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Abstract

The development of computationally efficient algorithms for statistical inference of stochas-
tic differential equations has been a long-standing research subject ever since the advent
of stochastic analysis. Recently, there has been an increasing interest in extending these
methods to the statistical study of stochastic partial differential equations. In this thesis,
we are concerned with statistical inference for the linear stochastic convection-diffusion
equation (SCDE) driven by a stochastic forcing term that is spatially a Matérn process.
The approach is based on spectral methods for partial differential equations and ap-
proximates a solution to the SCDE via a Fourier spectral decomposition. The resulting
spectral processes are given by a family of uncoupled Ornstein-Uhlenbeck processes, for
which computationally efficient statistical inference is possible based on the Kalman fil-
ter. We give verifiable experimental results for all statistical problems - filtering, smooth-
ing and parameter estimation - based on simulated data. We further derive a novel weak
solution to the SCDE driven by spatial Matérn noise for spatially periodic boundary
conditions and show that the solution is indeed approximated by the Fourier spectral
decomposition, thereby validating the statistical model. For the heat equation, we gen-
eralize the spectral filtering approach on compact Riemannian manifolds. Experimental
results for this generalization are given on the two-dimensional unit sphere.
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1. Introduction

Statistical inference for dynamical systems that are subject to random forcing has been
an active research area ever since the popularization of stochastic analysis in the middle of
the last century. At the basis of this field lies the filtering problem, the task of estimating
the future state of a stochastic dynamical system based on empirical observations of the
system. Further tasks include the reconstruction of previous states – the smoothing
problem – and statistical inference on the model variables that parametrize the system’s
dynamics.

When the system is purely time-dependent, one represents it as a stochastic differential
equation (SDE). In cases where its dynamics are linear, the filtering and smoothing
problems can be solved efficiently and in closed-form using the methods developed by
Kálmán [1960].

The development of efficient filtering and smoothing algorithms as well as parameter
inference in the more complicated setting of nonlinear systems remains an open research
direction. For an introduction into this field, see for example Särkkä and Solin [2019],
for recent developments see Mbalawata et al. [2013], Graham et al. [2019] and Mider
et al. [2020].

In this work, we are concerned with dynamical systems that are dependent on both
time and space variables, i.e. represented by a stochastic partial differential equation
(SPDE). Compared to the case of SDEs, statistical inference for such space-time pro-
cesses faces two additional challenges.

For one, even in the deterministic case, partial differential equations are notoriously
harder to work with than their ordinary counterparts. In fact, with the exception of
linear equations, there exists no unifying framework for solving SPDEs comparable to
the Itô calculus for SDEs.

The second issue, commonly raised in the field of spatio-temporal statistics, is that
space-time data sets are inherently large and computational efficiency therefore becomes
a yet bigger concern (Cressie and Wikle [2011]). Even in the linear case, when closed-
form solutions are available in the form of Gaussian processes, naive smoothing and
parameter inference based on Gaussian process regression is of cubic computational
complexity in regards to the size of the data set. This problem is commonly referred to
as the ‘big-N-problem’.

A common way of numerically solving PDEs are spectral methods (see e.g. Gottlieb
and Orszag [1977]). The basic idea is to seek solutions given by a (finite) sum of basis
functions, weighted by their spectral coefficients. In many situations, such decomposi-
tions transform the problem of solving a PDE into solving a family of ordinary differential
equations for the spectral coefficients.
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A recent paper by Sigrist et al. [2015] makes use of the spectral method based on the
Fourier basis functions to construct a spatio-temporal statistical model motivated by
the stochastic convection-diffusion equation (SCDE) driven by a stochastic forcing term
that is temporally white and spatially a Matérn process. Statistical inference for this
model can be done on the spectral processes in linear time, thereby circumventing the
big-N-problem and showing promising results in an exemplary application. The model
proposed by Sigrist et al. [2015] will serve as the corner stone of this thesis.

Contribution We investigate the statistical properties of the SCDE’s Fourier spectral
approximation as proposed by Sigrist et al. [2015]. In contrast to previous work, we
derive the spectral processes in the framework of Itô calculus. In particular, it will be
shown that the spectral processes are given by uncoupled complex Ornstein-Uhlenbeck
processes (theorem 3.2). We prove that these have similar properties to their real-
valued counterparts (lemmata 2.5 and 2.6), which results in easily obtainable temporal
convergence statements of the proposed model to a stationary process (corollary 3.1).

Furthermore, we give verifiable experimental results for all statistical problems - fil-
tering, smoothing and parameter estimation - based on simulated data. Our statistical
model follows the approach given in Sigrist et al. [2015], albeit with slight differences,
including our choice to retain a complex-valued formulation of the spectral processes.
Other small-scale discrepancies, e.g. differing prefactors, are pointed out at appropriate
times throughout the models derivation in sections 3.2 and 3.3.

Our results (section 3.4) show that the spatio-temporal process can be efficiently
estimated based on noisy and discretely sampled observations using the Kalman filter
and -smoother for the spectral processes. It further shows that even simple Bayesian
inference schemes can recover model parameters. This fills a gap in the current literature,
in which only the models predictive power has been examined.

The second part of the thesis is concerned with solving the stochastic convection-
diffusion equation. As the equation is linear, this can readily be done in the framework
of weak solutions. We obtain a novel weak solution of the SCDE with spatially periodic
boundary conditions, driven by a stochastic forcing term that is temporally white and
spatially a Matérn process (theorem 4.3). For this, we make use of a recent result by
Borovitskiy et al. [2020] that generalizes the Matérn covariance function for Riemannian
manifolds. Our result shows that the Fourier spectral decomposition converges in the
L2-sense to the weak solution of the SCDE as we let the number of basis functions go
to infinity (corollary 4.3).

We further investigate the weak solutions long-time behavior as it converges to a
stationary generalized Gaussian process (proposition 4.2) and derive the spectral density
of the corresponding stationary Gaussian process (corollary 4.4).

Besides validating the statistical model, these novel results open up easily obtainable
generalizations and future research directions. A noteworthy example of high practical
importance is an application of the spectral filtering approach for the stochastic heat
equation on the sphere (section 5.2.1).
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Outline The outline of this thesis is as follows. Chapter 2 introduces all necessary
theory for the later chapters. This includes reviewing some basics concepts that we
assume the reader is familiar with, such as tools from Fourier analysis and the Kalman
filter. More attention will be given to the specifics of complex valued stochastic processes
and -Itô integrals, the spectral representation theorem for stationary processes and the
framework of weak solutions to linear SPDEs.

The following chapter is concerned with the Fourier spectral approximation of the
SCDE. After deriving the model based on the spectral representation theorem, the
properties of its spectral processes will be investigated and experimental results will
be presented. A considerable part of the chapter is devoted to the derivation of the
spectral Kalman filter, an improvement of the original Kalman filter based on some of
the advantageous properties of the discrete Fourier transform.

In chapter 4, we provide the aforementioned weak solution to the SCDE. Its first
section will derive a spectral representation for stationary processes defined on periodic
domains. This will allow us to reframe the problem in section 4.2 and derive its weak
solution as well as investigate its convergence behavior to a stationary process.

Lastly, chapter 5 provides some details on possible generalizations of the proposed
model and future search directions. In particular, it includes first experimental results
for the spectral filtering method applied to the stochastic heat equation on the unit
sphere.

3



2. Preliminaries

This chapter reviews and introduces some basic theory that we will need for later chap-
ters. We begin by revisiting tools from Fourier analysis, in particular Fourier spectral
decompositions and the discrete Fourier transform.

Next up, we take a look at complex valued processes and their Itô integrals. In
particular, we introduce the spectral representation of stationary processes, which will
play a key factor in motivating the filtering scheme in chapter three.

The last two sections are concerned with stochastic dynamical systems, both in the
purely temporal as well as the space-time case. In the former case, we revisit the fil-
tering problem for stochastic differential equations. For the latter case, we introduce a
framework of solving linear stochastic partial differential equations, which will allow us
to give a rigorous interpretation of our proposed filtering method.

2.1. Review - Tools from Fourier Analysis

Many key concepts in this thesis involve tools from Fourier analysis. For example,
they play a role in representing stationary stochastic processes by their spectral decom-
positions or in solving differential equations by transforming differential operators to
algebraic operations in the frequency domain.

We shortly summarize some of these tools and their essential properties. For a detailled
introduction to the underlying theory, we refer to Stein and Shakarchi [2003]. For more
details on the discrete Fourier transform, see e.g. Briggs and Henson [1995].

Definition 2.1 (Fourier Transform). Let d ∈ N and f ∈ L1(Rd) be an integrable
function. Its Fourier transform is defined as

F (f)(ω) := f̂(ω) := (2π)−d
∫
Rd
f(t) exp(−iω · t)dt. (2.1)

The Fourier transform is a linear operator whose inverse, when it exists, is given by

f(t) = F−1(f̂)(t) =

∫
Rd
f̂(ω) exp(iω · t)dω. (2.2)

The inversion formula holds whenever f̂ is integrable. For example, this is the case when
f lies in the Schwartz space of rapidly decreasing functions, though more general cases
exist and we shall from now on assume that our functions are ’nice enough’ such that
the inversion formula holds.

In cases where f is a periodic function, the Fourier transform is not well defined.
Instead, a decomposition likening (2.2) is given by the Fourier series.

4



Definition 2.2 (Fourier Series). Let f be a periodic function on [0, L]d. If existent, its
Fourier series decomposition is given by

f(t1, ..., td) =
∑
j∈Z2

αj exp

(
2πi

(
j1
L
t1 + ....+

jd
L
td

))
, with

αj =
1

Ld

∫
[0,L]d

f(t1, ..., td) exp

(
−2πi

(
j1
L
t1 + ....+

jd
L
td

))
dt1...dtd.

(2.3)

The j-th Fourier basis function, corresponding to the j-th spatial wave ξj := 2π( j1L , ...,
jd
L ),

is defined by

φj(t1, ..., td) := exp

(
2πi

(
j1
L
t1 + ....+

jd
L
td

))
.

One can show that the Fourier basis functions form an orthonormal basis in the space
of square-integrable functions:

Theorem 2.1. The family (φj)j∈Zd are an orthonormal basis of the Hilbert space

L2([0, L]d) of square-integrable functions equipped with the scalar product

〈h, g〉L2 :=

∫
[0,L]d

h(t1, ..., td)g(t1, ..., td)dt1...dtd.

In particular, for any h ∈ L2([0, L]d), it holds (with convergence in regards to ‖ · ‖L2 )

h =
∑
j∈Zd

αjφj .

The pointwise convergence of the Fourier series as defined in (2.3) is in general not
trivial, but holds, for example, if f is continuous and its Fourier coefficients (αj)j∈Zd are
absolutely summable. Again, we shall assume that the periodic functions of our concern
are ’nice enough’ such that a Fourier series representation exists.

Let us further remark that it is common to represent functions of bounded domain as
periodic functions of unbounded domain by extending their domain ’mod period length’.

If f is a real-valued function, it is easy to see that its Fourier coefficient α0,0 is real-
valued as well. In fact, in this case the Fourier series expansion (2.3) can be substituted
by the cosine-sine-decomposition which makes use of real coefficients only, but we will
not be concerned with that representation.

Lastly, the discrete Fourier transform takes these concepts to the discrete domain. It
can be regarded as the numerical approximation of both the Fourier transform f̂ and
the Fourier coefficients (αj)j , based on evenly gridded samples of the function f .

Definition 2.3 (Discrete Fourier Transform). Let f =
(
f−N/2+1, ...., fN/2

)
be a vector

of complex numbers for an even number N ∈ N. Then its discrete Fourier transform
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(DFT) F is a N-periodic complex-valued vector given by

(Φ(f))k = Fk =
1

N

N/2∑
n=−N/2+1

fn exp
(
−2πi kN n

)
. (2.4)

The inverse discrete Fourier transform (IDFT) of a complex vector F =
(
F−N/2+1, ..., FN/2

)
is given by

(Φ−1(F ))n =

N/2∑
k=−N/2+1

Fk exp
(
2πi kN n

)
(2.5)

and satisfies the inverse relations:

fn = [Φ−1(Φ(f))]n,

Fk = [Φ(Φ−1(F ))]k.

Note that the DFT operator is linear and represented by the symmetric matrix

Φ = 1
N exp

(
−2πi kN n

)
−N/2+1≤k,n≤N/2 ∈ CN×N . (2.6)

It can be shown that the Fourier basis functions satisfy the following orthogonality
property in n:

N/2∑
n=−N/2+1

exp
(
2π l

N n
)

exp
(
−2πi kN n

)
=

{
N if (k − l) mod N = 0,

0 else.

From this it follows that the IDFTs matrix representation is given by

Φ−1 = NΦ.

The DFTs computational costs of O(N2) associated with its matrix formulation can be
drastically improved upon by the Fast Fourier Transform (FFT), whose computation
of the DFT is of complexity class O(N log(N)). Due to its computational advantages
we shall from here on assume the FFT as a black-box DFT solver. For more details on
the FFT, see Cooley and Tukey [1965], whose work popularized the FFT algorithm, or
chapter 10 of Briggs and Henson [1995] for a detailled introduction.

The DFT-IDFT pair easily extends to multiple dimensions. In particular the two-
dimensional case will be of interest to us. Given f = (fn,m)n,m for n = −N

2 +1, ..., N2 ,m =
−M

2 + 1, ..., M2 , the DFT is given by

Φfk,l = Fk,l =
1

NM

∑
n

∑
m

fn,m exp
(
−2πi( kN n+ l

Mm)
)

(2.7)
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The sequence Fk,l is N -periodic in k and M -periodic in l and it is easy to see that the
DFT-IDFT properties and matrix representations extend to the multidimensional case.
Of further interest is the special case where f is a real-valued vector. We then have

Fk,l = F−k,−l.

In that case, only the following NM
2 + 2 Fourier coefficients of the DFT F = Φf need

be computed
F0,0, FN/2,0, F0,M/2, FN/2,M/2 ∈ R
Fk,M/2 = F−k,M/2 ∈ C, for k = 1, ..., N2 − 1

Fk,0 = F−k,0 ∈ C, for k = 1, ..., N2 − 1

Fk,l = F−k,−l ∈ C, for k = −N
2 + 1, ..., N2 , l = 1, ..., M2 − 1

(2.8)

and these are uniquely defined by NM real quantities.
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2.2. Stochastic Processes and Stochastic Integration

We start this section off by introducing complex-valued stochastic processes, as they
require special attention compared to their real-valued counterparts. Following this, we
review integration in regards to stochastic processes, in particular for complex-valued
Wiener processes and processes whose covariance functions are of bounded variation.
Lastly, these concepts come to a use in showing proving the spectral representation
theorem for stationary processes.

2.2.1. Review - Stochastic Processes

Let (Ω,F ,P) be a probability space and (E, E) a measurable space. A stochastic process
X = (X(t))t∈T is a family of random variables

X(t) : Ω −→ E, t ∈ T
ω 7→ X(t)(ω).

If X(t) is square-integrable for each t ∈ T , we denote the mean- and covariance function
(or kernel) of X by

m(t) := E[X(t)]

k(s, t) := Cov[X(s), X(t)], s, t ∈ T.

If T = Rd+, one speaks of aX as a random function or a continuous (time) stochastic process.
Likewise, if T = N or T = Z, one speaks of a discrete (time) stochastic process. In situ-
ations where the context is clear, we shall simply write (X(t))t or X. Unless specified
otherwise, we assume that (E, E) = (R,B(R)), where B(·) denotes the standard Borel-
σ-algebra.

If (E, E) = (C,B(C)), we call X complex-valued. These processes require some addi-
tional attention, especially in regards to their second order moments. We shall therefore
give them a short introduction, based on Lapidoth [2009], chapters 17 and 24.

Definition 2.4 (Complex-valued Stochastic Process). A complex-valued stochastic pro-
cess Z is a process

Z(t) = X(t) + iY (t),

where X,Y are two real-valued processes. Its mean function is defined as E[Z(t)] =
E[X(t)] + iE[Y (t)] and we denote it by m(t). Its second order momenta are given by the
covariance- and pseudo-covariance function, respectively defined by

k(s, t) := Cov[Z(s), Z(t)] := E[(Z(s)−m(s))(Z(t)−m(t))]

= E
[
Z(s)Z(t)

]
−m(s)m(t),

k∗(s, t) := Cov∗[Z(s), Z(t)] := E[(Z(s)−m(s))(Z(t)−m(t))]

= E[Z(s)Z(t)]−m(s)m(t).

(2.9)
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Note that the covariance function is conjugate symmetric, meaning that k(s, t) = k(t, s)
for all s, t ∈ T , whereas the pseudo-covariance remains symmetric as in the real-valued
case.

An easy calculation shows that the variance and pseudo-variance functions can be
written as

Var[Z(t)] := k(t, t) = Var[X(t)] + Var[Y (t)]

Var∗[Z(t)] := k∗(t, t) = Var[X(t)]−Var[Y (t)] + 2iCov[X(t), Y (t)].
(2.10)

We may also consider complex-valued random vectors, whose second-order statistics, in
line with the previous definition, require special care:

Definition 2.5 (Complex-valued Random Vector). A complex-valued random vector is a
vector Z = (Z1, ..., Zk)

T , where Zi, i = 1, ..., k, is a complex-valued random variable. We
define its mean by E[Z] = (E[Z1], ...,E[Zk])

T and its covariance and pseudo-covariance
matrices via

KZZ := E[ZZH ]− E[Z]E[Z]H = [Cov[Zi, Zj ]]1≤i,j≤k

K∗
ZZ := E[ZZT ]− E[Z]E[Z]T = [Cov∗[Zi, Zj ]]1≤i,j≤k.

(2.11)

Let Z̃ be another complex-valued random vector. Then we define the cross-covariance
and pseudo-cross-covariance matrices of Z and Z̃ as

KZZ̃ := E[ZZ̃H ]− E[Z]E[Z̃]H = [Cov[Zi, Z̃j ]]1≤i,j≤k

K∗
ZZ̃

:= E[ZZ̃T ]− E[Z]E[Z̃]T = [Cov∗[Zi, Z̃j ]]1≤i,j≤k.
(2.12)

Likewise to the real-valued case, we call Z and Z̃ uncorrelated or orthogonal if

KZZ̃ = 0,

K∗
ZZ̃

= 0.

The generalization of Gaussian vectors and -processes to the complex case is straight-
forward:

Definition 2.6 (Complex-Valued Gaussian Vector). A vector Z = (Z1, ..., Zk), with
Zj = Xj + iYj for all j, is called a (k-dimensional) complex Gaussian vector if

(X1, Y1, ..., Xk, Yk)

is a 2k-dimensional Gaussian vector. If k = 1 and X,Y
iid∼ N (0, 1

2), we call Z = X + iY
standard complex Gaussian and denote it by Z ∼ CN (0, 1). It is a special case of a
proper complex Gaussian, which we will define below.
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It can be shown that, just like in the real case, any complex linear transformation of
a complex Gaussian vector or the sum of two independent complex Gaussians remains
complex Gaussian.

Recall that a Gaussian process (X(t))t is a stochastic process such that (X(t1), ..., X(tk))
is a Gaussian vector for any t1, ..., tk. Accordingly, we define:

Definition 2.7 (Complex Gaussian Process). A complex Gaussian process is a process Z
such that [Z(t1), ..., Z(tk)] is a k−dimensional complex Gaussian vector for any t1, ..., tk.

Whereas Gaussian processes are uniquely defined by their mean- and covariance func-
tion, this is not necessarily true in the complex case:

Example 2.1. Let X,Y be two independent, real-valued Gaussian processes with mean
zero and identical covariance function κ(s, t). Define the processes Z1, Z2 via

Z1(t) := X(t) + iY (t)

Z2(t) := X(t) + iX(t).

It is immediate that both are complex-valued Gaussian processes with identical covari-
ance function given by

E[Z1(s)Z1(t)] = E[X(s)X(t)] + E[Y (s)Y (t)] + i (E[Y (s)X(t)]− E[X(s)Y (t)])

= 2κ(s, t)

= 2E[X(s)X(t)] + i (E[X(s)X(t)]− E[X(s)X(t)])

= E[Z2(s)Z2(t)].

On the other hand, the pseudo-covariance function of Z1 is given by

E[Z1(s)Z1(t)] = E[X(s)X(t)]− E[Y (s)Y (t)] + i (E[Y (s)X(t)] + E[X(s)Y (t)])

= 0,

whereas for Z2 we have

E[Z2(s)Z2(t)] = E[X(s)X(t)]− E[X(s)X(t)] + i (E[X(s)X(t)] + E[X(s)X(t)])

= 2iκ(s, t)

6= 0.

This example shows that, contrary to the real-valued cased, a complex Gaussian process
is not uniquely represented by its mean and covariance function. It therefore motivates
the following definiton of properness.

Definition 2.8 (Properness). A proper complex random vector Z is a random vector
such that K∗

ZZ = 0. A proper complex process Z = (Z(t))t is a process such that
(Z(t1), ..., Z(tk)) is a proper complex random vector for all t1, ..., tk.

As hinted at before, properness comes in particularly handy in the context of Gaussian
variables, as seen in the following lemma.
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Lemma 2.1. Let Z = X + iY be a k-dimensional, proper complex Gaussian vector.
Then Z is uniquely defined by its mean m and covariance matrix K and we write
Z ∼ CN (m,K). Its density function is given by

fZ(z) =
1

πn det(K)
exp

(
−(z −m)HK−1(z −m)

)
. (2.13)

It further holds that

(X,Y ) ∼ N2k

((
Re(m)
Im(m)

)
,
1

2

(
Re(K) − Im(K)
Im(K) Re(K)

))
. (2.14)

Proof. See Lapidoth [2009], proposition 24.3.12. for the first claim and the proof of
proposition 24.3.7. for the second claim.

Note that the process Z in example 2.1 is a proper Gaussian process and can therefore
be defined via its mean- and covariance function. Additionally, it is a special case in
the sense that its covariance function is real-valued, which does not generally have to be
true - it holds if and only if Cov[X(s), Y (t)] = Cov[X(t), Y (s)] for all s, t.

Proper complex vectors possess properties resembling those of Gaussian variables, in
particular:

Lemma 2.2. 1. A k−dimensional complex random vector Z is proper if and only if
αTZ is proper for all α ∈ Ck.

2. Let Z be a k-dimensional proper random vector. Then AZ is proper for any
A ∈ Cm×k.

3. Let Z1 ∼ CN (m1,K1), Z2 ∼ CN (m2,K2) be two independent, proper complex
Gaussian vectors. Then for any A1,A2 ∈ Cm×k, Z = A1Z1 + A2Z2 is proper
complex Gaussian with

Z ∼ CN (A1m1 +A2m2,A1K1A
H
1 +A2K2A

H
2 ). (2.15)

Proof. See Lapidoth [2009], propositions 17.4.2 and 17.4.3.

Remark 2.1. Let m ∈ Ck be a complex vector and K ∈ Ck×k be a hermitian matrix
with Cholesky decomposition K = LLH . We can then draw a sample z of the proper
complex Gaussian vector Z ∼ CN (m,K) by drawing (x,y) from the 2k-dimensional
Gaussian vector (X,Y ) ∼ N2k(0,

1
2E), E denoting the unit matrix, and setting

z = m+L(x+ iy).

We finish this paragraph by defining the complex counterparts of two of the most
fundamental stochastic processes - discrete time white noise and the Wiener process. A
discrete time Gaussian white noise is a real-valuled process ẇ = (ẇn)n∈N such that

ẇn ∼ N (0, 1)

E[ẇnẇm] = 0, for all n 6= m.
(2.16)
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Its complex counterpart is a process ẇ = (ẇn)n∈N such that

ẇn =
ẇ1,n + iw2,n√

2
, (2.17)

where ẇ1, ẇ2 are independent discrete time Gaussian white noise processes.
A Wiener process or standard Brownian Motion (w(t))t∈[0,∞) is a centered Gaussian

process with covariance function E[w(s)w(t)] = min(s, t). It has almost surely continu-
ous trajectories t 7→ w(t) and normally distributed increments

w(ti+1)− w(ti) ∼ N (0, ti+1 − ti).

that are independent for all 0 ≤ t1 < t2 < ... < tn, n ∈ N, i ∈ {0, ..., n− 1}. Likewise to
the discrete white noise case, we define complex Wiener process (Brownian motion) as
the complex-valued process given by

w(t) =
w1(t) + iw2(t)√

2
,

where w1, w2 are independent Wiener processes. It follows from example 2.1 that com-
plex Brownian motion is a proper complex Gaussian process.

The issue of continuous time white noise, often times treated as the formal derivative
of the Wiener process, will be addressed in sections 2.3 and 2.4.

2.2.2. Review - Stochastic Integration

This sections reviews integration in regards to stochastic processes. We first consider
the case in which the integrator is a stochastic processes whose covariance function is of
bounded variation, which will be of use for us in the spectral representation of stationary
processes.

We also review basic properties of the Itô integral, in particular the complex-valued
case and show that it defines a proper complex Gaussian process for deterministic inte-
grands.

Let T be an n−dimensional interval, X = (X(t))t be a stochastic process and f(t)
be a function or a stochastic process itself. Recall that a stochastic integral may be
constructed as the L2(P)-limit of Riemann-Stieltjes sums of the form∫

T
f(t)dX(t) = lim

k→∞

∑
∆t∈Pk

f(t′)∆X(t). (2.18)

Here, (Pk)k denotes any sequence of sub-interval partitions of T - each a family of disjoint
sub-intervals ∆t = [t1 + ∆1]× ...× [tn + ∆n] with ∪∆t∈Pk = T - such that the mesh size

|Pk| := max
∆t∈Pk

{
|∆t| :=

n∏
i=1

∆i

}
−→ 0

12



and t′ denotes the “lower left” corner point t′ = [t1, ..., tn] for any interval ∆t. Further,
∆X(t) denotes the increment of X over any interval ∆t, given by

∆X(t) := X(t1 + ∆1, ..., tn + ∆n)

−
∑
i

X(t1 + ∆1, ..., ti−1 + ∆i−1, ti, ti+1 + ∆i+1, ...tn + ∆n)

+
∑
i 6=j

X(t1 + ∆1, ..., ti, ...., tj , ...tn + ∆n)

− ...+ (−1)nX(t1, ..., tn).

(2.19)

Note that the convergence of the right-hand side in (2.18) is not trivial and requires
assumptions on the integrand f and integrator X. In particular, we need the following
two cases, whose assumptions we shall specify shortly:

1. The integrator is a stochastic process whose covariance function is of bounded
variation. In that case it will suffice to consider deterministc integrands.

2. The integrator is a Wiener process and the integrand is itself a stochastic process.
For our purpose, it will then suffice to consider n = 1.

The following theorem treats the first case. Its proof relies on the construction of the
Lebesgue-Stieltjes integral for functions of bounded variation. For details, see appendix
A.

Theorem 2.2. Let X = (X(t))t be a centered stochastic process and g(t) be a measur-
able function, both possibly complex-valued. Denote by k(t, s) the covariance function
of X. Assume that k(s, r) is of bounded variation on an interval T ⊂ Rn and that the
Lebesgue-Stieltjes integral ∫

T×T
g(t)g(s)dk(t, s) (2.20)

exists. Then the stochastic integral

I =

∫
T
g(t)dX(t) = lim

k→∞

∑
∆t∈Pk

g(t′)∆X(t) (2.21)

exists as a limit in L2(P) with

E[I] = 0

E[II] =

∫
T×T

g(t)g(s)dk(t, s).
(2.22)

Further, let Y = (Y (t))t be another centered stochastic process and f(t) be a function
such that J =

∫
T ′ f(t)dY (t) exists. Then

E[IJ ] =

∫
T×T ′

g(t)f(s)dkXY (t, s), (2.23)

where kXY denotes the cross-covariance of X and Y : kXY (t, s) = E[X(t)Y (s)].
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Proof. An idea of the proof is given in Lindgren [2012], theorem 2.16, and is based on
the Loève Criterion, which states that a sequence of random variables (Sk)k converges
in L2(P) if and only if the limit limk,m−→∞ E[SkSm] exists.

