
Pyclq: Image analysis suite for fabrication and metrology of

superconducting quantum processors

Authors:

H. M. Veen

Supervisor:

Prof. dr. ir. L. DiCarlo (QuTech)

Dr. ir. I. Wenneker (THUAS)

Second assessor:

Dr. ir. J.A. Brons (THUAS)

Daily supervisor:

Ir. N. Muthusubramanian (QuTech)

Date: September 30, 2021

mailto:H.M.Veen@student.hhs.nl
mailto:l.dicarlo@tudelft.nl
mailto:I.Wenneker@hhs.nl
mailto:j.a.brons@hhs.nl
mailto:n.muthusubramanian@tudelft.nl

A wise person once said: ’Be thorough not fast.’

So I check everything thrice ever since!

THESIS

submitted in partial fulfilment of

the requirements for the degree of

BACHELOR IN APPLIED PHYSICS

Abstract

This report introduces a customized software tool to enable automation of optical inspection

optical and SEM images of a superconducting quantum processor during its fabrication. This

is achieved by implementing image processing algorithms using the Python package OpenCV.

This suite consist of three components; pyclq_base, pyclq_jj, pyclq_ab. The first component

will template match the base layer to its CAD design. The second component will be a validation

for the airbridges. These have 3D components and therefore can not be matched to their

CAD design. The results had about twice as many false positives for, broken bridges, and no

false negatives. The third component measures the width and overlap area for Manhattan-

style Josephson junctions using two different filtering methods; k-mean segmentation and

thresholding. The results of these three components are used as a tool to understand the

sources of spread in the conductance of Josephson junctions therefore optimizing the fabrication

process.

Acknowledgements

First of all I want to acknowledge my daily supervisor Nandini. She got me more motivated

and sharper than ever with critical questions and clear speech. It helped me keep my focus on

the project and allowed me to look at problems from a different point of view; even at even at

the middle of the night over a voice call... Second, Leonardo DiCarlo, for creating a team and

environment were everyone can thrive in. I want to thank both of them for bringing me in and

making this possible.

I want to thank Sean for his collaboration on the automated probe station and working with/next

to me during my internship. Of course I could not have done it without the samples from

Chistos and Matvey. I will bring more kruidnoten next time for everyone in the Dicarlo lab and

am grateful for this internship.

Contents

1 Introduction 1

2 Theory 2

2.1 Harmonic resonators and coplanar waveguide . 3

2.2 Qubit . 4

2.3 Image processing . 4

2.3.1 Separating an feature . 5

2.3.2 Convolution filters . 6

2.3.3 K-means algorithm . 7

2.3.4 Template matching . 7

3 Base layer 9

3.1 Fabrication . 9

3.2 pyclq_base method . 11

3.3 Results . 13

4 Josephson Junctions 14

4.1 Design and fabrication . 15

4.2 pyclq_jj method . 16

4.2.1 Devices . 18

4.3 Results . 19

5 Airbridges 22

5.1 Fabrication . 22

5.2 pyclq_ab method . 23

5.3 Results . 25

6 Conclusion 29

Bibliography 29

Appendix 34

.1 Pseudo codes . 34

.2 Pyclq_AB . 37

.3 Pyclq_jj . 38

.3.1 Plots . 38

.3.2 Tables . 49

.3.3 Images . 57

i

1. Introduction

Superconducting qubits is one of the most promising platforms for developing quantum computing

applications. A lot of research development is carried out by for example Google, IBM and

Rigetti[1, 2, 3]. To progress to real world application in quantum computing it is important to

scale the number of qubits and suppress noise in the computer. Similar to classical computing,

quantum computing at its early stage suffers errors induced by bit-flips and phase-flips [4]. A

solution is to increase the number of qubits with nearest neighbor interactions using surface

code[5]. One of the key requirements needed to make superconducting quantum processors

(SQP) fault-tolerant is to improve the fabrication efficiency yield and scalability. This project:

pyclq is an attempt to solve these problems by introducing image processing tools to automate

device inspection and metrology. This is a pioneering effort in the field of quantum computing

and results in the following research question;

Is it possible to automate the optical inspection on SEM and microscope images of a

superconducting quantum processor during fabrication?

This automation needs to contains a software package that measures the quality of key components

from (SEM) images during fabrication of the the superconducting quantum processor . They

will be measured in a software suite pyclq [6]. First the basic theory of the quantum hardware

is given with some concepts in image processing, chapter 2.

The following chapters are separated into the three main components following the production

processes of SQP. The three components are: the base layer in chapter 3, Manhattan style

Josephson junctions in chapter 4 and air bridges in chapter 5. Each chapter starts with

the fabrication process of the component, resulting in the need for automation. Then the

method/pseudo code is given resulting in the results.

The last chapter, chapter 6, will conclude these results and give a final verdict on the possibility

to automate the optical inspection. Jupyter notebook tutorials and the source code for pyclq

can be found on the Dicarlo lab pyclq Github [6].

1

https://github.com/DiCarloLab-Delft/PyCLQ

2. Theory

The semiconductor industry already applies image

recognition to improve critical parts in their production.

They are used to improve the number of components

that can be used versus the number of parts that are

produced, better known as yield. The yield can be

improved when the critical areas, the areas that are

most susceptible to defects, are inspected and possibly

repaired. Moreover, an overall improvement can be made

if a defect appears to be systematic instead of random by

adjusting the fabrication method [7]. An example from

IBM is given in figure 2.1 where they have produced

different shapes and investigated the automation to find

defects in these shapes.

Figure 2.1: An image of a chip from

IBM with the areas susceptible to shorts

colored. Image is taken from [8]

More recent developments in image recognition and the use of machine learning this process

are made on improving the yield of semiconductor quantum-dot qubits [9]. Similarly, pyclq is

and attempts to apply image recognition during the fabrication of the quantum computers. In

the case of pyclq, the first layer produced, the base layer, is the most susceptible to defects.

2

2.1 Harmonic resonators and coplanar waveguide

The transmission lines are coplanar waveguides used for

controlling the qubits and connect the SQP to the external

cables. A coplanar waveguide is a parallel plate capacitor

able to capacitively couple to the components in the chip.

The parallel plate capacitors act similar to a dielectric mirror

passing electromagnetic frequencies with given wavelength

dependent on the designed dimensions of the coplanar wave

guide [10, 11, 12].

The coplanar waveguide can be represented as a harmonic

oscillator with inductance L and capacitance C. A harmonic

oscillator can be compared to an LC-circuit with an impedance

given by Z0;

Z0 =
(

1

iωL
+ iωC

)−1

(2.1)

The ground frequency can be found when the capacitive

and inductive resistances cancel out. Classically any higher

order is will be multiple of the frequency of the ground state

resulting in;

Figure 2.2: A schematic

representation of a coplanar

waveguide. It is a plate with

an cross sectional area A, length

x and is capacity coupled C to

other resonators. The cooper-pairs

have a velocity of v in the coplanar

waveguide with a density of ns.

The ground frequency and first

order frequency are drawn in the

coplanar wave guide. The planes

parallel to the coplanar waveguide

are grounded to prevent interference.

Any electrical components are only

shown for ease of the viewer.ω0 =
1

p
LC

ωn =ω0(n+1) (2.2)

To prevent higher harmonics airbridges are incorporated over the transmission lines, chapter

5. Adding this additional dimension of ground plane suppresses higher harmonic. The ground

frequency and first harmonic frequency are drawn in figure 2.2.

The alternating current in a coplanar waveguide causes changes in the magnetic flux, which in

itself induces a negative voltage opposite to the change of current flowing through it. Inductance

can be interpreted as a property to counteract change of current in a conductor. The inertia of

the electrons, current, in a cryogenic cooled superconductor will behave similarly, resulting in

a kinetic inductance. [10, 12, 13] In an ideal situation the kinetic inductance for a coplanar

waveguide on a non-magnetic substrate can be derived from its dimensions by;

Lk =
me

2nse2

x

A
(2.3)

With me the mass of an electron, ns the number of electrons in the wave guide that will form

cooper pairs, A the area of the cross section of the waveguide and x the length of the waveguide.

3

2.2 Qubit

Classical computing works by encoding information as

a binary digit either 0 or 1. Likewise, information is

encoded in the quantum state of a qubit represented

by Dirac notation as |0〉 and |1〉. These form the basis

states which comprise a pure qubit state due to a linear

quantum superposition.

The main benefit of the qubit is its quantum

entanglement allowing a super position of different

different binary strings. This makes it possible for a

quantum computer to calculate with multiple binary

strings at once reducing calculation time [14, 15] .

The transmon qubit is comprised of two capasitve pads

and a superconducting quantum interference device

(SQUID) containing two parallel Josephson junctions,

figure 2.3. The SQUID allows tuning of the Josephson

coupling energy [16, 17].

Figure 2.3: Transmon qubit designed

by DiCarlo lab, nicknamed ’Starmon’;

it contains two capacitve pads and a

SQUID loop. In the squid loop are two

Josephson junctions. The overlap area

of the two electrodes of the Josephson

junction is marked red.

To be able to measure if the qubit is in a |0〉 or |1〉 state the frequency difference of the the

ground frequency to the first exited state can be measured [18]. This difference can be be

found by obtaining the energy stored in sum of capacitive effects EC and energy stored in the

Josephson junction E j;

f01 =
√

8E jEC −EC (2.4)

During fabrication the energy in the Josephson junction can be related by the room temperature

resistance RRT and material/geometrical properties of the aluminium and aluminium oxide M;

E j =
M

RRT

(2.5)

By designing the geometrical properties of the junction accurate there is less need for adjustment

and therefore error. pycl_jj will measure the overlap area to gain a better insight in these

geometric properties.

2.3 Image processing

In pyclq grayscale SEM or microscopy gray scale images are processed to validate or measure

components. Image processing contains multiple filters and functions to obtain the desired

4

image. These filters are referred to as nodes and when then nodes are weighted by previous

notes it is referred to as a (neural) network. The programming language used will be Python

with the main modules of Numpy and OpenCV[19, 20].

Image processing at its core contains four nodes of which the second and third can be repeated

multiple times to improve the result in the network. First the image needs be acquired. In this

case using a camera or SEM. Second and third, an image is filtered and its desired features are

separated from the image [21]. Finally, these segments are measured or validated. A simplified

schematic representation is shown in figure 2.4.

Figure 2.4: A simplified representation of image processing, first an image is obtained, then it is filters

to make the desired feature more prominent. This feature is separated from the image and finally can be

measured.

2.3.1 Separating an feature

To be able to detect features or measure an area, the feature or area of interest needs to

be separated from the background. Some of the most common methods used in pyclq are

thresholding, segmentation and masking [20].

Thresholding separates a image into two, one for pixels with a value above the threshold and

one for pixels with a value below the threshold.

Segmentation is able to split an image into multiple images. Each image contains a range of

pixel values known as bins. In addition, this can be combined with a k-means algorithm for

automation and self learning[22, 23], chapter 2.3.3.

Masking is similar to a template used to add or remove material from a chip, with masking an

area on an image can be kept whilst the rest will be masked by the mask. This mask could be

the result of a previous filter over the image in the network as is applied in chapter 5.2.

After separating an image the desired feature can be measured, either by detecting the edges of

the separated feature (hull detection), by counting pixels of the desired feature or by matching

5

it to an another feature.

2.3.2 Convolution filters

Convolution filters can be applied to improve the quality of the

desired feature that will be separated. A convolution filter, when

applied to an image, are known as blur filters as they often will

blur out an image.

A convolution filter will add or subtract the neighboring values

in an array or image. This is used to reduce noise or filter for

a feature in the image. With the right filter it will be easier to

separate a desired feature.

Four major convolution filters for image processing used in pyclq

are Gaussian filters, Gabor filters and opening/closing.

Gaussian filters will blur an image, taking the original pixel

value and following a Gaussian curve for the strength of the

neighboring pixel. This can be utilised to reduce noise, however

an image can become blurry if the filter is too large. An extreme

example is visible in 2.5(a).

Gabor filters will detect directional patterns or lines by applying

a Gaussian filter with alternating the strength of the neighboring

values 2.5(b). An example of its use is found in chapter 4 where

the charging effect of the electrodes will be reduced with this filter.

(a) Gaussian filter

(b) Vertical Gabor weight

Figure 2.5: A visual

representation of the weights

against the distance from a

pixel in a Gaussian (a) and

Gabor filter (b).

Opening/closing is used to highlight pixels or reduce noise in an image. With dilation the

weight of the higher neighbouring pixel values will be increased in the convolution filter and

therefore increase the amount of bright pixels. Similarly, with erosion the weight of the lower

pixel values will be increased in the convolution filter and reduce the amount of bright pixels.

Opening is dilation followed by erosion and closing is erosion followed by dilation. Opening and

closing are used in chapter 5.

6

Figure 2.6: a visual representation of the k-means method wherein (a) all the hues (1D) of an image are

separated by occurrence in an image (b) the a separation of two clusters from a scatter in a 2D data set

and (c) an exaggerated example of wrong clustering stuck in a local minimum.

2.3.3 K-means algorithm

A k-means algorithm is a clustering algorithm that is able to separate data sets into different

categories that are grouped together. By searching for the nearest point from an origin the data

set can be separated into different bins. This is often used in image processing and machine

learning as it is able to separate different colors or features in an image or multidimensional

space [20, 24, 25]. The only downside is that a k-means algorithm can get stuck in a local

minimum. This can be prevented by using either smart starting points or repetition of the

algorithm with different starting points. The latter takes more calculation power and does not

always give a desired result [22]. An example of the k-mean algorithm is given in figure 2.6.

In pyclq k-means will be used to separate different pixel values corresponding to edges, different

material or heights in the chip. Making smart use of various starting points will prevent the

algorithm from getting stuck in local minima.

2.3.4 Template matching

To find similarity between two images template matching can be applied. A correlation can

be obtained by comparing the individual pixel between an image and template [26]. In pyclq

template matching is applied with a normalized cross correlation to obtain similarities. From

the OpenCV documentation [20] follows for the cross correlation R;

R(x, y)=
∑

x′,y′
(

T ′ (x′, y′
)

· I ′
(

x+ x′, y+ y′
))

√

∑

x′,y′ T
′ (x′, y′)2 ·

∑

x′,y′ I ′ (x+ x′, y+ y′)2
(2.6)

7

where,

T ′ (x′, y′
)

= T
(

x′, y′
)

−1/(w ·h) ·
∑

x′′,y′′
T

(

x′′, y′′
)

I ′
(

x+ x′, y+ y′
)

= I
(

x+ x′, y+ y′
)

−1/(w ·h) ·
∑

x′′,y′′
I
(

x+ x′′, y+ y′′
)

On an image I with a template T. Whereas (x′, y′) and (x′′, y′′) are the relative location of the

pixels on the template with a width w and height h at an given location on the image (x, y)

and I ′ and T ′ are normalized pixel value. These values are normalized by subtracting the

average value of the template from the pixel at T ′ or the average value from the image under

the template at I ′. These normalizing factors are not always necessary if the image have a

similar brightness. This will be used as a part of the validation for finding defects in the base

layer and for airbridges chapter 3.2 and 5.2.

If an image is larger than as the template multiple matches for the template can be made

over the image. This results in a matrix of matches and can be used for feature detection or

detecting a part in an image. The highest value in this matrix is the most likely location of the

template on the image. An example is find Waldo in a ’Where’s Waldo?’ image [27].

8

3. Base layer
The base layer is the first step

in the fabrication, covering the

largest surface area of the chip. In

this layer, a bulk of the functional

components of a SQP are defined

namely transmission lines namely

feedlines, flux bias lines and

microwave drive lines,readout

resonators, Purcell resonators and

superconducting buses comprising

the resonating transmission lines

and qubit capacitor pads. A

Surface-7 layout is shown in figure

3.1, where each component is

highlighted.

3.1 Fabrication

The base layer fabrication process

is outlined in figure 4.2. The

first step involves cleaning of a

100 mm diameter high-resistivity

silicon wafer with organic solvents

followed by inorganic treatments

with hot piranha solution.

Figure 3.1: Surface-7 quantum

processor; (a) Layout of nearest

neighbor interaction in a Surface-

7 device (b) Optical image of the

quantum hardware with added false-

color to emphasize different circuit

elements. Figure taken from [5]

Prior to deposition of the superconducting base layer, the wafer is

treated with buffered oxide etch (BOE) solution which removes native

oxides from the silicon surface. The wafer is transferred to a physical

vapor deposition system for wafer metallization with 200 nm of

niobium titanium nitride (NbTiN). The pattern transfer of the CAD

layout of the SQP is done using electron beam lithography followed by

subtractive patterning of the base layer using a combination of dry and

wet etching techniques. For the purpose of this hybrid etching process,

the subsequent step after NbTiN deposition is the introduction of an

inorganic ’sacrificial layer’ which is necessary for the terminal wet etch

step as shown from step 8.

Figure 3.2: Fabrication

process flow for the base

layer.

9

(a) (b) (c)

Figure 3.3: Examples of damage in the base layer, whereas; (a) discontinuities interrupting the

transmission lines leading to open circuit,(b) a short due to not etching away around the transmission

line and (c) damage to the qubit due to discontinuity of resist.

Defects in base layer

As with any manufacturing process, defects can accumulate at every fabrication step of the base

layer. Some of the possible sources which introduce defects in the base layer are as follows:

• Introduction of particles at any or every fabrication step.

• Irregularities in resist during spinning.

• Peeling/cracking of the resist due to end of shelf-life and high/low dose during e-beam

exposure.

• Non-uniform pattern development.

Any damage to the base layer could occur during or after this process. Examples of damage

in the base layer are given in figure 3.3. Such unintentional changes to the geometry of

the transmission lines may result in altered function and could even render it useless due

to the lines being shorted or opened. Therefore pyclq_base will help detect defects in the

transmission lines and base layer will be a module that will help catch such pattern transfer

errors.

Effect of SQP scaling

As the device size increases from Surface-7 to Surface-17, the number of components in the

SQP scales almost linearly. For example, the Surface-7 layout has 7 qubits with a dedicated

flux bias line, readout resonator, and microwave drive line, 2 feed lines and 12 superconducting

buses. Such scaling efforts is needed for realization of quantum fault-tolerance. However this

also means that achieving full yield of device components becomes more challenging. This is

where the need for automation becomes evident, necessitating the development of pyclq_base.

10

3.2 pyclq_base method

The code can be found at the Dicarlo lab pyclq Github

[6] and a schematic representation is in the appendix.

pyclq_base is a Python script to help to detect errors

in the base layer. Using the CAD layout an image of a

perfect chip is created and this is matched to the base

layer to find any defects. Only the key components

are inspected or it will take between 16 hours or 16

days to inspect an entire device due to frame-rate and

the underlying software for acquiring the images. The

method of the script will follow the following steps.

Replicating the chip from the CAD files of the masks

for e-beam lithography to an image of the device. By

choosing the same scale for pixels as the acquired image

this replicated chip can be used for template matching.

Figure 3.4: APS-LASIQ system, this

is an automated room-temperature

resistance measurement setup with the

components for pyclq marked. The

original image is taken from [28]

It should be noted that although the design concepts between pyclq_base and pyclq_AB are

similar, the airbridges can’t be matched to a template from the CAD design due to its 3D

feature; therefore they have their own validation method, see chapter 5.

The CSV is created by dicing the replicate chip in a chessboard pattern any tile containing a

key component is put in the CSV file. In addition the centers of the qubits are put in the CSV

file as extra check as any error will be critical.

Image acquisition is achieved with the APS-LASIQ system, this is an automated room-

temperature resistance measurement setup designed and built by members of the DiCarlo lab

and is located in the Kavli Nanolab in TU Delft. A schematic of the APS-LASIQ system is

shown in figure 3.4 .

For pyclq, the components which are used are the camera (Thorlabs Model:DCU224M), the

10X objective lens and the motorized XY stage (Thorlabs Model:MLS203-1). The various hardware

components connected to the APS-LASIQ system are controlled by a LabView interface, developed

by Dr. Matvey Finkel and Sean van der Meer [28].

The variable parameters of the camera in the software are the gain, closing time and frame

rate. The closing time and frame rate is kept at a constant 200 ms and 5 Hz respectively. For

manual inspection the gain is set to 400 as the human eye is better in catching bright features.

However, to make use of the larger range of a gray scale image the gain is set to 300 for pyclq.

11

https://github.com/DiCarloLab-Delft/PyCLQ

By sending the CSV file of chip coordinates of the critical locations to the Labview program,

images of these locations can be obtained by the pyclq module. These images are stored and

can be opened by pyclq with the same CSV file. The size of the images is 1280 x 1024 with

2.35±0.05 pixel/µm for a 10X magnification.

Template matching is applied between a cutout of the replicated chip and the acquired

images. By making the cutout smaller as the acquired image and matching at the highest

cross correlation match any drift will be mitigated. Repeating this for multiple locations at the

base layer results in a map where any differences from design are highlighted. This will help

locate any defects in the base layer.

Validation is done by manually inspecting the SQP and comparing it to the highlighted areas

created by pyclq_base any faults can be detected. By counting the images with false positives

and false negatives and comparing it to the total amount of images taken from the SQP this

results in a correctness in faulty detection in the base layer by pyclq_base.

12

3.3 Results

As pyclq_base is still in development there

are no final results yet. However, template

matching is already applied successfully in

pyclq_ab, chapter 5.

In figure 3.5 an replication of a perfect chip

is shown with all the different layers from

the CAD design. The original image is at

the same resolution as the camera, but due

to compression the resolution is lowered. The

full template match has not been finished. It

is planned after this report.

(a)

(b) (c)

Figure 3.5: An image generated from the CAD design; (a) all the different layers and segments, (b) a of

the base from these layers and (c) the full chip with 2D airbridges.

13

14

4. Josephson Junctions

Figure 4.1: A schematic representation

of (a) the Manhattan style junction

and (b) Niemeyer-Dolan style junction.

It shows a cross section how the

aluminium and the aluminium oxide

layer is stacked in these junctions.

Schematic not to scale.

Superconducting tunnel

junctions, also known as

Josephson junctions (JJ)

consists of two overlapping

electrodes separated by a thin

insulating layer. One of the

most widely used materials for

fabricating Josephson junctions

is aluminium, since a thin tunnel

barrier of aluminium oxide

can be grown in a controlled

manner. Josephson junctions are

contained within the transmon

qubit, which is the fundamental

unit of a quantum computer. The

working principles of transmon

qubit is similar to an LC

circuit.The parallel metal pads

contribute to the capacitance

and the JJ contribute a highly

non-linear inductance. This

important difference from a linear oscillator such as resonators gives

rise to the non-equal energy-level spacings. This is needed in order to

limit the functioning of a qubit as a two-level system [29].

4.1 Design and fabrication

The fabrication process for JJs is shown in figure 4.2. Josephson

junctions can be fabricated in different geometries depending on the

’shadowing’ mechanism. The earliest technique developed for pattern

transfer of JJs with sub-micron feature size is using the Niemeyer-

Dolan bridge technique [30]. Such junctions fabricated using a resist

bridge as the shadowing mechanism are called Dolan-bridge junctions,

shown in figure 4.1 (a). Figure 4.2: Fabrication

process flow for the base

layer.

