a matrix can never be larger than the space in which its columns live,

this shows why one never needs more the 32
Kraus operators to describe a process.

We just saw how to obtain a set of canonical Kraus operators from the Choi matrix, but the

construction of the Choi matrix itself may have seemed arbitrary. In fact, there is a very intuitive way of

seeing �(Φ). First, we should express Φ in terms of its process matrix

Φ(�) =
∑

"8 9%8�%9 (A.37)

where the operator basis % is chosen to be the Pauli basis. Plugging in, we get

�(Φ) =
3−1∑
8 , 9=0

|8〉〈9 | ⊗
(∑
<=

"<=%< |8〉〈9 |%=
)

(A.38)

=
∑
<,=

"<=
( 3−1∑
8 , 9=0

|8〉〈9 | ⊗ %< |8〉〈9 |%=
)

(A.39)

=
∑
<,=

"<=
(
� ⊗ %< |$〉

) (
〈$ |� ⊗ %=

)
(A.40)

=
∑
<,=

"<= |�<〉〈�= | (A.41)

where we used the fact that applying each of the four single qubit Paulis � ⊗ %8 to the maximally

entangled Bell state |$〉 produces the four Bell basis states. Thus, the Choi matrix is the process matrix

after it has been rotated into the Bell basis by the Bell preparation unitary* = H1CNOT12.

A.4. Pauli Transfer Matrix
The Pauli transfer matrix 'Λ just says what happens if you pass a Pauli matrix through some process,

and then project it back into the basis of Pauli matrices:

〈〈9 |'Λ |:〉〉 =
1

3
Tr(%9Λ(%:)) (A.42)

Trace-preservation holds if the first row is [1, 0, 0, 0], and CP holds if the corresponding Choi matrix is

positive semidefinite [26]. The PTM can be expressed in terms of the process matrix by just plugging in

for Λ:

〈〈9 |'Λ |:〉〉 = 〈〈9 |
∑
<,=

"<,=%
∗
= ⊗ %< |:〉〉 =

1

3

∑
<,=

"<=Tr(%9%<%:%=) (A.43)
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A.5. Canonical Lindblad Form
The various Markovianity metrics (distance measures, volume measures, entanglement, Choi-matrix,

etc.) may all be unified under the following unifying description of non-Markovianity. In the time-

dependent master equation, the canonical form is one such that the Lindblad collapse operators !:(C)
form an orthonormal basis set of traceless operators, and in this canonical form, the evolution at a time C
is non-Markovian if and only if the canonical decoherence rates are negative. If they are positive, then

the evolution is Markovian. These decoherence rates are uniquely determined and are invariant under

any unitary transformation. Such a unitary transformation will, however, change the !:(C) operators,
and this is actually how the decoherence rates are obtained. Essentially, one starts with the Kraus form

for the time evolution of the system

¤� = ΦC(�) =
∑
:

�:(C)��†:(C) (A.44)

Then we decompose the Kraus operators into a complete set of # = 32
basis operators, which are all

Hermitian, orthogonal, and traceless (except for the element �0 which is assumed to be �/
√
3). This

yields the unique decomposition

¤� =
#−1∑
8 , 9=0

28 9�8�� 9 (A.45)

which is basically the same procedure by which the process matrix is obtained. The decoherence matrix

3 is defined as the # − 1 × # − 1 matrix whose elements 38 9 = 28 9 for 8 , 9 = 1, 2, ..., # . After some

manipulation, the equation can be written as

¤� = �� + ��† +
#−1∑
8 , 9=1

38 9�8�� 9 (A.46)

where � = 200

3
+∑

8
280√
3
�8 . Already, the canonical form is beginning to emerge, and using some trace

constraints, the time-dependent Lindblad form can be obtained. The elements 38 9(C) are the rates of the
collapse terms, and since the matrix is unitary, we can diagonalize 3:

38 9 =
∑
:

*8:�:*
∗
9: (A.47)

where the eigenvalues �: are real but not necessarily positive. The canonical collapse operators are

!:(C) =
∑#−1

8=1
*8:(C)�8 . From the above, we see that it is very important to first rewrite the master

equation in canonical form (i.e. unitarily transform the collapse operators) to obtain the correct canonical

rates �:(C).