Thus, let (Pk)k, (P ′m)m be two sequences of subinterval partitions of T with mesh sizes
going to zero. Denote by (Sk)k, (S

′
m)m the respective Riemann-Stieltjes sums.

Note that for any intervals ∆t,∆s, we have E[∆X(t)∆X(s)] = ∆k(s, t) where the
increment ∆k(s, t) is taken over the 2n-dimensional interval ∆t×∆s. We then have

lim
k,m→∞

E[SkS′m] = lim
k,m→∞

E

 ∑
∆t∈Pk

g(t′)∆X(t)
∑

∆s∈P ′m

g(s′)∆X(s)


= lim

k,m→∞

∑
∆t∈Pk

∑
∆s∈P ′m

g(t′)g(s′)E
[
∆X(t)∆X(s)

]
= lim

k,m→∞

∑
∆t×∆s∈P ′′k,m

g(t′)g(s′)∆k(s, t)

=

∫
T×T

g(t)g(s)dk(t, s),

noting that P ′′k,m := {∆t×∆s | ∆t ∈ Pk,∆s ∈ P ′m} is a sequence of partitions of T × T
with mesh size going to zero. The convergence is therefore assured by the existence
of the Lebesgue-Stieltjes integral

∫
T×T g(t)g(s)dk(t, s). We thus receive existence and

uniqueness of
∫
T g(t)dX(t) and equation (2.22).

For the second claim, note that the Cauchy-Schwarz inequality assures the existence
of both integrals in (2.23). The equality follows in the same way as the one above.

The case where f(t) is a stochastic process itself requires more attention. A detailed
construction can be found in Kallianpur and Sundar [2014], chapter 5.

Theorem 2.3. Let (w(t))t be a Wiener process and (f(t))t be an adapted process such
that

E

[∫ t

0
f2(s)ds

]
<∞. (2.24)

Then, the Itô integral I(t) :=
∫ t

0 f(s)dw(s) exists as a L2(P)-limit with

E[I(t)] = 0

E[I(t)2] = E

[∫ t

0
f2(s)ds

]
.

(2.25)

Proof. See e.g. Kallianpur and Sundar [2014], chapter 5.

We denote by M2
w([0, t]) the space of all adapted processes such that (2.24) holds and

by L2
X(T ) the space of all complex-valued functions such that (2.20) exists. Note that

the stochastic integrals above are linear mappings on the respective spaces.
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The stochastic integral is easily extended to the multivariate case. Let w1, ..., wm be
independent Wiener processes such that w = (w1, ...., wm) is a m−dimensional Wiener
process and let f = (fi,j)1≤i≤k,1≤j≤m be a matrix-valued process such that fi,j ∈ M2

w

for all i, j. The vector-valued stochastic integral I(t) =
∫ t

0 f(s)dw(s) is then defined via

I(t) := (I1(t), ..., Ik(t))
T ,

where for all i = 1, ..., k

Ii(t) :=
m∑
j=1

∫ t

0
fi,j(s)dwj(s).

An extension for the integral defined in theorem 2.2 is defined in the same way.
We are particulary interested in the two-dimensional extension, which allows us to

extend the Itô integral in regards to complex Brownian motion:

Definition 2.9 (Complex-valued Stochastic Integration). Let w = 1√
2
(w1 + iw2) be a

complex Brownian motion and f = f1 + if2 be such that f1, f2 ∈ M2
w. We define the

complex-valued stochastic integral
∫ t

0 f(s)dw(s) as∫ t

0
f(s)dw(s) =

1√
2

[∫ t

0
f1(s)dw1(s)−

∫ t

0
f2(s)dw2(s)

+i

(∫ t

0
f1(s)dw2(s) +

∫ t

0
f2(s)dw1(s)

)]
.

(2.26)

Note that the complex stochastic integral can be identified with the vector-valued Itô
integral

1√
2

∫ t

0

(
f1(s) −f2(s)
f2(s) f1(s)

)
d(w1(s), w2(s))T .

Now, let w be a Wiener process and f ∈ L2
w. It is a well-known fact (see e.g. Lindgren

[2012], theorem 2.16) that the special case of both theorem 2.2 and 2.3 has the practical
property of defining centered Gaussian variables

I(t) :=

∫ t

0
f(s)dw(s), t ∈ R≥0, (2.27)

with covariances given by

E[I(s)I(t)] =

∫ s∧t

0
f2(u)du. (2.28)

In fact, using the independence of Brownian motion increments, one is quick to see that
any linear combination

λ1

∫ t1

0
f(s)dw(s) + ....+ λk

∫ tk

0
f(s)dw(s)

15



is again a Gaussian variable, concluding that the process (I(t))t is a centered Gaussian
process with covariance function given by (2.28).

The following lemma shows that this property extends to the complex case and defines
a proper complex Gaussian process:

Lemma 2.3. Let w = 1√
2
(w1 + iw2) be a complex Wiener process. Let f(s) = f1(s) +

if2(s) be a complex-valued function such that f1, f2 ∈ L2
w.

Then the process I = (I(t))t, defined by

I(t) =

∫ t

0
f(s)dw(s),

is a proper complex Gaussian process with covariance function

E[I(s)I(t)] =

∫ s∧t

0
|f(u)|2du. (2.29)

Proof. By definition, it holds∫ t

0
f(s)dw(s) =

1√
2

[∫ t

0
f1(s)dw1(s)−

∫ t

0
f2(s)dw2(s)

+i

(∫ t

0
f1(s)dw2(s) +

∫ t

0
f2(s)dw1(s)

)]
=:

1√
2

[I1(t) + iI2(t)] ,

where I1, I2 are both sums of independent centered Gaussian processes as given in (2.27).
To show that I is a complex Gaussian process, we need to show that [I1(t1), I2(t1), ...,

I1(tk), I2(tk)] is a 2k-dimensional Gaussian vector for any t1, ..., tk ∈ R+. This follows
from the fact that for any λi, µi ∈ R, i = 1, ..., k, the random variable

λ1I1(t1) + µ1I2(t1) + ....+ λkI1(tk) + µkI2(tk)

=

∫ t1

0
[(λ1 + ...+ λk)f1 + (µ1 + ...+ µk)f2]dw1

+

∫ t1

0
[−(λ1 + ....+ λk)f2 + (µ1 + ...+ µk)f1]dw2

+ ....

+

∫ tk

tk−1

[λkf1 + µkf2]dw1 +

∫ tk

tk−1

[(−λk)f2 + µkf1]dw2

is Gaussian as a sum of independent Gaussian variables.
To show properness, following example 2.1, it suffices to show that

Cov[I1(s), I1(t)] = Cov[I2(s), I2(t)]

Cov[I1(s), I2(t)] = 0.
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It holds

E[I1(s)I1(t)] = E

[(∫ s

0
f1(u)dw1(u)−

∫ s

0
f2(u)dw2(u)

)
(∫ t

0
f1(u)dw1(u)−

∫ t

0
f2(u)dw2(u)

)]
=

∫ s∧t

0
f2

1 (u)du+

∫ s∧t

0
f2

2 (u)du

= E

[(∫ s

0
f1(u)dw2(u) +

∫ s

0
f2(u)dw1(u)

)
(∫ t

0
f1(u)dw2(u) +

∫ t

0
f2(u)dw1(u)

)]
= E[I2(s)I2(t)],

where we have used the independence of w1, w2 and equation (2.28) in steps 2 and 3. To
show uncorrelatedness, the same arguments give

E[I1(s)I2(t)] = E

[(∫ s

0
f1(u)dw1(u)−

∫ s

0
f2(u)dw2(u)

)
(∫ t

0
f1(u)dw2(u) +

∫ t

0
f2(u)dw1(u)

)]
=

∫ s∧t

0
f1(u)f2(u)du−

∫ s∧t

0
f1(u)f2(u)du

= 0.

Thus, (I(t))t is a proper complex Gaussian process with covariance function given by

E[I(s)I(t)] =
1

2
(E[I1(s)I1(t)] + E[I2(s)I2(t)]) +

i

2
(E[I2(s)I1(t)]− E[I1(s)I2(t)])

=

∫ s∧t

0
f2

1 (u) + f2
2 (u)du

=

∫ s∧t

0
|f(u)|2du.

2.2.3. Spectral Representations of Stationary Stochastic Processes

The following section, based on chapter 4 of Yaglom [1987a], is concerned with station-
ary stochastic processes. Intuitively, any process (X(t))t whose stochastic behavior is
invariant under a parameter shift t 7→ t+ τ is referred to as a stationary process.

We are particularly interested in the spectral representation of X, which enables its
approximation by orthogonal random variables.
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Definition 2.10 (Stationary Processes). Let X = (X(t))t∈Rn be a real-valued stochas-
tic process with mean- and covariance functions m(t) and k(s, t). It is called strictly
stationary if the distribution of any p-dimensional random vector

[X(t1 + τ), ..., X(tp + τ)], p ∈ N, t1, ...tp, τ ∈ Rn,

is independent of the translation vector τ .
It is called weakly stationary (or sometimes homogeneous in the case of n > 1) if its

mean function is constant and its covariance function is a function of the difference τ
only:

m(t) = m, t ∈ Rn,
k(t+ τ, t) = c(τ), t, τ ∈ Rn.

We call X isotropic if its covariance function depends on the distance ‖τ‖ only.
IfX is a non-proper, complex-valued process, one further requires its pseudo-covariance

function to be dependent on the difference τ (distance ‖τ‖) only.

It is clear that a strictly stationary process with finite second-order moments is indeed
stationary in the weak sense. The marginal distributions of X(t) are identical and thus
have constant mean, whereas the translation invariant joint distributions of [X(t1 +
τ), X(t2 +τ)] imply that the (pseudo-)covariance function depends on the distance t2−t1
only.

However, in the case where X is a Gaussian process, the notions of strict and weak
stationarity are equivalent due to the fact that the finite dimensional distributions of a
Gaussian process are uniquely defined by its mean- and covariance function. Further-
more, the main result of our interest - the spectral representation theorem - concerns
stationary process in the weak sense and we shall from now on refer to those as stationary
processes.

It is an imminent fact that the covariance function c(τ) of any stationary process is
positive-definite in the sense that for any t1, ..., tm ∈ Rn, a1, ..., am ∈ C

m∑
i,j=1

aiajc(ti − tj) ≥ 0.

Conversely, one may show that any positive-definite function c(τ) is the covariance
function of a stationary Gaussian process (see e.g. Lindgren [2012], theorem 3.1 for the
one-dimensional case).

Therefore, the class of covariance functions of stationary processes equals the class of
positive-definite functions on Rn, which opens up their characterization via a version of
Bochner’s theorem:

Theorem 2.4 (Bochner’s Theorem). Let c(τ) be a positive-definite function on Rn.
Then there exists a bounded function F : Rn −→ R with non-negative increments
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∆F (ω), such that c(τ) is given by the Fourier-Stieltjes transform

c(τ) =

∫
Rn

exp(iω · τ)dF (ω). (2.30)

The function F is known as the spectral distribution function of c(τ) (or X), and the
Lebesgue-Stieltjes measure µF as its spectral distribution.

Proof. See Bochner [1959], chapter 4, §20.

Note that c(0) = µF (Rn) and that F (ω) is unique up to an additive constant. It is
common to choose F such that limωi→∞,i=1,...,n F (ω) = 0. Furthermore, in the special
case that c(τ) is absolutely integrable,∫

Rn
|c(τ)|dτ <∞,

one may show that c(τ) forms a Fourier transform pair with the spectral density

f(ω) := ∂nF (ω)
∂ω1...∂ωn

.

Consequently, we get

c(τ) =

∫
Rn
f(ω) exp(iω · τ)dω,

f(ω) = (2π)−n
∫
Rn
c(τ) exp(−iω · τ)dτ.

(2.31)

We come to this sections centerpiece - the spectral representation theorem. Intuitively,
it takes Bochners theorem one step further and represents a stationary process itself to
a Fourier-type stochastic integral, with the integrator being related to the processes
spectral distribution.

Theorem 2.5 (Spectral Representation Theorem). Let X be a centered stationary
process with spectral distribution F (ω). Then there exists a stochastic process Z =
(Z(ω))ω∈Rn such that

X(t) =

∫
Rn

exp(iω · t)dZ(ω). (2.32)

We call Z the spectral process of X. It has centered, orthogonal increments whose
variances are given by the increments of F (ω):

E[∆Z(ω)] = 0,

E[∆Z(ω)∆Z(ν)] = 0, if ∆ω ∩∆ν = ∅,
E[|∆Z(ω)|2] = ∆F (ω).

(2.33)

19



We want to remark that there exists a generalized spectral representation theorem, of
which the version above is a direct colloray from. In summary, it states that a stochastic
process (X(t))t over an arbitrary index set T with covariance function k(s, t) emits a
spectral representation

X(t) =

∫
A
φ(t, a)Z(da)

if and only if its covariance function can be written as the measure integral of a complex-
valued function φ(t, a) over an arbitrary set A:

k(t, s) =

∫
A
φ(t, a)φ(s, a)F (da).

Here, F (∆a) is a bounded measure and Z(∆a) an orthogonal, centered random measure,
both on measurable subsets of A. These are again linked by the relation

E[Z(∆a)Z(∆b)] =

{
0, if ∆a ∩∆b = ∅
F (∆a), if ∆a = ∆b.

Theorem 2.5 then follows immediately from the fact that we may write

k(t, s) = c(t− s) =

∫
Rn

exp(iω · t) exp(−iω · s)dF (ω) (2.34)

and the observation that we may represent a measure (random measure) on (Rn,B(Rn))
via the increments of a distribution function (random process) over intervals ∆ω. For
more details and other results based on the generalized spectral representation theorem
(e.g. the widely used Karhunen–Loève expansion), see Yaglom [1987a], section 26.

We shall prove theorem 2.5 in a more direct way, as the proof holds an import insight
for the special case where X is a Gaussian process. It is based on theorem 3.17, Lindgren
[2012], where the proof was given for the case n = 1.

Proof of Theorem 2.5. Denote by L2(P) the Hilbert space of square-integrable random
variables with inner product

〈U, V 〉L2(P) = E[UV ].

Let H(X) be the closure (in regards to the induced norm ‖ · ‖L2(P)) of random variables
of the form

λ1X(t1) + ....+ λkX(tk), t1, ..., tk ∈ Rn, λ1, ..., λk ∈ C. (2.35)

Note that (H(X), 〈·〉L2(P)) is a closed, linear subspace of L2(P) and thus a Hilbert space
itself.

Furthermore, denote by µF (·) the Lebesgue-Stieltjes-measure induced by F (ω) and
let H(F ) = L2(µF ) be the Hilbert space of µF -square-integrable functions with inner
product

〈f, g〉L2(µF ) :=

∫
Rn
f(ω)g(ω)dF (ω). (2.36)
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Our aim is to show that the spaces H(X) and H(F ) are isometrically isomorphic and
construct the spectral process (Z(ω))ω in H(X) via respective functions in H(F ).

For t ∈ Rn, denote by φt the function ω 7→ exp(iω · t). By Bochner’s theorem, we
have for all s, t ∈ Rn:

〈X(s), X(t)〉L2(P) =

∫
Rn

exp(iω · s)exp(iω · t)dF (ω) = 〈φs, φt〉L2(µF ). (2.37)

and in particular ‖X(t)‖L2(P) = ‖φt‖L2(µF ).
Define I(X(t)) := φt. For any random variable U of the form (2.35), let

I(U) = λ1I(X(t1)) + ....+ λkI(X(tk))

= λ1φt1 + ....+ λkφtk .
(2.38)

Then it is clear that (2.37) extends to

〈U, V 〉L2(P) = 〈I(U), I(V )〉L2(µF ) (2.39)

if U, V are as in (2.35). Now, using the fact that the families {U ∈ H(X) : U =∑k
i=1 λiX(ti)} and {f ∈ H(F ) : f =

∑k
i=1 λiφti} are dense in their respective Hilbert

spaces, it is a standard result that one may uniquely extend I to a bijective isometry
I : H(X) −→ H(F ).

Now, for a fixed ω = (ω1, ..., ωn) ∈ Rn, define the indicator function

gω(ξ) :=
n∏
i=1

1(−∞,ωi](ξi), ξ ∈ Rn. (2.40)

Furthermore, for an interval ∆ω := [ω1, ω1 + ∆1]× ...× [ωn, ωn + ∆n], define

g∆ω(ξ) := g(ω1+∆1,...,ωn+∆n)(ξ)

−
∑
i

g(ω1+∆1,...,ωi−1+∆i−1,ωi,ωi+1+∆i+1,...ωn+∆n)(ξ)

+
∑
i 6=j

g(ω1+∆1,...,ωi,....,ωj ,...ωn+∆n)(ξ)

− ...+ (−1)ng(ω1,...,ωn)(ξ).

It holds that

g∆ω(ξ) =

n∏
i=1

1[ωi,ωi+∆i](ξi) = 1∆ω(ξ)

and we get that gω, g∆ω ∈ H(F ) with

‖gω‖L2(µF ) = µF ((−∞, ω1]× ...× (−∞, ωn]) = F (ω)

‖g∆ω‖L2(µF ) = µF (∆ω) = ∆F (ω).
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Define the spectral process Z via

Z(ω) = I−1(gω), ω ∈ Rn. (2.41)

From the linearity of I it follows that Z satisfies ∆Z(ω) = I−1(g∆ω) and thus

E[|∆Z(ω)|2] = ‖∆Z‖L2(P) = ‖g∆ω‖L2(µF ) = ∆F (ω). (2.42)

Further, Z has orthogonal increments over disjoint rectangles ∆ω ∩∆ν = ∅:

E[∆Z(ω)∆Z(ν)] = 〈g∆ω, g∆ν〉L2(µF ) =

∫
Rn

1∆ω(ξ)1∆ν(ξ)dF (ξ) = 0. (2.43)

It remains to show that

X(t) =

∫
Rn

exp(iω · t)dZ(ω).

Recall that for any interval T∫
T

exp(iω · t)dZ(ω) = lim
k→∞

∑
∆ω∈Pk

exp
(
iω′ · t

)
∆Z(ω) =: lim

k→∞
Sk(t),

where (Pk)k is a sequence of sub-interval partitions of T with mesh size going to zero
and ω′ = [ω1, ..., ωn] for an interval ∆ω = [ω1, ω1 + ∆1]× ...× [ωn, ωn + ∆n].

Note that the limit is taken in L2(P) and we may thus apply I on the RHS and pull
out the limit to get

I
(

lim
k→∞

Sk(t)

)
= lim

k→∞

∑
∆ω∈Pk

exp
(
iω′ · t

)
I(∆Z(ω))

= lim
k→∞

∑
∆ω∈Pk

exp
(
iω′ · t

)
1∆ω.

(2.44)

Furthermore, the RHS sum is a bounded function that, due to |Pk| → 0, converges
pointwise for any ξ ∈ Rn:

lim
k→∞

∑
∆ω∈Pk

exp
(
iω′ · t

)
1∆ω(ξ) = exp(iξ · t) = φt(ξ).

Thus, using dominated convergence in L2(µF ) for the second step, we get

I
(

lim
k→∞

Sk(t)

)
= lim

k→∞

∑
∆ω∈Pk

exp
(
iω′ · t

)
1∆ω

= φt

= I(X(t)),

(2.45)

which proves the claim.
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As mentioned before, the proof above gives an important observation. In the special
case that X is a Gaussian process, any random variable Y ∈ H(X) is in fact a normal
distribution as the L2(P)-limit of Gaussian variables. Noting the vector space structure
of H(X), it is immediate that:

Corollary 2.1. Let X be a stationary Gaussian process. Then its spectral process Z is
a Gaussian process itself.

Another special case of interest occurs when X is real-valued:

Lemma 2.4. If X is real-valued, its spectral process is such that{
∆Z(ω) ∈ R, if ∆ω is symmetric around 0,

∆Z(ω) is proper, else.
(2.46)

Furthermore, there exist two real-valued processes Z1, Z2 such that

X(t) =

∫
cos(ω · t)dZ1(ω) +

∫
sin(ω · t)dZ2(ω). (2.47)

Proof. The proof of the one-sided represenation in the case n = 1 is given in Lindgren
[2012], section 3.3.4. For completeness sake, we give the proof in the two-dimensional
case, which will become relevant to us later on.

With slight abuse of notation, it holds that

X(t) =

∫
R2

exp(iω · t)dZ(ω)

=

∫
R+×R

cos(ω · t) [dZ(ω) + dZ(−ω)] + i

∫
R+×R

sin(ω · t) [dZ(ω)− dZ(−ω)]

Denote by −∆ω the two-dimensional interval gained by mirroring an interval ∆ω with
respect to ω0 = 0, and by ∆Z(−ω) the respective increment of Z over −∆ω. The fact
that X(t) is real then implies that for all ∆ω

Im(∆Z(ω) + ∆Z(−ω)) = 0,

Re(∆Z(ω)−∆Z(−ω)) = 0.

which gives

∆Z(ω) = ∆Z(−ω). (2.48)

This implies ∆Z(ω) = ∆Z(ω) ∈ R whenever ω0 ∈ ∆ω such that −∆ω = ∆ω (or,
equivalently, ∆ω is a square centered around ω0). Alternatively, if ω0 /∈ ∆ω it holds
∆ω ∩−∆ω = ∅. Therefore, the orthogonality of increments of Z over disjoint sets gives

E[∆Z(ω)∆Z(ω)] = E[∆Z(ω)∆Z(−ω)]

= 0.

23



This proves the first claim. For the second claim, define

∆Z1(ω) := ∆Z(ω) + ∆Z(−ω) = 2 Re(∆Z(ω))

∆Z2(ω) := i(∆Z(ω)−∆Z(−ω)) = −2 Im(∆Z(ω)).
(2.49)

Returning to the limit |∆ω| → 0, we get

X(t) =

∫
R+×R

cos(ω · t)dZ1(ω) +

∫
R+×R

sin(ω · t)dZ2(ω). (2.50)

Lastly, we note note that it is straight-forward to get a representation (2.32) for
non-centered processes X. Let 0 6= m ∈ Rn be the mean of X(t) and denote by X̃
the centered-process given by X̃(t) = X(t) − m. Then X̃ is stationary with identical
covariance function to X. Let Z̃ be its spectral process and define

Z(ω) :=

{
m, if ω = 0,

Z̃(ω), else.

Then Z is a spectral process for X:∫
Rn

exp(iω · t)dZ(ω) =

∫
Rn\{0}

exp(iω · t)dZ̃(ω) +

∫
{0}

exp(iω · t)dZ̃(ω)

= X̃(t) +m

= X(t).

Note that ∆Z(ω) = 0 if and only if 0 /∈ ∆ω.

2.2.4. Matérn Processes

This section introduces the Matérn covariance function. It was named after Matérn
[1960] by Stein [1999], who popularized its usage in statistics for spatial and spatiotem-
poral data. Its spectral properties have been studied by Whittle [1954]. We follow the
introductions of Rasmussen and Williams [2006], chapter 4, and Lindgren et al. [2011].

The Matérn class is the class of centered Gaussian processes X = (X(t))t∈Rn with
Matérn covariance function

c(‖s− t‖) := σ2 21−ν

Γ(ν)
(κ‖s− t‖)ν Kν(κ‖s− t‖). (2.51)

Here, Kν(·) denotes the second kind modified Bessel function of order ν > 0 and Γ(ν)
the gamma function. The marginal variance is given by σ2. For example, in the case
ν = 1, the fact that limr→0 rK1(r) = 1 gives

lim
r→0

c(r) = lim
r→0

σ2 (κr)K1(κr) = σ2.
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The parameter κ is a scale parameter, often parametrized via κ = 1
ρ , whereas ν controls

the smoothness of X. It can be shown that X is k-times mean-squared differentiable1

if and only if ν ≥ k. For a comparison of how these parameters influence the resulting
Matérn field, see figure 2.1.

The Matérn covariance is isotropic and therefore stationary. It can be shown that its
spectral density is given by

f(ξ) =
σ2

(2π)n
(κ2 + ‖ξ‖2)−α, α = ν + n

2 . (2.52)

Going on step further one can then show, based on the spectral density and the definition
of the fractional Laplace operator 2, that the Gaussian processes with Matérn covariance
function are the stationary solutions to the fractional stochastic Laplace equation

(κ2 −∆)
α
2X(s) = Ẇ (s), s ∈ Rn, (2.53)

where Ẇ (s) denotes spatial white noise3. For proofs of these facts, see Whittle [1954]
and Whittle [1963].

It is noteworthy that the Matérn covariance function has interesting links to many
widely used covariance functions. A full discussion on these can be found in Rasmussen
and Williams [2006], whereas we shall only describe two special cases.

A reparametrization of the spectral density gives

f(ξ) =
2nπ

n
2 Γ(ν + n

2 )(2ν)ν

Γ(ν)ρ2ν

(
2ν

ρ2
+ 4π2‖ξ‖2

)−(ν+
n
2 )

,

where κ =
√

2ν
ρ . In the limit ν →∞, this converges to the spectral density

fSE(ξ) =
(
2πρ2

)n
2 exp

(
−2π2ρ2‖ξ‖2

)
of the squared exponential kernel

cSE(r) = exp

(
− r2

2ρ2

)
.

Furthermore, in the case ν = 1
2 , it can be shown that the Matérn covariance function

equals the exponential kernel

cExp(r) = σ2 exp
(
− r
ρ

)
. (2.54)

1A process X is mean-squared differentiable if there exists a process X ′ such that, for all t,
limh→0

X(t+h)−X(t)
h

= X ′(t) in L2(P). If X is such that its paths are differentiable almost surely, the
pathwise derivative equals the mean-square derivative almost surely. For more details see Lindgren
[2012], chapter 2.4.

2The fractional Laplace operator is defined via its properties in the frequency domain:

F
(

(κ2 −∆)
α
2 φ
)

(ξ) =
(
κ2 + ‖ξ‖2

)α
2 F (φ)(ξ) for any function φ such that the right hand side exists.

3See section 2.4 for a precise definition.
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This kernel, parametrized with marginal variance σ2 = 1
2γ and scale parameter ρ = 1

γ , is
a pointwise approximation of the covariance function of the Ornstein-Uhlenbeck process

kO.U.(s, t) =
1

2γ
(exp(−γ(t− s))− exp(−γ(t+ s))) , s < t,

for sufficiently large s, t (that is, when the process ”has been running for a sufficiently
long time”). It is considered one of the most elementary covariance functions in one
dimension, due to its property of giving rise to a Markov process.

As its two-dimensional pendant, Whittle [1954] proposed the Matérn covariance func-
tion with ν = 1, noting their similar decay behavior and the fact that the discretized
version of the corresponding Matérn process X, defined by equation (2.53), is a Markov
field on the lattice Z2 given by

X̃r,t = κ̃(X̃r+1,t + X̃r−1,t + X̃r,t+1 + X̃r,t−1) + ε(r, t), (r, t) ∈ Z2,

with scaling parameter κ̃ and discrete white noise ε(r, t).
It will be this special case of the Matérn kernel that we shall be concerned with and we

refer to it as the Whittle covariance function. For the sake of completeness, its covariance

Figure 2.1.: Matérn Fields with differing scale- and smoothness parameters.

26



function/spectral density pair is given by

cwhittle(‖s− t‖) = σ2 (κ‖s− t‖)K1(κ‖s− t‖) and

fwhittle(ξ) =
σ2

(2π)2
(κ2 + ‖ξ‖2)−2

(2.55)

respectively.
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2.3. Filtering and Smoothing of Stochastic Differential
Equations

This section concerns the filtering and smoothing of (linear) stochastic differential equa-
tions. We start off by reviewing solutions to such equations. In the linear case, these
are easily obtained in closed form. We then generalize the solutions for complex-valued
processes as these will be of interest for us in chapter 3.

