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LETTER

Demystifying machine learning for mortality 
prediction
J. M. Smit1,2* , M. E. van Genderen1 , M. J. T. Reinders2 , D. A. M. P. J. Gommers1 , J. H. Krijthe2  and 
J. Van Bommel1  

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

With interest, we read the article by Banoei et  al. [1] 
on machine learning (ML) models to predict mortality 
among COVID-19 patients. They refer to other studies 
that failed to predict mortality using ‘conventional statis-
tical analysis’, after which they present a linear ML model 
as a better suited method for such complex medical prob-
lems. We feel such a claim creates an image around ML 
as an alternative technique that offers solutions where 
statistical modeling fails. However, ML and statistical 
modeling are tightly interwoven. Indeed, there is no con-
sensus on whether or how to differentiate between the 
two [2, 3], e.g., the approach Banoei and colleagues pre-
sent (Partial Least Squares) could easily be considered a 
‘statistical analysis’ as well. A recent systematic review [4] 
differentiates ML from statistical models based on how 
‘automatically’ these models learn and found no differ-
ence in discriminative performance. This raises the ques-
tion why efforts are made to differentiate between sta-
tistical modeling and ML, as it does not provide insights 
into which prediction models work for which kind of 
problems. We advocate it is more important to demystify 
ML by emphasizing its connections to statistical models 
most clinicians are already familiar with, as it may help 
in setting reasonable expectations for the potential clini-
cal benefit ML could bring. Towards demystifying ML, 
good reporting of methodology and findings is essen-
tial. Due to unclear or incomplete reporting, one may 
draw wrong conclusions and miss out on opportunities 
to learn. For instance, Banoei and colleagues are unclear 
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on how frequently measured predictors (like SpO2) were 
aggregated to one value. We encourage to follow a uni-
fied approach for reporting, e.g. the TRIPOD guidelines 
[5]. Moreover, it is unfortunately still common that the 
intended use of prediction models is unclear, whereas it 
has implications for choices in the model development. 
Likewise, Banoei and colleagues present several models 
(for mortality prediction and patient clustering) and sug-
gest that these can ‘aid in clinical decision making and 
resource allocation’, without further specification. We 
strongly encourage to develop models with an explicit 
intended use in mind, enabling fair judgement of their 
clinical relevance. Altogether, we join Banoei and col-
leagues in their belief that ML models hold a lot of prom-
ise as valuable tools in the modern ICU. However, we 
advise against differentiating them from statistical mod-
els and advocate proper reporting about the methodol-
ogy and intended use.
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In response to the Letter to the Editor by J.M. Smit et al., 
we certainly agree that machine learning (ML)-based 
methods can be used interchangeably with multivariate 
data analysis (MVA) and multivariate prediction models 
(MPMs) [6]. Although ML approaches like partial least 
square (PLS), statistically inspired modification of PLS 
(SIMPLS), random forest (RF), Support Vector Machine 
(SVM), and artificial neural network (ANN) are consid-
ered statistical methods, they are notably different from 
conventional statistical methods (CSM) [7]. Consider-
ing the advantages of ML methods, ML approaches have 
contributed significantly to the early detection, tracing, 
diagnosis, prognosis and clinical trials of COVID-19 
that have been more functional to support researchers in 
confronting the coronavirus pandemic [8]. Several stud-
ies previously have shown that ML can be more appro-
priate than CSM for the clinical datasets. ML algorithms 
have proven better able to stratify COVID-19 patients 
and mortality risk [9], identify high-risk patients with 
COVID-19 [10].

It is generally believed that there is no single ML 
method superior to others. The SIMPLS method was the 
only prediction model used in our current study. SIM-
PLS has remarkable advantages including a lower risk of 
overfitting, a high level of interpretation, a high level of 
variable selection, easy implementation when compared 
with RF, SVM and ANN methods [6]. SIMPLS can eas-
ily account for batch processing and a high degree of cor-
relation (multicollinearity) between and among variables 
of large datasets. SIMPLS fit the outcome responses with 
nominal, continuous, and polynomial data type, interac-
tion and categorial effects, and provides strong visuali-
zation when compared with other ML and CSM. In our 
study, SIMPLS was successfully applied to recognize the 
most differentiating variables involved in the prediction 
of COVID-19 mortality. Other statistical methods that 
are not considered prediction models, such as princi-
pal component analysis (PCA) and latent class analysis 
(LCA) were established based on the findings of SIMPLS 
to identify patients at the highest risk of dying.

In our study, the importance of ML-based model was 
its ability to predict patient mortality using variables 
measured at the time of admission, although these vari-
ables were frequently measured during the patients’ hos-
pitalization for other purposes.

Our study mainly focused on the importance of ML 
in clinical application, and the recognition of the most 
important variables contributing to mortality from 
COVID-19, instead of describing the details of ML that 
may be extraneous for clinicians.
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