B
Linear Algebra

B.1. Singular Value Decomposition
The SVD theorem states that any < × = matrix can be decomposed into the following form:

" = *Σ+† (B.1)

where * is a unitary < × < matrix, Σ is a diagonal < × = matrix, and + is a unitary = × = matrix. In

quantum information, we usually have that the input and output spaces are equal, so that all three

matrices are square and have the same size. The rank of a matrix is the number of nonzero singular

values in Σ.

B.2. Diagonalization
A matrix is diagonalizable if it is similar to a diagonal matrix:

" = %�%−1

A matrix " can be diagonalized iff the sum of the dimensions of its eigenspaces is equal to the total

dimension of the space in which " lives. This means that the eigenvectors of " form a basis for the

space.

B.3. Spectral Theorem
A matrix is normal if it commutes with its adjoint

""† = "†" (B.2)

A quick result is that if " is Hermitian (" = "†), it is automatically normal. Unitary operators

("† = "−1), positive operators (" = ##†), and skew-Hermitian operators ("† = −") are also normal.

If a matrix is normal, then it is diagonalizable via a unitary matrix %:

" = %�%−1 = %�%† (B.3)

=
[
®?1 . . . ®?=

]
�


®?1

†

...

®?=†

 (B.4)

=

=∑
8

38 |?8〉〈?8 | (B.5)

The columns of the matrix % form an orthonormal eigenbasis for the space that " lives in. A Hermitian

" has only real 38 . The singular values are the eigenvalues, and the rank of the matrix is the number of

nonzero eigenvalues.
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B.4. Cholesky Decomposition
Any Hermitian, positive-definite matrix " has a Cholesky decomposition into the product of a lower

triangular matrix and its adjoint.

" = !!† (B.6)

! =


;11 0

...
. . .

;=1 . . . ;==

 (B.7)

This is very useful for parameterizing density matrices–although they are positive semi-definite, you can

always just add a very small multiple of the identity to your matrix so that a solver will find a Cholesky

decomposition, with only a negligible change to your data. In MATLAB, the output of chol(M) is upper
triangular, so the decomposition convention is " = !†! instead.

B.5. Matrix Norms
B.5.1. Trace Distance
The trace distance (also known as the Schatten ? = 1 norm) expresses the difference between two states

� and � in terms of their distinguishability, which is based on the probability of determining whether

one was given � or � based on a single measurement with some optimal POVM {%, 1 − %}.

�(�, �) = 1

2

| |� − � | |1 (B.8)

=
1

2

Tr

[√
(� − �)†(� − �)

]
(B.9)

=
1

2

∑
8

|�8 | (B.10)

= max

%
Tr[%(� − �)] (B.11)

The third equality, the sum over the absolute value of the eigenvalues of � − �, follows from the fact that

� and � are Hermitian. The success probability of distinguishing the states is

?BD22 =
1

2

(1 − �(�, �)) (B.12)

The trace distance is bounded between 0 and 1. The trace distance between � and � is also half the

Euclidean distance between the two Bloch vectors of the states [44].

B.5.2. Spectral Norm
In MATLAB, the norm function computes the spectral norm, also known as the induced norm, which

uses a vector ?-norm to construct an operator norm.

| |�| |? = sup

G≠0

| |�G | |?
| |G | |?