Section 2.3.2 then introduces the filtering and smoothing problem and derives the
Kalman filter and -smoother as a solution in case of linear dynamics.

2.3.1. Review - Stochastic Differential Equations

Consider a dynamical system x(t) whose behavior in continuous time t ∈ R+ is given by
the ordinary differential equation

d
dtx(t) = f(x(t), t).

Assume that at any given moment, the system is perturbed by a stochastic forcing term
ẇ(t). The forcing term might account for model uncertainty, measurement errors or
inherent stochastic nature of the modeled process.

A common assumption is that the noise process ẇ = (ẇ(t))t is stationary Gaussian
and its realizations at distinct times are independent, in which case one speaks of a
(continuous-time) white noise process. One may then be inclined to write

d
dtX(t) = f(X(t), t) + σ(X(t), t)ẇ(t), t ∈ R+. (2.56)

where σ(x, t) is some function that scales noise intensity.
Note, however, that (ẇ(t))t does not exist in the original sense of a stochastic processes.

Its proposed properties imply a covariance function that equals a Dirac delta function,
which in turn suggests a constant spectral density (akin to physical white light, hence
the terminology) and infinite variance for any ẇ(t). Other undesired properties include
the non-existence of continuous path realization of ẇ and its non-measurability (see e.g.
Kallianpur and Sundar [2014], 1.1.2 and 1.1.3).

The workaround for this problem is to consider white noise as the informal derivative of
standard Brownian motion, formally written as ẇ(t) = d

dtw(t), and to interpret (2.56) as
an integral equation. A process (X(t))t is then called a strong solution to the stochastic
differential equation (SDE)

dX(t) = f(X(t), t)dt+ σ(X(t), t)dw(t). (2.57)

if it satisfies 4

X(t) = X(0) +

∫ t

0
f(X(s), s)ds+

∫ t

0
σ(X(s), s)dw(s). (2.58)

4Of course, other properties it has to satisfy are adaptedness and paths that are almost surely continuous
and square-integrable.
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The existence of such solutions is ensured by certain growth and continuity assumptions
on the drift- and diffusion functions f(t, x) and σ(t, x). For a detailed introduction see
Kuo [2006], chapter 10 or Kallianpur and Sundar [2014], chapter 6.

One of the simplest stochastic differential equations is given by the Langevin equation{
dX(t) = −γX(t)dt+ σdw(t), γ > 0, σ ∈ R,
X(0) = X0.

(2.59)

The solution X to (2.59) is called an Ornstein-Uhlenbeck (O.U.) process and is given by

X(t) = exp(−γt)X0 + σ

∫ t

0
exp(−γ(t− s))dw(s). (2.60)

It is a Markov process with conditional momenta for all s < t given by

E[X(t) | X(s) = x] = exp(−γ(t− s))x

Var[X(t) | X(s) = x] =
σ2

2γ
[1− exp(−2γ(t− s))].

(2.61)

In particular, for any normally distributed X0, X is a Gaussian process such that Xt

converges weakly to a normally distributed random variable

X∞ ∼ N
(

0,
σ2

2γ

)
(2.62)

and the distribution of X∞ is an invariant measure for X. Proofs of these facts can be
found in Kuo [2006], 7.4.5 - 7.4.7.

Unsurprisingly, these properties extend to the complex-valued analogue, as seen in the
following two lemmata:

Lemma 2.5. Let w = w1 + iw2 be a complex Brownian motion and Z = Z1 + iZ2 be an
independent complex random variable. A complex-valued Ornstein-Uhlenbeck process is
a process X = (X(t))t that solves the complex Langevin equation{

dX(t) = −γX(t)dt+ σdw(t)

X(0) = Z,
(2.63)

where γ = γ1 + iγ2 ∈ C, γ1 ∈ R+, σ ∈ R.
It is given by

X(t) = exp(−γt)Z + σ

∫ t

0
exp(−γ(t− s))dw(s). (2.64)

Proof. Write X(t) = X1(t) + iX2(t) and let X̃(t) = [X1(t), X2(t)] be its R2-valued
pendant. Likewise, define w̃(t) = [w1(t), w2(t)] and Z̃ = [Z1, Z2]. Then X̃(t) solves the
Langevin equation {

dX̃(t) = −ΓX̃(t)dt+ Σdw̃(t)

X̃(0) = Z̃
(2.65)
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with Σ := σ√
2
E2, E2 denoting the 2× 2-identity matrix, and

Γ :=

(
γ1 −γ2

γ2 γ1

)
.

Define φ(t,x) := exp(Γt)x, where exp(Γt) is to be understood as the matrix expo-
nential function. Then

∂tφ(t,x) = Γ exp(Γt)x

∂xiφ(t,x) = exp(Γt)ei

∂2
xi,xjφ(t,x) = 0,

where i, j ∈ {1, 2} and ei denotes the i-th standard euclidean basis vector.
For a matrix A, denote by Ai,: and A:,i the i-th row and column respectively. Note

that
∑

iA:,iBi,: = AB. Itô’s lemma (see theorem A.1) gives

exp(Γt)X̃(t) = X̃(0) +

∫ t

0
Γ exp(Γs)X̃(s)ds+

2∑
i=1

∫ t

0
exp(Γs)eidX̃i(s)

= Z̃ +

∫ t

0
Γ exp(Γs)X̃(s)ds+

2∑
i=1

∫ t

0
exp(Γs):,i(−Γ)i,:X̃(s)ds

+
2∑
i=1

∫ t

0
exp(Γs):,iΣi,:dw̃(s)

= Z̃ +

∫ t

0
exp(Γs)Σdw̃(s),

(2.66)

where we have used the fact that Γ and exp(Γs) are diagonalizable with the same
eigenvectors and therefore commute. Thus, the solution to 2.65 is given by

X̃(t) = exp(−Γt)Z̃ + Σ

∫ t

0
exp(−Γ(t− s))dw̃(s). (2.67)

To translate this solution back to the complex domain, note that it holds

exp(−Γt) = exp

((
−γ1 γ2

−γ2 −γ1

)
t

)
= exp (−γ1tE2 + γ2tF2)

= exp (−γ1tE2) exp (γ2tF2) .

where F2 =

(
0 1
−1 0

)
and we used that E2 and F2 commute.

Recall that for any diagonal matrix D = diag[a, b], it holds

exp(tD) = diag[exp(ta), exp(tb)] (2.68)
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and therefore

exp (−tγ1E2) =

(
exp(−γ1t) 0

0 exp(−γ1t)

)
.

To compute exp(tγ2F2), note that the eigendecomposition of γ2F2 is given by

γ2F2 =

(
i −i
1 1

)(
−iγ2 0

0 iγ2

)(
i −i
1 1

)−1

.

A simple calculation then shows that

exp(tγ2F2) =

(
i −i
1 1

)(
exp(−iγ2t) 0

0 exp(iγ2t)

)(
i −i
1 1

)−1

=

(
cos(γ2t) sin(γ2t)
− sin(γ2t) cos(γ2t)

)
.

In total, we get

exp(−Γt) =

(
exp(−γ1t) cos(γ2t) exp(−γ1t) sin(γ2t)
− exp(−γ1t) sin(γ2t) exp(−γ1t) cos(γ2t)

)
,

whose matrix-vector multiplication in R2 corresponds to multiplication in C with the
scalar

exp(−(γ1 + iγ2)t) = exp(−γ1t) cos(γ2t)− i exp(−γ1t) sin(γ2t).

From this and definition 2.9, we conclude that the solution to equation (2.63) is given
by

X(t) = exp(−γt)Z + σ

∫ t

0
exp(−γ(t− s))dw(s). (2.69)

Lemma 2.6. Let X = (X(t))t be a complex Ornstein-Uhlenbeck process given by (2.64),
with independent initial value Z ∼ CN (µ0, σ

2
0).

Then X is a proper complex Gaussian process with mean and covariance function
given by

m(t) = exp(−γt)µ0

k(s, t) = exp(−γs)exp(−γt)
[
σ2

0 + σ2

2γ1
(exp(2γ1s)− 1)

]
, s ≤ t.

(2.70)

Furthermore, X is a Markov process and converges in distribution to a proper complex
Gaussian variable X∞ ∼ CN (0, σ

2

2γ1
), whose distribution is an invariant measure for the

process.
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Proof. Recall that (I(t))t =
(∫ t

0 exp(γu)dw(u)
)
t

is a centered, proper complex Gaussian

process with covariance function

kI(s, t) =

∫ s

0
| exp(γu)|2du

=

∫ s

0
exp(2γ1u)du

= 1
2γ1

[exp(2γ1s)− 1] , s ≤ t.

(2.71)

Thus, X(t) = exp(−γt)Z + σ exp(−γt)I(t) is both proper and complex Gaussian with
mean function

m(t) = E[exp(−γt)Z + σ exp(−γt)I(t)]

= exp(−γt)µ0
(2.72)

and covariance function

k(s, t) = Cov [exp(−γs)Z + σ exp(−γs)I(s), exp(−γt)Z + σ exp(−γt)I(t)]

= Cov [exp(−γs)Z, exp(−γt)Z] + Cov [σ exp(−γs)I(s), σ exp(−γt)I(t)]

= exp(−γs)exp(−γt)σ2
0 + exp(−γs)exp(−γt) σ2

2γ1
(exp(2γ1s)− 1)

= exp(−γs)exp(−γt)
[
σ2

0 + σ2

2γ1
(exp(2γ1s)− 1)

]
, s ≤ t.

(2.73)

In particular, we have

Var[X(t)] = | exp(−γt)|2
[
σ2

0 + σ2

2γ1
(exp(2γ1t)− 1)

]
= exp(−2γ1t)

[
σ2

0 + σ2

2γ1
(exp(2γ1t)− 1)

]
= exp(−2γ1t)σ

2
0 + σ2

2γ1
(1− exp(−2γ1t)) .

(2.74)

Note that with γ1 > 0, it holds

lim
t→∞

m(t) = lim
t→∞

exp(−γt)µ0 = 0

lim
t→∞

Var[X(t)] = lim
t→∞

exp(−2γ1t)σ
2
0 + σ2

2γ1
(1− exp(−2γ1t))

= σ2

2γ1
,

from which we can conclude that X(t) converges in distribution to a proper Gaussian

variable X∞ ∼ CN (0, σ
2

2γ1
). In fact, X∞ is an invariant measure for X; if Z

d
= X∞, then

we have for all s ≤ t

k(s, t) = σ2

2γ1
exp(−γ1(t− s) + iγ2(t− s))

= σ2

2γ1
exp
(
−γ(t− s)

)
.

(2.75)
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In particular, for all t it holds

m(t) = 0,

k(t, t) = σ2

2γ1
,

concluding that X(t)
d
= X∞ for all t.

Lastly, the fact that X is a Markov process is clear from writing

X(t) = exp(−γt)Z + σ

∫ t

0
exp(−γ(t− u))dw(u)

= exp(−γ(t− s))X(s) + σ

∫ t

s
exp(−γ(t− u))dw(u)

(2.76)

for any s ≤ t, noting the independence of X(s), (w(u))u>s.
We get

E[X(t) | X(s) = x] = exp(−γ(t− s))x
Var[X(t) | X(s) = x] = Var[exp(−γ(t− s))X(s) | X(s) = x]

+ Var

[
σ

∫ t

s
exp(−γ(t− u))dw(u) | X(s) = x

]
= 0 + σ2 exp(−2γ1t)Var

[∫ t

s
exp(γu)dw(u)

]
= σ2 exp(−2γ1t)

∫ t

s
exp(2γ1u)du

= σ2

2γ1
exp(−2γ1t) [exp(2γ1t)− exp(2γ1s)]

= σ2

2γ1
[1− exp(−2γ1(t− s))] ,

(2.77)

which, to no surprise, equals (2.72) and (2.74) with deterministic initial condition X(s) =
x and time lag t− s.

The Langevin equation is a special case of a general linear stochastic differential equa-
tion

dX(t) = F (t)X(t)dt+Q(t)dw(t), (2.78)

where X ∈ Rn denotes a system state, F (·) ∈ Rn×n is a system dynamics matrix, w(·)
is a d-dimensional Brownian Motion, induced into the system via a noise input matrix
Q(·) ∈ Rn×d and X(t0) denotes the initial state.

Denote by P (t, s) the state transition matrix of the system, defined by its properties

∂tP (t, s) = F (t)P (t, s)

∂sP (t, s) = −P (t, s)F (s)

P (t, s) = P (t, u)P (u, s)

P (s, t)−1 = P (t, s).

(2.79)
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In the case of the Langevin equation, P (t, s) is given by the matrix exponential
exp(−γ(t− s)). Analogue to the proof seen above, an application of Itô’s lemma to
φ(t,X(t)) := P (t0, t)X(t) shows that the solution to (2.78) is given by a Markov pro-
cess

X(t) = P (t, t0)X(t0) +

∫ t

t0

P (t, s)Q(s)dw(s). (2.80)

For more details see Särkkä and Solin [2019], chapter 4.3.

2.3.2. Bayesian Filtering & Smoothing

Bayesian filtering concerns the problem of estimating the state of a dynamically evolving
stochastic process, based on incoming noisy and possibly incomplete process measure-
ments. Its offline pendant, the filtering problem, concerns the state estimation given all,
including future, observations.

In the special case of linear dynamics and Gaussian noise terms, both problems can
be solved in closed form via the Kalman filter and Kalman smoother. Their following
introduction is based on Maybeck [1979], chapter 5, and Särkkä and Solin [2019], chapter
10.

Assume we are concerned with estimating the state of a process X, evolving according
to the linear SDE

dX(t) = F (t)X(t)dt+Q(t)dw(t), (2.81)

where F (·) ∈ Rn×n is a system dynamics matrix, w(·) is a d-dimensional Brownian
Motion, induced into the system via a noise input matrix Q(·) ∈ Rn×d and the initial
state is a Gaussian variable X(t0) ∼ Nn(m0,K0).

We further assume the measurements Z(ti) ∈ Rm at times t1 ≤ t2 ≤ .... ≤ tI to be
given by

Z(ti) = H(ti)X(ti) + ε(ti), (2.82)

where H(·) ∈ Rm×n is the measurement matrix and the measurement noise ε(·) is a
discrete-time Gaussian white noise process with covariance matrix given by R(·).

The Kalman Filter

The aim of any filtering algorithm is to construct an ’optimal’ estimator of the true
process state X(t) at any time t by incorporating knowledge of the system dynamics
and previous process observations Z(t1), ...,Z(ti), ti ≤ t. What makes an estimator
’optimal’ is a matter of definition. However, given the fact that interdependencies are
linear and stochastic terms are Gaussian, the Kalman filter can be fully formulated in
closed-form conditional distributions.

Denote by Z(t1:i) := [Z(t1), ...,Z(ti)] the vector of all available measurements up to
and including Z(ti).
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In each iteration, the Kalman Filter is formulated in two steps. Step one estimates
the state propagation from time ti to ti+1, based on a current estimation X(ti) | Z(t1:i)
and the known dynamics of the system. The second step then updates the estimation
X(ti+1) | Z(t1:i) by including the latest measurement Z(ti+1).

The prediction steps assumes an estimate of the current Gaussian stateX(ti) | Z(t1:i).
Denote by m(ti) and K(ti) its mean and covariance matrix and by

m−(ti+1) = E[X(ti+1) | Z(t1:i)]

K−(ti+1) = E[X(ti+1)XT (ti+1) | Z(t1:i)].

the mean and covariance matrix of the propagated state prediction X(ti+1) | Z(t1:i).
Recall that X is a Markov process given by

X(t) = P (t, t0)X(t0) +

∫ t

t0

P (t, τ)Q(τ)dw(τ),

where P (·, ·) is the state-transition matrix defined in (2.79). As such, it follows that

X(ti+1) = P (ti+1, ti)X(ti) +

∫ ti+1

ti

P (ti+1, τ)Q(τ)dw(τ),

from which it is immediate that the propagation of m(t) and K(t) are given by

m−(ti+1) = P (ti+1, ti)m(ti)

K−(ti+1) = P (ti+1, ti)K(ti)P
T (ti+1, ti)

+

∫ ti+1

ti

P (ti+1, τ)Q(τ)QT (τ)P T (ti+1, τ)dτ

=: P (ti+1, ti)K(ti)P
T (ti+1, ti) +L(ti+1, ti).

(2.83)

The second step aims to update the estimations m−(ti+1) and K−(ti+1) based on a
measurement Z(ti+1). The Bayes theorem gives

fX(ti+1)|Z(t1:i+1) =
fZ(ti+1)|Z(t1:i),X(ti+1)fX(ti+1)|Z(t1:i)

fZ(ti+1)|Z(t1:i)

=
fZ(ti+1)|X(ti+1)fX(ti+1)|Z(t1:i)

fZ(ti+1)|Z(t1:i)
.

(2.84)

Note that the second numerator is computed in step one. It is easy to see that the first
numerator Z(ti+1) | X(ti+1) is Gaussian with mean H(ti+1)X(ti+1) and covariance
matrix R(ti+1).

Furthermore, the denominator is the sum of the two independent Gaussian variables
[H(ti+1)X(ti+1) | Z(t1:i)] and [ε(ti+1) | Z(t1:i)] and thus Gaussian with momenta

E[Z(ti+1) | Z(t1:i)] = H(ti+1)m−(ti+1)

E[Z(ti+1)ZT (ti+1) | Z(t1:i)] = H(ti+1)K−(ti+1)HT (ti+1) +R(ti+1).
(2.85)
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From this it is not immediate that X(ti+1) | Z(t1:i+1) is also Gaussian. However,
plugging in the respective normal densities into (2.84), one can show with the help of
the matrix inversion lemma (e.g. Maybeck [1979], page 213) that fX(ti+1)|Z(t1:i+1) indeed
has a closed Gaussian density form with

m(ti+1) =
[
K−(ti+1)−1 +HT (ti+1)R−1(ti+1)H(ti+1)

]−1

·
[
K−(ti+1)−1m−(ti+1) +HT (ti+1)R−1(ti+1)Z(ti+1)

]
K(ti+1) =

[
K−(ti+1)−1 +HT (ti+1)R−1(ti+1)H(ti+1)

]−1
.

These can be reformulated with the help of the Kalman gain G(ti+1), defined as:

G(ti+1) := K−(ti+1)HT (ti+1)
[
H(ti+1)K−(ti+1)HT (ti+1) +R(ti+1)

]−1
. (2.86)

The updates then take on the final form

m(ti+1) = m−(ti+1) +G(ti+1)[Z(ti+1)−H(ti+1)m−(ti+1)]

K(ti+1) = K−(ti+1)−G(ti+1)H(ti+1)K−(ti+1).
(2.87)

The complete Kalman filter is summarized in algorithm 2.1. Note that the final for-
mulation of the update step only requires inversion of matrices in Rm×m rather than
Rn×n, making computation more efficient in many applications in which m << n. How-
ever, due to the matrix multiplications in the prediction step, the overall computational
complexity class for a single Kalman filter iteration remains O(n3).

Further note that the two steps inductively show that, given a Gaussian initial state,
all subsequent state estimations are Gaussian. This justifies the assumption made in
step one.

Algorithm 2.1: Kalman Filter

Input: data (Z(ti)), i = 1, ..., I, model matrix functions P ,Q,L,H,R, prior
state m0,K0.

Output: predicted and updated mean and covariance matrix estimates
m−(ti),K

−(ti),m(ti),K(ti), i = 1,...,I.
Initialization: m(t0) = m0,K(t0) = K0.
for i = 0, ..., I − 1 do

Prediction:
K−(ti+1) = P (ti+1, ti)K(ti)P

T (ti+1, ti) +L(ti+1, ti);
m−(ti+1) = P (ti+1, ti)m(ti);
Update:
G(ti+1) := K−(ti+1)HT (ti+1)

[
H(ti+1)K−(ti+1)HT (ti+1) +R(ti+1)

]−1
;

K(ti+1) = K−(ti+1)−G(ti+1)H(ti+1)K−(ti+1);
m(ti+1) = m−(ti+1) +G(ti+1)[Z(ti+1)−H(ti+1)m−(ti+1)];

end
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The Kalman Smoother

The smoothing problem can be considered the offline pendant to the filtering problem.
Instead of updating state beliefs with incoming measurements, we aim to retrospectively
estimate the system states X(ti) | Z(t1:I), i = 1, ..., I, given all available ”future” mea-
surements. Similar to the Kalman filter, the state estimations of the Kalman smoother
can be formulated in closed-form.

It holds, using the Markov property in the first and Bayes theorem in the second step:

fX(ti)|X(ti+1),Z(t1:I) = fX(ti)|X(ti+1),Z(t1:i)

=
fX(ti+1)|X(ti),Z(t1:i)fX(ti)|Z(t1:i)

fX(ti+1)|Z(t1:i)

=
fX(ti+1)|X(ti)fX(ti)|Z(t1:i)

fX(ti+1)|Z(t1:i)
.

Therefore, the conditional density fX(ti)|Z(t1:I) can be computed by marginalizingX(ti+1) |
Z(t1:I):

fX(ti)|Z(t1:I) =

∫
fX(ti),X(ti+1)|Z(t1:I)dxti+1

=

∫
fX(ti)|X(ti+1),Z(t1:I)fX(ti+1)|Z(t1:I)dxti+1

= fX(ti)|Z(t1:i)

∫
fX(ti+1)|X(ti)

fX(ti+1)|Z(t1:i)
fX(ti+1)|Z(t1:I)dxti+1 .

(2.88)

Note that fX(ti)|Z(t1:i) and fX(ti+1)|Z(t1:i) are the update and prediction steps given in
the filtering problem, whereas fX(ti+1)|X(ti) is specified by the Markovian model and
fX(ti+1)|Z(t1:I) is the smoothing density given by the previous step. The general smooth-
ing algorithm is therefore initiated with the updated density fX(tI)|Z(t1:I) given by the
last Kalman filter step and each iteration propagates the smoothing density backwards
in time from ti+1 to ti.

In the case of a linear SDE above, it can be shown (see e.g. Särkkä and Solin [2019],
theorem 8.2) that the smoothing densities remain Gaussian with mean ms(ti) and co-
variance matrix Ks(ti) iteratively given by

ms(ti) = m(ti) +Gs(ti+1, ti)
[
ms(ti+1)−m−(ti+1)

]
Ks(ti) = K(ti) +Gs(ti+1, ti)

[
Ks(ti+1)−K−(ti+1)

]
Gs(ti+1, ti)

T ,
(2.89)

where m(ti),K(ti) and m−(ti+1),K−(ti+1) are the updated and predicted mean and
covariance matrices given by the Kalman filter and the smoothing gain Gs is defined via

Gs(ti+1, ti) := K(ti)P (ti+1, ti)
TK−(ti+1)−1.

The resulting Kalman smoother is summarized in algorithm 2.2.
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Remark 2.2. Both the Kalman filter and smoother can be formulated to include esti-
mations in continuous time, commonly referred to as ’continuous-discrete’ filtering and
smoothing.

This is done by including ’measurement-free steps’ in the Kalman filter, which prop-
agate forward the updated estimates m(ti),K(ti) between measurements Z(ti) and
Z(ti+1) via

m(t) = P (t, ti)m(ti)

K(t) = P (t, ti)K(ti)P (t, ti)
T +L(t, ti), t ∈ (ti, ti+1).

These can then be passed on to the smoothing backpropagation to receive continuous
state estimates X(t) | Z(t1:I) with statistics

Gs(ti+1, t) = K(t)P (ti+1, t)
TK−(ti+1)−1

ms(t) = m(t) +Gs(ti+1, t)
[
ms(ti+1)−m−(ti+1)

]
Ks(t) = K(t) +Gs(ti+1, t)

[
Ks(ti+1)−K−(ti+1)

]
Gs(ti+1, t)

T ,

where t is such that t ∈ (ti, ti+1) for some i.

The Filtering Likelihood Function

We now turn our attention to the situation in which the process dynamics and observa-
tions are parametrized by unknown model parameters θ. For this case, the Kalman filter
emits a closed-form likelihood function which can be passed onto any likelihood-based
parameter estimation method.

Assume the dynamical model (2.81) and observation model (2.82) are parametrized
by a vector θ and denote the corresponding model matrices and Kalman filter outputs
by Fθ,Pθ,Qθ,Lθ,Hθ,Rθ, Gθ and m−θ ,K

−
θ ,mθ,Kθ.

Algorithm 2.2: Kalman Smoother

Input: state-transition matrix function P , Kalman filter outputs m(ti),K(ti),
m−(ti),K

−(ti), i = 1, ..., I.
Output: smoothing mean and covariance matrix estimates ms(ti),K

s(ti), i =
1,...,I.

Initialization: ms(tI) = m(tI),K
s(tI) = K(tI).

for i = I − 1, ..., 1 do
Gs(ti+1, ti) = K(ti)P (ti+1, ti)

TK−(ti+1)−1

Ks(ti) = K(ti) +Gs(ti+1, ti)
[
Ks(ti+1)−K−(ti+1)

]
Gs(ti+1, ti)

T ;
ms(ti) = m(ti) +Gs(ti+1, ti)

[
ms(ti+1)−m−(ti+1)

]
;

end
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Given the observations Z(ti) = zi, i = 1, ..., I, we can, noting the Markov property of
the underlying true process (X(t))t and the white noise property of ε(ti)i, factorize the
likelihood function in θ as

L(θ) := fZ(t1:I)|θ(z1:I | θ)

= fZ(t1)|θ(z1 | θ)
I−1∏
i=1

fZ(ti+1)|Z(t1:i),θ(zi+1 | z1:i,θ).
(2.90)

Note that the conditional densities fZ(ti+1)|Z(t1:i),θ(zi+1 | z1:i,θ), i = 1, ..., I, are a
byproduct of the Kalman filter. As seen in (2.85) they are Gaussian with mean and
covariance matrix given by

mZ,θ(ti+1) = Hθ(ti+1)m−θ (ti+1)

KZ,θ(ti+1) = Hθ(ti+1)K−θ (ti+1)HT
θ (ti+1) +Rθ(ti+1),

(2.91)

whereas for i = 0, mZ,θ(t1) and KZ,θ(t1) are the predicted statistics of the first obser-
vation, based on the Filtering initiation X0 ∼ N (m0,K0).

Denote by f(·;m,K) the density of a n-dimensional multivariate Gaussian variable
with mean m and covariance K. The overall likelihood function can then be written as

L(θ) =
I∏
i=1

fn(zi;mZ,θ(ti),KZ,θ(ti)) (2.92)

and be passed on to any frequentist or Bayesian parameter estimation method.

Remark 2.3. All results derived in this section are easily extended to the complex-
valued case, assuming the system is such that the state (X(t))t and observations (Z(ti))i
remain proper at all times. In the linear case, this is given when the prior state and
measurement noise are assumed to be proper.

For this, recall that proper complex Gaussian vectors are uniquely defined by their
mean and covariance matrix, and that properness remains under summation of indepen-
dent variables. Using the density fZ , given by

fZ(z) =
1

πn det(K)
exp

(
−(z −m)HK−1(z −m)

)
for any proper complex Gaussian Z ∼ CN (m,K) and the fact that linear combinations
of independent proper complex Gaussians variables are again proper complex Gaussian
(see property 3 in lemma 2.2), one is quick to see that all derivations made in the
section above are generalized to the complex case by simply interchanging the respective
densities and the transpose- to the hermitian transpose operator.
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2.4. Linear Stochastic Partial Differential Equations

This section introduces a framework of solving linear stochastic partial differential equa-
tions, formally written as

∂tU(t,x) = AU(t,x) + Ẇ (t,x), (2.93)

where A is a linear differential operator acting in the spatial domain and Ẇ (t,x) denotes
space-time white noise, a stationary centered Gaussian process with random values that
are independent with respect to the space-time variable. If Ẇ (t,x) is correlated over the
spatial domain instead, we refer to it as temporally white and spatially coloured noise.
As in the solely temporal case, Ẇ (t,x) does not exist in the original sense of a stochastic
process. Previously, this issue was circumvented by understanding stochastic differential
equations as integral equations through the Itô integral. We will now introduce the
corresponding framework for the space-time case. This is done by considering generalized
random processes (U(t))t and understanding (2.93) as equations of the form

dU(t) = AU(t)dt+ dWQ(t), (2.94)

where (U(t))t is a process taking values in a suitable Hilbert space on which A acts as a
linear operator and (WQ(t))t is a cylindrical Wiener process, likewise taking values in a
suitable Hilbert space. One can then formulate the notion of a weak solution to equations
of type (2.94) after defining a suitable way of integrating generalized processes in regards
to WQ.