15

Another fabrication process for JJs was developed by changing the deposition tilt angle and

resist stack thickness [31]. These ’bridgeless’ junctions have been termed in previous literature

as Manhattan-style junctions due to the orthogonal layout of the Al contacts as shown in figure

4.3 [32, 33]. As mentioned in the theory section 2.2, the qubit frequency can be related to the

room-temperature resistance of the JJs. RN is further dependent on two factors, namely the

overlap area of the electrodes and the tunnel barrier thickness.[34]. By sweeping the junction

widths, it is possible to vary the range of JJ resistance. In the case of Manhattan-style junctions

designed for this work, the widths of the bottom electrode is varied while the top electrode is

kept constant. Prior works in wafer-scale fabrication revealed a systematic variation of junction

conductance as a function of its position on the wafer. A geometric model has been proposed

to linking the conductance variation to a variation in the overlap area due to shadowing of Al

deposition by the resist. This may imply that when the junction pattern is at the center, the

metal deposition is perpendicular. On the other hand, when the junction pattern is at the edge

of the wafer the Al is deposited at an angle [17, 35]. However, more work is needed to quantify

the extent of variation in the overlap area. pyclq_jj is a tool to automate the extraction of the

overlap area from Scanning Electron Microscope (SEM) images.

4.2 pyclq_jj method

The code can be found at the Dicarlo lab pyclq

Github [6] and a schematic representation is in

the appendix. The SEM images were acquired by N.

Muthusubramanian using the Hitachi Regulus 8230

system in the Kavli Nanolab. pyclq_jj measures three

variables from the SEM images; the width of the top

horizontal electrode (wtop, the width of the bottom

vertical electrode wbottom and the overlap area poverlap.

After importing the grey-scale images taken with SEM

pyclq_jj will process them in the following steps:

Reading the image and its metadata from a user

specified folder. The pixel size is obtained from the

metadata.

Figure 4.3: A example of an SEM image of

blackbird 4, at the 5_5_right. Where the

area measured is poverlap and the width

of the horizontal top electrode and vertical

bottom electrode.

16

https://github.com/DiCarloLab-Delft/PyCLQ
https://github.com/DiCarloLab-Delft/PyCLQ

Filtering the images is done using two techniques, segmentation or thresholding as described

in table 4.1 below. Both methods return the edges of the electrodes as well as the widths of the

electrode.

Table 4.1: A comparison of the separation method between thresholding and segmentation. In these

methods the widths of the electrodes are measured as well.

Step Thresholding Segmentation

Pre-filter An option for a Gaussian filter is

possible but not necessary.

An option for a Gaussian filter is possible

but not necessary. In addition, a horizontal

and vertical Gabor filter is applied to

reduce the halo effect caused by the charge

of the SEM. The result of the Gabor

filter will be subtracted from the image to

reduce the halo.

Separation The average pixel value of the image

is obtained, this is multiplied by a set

range of thresholds to detect the edge.

This range of thresholds is used to

filter the image and obtain the best

edge.

The image is segmented into 6 bins with

the use of a k-mean segmentation the

amount of segmented bins can be changed

and pyclq_jj will assign these segments

automatically. The lowest two bins (or

30%) will be the background.

Top

horizontal

electrode

wtop is detected by measuring the

sum of pixel values over the y-axis.

The top horizontal electrode will be

filled in to reduce noise to find the

bottom electrode.

The top electrode will be the top two bins

(or 30%). wtop is detected by averaging y

coordinates of the edges of these bins.

Bottom

vertical

electrode

Similarly, wbottom is found by

summing value of the pixels over

the x-axis. Within the range of

thresholds, the widths closest to the

center are used to estimated the

overlap.

The leftover bins correspond to the bottom

electrode. Remnant top electrode pixels

are further separated by taking the edges

in the same method as the thresholding

method resulting in wbottom.

The overlap poverlap will be obtained after the edges have been found. Then the pixels of wtop

above wbottom are counted and multiplied by the pixel size. Al the measured parameters are

stored as .csv file together with the widths and filter settings.

A GUI inspection can be done for the thresholding method. A simple GUI with a fillable form

for selecting the folders and changing the parameters is made. After measurement the overlap

areas are shown in tiles and adjustments can be made with a drag-and-drop function where

17

only the bottom electrode needs to be dragged for the thresholding method.

Validation is done by comparing data from pyclq_jj and manually extracted data using the

image analysis software ImageJ. From the two measurement methods, the data poverlap, wtop

and wbottom were obtained from different devices as described in table 4.2. The thickness

of the AlOx tunnel barrier is assumed to be a constant across all the junctions, therefore

all conductance variations are attributed to geometric variations of the sampled junctions.

In addition, the measured overlap areas by pyclq_jj have be marked and attached in the

appendix.

4.2.1 Devices

The junctions deposited on five devices, these have been analyzed for this project. A description

of the device layout is given below.

Blackbird 1 (BB1) was a device series fabricated on a NbTiN sputtered base layer consisting

of 8 chips of size 17 x 17 mm. The junctions were deposited on each device separately. The

device design has a SQUID layout, so from each location, 2 junctions were imaged, highlighted

with a blue box as shown in figure 4.4. The designed width of the electrodes is; wtop = 160 nm

and wbottom = {84, 136, 196} nm.

Blackbird 2 (BB2) has the same layout as BB1, however it is a half-wafer layout where all

the junctions were deposited in a single step. The same set of junctions have been imaged for

this device as BB1. The designed width of the electrodes is; wtop = 160 nm and wbottom = {84,

136, 196} nm.

Blackbird 4 (BB4) was a full-wafer dataset with the junctions arranged in a 35 x 35 square

array. All the junctions in BB4 are of the same designed widths, with both wtop and wbottom =

200 nm.

Jason was a Surface-17 device which was characterized in a dilution fridge. The widths of

the electrodes in this device are; The designed width of the electrodes is; wtop = 140 nm and

wbottom = {140, 220, 276} nm.

Nighthawk 2 was a full-wafer dataset fabricated on a bare silicon substrate with both junctions

and test pads made fully of aluminium and has the same layout as BB4, including the dimensions

of the electrodes.

18

Figure 4.4: Device layout for Blackbird 1 and 2. The junctions analyzed are highlighted by the blue box.

[35]

4.3 Results

Below the results of the scripts, first the areas and widths measured with pyclq_jj are compared

to the manual measured areas and electrode widths in ImageJ. The results of the five datasets

are shown in table 4.2.

Table 4.2: An comparison of the successful measurements of pyclq_jj and the found conductance over

the area. The nighthawk dataset is left out of the average R2 as it does not fit the data.

ImageJ Thresholding Segmentation

failed cond µS/µm2 R2 failed range cond µS/µm2 R2 failed K condµS/µm2 R2

BB1 0/73 2992 ± 90 0.73 11/73 [1.2-2.2] 3007 ± 89 0.74 6/72 6 2990 ±145 0.32

BB2 0/48 3339 ± 124 0.72 6/48 [1.2-2.2] 2961 ± 109 0.73 1/48 5 3081 ± 112 0.73

BB4 0/34 2873 ± 179 0.59 0/34 [1.1-2.2] 2890 ±231 0.34 2/34 6 2489 ± 223 0.20

Jason 0/34 2165 ± 16 0.98 1/34 [0.9-1.8] 2145 ±39 0.89 1/34 6 2008 ± 40 0.86

Nighthawk 0/34 1993 ± 120 0.06* 1/34 [1.2-2.2] 2208 ± 176 -0.53* 1/34 6 1659 ± 101 -0.04*

Average 100% 0.75 91% 0.67 96% 0.52

*left out of the average

19

The thresholding method had the most

failed measurements, this was mostly

due to the sharpness of the edges. This

was mostly at the smaller overlaps of the

Josephson junctions. The brighter and

sharper the edge of the electrode the better

the thresholding method works. As the

thresholding method takes the brightest

pixel values of the edge it was able to

obtain the overlap area more accurate as

the widths of the electrodes. This means

a high contrast image with a small halo

performs better as a low contrast image.

Therefore, BB4 performed 100% and

Nighthawk the worst for the Thresholding

method.

The segmentation method was able to

handle a wider variety of brightness

and contrasts in the image. Therefore it

was able to obtain more data from the

Blackbird 1 image set and Nighthawk

image set compared to the thresholding

method. However, the halo effect was

still too strong for the segmentation

method and increasing the strength of

the Gabor filter would remove the edge of

the electrodes. This resulted in a larger

perceived width of the electrodes using

the segmentation method. Gaussian

filters and opening had been applied, but

with no success. As the halo effect is

less prominent for smaller junctions and

junctions with low contrast, segmentation

performed better for these junctions as the

thresholding method.

Figure 4.5: Fits of the conductance against the overlapping area for

nighthawk and blackbird 4. Both measurements are shown from

ImageJ and the Pyclq_jj thresholding method with the coefficient

of determination, R2. Blackbird 4 had a single junction at 0.08µm

and two shorts around 0.06µm, these shorts are omitted from the fit.

20

As a result the fit of the measured conductance against the surface area of the Josephson

junction was plotted for the thresholding method together with the manual measured ImageJ

fit. Any shorts are omitted from the fit and are shown as having 0 conductance. Moreover, the

conductance per unit area was calculated individually and shown in figure 4.6. The spread and

center of the histogram should correspond close to the slope of the fits as it is the same dataset.

Figure 4.6: A histogram of the normalized conductance over the area measured with pycl_jj and hand

measured by ImageJ. The Blackbird 4 and Nighthawk data set are shown here, all histograms can be

found in the appendix. For both histograms the binsizes are the same with a width of 200µS/µm2 where

pyclq and ImageJ overlap the colors are mixed to a darker brown.

21

5. Airbridges
The airbridges is the last step in the fabrication, placing 3D

airbridges over all transmission lines on the SQP. The airbridges

have two main purposes; helping to ground the device and

suppressing higher harmonic oscillation in the transmission lines,

chapter 2.1. Moreover, airbridges are used to make crossovers

where two transmission lines meet making one transmission line

pass another without physically touching each other. Damage to

an airbridge could cause a short and similar problems as a broken

transmission line, chapter 3.

5.1 Fabrication

The airbridge fabrication process is outlined in figure 5.1. The

first step is spinning of a 6 µ thick layer of polymethyl glutarimide

(PMGI) resist. The first pattern transfer of the CAD layout for the

aibridges is done using e-beam lithography followed by heating

the device to 200◦C for resist reflow, figure 5.1 (4). After the device

has cooled down the second resist layer polymethylmethacrylate

(PMMA). followed by a second pattern transfer with e-beam

lithography. On this second mask 450 nm aluminium is deposited.

When the PMMA and PMGA is removed only the airbridge is left

behind.

pyclq_ab will significantly reduce the number of bridges that need

to be inspected, reducing labor. As the size of the SQP scales so

does the amount of airbridges. Surface-7 has over 500 airbridges,

as a Surface-17 has over 1000 or even more than 1500 airbridges

in the latest versions. Manual inspection becomes labor intensive

and automation is needed.
Figure 5.1: The different

steps taken in order to

make an airbridge on top

of the base layer.

22

5.2 pyclq_ab method

The code can be found at the Dicarlo lab pyclq Github [6] and a schematic representation is

in the appendix. pyclq_ab is a tool to help detect faulty and broken airbridges. Due to the 3D

nature the airbridges, the images can’t be directly be matched to their template as the curves

will reflect light in a gradient. Therefore a different method is needed to find defects in the air

bridges as pyclq_base. In order to validate the airbridges the following steps are taken;

Image acquisition is done with the APS-LASIQ system in the same manner as acquiring

images for the base layer, chapter 3.2. With two differences; the camera is centered on top of

the bridge and the gain of the camera is set to 200. This to reduce glare and shape deformation

due to the 3D nature of the aluminium from airbridge.

Image segmentation was applied twice with a k-mean segmentation, first to remove the

glare and darkest features and a second time to separate the image. The top bins of both

segmentation correspond to the aluminium edges of the airbridge. To filter any noise the result

is closed and opened and finally the airbridge nearest to the center will be cut out from the

original image for validation.

Cross section, sweep and path validation are three of the four methods a bridge is validated.

These three harsh basic validation methods are used as a first line to filter the airbridges for

their quality.

The middle cross section must follow a pattern according to obtained centers of the bins of the

second segmentation. This gives a quality value C ∈ {0,1,2}.

Moreover, the cross section validation will be applied over the original image for all airbriges

vissible. This results in the quality as a neighboring airbridge N ∈ [0,2] with a weight depending

on the average distance from their neighbors Nw ∈ [0,1] and encounters Nk ∈Z≥0.

The entire width of the bridge should follow a pattern similar to the middle cross section and

results in a quality factor S ∈ {0,1,2}. The last validation before template matching will be

searching for stray aluminium at near the edge of the airbridge P ∈ {0,1}.

For each of these methods the highest value is a pass and the lowest value a fail.

Template matching is applied to all airbridges. The template is made out of the average of

all airbridge that passes all the harsh basic validations for a given device. All the airbridges

will be matched to the perfect airbridge resulting in their cross correlation R as described in

chapter 2.3. For semi-self-learning a perfect bridge with a weight can be given, guiding the

template matching to a pre-set design.

Weights will of the template matching will be adjusted to the other validation methods. This

adjustment will be capped at -1 resulting in a confidence of correctness of the bridge R′ = [−1,1];

23

https://github.com/DiCarloLab-Delft/PyCLQ

R′(R,C′,S,P)= R+ (1−R)
C′+S+P −4

6
(5.1)

with;

C′ =











C i f Nk < 2

C(1−Nw)+N ·Nw i f C = 2 & Nk > 5
C(1−Nw)+N·Nw·Nk

Nk+1
else

Any airbridge will be labeled as bad if its confidence of correctness is below 0.50 and doubtful if

below 0.75. The second value can be adjusted by the end user if they are more or less confident

in the airbridges on the device.

Validation can be achieved by manually inspecting the images acquired. Both their quality

and how they are labeled by pyclq_ab needs to be taken into account. No broken bridge should

pass and, preferably, the least amount of unbroken airbridges should be labeled as bad or

doubtful.

During the first measurement a drift was observed, this could either be human error by locating

the markers or caused by the xy stage. To rule out the xy stage two stress test had been done.

First, to rule out fatigue, four airbridges at the corners will repeatedly be measured for 1028

rounds. Second, to rule out deviation due to small movements, four airbridges in close proximity

on a straight line will repeatedly be measured for 124 rounds. If any of the stress tests see an

change in drift over the measurements it will be the result of the xy-stage.

For the stress test we are interested in locating the airbridges accurately and not validating

the airbridges, therefore the gain was set to 300, making it more accurate to locate the bright

edge of the airbridge, but harder to validate its correctness.

24

Figure 5.2: The confidence of correctness plotted on the locations of the aibridges corresponding to the

design on the S17 v2 and S17 v3 2_3 device, both devices share the same colormap, x- and y-axis. The

colormap is capped at 0 as everything below 0 will have a similar confidence as 0.

5.3 Results

In table 5.1 the result of bridges marked

by pyclq_ab are shown. No broken bridge

passed pyclq_ab and the majority of the defect

airbridges will be marked as bad. A random

assortment of airbridges marked bad from

the S17 v3 2_3 is shown in figure 5.4. As

can be seen some of them are blurred due

to movement of the camera, some of them

collapsed or had a dent in their reflection.

The confidence of correctness capped at 0

R′ = [0,1] is plotted in figure 5.2 for every

location on the device. All the different types

of airbridges validated by pyclq_ab are shown

in figure 5.3. The first few rows of the .csv file

generated by pyclq_ab can be found in the

appendix together with the images of these

airbridges.

(a)

(b)

(c)

(d)

Figure 5.3: The four types of airbridges found,

whereas; (a) is a crossover, (b) an airbridge of

40×116 µm, (c) the most common airbridge of

30×70µm and (d) an airbridge of 40×84 µm

25

Figure 5.4: a random assortment of 30×70µm airbridges cut from the image by pyclq_ab marked as bad.

The first two airbridges have failed to locate the edges well enough due to reflections of other aluminium

features near the bridge, the third is due to movement of the camera, fourth and fifth are either collapsed

or the camera moved and the last three collapsed.

Due to the lack of crossovers of the same size (< 15) the airbridge validation for the transmission

line crossovers have been left out. The sample size to generate the ’perfect’ feature have been

to small and therefore the template matching will be non-sensible as they will either match to

themselves, noting or only a single crossover. Moreover, due to the close proximity of the bridges

at the crossover, the bridges at the crossover reflect of each other. This results in overexposure

at crossover and made it even difficult to inspect manually with the current setup, figure 5.3 c.

Halve of the false positives are caused by the movement of the camera. The movement was

likely caused by a combination of the architecture of Labvieuw and its communication to

external drivers like the xy-stage and camera. All communication is pushed trough a single

channel in the computer, causing desynchronisation in the delays what matches the camera

movement and taking an image.

Table 5.1: For two different chip designs the amount of airbridges are shown, followed by the amount of

airbridges marked as bad or doubtful by pyclq_ab. These bridges have been manually inspected and the

actual bad arbridges have been counted in every marked category.

marked as bad marked as doubtful marked as good

device bridges marked broken unbroken marked broken unbroken marked broken unbroken

S17 v2 1197 73 51/73* 22/73 113 1/113 112/113 1084 0/1084 1084/1084

S17 v3 2_3 1549 312 267/312 45/312 278 159/278 119/278 1004 0/1004 1004/1004

* of which 20 are due to a difference in size between the CSV file and design

26

Figure 5.5: The capture of drift at every location, first plot is the the drift in the x direction, second is the

plot of the drift in y direction and the last is drift in both x and y direction. Where the left half of the orb

is drift in x direction and right half of the orb is the drift in y direction. All variables are in micrometers.

Drift and stress test

In figure 5.5 the locations of the airbriges in S17 v2 are shown with their drift. As can be seen

this drift is quite significant resulting in the stress tests. Moreover, there seem to have been

some design changes in the device, between the obtained .csv files and validating the airbridges,

resulting in a perceived drift for some of the airbridges.

For the first stress tests there was no drift found, figure 5.6. This means the xy stage doesn’t

fatigue over time. Similarly, for the second stress test there was no change in drift found

between the first and last point when moving small movements figure 5.7. This means the drift

is caused by placing the markers in the automated room temperature resistance measurement

unit whereas a deviation of 1 pixel already results in 1µm deviation depended on the location.

27

Figure 5.6: The change of the drift is shown for 4096 measurements of four airbridges near the corners

taken repeatedly of a S17 V3_2. 1 µm drift deviations are caused by image processing due to opening

and closing the image. Most of the outliers out of the 1µm drift are caused by unsharp images due to

movement of the camera while taking the image.

Figure 5.7: The drift of the first and last airbridge is shown for 124 rounds of short steps on a S17 V3_2

device. Most of the outliers out of the 1µm drift are caused by unsharp images due to movement of the

camera while taking the image. The band shows the drift caused by image processing due to opening and

closing the image.

28

6. Conclusion

The written software suite, pyclq, is able to automate parts of the optical inspection of a

superconducting quantum processor during fabrication. This reduces the workload and is a

first step in helping the fabrication process cope with the increased demands of device scaling

using automation by image processing.

With three simple scripts the components of the chip can be inspected using convolution filters,

segmentation, thresholding and template matching; automated by a k-means algorithm. For

the measurements and yield it is important to keep in mind the geometry of 3D features,

charging effects and the reflections dependent on the material.

pyclq_base helps tracing any defect in the base layer helping to quantify yield metrics. There

have been no template matching results for pyclq_base yet, but the template matching method

is expected to be easily applied for the base layer as well as it has been already applied for

pyclq_ab. Whereas pyclq_base is not designed to detect airbridges due to their reflective 3D

nature pyclq_ab is.

pyclq_jj is able to obtain the overlap area of the Manhattan-style Josephson junctions with

two different methods. A k-means segmentation had the most successful measurements, however

it overestimates the area even after reducing the halo from the SEM images. Hence thresholding

method was the most accurate when compared to manual measurements with ImageJ. It should

be noted that a k-means segmentation shines for low contrast images and smaller junctions as

the halo effect is less prominent. These are the images the thresholding have difficulty with.

By automating the extraction of overlap areas, errors introduced due to human bias is avoided

and also reduces several hours of repetitive tasks.

pyclq_ab had some false positives, but no false negatives in detecting broken airbridges. This

will ensure no mismanufactured airbridge will pass through the optical inspection. The only

downside is a minimum requirement of airbridges > 15 what was one of the reasons pyclq_ab

had a hard time validating the crossovers. The other reason is reflections from neighboring

bridges due to close proximity, what makes it even difficult to validate those airbridges with

the human eye under the APS-LASIQ automated probe station. Another possibility to improve

validation of crossovers is to switch to a 20x objective lens for higher resolution.

29

Bibliography

[1] Rachel Courtland. Google aims for quantum computing supremacy [news]. IEEE

Spectrum, 54(6):9–10, 2017.

[2] Matthias Steffen, David P DiVincenzo, Jerry M Chow, Thomas N Theis, and Mark B

Ketchen. Quantum computing: An ibm perspective. IBM Journal of Research and

Development, 55(5):13–1, 2011.

[3] Morten Kjaergaard, Mollie E. Schwartz, Jochen Braumüller, Philip Krantz, Joel I.-Jan

Wang, Simon Gustavsson, and William D. Oliver. Superconducting Qubits: Current State

of Play, May 2019. arXiv: 1905.13641.

[4] Diego Riste, Stefano Poletto, M-Z Huang, Alessandro Bruno, Visa Vesterinen, O-P Saira,

and Leonardo DiCarlo. Detecting bit-flip errors in a logical qubit using stabilizer

measurements. Nature communications, 6(1):1–6, 2015.

[5] JF Marques, BM Varbanov, MS Moreira, Hany Ali, Nandini Muthusubramanian, Christos

Zachariadis, Francesco Battistel, Marc Beekman, Nadia Haider, Wouter Vlothuizen,

et al. Logical-qubit operations in an error-detecting surface code. arXiv preprint

arXiv:2102.13071, 2021.

[6] H.Martijn Veen. pyclq, September 2021. Accessed September 30, 2021, at: https://

github.com/DiCarloLab-Delft/PyCLQ.

[7] Puneet Gupta and Evanthia Papadopoulou. Yield analysis and optimization. In Handbook

of Algorithms for Physical Design Automation, pages 771–790. Auerbach Publications,

2008.

[8] Daniel N Maynard and Jason D Hibbeler. Measurement and reduction of critical

area using voronoi diagrams. In IEEE/SEMI Conference and Workshop on Advanced

Semiconductor Manufacturing 2005., pages 243–249. IEEE, 2005.

[9] Antonio B Mei, Ivan Milosavljevic, Amanda L Simpson, Valerie A Smetanka, Colin P

Feeney, Shay M Seguin, Sieu D Ha, Wonill Ha, and Matthew D Reed. Optimization

30

https://github.com/DiCarloLab-Delft/PyCLQ
https://github.com/DiCarloLab-Delft/PyCLQ

of quantum-dot qubit fabrication via machine learning. Applied Physics Letters,

118(20):204001, 2021.

[10] D.M. Pozar. Microwave Engineering. John Wiley and Sons, 2011.

[11] M. Göppl, A. Fragner, M. Baur, R. Bianchetti, S. Filipp, J. M. Fink, P. J. Leek,

G. Puebla, L. Steffen, and A. Wallraff. Coplanar waveguide resonators for circuit quantum

electrodynamics. Journal of Applied Physics, 104(11):113904, December 2008.

[12] Jurgen Dijkema. Improvement of superconducting resonators for long-range coupling of

spin qubits. Masters thesis, TU Delft, May 2020.

[13] Martin Göppl, A Fragner, M Baur, R Bianchetti, Stefan Filipp, Johannes M Fink, Peter J

Leek, G Puebla, L Steffen, and Andreas Wallraff. Coplanar waveguide resonators for

circuit quantum electrodynamics. Journal of Applied Physics, 104(11):113904, 2008.

[14] Quantwiki, October 2015. Accessed September 30, 2021, at: https://www.quantiki.

org/wiki/qubit.

[15] Anton Frisk Kockum and Franco Nori. Quantum Bits with Josephson Junctions, pages

703–741. Springer International Publishing, Cham, 2019.

[16] Jens Koch, M Yu Terri, Jay Gambetta, Andrew A Houck, David I Schuster, Johannes

Majer, Alexandre Blais, Michel H Devoret, Steven M Girvin, and Robert J Schoelkopf.