(B.13)

where G is some vector, and | | · | |? is the ?-norm

| |G | |? =
(∑

8

|G8 |?
)

1/?
(B.14)

If ? = 2, the vector norm is simply related to the inner product in Hilbert space

| |G | |2 =
√
〈G |G〉 (B.15)
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If we want to compute the spectral norm of the difference between two unitary matrices* and + (as we

did in section 4.2), we can obtain an upper bound by maximizing over pure states |G〉:

| |* −+ | |2 = sup

|G〉≠0

| |(* −+) |G〉 | |2√
〈G |G〉

(B.16)

= sup

|G〉≠0

√
〈G |(*† −+†)(* −+)|G〉 (B.17)

= sup

|G〉≠0

√
〈G |2� − (+†* +*†+)|G〉 (B.18)

= sup

|G〉≠0

√
2 − 〈G |+†* +*†+ |G〉 (B.19)

Since we are using the same unitary with two different angles, we can say* = *()), + = *() + �), so
+†* = *(−�).

〈+†* +*†+〉 = 〈*(−�) +*(�)〉 (B.20)

To maximize the norm, we need the variational term to be as negative as possible. Once |G〉 is rotated,
we can get as most −1 from projecting it back onto itself. This extremum could occur, for example, if the

unitary is such that*(�) |0〉 = − |−〉, so that*(−�) |0〉 = − |+〉. In both cases, the projection back onto

|0〉 yields −1. The upper bound, over all pure states and rotations *(�) is
√

2 − (−2) = 2. This is the

bound stated in section 4.2.

B.5.3. Diamond Norm
We have seen that the trace distance describes the probability of successfully distinguishing two

quantum states using one (optimal) measurement. Analogously, the diamond distance [1] describes the

probability of distinguishing whether channel ℰ1 or ℰ2 happened to some state �, by finding the input

� that maximizes the distinguishability of the output states [5]. In general, entanglement can bias this

and help our success probability, so we add an ancilla space in which the channels act trivially, and

maximize over density matrices in the larger space.

| |ℰ1 − ℰ1 | |� = max

�
| |(ℰ1 ⊗ �)[�] − (ℰ2 ⊗ �)[�]| |1 (B.21)

with everything vectorized, so that the difference of channels makes sense. The diamond norm is

bounded between 0 and 2.



C
Rotating Frames

Whenever we are given a Hamiltonian that consists of a “bare" term (a sum of uncoupled systems) plus

an interaction term (some set of operators that couples the systems), it is useful to obtain an effective

Hamiltonian that transforms away some or all of the unitary evolution (which nature put there) to focus

on the dynamics from the coupling alone (which we put there).

� = �0 + �8=C (C.1)

If the unitary evolution of � is given by*(C), then recall that the operator itself evolves according to

8ℏ
3

3C
|#(C)〉 = � |#(C)〉 (C.2)

8ℏ
3

3C
*(C) |#(0)〉 = �*(C) |#(0)〉 (C.3)

8ℏ
3

3C
*(C) = �*(C) (C.4)

where*(C) propagates a state forward in time:

*(C) = T exp

(
− 8

ℏ

∫ C

0

�(C′)3C′
)

(C.5)

and the time-ordering is necessary because �(C′)may not commute with itself at different times [18]. If

we imagine the time evolution of some state '(C) |#(C)〉, we can write

8ℏ
3

3C
('(C) |#(C)〉) = 8ℏ'(C) 3

3C
|#(C)〉 + 8ℏ

( 3
3C
'(C)

)
|#(C)〉 (C.6)

= '(C)�'(C)†'(C) |#(C)〉 + 8ℏ ¤'(C)'(C)†'(C) |#(C)〉 (C.7)

=
(
'(C)�'(C)† + 8ℏ ¤'(C)'(C)†

)
'(C) |#(C)〉 (C.8)

= �
eff
(C)'(C) |#(C)〉 (C.9)

where '(C) is some unitary matrix, and
¤'(C) denotes its time derivative. So whatever the state '(C) |#(C)〉

is, it evolves according to the effective Hamiltonian �
eff
. In general, � is time-dependent, but even

when it is static, �
eff

will still be time-dependent. This procedure is known as “moving to a rotating

frame", and whether or not it is useful to us entirely depends on some clever choice for '(C). When

'(C) = *0(C)†, then that means it will exactly cancel the unitary evolution *0(C) that would normally

occur due to �0.