We start off by introducing generalized random processes, based roughly on Lototsky
and Rozovsky [2017], chapter 1.1 and 3.3. The succeeding introduction of Hilbert-space
valued stochastic integration and weak solutions is based on Da Prato and Zabczyk
[1992], chapter 4 and 5.

For the rest of section, denote by D ⊂ Rd some compact spatial domain and let L2(D),
L2([0, T ]) denote the separable Hilbert spaces of square-integrable real-valued functions

with scalar product 〈h, g〉D =
∫
D h(x)g(x)dx and 〈h, g〉T =

∫ T
0 h(t)g(t)dt respectively.

2.4.1. Generalized Random Processes

Recall that one may construct a Wiener process on any interval [0, T ] as follows: let
(ψk)k be an orthonormal basis of L2([0, T ]) and (ηk)k be a sequence of independent,
standard Gaussian random variables. Then one can show that

w(t) =
∑
k

(∫ t

0
ψk(s)ds

)
ηk

satisfies the assumptions of Brownian motion - it is a centered Gaussian process with
almost surely continuous paths and covariance function E[w(s)w(t)] = min(s, t).

This suggests the formal expression of white noise as the sum

ẇ(t) =
∑
k

ψk(t)ηk. (2.95)
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While in general this expression diverges, it gives rise to the definition of white noise as
a generalized random function:

Definition 2.11 (White Noise, Lototsky and Rozovsky [2017], 1.1.5). Let (ψk)k be
an orthonormal basis of L2([0, T ]) and (ηk)k be a sequence of independent, standard
Gaussian variables. Then, temporal white noise on [0, T ] is defined as a generalized
random function

ẇ : L2([0, T ]) −→ R
ẇ(h) =

∑
k

〈h, ψk〉Tηk, (2.96)

where 〈h, ψk〉 =
∫ T

0 h(t)ψk(t) denotes the scalar product on L2([0, T ]). The random
variables ẇ(h) are centered Gaussian with covariances given by

E[ẇ(h)ẇ(g)] = 〈h, g〉T .

Likewise, one defines spatial white noise on D as the generalized random function

Ẇ : L2(D) −→ R
Ẇ (h) =

∑
j≥1

〈h, φj〉Dηj , (2.97)

for some orthonormal basis (φj)j of L2(D) and sequence of independent, standard Gaus-
sian variables (ηj)j .

It is handy to extend these considerations to the spatiotemporal case in the following
way. Let D = [0, L]d ⊂ Rd be rectangular and (wj)j a sequene of independent Wiener
processes. Then, the space-time pendant to the Wiener process is the Brownian sheet,
which may be constructed on [0, T ]×D via

W (t,x) =
∑
j≥1

(∫ x1

0
...

∫ xd

0
φj(r)dr

)
wj(t).

It is a centered Gaussian processes with almost surely continuous paths and covariance
function E[W (s,x)W (t,y)] = min(s, t)

∏d
i=1 min(xi, yi). Once again, formal derivation

suggests space-time white noise to take on the form

Ẇ (t,x) =
∑
j≥1

φj(x)ẇj(t). (2.98)

Note that, here, the dot in Ẇ stands for the partial derivative ∂t∂x1 ...∂xd rather than
its usual notation for the temporal derivatives. While this sum once again diverges, it
gives rise to the following definition:
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Definition 2.12 (Space-Time White Noise, Lototsky and Rozovsky [2017] 1.1.2). Let
(φj)j be an orthonormal basis of L2(D) and (wj)j be a sequene of independent Wiener
processes. Then, space-time white noise on [0, T ] × D is defined as the generalized
random function

Ẇ : L2([0, T ]×D) −→ R

Ẇ (h) =
∑
j≥1

∫ T

0
〈h(t, ·), φj〉Ddwj(t),

(2.99)

with h(t, ·) denoting the function x 7→ h(t,x) for a fixed t. The random variables Ẇ (h)
are centered Gaussian with covariances given by

E[Ẇ (h)Ẇ (g)] =

∫ T

0
〈h(t, ·)g(t, ·)〉Ddt. (2.100)

Note that this definition does not assume D to be of rectangular form anymore.

The previous two definitions made sense of (spatio)temporal white noise as a general-
ized random function acting on L2 spaces. In a much broader setting, one can define:

Definition 2.13 (Generalized Gaussian Random Fields, Lototsky and Rozovsky [2017]
3.2.10.). Let (H, 〈·, ·〉) be a Hilbert space. A generalized (Gaussian) random field or gen-
eralized (Gaussian) random process is a collection of centered Gaussian random variables
(F (h))h∈H such that there exists a bounded, linear, self-adjoint, non-negative operator
Q : H −→ H with

E[F (h)F (g)] = 〈Qh, g〉 (2.101)

for all h, g ∈ H. We call Q the covariance operator of F . If Q is the identity operator,
we call F white noise on H. If H is a function space, we also refer to F as a generalized
(Gaussian) random function.

Clearly, the generalized white noise processes as defined above are cases of generalized
Gaussian random fields on the Hilbert spaces L2([0, T ]) and L2([0, T ]×D) respectively.
Their formal expressions given in equations (2.95) and (2.98) hint towards the existence
of generalized fields that can be represented via random variables taking values in H.
Indeed, these generalized random fields make up the following subclass:

Definition 2.14 (Regular Generalized Gaussian Random Field, Lototsky and Rozovsky
[2017] 3.2.13). We call a generalized Gaussian random field F on a Hilbert space (H, 〈·, ·〉)
regular if there exists a H-valued random variable f such that E[‖f‖2H ] <∞ and for all
h ∈ H:

F (h) = 〈h, f〉.
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It turns out that regular generalized fields can be identified through the properties
of their covariance operators. We call a linear operator Q : H −→ H on a separable
Hilbert space (H, 〈·, ·〉) nuclear5 if for any orthonormal basis (hj)j of H it holds

tr(Q) :=
∑
j≥1

〈Qhj , hj〉 <∞.

In that case, tr(Q) is independent of the choice of (hj)j . We then have:

Theorem 2.6 (Characterisation of Regular Generalized Fields). A generalized Gaussian
random field F on a Hilbert space H is regular if and only if its covariance operator Q
is nuclear.

Proof. See Lototsky and Rozovsky [2017], 3.2.15.

Note that in particular, a generalized white noise process is therefore not regular.
However, in the space-time case, it is often useful to consider noise processes that are
spatially coloured. In that case, it is a natural question to ask how one constructs a
spatial noise process in the generalized sense based on covariance functions of “ordinary”
Gaussian processes. The answer is readily available through Mercers theorem:

Theorem 2.7 (Mercer’s Theorem). Let k : D ×D −→ R be a continuous, symmetric,
positive-definite function. Define the associated Hilbert-Schmidt integral operator Qk by

Qk : L2(D) −→ L2(D)

Qkh(x) :=

∫
D
k(x,y)h(y)dy.

(2.102)

Then, there exists an orthonormal basis (φj)j of L2(D) of eigenfunctions of Qk with
corresponding eigenvalues λj such that

k(x,y) =
∑
j≥1

λjφj(x)φj(y) (2.103)

for all x,y ∈ D, where the convergence of the sum is uniform in x,y and absolute. In
particular, Qk is a linear, compact, self-adjoint and nuclear operator on L2(D).

Proof. A proof can be found in Jörgens and Roach [1982], theorem 8.11.

Remark 2.4. Clearly, Mercer’s theorem relates any covariance function on D to the co-
variance operator of a regular, generalized random field on H = L2(D). This generalized
random function can be expressed in the following way: let (φj)j be the eigenfunctions

5Note that this is actually an equivalence statement for the special case of an underlying Hilbert space,
related to a broader definition of nuclear operators on Banach spaces. For a more general definition
and other equivalence relations see Lototsky and Rozovsky [2017] 3.1.17 and 3.1.14.
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of Qk with eigenvalues (λj)j given by Mercer’s theorem. Define the regular generalized
random field f by

f :=
∑
j≥1

√
λjφjηj (2.104)

where (ηj)j is a sequence of independent, standard Gaussian variables. Note that the
convergence of this representation sum, in the L2(P)-sense, is ensured by

E[‖f‖2H ] =
∑
j≥1

λj =

∫
D
k(x,x)dx <∞.

Indeed, noting that by Mercer’s theorem

Qkh =
∑
j≥1

λj〈h, φj〉Dφj

it follows that the covariance operator of f is given by Qk:

E[〈h, f〉D〈g, f〉D] = E

∑
j≥1

√
λj〈h, φj〉Dηj

∑
j′

√
λj′〈g, φj′〉Dηj′


=
∑
j≥1

λj〈h, φj〉D〈g, φj〉D

= 〈
∑
j≥1

λj〈h, φj〉Dφj , g〉D

= 〈Qkh, g〉D.

(2.105)

This way of representing regular generalize fields is not limited to function spaces.
One can show that a nuclear, self-adjoint operator Q on any separable Hilbert space H
is also compact (see e.g. Da Prato and Zabczyk [1992], App. C.3). Therefore, by the
spectral theorem, there exists an orthonormal basis of H of eigenvectors (hj)j of Q with
eigenvalues (λj)j . One can then construct the corresponding regular Q-Wiener process
as in (2.104).

The previous considerations suggest constructing a noise process that is temporally
white and spatially coloured with covariance operator Qk via the sum

ẆQk(t,x) =
∑
j≥1

√
λjφj(x)ẇj(t). (2.106)

As a generalized random function it is defined as follows.

Definition 2.15 (Temporally White, Spatially Coloured Noise). Let k : D ×D −→ R
be a covariance function and (φj)j , (λj)j be as given by Mercer’s theorem. The corre-
sponding temporally white, spatially coloured noise is the generalized random function

ẆQk : L2([0, T ]×G) −→ L2([0, T ]×G)

ẆQk(h) =
∑
j≥1

√
λj

∫ T

0
〈h(t, ·), φj〉Ddwj(t).

(2.107)
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The random variables ẆQk(h) are centered Gaussian with covariances given by

E[Ẇ (h)Ẇ (g)] =

∫ T

0
〈Qkh(t, ·), g(t, ·)〉Ddt. (2.108)

Remark 2.5. Note that including the temporally white property in definition 2.15 gets
rid of the regularity property again. Let us for a moment ignore the regularity issues
of the temporal white noise process and assume that there exists a Gaussian process
(ẇ(t))t with some covariance function k(s, t) such that for all h ∈ L2([0, T ]) (with abuse
of notation)

ẇ(h) = 〈h, ẇ〉T .

It turns out that the correct choice of covariance “function” is given by k(s, t) = δ(s− t),
where δ(·) denotes the Dirac delta function, characterized by its property∫ T

0
δ(t)h(t)dt = h(0).

Indeed, for the corresponding integral operator on then has

Qkh(t) =

∫ T

0
h(s)δ(s− t)ds = h(t)

and therefore one recovers the covariance function of generalized white noise:

E[〈h, ẇ〉T 〈g, ẇ〉T ] = 〈h, g〉T .

Ignoring the fact that Dirac delta function acting with such properties is only a function
in the generalized sense, one often defines it by

δ(t) ∝

{
1, if t = 0

0, else .
(2.109)

It is in this sense that one heuristically defines temporal white noise as the centered
Gaussian process (ẇ(t))t with E[ẇ(s)ẇ(t)] = δ(s− t).

Likewise, heuristic space-time white noise is a centered Gaussian process (Ẇ (t,x))t,x
with covariance function E[Ẇ (s,y)Ẇ (t,x)] = δ(s− t)δ(y − x), whereas the representa-
tion (2.106) of spatially coloured, temporally white noise suggests it being a Gaussian
process with covariance function

E[ẆQk(s,y)ẆQk(t,x)] = E

∑
j≥1

√
λjφj(y)ẇj(s)

∑
j′

√
λj′φj′(x)ẇj′(t)


=
∑
j≥1

λjφj(y)φj(x)δ(s− t)

= k(y,x)δ(s− t).

We will refer to Gaussian processes with covariance functions such as these as formal or
heuristic (temporally) white noise processes.
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2.4.2. Q-cylindrical processes and Itô Integration in Hilbert Spaces

As mentioned in the beginning of this section, we can circumvent the regularity is-
sue of white noise by understanding stochastic partial differential equations as integral
equations in regards to function space valued processes. For this we need a fitting gen-
eralization of a Wiener process:

Definition 2.16 (Q-Cylindrical Processes, Lototsky and Rozovsky [2017], 3.2.35). Let
(x(t))t be a centered Gaussian process on [0, T ] with covariance function k(s, t) and
(H, 〈·, ·〉) be a separable Hilbert space.

A (Q-)cylindrical process on H × [0, T ] is a collection of centered Gaussian random
variables (XQ(t, h))t∈[0,T ],h∈H such that there exists a bounded, linear, self-adjoint, non-
negative operator Q : H −→ H with

E[XQ(s, h)XQ(t, g)] = 〈Qh, g〉k(s, t) (2.110)

for all s, t ∈ [0, T ] and g, h ∈ H. If (x(t))t is a Wiener process, we refer to XQ as a
(Q-)Cylindrical Wiener process and denote it by WQ.

A cylindrical process is called regular if there exists a H-valued random process
(xQ(t))t such that for all h ∈ H, t ∈ [0, T ]

XQ(t, h) = 〈h, xQ(t)〉. (2.111)

Likewise to the time independent case, we get the following regularity condition for
cylindrical processes:

Theorem 2.8 (Characterisation of Regular Cylindrical Processes). A cylindrical process
XQ is regular if and only if Q is nuclear.

Proof. See Lototsky and Rozovsky [2017], theorem 3.2.39.

Remark 2.6. Likewise to the construction in remark 2.4, we can represent any regular
Q−cylindrical process as

XQ(t) =
∑
j≥1

√
λjhjxj(t) (2.112)

where (xj)j are independent copies of the process (x(t))t and (hj)j , (λj)j are the eigen-
vectors and eigenvalues of Q on H. A similar computation as before shows that indeed

E
[
〈h,WQ(s)〉H〈g,WQ(t)〉H

]
= 〈Qh, g〉H min(s, t). (2.113)

We need two more definitions in order to define a correct way of integrating with
respect to a Q-Wiener process:
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Theorem 2.9. Let Q : H −→ H be a bounded, linear, non-negative and self-adjoint
operator. Then there exists a unique non-negative, self-adjoint operator R such that
RR = Q. We call R the (positive) square root operator of Q and denote it by

√
Q.

Furthermore, if Q is such that there exists an orthonormal basis (hj)j of H of eigen-
vectors of Q with eigenvalues (λj)j , then these are eigenfunctions of

√
Q with eigenvalues√

λj .

Proof. For the proof of existence, see Lototsky and Rozovsky [2017], theorem 3.1.28.
The second claim follows easily by showing that

h 7→
∑
j≥1

√
λj〈h, hj〉Hhj

satisfies all necessary properties of
√
Q.

Definition 2.17 (Hilbert Schmidt Operators, Da Prato and Zabczyk [1992] App. C.5).
Let (H, 〈·, ·〉H) and (G, 〈·, ·〉G) be separable Hilbert spaces and A : H −→ G be a bounded
linear operator. A is called a Hilbert-Schmidt operator if

‖A‖2HS :=
∑
j≥1

‖Ahj‖2G <∞ (2.114)

for any orthonormal basis (hj)j of H. Then, ‖A‖HS is independent of the choice of
(hj)j . The space of Hilbert-Schmidt operators LHS(H,G) is a separable Hilbert space
in regards to

〈A,B〉HS :=
∑
j≥1

〈Ahj , Bhj〉G. (2.115)

We can now define the Itô integral in regards to cylindrical Wiener processes. For
us, it suffices to consider the deterministic case where the integrand is a function taking
values in the space LHS. The construction we use was given without a proof of existence
in Bréhier [2014]. A more general construction for LHS-valued stochastic processes is
given in chapter 4.2 of Da Prato and Zabczyk [1992].

Theorem 2.10 (The Hilbert Space Valued Itô Integral). Let (H, 〈·, ·〉H) be a separable
Hilbert space and WQ be a regular Q−Wiener process on H with eigenvectors and
eigenvalues (hj)j and (λj)j of Q. Further, let (G, 〈·, ·〉G) be a separable Hilbert space
with orthonormal basis (gi)i and let S : [0, T ] −→ LHS(H,G) be a Hilbert-Schmidt
operator valued function such that∫ T

0
‖S(t)

√
Q‖2HSdt <∞. (2.116)

Then, the integral∫ T

0
S(t)dWQ(t) :=

∑
i,j

∫ T

0

√
λj〈S(t)hj , gi〉Gdwj(t)gi (2.117)
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is well defined as a L2(P)-limit in G and it holds the Itô symmetry in G:

E

[∥∥∥∥∫ T

0
S(t)dWQ(t)

∥∥∥∥2

G

]
=

∫ T

0
‖S(t)

√
Q‖2HSdt. (2.118)

Proof. Note that the eigenvectors (hj)j of
√
Q build an orthonormal basis of H and by

the spectral theorem for compact self-adjoint operators, there exists an ordering of the
corresponding eigenvalues (

√
λj)j such that

√
λj −→ 0. In particular supj λj < ∞ and

we have that

‖S(t)
√
Q‖2HS =

∑
j≥1

〈S(t)
√
Qhj , S(t)

√
Qhj〉G

=
∑
j

λj〈S(t)hj , S(t)hj〉G

=
∑
j

λj‖S(t)hj‖2G

≤ sup
j
λj‖S(t)‖2HS

and therefore S(t)
√
Q is again a Hilbert-Schmidt operator. For n,m ∈ N, define

In,m :=
n∑
i=1

m∑
j=1

∫ T

0

√
λj〈S(t)hj , gi〉Gdwj(t)gi.

We show that (In,m)n,m is Cauchy in L2(P). It holds,

E[‖In,m − In′,m′‖2G] = E

∥∥∥∥∥∥
n′∑
i=n

m′∑
j=m

∫ T

0

√
λj〈S(t)hj , gi〉Gdwj(t)gi

∥∥∥∥∥∥
2

G


= E

 n′∑
i=n

 m′∑
j=m

∫ T

0

√
λj〈S(t)hj , gi〉Gdwj(t)

2
=

n′∑
i=n

m′∑
j=m

∫ T

0
λj |〈S(t)hj , gi〉G|2dt

−−−−−−−−−→
n,m,n′,m′→∞

0,

where we have used orthonormality of (gi)i in the second equality, independence of (wj)j
and Itô symmetry in the third equality and lastly the fact that by Parseval’s identity

n∑
i=1

m∑
j=1

∫ T

0
λj |〈S(t)hj , gi〉G|2dt −−−−−→

n,m→∞

∫ T

0

∑
j≥1

λj‖S(t)hj‖2Gdt

=

∫ T

0
‖S(t)

√
Q‖2HSdt <∞.

In particular, this shows the Hilbert space Itô symmetry.
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Let us define the infinite dimensional pendant to a Gaussian process:

Definition 2.18 (Da Prato and Zabczyk [1992], section 3.6 6). Let X(t), t ∈ [0,∞), be
a family of regular generalized Gaussian random fields on a Hilbert space (H, 〈·, ·〉H).
Then, (X(t))t is called a (centered) H−valued Gaussian process if for any t1, ..., tn ∈
[0,∞), the vector (X(t1), ..., X(tn)) is such that

(〈h1, X(t1)〉, ..., 〈hn, X(tn)〉)

is a Gaussian vector in Rn for all h1, ..., hn ∈ H. It is called stationary if its covariance
operator function Ks,t, defined by

E[〈h,X(s)〉H〈g,X(t)〉H ] = 〈Ks,th, g〉H (2.119)

for all g, h ∈ H, is such that Ks,t = Ks+τ,t+τ for all s, t, τ ∈ [0,∞).

Likewise to the finite dimensional case, the Hilbert space valued Itô integral is a
Gaussian process in H.

Lemma 2.7. In the situation of theorem 2.10, denote by (I(t))t the process

I(t) =

∫ t

0
S(r)dWQ(r)

Then (I(t))t is a G−valued Gaussian process.

Proof. For reasons of simplicity, we assume that S : [0, T ] −→ LHS(H,H), i.e. H = G.
Then, I(t) reduces to

I(t) =
∑
j≥1

∫ t

0

√
λj〈S(r)hj , hj〉Hdwj(r)hj .

The conditions in theorem 2.10 assure that

〈g, I(t)〉H =
∑
j≥1

∫ t

0

√
λj〈S(r)hj , hj〉Hdwj(r)〈g, hj〉H .

is indeed Gaussian as the weak limit of Gaussian variables.
Now let µ1, µ2 ∈ R, t1 ≤ t2 ∈ [0,∞) and g1, g2 ∈ H. We show that µ1〈g1, I(t1)〉H +

µ2〈g2, I(t2)〉H is again Gaussian.
We may write

I(t2) = I(t1) +
∑
j≥1

∫ t2

t1

√
λj〈S(r)hj , hj〉Hdwj(r)hj

:= I(t1) + J

6The source uses tensor product notation to define this. A couple of careful manipulations show that
the original definition is equivalent to this definition our notation
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Then

µ1〈g1, I(t1)〉H + µ2〈g2, I(t2)〉H = 〈µ1g1 + µ2g2, I(t1)〉H + 〈µ2g2, J〉H .

Note that by the independence of the Wiener integrals for disjoint time intervals, this is
again Gaussian as the sum of weak limits of independent Gaussin variables.

By the same argument, one shows that

µ1〈g1, I(t1)〉H + ...+ µn〈gn, I(tn)〉H

is Gaussian for any µ1, ..., µn ∈ R, t1 ≤ ... ≤ t2 ∈ [0,∞) and g1, ..., gn ∈ H.

We close this subsection with two remarks:

Remark 2.7. For the construction of the Hilbert space valued integral, we assumed
WQ to be regular. Of course one wishes to define an integral for the more general case
when Q is any valid covariance operator, in particular when Q = Id is the identity and
therefore relates to white noise on H. The trick is to “turn” WQ into a regular process
by embedding H into a larger space H̃, we give a rough idea on how to do this in the
following:

Define H0 :=
√
Q(H). This is again a separable Hilbert space in regards to the inner

product

〈h, g〉0 := 〈
√
Q
−1
h,
√
Q
−1
g〉H .

Denote by (hj)j a corresponding orthonormal basis of H0. Further, assume H̃ is a
separable Hilbert space such that H ⊂ H̃ with the embedding being continuous and the
embedding H0 ⊂ H̃ being a Hilbert-Schmidt operator. Under these assumptions, one
can show (Da Prato and Zabczyk [1992], proposition 4.11) that

W Q̃(t) :=
∑
j≥1

hjwj(t)

defines a regular Q-Wiener process on H̃ that, when restricted to H, acts with covariance
operator Q. Like above, one can define the stochastic integral as the L2(P) limit∫ T

0
S(t)dW Q̃(t) =

∑
i,j

〈S(t)hj , gi〉Gdwj(t)gi

for any S : [0, T ] −→ LHS(H̃,G) such that∫ T

0

∑
j≥1

‖S(t)hj‖2Gdt <∞.

Note that condition (2.120) is equivalent to the one given in theorem 2.10 and this
workaround does therefore not change the class of eligible integrands.
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In particular, when Q = Id, we define∫ T

0
S(t)dWQ(t) =

∑
i,j

∫ T

0
〈S(t)hj , gi〉Gdwj(t)gi (2.120)

for any orthonormal basis (hj)j of H and S : [0, T ] −→ LHS(H,G) with∫ T

0
‖S(t)‖2HSdt <∞.

Remark 2.8 (About the Complex-Valued Case). One can easily extend all previous
definitions and results to the complex valued case. The respective complex-valued gen-
eralized fields, cylindrical processes and Itô integrals are defined on C-Hilbert spaces
by simply replacing the Gaussian variables and Wiener processes used above by their
complex counterparts as defined in chapter 2.2. In regards to space-time processes, it
is natural to then consider the L2-Hilbert spaces of square-integrable, complex-valued
functions with scalar products on the respective domains defined as

〈h, g〉 =

∫
h(x)g(x)dx.

Furthermore, the complex valued formulation of Mercer’s theorem links conjugate sym-
metric positive definite functions k(s, t) to the representation

k(x,y) =
∑
j≥1

√
λjφj(x)φj(y),

with (φj)j , (λj)j again being the eigenfunctions and eigenvalues of the integral operator
Qk on the respective L2-space. In future applications we will make use of the complex
valued case more often then not and, unless it is not clear in the given context, will not
give it any further mention.

2.4.3. Weak Solutions

Recall that we seek a definition of solutions to equations of the form{
dU(t) = AU(t)dt+BdWQ(t),

U(0) = U0,

where U0 and (U(t))t take values in a Hilbert spaceH on whichA acts as a linear operator
and (WQ(t))t is a Q-Wiener process, likewise taking values in a suitable Hilbert space
G and B : G −→ H is a bounded linear operator.

This representation suggests that we can formulate a solution by integrating over the
Q-Wiener process. To make this final, we need to define one last tool:

Definition 2.19 (C0-Semigroup, Da Prato and Zabczyk [1992] A.4). Let E be a Banach
space. A C0-Semigroup is a mapping (S(t))t∈[0,T ] into the space of bounded linear
operators L(E,E) such that
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1. S(0) = Id

2. S(t+ s) = S(t)S(s) for all s, t ∈ [0, T ]

3. limt→0 ‖S(t)x− x‖E = 0 for all x ∈ E fixed.

Its infinitesimal generator A is the unique mapping A : D(A) −→ E with dense domain
D(A) ⊂ E given by

D(A) :=

{
x ∈ E : Ax := lim

t→0

S(t)x− x
t

exists

}
.

We finally have all the necessary tools to give a proper meaning to the solution of a
linear stochastic partial differential equation:

Definition 2.20 (Weak Solution, Da Prato and Zabczyk [1992]). Let H and G be
separable Hilbert spaces and WQ be a regular Q-Wiener process on G. Further, let
A : D(A) ⊂ H −→ H be the generator of a C0-semigroup on H and B : G −→ H be a
bounded linear operator. We call the H−valued process (U(t))t∈[0,T ] a weak solution to
the linear equation {

dU(t) = AU(t)dt+BdWQ(t), t ∈ [0, T ],

U(0) = U0,
(2.121)

if the trajectories t 7→ U(t) are almost surely integrable in H and for all V ∈ D(A∗) we
have, almost surely:

〈V,U(t)〉H = 〈V,U0〉H +

∫ T

0
〈A∗V,U(s)〉Hds+ 〈V,BWQ(t)〉H . (2.122)

The existence of a weak solution is ensured by a simple integration criterion:

Theorem 2.11 (Existence of a Weak Solution, Da Prato and Zabczyk [1992]). In the
situation of definition 2.20, assume that the C0−semigroup (S(t))t generated by A is
such that ∫ T

0
‖S(t)

√
QB‖2HSdt <∞.