Charge-insensitive qubit design derived from the cooper pair box. Physical Review A,

76(4):042319, 2007.

[17] Pim Duivestein. Wafer scale fabrication of josephson junctions. Masters thesis, TU Delft,

June 2020.

[18] Pranav S. Mundada, Gengyan Zhang, Thomas Hazard, and Andrew A. Houck.

Suppression of Qubit Crosstalk in a Tunable Coupling Superconducting Circuit.

arXiv:1810.04182 [quant-ph], October 2018. arXiv: 1810.04182.

[19] NumPy, documentation generated with https://www.sphinx-doc.org/, June 2021.

Accessed September 30, 2021, at: https://numpy.org/doc/stable/index.html.

[20] OpenCV, documentation generated with https://www.Doxigen.nl, December 2020.

Accessed September 30, 2021, at: https://docs.opencv.org/4.5.1/.

[21] Sreenivas Bhattiprolu. Python for microscopists, August 2021. Accessed September 30,

2021, at: https://github.com/bnsreenu/python_for_microscopists.

[22] Arvind Ramanathan, Laura L Pullum, Faraz Hussain, Dwaipayan Chakrabarty, and

Sumit Kumar Jha. Integrating symbolic and statistical methods for testing intelligent

systems: Applications to machine learning and computer vision. In 2016 Design,

31

https://www.quantiki.org/wiki/qubit
https://www.quantiki.org/wiki/qubit
https://www.sphinx-doc.org/
https://numpy.org/doc/stable/index.html
https://www.Doxigen.nl
https://docs.opencv.org/4.5.1/
https://github.com/bnsreenu/python_for_microscopists

Automation & Test in Europe Conference & Exhibition (DATE), pages 786–791. IEEE,

2016.

[23] Fuqiang Zhong, Songping He, and Jiangwei Yi. A fast template matching method for led

chip localization. In MATEC web of conferences, volume 34, page 04002. EDP Sciences,

2015.

[24] Joris Guérin, Olivier Gibaru, Stéphane Thiery, and Eric Nyiri. Clustering for different

scales of measurement-the gap-ratio weighted k-means algorithm. arXiv preprint

arXiv:1703.07625, 2017.

[25] SciPy 2016 Scikit-learn Tutorial, July 2016. Accessed September 30, 2021, at: https:

//github.com/amueller/scipy-2016-sklearn.

[26] Yasser H Anis, James K Mills, and William L Cleghorn. Visual measurement of mems

microassembly forces using template matching. In Proceedings 2006 IEEE International

Conference on Robotics and Automation, 2006. ICRA 2006., pages 275–280. IEEE, 2006.

[27] W James MacLean and John K Tsotsos. Fast pattern recognition using normalized grey-

scale correlation in a pyramid image representation. Machine Vision and Applications,

19(3):163–179, 2008.

[28] Sean van der Meer and Matvey Finkel. automated probe and laser annealing station

LASIQ, September 2021. Accessed September 30, 2021, at: https://github.com/

DiCarloLab-Delft/LASIQ.

[29] M. A. Nielsen and I. L. Chang. Quantum Computation and Quantum Information, 10th

Anniversary Ed. Cambridge University, 2010.

[30] G. J. Dolan. Offset masks for lift-off photoprocessing. Applied Physics Letters, 31(5):337–

339, September 1977.

[31] A Potts, PR Routley, Gregory J Parker, JJ Baumberg, and PAJ De Groot. Novel fabrication

methods for submicrometer josephson junction qubits. Journal of Materials Science:

Materials in Electronics, 12(4):289–293, 2001.

[32] Alexander Bilmes, Alexander K Neumann, Serhii Volosheniuk, Alexey V Ustinov, and

Jürgen Lisenfeld. In-situ bandaged josephson junctions for superconducting quantum

processors. arXiv preprint arXiv:2101.01453, 2021.

[33] Sergey K. Tolpygo, Vladimir Bolkhovsky, T. J. Weir, Alex Wynn, D. E. Oates, L. M. Johnson,

and M. A. Gouker. Advanced fabrication processes for superconducting very large-scale

integrated circuits. IEEE Transactions on Applied Superconductivity, 26(3):1–10, 2016.

[34] A Osman, J Simon, A Bengtsson, S Kosen, P Krantz, D P. Lozano, M Scigliuzzo, P Delsing,

Jonas Bylander, and A Fadavi Roudsari. Simplified josephson-junction fabrication process

32

https://github.com/amueller/scipy-2016-sklearn
https://github.com/amueller/scipy-2016-sklearn
https://github.com/DiCarloLab-Delft/LASIQ
https://github.com/DiCarloLab-Delft/LASIQ

for reproducibly high-performance superconducting qubits. Applied Physics Letters,

118(6):064002, 2021.

[35] Nandini Muthusubramanian, Wilhelmus Duivestein, Chris Zachariadis, Matvey Finkel,

Alessandro Bruno, and Leonardo DiCarlo. Fabrication parameters for frequency targeting

in scalable superconducting quantum processors. Bulletin of the American Physical

Society, 2021.

33

.1 Pseudo codes

Bellow are the flow diagrams representing the code. Each component shows what it does to the

image and how it relates to the method obtaining the data.

Figure 1: A perfect base layer is created from the file where an image is taken. The microscope image is

obtained from ASP-Lasiq these two images are template matched for their individual locations resulting

in a map with similarities between the two images. The more they vary the brighter the feature becomes

what means that area needs inspection.

34

Figure 2: A visual representation of pyclq_jj at the top is the thresholding method, applying an sweep

over the x- and y-axis to obtain the edges from the highes pixel value. This is repeated for multiple

thresholds to improve accuracy. The segmentation method removes the ’glow’ effect of the SEM first before

segmenting into different layer of which the top layer(s) will be the edge from the top electrode. The bottom

vertical electrode is obtained in a similar manner as the thresholding method. Both methods are filling

the area of the top electrode that is overlapping the bottom electrode and storing it in a CSV file for future

reference.

Figure 3: A visual representation of accusation and validation of bridges, fits the acquired image with

ASP-lasiq is filtered and segmented in the different components of the chip. by opening, chapter ??, the

white shine and bridge grey colors the bridges can be obtained (the top two bins). Next a surrounding

pad and cross section validation made with expected values form the segmentation. From the the cross

section validation is compared to a full scan over the width of the bridge to gain a third quality of the

bridge, if passed with a high enough value it will be combined with other bridges of the same shape for

template matching of all the airbridges for the last quality check.

36

.2 Pyclq_AB

Below the first ten rows of airbridge validation by pyclq_ab of S17 v2 3_2.

Table 1: Below the first ten airbridges validated by pyclq_ab all widths and lengths are in µm and

angles in degrees

Design Found by pyclq_ab

x y angle transmission_line width length drift_x drift_y width length C S P R N Nw Nk R′

5944.437 1873.431 -135 Microwave drive line D1 30 70 -3 0 31 63 2 0 1 0.809584 0 0 0 0.777848

4376.569 305.5635 -135 Microwave drive line D1 30 70 -3 0 31 66 2 2 1 0.848954 0 0 0 0.874128

5720.455 1649.45 -135 Microwave drive line D1 30 70 -3 0 30 63 2 0 1 0.814407 0 0 0 0.783474

5496.474 1425.469 -135 Microwave drive line D1 30 70 -3 0 31 66 2 2 1 0.859434 0 0 0 0.882862

5272.493 1201.488 -135 Microwave drive line D1 30 70 -3 0 31 66 2 2 1 0.815088 0 0 0 0.845907

5048.512 977.5069 -135 Microwave drive line D1 30 70 -4 0 31 66 2 2 1 0.799738 0 0 0 0.833115

4824.531 753.5258 -135 Microwave drive line D1 30 70 -3 0 31 65 2 0 1 0.895164 0 0 0 0.877691

4600.55 529.5446 -135 Microwave drive line D1 30 70 -3 0 30 65 2 0 1 0.859872 0 0 0 0.836518

4250 42 -90 Microwave drive line D1 30 70 0 -6 20 26 0 0 1 -0.04892 0 0 0 -0.57339

5000 -5950 90 Microwave drive line D2 30 70 0 -3 29 64 2 2 1 0.899661 0 0 0 0.916384

Figure 4: From left to right, top to bottom the airbridges validated in the table above, table 1. When taking

the 9th, second last airbridge in figure and table there seem to be movement due to the communication

between the computer and its external components.

37

.3 Pyclq_jj

.3.1 Plots

plots of conductance against area

Below all the fits of the conductance against the overlapping area measured with ImageJ

and Pyclq_jj tresholding method are shown with the coefficient of determination, R2. The

numerical values and standaard deviation can be found in table ??. This is followed up by a

histogram of the conductance over the area for every measurements. The widths of all bins in

the histograms have a bin size of 100µS/µm2

38

Figure 5: All the fits of the conductance against the overlapping area measured with ImageJ and

Pyclq_jj tresholding method are shown with the coefficient of determination, R2.

39

Figure 6: All points of conductance against the overlapping area measured with ImageJ and Pyclq_jj

tresholding method are shown in a histogram.

40

Plots of widths

Below are the plots of the widths of the top horizontal and bottom vertical electrodes plotted

against a hat function. For the locations of the Jason dataset the locations are unsuited to plot

against x or y.

(a) The line width of the bottom electrode of blackbird 1 of the c and e

series fitted with a hat function against the x coordinates of the chip.

(b) The line width of the bottom electrode of blackbird 1 fitted with a hat

function against the x coordinates of the chip.

(c) The line width of the top electrode of blackbird 1 fitted with a hat

function against the x coordinates of the chip.

Figure 7: The fits of the widths of the bottom horizontal electrode and top vertical electrode in blackbird

1 are shown above, in (a) the sets are fitted for the c and e series separately for the bottom horizontal

electrode. The exact values are found in table .3.2.
41

(a) The line width of the bottom electrode of blackbird 2 of the c and e

series fitted with a hat function against the x coordinates of the chip.

(b) The line width of the bottom electrode of blackbird 2 fitted with a hat

function against the x coordinates of the chip.

(c) The line width of the top electrode of blackbird 2 fitted with a hat

function against the x coordinates of the chip.

Figure 8: The fits of the widths of the bottom horizontal electrode and top vertical electrode in blackbird

2 are shown above, in (a) the sets are fitted for the c and e series separately for the bottom horizontal

electrode. The exact values are found in table .3.2.

42

(a) The line width of the bottom horizontal electrode of blackbird 4 fitted

with a hat function against the x coordinates of the chip.

(b) The line width of the bottom horizontal electrode of blackbird 4 fitted

with a hat function against the y coordinates of the chip.

(c) The line width of the top vertical electrode of blackbird 4 fitted with a

hat function against the x coordinates of the chip.

(c) The line width of the top vertical electrode of blackbird 4 fitted with a

hat function against the y coordinates of the chip.

Figure 9: The fits of the widths of the bottom horizontal electrode (a,c) and top vertical electrode (b,d) in

blackbird 4 are shown above, The exact values are found in table .3.2.

(a) The line width of the bottom horizontal electrode of nighthawk fitted

with a hat function against the x coordinates of the chip.

(b) The line width of the bottom horizontal electrode of nighthawk fitted

with a hat function against the y coordinates of the chip.

(c) The line width of the top vertical electrode of nighthawk fitted with a

hat function against the x coordinates of the chip.

(c) The line width of the top vertical electrode of nighthawk fitted with a

hat function against the y coordinates of the chip.

Figure 10: The fits of the widths of the bottom horizontal electrode (a,c) and top vertical electrode (b,d) in

blackbird 4 are shown above, The exact values are found in table .3.2.

Plots of widths

Below are the plots of the widths of the top horizontal and bottom vertical electrodes plotted

against a polynomial function. For the locations of the Jason dataset the locations are unsuited

to plot against x or y.

(a) The line width of the bottom electrode of blackbird 1 of the c and e

series fitted with a polynomial function against the x coordinates of the

chip.

(b) The line width of the bottom electrode of blackbird 1 fitted with a

polynomial function against the x coordinates of the chip.

(c) The line width of the top electrode of blackbird 1 fitted with a

polynomial function against the x coordinates of the chip.

Figure 11: The fits of the widths of the bottom horizontal electrode and top vertical electrode in blackbird

1 are shown above, in (a) the sets are fitted for the c and e series separately for the bottom horizontal

electrode. The exact values are found in table .3.2. 45

(a) The line width of the bottom electrode of blackbird 2 of the c and e

series fitted with a polynomial function against the x coordinates of the

chip.

(b) The line width of the bottom electrode of blackbird 2 fitted with a

polynomial function against the x coordinates of the chip.

(c) The line width of the top electrode of blackbird 2 fitted with a

polynomial function against the x coordinates of the chip.

Figure 12: The fits of the widths of the bottom horizontal electrode and top vertical electrode in blackbird

2 are shown above, in (a) the sets are fitted for the c and e series separately for the bottom horizontal

electrode. The exact values are found in table .3.2.

46

(a) The line width of the bottom horizontal electrode of blackbird 4 fitted

with a polynomial function against the x coordinates of the chip.

(b) The line width of the bottom horizontal electrode of blackbird 4 fitted

with a polynomial function against the y coordinates of the chip.

(c) The line width of the top vertical electrode of blackbird 4 fitted with a

polynomial function against the x coordinates of the chip.

(c) The line width of the top vertical electrode of blackbird 4 fitted with a

polynomial function against the y coordinates of the chip.

Figure 13: The fits of the widths of the bottom horizontal electrode (a,c) and top vertical electrode (b,d) in

blackbird 4 are shown above, The exact values are found in table .3.2.

(a) The line width of the bottom horizontal electrode of nighthawk fitted

with a polynomial function against the x coordinates of the chip.

(b) The line width of the bottom horizontal electrode of nighthawk fitted

with a polynomial function against the y coordinates of the chip.

(c) The line width of the top vertical electrode of nighthawk fitted with a

polynomial function against the x coordinates of the chip.

(c) The line width of the top vertical electrode of nighthawk fitted with a

polynomial function against the y coordinates of the chip.

Figure 14: The fits of the widths of the bottom horizontal electrode (a,c) and top vertical electrode (b,d) in

blackbird 4 are shown above, The exact values are found in table ??.

.3.2 Tables

All fits for all chips are on the following page, followed by the tables of the the raw data itself for

every chip. In these tables; seg is shortened for segmentation, thres is shortened for threshold,

and the result of the fits are in nm. When a Josephson junction has shortened it is shown with

a -.