�
eff
= *†

0
(C)�*0(C) + 8ℏ ¤*†

0
(C)*0(C) (C.10)

(C.11)

74



C.1. Interaction Picture Device Hamiltonian 75

If we are lucky and �0 is time-independent, then*0 = exp(−8�0C/ℏ).

�
eff
= *†

0
(C)(�0 + �8=C)*0(C) + 8ℏ ¤*†

0
(C)*0(C) (C.12)

= *†
0
(C)�0*0(C) +*†

0
(C)�8=C*0(C) − �0 (C.13)

= *†
0
(C)�8=C*0(C) (C.14)

When '(C) = *0(C)†, the frame we have rotated to is known as the interaction picture, since in this frame

states only evolve according to a transformed version of �8=C .

C.1. Interaction Picture Device Hamiltonian
Recalling the device Hamiltonian from section 3.5.3, it will be easier to view the dynamics if we go to

the interaction picture:

�0 = �1 + �2 = $11
†
1
11 −


1

2

1†
1
1†

1
1111 + $11

†
1
11 −


2

2

1†
2
1†

1
1212 (C.15)

�8=C = 6(1†
1
12 + 111

†
2
) (C.16)

First, we can rewrite the transmon terms in the qutrit approximation

�1,2 = �trans = $1†1 − 

2

1†1†11 (C.17)

= $1†1 − 

2

1†(11† − 1)1 (C.18)

= $1†1 − 

2

((1†1)2 − 1†1) (C.19)

= ($ − �
2

)1†1 + �
2

(1†1)2 (C.20)

=


0 0 0

0 $ 0

0 0 2$ + �

 (C.21)

where the anharmonicity has been redefined as −
 = � and shifts the harmonic part. The, we just

multiply matrices

*0(C) = exp(−8(�1 + �2)C) (C.22)

=


1 0 0

0 4−8$1C
0

0 0 4−8(2$1+�1)C

 ⊗

1 0 0

0 4−8$2C
0

0 0 4−8(2$2+�2)C

 (C.23)

�
eff
= 6*†

0
(C)(1†

1
12 + 111

†
2
)*0(C) (C.24)

= 6


0 4−8$1C

0

0 0

√
24−8(�1+$1)C

0 0 0

 ⊗


0 0 0

4 8$2C
0 0

0

√
24 8(�2+$2)C

0

 (C.25)

+ 6


0 0 0

4 8$1C
0 0

0

√
24 8(�1+$1)C

0

 ⊗

0 4−8$2C

0

0 0

√
24−8(�2+$2)C

0 0 0

 (C.26)

Since �1 and �2 act on different Hilbert spaces, they commute with each other and also with system-2

and system-1 type operators, respectively. The terms 1†1† and 11 were preemptively dropped because

at this step, their higher frequencies would average to 0 when looking at the dynamics of the slower

frequencies. It is cumbersome to simulate this Hamiltonian in QuTiP because the function mesolve
prefers time-dependent operators of the form 28(C)�8 , where all of the time-dependence is in the

coefficient. Thus, the qutrit matrices above must be split into sums of the required form. The qubit case

does not encounter this issue.



D
Additional Datasets

Additional POVM datasets are shown here. Beyond the four kinds of plots explained in section 4.2,

two more are provided in this appendix. Thus, for the � = 0.01 and � = 0.25 datasets, there are 6 plots,

and for � = 0.05, there are two more in addition to what was shown earlier. The extra plots are the

direct comparison of the thermal and coherent parameters, between their estimated and actual values.

Ideally, these data would follow the line H = G, and indeed we observe that to be the case. There are two

exceptions, however.