Then there exists a unique weak solution to equation 2.121. For all t ∈ [0, T ], it is given
by

U(t) = S(t)U0 +

∫ t

0
S(t− s)BdWQ(s). (2.123)

Proof. For a proof see Da Prato and Zabczyk [1992], theorem 5.4.
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3. A Spectral Fourier Method for the
Stochastic Convection-Diffusion
Equation

This chapter aims to derive a spectral method for computationally efficient filtering,
smoothing and parameter estimation of processes that evolve according to the stochastic
linear convection-diffusion equation driven by a spatially coloured, temporally white
Gaussian forcing term.

We approximate the solution by a Fourier series decomposition, which translates the
temporal evolution of the approximation into the evolution of a family of uncoupled
spectral processes. The spectral processes are given as strong solutions to a linear
stochastic differential equation and filtering, smoothing and model parameter estimation
for these spectral processes are therefore shown to be available in linear time complexity.

We remark that this chapter deals with SPDEs and their solutions in a formal way.
For a treatment in the framework of section 2.4, we refer to chapter 3, where many of
the practical results derived in this chapter are validated in a rigorous way.

The stochastic convection-diffusion equation and the problem statement are intro-
duced in section 3.1. The following section 3.2 establishes the spectral method based on
the spatial Fourier decomposition and spectral representation of the stochastic forcing
term.

Section 3.3 derives the Kalman filter in the spectral domain, which allows for compu-
tationally efficient filtering- and smoothing as well as likelihood-based inference on the
model parameters. Experimental performance of these methods are presented on toy
data in section 3.4

3.1. The Stochastic Convection-Diffusion Equation

In section 2.3 we have introduced the Bayesian filtering and smoothing problem for
time-dependent processes (X(t))t that arise as strong solutions of linear stochastic dif-
ferential equations. Consider now the space-time pendant of estimating the state of some
stochastic process (U(t,x))t,x governed by a linear stochastic evolution equation

∂tU(t,x)−AU(t,x) = ẆQ(t,x), (3.1)

based on discretely observed, possibly noise-corrupted observations of U . Here, A =
A(∂x, ∂

2
xx, ...) is a linear differential operator acting in the spatial domain and ẆQ(t,x)

represents a Gaussian noise process, specified to be either space-time white noise or
temporally white and spatially coloured.
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Likewise to the original filtering problem, a subsequent objective that we will be
concerned with is model parameter inference in cases where the differential operator
Aθ as well as the stochastic forcing term ẆQ

θ (t,x) are parametrized by some unknown
parameter θ.

The next two sections are based on the work of Sigrist et al. [2015], who derived an
approximated solution of (3.1) in the case whereAθ equals the linear convection-diffusion
operator

Aθ = −µ · ∇+∇ ·Σ∇− ζ,

parametrized by the model parameters θ = (µ,Σ, ζ).
In detail, we are concerned with an underlying process (U(t,x))t,x governed by the

stochastic convection-diffusion equation{
∂
∂tU(t,x) = [−µ · ∇+∇ ·Σ∇− ζ]U(t,x) + ẆQk(t,x), t ∈ [0,∞), x ∈ D,
U(0,x) = U0(x).

(3.2)

The Nabla operator ∇ =
(

∂
∂x1

, ∂
∂x2

)
acts in the spatial domain D ⊂ R2. The parameters

µ ∈ R2, Σ ∈ R2×2 and ζ > 0 respectively denote the drift, diffusion and damping
parameter. The diffusion matrix Σ is assumed to symmetric positive definite. In the
special case where Σ is diagonal, one speaks of isotropic diffusion.

The stochastic forcing term (ẆQk(t,x))t,x is assumed to be a temporally white, spa-
tially Matérn noise process. We write its formal covariance function, in the sense of
remark 2.5, as

k((t,x), (s,y)) =

{
0, if t 6= s

c(‖x− y‖), if t = s,
(3.3)

where c(r) is the Whittle covariance function given by

c(r) =
σ2

0r

ρ0
K1

(
r

ρ0

)
(3.4)

with marginal variance σ2
0 and scale parameter ρ0.

The motivation behind this choice of the stochastic forcing term is to build on the
“elementary properties” of the Whittle covariance function for spatial processes as dis-
cussed in section 2.2.4. Sigrist et al. [2015] argue that a process (U(t,x))t,x governed by
the stochastic convection-diffusion equation with the stochastic forcing term defined by
(3.6) extends these properties to the space-time domain due to the ubiquitous appear-
ance of convective and diffusive behavior in natural processes and therefore makes for a
“good candidate for an elementary spatiotemporal process”.

Recall that the Matérn process with Whittle covariance function is stationary with
spectral density given by

f(ξ) =
σ2

0

(2π)2
(ρ−2

0 + ‖ξ‖2)−2, ξ ∈ R2. (3.5)
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A key result, proven by Whittle [1963], links the spectral denstiy f(ξ) to the spectral
density of the stationary solution of the stochastic convection-diffusion equation (3.2):

Theorem 3.1. Let (U(t,x))t,x be the stationary solution of the stochastic convection-
diffusion equation (3.2), defined on the spatial domain D = R2 and driven by the Gaus-
sian noise process (ẆQk(t,x))t,x with covariance function

k((t,x), (s,y)) =

0, if t 6= s

σ2
0r

ρ0
K1

(
‖x− y‖
ρ0

)
, if t = s.

(3.6)

Then, (U(t,x))t,x is itself a centered Gaussian process with spectral density

g(ω, ξ) = f(ξ)
1

2π
[(ξTΣξ + ζ)2 + (ω + µTξ)2]−1. (3.7)

Proof. See Whittle [1963].

Remark 3.1. Following Bochners theorem, the covariance function of the stationary
solution of (3.2) can be computed by integration of its spectral density g(ω, ξ). Sigrist
et al. [2015] showed that

C(τ, r) := E[U(t,x)U(t+ τ,x+ r)]

=

∫
R

∫
R2

g(ω, ξ) exp(iωτ) exp(iξ · r)dξdω

=

∫
R2

f(ξ)
exp((−iµTξ − ξTΣξ − ζ)τ)

2(ξTΣξ + ζ)
exp(iξ · r)dξ,

(3.8)

and claimed that the spatial integral has no closed form solution but can be numerically
approximated.

Note that, even if the computation of C(τ, r) can be done efficiently, a likelihood evalu-
ation using the covariance function remains costly. Assume (U(t,x))t,x is the stationary
solution of (3.2) with covariance function C(τ, r). Then, for any set of space-time loca-
tions (t1,x1), (t1,x2), ..., (tI ,xN−1), (tI ,xN ), the vector U = (U(ti,xn))1≤i≤I,1≤n≤N ∈
RIN is Gaussian with mean zero and covariance matrix

C = (C(ti − tj ,xn− xm))1≤i,j≤I,1≤n,m≤N ∈ RIN×IN .

The computation of the Gaussian likelihood function of U involves the inversion of the
matrix C and is therefore of complexity class O((IN)3). The following sections show
that these cost can be dramatically reduced by translating the problem into the spectral
domain.
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3.2. The Fourier Spectral Method

This section derives an approximation of the stochastic convection-diffusion equation
using a Fourier spectral decomposition. Spectral methods aim to approximately solve
partial differential equations by constructing solutions U as (finite) linear combinations
of basis functions. In the case of evolution equations, the decompositions take on the
form

U(t,x) =
∑
i∈I

αi(t)φi(x),

where I denotes some index set, {φi(x), i ∈ I} is a family of orthogonal basis functions 1

and {αi(t), i ∈ I} are the spectral processes (or spectral coefficients in time independent
systems). A detailed introduction can for example be found in Gottlieb and Orszag
[1977] or Canuto et al. [1988].

A common choice of basis functions {φi(x), i ∈ I} are the Fourier basis functions due
to their property of transforming differential operations in the spatial domain to algebraic
operations in the spectral domain. As we will explain shortly, the consideration of the
stochastic forcing term (ẆQk(t,x))t,x in the stochastic convection-diffusion equation
(3.2) motivates a decomposition based on the Fourier basis functions.

In that case, one usually restricts the problem at hand to a bounded spatial domain
D = [0, L]2 and seeks to find spatially periodic solutions on D. This reduces our problem
to the approximation of a solution to the stochastic convection-diffusion equation with
periodic boundary conditions, given by

∂

∂t
U(t,x) = [−µ · ∇+∇ ·Σ∇− ζ]U(t,x) + ẆQk(t,x),

U(t,x) = U(t,x+ kL),

U(0,x) = U0(x).

x ∈ [0, L]2, t ∈ [0,∞),

k ∈ Z2,

The ansatz is to construct a solution (U(t,x))t,x in the form

U(t,x) =
∑
j∈J

αj(t)φj(x), (3.9)

where J ⊂ Z2 denotes a set of spatial wave indices and, for every j ∈ J , the function
φj(x) denotes the Fourier basis function corresponding to the j-th spatial wave vector
ξj , respectively defined as

φj(x) := exp(iξj · x)

ξj := 2π( j1L ,
j2
L ).

1Of course, the definition of orthogonality is dependent on the underlying function space in which a
solution is approximated. The most common choice is the space L2(D) of square-integrable functions
over a bounded spatial domain D, equipped with the L2-scalar product 〈f, g〉L2 :=

∫
D
f(x)g(x)dx.
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Note that since {φj , j ∈ J } are deterministic functions, the stochastic nature of U must
be given by the spectral processes {αj , j ∈ J }. If J = Z2, the expansion (3.9) is
simply the spatial Fourier series expansion with temporally varying, stochastic Fourier
coefficients.

In practice, one approximates a solution using a finite number of basis functions. It is
common to limit the choice of Fourier basis functions to the ones corresponding to the
low spatial waves centered around 0, a practice also referred to as low pass filtering. In
that case, we denote the set of spatial wave indices by JK := {j ∈ Z2 : −K

2 + 1 ≤ ji ≤
K
2 , i = 1, 2} for some even K ∈ N.

As mentioned earlier, the usage of the Fourier spectral decomposition is motivated by
the consideration of the stochastic forcing term ẆQk . This motivation is based on the
spectral representation theorem for stationary processes. As we will see now, it allows
us to approximate the stochastic forcing term via a linear combination of Fourier basis
functions.

Recall that we assume (ẆQk(t,x))t,x to be white in time and spatially a Matérn
process with formal covariance function

k((t,x), (s,y)) =

0, if t 6= s,

σ2
0r

ρ0
K1

(
‖x− y‖
ρ0

)
, if t = s.

Note that for any fixed time t, (ẆQk(t,x))x is a Matérn process and thus stationary in
the spatial domain with spectral density

f(ξ) =
σ2

0

(2π)2
(ρ−2

0 + ‖ξ‖2)−2, ξ ∈ R2.

Therefore, the spectral representation theorem (theorem 2.5) states that, for any fixed
t, there exists a complex-valued, centered Gaussian process (η(t, ξ))ξ∈R2 such that

ẆQk(t,x) =

∫
R2

exp(iξ · x)dη(t, ξ),

= lim
k→∞

∑
∆ξ∈Pk

exp
(
iξ′ · x

)
∆η(t, ξ), (t,x) ∈ [0,∞)×D fixed.

(3.10)

Here, (Pk)k is a sequence of interval partitions with vanishing mesh-size and ∆η(t, ξ)
denotes the increment of (η(t, ξ))ξ over the interval ∆ξ, whereas ξ′ ∈ ∆ξ for each ∆ξ.
For more details on the notation, see section 2.2. The process (η(t, ξ))ξ has orthogonal
increments ∆η(t, ξ) with variances

E[|∆η(t, ξ)|2] ≈ f(ξ′)|∆ξ|.

This motivates a Fourier-type decomposition of the stochastic forcing term δ as follows:
consider the partition intervals ∆ξj ⊂ R2 defined by

∆ξj :=
[
2π
(
j1
L −

1
2L

)
, 2π

(
j1
L + 1

2L

)]
×
[
2π
(
j2
L −

1
2L

)
, 2π

(
j2
L + 1

2L

)]
, j ∈ Z2.
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These correspond to the even squares with volume |∆ξj | =
(

2π
L

)2
, centered around the

spatial wave numbers ξj = 2π( j1L ,
j2
L ), j ∈ Z2. Then, denoting by ηj(t) = ∆η(t, ξj) the

increment of η(t, ξj) over ∆ξj , we approximate the stochastic integral in (3.10) by the
sum

ẆQk(t,x) ≈ Ẇ Q̃(t,x) :=
∑
j∈J

exp(iξj · x)ηj(t), (3.11)

where J ⊂ Z2 is a set of spatial wave indices and for every fixed t, {ηj(t)), j ∈ J } is a
family of independent, complex Gaussian variables with

E[ηj(t)] = 0

E[ηj(t)ηj(t)] = f(ξj)|∆ξj |
=: f̃(ξj)

Further, since (ẆQk(t,x))t,x is a real-valued process, a direct consequence of lemma 2.4
is that for all t {

ηj(t) is real-valued, if j = 0

ηj(t) is proper, else.

When letting time t vary again, we assume that for each j ∈ J , the process (ηj(t))t is
white in time, in order to maintain the temporally white nature of the stochastic forcing
term δ. In total, we asssume that {ηj , j ∈ J } is an independent family of scaled white
noise processes, formally defined by

ηj(t) :=

√
f̃(ξj)ẇj(t) (3.12)

where (ẇj(t))t denotes standard complex (or real, in the case of j = 0) white noise
process in the sense of remark 2.5.

Ultimately, these observations allow us now to construct a solution to the stochastic
convection-diffusion equation with spatially periodic boundary conditions and driven by
the approximated forcing term Ẇ Q̃(t,x):

Theorem 3.2. Let J ⊂ Z2 be a finite set of spatial wave indices and let {ηj , j ∈ J } be
a family of independent Gaussian white noise processes as defined in 3.12. Further, let
{αj , j ∈ J } be a family of independent, complex-valued Ornstein-Uhlenbeck processes,
given as solutions to the Langevin equations{

dαj(t) = λjαj(t)dt+
√
f̃(ξj)dwj(t), t ∈ [0,∞),

αj(0) = αj,0,
(3.13)

where {wj , j ∈ J } is a family of independent complex (or real, in the case of j = 0)
Wiener processes and λj := −iµTξj − ξTjΣξj − ζ.
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Then, the process (Ũ(t,x))(t,x)∈[0,∞)×[0,L]2 , given by

Ũ(t,x) :=
∑
j∈J

αj(t)φj(x), (3.14)

solves the approximated stochastic convection-diffusion equation{
∂
∂t Ũ(t,x) = −µ · ∇Ũ(t, x) +∇ ·Σ∇Ũ(t,x)− ζŨ(t,x) + Ẇ Q̃(t,x),

Ũ(0,x) =
∑
j∈J φj(x)αj(0)

(3.15)

with spatially periodic boundary conditions and stochastic forcing term

Ẇ Q̃(t,x) =
∑
j∈J

ηj(t)φj(x). (3.16)

Proof. The proof is based on Sigrist et al. [2015], proposition 1. Note that the result in
Sigrist et al. [2015] is lacking the volume scaling factor in f̃(ξj).

For φj(x) = exp(iξj · x), it holds:

∇φj(x) = iξjφj(x)

∇ · ∇φj(x) = −ξj · ξjφj(x).

Thus, the right-hand side of (3.15) becomes:∑
j∈J

αj(t) [−µT∇φj(x) +∇TΣ ∇φj(x)− ζφj(x)] + Ẇ Q̃(t,x)

=
∑
j∈J

αj(t)
[
−iµTξjφj(x)− ξTjΣ ξjφj(x)− ζφj(x)

]
+ Ẇ Q̃(t,x)

=
∑
j∈J

[λjαj(t)φj(x)] + Ẇ Q̃(t,x).

where λj = −iµTξj − ξTjΣ ξj − ζ.
In regards to the left-hand side, we formally write:

dαj(t)

dt
= λjαj(t) +

√
f̃(ξj)ẇj(t)

= λjαj(t) + ηj(t).

We thus get

∂

∂t

∑
j∈J

αj(t)φj(x) =
∑
j∈J

(λjαj(t) + ηj(t))φj(x)

=
∑
j∈J

[λjαj(t)φj(x)] + Ẇ Q̃(t,x),

which proves the claim.
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Note that theorem 3.2 transforms the stochastic partial differential equation into a
family of ordinary stochastic differential equation, namely the complex Langevin equa-
tions {

dαj(t) = λjαj(t)dt+
√
f̃(ξj)dwj(t), t ∈ (0, T ],

αj(0) = αj,0.

It follows from lemma 2.5 and 2.6 that for each j ∈ J , j 6= 0, αj is a proper complex
Gaussian process given by

αj(t) = exp(λjt)αj,0 +

√
f̃(ξj)

∫ t

0
exp(λj(t− s))dwj(s)

λj = −(ξTjΣξj + ζ)− iµTξj
(3.17)

that converges weakly to its invariant distribution

lim
t→∞

αj(t)
d
= αj,∞ ∼ CN

(
0,

f̃(ξj)

2(ξTj Σξj + ζ)

)
. (3.18)

Likewise, for the special case j = 0, we have that α0 is a real-valued process with

α0(t) = exp(−ζt)α0,0 +

√
f̃(0)

∫ t

0
exp(−ζ(t− s))dw0(s)

lim
t→∞

α0(t)
d
= α0,∞ ∼ N

(
0,

1

2ζ
f̃(0)

)
.

(3.19)

Remark 3.2. The convergence rate of the spectral process (αj(t))t to its invariant
distribution αj,∞ is influenced by its corresponding spatial wave ξj in the following way:
By symmetric positive definiteness of Σ, we have

ξTj Σξj ≥ Σmin‖ξj‖2

where Σmin > 0 is the smallest eigenvalue of Σ. Therefore, we get

|E[αj(t)]| = | exp
(
−(ξTj Σξj + ζ)t

)
|

≤ exp
(
−Σmin‖ξj‖2t

)
exp(−ζt)

and similarly

|Var[αj(t)]−Var[αj,∞]| ≤ exp
(
−2(ξTj Σξj + ζ)t

) [
σ2
j,0 +

f̃(ξj)

2(ξTj Σξj + ζ)

]

≤ exp
(
−2Σmin‖ξj‖2t

)
exp(−2ζt)

[
σ2
j,0 +

f̃(ξj)

2(ξTj Σξj + ζ)

]
.

60



Note further that f̃(ξj) ∈ O(‖ξj‖−4) and therefore

Var[αj,∞] ∈ O(‖ξj‖−4).

From this we can conclude that for high frequency spatial waves ξj , the spectral pro-
cess (αj(t))t rapidly converges to its invariant distribution with variance only marginally
larger than 0, therefore essentially letting such coefficients vanish in practical applica-
tions.

The weak convergence of the spectral processes implies the following temporal con-
vergence property of the spatiotemporal process Ũ :

Corollary 3.1. Let J ⊂ Z2 be finite and Ũ be the process Ũ(t,x) =
∑
j∈J αj(t)φj(x)

as given in theorem 3.2. Then, for t −→ ∞, Ũ(t,x) converges weakly to a spatially
stationary Gaussian process Ũ∞(x) with covariance given by

Cov[Ũ∞(x), Ũ∞(y)] =
∑
j∈J

φj(x− y)
f̃(ξj)

2(ξTj Σξj + ζ)
. (3.20)

Further, if αj,0
d
= αj,∞ for all j ∈ J , the approximated solution (Ũ(t,x))t,x is stationary

both in space and time with covariance function

Cov[Ũ(t,x), Ũ(s,y)] =
∑
j∈J

φj(x− y) exp(λj(t− s))
f̃(ξj)

2(ξTjΣξj + ζ) (3.21)

for all s ≤ t,x,y ∈ [0, L]2. In particular Cov[Ũ(t,x), Ũ(t,y)] = Cov[Ũ∞(x), Ũ∞(y)] for
all t and x,y ∈ [0, L]2.

Proof. Let Ũ be given as stated. It is clear that Ũ is a Gaussian process as the finite
sum of independent Gaussian processes. It is centered and, using the independence of
αj , its covariance is given by

Cov[Ũ(t,x), Ũ(s,y)] =
∑
j∈J

E[αj(t)αj(s)]φj(x)φj(y)

=
∑
j∈J

E[αj(t)αj(s)]φj(x− y).

Then, the first claim follows directly from the weak convergence of the Ornstein-

Uhlenbeck processes {αj , j ∈ J } with limt→∞ E[αj(t)αj(t)] =
f̃(ξj)

2(ξTj Σξj+ζ)
for all j ∈ J .

The second claim follows from the fact that, if αj,0
d
= αj,∞, the process (αj(t))t is

stationary with covariance function

E[αj(t)αj(s)] = exp(λj(t− s))
f̃(ξj)

2(ξTjΣξj + ζ)

for all s ≤ t. This is a direct consequence from equation (2.75) in the proof of lemma
2.6.
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The previous lemma showed that the process Ũ converges to a spatially stationary
process, independently of the initial condition, whereas in the particular case that the
spectral processes αj are initiated with their invariant distribution, the process Ũ is
stationary both in space and time.

We end this section showing that in this stationary case, the approximation Ũ indeed
converges (weakly) to the true stationary solution (U(t,x))x on the spatial domain [0, L]2

with periodic boundary conditions. For this, we consider the true stationary solution as
given in theorem 3.1, defined on R2, as a periodic process on [0, L]2 by mapping R2 onto
the 2-Torus 2 via

ψ : R2 −→ T2 ∼= [0, L]2

(x1, x2) 7→ (exp
(
2πix1L

)
, exp

(
2πix2L

)
)

(3.22)

In that case, the Fourier series expansion of the periodic processes covariance function
gives the following result:

Lemma 3.1. Let ŨK be the approximated process ŨK(t,x) =
∑
j∈JK αj(t)φj(x) as

given in theorem 3.2. Further, let the initial states αj(0) be distributed as per the
invariant distributions

αj(0) ∼

CN
(

0,
f̃(ξj)

2(ξTj Σξj+ζ)

)
, if j 6= 0

N
(

0, 1
2ζ f̃(0)

)
, if j = 0,

(3.23)

such that the processes (αj(t))t are stationary as given in equations (3.18) and (3.19). As-
sume the stationary solution to the stochastic-convection diffusion equation (U(t,x))t,x∈R2

is [0, L]2-periodic. Then we have

|C(s, r)− C̃K(s, r)| N→∞−−−−→ 0,

where C and C̃K denote the covariance functions of U and ŨK respectively. Thus, the
approximated solution converges weakly to the true stationary solution:

lim
N→∞

ŨK(t,x)
d
= U(t,x), (3.24)

for all (t,x) ∈ [0, T ]× [0, L]2.

Proof. The proof is based on Sigrist et al. [2015], proposition 2.
Identify U(t,x) as a [0, L]2-periodic function. Then it suffices to consider its covariance

function C(s, r) on the bounded spatial domain r ∈ [0, L]2. For any fixed s ∈ R≥0 we
may represent C(s, r) via a Fourier series expansion in the spatial domain, given by

C(s, r) =
∑
j∈Z2

aj(s) exp(iξj · r)

2The rationale behind this is that any bounded square [0, L]2 is homeomorphic to the 2-Torus T2 :=
{(x,y) ∈ R4 : ‖x|, ‖y‖ = 1} with the respective homeomorphism given by ψ|[0,L]2 defined as in (3.22)

restriced on [0, L]2. More details on this are given in section 4.1.
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where

aj(s) =
1

L2

∫
[0,L]2

C(s, r) exp(−iξj · r)dr.

Note that the spectral density g(ω, ξ) of C(s, r), evaluated at ξ = ξj , is given by

g(ω, ξj) =
1

2π

(
2π

L

)2 ∫
R
aj(s) exp(−iωs)ds.

Thus, applying the inverse Fourier transform in the temporal domain gives

aj(s) =

(
2π

L

)2 ∫
R
g(ω, ξj) exp(iωs)dω

= |∆ξj |
f(ξj)

2(ξTjΣξj + ζ)
exp(λjs)

=
f̃(ξj)

2(ξTjΣξj + ζ)
exp(λjs)

(3.25)

where the integral term equals the integration in remark 3.1 and
(

2π
L

)2
= |∆ξj | is the

volume element corresponding to the spatial wave interval decomposition as introduced
in the beginning of this section. In total, we have

C(s, r) =
∑
j∈Z2

f̃(ξj)

2(ξTjΣξj + ζ)
exp(λjs) exp(iξj · r). (3.26)

Note that C̃K(s, r) is given in (3.21) and we receive:

|C(s, r)− C̃K(s, r)| ≤
∑
j∈Z2

∣∣∣∣∣
(
f̃(ξj)

exp(λjs)

2(ξTjΣξj + ζ)
exp(iξj · r)

)
(1− 1JK)

∣∣∣∣∣
≤

∑
j∈Z2\JK

(
f̃(ξj)

1

2(ξTjΣξj + ζ)

)
N→∞−−−−→ 0,

where we used that | exp(λjs)| ≤ 1 due to the fact that Re(λj) = −(ξTjΣξj + ζ) < 0 and
that ∑

j∈Z2

(
f̃(ξj)

1

2(ξTjΣξj + ζ)

)
= C(0, 0)

is the marginal variance of U(t,x) and thus a convergent series.
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3.3. Filtering, Smoothing and Parameter Inference Setup

We now turn our attention to the filtering and smoothing problem, and, consequently,
to the problem of model parameter inference. Assume we are given noise-corrupted
observations at discrete times of the spectral approximation to the stochastic convection-
diffusion equation as derived in the previous section. As usual, we aim to estimate the
underlying process state based on these measurements and subsequently, infer unknown
model parameters.

The key ideas in this section are the following two: firstly, the temporal evolution as
well as the stochastic nature of the Fourier approximated solution is solely based on the
linearly evolving spectral processes. Therefore, any state estimation or model parameter
inference can be done efficiently using the Kalman filter once we translate the problem
to the spectral domain.

Secondly, the numerical integration involved in the transformation to the spectral
domain can be formulated as the DFT and therefore be efficiently computed using the
FFT. This demands an even discretization of the spatial domain, whereas the temporal
evolution of the process can be kept continuous and filtering can therefore be done in the
continuous-discrete formulation. Overall, this results in the formulation of the specral
Kalman filter as derived in the following.

Let (Ũ(t,x))t,x be the approximated solution to the stochastic convection-diffusion
equation, given by

Ũ(t,x) =
∑
j∈JK

αj(t)φj(x) (3.27)

with {φj : j ∈ J }, {αj : j ∈ J } denoting the Fourier basis functions and spectral
processes as thoroughly discussed in the previous section and JK = {j ∈ Z2 : −K

2 + 1 ≤
ji ≤ K

2 , i = 1, 2} denoting the set of the first K2 spatial waves centered around 0 for an

even K. Assume Ũ is evaluated on an even grid

D := {xn,m = L( nN ,
m
N ) : n,m = 0, ..., N − 1} (3.28)

of the spatial domain D = [0, L]2. For simplicity, we assume that N is even.
For every t ∈ [0, T ], denote by Ũ(t) the stacked vector of the spatially discretized

process

Ũ(t) := (Ũ(t,xn,m))n,m ∈ RN
2
. (3.29)

Evaluating the spatially discretized process Ũ(t,xn,m), we receive

Ũ(t,xn,m) =
∑
j∈JK

αj(t) exp(iξj · xn,m)

=
∑
j∈JK

αj(t) exp
(

2πi( j1N n+ j2
Nm)

)
,
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which for N = K equals the inverse discrete Fourier transform. In other words, Ũ(t)
and the stacked vector of spectral coefficients

α(t) := (αj(ti))j∈JN ∈ CN
2

form a DFT-IDFT pair and we write

Ũ(t) = Φ−1α(t) ∈ RN
2
, (3.30)

where Φ denotes the discrete Fourier transform operator. As noted in the introduction,
the temporal evolution of the process Ũ is dependent on the spectral processes α only.
Recall that (αj(t))t is a Markov process such that, for any time lag ∆ ∈ R+, we have

αj(t+ ∆) = exp(λj∆)αj(t) +

√
f̃(ξj)

∫ t+∆

t
exp(λj(t+ ∆− s))dwj(s)

=: exp(λj∆)αj(t) + νj(∆).