49

Fits:
serie ŵethode loĐ R^Ϯ a ď Đ R^Ϯ
ďďϭ Đ thres ďottoŵ ǆ -Ϭ.ϭϴ ± Ϭ.ϭϵ ϳ.ϯϮ ± ϭϭ.ϳϬ ϭϱ ± ϯ.ϴϵ Ϭ.Ϭϯϵ -Ϭ.ϬϬϰϮϰ ± Ϭ.ϬϬϲ Ϭ.ϭϮϰ ± Ϭ.ϬϵϮ ϭϯ.Ϭϱϲ ± ϯ.Ϭϴϵ Ϭ.Ϭϳϰ
ďďϭ Đ seg ďottoŵ ǆ -Ϭ.Ϯϭ ± Ϭ.ϰϲ -Ϯϳ.ϰϱ ± ϱ.ϰϲE+Ϭϴ Ϯϰ ± ϭ.ϭϯE+Ϭϴ Ϭ.ϬϬϴ -ϭ.ϰϭE-ϭϲ ± Ϭ.Ϭϯϭ -Ϭ.ϮϬϳ ± Ϭ.ϰϰϬ ϭϴ.ϰϮϮ ± ϭϰ.ϳϵϮ Ϭ.ϬϬϴ
ďďϭ Đ iŵgj ďottoŵ ǆ -Ϭ.ϰϲ ± Ϭ.ϭϭ -ϭ.ϭϰ ± Ϯ.Ϭϳ Ϯϰ ± Ϯ.ϮϬ Ϭ.ϯϳϯ -Ϭ.Ϭϭϯϲϯ ± Ϭ.ϬϬϯ Ϭ.Ϭϳϳ ± Ϭ.Ϭϰϱ Ϯϭ.ϴϯϴ ± ϭ.ϱϭϯ Ϭ.ϰϯϱ
ďďϭ e thres ďottoŵ ǆ Ϭ.ϬϬ ± Ϭ.ϴϭ Ϭ.Ϭϲ ± Ϭ.ϬϬ ϭϰ ± ϭϯ.ϴϵ Ϭ.ϬϬϬ -ϯ.ϬϮE-Ϯϯ ± Ϭ.ϬϮϯ -Ϭ.Ϭϲϭ ± Ϭ.ϯϴϮ ϭϰ.Ϯϭϲ ± ϵ.ϱϰϭ Ϭ.ϬϬϭ
ďďϭ e seg ďottoŵ ǆ Ϭ.ϬϬ ± Ϭ.ϰϯ Ϯϵ.Ϯϵ ± Ϭ.ϬϬ ϭϮ ± ϭϯ.ϴϳ Ϭ.ϬϬϬ -ϭ.ϭϮE-ϭϳ ± Ϭ.ϬϮϲ -Ϭ.ϭϳϳ ± Ϭ.ϰϮϱ ϭϭ.ϵϵϲ ± ϭϬ.ϲϮϭ Ϭ.ϬϬϱ
ďďϭ e iŵgj ďottoŵ ǆ -Ϭ.Ϯϱ ± Ϭ.ϯϳ Ϯϲ.ϯϵ ± ϭ.ϬϲE+Ϭϵ Ϯϳ ± Ϯ.ϲϲE+Ϭϴ Ϭ.Ϭϭϴ -ϭ.ϮϳE-Ϯϭ ± Ϭ.Ϭϭϵ Ϭ.ϮϱϮ ± Ϭ.ϯϭϭ ϮϬ.Ϭϵϴ ± ϳ.ϳϲϬ Ϭ.Ϭϭϴ
ďďϭ thres ďottoŵ ǆ -Ϭ.Ϭϱ ± Ϭ.ϮϬ Ϯϲ.ϬϬ ± ϳ.ϵϮE+Ϭϴ ϭϰ ± ϯ.ϱϳE+Ϭϳ Ϭ.ϬϬϭ -ϯ.ϲϰE-Ϯϱ ± Ϭ.Ϭϭϯ Ϭ.Ϭϰϱ ± Ϭ.ϭϵϱ ϭϮ.ϳϰϲ ± ϱ.ϱϴϲ Ϭ.ϬϬϭ
ďďϭ seg ďottoŵ ǆ -Ϭ.Ϯϭ ± Ϭ.ϱϭ -ϴ.ϮϬ ± Ϯϴ.ϰϮ ϭϴ ± ϵ.ϴϯ Ϭ.ϬϬϯ -Ϯ.ϰϯE-ϮϮ ± Ϭ.Ϭϭϵ -Ϭ.ϮϭϮ ± Ϭ.Ϯϵϳ ϭϰ.ϵϲϬ ± ϴ.ϱϭϲ Ϭ.ϬϬϴ
ďďϭ iŵgj ďottoŵ ǆ -Ϭ.ϭϳ ± Ϭ.ϭϲ Ϯϳ.ϰϭ ± ϵ.ϵϭE+Ϭϴ Ϯϯ ± ϭ.ϳϮE+Ϭϴ Ϭ.Ϭϭϴ -ϰ.ϯϵE-Ϯϲ ± Ϭ.ϬϭϬ Ϭ.ϭϳϯ ± Ϭ.ϭϱϳ ϭϴ.ϲϮϱ ± ϰ.ϱϬϱ Ϭ.Ϭϭϴ
ďďϭ thres ďottoŵ Ǉ -Ϭ.Ϭϱ ± Ϭ.ϰϮ ϴ.Ϯϲ ± Ϯ.ϬϯE+Ϭϴ ϭϰ ± ϭ.ϬϮE+Ϭϳ Ϭ.ϬϬϬ -Ϭ.Ϭϲϲϳϴ ± Ϭ.ϭϮϮ -Ϯ.ϲϯϰ ± ϰ.ϵϬϮ -ϴ.ϭϵϳ ± ϰϬ.ϴϭϮ Ϭ.ϬϬϱ
ďďϭ seg ďottoŵ Ǉ Ϭ.ϬϬ ± Ϭ.ϲϯ Ϯϵ.ϵϴ ± Ϭ.ϬϬ ϭϱ ± ϯϭ.ϳϱ Ϭ.ϬϬϬ -ϯ.ϱϬE-ϭϵ ± Ϭ.ϭϴϭ -ϭ.Ϯϭϰ ± ϳ.ϯϬϴ -ϴ.ϰϱϭ ± ϲϬ.ϴϰϯ Ϭ.Ϭϱϱ
ďďϭ iŵgj ďottoŵ Ǉ -Ϭ.ϭϴ ± Ϭ.ϯϱ ϲ.ϱϮ ± ϭ.ϯϵE+Ϭϴ Ϯϯ ± Ϯ.ϱϭE+Ϭϳ Ϭ.ϬϬϰ -Ϭ.Ϭϯϵϲϳ ± Ϭ.Ϭϵϵ -ϭ.ϰϭϰ ± ϯ.ϵϴϰ ϵ.Ϭϱϵ ± ϯϯ.ϭϲϳ Ϭ.ϬϬϳ
ďďϭ thres top ǆ -Ϭ.Ϯϯ ± Ϭ.ϭϲ ϭ.Ϯϴ ± ϱ.ϵϴ ϵ ± Ϯ.ϵϲ Ϭ.Ϭϯϭ -Ϭ.ϬϬϱϵϴ ± Ϭ.ϬϬϱ -Ϭ.ϬϲϮ ± Ϭ.Ϭϳϯ ϳ.ϭϰϯ ± Ϯ.ϬϴϬ Ϭ.Ϭϯϯ
ďďϭ seg top ǆ -Ϭ.ϳϰ ± Ϭ.ϯϯ ϭϭ.ϯϴ ± ϲ.ϲϰ ϭϵ ± ϳ.ϯϱ Ϭ.Ϭϳϭ -Ϭ.ϬϯϴϵϮ ± Ϭ.Ϭϭϰ Ϭ.ϯϱϭ ± Ϭ.Ϯϭϯ ϭϴ.ϱϵϱ ± ϲ.Ϭϵϲ Ϭ.ϭϰϯ
ďďϭ iŵgj top ǆ -Ϭ.ϯϬ ± Ϭ.ϭϬ -ϰ.ϳϮ ± Ϯ.ϵϰ ϭϮ ± ϭ.ϳϲ Ϭ.ϭϱϱ -Ϭ.ϬϬϴϮϯ ± Ϭ.ϬϬϯ -Ϭ.Ϭϭϱ ± Ϭ.Ϭϰϰ ϵ.ϲϬϮ ± ϭ.Ϯϲϱ Ϭ.ϭϭϮ
ďďϭ thres top Ǉ Ϭ.ϬϬ ± Ϭ.ϭϲ -Ϯ.ϱϬ ± Ϭ.ϬϬ ϱ ± Ϯ.ϵϳ Ϭ.ϬϬϬ -ϳ.ϭϴE-ϭϵ ± Ϭ.Ϭϰϲ -Ϭ.Ϭϵϲ ± ϭ.ϴϱϱ ϯ.ϮϲϬ ± ϭϱ.ϰϰϭ Ϭ.ϬϬϲ
ďďϭ seg top Ǉ -ϭ.Ϭϳ ± Ϭ.ϰϴ Ϯ.ϲϭ ± ϰ.ϯϬE+Ϭϳ Ϯϵ ± ϰ.ϱϵE+Ϭϳ Ϭ.Ϭϳϭ -Ϭ.ϬϴϬϱϴ ± Ϭ.ϭϯϴ -Ϯ.ϭϳϭ ± ϱ.ϱϲϰ -Ϭ.ϱϰϴ ± ϰϲ.ϯϮϵ Ϭ.Ϭϳϲ
ďďϭ iŵgj top Ǉ -Ϭ.Ϯϭ ± Ϭ.ϭϬ ϴ.ϬϮ ± ϭ.ϮϬE+Ϭϴ ϭϯ ± Ϯ.ϱϳE+Ϭϳ Ϭ.Ϭϲϵ -Ϭ.ϬϬϲϵϭ ± Ϭ.ϬϮϴ -Ϭ.Ϭϲϰ ± ϭ.ϭϯϵ ϴ.ϲϲϭ ± ϵ.ϰϴϬ Ϭ.Ϭϲϵ
ďďϮ Đ thres ďottoŵ ǆ -Ϭ.ϰϴ ± Ϭ.ϱϱ ϰ.ϯϵ ± ϭϬ.ϴϳ ϯϮ ± ϭϬ.ϱϵ Ϭ.ϬϰϮ -Ϭ.Ϭϭϰϭ ± Ϭ.Ϭϭϲ Ϭ.ϭϭϰ ± Ϭ.Ϯϰϴ Ϯϵ.ϭϳϭ ± ϳ.ϱϴϬ Ϭ.Ϭϰϯ
ďďϮ Đ seg ďottoŵ ǆ -Ϭ.ϭϱ ± Ϭ.ϳϴ ϭϴ.ϴϵ ± ϴϳ.ϭϱ Ϯϵ ± ϭϳ.ϭϭ Ϭ.ϬϬϯ -Ϭ.ϬϬϮϬϲ ± Ϭ.ϬϯϮ Ϭ.ϭϭϲ ± Ϭ.ϰϵϭ Ϯϲ.ϴϯϳ ± ϭϱ.ϬϬϭ Ϭ.ϬϬϯ
ďďϮ Đ iŵgj ďottoŵ ǆ -ϭ.Ϯϭ ± Ϭ.Ϭϳ Ϯ.ϯϴ ± Ϭ.ϱϮ Ϯϴ ± ϭ.ϯϴ Ϭ.ϵϯϰ -Ϭ.Ϭϯϱϯϳ ± Ϭ.ϬϬϮ Ϭ.ϭϯϬ ± Ϭ.Ϭϯϲ ϭϵ.ϳϲϭ ± ϭ.ϭϬϲ Ϭ.ϵϭϳ
ďďϮ e thres ďottoŵ ǆ -Ϭ.ϱϳ ± Ϭ.ϱϱ Ϯ.ϬϮ ± ϴ.ϰϲ ϯϴ ± ϭϬ.ϱϰ Ϭ.ϬϱϬ -Ϭ.Ϭϭϲϱϵ ± Ϭ.Ϭϭϲ Ϭ.Ϭϳϳ ± Ϭ.Ϯϰϳ ϯϰ.Ϯϳϯ ± ϳ.ϱϯϲ Ϭ.Ϭϱϭ
ďďϮ e seg ďottoŵ ǆ -Ϭ.ϭϰ ± Ϭ.ϳϵ ϮϬ.ϮϮ ± ϭϬϭ.ϰϳ ϯϱ ± ϭϳ.ϯϲ Ϭ.ϬϬϮ -Ϭ.ϬϬϭϰϮ ± Ϭ.Ϭϯϯ Ϭ.ϭϭϮ ± Ϭ.ϰϵϴ ϯϮ.Ϭϴϴ ± ϭϱ.Ϯϭϵ Ϭ.ϬϬϮ
ďďϮ e iŵgj ďottoŵ ǆ -ϭ.ϭϴ ± Ϭ.ϭϬ ϭ.ϱϬ ± Ϭ.ϳϰ Ϯϴ ± ϭ.ϵϰ Ϭ.ϴϲϳ -Ϭ.Ϭϯϰϰ ± Ϭ.ϬϬϯ Ϭ.Ϭϱϯ ± Ϭ.Ϭϰϴ ϮϬ.ϱϬϬ ± ϭ.ϰϱϱ Ϭ.ϴϱϰ
ďďϮ thres ďottoŵ ǆ -Ϭ.ϱϮ ± Ϭ.ϯϴ ϯ.ϭϭ ± ϲ.ϱϬ ϯϱ ± ϳ.Ϯϱ Ϭ.Ϭϰϱ -Ϭ.Ϭϭϱϯϰ ± Ϭ.Ϭϭϭ Ϭ.Ϭϵϲ ± Ϭ.ϭϳϬ ϯϭ.ϳϮϮ ± ϱ.ϭϴϵ Ϭ.Ϭϰϲ
ďďϮ seg ďottoŵ ǆ -Ϭ.ϭϱ ± Ϭ.ϱϯ ϭϵ.ϱϯ ± ϲϰ.Ϯϯ ϯϮ ± ϭϭ.ϴϬ Ϭ.ϬϬϯ -Ϭ.ϬϬϭϳϰ ± Ϭ.ϬϮϮ Ϭ.ϭϭϰ ± Ϭ.ϯϯϴ Ϯϵ.ϰϲϯ ± ϭϬ.ϯϰϯ Ϭ.ϬϬϯ
ďďϮ iŵgj ďottoŵ ǆ -ϭ.ϭϵ ± Ϭ.Ϭϲ ϭ.ϵϱ ± Ϭ.ϰϱ Ϯϴ ± ϭ.ϭϴ Ϭ.ϴϵϲ -Ϭ.Ϭϯϰϴϴ ± Ϭ.ϬϬϮ Ϭ.Ϭϵϭ ± Ϭ.ϬϯϬ ϮϬ.ϭϯϭ ± Ϭ.ϵϬϵ Ϭ.ϴϳϵ
ďďϮ thres ďottoŵ Ǉ -Ϭ.Ϯϯ ± ϭ.ϳϰ -ϭϯ.ϴϬ ± ϱϬ.ϬϮ Ϯϴ ± ϭϱ.ϯϬ Ϭ.ϬϬϱ -ϭ.ϭϯE-Ϯϯ ± Ϭ.ϭϬϭ -Ϭ.Ϯϱϵ ± ϰ.Ϭϳϱ ϮϬ.ϵϰϬ ± ϯϯ.ϵϳϱ Ϭ.ϬϭϬ
ďďϮ seg ďottoŵ Ǉ -Ϭ.ϱϮ ± Ϭ.ϴϴ -ϯϬ.ϬϬ ± ϭϴ.ϵϴ ϯϰ ± ϭϬ.ϰϬ Ϭ.ϬϭϬ -ϭ.ϬϯE-ϭϵ ± Ϭ.ϭϵϲ -Ϭ.ϲϴϳ ± ϳ.ϵϭϬ ϭϱ.Ϭϴϱ ± ϲϱ.ϵϰϰ Ϭ.Ϭϭϵ
ďďϮ iŵgj ďottoŵ Ǉ -Ϭ.ϭϬ ± Ϭ.ϭϵ ϴ.ϴϯ ± Ϯ.ϴϲE+Ϭϴ ϭϬ ± Ϯ.ϵϵE+Ϭϳ Ϭ.ϬϬϳ -ϯ.ϳϱE-ϭϲ ± Ϭ.ϬϱϬ Ϭ.ϭϬϱ ± Ϯ.ϬϭϬ ϵ.ϱϬϴ ± ϭϲ.ϳϲϬ Ϭ.ϬϬϳ
ďďϮ thres top ǆ -Ϭ.Ϭϯ ± Ϭ.Ϭϰ Ϯϲ.ϲϯ ± ϳ.ϰϮE+Ϭϴ Ϯ ± ϭ.ϵϯE+Ϭϳ Ϭ.ϬϬϴ -ϵ.ϱϴE-ϭϳ ± Ϭ.ϬϬϯ Ϭ.ϬϮϲ ± Ϭ.ϬϰϮ ϭ.ϭϰϱ ± ϭ.Ϯϵϲ Ϭ.ϬϬϴ
ďďϮ seg top ǆ -Ϭ.Ϭϲ ± ϭ.ϵϬ ϴ.ϵϬ ± ϯϱϰ.ϲϬ ϭϳϰ ± ϯϲ.ϯϲ Ϭ.ϬϬϬ -ϳ.ϯϱE-Ϯϭ ± Ϭ.Ϭϱϲ -Ϭ.ϭϳϲ ± Ϭ.ϴϱϭ ϭϳϮ.ϲϴϯ ± Ϯϲ.Ϭϭϯ Ϭ.ϬϬϭ
ďďϮ iŵgj top ǆ -Ϯ.ϱϱ ± Ϯ.ϱϯ Ϯϲ.ϬϬ ± Ϯϭ.Ϭϵ ϵϰ ± ϱϯ.ϴϳ Ϭ.Ϭϵϴ -ϯ.ϳϳE-Ϯϱ ± Ϭ.Ϭϵϵ Ϯ.ϴϴϴ ± ϭ.ϱϮϯ ϯϭ.ϲϬϴ ± ϰϲ.Ϭϴϳ Ϭ.ϭϬϬ
ďďϮ thres top Ǉ -Ϭ.ϯϮ ± Ϭ.ϭϬ ϵ.ϱϯ ± ϭ.ϯϴE+Ϭϴ ϭϭ ± ϰ.ϰϮE+Ϭϳ Ϭ.Ϯϲϳ -Ϭ.ϬϳϬϬϲ ± Ϭ.Ϭϭϵ -Ϯ.ϰϵϯ ± Ϭ.ϳϰϵ -ϭϱ.Ϯϱϴ ± ϲ.Ϯϰϳ Ϭ.ϰϰϯ
ďďϮ seg top Ǉ -ϭ.ϵϳ ± Ϯ.ϭϵ -ϭϭ.ϱϬ ± ϭϭ.ϴϴ ϭϴϵ ± Ϯϱ.ϴϯ Ϭ.ϬϮϴ -ϯ.ϱϭE-Ϯϭ ± Ϭ.ϰϵϭ Ϯ.Ϭϳϰ ± ϭϵ.ϳϴϵ Ϯϭϰ.Ϯϯϯ ± ϭϲϰ.ϵϴϳ Ϭ.ϬϮϴ
ďďϮ iŵgj top Ǉ Ϭ.ϬϬ ± ϭϲ.ϲϰ -ϭϴ.Ϯϴ ± Ϭ.ϬϬ ϯϱ ± ϭϰϭ.ϴϳ Ϭ.ϬϬϬ -Ϯ.ϯϰE-ϭϲ ± ϭ.ϭϴϯ -ϭ.ϵϵϯ ± ϰϱ.ϱϴϰ -Ϯ.ϭϯϱ ± ϯϱϴ.ϮϮϮ Ϭ.ϬϬϵ