When the coherent error scale is small, the probabilities are relatively unaffected regardless of how

good the MLE estimate is. As a result, for � = 0.01, there appears to be no correlation between the

estimate and its ground-truth. Moving up to � = 0.05, this correlation has mostly recovered, and by

� = 0.25, we find very close agreement. Systematically observing such trends over different error scales

provides an empirical way of gauging the performance and sensitivity of the MLE routine.

The second exception is present in all � datasets, and manifests as a small overstimation of the first

thermal parameter 0, at the expense of slightly underestimating 1 and 2, to preserve the trace of �. The
reason for this bias is unknown, but ultimately, we only care about the reconstructed probabilities, so to

that end, this bias apparently has little effect.

D.1. Coherent Error Scale = 0.01

Figure D.1: The y-axis is the trace distance between the estimated and actual initial states, and the x-axis is the trace distance

between the actual and ideal initial states. Symbolically, this is �(�′, �) vs. �(�, |0〉〈0|)
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Figure D.2: Each subplot shows the estimation error for one of the three coherent parameters &. The y-axis is the spectral norm of

the difference between the estimated and actual rotations, and the x-axis is the spectral norm of the difference between the actual

and ideal rotations. Symbolically, this is | |*(&′) −*(&)| |2 vs. | |*(&) −*(0)| |2.

Figure D.3: With the POVMs converted to quantum channels, the y-axis is the diamond norm between the estimated and actual

POVM, and the x-axis is the diamond norm between the actual POVM and ideal PVM. Symbolically, this is | |ℰ{
√
�′
8
} − ℰ{

√
�8}| |�

vs. | |ℰ{
√
�8} − ℰ{|8〉〈8 |}| |�.
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Figure D.4: Probabilities for each measurement outcome (0/1/2) for each initial qutrit state, MLE output (y) vs. ground truth (x).

Thus, we are plotting Tr("̃′
8
�̃′
9
) vs. Tr("̃8 �̃9), where 8 indexes the color (0:blue, 1:yellow, 2:green), and 9 the subplot. These results

would be sufficient to perform measurement tomography.

Figure D.5: Direct comparison of estimated and actual thermal parameters.
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Figure D.6: Direct comparison of estimated and actual coherent error parameters.

D.2. Coherent Error Scale = 0.05

Figure D.7: Direct comparison of estimated and actual thermal parameters.
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Figure D.8: Direct comparison of estimated and actual coherent error parameters.

D.3. Coherent Error Scale = 0.25

Figure D.9: The y-axis is the trace distance between the estimated and actual initial states, and the x-axis is the trace distance

between the actual and ideal initial states. Symbolically, this is �(�′, �) vs. �(�, |0〉〈0|)
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Figure D.10: Each subplot shows the estimation error for one of the three coherent parameters &. The y-axis is the spectral norm
of the difference between the estimated and actual rotations, and the x-axis is the spectral norm of the difference between the

actual and ideal rotations. Symbolically, this is | |*(&′) −*(&)| |2 vs. | |*(&) −*(0)| |2.

Figure D.11: With the POVMs converted to quantum channels, the y-axis is the diamond norm between the estimated and actual

POVM, and the x-axis is the diamond norm between the actual POVM and ideal PVM. Symbolically, this is | |ℰ{
√
�′
8
} − ℰ{

√
�8}| |�

vs. | |ℰ{
√
�8} − ℰ{|8〉〈8 |}| |�.
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Figure D.12: Probabilities for each measurement outcome (0/1/2) for each initial qutrit state, MLE output (y) vs. ground truth (x).

Thus, we are plotting Tr("̃′
8
�̃′
9
) vs. Tr("̃8 �̃9), where 8 indexes the color (0:blue, 1:yellow, 2:green), and 9 the subplot. These results

would be sufficient to perform measurement tomography.

Figure D.13: Direct comparison of estimated and actual thermal parameters.
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Figure D.14: Direct comparison of estimated and actual coherent error parameters.
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