(3.31)

The family {νj(∆) : j ∈ JN} is independent and from lemma 2.3 it follows that, for
every j ∈ JN , νj(∆) is a proper complex (or real, in the case of j = 0) Gaussian variable
with with mean zero and variance

qj(∆) := E[νj(∆)νj(∆)]

=
f̃(ξj)

2(ξTj Σξj+ζ)

[
1− exp

(
−2(ξTjΣξj + ζ)∆

)]
.

(3.32)

Let (V (ti))i denote the noise-corrupted observations of the spatially discretized pro-
cess Ũ at discrete observation times ti ≤ ti+1, i = 1, ..., I, defined by

V (ti) := Ũ(ti) + ε(ti) ∈ RN
2
,

where (ε(ti))i=1,...,I denotes temporally and spatially white Gaussian measurement noise
such that

ε(ti) ∼ N (0, σ2
εEN2)

on the spatial grid D for each ti. Denote by ∆i = |ti+1 − ti| the time lags between
observation times. Then, we can formulate the overall discretized process system on
{t1, ..., tI} × D as a linear state space model as described in section 2.3.2, given by

Process Level: α(ti+1) = F (∆i)α(ti) + ν(∆i)

Observation Level: V (ti+1) = Φ−1α(ti+1) + ε(ti+1), i ∈ {1, ..., I}.
(3.33)

The matrix Φ−1 ∈ CN2×N2
is the inverse DFT operator, transforming the spatiotemporal

process Ũ corrupted by measurement noise ε(ti+1) into the spectral domain, and for each
i ∈ {1, ..., I}:
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� α(ti) = (αj(ti) : j ∈ JN ) ∈ CN2
is the stacked vector of Fourier coefficients,

� F (∆i) = diag (exp(λj∆i) : j ∈ JN ) ∈ CN2×N2
is the discretized propagation ma-

trix with λj = −iµT ξj−ξTjΣξj−ζ parametrized by the continuous time dynamical
process parameters and the corresponding spatial wave ξj ,

� ν(∆i) = (νj(∆i) : j ∈ JN ) ∈ CN2
is the discrete Gaussian forcing term with

elements

νj(∆i) :=

√
f̃(ξj)

∫ ti+1

ti

exp(λj(ti+1 − s))dwj(s)

that arises from the discretization of the independent Ornstein-Uhlenbeck pro-
cesses. It has diagonal covariance matrix Q(∆i) = diag (qj(∆i) : j ∈ JN ) ∈
RN

2×N2

+ and is temporally white due to the martingale property of the stochastic

integral: E[ν(∆i)ν(∆k)] = 0 for all i 6= k.

The filtering and smoothing problems can therefore be solved using the complex-valued
Kalman filter in algorithm 2.1 and Kalman smoother in algorithm 2.2, though the next
section provides a computationally more efficient formulation of the Kalman filter for this
specific model setup. Note that this state-space model aligns with the real-valued one
as given in proposition 3 of Sigrist et al. [2015], who derived it based on the real DFT.
For notational simplicity, we have decided to give the more general, complex-valued
formulation.

3.3.1. The Spectral Kalman Filter

Recall that a single iteration of the Kalman filter is of cubic computational complexity
O((N2)3) in regards to the number of spatial grid points N2. In our case however, we
can optimize these costs, abusing the fact that the spectal processes (αj)j are assumed
to be independent and what is previously the measurement matrix in the Kalman filter
specification is now given by the IDFT matrix. We take advantage of these facts to
derive the spectral Kalman filter which was presented in Sigrist et al. [2015] without
further detail. Note that our version differs by a prefactor of N2 in the measurement
updates.

Applying the DFT, rewrite the observation level as

Observation Level: V̂ (ti+1) = α(ti+1) + ε̂(ti+1) ∈ CN
2
, (3.34)

where V̂ (ti+1) = ΦV (ti+1) and likewise ε̂(ti+1) = Φε(ti+1). Note that ε̂(ti+1) is a
centered Gaussian noise vector, whose elements ε̂j(ti+1) are given by

ε̂j(ti+1) = 1
N2

∑
n,m

εn,m(ti+1) exp
(
−2πi( j1N n+ j2

Nm)
)
.
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Using the orthogonality of (εn,m(ti+1))n,m and the discrete Fourier basis functions, their
(co-)variance reduces to

E[ε̂j(ti+1)ε̂j′(ti+1)] = 1
(N)4

σ2
ε

∑
n,m

exp
(
−2πi(

j1−j′1
N n+

j2−j′2
N m)

)
=

{
σ2
ε

N2 , if (j1, j2) = (j′1, j
′
2),

0, else.

(3.35)

A likewise computation shows that the pseudo-(co-)variance E[ε̂j(ti+1)ε̂j′(ti+1)] vanishes
for all j, j′ ∈ JN , j 6= 0, whereas in the special case j = 0, ε̂0(ti+1) remains real-valued
Gaussian with variance

E[ε̂0(ti+1)ε̂0(ti+1)] = σ2
ε

N2 . (3.36)

In total we can conclude that the measurement noise ε̂(ti+1) remains a Gaussian white
noise vector in the spectral domain with uncorrelated components (εj(ti+1))j , which
are respectively proper complex Gaussian for j 6= 0 and real Gaussian for j = 0. In
particular, this shows that the filtering of the spectral coefficients (αj) corresponding to
differing spatial wave numbers can be done independently and we now turn our attention
to their individual filtering formulation.

For any ti, let m−j (ti),K
−
j (ti),mj(ti),Kj(ti) respectively denote the predicted and

updated mean and variance of αj(ti) as defined in the Kalman filter formulation in
subsection 2.3.2. A simple computation shows that the prediction step is then given by

m−j (ti+1) = exp(λj∆i)mj(ti)

=: fj(∆i)mj(ti)

K−j (ti+1) = exp
(
−2∆i(ξ

T
jΣξj + ζ)

)
Kj(ti) + qj(∆i)

=: hj(∆i)Kj(ti) + qj(∆i).

(3.37)

Further, the Kalman gain reduces to

Gj(ti+1) = K−j (ti+1)
(
K−j (ti+1) + σ2

ε
N2

)−1
,

from which we get the variance update

Kj(ti+1) = K−j (ti+1)−K−j (ti+1)
(
K−j (ti+1) + σ2

ε
N2

)−1
K−j (ti+1)

=
(
K−j (ti+1)−1 + N2

σ2
ε

)−1
(3.38)

where we used the identiy a − a2

a+b = (a−1 + b−1)−1 for any a > 0, b > 0. Lastly, with
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b(a+ b)−1 = a−1(a−1 + b−1)−1, the adjusted mean update becomes

mj(ti+1) = m−j (ti+1) +K−j (ti+1)
(
K−j (ti+1) + σ2

ε
N2

)−1 (
V̂j(ti+1)−m−j (ti+1)

)
= m−j (ti+1) + N2

σ2
ε

(
K−j (ti+1)−1 + N2

σ2
ε

)−1 (
V̂j(ti+1)−m−j (ti+1)

)
= m−j (ti+1) + N2

σ2
ε
Kj(ti+1)

(
V̂j(ti+1)−m−j (ti+1)

)
.

(3.39)

The spectral Kalman filter in its basic form is summarized in algorithm 3.1, with � de-
noting the Hadamard product, ◦−1 the element-wise inverse operator and f(∆i),h(∆i)
and q(∆i) the stacked vectors with elements fj(∆i), hj(∆i) and qj(∆i), j ∈ JN , respec-
tively. Note that following remark (2.3) in section 2.3.2, this formulation includes the
real-valued case α0 without any further complications.

The spectral formulation gets rid of any previously needed matrix calculations and a
single iteration can therefore be done in linear time O(N2) as a function of the number of
spatial grid points N2. As filtering of the spectral processes can be done independently,
computational costs can further be controlled by omitting the spectral processes corre-
sponding to high frequency spatial waves, which comes in especially useful in regards to
likelihood computations based on the filtering estimations. In that case the complexity
costs becomes O(K) where K is the number of considered spectral processes. In par-
ticular, since Ũ is a real-valued process, even when one wishes the ’complete’ spectral
process, this can be done by only including N2

2 + 2 Fourier modes using the real DFT in
the Filtering computations.

Algorithm 3.1: Spectral Kalman Filter

Input: Discrete Fourier transformed data (v̂(ti)), i = 1, ..., I, model parameters
µ,Σ, ζ, σ2

0, ρ0, σ
2
ε , prior state m0,K0.

Output: mean and variance predictions and updates
m−(ti),K

−(ti),m(ti),K(ti), i =1,...,I.
Initialization: m(t+0 ) = m0,K(t+0 ) = K0.
for i = 0, ..., I − 1 do

Prediction:
K−(ti+1) = h(∆i)�K(ti) + q(∆i);
m−(ti+1) = f(∆i)�m(ti);
Update:

K(ti+1) =
(
K−(ti+1)−1 + N2

σ2
ε
1
)◦−1

;

m(ti+1) = m−(ti+1) + N2

σ2
ε
K(ti+1)� (v̂(ti+1)−m−(ti+1)) ;

end

Note that the parallel filtering of the spectal processes carries over the smoothing
problem, allowing one to replace all matrix operations with element-wise ones and carry
out a single iteration of the Kalman smoother in O(N2) time as well. Since the com-
putations liken the one in the original Kalman smoother we will omit further details at
this point in time.
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3.3.2. Likelihood Expression for Parameter Inference

We end this section by formulating the likelihood function that results from the state-
space model given in (3.33) and (3.34).

Assume the model parameters θ := [µ,Σ, ζ, ρ0, σ0, σε] are unknown and therefore to
be estimated, based on the available observations V (ti) = v(ti), i = 1, ..., I, of the
spatially discretized spatiotemporal process Ũ . Denote by

v̂(t1:i) := [v̂(t1), ..., v̂(ti)] (3.40)

the vector of the discrete Fourier transformed observations v̂(ti) = Φv(ti) up to time
ti. Due to the Markov property of the spectral process (α(t))t and measurement noise
being temporally white, the likelihood function fV̂ (t1:I)|θ(v̂(t1:I) | θ) factorizes to

L(θ) = fV̂ (t1:I)|θ(v̂(t1:I) | θ)

= fV̂ (t1)|θ(v̂(t1) | θ)

I−1∏
i=1

fV̂ (ti+1)|V̂ (t1:i),θ
(v̂(t1:i+1) | v̂(t1:i),θ).

Following equation (3.34), we have for the components of V̂ (ti+1) | V̂ (t1:i),θ:

V̂j(ti+1) | V̂j(t1:i),θ = αj(ti+1) + ε̂j(ti+1) | V̂j(t1:i),θ

∼

{
CN (m−j,θ(ti+1), rj,θ(ti+1)), if j ∈ JN , j 6= 0,

N (m−0,θ(ti+1), r0,θ(ti+1)), if j = 0,

where rj,θ(ti+1) := K−j,θ(ti+1) +
σε2
NM and m−j,θ(ti+1), K−j,θ(ti+1) denote the Kalman

filtering mean and variance outputs

m−j,θ(ti+1) = E[αj(ti+1) | v̂(t1:i),θ]

K−j,θ(ti+1) = E[αj(ti+1)αj(ti+1) | v̂(t1:i),θ]

for each j ∈ JN under model parameters θ.
Denote by fN (·;m,K) and fCN (·;m,K) respectively the density of a real and proper

complex Gaussian with mean m and variance K. The likelihood function then takes on
the form (with × denoting arithmetic multiplication)

L(θ) =
I∏
i=1

fN

(
v̂0(ti);m

−
0,θ(ti), r0,θ(ti)

)
×

I∏
i=1

∏
j∈JK ,j 6=0

fCN

(
v̂j(ti);m

−
j,θ(ti), rj,θ(ti)

)

=
I∏
i=1

1√
2πrj,θ(ti)

exp

(
− 1

2rj,θ(ti)
‖v̂j(ti)−m−j,θ(ti)‖2

)

×
I∏
i=1

∏
j∈JK ,j 6=0

1

πrj,θ(ti)
exp

(
− 1

rj,θ(ti)
‖v̂j(ti)−m−j,θ(ti)‖2

)
.

(3.41)
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In practice, to prevent computational overflow, it is useful to consider the log-likelihood
instead, given by

`(θ) =
1

2

I∑
i=1

− log(2π)− log(rj,θ(ti))−
1

rj,θ(ti)
‖v̂j(ti)−m−j,θ(ti)‖2

+

I∑
i=1

∑
j∈JK ,j 6=0

− log(π)− log(rj,θ(ti))−
1

rj,θ(ti)
‖v̂j(ti)−m−j,θ(ti)‖2.

(3.42)

Note that after applying the discrete Fourier transform, a single evaluation of the like-
lihood, including the filtering, can therefore be done in O(I|JK |) time, where |JK | is
the number of Fourier coefficients taken into account and I the number of observation
times. This is a remarkable improvement compared to the issue of cubic computational
complexity raised in remark 3.1.
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3.4. Experiments

The following section presents experimental results of the models performance in terms
of both the process state estimation and model parameter inference. The experiments
are conducted on simulated data of the spatiotemporal process Ũ using the linear state
space model as formulated in equation (3.33):

Process Level: α(ti+1) = F (∆i)α(ti) + ν(∆i)

Ũ(ti+1) = Φ−1α(ti+1)

Observation Level: V (ti+1) = Ũ(ti+1) + ε(ti+1), i ∈ {1, ..., I}.

We assume a spatial domain that equals the rectangle D = [0, 2π]2, evenly gridded by
the mesh D = {xn,m = 2π( nN ,

m
N ) : n = 0, ..., N − 1,m = 0, ..., N − 1}. In our particular

Figure 3.1.: Examples of the simulated process Ũ and observations V for three different
observation times. Note the differing color scales.
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simulation we choose N = 70. For the initial condition we assume a bell curve

U(0,x) = 2 exp
(
−2‖x− x0‖2

)
centered at x0 = (π2 ,

π
2 ). From the initial condition, the process is simulated forward in

time in the spectral domain with time steps ∆t = 0.02 over the time span t ∈ [0, 10].
The spatiotemporal, ’true’ process Ũ(t) is respectively computed by the inverse discrete
Fourier transform at each time step. Note that the equally distanced time steps are
chosen for experimental simplicity only and more general setups are possible.

The observations V (ti) = (V (ti,xn,m))n,m are made available at every tenth time
step, corrupted by spatial Gaussian white noise with standard deviation σε = 0.05.

The model parameters are chosen as follows: The drift parameter µ = [0.12, 0.1]T

resembles a slightly stronger drift in the x−direction, whereas Σ =

(
0.12 0.05
0.05 0.12

)
is set

such that diffusion is anisotropic. We choose a weak damping parameter ζ = 0.005 and
the stochastic Matérn forcing term to be parametrized by ρ0 = 0.3 and σ0 = 0.9.

Examples of the sampled process and observations are given in figure 3.1. Note that
color scales are differing inbetween times.
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3.4.1. Filtering & Smoothing Results

We run the spectral Kalman filter specified in algorithm 3.1 and its smoothing pendant
on the given discrete-time observations {V (ti) : ti = 0, 0.2, ..., 10} of the simulated pro-
cess above. To analyze the models estimation perfomance inbetween measurements,
we choose to run the continuous-discrete Kalman filter and -smoother by including
’measurement-free’ steps as described in remark 2.2.

Figure 3.2 shows the true and estimated paths for four different spatial wave numbers
ξj , with shaded areas resembling the distance of one standard deviation. The spatial
waves have been picked to represent a range of frequency magnitudes. We observe:

� As expected, the Kalman smoother performs better than the filter. Whereas the
smoothing estimates recover a path with small-scale fluctuations, the Kalman fil-
ters measurement-free prediction steps are dominated by the filters linear mean
propagation. Further recognizable is the reduced uncertainty of the smoothing
estimates.

� Furthermore, the spectal processes’ convergence behavior described in remark 3.2
is well visible. For large spatial frequencies, αj(t) rapidly converges to its cen-
tered stationary distribution, whereas low frequencies remain non-stationary in
the given time-frame. Note also the difference in the stationary distributions vari-
ances for larger wave numbers. This behavior again suggests that the impact of
high frequency components in the Fourier decomposition of the true process U(t,x)
vanishes rapidly.

Both observations are also recognizable in figure 3.3, which shows the mean absolute
estimation error between the true simulated process Ũ(t,x) and its reconstruction based
on the filtering and smoothing estimates of the spectral process α(t). The latter recon-
struction is shown once using all Fourier coefficients αj , j ∈ JN , and additionally for
two different low pass filters with cutoff frequencies ‖ξj‖ < 5 and ‖ξj‖ < 3. Taking
into account that we can make use of the real DFT, the respective number of Fourier
coefficients for these three reconstructions are 2520, 39 and 15.

Both algorithms manage to improve the process estimation beyond observation quality,
even inbetween measurement steps. Unsurprisingly, the smoothing estimate outperforms
the Kalman filter in all three frequency filter configurations.

What is slightly suprising however, is that in this particular parameter setting, the low
pass filtered reconstruction with cutoff frequency ‖ξj‖ < 5 manages to almost match es-
timation accuracy of the fully reconstructed process. This again indicates that, spatially,
the process is dominated by its low frequency components.

In our particular parametrization, this cutoff frequency seems to be close to the sweet
spot, as already the low pass frequency cutoff ‖ξj‖ < 3 starts out with a noticeable
worse estimation performance. It improves as time progresses and spectral processes
relating to frequencies in the intermediate range converge to their respective stationary
distributions.

Figure (3.4) visualises the smoothing reconstruction using the different low pass filter
settings at the two observation times ti = 5, 10.
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Figure 3.2.: Filtering and smoothing paths for differing spectral processes αj(t). Differ-
ent colors represent the true and estimated process for the real and imagi-
nary part respectively. The shaded areas represent the mean estimate ± the
estimated standard deviation m(t)±

√
K(t).
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Figure 3.3.: Mean absolute error ‖Ũ(ti) − Φ−1α(ti)‖ of the spectral filtering (upper
panel) and smoothing estimates (lower panel) of α(ti) over the spatial do-
main as a function of time. The grey line represents the averaged measure-
ment error ε(ti). The other colors represent different numbers of Fourier
modes considered in α(ti).
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3.4.2. Parameter Estimation Results

We are now concerned with the setting in which the model parameters

θ := [µ,Σ, ζ, ρ0, σ0, σε]

are unknown and therefore to be estimated based on the available observations V (ti) =
v(ti) ∈ RN2

, i = 1, ..., 50. Recall that the model log-likelihood function is given by

`(θ) =
1

2

I∑
i=1

− log(2π)− log(rj,θ(ti))−
1

rj,θ(ti)
‖v̂j(ti)−m−j,θ(ti)‖2

+

I∑
i=1

∑
j∈JK ,j 6=0

− log(π)− log(rj,θ(ti))−
1

rj,θ(ti)
‖v̂j(ti)−m−j,θ(ti)‖2,

Figure 3.4.: Process reconstructions of Ũ(t,x) based on the Kalman smoother. The
columns correspond to the second and third time step in figure 3.1. Dif-
ferent rows correspond to different numbers of Fourier modes used in the
reconstruction: LPF |ξ| < K denotes a filter with cutoff frequency K.
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where v̂j(ti) = (Φv(ti))j denotes the j-th discrete Fourier coefficient of V (ti). For the
parameter estimation, we set K = 5.

The (log-)likelihood can be passed onto any likelihood-based parameter estimation
method. We choose to adapt the Bayesian setting and treat the model parameters Θ
as a random variable whose posterior Θ | V̂ (t1:I) is now to be estimated, based on the
Bayes theorem

fΘ|V̂ (t1:I)(θ | v̂(t1:I)) ∝ L(θ)fΘ(θ). (3.43)

Here, fΘ denotes the prior density function of Θ, whose exact form we shall specify
shortly.

Estimation of (3.43) is done by sampling form a Markov chain generated by the
Metropolis-Hastings (MH) algorithm, a general Markov chain Monte Carlo scheme that
ensures convergence of the Markov chain to its stationary distribution fΘ|V̂ (t1:I) under
very flexible conditions. We shall treat is as a simple ’off-the-shelf’ solution for Bayesian
inference. For more detail, see e.g. Brooks et al. [2011]. For completeness sake, its
general formulation is summarized in algorithm 3.2.

Besides the likelihood function and prior distributions, the Metropolis-Hastings re-
quires a proposal density q(· | θ) which determines the rate at which the chain explores
the parameter space. The diffusion matrix requires special attention due to its symmetric
positive definite property. We parametrize it via a Cholesky decomposition

Σ = LLT ,

where L =

[
L1 0
L2 L3

]
is some lower triangular matrix. For the choices of proposal and

prior densities for the rest of the model parameters, we follow Sigrist et al. [2015].
We choose Gaussian proposals in µ and L, centered at the current chain state

q(µp | µi) ∼ N2(µi, σ
2
µ)

q(Lp | Li) ∼ N3(Li, σ
2
L).

To keep parameters positive, all other proposals are drawn from log-posterior normal
distributions, e.g.

q(ζp | ζi) ∼ LN (ln(ζi), σ
2
ζ )

and likewise for ρ0, σ0, σε. The proposal densities hyperparameters σ2
•, • = µ, ..., σε, are

subject to tuning. The proposal term in the acceptance ratio takes on the form

q(θi | θp)
q(θp | θi)

=
ζpρ0,pσ0,pσε,p
ζiρ0,iσ0,iσε,i

, (3.44)

where the proposal terms in µ,Σ vanish due to the symmetry of the normal distribution.
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The priors are chosen to be flat on either the unit interval or [−1, 1]:

ζ, ρ0, σ0, σε ∼ Unif([0, 1])

µ1, µ2 ∼ Unif([−1, 1])

L1, L2, L3 ∼ Unif([−1, 1]).

Algorithm 3.2: Metropolis-Hastings Algorithm

Input: proposal density q(· | ·), likelihood function L(θ), priors f(θ), number
of iterations n.

Output: Markov chain samples θi=0,...,n

Initialization: θ ∼ π(θ).
for i = 0, ..., n do

Propose:
Draw θp ∼ q(· | θi);
Acceptance Ratio:

Calculate α(θp,θi+1) := min
(

1,
L(θp)f(θp)
L(θi)f(θi)

q(θi|θp)
q(θp|θi)

)
;

Accept/Reject:
Draw u ∼ Unif([0, 1]);
if u < α(θp,θi+1) then

θi+1 = θp
end
else

θi+1 = θi
end

end

Figure 3.5 shows the samples of the Metropolis-Hastings algorithm run with 50, 000
iterations, of which the first 20, 000 have been discarded as ’burn-in’. The proposal
variance hyperparameters have been fine tuned such that the acceptance ratio of the
chain over the last 30, 00 iterations lies between 30 to 50 percent. The figure shows that
indeed the simple MH Markov chain is able to recover the model parameters, even given
a likelihood function based on a low number of Fourier modes.

Noteworthy is the behavior of the chain in the parameters σ2
0 and ρ0 - the parameters

that solely define the variance term in the forward propagation of the spectral processes.
Both their chain samples show large deviations and are respectively over- and under-
estimated. Noting that the spectral processes variance is a monotone function of both
parameters, this suggests that the misguided estimation in these parameters seems to
even out in the likelihood function.
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Figure 3.5.: Metropolis-Hastings samples for the last 30,000 out of 50,000 iterations.
Different panels show samples for different parameters. The orange line
represents the true parameter value, whereas the yellow line represents the
sample mean.
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4. Solving the Stochastic Convection
Diffusion Equation on the Torus

The previous chapter derived a method for computationally efficient filtering, smoothing
and parameter estimation of the stochastic convection-diffusion equation. For this pur-
pose, it was assumed that the stochastic forcing term can be represented by a Fourier
spectral decomposition. This led to a “formal solution” of the approximated equation
that was again given by a linear combination of Fourier basis functions.

As we will show in section 4.1, the approximation of the forcing term is only correct
under the assumption of spatially periodic boundary conditions, i.e. when the problem
is defined on the two-dimensional torus.

However, reformulating the problem under this assumption allows us to derive a true
solution to the equation. This will be done in section 4.2 within the framework of
weak solutions introduced in chapter 2.4. In particular, we will show that under these
assumptions, the previously obtained formal solution indeed approximates the equations
weak solution, leading to stronger convergence results.

4.1. Matérn Processes on T2

For the rest of the chapter, denote once again by ξj = 2π
(
j1
L ,

j2
L

)
, j ∈ Z2, the j-th

elementary spatial wave vector on the domain [0, L]2 with corresponding Fourier basis
function φj(x) = exp(iξj · x) and by JK := {j ∈ Z2 : −K

2 + 1 ≤ ji ≤ K
2 , i = 1, 2} the

first K2 spatial wave vectors, centered at the origin.
Recall that in section 3.1, for any fixed time t ∈ [0, T ], we approximated the Matérn

process (ẆQk(t,x))x on [0, L]2 via a finite sum

ẆQk(t,x) =

∫
R2

exp(iξ · x)dη(t, ξ)

≈
∑
j∈JK

φj(x)ηj ,
(4.1)

where (ηj)j are independent, complex Gaussian variables with variance E[ηjηj ] =
(

2π
L

)2
f(ξj),

f(ξ) denoting the spectral density of the Matérn covariance function.
Note that this approximation is not “exact in J ”, meaning that the right hand-side

in (4.1) does not converge to the Matern field (ẆQk(t,x))x as we let K −→∞. This is
due to the fact that the stochastic integral - in order to take advantage of the Fourier
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basis functions on [0, L]2 - is approximated via a partition with intervals

∆ξj :=
[
2π
(
j1
L −

1
2L

)
, 2π

(
j1
L + 1

2L

)]
×
[
2π
(
j2
L −

1
2L

)
, 2π

(
j2
L + 1

2L

)]
, j ∈ Z2.

Therefore, the approximation converges only when one takes the limit in both L and K
simultaneously, a disadvantageous fact as the spatial domain is assumed to be constant
and one naturally wants the quality of an approximation to be a function of the number
of basis functions only.

However, the fact that this sum resembles a Fourier series decomposition indicates its
ability of approximating a spatially periodic process. Indeed, in the following section we
we will show:

Theorem (Informal). In the limit K →∞, the sum
∑
j∈JK φj(x)ηj as defined in (4.1)

converges in the L2-sense to a Matérn process defined on the torus T2.

We begin by reviewing some basic properties of the torus which will allow us to apply
the generalized Bochner’s and spectral representation theorem for stationary processes
on the torus. A result by Borovitskiy et al. [2020], which generalized Matérn processes
on compact Riemannian manifolds, then provides us with an explicit expression for their
covariance function and spectral density on the torus.

Definition 4.1 (The d-dimensional Torus). Let S := {z ∈ C : ‖z‖ = 1} be the unit
cirlce in C. The d−dimensional torus is defined as the product

Td := S× ...× S︸ ︷︷ ︸
d-times

.

We need the following properties of the torus:

Lemma 4.1. The d−dimensional Torus is a compact, abelian group in regards to
component-wise multiplication in C. Its dual group T̂d 1 is given by functions of the
form

φ(z) =
d∏
i=1

zjii , j ∈ Zd.

and is therefore commonly identified with Zd.

Proof. These are standard results. Proofs can for example be found (or are direct con-
sequences of the results in) in section 1.2 of Rudin [1962].

1The dual group (Ĝ, ·) of any locally compact, abelian group G is defined as the set of functions
Ĝ = {φ : G −→ T : φ is a continuous group homomorphism} with operation (φ · ψ)(x) := φ(x)ψ(x).
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Remark 4.1. Let x ∼ y be the equivalence relation on Rd defined by x ∼ y ⇐⇒
x − y ∈ Zd. Recall that there exists a canonical homeomorphism q(·) between the
d-dimensional torus Td and the quotient space (R/Z)d := (Rd/ ∼) given by

q : (R/Z)d −→ Td

q(x) = (exp(2πix1), ..., exp(2πixd)).