ďďϰ thres ďottoŵ ǆ -Ϭ.ϵϱ ± Ϭ.Ϭϲ ϱ.ϴϰ ± Ϭ.ϳϴ ϮϮ ± ϭ.ϯϰ Ϭ.ϴϴϭ -Ϭ.ϬϮϯϵϴ ± Ϭ.ϬϬϮ Ϭ.Ϯϰϯ ± Ϭ.ϬϰϬ ϭϱ.ϭϬϲ ± ϭ.ϭϰϯ Ϭ.ϴϰϯ
ďďϰ seg ďottoŵ ǆ -Ϭ.ϳϱ ± Ϭ.Ϯϱ ϲ.ϯϲ ± ϯ.ϴϰ ϭϲ ± ϱ.Ϯϯ Ϭ.Ϯϯϭ -Ϭ.Ϭϭϲϯϲ ± Ϭ.ϬϬϳ Ϭ.ϭϵϳ ± Ϭ.ϭϰϯ ϴ.ϵϬϳ ± ϰ.Ϭϯϳ Ϭ.ϭϳϲ
ďďϰ iŵgj ďottoŵ ǆ -Ϭ.ϴϳ ± Ϭ.Ϭϳ ϱ.ϯϴ ± Ϭ.ϵϱ ϯϭ ± ϭ.ϰϭ Ϭ.ϴϰϳ -Ϭ.ϬϮϮϴϴ ± Ϭ.ϬϬϮ Ϭ.ϭϲϱ ± Ϭ.Ϭϰϲ Ϯϰ.ϴϱϯ ± ϭ.Ϯϭϳ Ϭ.ϳϵϴ
ďďϰ thres ďottoŵ Ǉ -Ϭ.ϴϯ ± Ϭ.ϭϬ -ϭ.ϬϮ ± ϭ.ϯϲ ϭϵ ± ϭ.ϵϱ Ϭ.ϳϬϴ -Ϭ.ϬϮϭϳϰ ± Ϭ.ϬϬϯ -Ϭ.ϬϲϬ ± Ϭ.Ϭϱϵ ϭϰ.ϱϴϯ ± ϭ.ϲϱϰ Ϭ.ϲϳϭ
ďďϰ seg ďottoŵ Ǉ -Ϭ.ϲϱ ± Ϭ.Ϯϯ -ϱ.Ϯϵ ± ϰ.ϱϵ ϭϰ ± ϰ.ϵϭ Ϭ.ϮϬϲ -Ϭ.ϬϭϮϵϰ ± Ϭ.ϬϬϳ -Ϭ.ϮϮϵ ± Ϭ.ϭϰϯ ϴ.ϭϲϭ ± ϯ.ϵϵϵ Ϭ.ϭϵϮ
ďďϰ iŵgj ďottoŵ Ǉ -Ϭ.ϴϯ ± Ϭ.ϭϬ ϭ.ϱϯ ± ϭ.Ϯϱ ϯϬ ± ϭ.ϴϰ Ϭ.ϳϮϰ -Ϭ.ϬϮϯϮϴ ± Ϭ.ϬϬϯ Ϭ.Ϭϲϭ ± Ϭ.Ϭϱϰ Ϯϰ.ϴϲϯ ± ϭ.ϰϮϵ Ϭ.ϳϮϭ
ďďϰ thres top ǆ -Ϭ.ϳϳ ± Ϭ.ϭϬ -Ϭ.ϰϳ ± ϭ.ϱϳ ϰϭ ± Ϯ.ϭϮ Ϭ.ϲϯϲ -Ϭ.ϬϮϮϮϵ ± Ϭ.ϬϬϯ Ϭ.ϬϬϯ ± Ϭ.Ϭϱϱ ϯϳ.ϯϯϲ ± ϭ.ϱϰϯ Ϭ.ϲϵϳ
ďďϰ seg top ǆ -ϭ.ϯϯ ± Ϭ.ϱϵ ϴ.ϭϬ ± ϱ.Ϯϭ ϲϴ ± ϭϮ.ϰϮ Ϭ.ϭϰϲ -Ϭ.ϬϮϲϯϰ ± Ϭ.Ϭϭϲ Ϭ.ϯϱϲ ± Ϭ.ϯϯϳ ϱϰ.Ϭϲϴ ± ϵ.ϱϮϱ Ϭ.Ϭϵϱ
ďďϰ iŵgj top ǆ -Ϭ.ϲϴ ± Ϭ.ϭϮ Ϭ.ϳϲ ± ϭ.ϵϬ ϰϲ ± Ϯ.Ϯϲ Ϭ.ϱϯϱ -Ϭ.Ϭϭϵϵϵ ± Ϭ.ϬϬϯ Ϭ.Ϭϱϵ ± Ϭ.Ϭϲϰ ϰϮ.ϯϬϮ ± ϭ.ϲϳϰ Ϭ.ϱϴϳ
ďďϰ thres top Ǉ -Ϭ.ϳϴ ± Ϭ.Ϭϳ -ϴ.ϭϰ ± ϭ.ϯϬ ϰϯ ± ϭ.ϲϭ Ϭ.ϳϵϰ -Ϭ.Ϭϭϵϵϵ ± Ϭ.ϬϬϭ -Ϭ.Ϯϱϱ ± Ϭ.Ϭϯϭ ϯϲ.ϴϳϲ ± Ϭ.ϴϱϵ Ϭ.ϵϬϲ
ďďϰ seg top Ǉ -ϭ.ϭϵ ± Ϭ.ϱϯ -ϵ.ϯϵ ± ϲ.ϯϮ ϲϲ ± ϭϭ.ϳϬ Ϭ.ϭϱϭ -Ϭ.ϬϭϴϴϮ ± Ϭ.Ϭϭϲ -Ϭ.ϱϲϭ ± Ϭ.ϯϯϮ ϱϮ.ϰϱϲ ± ϵ.Ϯϳϴ Ϭ.ϭϰϮ
ďďϰ iŵgj top Ǉ -Ϭ.ϳϱ ± Ϭ.Ϭϴ -ϴ.ϱϲ ± ϭ.ϯϵ ϰϴ ± ϭ.ϳϮ Ϭ.ϳϰϯ -Ϭ.ϬϮϬϬϰ ± Ϭ.ϬϬϮ -Ϭ.Ϯϲϵ ± Ϭ.Ϭϰϭ ϰϮ.Ϯϯϲ ± ϭ.Ϭϳϭ Ϭ.ϴϯϭ
jasoŶ thres ďottoŵ ǆ -ϱ.ϬϬ ± ϰ.ϭϬ -ϳ.Ϭϲ ± ϭ.ϰϰE+Ϭϴ ϯϮ ± ϳ.ϭϵE+Ϭϴ Ϭ.ϭϵϬ -ϱ.ϮϭE-ϭϳ ± ϭ.Ϯϳϱ -ϭϰ.ϱϳϳ ± ϯ.ϴϬϭ -ϲ.ϯϱϳ ± ϭϯ.ϴϯϬ Ϭ.ϯϯϰ
jasoŶ seg ďottoŵ ǆ -ϱ.ϬϬ ± ϱ.ϭϭ -ϳ.Ϯϲ ± Ϯ.ϯϯE+Ϭϴ ϯϭ ± ϭ.ϭϳE+Ϭϵ Ϭ.ϭϵϱ -ϭ.ϯϳE-ϭϵ ± ϭ.ϭϬϱ -ϭϭ.Ϭϵϱ ± ϯ.Ϯϵϱ -ϳ.ϴϯϴ ± ϭϭ.ϵϴϵ Ϭ.Ϯϳϵ
jasoŶ iŵgj ďottoŵ ǆ -ϯ.ϳϮ ± Ϯ.ϵϬ -ϱ.Ϭϯ ± ϭ.ϬϭE+Ϭϴ ϭϬϴ ± ϯ.ϳϲE+Ϭϴ Ϭ.ϭϭϳ -ϭ.ϮϳϮϴϭ ± ϭ.ϯϯϯ -ϳ.Ϯϰϳ ± ϰ.ϱϵϲ ϵϱ.ϳϬϲ ± ϭϬ.ϲϲϰ Ϭ.ϭϳϱ
jasoŶ thres ďottoŵ Ǉ -ϱ.ϬϬ ± ϰ.Ϯϰ -ϭϱ.ϳϯ ± ϰ.ϯϯE+Ϭϴ ϱϮ ± Ϯ.ϭϳE+Ϭϵ Ϭ.ϭϯϯ -Ϭ.ϬϰϬϰϯ ± ϭ.ϰϬϴ ϴ.ϰϲϯ ± ϳϰ.ϯϬϮ ϮϱϬ.ϬϬϬ ± ϵϳϮ.ϵϱϱ Ϭ.ϭϴϴ
jasoŶ seg ďottoŵ Ǉ -ϱ.ϬϬ ± ϯ.ϴϭ -ϲ.ϰϳ ± ϭ.ϰϰE+Ϭϴ ϵϱ ± ϳ.ϭϴE+Ϭϴ Ϭ.ϭϰϰ -ϯ.ϳϵE-ϮϮ ± ϭ.ϭϴϬ ϴ.ϴϰϲ ± ϲϮ.Ϯϵϭ ϮϮϵ.ϭϯϳ ± ϴϭϱ.ϲϴϯ Ϭ.ϭϳϳ
jasoŶ iŵgj ďottoŵ Ǉ -Ϯ.ϵϳ ± ϴ.ϲϰ -ϭϬ.ϱϱ ± ϯ.ϴϳE+Ϭϴ ϭϰϬ ± ϭ.ϭϱE+Ϭϵ Ϭ.ϬϵϬ -Ϭ.Ϯϭϲϵϲ ± Ϭ.ϳϴϵ -ϴ.ϯϰϯ ± ϰϭ.ϭϴϰ Ϯϱ.ϱϰϴ ± ϱϯϮ.ϴϲϵ Ϭ.Ϭϵϲ
jasoŶ thres top ǆ -ϭ.ϱϴ ± Ϯ.Ϭϳ ϱ.ϳϴ ± ϴ.ϮϲE+Ϭϳ Ϯϱ ± ϭ.ϯϬE+Ϭϴ Ϭ.ϬϮϬ -Ϭ.ϯϳϬϳ ± Ϭ.ϲϴϴ ϭ.ϯϭϴ ± Ϯ.ϬϱϮ ϭϴ.ϰϵϯ ± ϳ.ϰϲϱ Ϭ.ϬϮϵ
jasoŶ seg top ǆ -ϭ.ϯϲ ± ϭ.ϵϲ -ϯ.Ϯϲ ± ϱ.ϬϬ ϮϬ ± ϴ.ϯϬ Ϭ.Ϭϭϲ -ϵ.ϮϮE-Ϯϯ ± Ϭ.ϱϯϯ -ϭ.ϬϮϱ ± ϭ.ϱϵϬ ϭϱ.ϮϬϵ ± ϱ.ϳϴϱ Ϭ.Ϭϭϰ
jasoŶ iŵgj top ǆ -Ϭ.Ϯϭ ± Ϭ.Ϯϴ ϳ.Ϭϯ ± ϰ.ϴϴE+Ϭϳ ϭϵ ± ϭ.ϬϮE+Ϭϳ Ϭ.ϬϮϯ -ϭ.ϯϵE-ϭϲ ± Ϭ.Ϭϴϰ Ϭ.ϮϬϴ ± Ϭ.ϮϱϮ ϭϳ.Ϯϰϵ ± Ϭ.ϵϭϳ Ϭ.ϬϮϯ
jasoŶ thres top Ǉ Ϭ.ϬϬ ± Ϯ.ϬϮ ϭϵ.ϵϲ ± Ϭ.ϬϬ ϭϱ ± ϵϯ.ϴϳ Ϭ.ϬϬϬ -Ϯ.ϴϵE-ϭϰ ± Ϭ.ϲϲϬ -ϯ.ϲϴϬ ± ϯϰ.ϴϮϱ -ϴϭ.ϳϱϲ ± ϰϱϲ.Ϭϭϳ Ϭ.ϭϬϳ
jasoŶ seg top Ǉ -Ϭ.ϵϬ ± ϭ.ϲϯ ϰ.ϱϰ ± ϵ.ϬϯE+Ϭϳ ϰϯ ± ϴ.ϭϭE+Ϭϳ Ϭ.Ϭϭϭ -ϭ.ϭϱE-ϭϰ ± Ϭ.ϱϯϰ Ϭ.ϴϵϵ ± Ϯϴ.ϭϴϳ ϯϵ.Ϯϰϵ ± ϯϲϵ.ϭϬϰ Ϭ.Ϭϭϭ
jasoŶ iŵgj top Ǉ Ϭ.ϬϬ ± Ϭ.Ϯϱ ϴ.ϱϵ ± Ϭ.ϬϬ ϭϳ ± ϴ.ϲϴ Ϭ.ϬϬϬ -Ϭ.ϬϮϱϵϲ ± Ϭ.Ϭϴϯ -ϭ.ϲϵϰ ± ϰ.ϯϳϱ -ϵ.Ϯϰϵ ± ϱϳ.Ϯϵϱ Ϭ.Ϭϱϵ
Nighthawk thres ďottoŵ ǆ -Ϭ.ϬϮ ± Ϭ.ϬϮ -Ϭ.ϯϮ ± Ϭ.ϯϱ ϵ.ϴϲ ± ϭϬ.Ϭϰ Ϭ.ϭϯϵ -Ϭ.ϵϮ ± Ϭ.ϱϮ -ϴ.ϭϬ ± Ϭ.ϯϱ ϭϴ.ϳϮ ± ϭϮ.ϯϮ Ϭ.ϭϭϴ
Nighthawk seg ďottoŵ ǆ -Ϭ.ϬϮ ± Ϭ.ϬϬ Ϭ.ϭϯ ± Ϭ.Ϭϳ ϰϭ.ϰϬ ± Ϯ.Ϭϳ Ϭ.ϱϲϴ -Ϭ.ϳϰ ± Ϭ.ϭϰ Ϯ.ϯϮ ± Ϭ.Ϭϳ ϰϱ.ϱϵ ± Ϯ.ϴϯ Ϭ.ϱϵϲ
Nighthawk iŵgj ďottoŵ ǆ -Ϭ.ϬϮ ± Ϭ.ϬϬ Ϭ.ϬϮ ± Ϭ.Ϭϱ ϭϰ.Ϯϴ ± ϭ.ϰϳ Ϭ.ϳϮϱ -Ϭ.ϲϬ ± Ϭ.ϭϬ Ϭ.ϭϮ ± Ϭ.Ϭϱ ϭϳ.ϯϯ ± ϭ.ϵϴ Ϭ.ϳϯϯ
Nighthawk thres ďottoŵ Ǉ -Ϭ.ϬϮ ± Ϭ.ϬϮ -Ϭ.Ϭϰ ± Ϭ.ϯϮ ϴ.Ϯϳ ± ϭϬ.ϭϭ Ϭ.Ϭϳϱ -Ϭ.ϳϲ ± Ϭ.ϲϬ -Ϭ.ϭϭ ± Ϭ.ϯϮ ϭϰ.Ϯϱ ± ϭϮ.ϳϵ Ϭ.Ϭϱϭ
Nighthawk seg ďottoŵ Ǉ -Ϭ.ϬϮ ± Ϭ.ϬϬ -Ϭ.Ϯϲ ± Ϭ.Ϭϲ ϯϵ.ϯϳ ± ϭ.ϳϯ Ϭ.ϲϲϭ -Ϭ.ϲϵ ± Ϭ.ϭϭ -ϳ.ϵϮ ± Ϭ.Ϭϲ ϰϱ.ϳϰ ± Ϯ.ϰϯ Ϭ.ϳϬϴ
Nighthawk iŵgj ďottoŵ Ǉ -Ϭ.ϬϮ ± Ϭ.ϬϬ -Ϭ.ϭϳ ± Ϭ.Ϭϯ ϭϯ.ϳϴ ± Ϭ.ϴϴ Ϭ.ϴϭϬ -Ϭ.ϲϯ ± Ϭ.Ϭϳ -ϱ.Ϯϯ ± Ϭ.Ϭϯ ϭϴ.ϯϮ ± ϭ.ϰϯ Ϭ.ϴϳϯ
Nighthawk thres top ǆ -Ϭ.Ϭϭ ± Ϭ.ϬϮ Ϭ.Ϭϵ ± Ϭ.Ϯϵ ϰϭ.ϭϯ ± ϴ.ϯϳ Ϭ.ϬϮϲ -Ϭ.ϯϲ ± Ϭ.ϱϭ -ϭ.ϭϬ ± Ϭ.Ϯϵ ϰϰ.ϲϯ ± ϭϬ.ϰϰ Ϭ.Ϭϭϰ
Nighthawk seg top ǆ -Ϭ.ϬϮ ± Ϭ.Ϭϭ Ϭ.Ϯϭ ± Ϭ.ϭϯ ϲϱ.ϭϵ ± ϯ.ϲϲ Ϭ.ϯϬϵ -Ϭ.ϳϳ ± Ϭ.Ϯϲ ϲ.ϭϲ ± Ϭ.ϭϯ ϲϵ.ϳϭ ± ϱ.Ϯϳ Ϭ.ϯϴϳ
Nighthawk iŵgj top ǆ -Ϭ.ϬϮ ± Ϭ.ϬϬ Ϭ.ϭϵ ± Ϭ.Ϭϯ ϱϲ.ϵϭ ± Ϭ.ϴϮ Ϭ.ϵϬϲ -Ϭ.ϳϰ ± Ϭ.Ϭϲ ϲ.ϲϬ ± Ϭ.Ϭϯ ϲϮ.ϰϭ ± ϭ.ϮϬ Ϭ.ϵϭϮ
Nighthawk thres top Ǉ -Ϭ.ϬϮ ± Ϭ.Ϭϭ -Ϭ.Ϭϯ ± Ϭ.Ϯϱ ϰϳ.ϴϴ ± ϳ.ϳϯ Ϭ.ϭϬϱ -Ϭ.ϳϰ ± Ϭ.ϰϳ -ϯ.ϲϳ ± Ϭ.Ϯϱ ϱϭ.ϳϰ ± ϵ.ϵϲ Ϭ.ϭϭϴ
Nighthawk seg top Ǉ -Ϭ.Ϭϭ ± Ϭ.ϬϬ -Ϭ.ϱϱ ± Ϭ.Ϭϲ ϲϭ.ϲϮ ± ϭ.ϴϳ Ϭ.ϳϲϮ -Ϭ.ϴϭ ± Ϭ.ϭϭ -ϭϳ.ϳϮ ± Ϭ.Ϭϲ ϳϯ.ϳϲ ± Ϯ.ϳϮ Ϭ.ϴϰϬ
Nighthawk iŵgj top Ǉ -Ϭ.Ϭϭ ± Ϭ.ϬϬ -Ϭ.Ϭϲ ± Ϭ.Ϭϱ ϱϱ.ϱϭ ± ϭ.ϲϮ Ϭ.ϱϴϴ -Ϭ.ϱϯ ± Ϭ.Ϭϵ -ϭ.ϳϲ ± Ϭ.Ϭϱ ϱϴ.ϵϯ ± Ϯ.Ϭϭ Ϭ.ϱϱϵ