It is therefore common to identify the torus with (R/Z)d. In that case, the corresponding

dual group ̂(R/Z)d is the group of functions of the form

φ : (R/Z)d −→ T
φ(x) = exp(2πix · j).

Note that these are the Fourier basis functions (φj)j that wrap the unit interval [0, 1]d

around the torus Td.
Of course, one may likewise consider the quotient space (R/LZ)d with the canonical

homeomorphism q̃ : x 7→
(
exp
(

2π
L ix1

)
, ..., exp

(
2π
L ixd

))
∈ Td and dual group of Fourier

basis functions φ̃j : x 7→ exp
(

2π
L ij · x

)
on [0, L]2. In that case, all results derived in this

chapter hold true and we can therefore assume without loss of generality that L = 1.

We now state the generalized versions of Bochner’s and the spectral representation
theorem.

Theorem 4.1 (Bochner’s Theorem (Generalized)). Let G be a locally compact, abelian
group with dual group Ĝ. A continuous function h : G −→ C is positive-definite, in the
sense that

n∑
i,j=1

λiλjh(xi − xj) ≥ 0

for all λ1, ...., λn ∈ C, x1, ...., xn ∈ G,n ∈ N, if and only if there exists a unique, finite,
non-negative measure µ on Ĝ such that

h(x) =

∫
Ĝ
φ(x)dµ(φ) (4.2)

for all x ∈ G.

Proof. See Rudin [1962], section 1.4.3.

Theorem 4.2 (Spectral Representation Theorem (Generalized)). Let T be some index
set and (X(t))t∈T be a stochastic process. Further let (A,A) be some measurable space.
There exists a spectral representation, such that for all t ∈ T

X(t) =

∫
A
φ(t, a)dZ(a), (4.3)
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where φ(·, ·) is some complex-valued function and Z(·) is an orthogonal random measure
on (A,A) if and only if there exists a measure µ on (A,A) such that

E[X(s)X(t)] =

∫
A
φ(s, a)φ(t, a)dµ(a) (4.4)

for all s, t ∈ T . Then, it holds

E[Z(E1)Z(E2)] =

{
0, if E1 ∩ E2 = ∅
µ(E1), if E1 = E2

for all E1, E2 ∈ A.

Proof. See Yaglom [1987b], chapter 2 note 17.

As usual, we say that a stochastic process U on the torus is weakly stationary if it has
constant mean and a covariance function given by

k(x+ r,x) = c(r)

for all x, r ∈ (R/Z)d and some positive definite function c : (R/Z)d −→ C. The special
cases of the previous two theorems lets us now obtain a spectral representation for these
processes:

Corollary 4.1 (Spectral Representation on the Torus). Let (U(x))x∈(R/Z)d be a sta-
tionary process with covariance function c(r). Then there exists a unique measure µ on
Zd such that for all r ∈ (R/Z)d

c(r) =
∑
j∈Zd

φj(r)µ(j). (4.5)

Furthermore, there exists a stochastic process (Zj)j∈Zd such that for all x ∈ (R/Z)d

U(x) =
∑
j∈Zd

φj(x)Zj (4.6)

and it holds

E[ZjZk] =

{
0, if j 6= k

µ(j), if j = k.
(4.7)

We again refer to µ and Z as the spectral measure and spectral process of U respectively.

Proof. Recall that ψ ∈ ̂(R/Z)d if and only if ψ = φj for some j ∈ Zd. The first claim

then follows from Bochners theorem by identifying ̂(R/Z)d with Zd, equipped with the
canonical σ-Algebra P(Zd).

Likewise, the second claim follows directly from the generalized spectral representation
theorem with (A,A) = (Zd,P(Zd)) and φ(x, j) = φj(x) for all x ∈ (R/Z)d, j ∈ Zd.
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We now wish to find a spectral representation for the Matérn processes on the torus.
Recall from section 2.2.4 that the Matérn processes can be defined as solutions to the
fractional stochastic Laplace equation

(κ2 −∆)ν/2+d/4U(x) = Ẇ (x).

Recent work by Borovitskiy et al. [2020] generalized this approach by replacing the
Laplace operator with the Laplace-Beltrami operator, the generalization of the Laplace
operator on manifolds, thereby introducing a framework which allows one to define
Matérn processes on compact Riemannian manifolds by solving the arising fractional
stochastic Laplace-Beltrami equation.

We summarize the results for the case that is of our interest - the torus - in the
following lemma. For the general results, we refer to Borovitskiy et al. [2020], appendix
D.

Lemma 4.2 (Matérn Processes on the Torus). Let U be a solution to the fractional
stochastic Laplace-Beltrami equation(

ρ−2
0 −∆g

)α
2 U(x) = Ẇ (x), α = ν + d

2 .

Here, ∆g denotes the Laplace-Beltrami operator and Ẇ is spatial white noise, both
defined on the d−dimensional torus. Then, U is a stationary, centered Gaussian process
with covariance function

c(r) = σ2
0

∑
j∈Zd

(ρ−2
0 + ‖2πj‖2)−αφj(r). (4.8)

We refer to U as a Matérn process on the torus. In particular, its spectral measure on
Zd is given by

µ(j) = σ2
0(ρ−2

0 + ‖2πj‖2)−α. (4.9)

Proof. This follows from theorem 4, Borovitskiy et al. [2020].

Let us now return to the case treated in section 3.1, where we considered the stochastic
forcing term ẆQk(t,x) to be temporally white and spatially coloured with Whittle
covariance function; the Matérn covariance function with ν = 1 and d = 2. Assume
now that ẆQk(t,x) is spatially periodic, i.e. x ∈ (R/Z)2. Then, for any fixed time t,
(ẆQk(t,x))x has covariance function and spectral measure given by

c(r) =
∑
j∈Zd

fjφj(r) and

fj = σ2
0(ρ−2

0 + ‖ξj‖2)−2

(4.10)

respectively. In particular, by the generalized spectral representation theorem, there
exists a proper complex Gaussian process (ηj)j∈Zd such that

ẆQk(t,x) =
∑
j∈Zd

φj(x)ηj , (4.11)
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with covariance given by

E[ηjηk] =

{
0, if j 6= k

fj , if j = k.
(4.12)

Note that fj = (2π)2f(ξj), where f denotes the spectral density of the Matérn covariance
function on R2. We therefore recover the approximation as introduced in 3.1 and this
approximation indeed converges in the number of Fourier basis functions, i.e.

lim
K→∞

∑
j∈Jk

φj(x)ηj = ẆQk(t,x)

in the L2(P)-sense, for all x ∈ (R/Z)2, t ∈ [0, T ] fixed. When letting time vary, in order
to retain the temporally white nature of ẆQk(t,x), we again assume that (ηj(t))j are
independent, temporally white Gaussian noise processes. However, the next section will
deal with this rigorously within the framework introduced in section 2.4.
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4.2. The Weak Solution on T2

The previous section showed that we can approximate the temporally white, spatially
Matérn process ẆQk(t,x) defined on the torus by a linear combination of Fourier basis
functions. We now derive a solution to the corresponding stochastic convection diffusion
equation driven by ẆQk(t,x) on T2. This will be done in the framework of generalized
random processes and weak solutions introduced in section 2.4.

In this sense, let us define the stochastic convection diffusion equation as{
dU(t) = AU(t)dt+ dWQk(t), t ∈ (0,∞),

U(0) = U0,
(4.13)

where A is the convection-diffusion operator, U0 is a generalized Gaussian random field
and WQk is a Q-Wiener process, all acting on a Hilbert space H.

We therefore need to identify a suitable underlying Hilbert space H, construct WQk

such that it corresponds to the Whittle covariance function in the spatial domain and
show that the convection-diffusion operator A is the generator of a C0-semigroup on H.

The underlying Hilbert space To take advantage of the Fourier spectral decomposition,
we assumed our formal solution in chapter 3 to be spatially periodic on [0, 1]2. The
natural choice of the underlying Hilbert space is therefore the C-Hilbert space L2(T2)
of square-integrable, complex valued functions on the torus, equipped with the inner
product

〈h, g〉L2 :=

∫
T2

h(z)g(z)dz,

where we define integration over T2 as∫
T2

h(z)dz :=

∫
[0,1]2

h(exp(2πix))dx.

By definition of the integral and the canonical homeomorphism between T2 and [0, 1]2,
we have that L2(T2) is isometrically isomorphic to L2([0, 1]2) and it is useful to identify
these with each other and simply denote them by L2.

The Q-Wiener process Lemma 4.2 showed that the Whittle covariance function for a
periodic process on [0, 1]2 is given by

k(x,y) =
∑
j∈Z2

fjφj(x)φj(y), (4.14)

where fj = σ2
0(ρ−2

0 + ‖ξj‖2)−2. Recall that the Fourier basis functions (φj(x))j form
an orthonormal basis function in L2. By Mercer’s theorem, the corresponding Hilbert-
Schmidt integral operator Qk(h) :=

∫
[0,1]2 h(y)k(x,y)dy is a nuclear covariance operator

on L2 with eigenfunctions and eigenvalues (φj)j , (fj)j .
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To construct the corresponding regular Q-Wiener process WQk , let (wj)j be a family
of independent complex valued Wiener processes. Following remark 2.6 and 2.8 we can
represent WQk by

WQk(t) :=
∑
j∈Z2

√
fjφjwj(t) (4.15)

such that E
[
〈h,WQk(s)〉L2〈h,WQk(t)〉L2

]
= 〈Qkh, g〉L2 min(s, t).

The convection-diffusion C0-semigroup It remains to show that A generates a C0-
semigroup on L2. To do this, we take advantage of the fact that the Fourier basis func-
tions are eigenfunctions of A by constructing a corresponding diagonal C0-semigroup:

Lemma 4.3 (Diagonal C0-semigroups). Let H be a separable C-Hilbert space with
orthonormal basis (hj)j≥1 and let (λj)j≥1 be a sequence in C. Then, the operator
A : D(A) ⊂ H −→ H defined by

Ah :=
∑
j≥1

λj〈h, hj〉hj

with domain D(A) = {h ∈ H :
∑

j≥1 |λj〈h, hj〉|2 < ∞} defines a C0-semigroup (S(t)t)
on H if and only if supj≥1 Re(λj) <∞. In that case, (S(t))t is given by

S(t)h =
∑
j≥1

exp(λjt)〈h, hj〉hj .

Any C0-semigroup of such form is called a diagonal C0-semigroup.

Proof. A proof for the real valued case can be found Curtain and Zwart [1995], 2.1.13.
The complex case follows likewise.

We can now show that, in the sense of weak derivatives, the convection-diffusion
operator A defines a diagonal C0-semigroup on L2. Recall that for any g ∈ L2, the weak
derivative Dαg ∈ L2, if existent, is uniquely defined by the property 2

〈Dαg, v〉L2 = (−1)|α|〈g,Dαv〉L2 (4.16)

for all smooth functions v ∈ C∞(T2), where Dα denotes the differential operator Dα =
∂α1+α2

∂x
α1
1 ∂x

α2
2

for some α ∈ N2. Following this, one defines the formal adjoint A∗ of A by

A∗ := µ · ∇+∇ ·Σ∇− ζ, (4.17)

such that Ag, if existent, is uniquely defined by

〈Ag, v〉L2 = 〈g,A∗v〉L2 (4.18)

for all v ∈ C∞(T2).

2The definition of a weak derivative is motivated by the fact that equation (4.16) indeed holds for any
|α|−times differentiable g. This can be shown by integration of parts plus the fact that v is periodic.
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Corollary 4.2. The convection-diffusion operator generates the diagonal C0-semigroup

S(t)g =
∑
j∈Z2

exp(λjt)〈g, φj〉L2φj (4.19)

on L2, where λj = −iµTξj − ξTjΣξj − ζ are the eigenvalues of φj in regards to A.

Proof. Define the operator A : D(A) ⊂ L2 −→ L2 by

Ag :=
∑
j∈Z2

λj〈g, φj〉L2φj .

Note that supj Re(λj) = −ζ by positive-definiteness of Σ. Following lemma 4.3, A
generates the diagonal C0-semigroup

S(t)g =
∑
j∈Z2

exp(λjt)〈g, φj〉L2φj

on L2 and its domain is given by

D(A) =

g ∈ L2 :
∑
j∈Z2

|λj〈g, φj〉L2 |2 <∞

 .

By uniqueness of generators of C0-semigroups, it suffices to show that Ag = Ag
whenever existent. Using Riesz-Fischer’s theorem and the fact that Aφj = λjφj , it
holds for all v ∈ C∞(T2):

〈Ag, v〉L2 =

〈∑
j∈Z2

λj〈g, φj〉L2φj , v

〉
L2

=
∑
j∈Z2

〈g, φj〉L2〈λjφj , v〉L2

=
∑
j∈Z2

〈g, φj〉L2〈φj ,A∗v〉L2

=

〈∑
j∈Z2

〈g, φj〉L2φj ,A∗v

〉
L2

= 〈g,A∗v〉L2 .

This shows that Ag = Ag for any g ∈ D(A). Conversely, when g ∈ D(A), there exists
some h ∈ L2 such that 〈g,A∗φj〉L2 = 〈h, φj〉L2 for all j ∈ Z2. Therefore, it holds by
Parseval’s identity

‖h‖2L2 =
∑
j∈Z2

|〈h, φj〉L2 |2

=
∑
j∈Z2

|〈g,A∗φj〉L2 |2

=
∑
j∈Z2

|λj〈g, φj〉L2 |2 <∞,
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where we used that A∗φj = λjφj . In particular D(A) = D(A) and this proves the claim.

With all the groundwork done, we can finally derive a weak solution to the problem
at hand:

Theorem 4.3. There exists a unique weak solution (U(t))t to the stochastic convection-
diffusion equation (4.13).

Further, let the initial condition U0 =
∑
j∈Z2 αj,0φj be a regular generalized Gaussian

random field on L2, where αj,0 ∼ CN (0, σ2
j,0), j ∈ Z2, are independent complex (real if

j = 0) Gaussian variables. Then solution is given by

U(t) =
∑
j∈Z2

αj(t)φj (4.20)

where (αj)j are the complex Ornstein-Uhlenbeck processes given by

αj(t) = exp(λjt)αj,0 +
√
fj

∫ t

0
exp(λj(t− s))dwj(s).

Proof. By uniqueness, it suffices to show the existence on any domain [0, T ], T > 0. For
this we need to show that the C0-semigroup (S(t))t∈[0,T ] generated by A is such that∫ T

0
‖S(t)

√
Qk‖2HSdt <∞.

Recall that S(t)g =
∑
j∈Z2 exp(λjt)〈g, φj〉L2φj and therefore S(t)φj = exp(λjt)φj for

all j ∈ Z2. With this we get

‖S(t)
√
Qk‖2HS =

∑
j∈Z2

〈S(t)
√
Qkφj , S(t)

√
Qkφj〉HS

=
∑
j∈Z2

fj〈S(t)φj , S(t)φj〉HS

=
∑
j∈Z2

fj exp(λjt)exp(λjt)

=
∑
j∈Z2

fj exp
(
−2(ξTjΣξj + ζ)t

)
≤
∑
j∈Z2

fj

<∞,

where
∑
j∈Z2 fj = c(0) is the marginal Whittle covariance on the torus. It thus holds:∫ T

0
‖S(t)

√
Qk‖2HSdt ≤ Tc(0) <∞.
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By theorem 2.11, this shows the existence of a unique weak solution on any interval
[0, T ]. It is given by

U(t) = S(t)U0 +

∫ t

0
S(t− s)dWQk(s).

Now, let U0 be a regular generalized random function on L2 with representation U0 =∑
j∈Z2 αj,0φj for a sequence of independent complex Gaussian variables αj,0, j ∈ Z2. We

then have

S(t)U0 =
∑
j∈Z2

αj,0S(t)φj

=
∑
j∈Z2

αj,0 exp(λjt)φj

for any t ∈ [0, T ]. Furthermore, by definition of the Ito integral in L2 it holds∫ t

0
S(t− s)dWQk(s) =

∑
i,j∈Z2

∫ t

0

√
fj〈S(t− s)φj , φi〉L2dwj(s)φi

=
∑
j∈Z2

√
fj

∫ t

0
exp(λj(t− s))dwj(s)φj .

Setting αj(t) = exp(λjt)αj,0 +
√
fj
∫ t

0 exp(λj(t− s))dwj(s) gives the second claim.

Corollary 4.3. In the sense of a L2-valued random process, for any fixed t ∈ [0, T ], the
spectral approximation

ŨK(t,x) :=
∑
j∈JK

αj(t)φj(x)

as derived in proposition 3.2 converges in L2(P) to the weak solution (U(t))t of the
stochastic convection diffusion equation:

lim
K→∞

E[‖ŨK(t)− U(t)‖2L2 ] = 0.

Proof. This follows immediately from the previous theorem and the definition of the Itô
integral in L2.

This can be seen as an improvement of the result in lemma 3.1, where we proved
the approximations pointwise weak convergence to the stationary solution, under the
assumption that the initial condition is given by the processes invariant measure.

We now turn our attention to proving the processes convergence to its invariant mea-
sure in the infinite dimensional case. We start by showing the weak solution indeed
defines a generalized random field on L2 for any fixed time t. For this, recall that for
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any j ∈ Z2, (αj(t))t is a proper complex (or real for j = 0) Gaussian process with mean
zero and covariance function

κj(s, t) := exp(λjs)exp(λjt)

[
σ2
j,0 +

fj
2(ξTj Σξj+ζ)

(
exp
(
2(ξTj Σξj + ζ)s

)
− 1
)]

for s ≤ t. Denote by κj(t) the variance of αj(t); κj(t) = κj(t, t).

Proposition 4.1. In the situation of theorem 4.3, the process (U(t))t is a L2-valued
Gaussian process with covariance operator function

Ks,th :=
∑
j∈Z2

κj(s, t)〈h, φj〉L2φj . (4.21)

In particular, any U(t) is a generalized Gaussian random field on L2 with covariance
operator

Qth :=
∑
j∈Z2

κj(t)〈h, φj〉L2φj . (4.22)

Proof. The fact that U = (U(t))t is indeed a L2-valued Gaussian process follows from
its integral representation and lemma 2.7. To derive Ks,t, define for any s ≤ t fixed

ks,t(x,y) :=
∑
j∈Z2

κj(s, t)φj(x)φj(y). (4.23)

To show that ks,t is well-defined, note that by the symmetric positive-definiteness of Σ
we have

ξTj Σξj ≥ Σmin‖ξj‖22
where Σmin > 0 is the smallest eigenvalue of Σ. Therefore, we can choose some M > 0
such that for all ξj with ‖ξj‖22 > M :

exp
(
−(ξTj Σξj + ζ)(t+ s)

)
≤ 1,

0 ≤
[
exp
(
−(ξTj Σξj + ζ)(t− s)

)
− exp

(
−(ξTj Σξj + ζ)(t+ s)

)]
≤ 1,

2(ξTj Σξj + ζ) ≥ 1.

For all such ξj it then holds:

|κj(s, t)| = | exp(λjs)exp(λjt)|
∣∣∣∣σ2
j,0 +

fj
2(ξTj Σξj+ζ)

(
exp
(
2(ξTj Σξj + ζ)s

)
− 1
)∣∣∣∣

≤ exp
(
−(ξTj Σξj + ζ)(t+ s)

)
σ2
j,0

+ exp
(
−(ξTj Σξj + ζ)(t+ s)

) ∣∣∣∣ fj
2(ξTj Σξj+ζ)

(
exp
(
2(ξTj Σξj + ζ)s

)
− 1
)∣∣∣∣

= exp
(
−(ξTj Σξj + ζ)(t+ s)

)
σ2
j,0

+
fj

2(ξTj Σξj+ζ)

[
exp
(
−(ξTj Σξj + ζ)(t− s)

)
− exp

(
−(ξTj Σξj + ζ)(t+ s)

)]
≤ σ2

j,0 + fj .
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With this, it follows that∑
j∈Z2

|κj(s, t)| =
∑
j∈Z2,
‖ξj‖22≤M

|κj(s, t)|+
∑
j∈Z2,
‖ξj‖22>M

|κj(t)|

≤
∑
j∈Z2,
‖ξj‖22≤M

|κj(s, t)|+
∑
j∈Z2,
‖ξj‖22>M

(σ2
j,0 + fj)

<∞,

where we have used the fact that
∑
j σ

2
j,0 <∞ by regularity of the initial condition U0

and that
∑
j fj <∞ is the marginal variance of the Whittle covariance function.

This assures the convergence of ks,t(x,y). The fact that it is a continuous, conjugate
symmetric and positive definite function follows from Bochner’s theorem. Note that

Ks,th =
∑
j∈Z2

κj(s, t)〈h, φj〉L2φj .

is the integral operator corresponding to kt(x,y) on L2. By Mercer’s theorem, it is
therefore a well defined, nuclear covariance operator.

Lastly, Ks,t is indeed the covariance operator function of U . For all h, g we have:

E
[
〈h, U(s)〉L2〈g, U(t)〉L2

]
= E

∑
j∈Z2

〈h, φj〉L2αj(s)
∑
j∈Z2

〈g, φj〉L2αj(t)


=
∑
j∈Z2

E[αj(s)αj(t)]〈h, φj〉L2〈φj , g〉L2

=

〈∑
j∈Z2

κj(s, t)〈h, φj〉L2φj , g

〉
L2

= 〈Ks,th, g〉L2 .

In the finite dimensional case, we have seen that the solutions to linear SDEs converge
weakly against their stationary measure. It is therefore only natural to consider the
convergence behavior in the Hilbert space valued case as well. For this we define:

Definition 4.2. Let X(t), t ∈ [0,∞) be a process of regular generalized Gaussian ran-
dom fields with covariance operators Qt. We say that (X(t))t converges weakly to a
generalized Gaussian random field X∞ with covariance operator Q∞ if

lim
t→∞

tr(Qt −Q∞) = lim
t→∞

∑
j∈Z2

〈(Qt −Q)hj , hj〉H = 0. (4.24)
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Then, in particular

〈h,X(t)〉H −−−→
t→∞

〈h,X∞〉H (4.25)

weakly for all h ∈ H.

Proposition 4.2. In the situation of theorem 4.3, the process U = (U(t))t converges
weakly to the regular generalized Gaussian random field U∞ with covariance operator

Q∞h =
∑
j∈Z2

fj

2(ξTj Σξj + ζ)
〈h, φj〉L2φj . (4.26)

Furthermore, U∞ is invariant for U in the sense that, if U0
d
= U∞ then (U(t))t is a

stationary L2 valued Gaussian process.

Proof. The fact that Q∞ is a well defined, nuclear covariance operator follows by the
same arguments as in the proof of proposition 4.1 .

Recall that tr(Qt −Q∞) is independent of the choice of orthonormal basis. Therefore,
by the fact that (φj)j are eigenfunctions of Q∞ and Qt for any t, we have by absolute
convergence of the series

tr(Qt −Q∞) =
∑
j∈Z2

〈(Qt −Q∞)φj , φj〉H

=
∑
j∈Z2

(
κj(t)−

fj

2(ξTj Σξj + ζ)

)
−−−→
t→∞

0.

For the second claim, let U0
d
= U∞. Then there exists a representation

U0 =
∑
j∈Z2

αj,0φj

with independent Gaussian variables αj,0 ∼ CN (0,
fj

2(ξTj Σξj+ζ)
).

Recall that αj,0 is invariant for the Gaussian process αj . Therefore, under U0
d
= U∞,

we have that αj is stationary for all j ∈ Z2 with covariance function

κj(s, t) = exp(λj(t− s))
fj

2(ξTjΣξj + ζ)

for all s ≤ t. By proposition 4.1 it follows that Ks,t = Ks+r,t+r for all r.

We end this chapter with the following corollary that recovers the spectral density of
the “ordinary”” Gaussian process corresponding to the weak solution.
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Corollary 4.4. The stationary solution of the stochastic convection-diffusion equation
on T2 has spectral spectral given by

g(ω, j) = fj
1

2π
[(ξTjΣξj + ζ)2 + (ω + µTξj)

2]−1, ω ∈ R, j ∈ Z2. (4.27)

Proof. Note that

Ks,th =
∑
j∈Z2

exp(λj(t− s))
fj

2(ξTjΣξj + ζ)
〈h, φj〉L2φj .

is the integral operator on L2 corresponding to a covariance function on the torus defined
by

ks,t(x,y) =
∑
j∈Z2

exp(λj(t− s))
fj

2(ξTjΣξj + ζ)
φj(x)φj(y), x,y ∈ T2.

To recover previous notation of corollary 4.1, write τ = t− s, r = y − x. Then

ks,t(y,x) = ks,t(x,y)

=
∑
j∈Z2

exp(λj(t− s))
fj

2(ξTjΣξj + ζ)
φj(x)φj(y)

=
∑
j∈Z2

exp(λj(t− s))
fj

2(ξTjΣξj + ζ)
φj(y − x)

= ks,s+τ (x+ r,x)

=: c(τ, r).

Clearly, c(τ, r) is the covariance function of a stationary Gaussian process defined on
[0, T ] × T2. By the generalized spectral representation theorem, there exists a unique
spectral density g(ω, j) on R× Z2 such that

c(τ, r) =

∫
R

∑
j∈Z2

g(ω, j) exp(iωτ)φj(r).

Now, the same computation of the frequency domain integral as in remark 3.1 gives:∫
R

∑
j∈Z2

fj
1

2π
[(ξTjΣξj + ζ)2 + (ω + µTξj)

2]−1 exp(iωτ)φj(r)dω

=
∑
j∈Z2

fj
2(ξTjΣξj + ζ)

exp
(
(−iµTξj − ξTjΣξj − ζ)τ

)
φj(r)

=
∑
j∈Z2

fj
2(ξTjΣξj + ζ)

exp(λjτ)φj(r)

= c(τ, r)

and this proves the claim.
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5. Future Work

In chapter 3, we have introduced a spectral method for the linear stochastic convection-
diffusion equation, motivated by the need of computationally efficient statistical inference
on its approximated solutions and model parameters. Chapter 4 verified the spectral
method in its approximation properties to the weak solution of the SCDE. The results
in these chapters open up a number of further research questions:

� How flexible is the spectral filtering method in regards to more complex statistical
applications, e.g. when one cannot assume constant model parameters?

� The derivation of the weak solution to the SCDE showed that the spectral approx-
imation becomes exact when the solution is defined the torus. Does this open up
opportunities to consider processes defined on more complicated manifolds?

� The usage of Fourier basis functions is particularly efficient due to their property
of being eigenfunctions for any linear differential operator. How can one make use
of this when confronted with non-linear differential equations?

We give first considerations to each of these questions in the following chapter.

5.1. Some Immediate Generalizations

This section covers some immediate generalizations of the spectral filtering method for
the SCDE. Each are formalized based on the conditions introduced in chapter 3. Details
that are left out in the following are therefore assumed to be as specified previously.
At large these extensions don’t interfere with each other and can therefore be employed
’parallelly’.

5.1.1. Temporally Varying Convection-Diffusion Operator

Filtering, Smoothing & Parameter Inference Assume that the PDE model parame-
ters µ,Σ, ζ of the stochastic convection-diffusion equation are not constant but rather
functions of time, i.e. we are concerned with the equation{

∂
∂tU(t,x) = A(t)U(t,x) + ẆQk(t,x),

U(0) = U0,
(5.1)

where the differential operator A(t) is defined as

A(t) := −µ(t) · ∇+∇ ·Σ(t)∇− ζ(t). (5.2)
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Assume for now that µ(t),Σ(t), ζ(t) are known. The same considerations as in theorem
3.2 show that we can construct an approximated solution Ũ(t,x) =

∑
j∈J αj(t)φj(x)

by deriving its spectral processes as strong solutions to the Langevin equation{
dαj(t) = λj(t)αj(t)dt+

√
f̃(ξj)dwj(t),

αj(0) = αj,0,
(5.3)

with λj(t) := −iµ(t)Tξj − ξTjΣ(t)ξj − ζ(t).
Let pj(t, s) be the corresponding state transition function defined via its properties in

equation (2.79), i.e. it is the solution to the ODE{
∂tpj(t, s) = λj(t)pj(t, s)

pj(s, s) = 1.
(5.4)

Assume that λj is such that the corresponding state transition function exists and is
unique (this is for example guaranteed by piecewise continuity of λj). The strong solution
to equation (5.3) is then given by

αj(t) = pj(t, 0)αj(0) +

√
f̃(ξj)

∫ t

0
pj(t, s)dwj(s). (5.5)

Filtering and smoothing for the spectral processes αj can therefore be done via the
Kalman filter and -smoother as introduced for time-varying linear systems in section
2.3.2.

In cases where the functions µ(t),Σ(t), ζ(t) are unknown but dependent on some
parameter θ ∈ Rk, it is evident that parameter estimation can be done based on the fil-
tering likelihood function derived in (2.92). Note that, depending on the parametrization
of µθ(t),Σθ(t), ζθ(t), sampling from the posterior θ | V might become more complex
than previously seen in the experiments in section 3.4.2 and more sophisticated sampling
techniques will become necessary.

Existence of a Weak Solution A natural question that arises is whether a Fourier
spectral decomposition based on the processes (αj)j does indeed approximate a weak
solution to the SPDE {

dU(t) = A(t)U(t)dt+ dWQk(t),

U(0) = U0.
(5.6)

Equations of this kind are known in the literature as non-autonomous Ornstein-Uhlenbeck
equations (see e.g. Seidler [1993], Veraar [2010]). Under rightful assumptions, one can
show the existence and uniqueness of a weak solution to (5.6). Without going into too
much detail here, the objective is to show that the family of operators (A(t))t is such
that there exists a solution P = (P (t, s)s≤t to the operator valued ODE{

∂tP (t, s) = A(t)P (t, s)

P (s, s) = Id
(5.7)
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and that the solution P is an exponentially bounded evolution family on L2, i.e. fulfills
the requirements that

1. for all s ≤ r ≤ t ∈ [0, T ]: P (t, s)P (s, r) = P (t, r),

2. for all h ∈ L2 fixed: (t, s) 7→ P (t, s)h is continuous,

3. there exist constants M > 0, c > 0: ‖P (t, s)‖op ≤M exp(−c(t− s)).

The weak solution to (5.6) is then again given by a stochastic convolution

U(t) = P (t, 0)U0 +

∫ t

0
P (t, s)dWQk(s). (5.8)

Our previous considerations for the case of constant PDE parameters suggest that the
right operator family (A(t))t for our application is defined on L2(T2) by

A(t)h :=
∑
j∈Z2

λj(t)〈h, φj〉L2φj . (5.9)

Based on this, we propose: 1

Proposition 5.1. The operators P (t, s) : [0, T ]× [0, t] −→ L2 defined by

P (t, s)h :=
∑
j∈Z2

pj(t, s)〈h, φj〉L2φj (5.10)

form an exponentially bounded evolution family such that P solves equation (5.7).

Under the assumption that proposition 5.1 holds, we get a weak solution U given by
(5.8) with ∫ t

0
P (t, s)dWQk(s) =

∑
j∈Z2

√
fj

∫ t

0
〈P (t, s)φj , φj〉L2dwj(s)φj

=
∑
j∈Z2

√
fj

∫ t

0
pj(t, s)dwj(s)φj .

Together with a similar spectral decomposition for P (t, s)U0 one gets the generalization
of corollary 4.3:

lim
K→∞

E[‖
∑
j∈JK

αj(t)φj − U(t)‖2L2 ] = 0,

where αj denote the spectral processes as defined in (5.5).

1Proving this is not as trivial as one would hope. In fact, it is not clear if the exponential boundedness
of P (t, s) is the right assumption to base the existence of a weak solution on. Thankfully this is a
future work chapter.

97



5.1.2. Spatially Varying Convection-Diffusion Operator

Filtering, Smoothing & Parameter Inference Newly published work by Liu et al.
[2021] extends the spectral filtering method as introduced in section 3.2 to the case of
spatially varying PDE parameters, i.e. when the convection-diffusion operator is given
by

A(x) := −µ(x) · ∇+∇ ·Σ(x)∇− ζ(x).

Again, one seeks to find a finite dimensional solution Ũ(t,x) =
∑
j∈J αj(t)φj(x) to the

approximated SCDE equation{
∂
∂t Ũ(t,x) = A(x)Ũ(t,x) + Ẇ Q̃(t,x),

Ũ(0,x) =
∑
j∈J φj(x)αj(0),

(5.11)

with spatially periodic boundary conditions and approximated stochastic forcing term

Ẇ Q̃(t,x) =
∑
j∈J

φj(x)ηj(t).

The key idea applied by Liu et al. [2021] is to construct a solution in the Fourier-
Galerkin sense, i.e. a solution Ũ(t,x) that satisfies〈

∂

∂t
Ũ(t,x), φk

〉
L2(T2)

=
〈
A(x)Ũ(t,x) + Ẇ Q̃(t,x), φk

〉
L2(T2)

for any k ∈ Z2. In particular, Ũ then solves the approximated SCDE in the weak sense
on any finite dimensional subspace V = span({φk : k ∈ J }) ⊂ L2(T2). With this
approach, one obtains the following result:

Theorem 5.1. Let J ⊂ Z2 be finite with |J | = K. Let α(t) be the K-dimensional
stochastic differential equation satisfying

dα(t) = Gα(t) +Qdw(t),

where Q = diag[f̃(ξj)], (w(t))t is a K-dimensional complex Wiener process and G is
the matrix given by

Gk,j =

∫
T2

[
i (−µT (x)ξj + (∇ ·Σ(x))Tξj)− ξTjΣ(x)ξj − ζ(x)

]
φj(x)φk(x)dx. (5.12)

Then Ũ(t,x) =
∑
j∈J αj(t)φj(x) solves the approximated SCDE (5.11) in the Fourier-

Galerkin sense.

Proof. See proposition 1, Liu et al. [2021].

This result derives a system of coupled spectral processes, given by a multivariate
complex Ornstein-Uhlenbeck process.

Assuming that µ(x),Σ(x), ζ are known and such that the integral in (5.12) can
be solved in closed-form or efficiently numerically approximated, filtering and smooth-
ing can be done via the Kalman filter- and smoother. If one furthers assumes that
µθ(x),Σθ(x), ζθ(x) are parametrized by some θ, estimation of θ can again be done
based on the filtering likelihood function derived in (2.92).
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Existence of a Solution Assuming that Σ(x) is symmetric positive definite for all x,
the SCDE {

∂
∂tU(t,x) = A(x)U(t,x) + ẆQ(t,x)

U(0,x) = U0(x)
(5.13)

is a linear second-order parabolic SPDE. The existence of a solution is then ensured
(under further assumptions of operator-norm boundedness and measurability of A) by
e.g. Lototsky and Rozovsky [2017], theorem 4.4.3.

However, deriving the solution in closed-form is not as straight-forward as in our
previous example. Therefore, ensuring that the solution is indeed approximated by the
spectral decomposition of the previous theorem is subject to further research.

5.1.3. General Linear PDEs

Denote by β ∈ N2 a multi-index with |β| = β1 + β2. For any x ∈ R2 let xβ = xβ11 x
β2
2 .

Further, let P (x) =
∑
|β|≤k cβ x

β be some polynomial of order k ∈ N with constant
coefficients cβ ∈ R. We can then define a corresponding differential operator

A = P (∇x) :=
∑
|β|≤k

cβ
∂|β|

∂xβ11 ∂x
β2
2

. (5.14)

By the differential properties of the Fourier basis functions (φj)j we have:

Aφj = P (iξj)φj . (5.15)

In other words, the Fourier basis functions are eigenfunctions for any linear differential
operator A of type (5.14) with eigenvalues λj := P (iξj). Further assume that the
polynomial P is such that

Re(λj) = Re(P (iξj)) < 0 (5.16)

for all j ∈ Z2. In that case, it is easy to see that the spectral Filtering model derived in
chapter 3 can be generalized to the linear SPDE

∂

∂t
U(t,x) = AU(t,x) + ẆQk(t,x).

The spectral approximation is again given by a Fourier series decomposition with its
spectral processes solving the complex Langevin equation

dαj(t) = λjαj(t)dt+

√
f̃(ξj)dwj(t), t ∈ (0, T ].

Note that the assumption (5.16) guarantees both that αj are well-defined complex
Ornstein-Uhlenbeck processes as well as the existence of a weak solution that the spec-
tral approximation converges to. The proof of the second fact follows identically to the
one given in theorem 4.3.
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5.2. The Stochastic Heat Equation on Riemannian Manifolds

In chapter 3, the need for computationally efficient filtering and parameter estimation for
the stochastic convection-diffusion equation motivated a spectral decomposition based
on the Fourier basis functions. The following chapter verified that this spectral decom-
position indeed approximates the unique weak solution when the problem is defined on
a domain with spatially periodic boundaries, i.e. the torus.

This raises the question of how to deal with situations in which the spatial domain
is a more complicated manifold. We now give first considerations of how one could go
about solving this problem, motivated by the recent work of Borovitskiy et al. [2020]
who have generalized Matérn processes on Riemannian manifolds.

Let (M, g) be a compact Riemannian manifold without boundary and ∆g be the
corresponding Laplace-Beltrami operator. Consider the stochastic heat equation{

dU(t) = Σ∆gU(t)dt+ dWQk(t), t ∈ (0,∞),

U(0) = U0,
(5.17)

where Σ > 0 is a diffusion constant and WQk is a regular Q-cylindrical Wiener process on
L2(M). We assume that the covariance operator of WQk relates to a Matérn covariance
function, not necessarily restricted to the Whittle case as before.

For now, we restrict ourselves to the heat equation due to the Laplace-Beltrami oper-
ators property of inducing an orthonormal basis of eigenfunctions on the space L2(M)
of square-integrable functions on M :

Theorem 5.2. There exists an orthornomal basis of L2(M) of eigenfunctions (φj)j of
−∆g with non-negative eigenvalues (ηj)j such that ηj −→∞.

Proof. See e.g. Canzani [2013], theorem 44.

This fact was also used by Borovitskiy et al. [2020] to show:

Theorem 5.3. Let (φj)j be the orthornormal basis of L2(M) of eigenfunctions of −∆g

with non-negative eigenvalues (ηj)j . Then, the Matérn covariance function on (M, g) is
given by

k(x, y) =
∑
j≥1

σ2
0

(
ρ−2

0 + ηj
)−ν−d2 φj(x)φj(y) (5.18)

for all x, y ∈M .

Proof. See Borovitskiy et al. [2020], theorem 5.

With these two results, we are able to show:
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Theorem 5.4. There exists a unique weak solution (U(t))t to the stochastic heat equa-
tion (5.17) on (M, g). If the initial condition U0 =

∑
j≥1 αj,0φj is a regular generalized

Gaussian random field on L2(M), the weak solution is given by

U(t) =
∑
j≥1

αj(t)φj (5.19)

where (αj)j are the Ornstein-Uhlenbeck processes given by

αj(t) = exp(λjt)αj,0 +
√
fj

∫ t

0
exp(λj(t− s))dwj(s), (5.20)

with parameters

λj := −Σηj ,

fj := σ2
0

(
ρ−2

0 + ηj
)−ν−d2 . (5.21)

Proof. The proof follows the same manner as in theorem 4.3 and we therefore give the
main steps only.

By theorem 5.3, we can construct a Q−Wiener process on L2(M) that corresponds to
the Matérn kernel by

WQk(t) =
∑
j≥1

√
fjφjwj(t).

As there exists an orthonormal basis (φj)j of −∆g on L2(M) with eigenvalues ηj ≥ 0,
Σ∆g generates a diagonal C0-semigroup on L2(M) defined by S(t)h =

∑
j≥1 exp(λjt),

λj = −Σηj ≤ 0, and one shows that

‖S(t)
√
Qk‖22 ≤

∑
j≥1

fj <∞.

Following theorem 2.11, there exists a unique weak solution

U(t) = S(t)U0 +

∫ t

0
S(t− s)dWQk(s).

By the definition of the Itô integral plus the fact that (φj)j are eigenfunctions of −∆g

we receive ∫ t

0
S(t− s)dWQk(s) =

∑
j≥1

√
fj

∫ t

0
exp(λj(t− s))dwj(s).

Lastly, under the assumption that U0 =
∑

j≥1 αj(0)φj is a regular generalized Gaussian

random field on L2(M), we have

S(t)U0 =
∑
j≥1

exp(λjt)αj(0)φj .

Setting (αj)j as in the proposition ends the proof.

101



As in the previous chapters, this transforms any statistical task concerning the infinite
dimensional SPDE solution into a task on the one-dimensional spectral processes (αj)j .
These are again uncoupled Ornstein-Uhlenbeck processes for which computationally ef-
ficient algorithms are readily available.

Of course, the non-trivial task in this situation is finding the eigenfunctions and eigen-
values of ∆g. In the following subsection, we provide some insight into an example of
high practical importance - the case where the underlying manifold is the unit sphere
Sd−1.

5.2.1. The Stochastic Heat Equation on Sd−1

Let Sd−1 be the d-dimensional unit sphere

Sd−1 := {x ∈ Rd : ‖x‖ = 1}.

Denote by ∆S the Laplace-Beltrami operator on the unit sphere. For any j ∈ N, let Hj
be the space of homogeneous, harmonic polynomials φ on Rd of degree j, meaning that
φ is of the form φ(x) =

∑
|β|=j cβ x

β, cβ ∈ C,x ∈ Rd, such that

∆φ = 0,

where ∆ is the usual Laplacian on Rd. Further denote by Hj the homogeneous, harmonic
polynomials φ restricted onto the unit sphere Sd−1:

Hj := {φ|Sd−1 : φ ∈ Hj} ⊂ L2(Sd−1).

Then one can show that:

Theorem 5.5. Any φ ∈ Hj , j ∈ N, is an eigenfunction of −∆S with eigenvalue ηj =
j(j + d− 2):

−∆Sφ = j(j + d− 2)φ.

Furthermore, it holds that

L2(Sd−1) =
⊕
j≥0

Hj , (5.22)

where
⊕

denotes the orthogonal sum of Hilbert spaces in regards to 〈·, ·〉L2 .

Proof. These results are derived in e.g. Canzani [2013], section 5.4.

A direct consequence of the previous theorem is that for any h ∈ L2(Sd−1), we have

h =
∑
j≥0

dim(Hj)∑
k=1

〈h, φjk〉L2φjk
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where the convergence is in the L2-sense and φjk, k = 0, ...,dim(Hj), are the orthonormal
bases of Hj respectively, also referred to as spherical harmonics of degree j and order k.
Note that (see Canzani [2013], cor. 28)

dim(Hj) = (2j + d− 2)
(j + d− 3)!

j!(d− 2)!
(5.23)

is the geometric multiplicity of the j-th eigenvalue ηj of ∆S .
By theorem 5.4, the weak solution to the stochastic heat equation (5.17) on the sphere

Sd−1 is therefore given by

U(t) =
∑
j≥0

dim(Hj)∑
k=1

αjk(t)φ
j
k

 ,

where for every j ∈ N, αjk, k = 1, ...,dim(Hj), are independent Ornstein-Uhlenbeck
processes as given in (5.20) and (5.21) with ηj = j(j + d− 2).

This result has the practical side effect that the computation of the propagation- and
covariance matrices for filtering and smoothing of the spectral processes αkj must only
be done once for every j ∈ N, therefore making any statistical inference based on the
spectral approximation even more computationally efficient. We give first experimental
results for the spectral filtering and smoothing of the stochastic heat equation in the
following subsection.

5.2.2. Spectral Filtering and Smoothing for the Stochastic Heat Equation
on S2

Let d = 3. For the unit sphere S2 in R3 we get from (5.23) that for any Hj , j ∈ N:

dim(Hj) = 2j + 1.

For any j ∈ N, an orthonormal basis of Hj is given by the real-valued spherical harmonics
φjk, k ∈ {−j, ..., 0, ...j}, defined as

φjk(θ, ι) =


√

2Cjk cos(kι)P jk (cos(θ)), if k > 0,

Cj0P
j
0 (cos(θ)), if k = 0,√

2Cjk sin(−kι)P j−k(cos(θ)), if k < 0,

where (θ, ι) ∈ [0, π] × [0, 2π] are the spherical coordinates, Cjk are constants such that

‖φjk‖L2 = 1 and P jk are the associated Legendre polynomials (see Canzani [2013], chapter
5.4 for more details). For any degree j ∈ N, the eigenvalue ηj of −∆S for the spherical
harmonics of degree j is given by

ηj = j(j + 1).
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Data Simulation In the same manner as previously done in chapter 3.4, we simulate
the weak solution to the stochastic heat equation as given in theorem 5.4 on S2 by means
of simulating the forward propagation of the spectral processes (αjk(t))t, k ∈ −j, ...., j, j ∈
1, ...., J .

We skip the exact details, as the procedure follows our previous one with only two
exceptions. First, for the sake of simplicity, we assume that observations of the spa-
tiotemporal process are not corrupted by measurement noise.

Secondly, the transformation between the spectral- and space-time domain is not
given the DFT Φ anymore, but rather must be done by direct numerical integration
of the spherical harmonics coefficients αjk(t) = 〈U(t), φjk〉L2 . For our simulation, this is
done using the Gauss–Legendre quadrature method implemented in the SHtools python
library (Wieczorek and Meschede [2018]).

Figure 5.1 shows a number of samples for the simulated process with the following
model parameters

Σ = 0.005, σ2
0 = 3.5, ρ0 = 0.4.

The initial condition U0 is chosen to be a spherical Matérn field with parameters

σ2
init = 8, ρinit = 0.5.

From the initial condition, the process is simulated forward over the time domain T =
[0, 10] with discretized time steps of length ∆t = 0.02. The spherical harmonics of up to
degree J = 100 have been used for this simulation.

Experimental Results: Filtering and Smoothing For the filtering and smoothing ex-
periments, we assume that full observations of the simulated process U(t) - and therefore
of the spectral processes (αjk(t))j,k - are available at every 25-th time step (or, in other
words with time steps of length ∆tobs = 0.5). We run the Kalman filter and -smoother
as specified in algorithm 2.1 and algorithm 2.2. The results are presented in figures 5.2
and 5.3.

Unsurprisingly, we obtain results likening the ones in section 3.4, with the Kalman
smoother outperforming the filter by a noticeable larger degree than before. This is due
to the observations being more sparse in time compared to our previous experiments.

Likewise to the Fourier spectral decomposition, the spherical harmonics decomposition
is dominated by its low degree coefficients, with spectral processes corresponding to high
degrees rapidly converging to their stationary distribution centered around 0 (see fig.
5.2).

As a result, for both the Kalman filter- and smoother, the reconstruction based on
only the first 5 degrees almost matches the reconstruction performance using the full
100 degrees that the simulation is based on (see fig. 5.3).

For a lower degree cutoff (here, j <= 2), the reconstruction becomes considerably
worse. Note also that in this case, the mean squared error in the reconstruction differs
only marginally between the Kalman filter and -smoother, due to the fact that its error
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Figure 5.1.: Examples of the simulated solution U(t) of the stochastic heat equation on
the sphere S2. Different panels show different simulation times.
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stems mostly from the low number of spherical harmonics used in the decomposition,
not from the wrong estimation of their respective coefficients.

We leave the task of inferring the model parameters for future projects. However, given
that this task is merely dependent on the filtering likelihood of the spectral processes,
we expect similarly good results as obtained in section 3.4.
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5.3. Non-Linear SPDEs

We finish this thesis with a first heuristic consideration of how to approach non-linear
SPDEs with Fourier spectral filtering method. We make use of notation as introduced
in chapter 3.2.

As a first example, consider the nonlinear stochastic Burger’s equation{
∂tU(t, x) = U(t, x)∂xU(t, x) + Σ ∂2

xU(t, x) + ẆQk(t, x), (t, x) ∈ [0,∞)× [0, 1]

U(0, x) = U0(x),

(5.24)

with spatially periodic boundary conditions, diffusion constant Σ > 0 and stochastic
forcing term ẆQk(t, x). Assume ẆQk(t, x) is temporally white and spatially colored
and is approximated by the finite sum

ẆQk(t, x) ≈ Ẇ Q̃(t, x) :=
∑
j∈J

ηj(t)φj(x),

with ηj(t) ∼ CN (0, f̃(ξj)). Once again, the ansatz is to look for a solution of the form

U(t, x) =
∑
j∈J

αj(t)φj(x)

with temporally evolving spectral processes αj(t). Substituting the ansatz and approxi-

mated forcing term Ẇ Q̃ into (5.24), we receive

∑
j∈J

∂tαj(t)φj(x) =

∑
j∈J

αj(t)φj(x)

∑
j′∈J

iξj′αj′(t)φj′(x)


−
∑
j∈J

Σξ2
jαj(t)φj(x) +

∑
j∈J

ηj(t)φj(x).

Noting that for all j, j′ ∈ Z, we have φj(x)φj′(x) = φj+j′(x), we get∑
j∈J

αj(t)φj(x)

∑
j′∈J

iξj′αj′(t)φj′(x)

 =
∑
j,j′∈J

iξj′αj(t)αj′(t)φj+j′(x).

Therefore, by matching spectral processes, we receive a system of coupled stochastic
differential equations

dαj(t) = −Σξ2
jαj(t)dt+

(∑
k∈J

iξkαj−k(t)αk(t)

)
+

√
˜f(ξj)dwj(t).

The corresponding multivariate SDE α(t) = [αj(t), j ∈ J ] is highly nonlinear. A possible
solution to the smoothing problem and parameter inference could be obtained using
Backward Filtering Forward Guiding (Mider et al. [2020]).
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Figure 5.2.: Filtering and smoothing paths for spectral processes αjk(t) of different de-
grees j and orders k. Different colors represent the true and estimated
process. The shaded areas represent the mean estimate ± the estimated
standard deviation m(t)±

√
K(t).
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Figure 5.3.: Mean squared error ‖U(t)−ŨJ(t)‖2 between the true simulated processU(t)

and the reconstructed process ŨJ(t) based on the filtering (upper panel)
and smoothing estimates (lower panel) of the spectral processes αjk(t) of
degrees j = 0, ...., J . Different colors represent different numbers of spherical
harmonics degrees considered in the reconstruction.
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Charles-Edouard Bréhier. A short introduction to stochastic pdes. art. hal-00973887v1f,
2014.

William L. Briggs and Van Emden Henson. The DFT - An Owner’s Manual for the
Discrete Fourier Transform. Society for Industrial and Applied Mathematics, 1995.

Steve Brooks, Andrew Gelman, Galin Jones, and Xiao-Li Meng. Handbook of Markov
Chain Monte Carlo. Chapman and Hall/CRC, 2011.

Claudio Canuto, M.Yousuff Hussaini, Alfio Maria Quarteroni, and Thomas A.Jr. Zang.
Spectral Methods in Fluid Dynamics. Springer-Verlag Berlin Heidelberg, 1 edition,
1988.

Yaiza Canzani. Analysis on Manifolds via the Laplacian. Harvard University, 2013.

James W. Cooley and John W. Tukey. An algorithm for the machine calculation of
complex fourier series. Mathematics of Computation, 19:297 – 301, 1965.

Noel Cressie and Christopher K. Wikle. Statistics for Spatio-Temporal Data, volume 1.
Wiley, 2011.

Ruth F. Curtain and Hans Zwart. An Introduction to Infinite-Dimensional Linear Sys-
tems Theory. Springer-Verlag, 1995.

Giuseppe Da Prato and Jerzy Zabczyk. Stochastic Equations in Infinite Dimensions.
Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1
edition, 1992.

David Gottlieb and Steven A. Orszag. Numerical Analysis of Spectral Methods: Theory
and Applications. Society for Industrial and Applied Mathematics, 1 edition, 1977.

Matthew M. Graham, Alexandre H. Thiery, and Alexandros Beskos. Manifold Markov
chain Monte Carlo methods for Bayesian inference in a wide class of diffusion models.
arXiv e-prints, art. arXiv:1912.02982, December 2019.

110



K. Jörgens and G.F. Roach. Linear Integral Operators. Pitman Advanced Pub. Program,
1982.

Gopinath Kallianpur and P. Sundar. Stochastic Analysis and Diffusion Processes. Oxford
Graduate Texts in Mathematics, 2014.
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A. Appendix

A.1 Lebesgue-Stieltjes Integral

We summarize the construction of the Lebesgue-Stieltjes integral for functions of several
variables. For a detailed introduction, see e.g. McShane [1947], chapter 7, or Weir [1974],
chapter 9.

Asssume F : Rn −→ R to be a bounded function with non-negative increments ∆F (t).
We may then define a pre-measure µF on the intervals ∆t via

µF (∆t) := ∆F (t).

The Carathéodory extension theorem extends µF to a unique measure on B(Rn), referred
to as the Lebesgue-Stieltjes measure of F . We call the integral in regards to µF the
Lebesgue-Stieltjes integral and denote it by∫

Rn
g(t)dF (t) :=

∫
Rn
g(t)µF (dt). (A.1)

Note that the Lebesgue-Stieltjes integral agrees with - if existent - the Riemann-
Stieltjes integral, defined over any interval T ⊂ Rn as the limit∫

T
g(t)dF (t) := lim

k→∞

∑
∆t∈Pk

g(t′)∆F (t).

Over Rn, this integral is defined as an improper one in the usual way.
The Riemann sum representation also suggests - and indeed it is true that - when F

is smooth enough with the partial derivatives

f(t) :=
∂n

∂t1...∂tn
F (t) = lim

|∆t|→0

∆F (t)

|∆t|

existing, the Lebesgue-Stieltjes integral reduces to the Lebesgue integral∫
Rn
g(t)dF (t) =

∫
Rn
g(t)f(t)dt.

Furthermore, for any function G : Rn −→ R, let the total variation of G over an
interval T ⊂ Rn be defined as

VG(T ) := sup
P

{∑
∆t∈P

∆G(t) : P is a sub-interval partition of T

}
.
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If VG(T ) <∞, we call G of bounded variation on I.
It can be shown that a function of bounded variation is of the form G = G1 − G2,

where both G1, G2 are bounded and have non-negative increments. One then defines
the Lebesgue-Stieltjes integral in regards to G via∫

gdG =

∫
gdG1 −

∫
gdG2.

A.2 Itô’s Lemma

Theorem A.1 (Itô’s Lemma - Multidimensional Case). Let (X(t))t be a n-dimensional
Itô process of the form

X(t) = X0 +

∫ t

0
f(τ)dw(τ) +

∫ t

0
g(τ)dτ, 0 ≤ t ≤ T (A.2)

where w is an m-dimensional Brownian motion, f(·) is a (n×m)−dimensional process
such as above, and g(·) is a n-dimensional process such that gi is a.s. integrable on [0, T ]
for all 1 ≤ i ≤ n.

Let φ(t, x1, ..., xn) be a continuous function with continuous partial derivatives ∂tφ, ∂xiφ
and ∂2

xixjφ for all 1 ≤ i, j ≤ n. Then

φ(t,X(t)) = φ(0,X(0)) +

∫ t

0
∂tφ(τ,X(τ))dτ

+
n∑
i=1

∫ t

0
∂xiφ(τ,X(τ))dXi(τ)

+
1

2

n∑
i,j=1

∫ t

0
∂2
xixjφ(τ,X(τ))dXi(τ)dXj(τ).

(A.3)

where dXi(τ)dXj(τ) is computated via dwj(τ)dwi(τ) = δi,jdτ , dwj(τ)dτ = 0 and dτdτ
= 0.

Proof. See Kuo [2006], theorems 7.4.2 and 7.4.3.
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