a ď Đ
ܽ �ଶ + ܾ � + ܿܽ |� − ܾ| +

BlaĐkďird ϭ
Iŵage Ŷaŵe ǆ Ǉ IŵageJ Threshold SegŵeŶt IŵageJ Threshold SegŵeŶt IŵageJ Threshold SegŵeŶt IŵageJ Threshold SegŵeŶt IŵageJ Threshold SegŵeŶt
ϭĐ_ǆtǇpe_Dϯ_ďϯ_L -Ϯϱ.ϯ -ϭϯ.ϴ ϭϵϳϯϰ.ϵϰϯ ϮϯϳϱϬ.ϯϯ ϭϳϲϯϳ.ϰϰ ϯϵϮϴϳ.ϲϭ ϰϯϰϬϲ.ϳϴ ϯϱϰϱϰ.Ϯϰ ϭϭϭ ϭϭϭ.ϴϵϰ ϭϱϴ.ϳϰϲ ϭϳϯ ϭϳϬ.ϴϳϮ ϭϯϱ.Ϭϰϰ ϴϮ.ϴ ϮϭϬϴ.ϱϴ ϭϵϬϴ.ϰϴ Ϯϯϯϲ.ϱϲ
ϭĐ_ǆtǇpe_Dϯ_ďϯ_R -Ϯϱ.ϯ -ϭϯ.ϴ ϭϵϱϱϮ.ϲϲϲ ϭϵϲϱϲ.ϰϱ ϭϳϴϭϲ.ϴ ϭϬϳ ϭϬϴ.ϯϭϯ ϭϲϮ.ϴϴϰ ϭϳϱ.ϱ ϭϲϳ.ϴϰϰ ϭϯϲ.ϰϮϱ ϴϮ.ϴ ϮϭϬϴ.ϱϴ ϭϵϬϴ.ϰϴ Ϯϯϯϲ.ϱϲ
ϭĐ_ǆtǇpe_Dϲ_ďϯ_L -Ϯϴ.ϯ -ϭϭ.ϭϱ ϯϵϵϱϯ.Ϭϱϱ ϯϵϮϳϯ.ϵϰ ϯϵϰϵϲ.ϴ ϳϵϰϲϵ.ϯϰ ϳϲϰϳϮ.ϳϰ ϳϲϳϯϳ.ϲϭ Ϯϭϰ ϮϮϳ.ϯϳϲ ϭϲϵ.ϰϵϴ ϭϳϴ ϭϵϱ.ϵϱϲ ϮϬϬ.ϱϬϰ ϭϲϴ.ϯ Ϯϭϭϳ.ϭϴ ϮϮϬϬ.ϭϰ ϮϭϵϮ.ϱϱ
ϭĐ_ǆtǇpe_Dϲ_ďϯ_R -Ϯϴ.ϯ -ϭϭ.ϭϱ ϯϵϱϭϲ.Ϯϴϳ ϯϳϭϵϴ.ϴ ϯϳϮϰϬ.ϴϮ Ϯϭϱ Ϯϭϭ.ϴϴϱ ϭϲϰ.ϱϯϳ ϭϳϲ ϭϳϬ.ϵϮϰ ϭϵϱ.ϭϯ ϭϲϴ.ϯ Ϯϭϭϳ.ϭϴ ϮϮϬϬ.ϭϰ ϮϭϵϮ.ϱϱ
ϭĐ_ǆtǇpe_XϮ_ďϯ_L -Ϯϱ.ϯ -ϭϭ.ϱ ϮϵϲϯϮ.Ϯϯϳ ϮϳϬϲϳ.ϵϵ Ϯϲϲϰϱ.ϱϮ ϰϵϵϱϭ.ϭϳ ϰϲϯϲϵ.ϲϰ ϰϰϳϯϲ.ϰϱ ϭϱϳ ϭϱϲ.ϳϯϴ ϭϲϭ.ϴϬϯ ϭϳϳ ϭϲϬ.ϴϯϭ ϭϲϮ.ϭϴϰ ϭϭϲ.ϱ Ϯϯϯϭ.ϵϴ ϮϱϭϮ.ϭϬ ϮϲϬϯ.ϴϭ
ϭĐ_ǆtǇpe_XϮ_ďϯ_R -Ϯϱ.ϯ -ϭϭ.ϱ ϮϬϯϭϴ.ϵϯϰ ϭϵϯϬϭ.ϲϱ ϭϴϬϵϬ.ϵϰ ϭϮϬ ϭϬϰ.ϱϵϯ ϭϱϭ.ϯϬϴ ϭϳϲ ϭϳϮ.ϴϬϱ ϭϯϰ.ϳϳϮ ϭϭϲ.ϱ Ϯϯϯϭ.ϵϴ ϮϱϭϮ.ϭϬ ϮϲϬϯ.ϴϭ
ϭe_ǆtǇpe_Dϯ_ďϯ_L -Ϯϱ.ϯ -ϯϭ ϭϱϯϯϳ.ϯϯϯ ϭϳϴϯϮ.ϱϮ ϭϱϯϭϴ.ϭϯ ϯϬϲϬϴ.ϱϭ ϯϱϳϵϬ.ϲϯ ϯϬϭϯϵ.ϵϰ ϵϲ ϭϬϬ.ϴϳϮ ϭϲϭ.Ϯϯ ϭϱϭ.ϱ ϭϴϮ.ϳϮϳ ϭϮϳ.ϯϯ ϳϴ.Ϭ Ϯϱϰϴ.ϯϭ Ϯϭϳϵ.ϯϰ Ϯϱϴϳ.ϵϯ
ϭe_ǆtǇpe_Dϯ_ďϯ_R -Ϯϱ.ϯ -ϯϭ ϭϱϮϳϭ.ϭϴ ϭϳϵϱϴ.ϭ ϭϰϴϮϭ.ϴϭ ϵϱ ϵϳ.ϮϰϭϮ ϭϱϳ.Ϭϵϲ ϭϱϮ ϭϲϬ.ϰϱϳ ϭϮϱ.Ϯϲϯ ϳϴ.Ϭ Ϯϱϰϴ.ϯϭ Ϯϭϳϵ.ϯϰ Ϯϱϴϳ.ϵϯ
ϭe_ǆtǇpe_Dϱ_ďϯ_L_inverted on Si-Ϯϱ.ϯ -Ϯϲ.ϯ ϯϮϬϯϵ.Ϯϱϳ ϯϯϴϱϬ.ϵϮ ϯϱϱϳϴ.ϮϮ ϲϯϴϵϴ.ϭϰ ϲϳϭϵϳ.ϭϬ ϳϬϵϯϬ.ϭϳ ϭϵϴ ϭϵϰ.Ϯϰϭ ϭϲϰ.ϱϯϳ ϭϱϴ ϭϱϳ.ϯϳϰ ϭϴϵ.ϯϰϮ -ϭ.Ϭ -ϭϱ.ϲϱ -ϭϰ.ϴϴ -ϭϰ.ϭϬ
ϭe_ǆtǇpe_Dϱ_ďϯ_R_on Si -Ϯϱ.ϯ -Ϯϲ.ϯ ϯϭϴϱϴ.ϴϴϱ ϯϯϯϰϲ.ϭϳ ϯϱϯϱϭ.ϵϰ ϭϵϵ ϮϬϭ.ϭϱϲ ϭϲϰ.ϱϯϳ ϭϱϰ ϭϰϴ.ϵϴϯ ϭϴϴ.ϵϮϴ -ϭ.Ϭ -ϭϱ.ϲϱ -ϭϰ.ϴϴ -ϭϰ.ϭϬ
ϮĐ_ǆtǇpe_Dϯ_ďϯ_L -ϴ.Ϯ -ϭϯ.ϴ ϮϬϳϲϴ.ϯϵϵ ϮϭϭϮϭ.ϳϵ ϮϭϬϱϯ.ϭϭ ϰϬϴϵϳ.ϳϴ ϰϬϭϮϳ.ϴϲ ϰϭϱϴϭ.ϭϲ ϭϭϭ ϭϬϰ.ϱϳϱ ϭϴϭ.Ϭϳϰ ϭϳϴ ϭϳϵ.ϳϬϮ ϭϰϴ.ϬϬϭ ϭϰϳ.Ϭ ϯϱϵϰ.ϯϯ ϯϲϲϯ.Ϯϵ ϯϱϯϱ.Ϯϱ
ϮĐ_ǆtǇpe_Dϯ_ďϯ_R -ϴ.Ϯ -ϭϯ.ϴ ϮϬϭϮϵ.ϯϳϵ ϭϵϬϬϲ.Ϭϳ ϮϬϱϮϴ.Ϭϱ ϭϭϬ ϵϵ.Ϯϲϴϲ ϭϳϲ.ϯϬϰ ϭϳϱ ϭϳϬ.ϰϴϵ ϭϰϱ.ϯϵϯ ϭϰϳ.Ϭ ϯϱϵϰ.ϯϯ ϯϲϲϯ.Ϯϵ ϯϱϯϱ.Ϯϱ
ϮĐ_ǆtǇpe_Dϲ_ďϯ_L -ϭϭ.ϭϱ -ϭϭ.ϭϱ ϰϬϮϭϭ.Ϭϱϭ ϯϲϭϭϴ.ϲϱ ϯϵϯϴϬ.ϱϴ ϳϵϬϱϮ.ϲϲ ϳϰϱϳϯ.ϴϬ ϳϵϯϯϴ.ϴϯ Ϯϭϴ Ϯϭϭ.Ϯϯϴ ϭϳϮ.ϴϬϱ ϭϳϲ ϭϱϱ.ϴϳ ϭϵϵ.ϲϳϳ Ϯϲϱ.Ϯ ϯϯϱϰ.ϳϬ ϯϱϱϲ.ϭϴ ϯϯϰϮ.ϲϬ
ϮĐ_ǆtǇpe_Dϲ_ďϯ_R -ϭϭ.ϭϱ -ϭϭ.ϭϱ ϯϴϴϰϭ.ϲϬϵ ϯϴϰϱϱ.ϭϱ ϯϵϵϱϴ.Ϯϱ ϮϮϬ Ϯϭϱ.ϳϲϲ ϭϳϯ.ϲϯϮ ϭϳϰ ϭϲϯ.ϰϱϳ ϮϬϭ.ϯϯϭ Ϯϲϱ.Ϯ ϯϯϱϰ.ϳϬ ϯϱϱϲ.ϭϴ ϯϯϰϮ.ϲϬ
ϮĐ_ǆtǇpe_Dϲ_dϭ_L -ϭϭ.ϭϱ -ϭϭ.ϭϱ ϰϬϮϭϭ.Ϭϱϭ ϰϬϮϮϵ.ϲϮ ϰϰϭϳϲ.ϵϰ ϳϵϬϱϮ.ϲϲ ϴϭϮϮϯ.ϰϬ ϴϵϭϰϵ.ϲϮ Ϯϭϴ Ϯϯϱ.ϵϰϮ ϭϳϲ.ϭϭϯ ϭϳϲ ϭϱϱ.ϭϱϮ ϮϭϮ.ϵϬϲ Ϯϲϱ.Ϯ ϯϯϱϰ.ϳϬ ϯϮϲϱ.Ϭϰ Ϯϵϳϰ.ϳϱ
ϮĐ_ǆtǇpe_Dϲ_dϭ_R -ϭϭ.ϭϱ -ϭϭ.ϭϱ ϯϴϴϰϭ.ϲϬϵ ϰϬϵϵϯ.ϳϴ ϰϰϵϳϮ.ϲϵ ϮϮϬ Ϯϰϭ.ϰϮϰ ϭϳϰ.ϰϱϵ ϭϳϰ ϭϲϬ.ϭϲϯ Ϯϭϱ.ϴ Ϯϲϱ.Ϯ ϯϯϱϰ.ϳϬ ϯϮϲϱ.Ϭϰ Ϯϵϳϰ.ϳϱ
ϮĐ_ǆtǇpe_Dϲ_dϮ_L -ϭϭ.ϭϱ -ϭϭ.ϭϱ ϰϬϮϭϭ.Ϭϱϭ ϰϬϱϱϲ.ϭϮ ϰϰϴϬϰ.ϱϭ ϳϵϬϱϮ.ϲϲ ϴϭϳϴϵ.Ϯϵ ϴϴϭϵϵ.ϯϴ Ϯϭϴ Ϯϰϲ.ϯϲϵ ϭϳϮ.ϴϬϱ ϭϳϲ ϭϱϮ.ϲϯ Ϯϭϱ.ϯϴϳ Ϯϲϱ.Ϯ ϯϯϱϰ.ϳϬ ϯϮϰϮ.ϰϱ ϯϬϬϲ.ϴϬ
ϮĐ_ǆtǇpe_Dϲ_dϮ_R -ϭϭ.ϭϱ -ϭϭ.ϭϱ ϯϴϴϰϭ.ϲϬϵ ϰϭϮϯϯ.ϭϳ ϰϯϯϵϰ.ϴϲ ϮϮϬ ϮϰϬ.ϳϲϭ ϭϳϭ.ϭϱϮ ϭϳϰ ϭϱϳ.ϳϵϴ Ϯϭϭ.ϲϲϲ Ϯϲϱ.Ϯ ϯϯϱϰ.ϳϬ ϯϮϰϮ.ϰϱ ϯϬϬϲ.ϴϬ
ϮĐ_ǆtǇpe_XϮ_ďϯ_L -ϴ.Ϯ -ϵ.Ϯ ϮϵϮϴϰ.ϭϯϮ ϮϵϴϴϮ.ϭϵ ϯϬϮϱϭ.ϳϭ ϱϴϯϬϯ.ϰϳ ϱϵϱϵϭ.ϳϳ ϲϬϮϳϯ.ϵϵ ϭϲϲ ϭϱϵ.ϲϭ ϭϳϰ.ϵϴϰ ϭϳϯ ϭϳϭ.ϰϰϰ ϭϳϯ.ϭϴ ϭϵϱ.Ϭ ϯϯϰϰ.ϱϳ ϯϮϳϮ.Ϯϲ ϯϮϯϱ.Ϯϯ
ϮĐ_ǆtǇpe_XϮ_ďϯ_R -ϴ.Ϯ -ϵ.Ϯ ϮϵϬϭϵ.ϯϯϵ ϮϵϳϬϵ.ϱϴ ϯϬϬϮϮ.Ϯϴ ϭϱϵ ϭϱϳ.ϯϳϴ ϭϳϲ.ϳϴϴ ϭϳϭ ϭϳϭ.ϴϭϳ ϭϳϮ.ϳϮϵ ϭϵϱ.Ϭ ϯϯϰϰ.ϱϳ ϯϮϳϮ.Ϯϲ ϯϮϯϱ.Ϯϯ
Ϯe_ǆtǇpe_Dϲ_ďϯ_L -ϭϭ.ϭϱ -Ϯϴ.ϯ ϯϴϮϲϯ.ϳϴ ϯϲϴϳϵ.ϱ ϰϬϰϲϭ.ϰ ϳϱϭϴϬ.ϲϲ ϳϭϵϲϭ.ϳϯ ϳϴϵϱϴ.ϳϯ Ϯϭϴ ϮϬϳ.ϵϳϰ ϭϳϰ.ϰϱϵ ϭϲϵ ϭϲϳ.ϱϲϰ ϮϬϯ.ϯϵϴ Ϯϰϱ.ϰ ϯϮϲϰ.ϰϬ ϯϰϭϬ.ϰϮ ϯϭϬϴ.ϮϬ
Ϯe_ǆtǇpe_Dϲ_ďϯ_R -ϭϭ.ϭϱ -Ϯϴ.ϯ ϯϲϵϭϲ.ϴϳϳ ϯϱϬϴϮ.Ϯϯ ϯϴϰϵϳ.ϯϯ Ϯϭϵ ϮϬϰ.ϰϬϮ ϭϳϬ.ϯϮϱ ϭϲϱ ϭϲϬ.Ϭϭϯ ϭϵϳ.ϲϭ Ϯϰϱ.ϰ ϯϮϲϰ.ϰϬ ϯϰϭϬ.ϰϮ ϯϭϬϴ.ϮϬ
ϯC_ǆtǇpe_Dϯ_ďϯ_L ϴ.ϵ -ϭϯ.ϴ ϭϳϭϳϴ.Ϭϯ ϭϳϰϬϬ.Ϭϰ ϭϳϵϬϮ.ϳ ϯϰϮϮϲ.ϵϯ ϯϰϯϬϬ.ϲϵ ϯϲϬϱϰ.ϳϮ ϭϬϲ ϴϵ.ϯϬϰ ϭϳϮ.ϰϴϴ ϭϲϯ ϭϲϵ.ϵ ϭϯϳ.ϳϲϭ ϭϮϴ.Ϭ ϯϳϯϵ.ϳϱ ϯϳϯϭ.ϳϬ ϯϱϱϬ.ϭϲ
ϯC_ǆtǇpe_Dϯ_ďϯ_R ϴ.ϵ -ϭϯ.ϴ ϭϳϬϰϴ.ϴϵϴ ϭϲϵϬϬ.ϲϱ ϭϴϭϱϮ.Ϭϭ ϭϬϲ ϴϳ.ϵϳϯϮ ϭϲϴ.ϲϳϮ ϭϲϰ ϭϲϳ.ϲϲϯ ϭϯϳ.ϳϲϭ ϭϮϴ.Ϭ ϯϳϯϵ.ϳϱ ϯϳϯϭ.ϳϬ ϯϱϱϬ.ϭϲ
ϯC_ǆtǇpe_Dϱ_ďϯ_L ϴ.ϵ -ϵ.Ϯ ϯϲϴϭϲ.ϲϯϳ ϯϴϴϲϳ.ϲϳ ϰϳϱ.ϵϯϳϮ ϳϮϮϬϮ.Ϯϳ ϳϱϳϱϯ.ϯϰ ϯϴϮϴϳ.ϯϮ Ϯϭϱ Ϯϭϭ.ϭϲϰ ϭϳϰ.ϬϴϮ ϭϲϳ ϭϲϵ.ϵϳϯ ϴϳ.ϵϰϯϭ Ϯϯϰ.Ϭ ϯϮϰϬ.ϵϬ ϯϬϴϴ.ϵϳ ϲϭϭϭ.ϲϴ
ϯC_ǆtǇpe_Dϱ_ďϯ_R ϴ.ϵ -ϵ.Ϯ ϯϱϯϴϱ.ϲϯ ϯϲϴϴϱ.ϲϴ ϯϳϴϭϭ.ϯϴ Ϯϭϭ ϮϬϬ.ϮϮϳ ϭϳϰ.ϬϴϮ ϭϲϮ ϭϲϵ.ϰϲϰ ϭϵϱ.ϳϯ Ϯϯϰ.Ϭ ϯϮϰϬ.ϵϬ ϯϬϴϴ.ϵϳ ϲϭϭϭ.ϲϴ
ϯC_ǆtǇpe_Dϲ_ďϯ_L ϱ.ϴϱ -ϭϭ.ϭϱ ϯϲϵϵϰ.ϭϳϯ ϯϴϮϲϮ.ϵϲ ϰϮϮϮϮ.ϰϰ ϳϮϮϴϵ.ϱϬ ϳϯϰϯϲ.Ϯϵ ϳϳϴϯϬ.Ϭϲ Ϯϭϵ ϮϬϱ.ϳϮϰ ϭϳϯ.ϲϯϮ ϭϲϵ ϭϳϭ.ϲϳϭ ϮϬϳ.ϱϯϮ Ϯϰϳ.Ϭ ϯϰϭϲ.ϴϮ ϯϯϲϯ.ϰϲ ϯϭϳϯ.ϱϴ
ϯC_ǆtǇpe_Dϲ_ďϯ_R ϱ.ϴϱ -ϭϭ.ϭϱ ϯϱϮϵϱ.ϯϯ ϯϱϭϳϯ.ϯϯ ϯϱϲϬϳ.ϲϮ Ϯϭϳ ϮϬϮ.ϱϳϳ ϭϲϳ.ϴϰϰ ϭϲϱ ϭϲϭ.ϯϬϮ ϭϵϬ.ϱϴϮ Ϯϰϳ.Ϭ ϯϰϭϲ.ϴϮ ϯϯϲϯ.ϰϲ ϯϭϳϯ.ϱϴ
ϯC_ǆtǇpe_XϮ_ďϯ_L ϴ.ϵ -ϭϭ.ϱ ϮϱϮϭϰ.Ϭϱϱ Ϯϳϭϭϴ.Ϯϰ Ϯϳϭϴϳ.ϴϭ ϱϬϱϭϯ.ϰϵ ϱϰϱϭϲ.ϭϲ ϱϰϰϱϲ.ϭϳ ϭϱϮ ϭϰϭ.ϱϳϵ ϭϳϮ.Ϯϳϴ ϭϲϱ ϭϲϳ.ϭϵϯ ϭϲϱ.ϬϲϮ ϭϳϵ.Ϭ ϯϱϰϯ.ϲϭ ϯϮϴϯ.ϰϯ ϯϮϴϳ.Ϭϱ
ϯC_ǆtǇpe_XϮ_ďϯ_R ϴ.ϵ -ϭϭ.ϱ ϮϱϮϵϵ.ϰϯϯ Ϯϳϯϵϳ.ϵϮ ϮϳϮϲϴ.ϯϲ ϭϱϰ ϭϰϯ.ϭϲ ϭϳϬ.ϰϳϰ ϭϲϰ ϭϲϳ.ϯϲϭ ϭϲϰ.ϲϭϭ ϭϳϵ.Ϭ ϯϱϰϯ.ϲϭ ϯϮϴϯ.ϰϯ ϯϮϴϳ.Ϭϱ
ϯe_ǆtǇpe_Dϯ_ďϯ_L ϴ.ϵ -ϯϭ ϭϳϵϯϯ.ϯϭ ϭϴϲϭϵ.ϵϲ ϭϴϲϴϮ.Ϭϵ ϯϰϳϬϱ.ϱϴ ϯϲϴϯϴ.Ϭϲ ϯϲϲϱϱ.Ϯϴ ϵϳ ϵϳ.ϲϱϭϱ ϭϳϲ.ϯϬϰ ϭϳϰ ϭϳϬ.ϰϲϴ ϭϰϬ.ϰϯϮ ϭϮϰ.Ϭ ϯϱϳϮ.ϵϭ ϯϯϲϲ.Ϭϴ ϯϯϴϮ.ϴϳ
ϯe_ǆtǇpe_Dϯ_ďϯ_R ϴ.ϵ -ϯϭ ϭϲϳϳϮ.Ϯϲϴ ϭϴϮϭϴ.ϭ ϭϳϵϳϯ.ϭϴ ϭϬϭ ϵϯ.ϰϲϯϮ ϭϳϬ.ϭϵϴ ϭϳϬ ϭϳϭ.ϯϳϰ ϭϯϳ.ϯϴ ϭϮϰ.Ϭ ϯϱϳϮ.ϵϭ ϯϯϲϲ.Ϭϴ ϯϯϴϮ.ϴϳ
ϯe_ǆtǇpe_Dϱ_ďϯ_L ϴ.ϵ -Ϯϲ.ϯ ϯϳϱϴϯ.ϳϴϮ ϯϴϴϰϵ.ϳϴ ϰϬϭϯϱ.ϳϱ ϳϯϭϵϱ.ϵϬ ϳϰϳϭϮ.Ϭϴ ϳϴϬϰϵ.ϲϰ ϮϬϱ ϭϵϵ.ϰϱϰ ϭϴϮ.Ϯ ϭϲϳ ϭϳϴ.Ϯϭϰ ϮϬϬ.ϲϵϭ Ϯϰϱ.Ϭ ϯϯϰϳ.ϭϴ ϯϮϳϵ.Ϯϲ ϯϭϯϵ.Ϭϯ
ϯe_ǆtǇpe_Dϱ_ďϯ_R ϴ.ϵ -Ϯϲ.ϯ ϯϱϲϭϮ.ϭϭϴ ϯϱϴϲϮ.ϯ ϯϳϵϭϯ.ϴϵ ϮϬϰ ϭϵϰ.ϰϱϴ ϭϳϰ.ϵϴϰ ϭϲϮ ϭϳϭ.ϰϵϰ ϭϵϱ.Ϯϳϵ Ϯϰϱ.Ϭ ϯϯϰϳ.ϭϴ ϯϮϳϵ.Ϯϲ ϯϭϯϵ.Ϭϯ
ϯe_ǆtǇpe_Dϲ_ďϯ_L ϱ.ϴϱ -Ϯϴ.ϯ ϯϱϴϵϭ.ϳϮϱ ϯϳϱϬϲ.Ϭϲ ϯϲϳϳϵ.ϯϲ ϳϮϳϭϴ.ϴϬ ϳϰϭϳϰ.ϱϵ ϳϰϰϮϵ.ϲϴ ϮϬϴ Ϯϭϰ.ϭϰϲ ϭϳϭ.ϵϳϵ ϭϳϮ ϭϵϬ.ϵϵϱ ϭϵϮ.Ϯϯϲ Ϯϰϭ.Ϭ ϯϯϭϰ.ϭϰ ϯϮϰϵ.Ϭϵ ϯϮϯϳ.ϵϲ
ϯe_ǆtǇpe_Dϲ_ďϯ_R ϱ.ϴϱ -Ϯϴ.ϯ ϯϲϴϮϳ.Ϭϳϰ ϯϲϲϲϴ.ϱϮ ϯϳϲϱϬ.ϯϭ ϮϬϴ ϮϬϯ.ϯϵϴ ϭϳϯ.ϲϯϮ ϭϲϵ ϭϲϳ.ϳϲϴ ϭϵϰ.ϳϭϲ Ϯϰϭ.Ϭ ϯϯϭϰ.ϭϰ ϯϮϰϵ.Ϭϵ ϯϮϯϳ.ϵϲ
ϰĐ_ǆtǇpe_Dϯ_ďϯ_L Ϯϲ -ϭϯ.ϴ ϭϲϵϵϲ.ϳϵ ϭϳϬϵϬ.ϭϭ ϭϳϰϬϭ.ϴϰ ϯϰϱϳϬ.Ϭϰ ϯϯϱϰϴ.ϵϱ ϯϰϲϬϲ.ϭϬ ϮϭϬ.ϲ Ϯϭϯ.ϭϰϵ ϭϲϱ.ϯϲϰ ϭϲϮ ϭϱϵ.ϲϮϭ ϭϯϱ.ϭϴϱ ϴϬ.ϵ Ϯϯϯϵ.ϴϴ Ϯϰϭϭ.ϭϬ Ϯϯϯϳ.ϰϰ
ϰĐ_ǆtǇpe_Dϯ_ďϯ_R Ϯϲ -ϭϯ.ϴ ϭϳϱϳϯ.Ϯϱϯ ϭϲϰϱϴ.ϴϰ ϭϳϮϬϰ.Ϯϳ ϮϭϬ ϮϬϴ.ϴϬϮ ϭϲϱ.ϯϲϰ ϭϲϮ ϭϱϴ.ϭϵϳ ϭϯϰ.ϳϳϮ ϴϬ.ϵ Ϯϯϯϵ.ϴϴ Ϯϰϭϭ.ϭϬ Ϯϯϯϳ.ϰϰ
ϰĐ_ǆtǇpe_Dϱ_ďϯ_L Ϯϲ -ϵ.Ϯ ϯϱϳϲϵ.ϰϭϱ ϯϰϲϰϭ.ϵϮ ϯϲϴϰϲ.ϯϲ ϲϵϯϲϵ.ϱϴ ϲϴϲϭϳ.ϳϴ ϳϭϵϳϵ.ϱϰ Ϯϭϭ ϮϬϮ.ϵϲϵ ϭϲϯ.ϳϭ ϭϲϬ ϭϱϵ.ϯϴϭ ϭϵϯ.ϴϴϵ ϭϱϲ.ϯ ϮϮϱϯ.ϯϭ ϮϮϳϴ.ϬϬ Ϯϭϳϭ.ϲϬ
ϰĐ_ǆtǇpe_Dϱ_ďϯ_R Ϯϲ -ϵ.Ϯ ϯϯϲϬϬ.ϭϲϰ ϯϯϵϳϱ.ϴϳ ϯϱϭϯϯ.ϭϴ ϮϬϳ ϭϵϵ.ϴϬϰ ϭϱϵ.ϱϳϲ ϭϲϱ ϭϱϰ.ϰϳϲ ϭϴϴ.ϵϮϴ ϭϱϲ.ϯ ϮϮϱϯ.ϯϭ ϮϮϳϴ.ϬϬ Ϯϭϳϭ.ϲϬ
ϰĐ_ǆtǇpe_Dϲ_ďϯ_L Ϯϯ -ϭϭ.ϭϱ ϯϱϮϵϱ.ϰϬϯ ϯϮϵϮϭ.Ϯϱ ϯϰϵϴϴ.Ϯϱ ϲϵϵϰϲ.ϳϯ ϲϱϰϰϱ.ϵϬ ϲϵϯϮϳ.ϳϰ ϮϬϳ ϮϬϬ.ϴϯϭ ϭϲϱ.ϯϲϰ ϭϲϮ ϭϰϳ.ϴϱ ϭϴϴ.ϵϮϴ ϭϲϬ.ϴ ϮϮϵϴ.ϳϲ Ϯϰϱϲ.ϴϱ Ϯϯϭϵ.Ϯϴ
ϰĐ_ǆtǇpe_Dϲ_ďϯ_R Ϯϯ -ϭϭ.ϭϱ ϯϰϲϱϭ.ϯϮϮ ϯϮϱϮϰ.ϲϱ ϯϰϯϯϵ.ϰϴ ϮϬϵ ϭϴϴ.ϭϯϳ ϭϲϱ.ϯϲϰ ϭϲϭ ϭϱϲ.ϴϰϰ ϭϴϲ.Ϭϯϱ ϭϲϬ.ϴ ϮϮϵϴ.ϳϲ Ϯϰϱϲ.ϴϱ Ϯϯϭϵ.Ϯϴ
ϰĐ_ǆtǇpe_XϮ_ďϯ_L Ϯϲ -ϭϭ.ϱ ϮϱϮϭϳ.ϱϰ Ϯϱϲϵϰ.ϳϯ ϮϱϲϬϱ.ϰϭ ϱϬϭϭϲ.ϴϬ ϱϬϭϴϰ.ϳϲ ϱϭϬϳϰ.ϭϬ ϭϱϰ ϭϱϬ.ϲϭϯ ϭϱϵ.ϱϳϲ ϭϲϴ ϭϰϴ.ϵϲϳ ϭϱϵ.ϭϲϯ ϭϮϭ.Ϭ Ϯϰϭϰ.ϳϮ Ϯϰϭϭ.ϰϱ Ϯϯϲϵ.ϰϲ
ϰĐ_ǆtǇpe_XϮ_ďϯ_R Ϯϲ -ϭϭ.ϱ Ϯϰϴϵϵ.Ϯϱϲ ϮϰϰϵϬ.ϬϮ Ϯϱϰϲϴ.ϲϴ ϭϱϯ ϭϰϲ.ϱϮϮ ϭϲϮ.Ϭϱϳ ϭϱϴ ϭϰϲ.ϭϲϭ ϭϱϵ.ϭϲϯ ϭϮϭ.Ϭ Ϯϰϭϰ.ϳϮ Ϯϰϭϭ.ϰϱ Ϯϯϲϵ.ϰϲ
ϰe_ǆtǇpe_Dϯ_ďϯ_L Ϯϲ -ϯϭ ϭϴϰϵϯ.ϲϵ ϭϵϯϰϬ.Ϯϳ ϭϲϵϳϭ.ϭϱ ϯϲϰϬϮ.ϱϯ ϯϳϲϴϰ.ϴϯ ϯϯϰϳϭ.ϵϲ ϭϬϰ ϵϰ.Ϯϱϳϱ ϭϲϰ.ϱϯϳ ϭϳϬ ϭϳϬ.ϳϯϴ ϭϯϱ.ϱϵϴ ϵϭ.Ϭ Ϯϰϵϵ.ϭϮ Ϯϰϭϰ.Ϭϵ Ϯϳϭϳ.ϵϯ
ϰe_ǆtǇpe_Dϯ_ďϯ_R Ϯϲ -ϯϭ ϭϳϵϬϴ.ϴϰϯ ϭϴϯϰϰ.ϱϲ ϭϲϱϬϬ.ϴϭ ϵϵ ϴϴ.Ϭϱϲϯ ϭϲϮ.ϴϴϰ ϭϳϬ ϭϲϵ.Ϭϴϱ ϭϯϯ.ϱϯϭ ϵϭ.Ϭ Ϯϰϵϵ.ϭϮ Ϯϰϭϰ.Ϭϵ Ϯϳϭϳ.ϵϯ
ϰe_ǆtǇpe_Dϱ_ďϯ_L Ϯϲ -Ϯϲ.ϯ ϯϲϮϬϬ.ϯϵϲ ϯϰϯϰϱ.ϭϳ ϯϰϯϲϲ.ϭϱ ϳϮϭϳϭ.ϯϬ ϲϴϭϵϲ.ϳϴ ϲϴϯϴϮ.Ϯϳ ϮϬϴ ϮϭϬ.ϱϭϳ ϭϱϵ.ϱϳϲ ϭϳϮ ϭϰϴ.ϭϲϲ ϭϴϴ.ϭϬϮ ϭϴϱ.ϵ Ϯϱϳϱ.ϳϮ ϮϳϮϱ.ϴϯ Ϯϳϭϴ.ϰϰ
ϰe_ǆtǇpe_Dϱ_ďϯ_R Ϯϲ -Ϯϲ.ϯ ϯϱϵϳϬ.ϵϬϰ ϯϯϴϱϭ.ϲϭ ϯϰϬϭϲ.ϭϯ ϮϬϲ ϮϬϭ.ϲϵϱ ϭϱϴ.ϳϰϵ ϭϲϳ ϭϱϯ.ϱϳϯ ϭϴϴ.ϭϬϮ ϭϴϱ.ϵ Ϯϱϳϱ.ϳϮ ϮϳϮϱ.ϴϯ Ϯϳϭϴ.ϰϰ
ϰe_ǆtǇpe_Dϲ_ďϯ_L Ϯϯ -Ϯϴ.ϯ ϯϳϮϯϬ.ϯϴ ϯϱϭϵϰ.ϳϭ ϯϰϰϵϱ.ϯϱ ϳϯϵϲϲ.ϵϰ ϲϳϴϬϬ.ϱϬ ϲϵϬϬϲ.ϰϯ ϮϬϳ Ϯϭϱ.ϴ ϭϲϱ.ϯϲϰ ϭϲϵ ϭϵϮ.ϲϰϵ ϭϵϬ.ϭϲϵ ϭϴϮ.ϵ ϮϰϳϮ.ϳϴ Ϯϲϵϳ.ϲϴ ϮϲϱϬ.ϱϰ
ϰe_ǆtǇpe_Dϲ_ďϯ_R Ϯϯ -Ϯϴ.ϯ ϯϲϳϯϲ.ϱϲϮ ϯϮϲϬϱ.ϴ ϯϰϱϭϭ.Ϭϴ ϮϭϬ ϮϬϭ.ϳϬϭ ϭϱϵ.ϱϳϲ ϭϲϯ ϭϰϳ.ϯϰϭ ϭϴϴ.ϵϮϴ ϭϴϮ.ϵ ϮϰϳϮ.ϳϴ Ϯϲϵϳ.ϲϴ ϮϲϱϬ.ϱϰ
ϰe_ǆtǇpe_XϮ_ďϯ_L Ϯϲ -Ϯϴ.ϲ Ϯϳϱϴϵ.ϲϰϲ Ϯϴϯϱϴ.ϯϵ Ϯϲϱϵϴ.ϳϯ ϱϮϵϴϴ.ϭϴ ϱϯϮϯϰ.Ϭϵ ϱϭϱϬϳ.ϱϮ ϭϱϰ ϭϲϲ.ϭϵϭ ϭϲϮ.ϴϴϰ ϭϲϲ ϭϵϳ.ϲϭ ϭϲϮ.ϰϳ ϭϰϬ.Ϯ Ϯϲϰϲ.ϰϯ Ϯϲϯϰ.ϮϬ ϮϳϮϮ.ϱϬ

CoŶduĐtaŶaŶĐe/area;µS/µŵ²Ϳoǀerlap Area ;Ŷŵ²ͿĐhip ĐoodiŶates ;ŵŵͿ Total area ;Ŷŵ²Ϳ Bottoŵ ǀertiĐal ǁidth ;ŶŵͿ Top horizoŶtal ǁidth;ŶŵͿ CoŶduĐtaŶĐe
;µSͿ

BlaĐkďird ϭ
Iŵage Ŷaŵe ǆ Ǉ IŵageJ Threshold SegŵeŶt IŵageJ Threshold SegŵeŶt IŵageJ Threshold SegŵeŶt IŵageJ Threshold SegŵeŶt IŵageJ Threshold SegŵeŶt

CoŶduĐtaŶaŶĐe/area;µS/µŵ²Ϳoǀerlap Area ;Ŷŵ²ͿĐhip ĐoodiŶates ;ŵŵͿ Total area ;Ŷŵ²Ϳ Bottoŵ ǀertiĐal ǁidth ;ŶŵͿ Top horizoŶtal ǁidth;ŶŵͿ CoŶduĐtaŶĐe
;µSͿ

ϰe_ǆtǇpe_XϮ_ďϯ_R Ϯϲ -Ϯϴ.ϲ Ϯϱϯϵϴ.ϱϯϴ Ϯϰϴϳϱ.ϳ ϮϰϵϬϴ.ϳϵ ϭϱϰ ϭϰϰ.ϰϮϱ ϭϱϳ.ϵϮϯ ϭϲϳ ϭϱϭ.ϲϴϲ ϭϱϵ.ϭϲϯ ϭϰϬ.Ϯ Ϯϲϰϲ.ϰϯ Ϯϲϯϰ.ϮϬ ϮϳϮϮ.ϱϬ
ϭe_ǆtǇpe_Dϯ_ďϯ_jj_left -Ϯϱ.ϯ -ϯϭ ϭϱϯϯϳ.ϯϯϯ ϭϵϳϭϱ.ϵϯ ϭϱϵϳϯ.ϳϯ ϯϬϲϬϴ.ϱϭ ϯϴϵϯϰ.ϯϭ ϯϬϳϴϵ.ϯϵ ϵϲ ϭϭϭ.ϲϮϭ ϭϲϰ.ϱϯϳ ϭϱϭ.ϱ ϭϴϬ.Ϯϰϳ ϭϮϵ.ϴϭϭ ϳϴ.Ϭ Ϯϱϰϴ.ϯϭ ϮϬϬϯ.ϯϳ Ϯϱϯϯ.ϯϰ
ϭe_ǆtǇpe_Dϯ_ďϯ_jj_right -Ϯϱ.ϯ -ϯϭ ϭϱϮϳϭ.ϭϴ ϭϵϮϭϴ.ϯϴ ϭϰϴϭϱ.ϲϲ ϵϱ ϭϭϯ.ϱϲ ϭϱϱ.ϰϰϮ ϭϱϮ ϭϰϲ.ϵϴϱ ϭϮϰ.ϰϯϲ ϳϴ.Ϭ Ϯϱϰϴ.ϯϭ ϮϬϬϯ.ϯϳ Ϯϱϯϯ.ϯϰ
ϭe_ǆtǇpe_Dϲ_ďϯ_jj_left -Ϯϱ.ϯ -Ϯϲ.ϯ ϯϮϯϬϰ.ϰϴϳ ϯϭϲϬϰ.ϯ ϯϵϳ.ϴϳϯϰ ϲϱϭϳϮ.ϰϲ ϲϮϵϲϴ.ϭϬ ϴϭϮ.ϭϱ ϮϬϬ ϭϴϯ.ϱϳϮ ϭϲϱ.ϯϲϰ ϭϲϬ ϭϲϭ.Ϭϳϳ ϴϬ.ϰϬϴϮ ϭϲϱ.ϰ Ϯϱϯϳ.ϯϴ ϮϲϮϲ.Ϯϭ ϮϬϯϲϭϱ.ϴϲ
ϭe_ǆtǇpe_Dϲ_ďϯ_jj_right -Ϯϱ.ϯ -Ϯϲ.ϯ ϯϮϴϲϳ.ϵϳϯ ϯϭϯϲϯ.ϴϭ ϰϭϰ.ϮϴϬϲ ϮϬϮ ϭϴϰ.ϲϬϴ ϭϲϱ.ϯϲϰ ϭϱϰ ϭϱϴ.Ϯϭϱ ϴϯ.ϱϬϴϴ ϭϲϱ.ϰ Ϯϱϯϳ.ϯϴ ϮϲϮϲ.Ϯϭ ϮϬϯϲϭϱ.ϴϲ
ϭe_ǆtǇpe_XϮ_ďϯ_jj_left -Ϯϱ.ϯ -Ϯϴ.ϲ ϮϯϬϲϯ.ϲϵϯ ϮϮϯϱϭ.ϲϲ ϰϬϱ.ϯϵϯϰ ϰϲϯϴϬ.ϲϴ ϰϲϰϮϮ.ϱϳ ϳϵϵ.ϴϱ ϭϰϱ ϭϮϭ.ϳϳϱ ϭϲϰ.ϱϯϳ ϭϱϲ.ϱ ϭϲϯ.ϴϯϱ ϴϭ.ϴϱϱϮ ϭϮϱ.Ϭ Ϯϲϵϱ.Ϭϵ ϮϲϵϮ.ϲϲ ϭϱϲϮϳϵ.ϱϳ
ϭe_ǆtǇpe_XϮ_ďϯ_jj_right -Ϯϱ.ϯ -Ϯϴ.ϲ Ϯϯϯϭϲ.ϵϴϱ ϮϰϬϳϬ.ϵϭ ϯϵϰ.ϰϱϱϯ ϭϰϲ ϭϯϰ.Ϭϭ ϭϲϬ.ϰϬϯ ϭϱϳ ϭϱϵ.ϰϳϮ ϳϵ.ϳϴϴϭ ϭϮϱ.Ϭ Ϯϲϵϱ.Ϭϵ ϮϲϵϮ.ϲϲ ϭϱϲϮϳϵ.ϱϳ
Ϯe_ǆtǇpe_Dϯ_ďϯ_jj_left -ϴ.Ϯ -ϯϭ ϭϴϲϰϲ.ϵϱ ϭϴϲϰϵ.ϱϳ ϮϬϵϳϬ.ϯϵ ϯϴϭϬϯ.ϵϱ ϯϲϯϰϯ.ϳϬ ϰϯϯϭϮ.ϭϱ ϭϭϯ ϵϱ.ϴϵϴϴ ϭϳϬ.ϯϮϱ ϭϳϴ ϭϲϮ.ϳϳϮ ϭϰϱ.ϵϯϰ ϭϰϳ.Ϭ ϯϴϱϳ.ϴϳ ϰϬϰϰ.ϳϮ ϯϯϵϯ.ϵϳ
Ϯe_ǆtǇpe_Dϯ_ďϯ_jj_right -ϴ.Ϯ -ϯϭ ϭϵϰϱϳ.ϬϬϰ ϭϳϲϵϰ.ϭϯ ϮϮϯϰϭ.ϳϱ ϭϭϬ ϵϭ.ϴϵϰϮ ϭϳϭ.ϵϳϵ ϭϳϱ ϭϲϱ.ϴϴϵ ϭϱϬ.Ϭϲϴ ϭϰϳ.Ϭ ϯϴϱϳ.ϴϳ ϰϬϰϰ.ϳϮ ϯϯϵϯ.ϵϳ
Ϯe_ǆtǇpe_Dϱ_ďϯ_jj_left -ϴ.Ϯ -Ϯϲ.ϯ ϯϳϬϰϲ.ϰϮϱ ϯϳϮϵϱ.ϴϭ ϰϬϯϳϬ.ϰϴ ϳϰϰϭϱ.Ϭϵ ϳϮϱϵϯ.ϱϭ ϳϵϱϱϳ.ϱϵ Ϯϭϴ ϮϬϭ.ϴϴϵ ϭϳϭ.ϵϳϵ ϭϳϭ ϭϲϵ.ϯϵϮ ϮϬϮ.ϱϳϭ -ϭ.Ϭ -ϭϯ.ϰϰ -ϭϯ.ϳϴ -ϭϮ.ϱϳ
Ϯe_ǆtǇpe_Dϱ_ďϯ_jj_right -ϴ.Ϯ -Ϯϲ.ϯ ϯϳϯϲϴ.ϲϲϮ ϯϱϮϵϳ.ϳ ϯϵϭϴϳ.ϭϭ Ϯϭϳ ϮϭϬ.ϳϵϳ ϭϳϬ.ϯϮϱ ϭϳϮ ϭϲϭ.ϵϮϱ ϭϵϵ.ϲϳϳ -ϭ.Ϭ -ϭϯ.ϰϰ -ϭϯ.ϳϴ -ϭϮ.ϱϳ
Ϯe_ǆtǇpe_XϮ_ďϯ_jj_left -ϴ.Ϯ -Ϯϴ.ϲ Ϯϲϵϵϲ.ϳϵ ϮϳϬϯϴ.ϰϵ Ϯϵϴϱϯ.ϱ ϱϰϱϬϳ.Ϯϭ ϱϮϮϵϰ.ϯϵ ϱϴϮϰϲ.ϳϲ ϭϲϬ ϭϱϮ.ϭϭϱ ϭϳϮ.ϴϬϱ ϭϲϴ ϭϲϰ.ϳϳϴ ϭϳϭ.ϵϳϵ ϭϵϱ.Ϭ ϯϱϳϳ.ϱϭ ϯϳϮϴ.ϴϵ ϯϯϰϳ.ϴϯ
Ϯe_ǆtǇpe_XϮ_ďϯ_jj_right -ϴ.Ϯ -Ϯϴ.ϲ ϮϳϱϭϬ.ϰϭϲ ϮϱϮϱϱ.ϵϭ Ϯϴϯϵϯ.Ϯϲ ϭϱϴ ϭϱϬ.ϰϴϭ ϭϲϳ.Ϭϭϴ ϭϲϳ ϭϰϴ.ϵϴ ϭϲϳ.ϴϰϰ ϭϵϱ.Ϭ ϯϱϳϳ.ϱϭ ϯϳϮϴ.ϴϵ ϯϯϰϳ.ϴϯ
ϯC_ǆtǇpe_Dϱ_aϭ_left_JJ ϴ.ϵ -ϵ.Ϯ ϯϲϴϭϲ.ϲϯϳ ϯϮϵϮϴ.ϰϲ ϯϰϬϯϰ.ϯϵ ϳϮϮϬϮ.Ϯϳ ϲϱϮϱϰ.ϵϰ ϲϳϱϳϯ.ϲϮ Ϯϭϱ ϭϳϬ.ϲϳϴ ϭϳϭ.ϲϰϳ ϭϲϳ ϭϲϵ.ϬϬϮ ϭϴϰ.Ϭϰϵ Ϯϯϰ.Ϭ ϯϮϰϬ.ϵϬ ϯϱϴϱ.ϵϰ ϯϰϲϮ.ϴϵ
ϯC_ǆtǇpe_Dϱ_aϭ_right_JJ ϴ.ϵ -ϵ.Ϯ ϯϱϯϴϱ.ϲϯ ϯϮϯϮϲ.ϰϴ ϯϯϱϯϵ.Ϯϯ Ϯϭϭ ϭϲϴ.ϭϮϱ ϭϳϬ.ϲϱϱ ϭϲϮ ϭϳϭ.ϭϲ ϭϴϮ.ϱϲϭ Ϯϯϰ.Ϭ ϯϮϰϬ.ϵϬ ϯϱϴϱ.ϵϰ ϯϰϲϮ.ϴϵ
ϯC_ǆtǇpe_Xϯ_aϭ_left ϴ.ϵ -ϭϭ.ϱ ϮϱϮϭϰ.Ϭϱϱ Ϯϯϱϳϭ.Ϭϵ ϮϮϵϲϳ.ϱϯ ϱϬϱϭϯ.ϰϵ ϰϲϭϯϵ.ϵϴ ϰϱϰϵϬ.ϭϬ ϭϱϮ ϭϭϳ.Ϭϳ ϭϳϯ.ϲϯϮ ϭϲϱ ϭϲϳ.ϴϲϳ ϭϱϮ.ϯ ϭϳϵ.Ϭ ϯϱϰϯ.ϲϭ ϯϴϳϵ.ϱϬ ϯϵϯϰ.ϵϮ
ϯC_ǆtǇpe_Xϯ_aϭ_right ϴ.ϵ -ϭϭ.ϱ ϮϱϮϵϵ.ϰϯϯ ϮϮϱϲϴ.ϴϴ ϮϮϱϮϮ.ϱϳ ϭϱϰ ϭϭϱ.ϭϬϳ ϭϲϵ.ϲϲϯ ϭϲϰ ϭϲϬ.ϭϵϱ ϭϱϬ.ϯϭϱ ϭϳϵ.Ϭ ϯϱϰϯ.ϲϭ ϯϴϳϵ.ϱϬ ϯϵϯϰ.ϵϮ
ϯC_ǆtǇpe_Xϯ_Đϯ_left ϴ.ϵ -ϭϯ.ϴ ϮϱϮϭϰ.Ϭϱϱ ϯϬϰϴϳ.ϱϮ ϯϭϰϲϴ.Ϭϭ ϱϬϱϭϯ.ϰϵ ϲϭϭϳϯ.ϯϳ ϲϭϳϰϯ.ϴϴ ϭϱϮ ϭϱϵ.Ϭϳϳ ϭϳϯ.ϲϯϮ ϭϲϱ ϭϳϭ.ϯϱϴ ϭϳϲ.ϲϬϴ ϭϳϵ.Ϭ ϯϱϰϯ.ϲϭ ϮϵϮϲ.ϭϭ Ϯϴϵϵ.Ϭϳ
ϯC_ǆtǇpe_Xϯ_Đϯ_right ϴ.ϵ -ϭϯ.ϴ ϮϱϮϵϵ.ϰϯϯ ϯϬϲϴϱ.ϴϱ ϯϬϮϳϱ.ϴϳ ϭϱϰ ϭϲϰ.ϲϰϭ ϭϳϬ.ϲϱϱ ϭϲϰ ϭϲϮ.ϵϱϵ ϭϳϯ.ϭϯϱ ϭϳϵ.Ϭ ϯϱϰϯ.ϲϭ ϮϵϮϲ.ϭϭ Ϯϴϵϵ.Ϭϳ

BlaĐkďird Ϯ
Iŵage Ŷaŵe ǆ Ǉ IŵageJ Threshold SegŵeŶt IŵageJ Threshold SegŵeŶt IŵageJ Threshold SegŵeŶt IŵageJ Threshold SegŵeŶt IŵageJ Threshold SegŵeŶt
ϭĐ_ǆtǇpe_Dϯ_ďϯ_L -Ϯϱ.ϯ -ϭϯ.ϴ ϭϲϯϮϮ.ϵ ϭϲϱϱϴ.ϴϲ ϭϲϳϯϭ.ϴϳ ϯϮϮϭϯ.ϴϲ ϯϮϮϰϳ.ϰϲ ϯϮϭϰϴ.ϰϰ ϴϭ.Ϭ ϭϯϮ.ϴ ϭϲϲ.ϰ ϵϲ.Ϯ ϭϳϴ.Ϭ ϭϴϱ.ϱ ϳϵ.ϮϮ Ϯϰϱϲ.ϲϴ Ϯϰϱϵ.Ϯϰ Ϯϰϲϰ.Ϯϱ
ϭĐ_ǆtǇpe_Dϯ_ďϯ_R -Ϯϱ.ϯ -ϭϯ.ϴ ϭϱϲϱϱ ϭϱϲϴϴ.ϲ ϭϱϱϴϵ.ϱϴ ϴϭ.Ϭ ϭϮϴ.ϲ ϭϲϯ.ϯ ϵϯ.ϵ ϭϳϰ.Ϭ ϭϴϬ.ϵ ϳϵ.ϮϮ Ϯϰϱϲ.ϲϴ Ϯϰϱϵ.Ϯϰ Ϯϰϲϰ.Ϯϱ
ϭĐ_ǆtǇpe_Dϱ_ďϯ_L -Ϯϱ.ϯ -ϵ.Ϯ ϯϭϱϴϬ.Ϯϯ ϯϲϭϲϭ.ϯϵ ϯϱϲϯϯ.ϰϲ ϰϳϲϰϵ.ϲϴ ϱϮϳϯϮ.ϳϴ ϱϮϱϮϵ.ϵϲ ϭϵϱ.Ϭ ϭϴϵ.Ϭ ϭϲϱ.ϭ ϭϳϬ.ϱ ϭϲϰ.Ϭ ϯϴϴ.ϯ ϭϴϬ.ϮϮ ϯϰϭϳ.ϲϴ ϯϳϴϮ.Ϯϳ ϯϰϯϬ.ϴϴ
ϭĐ_ǆtǇpe_Dϱ_ďϯ_R -Ϯϱ.ϯ -ϵ.Ϯ ϯϭϬϵϬ.ϴϮ ϯϲϭϳϯ.ϵϭ ϯϱϵϳϭ.Ϭϵ ϭϵϭ.Ϭ ϭϴϵ.ϰ ϭϲϴ.ϳ ϭϳϮ.ϯ ϭϲϬ.Ϭ ϰϱϭ.ϵ ϭϴϬ.ϮϮ ϯϰϭϳ.ϲϴ ϯϳϴϮ.Ϯϳ ϯϰϯϬ.ϴϴ
ϭĐ_ǆtǇpe_XϮ_ďϯ_L -Ϯϱ.ϯ -ϭϭ.ϱ Ϯϭϲϲϲ.Ϯϲ ϯϯϳϮϵ.Ϭϰ Ϯϰϳϵϳ.ϱϱ ϯϲϯϲϬ.ϴϯ ϰϱϳϱϬ.ϴϭ ϰϭϰϰϱ.ϵϭ ϭϯϮ.Ϭ ϭϱϲ.ϱ ϭϲϲ.ϵ ϭϮϬ.ϵ ϭϲϴ.Ϭ ϰϵϴ.ϴ ϭϮϳ.ϱϳ Ϯϳϴϴ.ϯϭ ϯϱϬϴ.ϯϳ ϯϬϳϳ.ϵϮ
ϭĐ_ǆtǇpe_XϮ_ďϯ_R -Ϯϱ.ϯ -ϭϭ.ϱ ϭϵϴϬϭ.ϵϲ Ϯϵϭϵϭ.ϵϰ Ϯϰϴϴϳ.Ϭϰ ϭϯϮ.Ϭ ϭϱϲ.ϵ ϭϲϰ.Ϯ ϭϭϲ.ϰ ϭϲϮ.Ϭ ϰϰϳ.ϰ ϭϮϳ.ϱϳ Ϯϳϴϴ.ϯϭ ϯϱϬϴ.ϯϳ ϯϬϳϳ.ϵϮ
ϭe_ǆtǇpe_Dϯ_ďϯ_L -Ϯϱ.ϯ -ϯϭ ϭϮϵϵϵ.ϲϵ ϮϱϯϮϵ.ϲϵ ϭϱϭϵϲ.ϯϴ ϮϵϮϱϱ.ϱϯ ϯϮϰϴϰ.ϱϰ ϯϮϮϯϭ.ϭϱ ϴϭ.Ϭ ϭϮϲ.ϯ ϭϱϴ.Ϭ ϴϯ.Ϯ ϭϱϯ.Ϭ ϯϳϵ.ϯ ϲϱ.Ϭϲ ϮϬϬϮ.ϳϵ ϮϮϮϯ.ϴϰ ϮϬϭϴ.ϱϰ
ϭe_ǆtǇpe_Dϯ_ďϯ_R -Ϯϱ.ϯ -ϯϭ ϭϮϲϵϲ.ϲϳ ϭϱϵϮϱ.ϲϴ ϭϱϲϳϮ.Ϯϵ ϳϲ.Ϭ ϭϮϳ.ϭ ϭϱϰ.Ϯ ϭϬϬ.ϳ ϭϱϭ.Ϭ ϭϳϭ.Ϭ ϲϱ.Ϭϲ ϮϬϬϮ.ϳϵ ϮϮϮϯ.ϴϰ ϮϬϭϴ.ϱϰ
ϭe_ǆtǇpe_Dϱ_ďϯ_L -Ϯϱ.ϯ -Ϯϲ.ϯ Ϯϴϰϱϲ.Ϯϵ ϯϯϱϮϴ.ϵϳ ϯϮϰϱϲ.ϰϴ ϰϲϱϭϬ.ϵϴ ϱϬϲϬϬ.ϮϮ ϱϭϮϯϰ.ϳϲ ϭϴϳ.Ϭ ϭϴϬ.ϴ ϭϱϯ.ϯ ϭϳϬ.ϱ ϭϲϯ.Ϭ ϰϬϭ.ϰ ϭϱϵ.ϰϬ ϯϭϱϬ.Ϯϱ ϯϰϮϳ.ϮϮ ϯϭϭϭ.Ϯϰ
ϭe_ǆtǇpe_Dϱ_ďϯ_R -Ϯϱ.ϯ -Ϯϲ.ϯ ϮϵϵϱϮ.ϭϭ ϯϰϬϰϭ.ϯϲ ϯϰϲϳϱ.ϴϵ ϭϵϰ.Ϭ ϭϴϲ.ϯ ϭϲϯ.ϯ ϭϳϭ.ϰ ϭϱϴ.Ϭ ϯϬϱ.ϴ ϭϱϵ.ϰϬ ϯϭϱϬ.Ϯϱ ϯϰϮϳ.ϮϮ ϯϭϭϭ.Ϯϰ
ϭe_ǆtǇpe_XϮ_ďϯ_L -Ϯϱ.ϯ -Ϯϴ.ϲ ϮϭϱϲϬ.ϳϱ Ϯϲϴϰϱ.ϭϱ ϮϰϵϮϮ.ϴϰ ϯϲϴϵϱ.ϲϵ ϰϳϳϲϲ.ϭϵ ϯϵϱϲϭ.ϲϴ ϭϮϳ.Ϭ ϭϱϳ.ϰ ϭϳϭ.ϰ ϭϭϯ.ϲ ϭϱϭ.Ϭ ϰϯϭ.ϭ ϭϭϯ.ϵϳ Ϯϯϴϲ.Ϭϳ ϯϬϴϵ.Ϭϴ ϮϴϴϬ.ϵϭ
ϭe_ǆtǇpe_XϮ_ďϯ_R -Ϯϱ.ϯ -Ϯϴ.ϲ ϮϬϯϯϲ.ϴϮ ϯϭϮϬϳ.ϯϮ ϮϯϬϬϮ.ϴϮ ϭϮϲ.Ϭ ϭϱϬ.ϲ ϭϱϵ.ϳ ϭϮϮ.ϳ ϭϱϲ.Ϭ ϯϴϴ.ϴ ϭϭϯ.ϵϳ Ϯϯϴϲ.Ϭϳ ϯϬϴϵ.Ϭϴ ϮϴϴϬ.ϵϭ
ϮĐ_ǆtǇpe_Dϯ_ďϯ_L -ϴ.Ϯ -ϭϯ.ϴ ϭϱϵϮϮ.ϱϭ ϮϬϳϮϭ.Ϭϴ ϭϵϵϱϯ.Ϯϯ ϯϮϱϵϬ.ϴϰ ϯϴϬϯϭ.ϯϲ ϯϲϯϭϯ.ϭϭ ϵϭ.Ϭ ϭϰϮ.ϰ ϭϲϳ.ϳ ϭϮϬ.ϭ ϭϲϯ.Ϭ ϭϵϭ.ϱ ϵϮ.ϰϬ ϮϰϮϵ.ϱϴ Ϯϴϯϱ.ϭϲ Ϯϱϰϰ.ϱϱ
ϮĐ_ǆtǇpe_Dϯ_ďϯ_R -ϴ.Ϯ -ϭϯ.ϴ ϭϲϬϯϭ.ϵϴ ϮϭϰϳϮ.ϱ ϭϵϳϱϰ.Ϯϰ ϵϯ.Ϭ ϭϰϭ.ϲ ϭϲϱ.ϭ ϭϮϳ.Ϯ ϭϱϵ.Ϭ ϭϵϲ.ϲ ϵϮ.ϰϬ ϮϰϮϵ.ϱϴ Ϯϴϯϱ.ϭϲ Ϯϱϰϰ.ϱϱ
ϮĐ_ǆtǇpe_Dϱ_ďϯ_L -ϴ.Ϯ -ϭϭ.ϱ ϯϯϲϵϳ.Ϯϵ ϰϰϲϲϮ.ϰϮ ϯϴϰϯϰ.ϳϲ ϰϵϮϰϯ.ϴϲ ϱϲϱϲϱ.Ϯ ϱϲϬϱϳ.ϳϴ ϮϬϵ.Ϭ ϭϵϲ.ϱ ϭϲϴ.ϳ ϭϵϮ.ϱ ϭϲϯ.Ϭ ϰϲϬ.ϰ ϮϬϱ.ϭϳ ϯϲϮϳ.ϮϮ ϰϭϲϲ.ϱϬ ϯϲϲϬ.Ϭϱ
ϮĐ_ǆtǇpe_Dϱ_ďϯ_R -ϴ.Ϯ -ϭϭ.ϱ ϯϮϲϴϱ ϰϬϬϬϲ.ϯϯ ϯϵϰϵϴ.ϵϭ ϮϬϴ.Ϭ ϭϵϵ.ϵ ϭϲϴ.ϳ ϭϴϴ.ϱ ϭϱϵ.Ϭ ϰϲϱ.ϯ ϮϬϱ.ϭϳ ϯϲϮϳ.ϮϮ ϰϭϲϲ.ϱϬ ϯϲϲϬ.Ϭϱ
ϮĐ_ǆtǇpe_XϮ_ďϯ_L -ϴ.Ϯ -ϵ.Ϯ ϮϱϱϭϮ.ϱϰ Ϯϵϭϯϯ.ϯϵ ϯϬϱϰϰ.ϱϵ ϰϬϳϴϬ.ϭϭ ϰϳϯϭϱ.ϰ ϰϱϯϭϭ.ϭϳ ϭϱϰ.Ϭ ϭϳϯ.ϲ ϭϳϭ.ϰ ϭϯϭ.ϳ ϭϲϭ.Ϭ Ϯϲϱ.Ϯ ϭϱϱ.Ϭϳ ϯϮϳϳ.ϯϴ ϯϴϬϮ.ϲϬ ϯϰϮϮ.ϯϱ
ϮĐ_ǆtǇpe_XϮ_ďϯ_R -ϴ.Ϯ -ϵ.Ϯ ϮϰϮϮϭ.Ϯϱ ϯϬϳϱϲ.ϱϰ ϮϴϳϱϮ.ϯ ϭϲϬ.Ϭ ϭϲϴ.Ϯ ϭϲϳ.ϴ ϭϯϰ.ϰ ϭϱϲ.Ϭ ϯϳϯ.Ϭ ϭϱϱ.Ϭϳ ϯϮϳϳ.ϯϴ ϯϴϬϮ.ϲϬ ϯϰϮϮ.ϯϱ
Ϯe_ǆtǇpe_Dϯ_ďϯ_L -ϴ.Ϯ -ϯϭ ϭϰϴϯϱ.ϱϱ ϭϳϮϯϰ.ϯϲ ϭϴϭϮϲ.ϯϴ ϯϮϬϴϬ.ϵϱ ϯϱϱϯϭ.ϵ ϯϰϰϰϭ.ϭϴ ϵϴ.Ϭ ϭϯϲ.Ϯ ϭϱϵ.ϱ ϴϬ.ϭ ϭϱϱ.Ϭ ϮϲϬ.ϯ ϳϭ.ϯϮ ϮϬϬϳ.ϭϭ ϮϮϮϯ.Ϭϭ ϮϬϳϬ.ϲϳ
Ϯe_ǆtǇpe_Dϯ_ďϯ_R -ϴ.Ϯ -ϯϭ ϭϱϱϮϮ.Ϭϴ ϭϴϵϳϯ.Ϭϯ ϭϳϴϴϮ.ϯϭ ϭϬϭ.Ϭ ϭϯϱ.ϭ ϭϱϴ.ϳ ϴϳ.Ϭ ϭϱϮ.Ϭ Ϯϲϱ.ϲ ϳϭ.ϯϮ ϮϬϬϳ.ϭϭ ϮϮϮϯ.Ϭϭ ϮϬϳϬ.ϲϳ
Ϯe_ǆtǇpe_Dϱ_ďϯ_L -ϴ.Ϯ -Ϯϲ.ϯ ϯϰϰϳϮ.ϴϱ ϰϯϰϰϬ ϯϳϴϮϲ.Ϭϯ ϰϴϲϰϱ.ϱϰ ϱϵϯϱϵ.ϲϴ ϱϮϱϯϵ.ϳϮ ϮϬϳ.Ϭ ϭϵϰ.ϴ ϭϲϴ.ϳ ϮϬϮ.Ϭ ϭϲϰ.ϱ ϯϮϮ.ϵ ϭϴϬ.ϴϬ ϯϬϰϱ.ϵϬ ϯϳϭϲ.ϳϱ ϯϰϰϭ.Ϯϳ
Ϯe_ǆtǇpe_Dϱ_ďϯ_R -ϴ.Ϯ -Ϯϲ.ϯ ϯϮϬϴϲ.ϲϴ ϰϮϴϬϬ.ϴϮ ϯϱϵϴϬ.ϴϱ ϮϬϵ.Ϭ ϭϵϬ.ϯ ϭϲϮ.ϰ ϭϵϴ.ϰ ϭϱϴ.ϱ ϯϴϵ.ϳ ϭϴϬ.ϴϬ ϯϬϰϱ.ϵϬ ϯϳϭϲ.ϳϱ ϯϰϰϭ.Ϯϳ
Ϯe_ǆtǇpe_XϮ_ďϯ_L -ϴ.Ϯ -Ϯϴ.ϲ ϮϰϮϮϳ.ϳϰ ϯϬϱϯϯ.ϲϵ ϮϲϴϬϬ.ϱϱ ϰϮϬϴϴ.ϰϱ ϰϯϱϴϮ.Ϭϴ ϰϰϮϭϮ.ϴϱ ϭϰϲ.Ϭ ϭϲϮ.ϴ ϭϲϱ.ϭ ϭϰϬ.ϳ ϭϲϯ.Ϭ ϭϳϯ.Ϯ ϭϮϳ.ϰϰ ϮϵϮϰ.ϭϳ ϯϬϮϳ.ϵϰ ϮϴϴϮ.ϰϱ
Ϯe_ǆtǇpe_XϮ_ďϯ_R -ϴ.Ϯ -Ϯϴ.ϲ ϮϱϱϮϵ.ϱϴ ϮϳϬϮϯ.ϮϮ Ϯϳϲϱϯ.ϵϵ ϭϰϵ.Ϭ ϭϲϱ.ϱ ϭϲϯ.ϯ ϭϮϵ.Ϭ ϭϲϭ.Ϭ ϮϮϱ.ϱ ϭϮϳ.ϰϰ ϮϵϮϰ.ϭϳ ϯϬϮϳ.ϵϰ ϮϴϴϮ.ϰϱ
ϯĐ_ǆtǇpe_Dϯ_ďϯ_L ϴ.ϵ -ϭϯ.ϴ ϭϲϰϱϰ.Ϯϰ ϭϴϭϰϲ.Ϯ ϮϭϲϯϬ.ϳϯ ϯϮϱϵϱ.ϴϲ ϯϳϯϯϯ.ϳ ϯϲϮϵϬ.Ϭϱ ϭϬϭ.ϱ ϭϰϴ.ϰ ϭϳϰ.Ϭ ϳϴ.ϲ ϭϲϳ.ϱ ϯϲϬ.Ϯ ϵϱ.Ϯϲ Ϯϱϱϭ.ϲϵ ϮϵϮϮ.ϱϴ ϮϲϮϱ.Ϭϴ
ϯĐ_ǆtǇpe_Dϯ_ďϯ_R ϴ.ϵ -ϭϯ.ϴ ϭϲϬϯϳ ϮϬϳϳϰ.ϴϰ ϭϵϳϯϭ.ϭϴ ϭϬϬ.ϱ ϭϰϮ.Ϭ ϭϲϳ.ϭ ϴϱ.ϱ ϭϲϰ.Ϭ ϯϱϭ.ϭ ϵϱ.Ϯϲ Ϯϱϱϭ.ϲϵ ϮϵϮϮ.ϱϴ ϮϲϮϱ.Ϭϴ
ϯĐ_ǆtǇpe_Dϱ_ďϯ_L ϴ.ϵ -ϵ.Ϯ ϯϯϳϳϰ.ϴϲ ϰϬϬϯϱ.Ϭϴ ϯϲϳϱϵ.ϰϰ ϱϭϳϮϴ.Ϭϵ ϱϳϰϴϭ.ϳ ϱϰϵϴϯ.ϲϴ Ϯϭϲ.Ϭ ϭϵϯ.ϱ ϭϲϴ.ϳ ϭϵϴ.ϰ ϭϱϵ.ϳ Ϯϭϭ.ϭ ϮϬϯ.ϵϲ ϯϱϰϴ.Ϯϵ ϯϵϰϮ.ϵϱ ϯϳϬϵ.ϰϵ
ϯĐ_ǆtǇpe_Dϱ_ďϯ_R ϴ.ϵ -ϵ.Ϯ ϯϱϭϲϵ.ϮϮ ϰϬϵϮϮ.ϴϰ ϯϴϰϮϰ.ϴϭ Ϯϭϵ.Ϭ ϭϵϲ.ϲ ϭϳϭ.ϰ ϭϵϳ.ϱ ϭϲϯ.Ϭ Ϯϱϱ.ϯ ϮϬϯ.ϵϲ ϯϱϰϴ.Ϯϵ ϯϵϰϮ.ϵϱ ϯϳϬϵ.ϰϵ
ϯĐ_ǆtǇpe_XϮ_ďϯ_L ϴ.ϵ -ϭϭ.ϱ ϮϳϴϲϬ.ϱϲ ϯϮϯϱϯ.ϯϰ Ϯϵϴϯϴ.ϰϮ ϰϮϵϬϯ.ϯϮ ϰϲϰϯϰ.ϵϭ ϰϱϵϴϳ.Ϯϰ ϭϱϱ.Ϭ ϭϳϭ.ϴ ϭϳϰ.ϭ ϭϯϰ.ϰ ϭϲϱ.ϳ ϰϲϱ.Ϭ ϭϰϲ.ϳϭ ϯϭϱϵ.ϱϭ ϯϰϭϵ.ϱϵ ϯϭϵϬ.Ϯϳ
ϯĐ_ǆtǇpe_XϮ_ďϯ_R ϴ.ϵ -ϭϭ.ϱ Ϯϲϯϰϰ.ϰϱ Ϯϵϴϳϲ.Ϭϰ ϮϵϰϮϴ.ϯϴ ϭϱϳ.Ϭ ϭϳϬ.ϱ ϭϲϳ.ϴ ϭϯϱ.ϯ ϭϲϮ.Ϭ ϰϲϳ.Ϯ ϭϰϲ.ϳϭ ϯϭϱϵ.ϱϭ ϯϰϭϵ.ϱϵ ϯϭϵϬ.Ϯϳ
ϯe_ǆtǇpe_Dϯ_ďϯ_L ϴ.ϵ -ϯϭ ϭϲϮϬϭ.ϳϮ ϭϵϵϰϰ.ϮϮ ϭϴϮϱϯ.ϯϳ ϯϮϳϰϭ.ϯϲ ϯϲϰϭϮ.ϰϳ ϯϱϬϱϯ.ϵϳ ϭϬϰ.Ϭ ϭϯϲ.ϲ ϭϲϮ.ϲ ϵϯ.ϭ ϭϱϴ.ϱ ϭϳϮ.ϱ ϴϴ.Ϭϴ Ϯϰϭϴ.ϵϰ ϮϲϵϬ.ϭϲ ϮϱϭϮ.ϲϴ
ϯe_ǆtǇpe_Dϯ_ďϯ_R ϴ.ϵ -ϯϭ ϭϲϭϴϮ.ϱ ϭϵϴϱϯ.ϲϭ ϭϴϰϵϱ.ϭϭ ϭϬϮ.ϲ ϭϯϳ.ϰ ϭϲϭ.ϴ ϵϮ.ϯ ϭϱϯ.Ϭ ϯϯϭ.Ϯ ϴϴ.Ϭϴ Ϯϰϭϴ.ϵϰ ϮϲϵϬ.ϭϲ ϮϱϭϮ.ϲϴ
ϯe_ǆtǇpe_Dϱ_ďϯ_L ϴ.ϵ -Ϯϲ.ϯ ϯϱϬϲϱ.ϭϵ ϰϯϵϮϰ.ϮϮ ϰϬϰϴϮ.ϯϱ ϱϬϴϳϬ.Ϯ ϱϲϯϵϬ.ϳϵ ϱϰϯϳϳ.ϱϳ Ϯϭϱ.Ϭ ϮϬϮ.ϰ ϭϳϬ.ϳ ϭϵϴ.ϰ ϭϲϱ.Ϭ ϰϱϴ.ϰ ϭϵϰ.Ϭϭ ϯϰϰϬ.ϰϯ ϯϴϭϯ.ϴϬ ϯϱϲϳ.ϴϭ
ϯe_ǆtǇpe_Dϱ_ďϯ_R ϴ.ϵ -Ϯϲ.ϯ ϯϰϯϭϭ.ϯϰ ϯϵϴϯϭ.ϵϯ ϯϳϴϭϴ.ϳ ϮϬϵ.Ϭ ϭϵϲ.Ϯ ϭϲϵ.ϲ ϭϵϴ.ϰ ϭϱϳ.Ϭ Ϯϳϰ.ϳ ϭϵϰ.Ϭϭ ϯϰϰϬ.ϰϯ ϯϴϭϯ.ϴϬ ϯϱϲϳ.ϴϭ
ϯe_ǆtǇpe_XϮ_ďϯ_L ϴ.ϵ -Ϯϴ.ϲ ϮϱϯϱϬ.ϮϮ ϯϭϱϭϴ.ϴϳ Ϯϳϵϱϱ.ϴϮ ϰϬϵϱϯ.ϴ ϰϴϴϯϬ.ϲϱ ϰϯϮϰϵ.ϱϵ ϭϱϰ.Ϭ ϭϲϲ.ϰ ϭϲϱ.ϭ ϭϯϲ.Ϯ ϭϲϭ.Ϭ ϰϳϬ.ϴ ϭϯϯ.ϲϴ Ϯϳϯϳ.ϲϲ ϯϮϲϰ.Ϯϭ ϯϬϵϬ.ϵϰ
ϯe_ǆtǇpe_XϮ_ďϯ_R ϴ.ϵ -Ϯϴ.ϲ Ϯϰϯϵϰ.ϵϰ ϯϮϮϳϭ.ϳϵ ϮϲϲϵϬ.ϳϮ ϭϲϬ.Ϭ ϭϲϮ.ϰ ϭϲϭ.ϱ ϭϯϵ.ϴ ϭϱϲ.Ϭ ϰϰϯ.ϴ ϭϯϯ.ϲϴ Ϯϳϯϳ.ϲϲ ϯϮϲϰ.Ϯϭ ϯϬϵϬ.ϵϰ
ϰĐ_ǆtǇpe_Dϯ_ďϯ_L Ϯϲ -ϭϯ.ϴ ϭϯϮϵϵ.Ϯϯ ϭϲϭϲϱ.ϲϱ ϭϴϴϱϵ.ϭϳ ϯϬϴϮϰ.ϲϮ ϯϰϲϳϴ.Ϯϲ ϯϮϭϮϮ.Ϯϯ ϴϬ.Ϭ ϭϰϭ.Ϯ ϭϳϱ.ϱ ϴϵϵ.ϴ ϭϲϴ.ϲ ϭϳϯ.ϯ ϴϱ.ϯϲ Ϯϰϲϭ.ϲϮ Ϯϳϲϵ.ϯϳ Ϯϲϱϳ.ϱϬ
ϰĐ_ǆtǇpe_Dϯ_ďϯ_R Ϯϲ -ϭϯ.ϴ ϭϰϮϲϱ.ϳϲ ϭϴϭϭϵ.ϯϵ ϭϱϱϲϯ.ϯϲ ϴϭ.Ϭ ϭϮϵ.ϰ ϭϲϲ.ϰ ϭϬϴ.ϰ ϭϲϲ.Ϭ ϭϵϲ.ϵ ϴϱ.ϯϲ Ϯϰϲϭ.ϲϮ Ϯϳϲϵ.ϯϳ Ϯϲϱϳ.ϱϬ
ϰĐ_ǆtǇpe_Dϱ_ďϯ_L Ϯϲ -ϵ.Ϯ ϯϭϮϮϲ.ϯϲ ϯϳϱϵϱ.ϯϲ ϯϲϱϵϳ.ϱϰ ϰϴϴϯϳ.ϵ ϱϯϬϭϮ.ϲϵ ϱϰϱϱϮ.ϰϵ ϭϵϭ.ϲ ϭϵϮ.ϭ ϭϳϬ.ϱ ϭϳϲ.ϴ ϭϱϵ.ϳ ϰϴϬ.ϴ ϭϵϬ.ϰϳ ϯϱϵϮ.ϵϯ ϯϵϬϬ.Ϭϲ ϯϰϵϭ.ϱϮ
ϰĐ_ǆtǇpe_Dϱ_ďϯ_R Ϯϲ -ϵ.Ϯ ϯϮϮϳϵ.Ϭϰ ϯϲϰϱϯ.ϴϯ ϯϳϵϵϯ.ϲϮ ϭϵϮ.Ϭ ϭϵϰ.ϴ ϭϳϱ.ϵ ϭϳϰ.ϭ ϭϲϰ.ϱ ϯϰϰ.ϭ ϭϵϬ.ϰϳ ϯϱϵϮ.ϵϯ ϯϵϬϬ.Ϭϲ ϯϰϵϭ.ϱϮ
ϰĐ_ǆtǇpe_XϮ_ďϯ_L Ϯϲ -ϭϭ.ϱ ϮϯϮϰϵ.ϳϰ ϮϱϯϵϬ.ϴϯ ϮϱϯϬϭ.ϭϱ ϯϴϯϬϰ.ϯϱ ϰϭϭϵϭ.ϱϯ ϰϮϬϱϴ.ϱϵ ϭϯϮ.Ϭ ϭϱϴ.ϳ ϭϳϯ.Ϯ ϭϭϮ.ϳ ϭϲϵ.Ϭ ϰϳϮ.ϲ ϳϭ.ϭϭ ϭϳϮϲ.Ϯϴ ϭϴϱϲ.ϰϬ ϭϲϵϬ.ϲϵ
ϰĐ_ǆtǇpe_XϮ_ďϯ_R Ϯϲ -ϭϭ.ϱ Ϯϭϳϰϱ.ϰϵ ϮϰϲϯϮ.ϲϲ Ϯϱϰϵϵ.ϳϯ ϭϯϰ.Ϭ ϭϱϵ.ϭ ϭϲϲ.ϰ ϭϭϲ.ϴ ϭϲϮ.Ϭ ϯϱϲ.Ϭ ϳϭ.ϭϭ ϭϳϮϲ.Ϯϴ ϭϴϱϲ.ϰϬ ϭϲϵϬ.ϲϵ
ϰe_ǆtǇpe_Dϯ_ďϯ_L Ϯϲ -ϯϭ ϭϮϵϵϳ.ϳϱ ϯϮϮϱϵ.Ϯϲ ϭϳϰϯϵ.ϰϯ ϯϮϯϯϴ.ϱϮ ϯϱϴϭϯ.ϵϴ ϯϱϯϰϰ.Ϭϲ ϴϭ.Ϭ ϭϯϱ.Ϯ ϭϲϳ.ϴ ϵϬϱ.ϰ ϭϱϳ.Ϭ ϭϴϲ.ϵ ϳϲ.ϭϮ ϮϭϮϱ.ϰϭ Ϯϯϱϯ.ϴϯ Ϯϭϱϯ.ϲϳ
ϰe_ǆtǇpe_Dϯ_ďϯ_R Ϯϲ -ϯϭ ϭϱϳϳϵ.ϲϲ ϭϵϮϱϱ.ϭϭ ϭϴϳϴϱ.Ϯ ϴϮ.Ϭ ϭϯϴ.ϵ ϭϲϲ.ϰ ϴϮ.ϰ ϭϲϱ.Ϭ ϯϲϰ.ϴ ϳϲ.ϭϮ ϮϭϮϱ.ϰϭ Ϯϯϱϯ.ϴϯ Ϯϭϱϯ.ϲϳ
ϰe_ǆtǇpe_Dϱ_ďϯ_L Ϯϲ -Ϯϲ.ϯ ϯϬϮϳϭ.Ϭϴ ϯϱϳϴϬ.ϴϭ ϯϰϬϯϵ.ϲϴ ϰϳϬϰϱ.Ϭϯ ϱϭϱϳϭ.ϳϲ ϰϵϬϱϰ.ϯϵ ϭϵϭ.Ϭ ϭϴϰ.ϵ ϭϲϰ.Ϯ ϭϳϳ.ϳ ϭϱϵ.ϳ ϮϵϮ.ϳ ϭϲϲ.ϱϳ ϯϮϮϵ.ϵϰ ϯϱϰϬ.ϳϮ ϯϯϵϱ.ϲϵ
ϰe_ǆtǇpe_Dϱ_ďϯ_R Ϯϲ -Ϯϲ.ϯ ϯϬϰϴϲ.ϭϲ ϯϱϬϭϮ.ϴϵ ϯϮϰϵϱ.ϱϯ ϭϵϮ.ϳ ϭϴϬ.ϴ ϭϲϯ.ϯ ϭϳϴ.ϲ ϭϱϳ.Ϭ ϭϲϯ.ϯ ϭϲϲ.ϱϳ ϯϮϮϵ.ϵϰ ϯϱϰϬ.ϳϮ ϯϯϵϱ.ϲϵ
ϰe_ǆtǇpe_XϮ_ďϯ_L Ϯϲ -Ϯϴ.ϲ ϮϮϰϭϯ.ϳϳ ϮϵϱϯϬ.ϴϳ Ϯϲϯϭϭ.ϲ ϯϴϯϬϯ.ϴϱ ϰϮϵϳϬ.ϴϭ ϰϭϰϯϮ.ϴϵ ϭϯϯ.Ϭ ϭϲϭ.ϵ ϭϲϲ.ϵ ϭϭϵ.ϭ ϭϲϯ.Ϭ ϰϲϱ.ϰ ϭϭϳ.ϯϯ ϮϳϯϬ.ϰϭ ϯϬϲϯ.Ϭϴ Ϯϴϯϭ.ϳϱ
ϰe_ǆtǇpe_XϮ_ďϯ_R Ϯϲ -Ϯϴ.ϲ Ϯϭϳϰϰ.ϵϵ Ϯϲϰϭϭ.ϵϰ Ϯϰϴϳϰ.Ϭϯ ϭϯϱ.ϳ ϭϱϲ.ϵ ϭϲϲ.Ϭ ϭϭϬ.ϵ ϭϱϴ.ϱ ϯϴϴ.ϴ ϭϭϳ.ϯϯ ϮϳϯϬ.ϰϭ ϯϬϲϯ.Ϭϴ Ϯϴϯϭ.ϳϱ

CoŶduĐtaŶaŶĐe/area;µS/µŵ²ͿChip ĐoodiŶates ;ŵŵͿ Oǀerlap area ;Ŷŵ²Ϳ Total Area ;Ŷŵ²Ϳ Bottoŵ ǀertiĐal ǁidth ;ŶŵͿ Top horizoŶtal ǁidth;ŶŵͿ CoŶduĐtaŶĐe
;µSͿ

BlaĐkďird 4
Iŵage Ŷaŵe ǆ Ǉ IŵageJ Threshold SegŵeŶt IŵageJ Threshold SegŵeŶt IŵageJ Threshold SegŵeŶt IŵageJ Threshold SegŵeŶt IŵageJ Threshold SegŵeŶt
ϭϬ_ϭϬ_jj_left -ϭϲ -ϭϲ ϰϮϲϳϯ.ϭϯϬ ϯϵϮϰϮ.ϲ ϱϭϲϭϲ.ϴϰ ϴϮϭϰϲ.ϴ ϳϵϵϴϯ.ϯ ϭϬϬϮϳϴ.ϳ ϮϬϱ.Ϭ ϭϵϯ.ϭ ϮϭϬ.ϯ ϮϭϬ.Ϭ ϭϵϳ.ϴ ϮϮϳ.ϱ Ϯϯϵ.ϭϱ Ϯϵϭϭ.ϮϮ Ϯϵϴϵ.ϵϳ Ϯϯϴϰ.ϴϯ

ϭϬ_ϭϬ_jj_right -ϭϲ -ϭϲ ϯϵϰϳϯ.ϲϴϰ ϰϬϳϰϬ.ϳϮ ϰϴϲϲϭ.ϴϱ ϮϬϱ.Ϭ ϭϵϵ.ϭ ϭϯϲ.ϭ ϮϬϬ.Ϭ ϭϵϱ.ϴ ϭϰϲ.ϭ Ϯϯϵ.ϭϱ Ϯϵϭϭ.ϮϮ Ϯϵϴϵ.ϵϳ Ϯϯϴϰ.ϴϯ
ϭϬ_Ϯϲ_jj_left -ϭϲ ϭϲ ϯϴϱϴϱ.Ϭϵϯ ϯϰϵϭϴ.Ϯ ϰϴϲϲϭ.ϴϱ ϳϴϴϮϳ.ϱ ϳϮϴϯϵ.ϲ ϰϵϬϰϭ.Ϯ ϭϵϴ.Ϭ ϭϳϳ.ϵ ϭϯϲ.ϭ ϭϵϲ.Ϭ ϭϵϬ.ϱ ϭϰϲ.ϭ ϮϱϮ.ϳϮ ϯϮϬϱ.ϵϴ ϯϰϲϵ.ϱϯ ϱϭϱϯ.ϮϬ

ϭϬ_Ϯϲ_jj_right -ϭϲ ϭϲ ϰϬϮϰϮ.ϯϴϮ ϯϳϵϮϭ.ϰ ϯϳϵ.ϯϮϲϱ ϮϬϰ.Ϭ ϭϵϲ.ϱ ϭϵϱ.ϭ ϭϵϳ.Ϭ ϭϴϳ.Ϯ ϵϲ.ϭ ϮϱϮ.ϳϮ ϯϮϬϱ.ϵϴ ϯϰϲϵ.ϱϯ ϱϭϱϯ.ϮϬ
ϭϱ_ϭϱ_jj_left -ϲ -ϲ ϰϭϬϵϳ.ϲϰϱ ϰϬϯϵϬ.Ϭϴ ϰϳϭϬϱ.ϲϭ ϴϱϯϯϰ.ϭ ϴϭϵϮϬ.ϴ ϵϲϬϴϱ.ϱ ϮϮϭ.Ϭ ϮϬϱ.ϳ ϭϵϳ.ϴ ϭϵϯ.Ϭ ϭϴϳ.Ϯ Ϯϭϳ.ϲ ϮϴϬ.Ϭϯ ϯϮϴϭ.ϱϲ ϯϰϭϴ.Ϯϵ Ϯϵϭϰ.ϯϳ

ϭϱ_ϭϱ_jj_right -ϲ -ϲ ϰϰϮϯϲ.ϰϵϲ ϰϭϱϯϬ.ϳϳ ϰϴϵϳϵ.ϵϯ Ϯϭϲ.Ϭ ϮϬϱ.Ϭ ϮϬϲ.ϰ ϮϬϲ.Ϭ ϭϵϳ.ϴ ϮϮϭ.ϵ ϮϴϬ.Ϭϯ ϯϮϴϭ.ϱϲ ϯϰϭϴ.Ϯϵ Ϯϵϭϰ.ϯϳ
ϭϱ_Ϯϭ_jj_left -ϲ ϲ ϰϰϮϵϯ.ϲϮϵ ϰϮϭϭϲ.ϭϲ ϰϴϯϰϳ.Ϯϴ ϴϳϳϴϰ.ϰ ϴϯϳϱϱ.Ϯ ϭϬϬϵϴϮ.ϳ ϮϬϵ.Ϭ ϮϬϲ.ϰ ϮϬϱ.ϳ ϭϵϴ.Ϭ ϭϵϱ.ϭ Ϯϭϵ.ϵ Ϯϳϰ.ϳϵ ϯϭϯϬ.Ϯϴ ϯϮϴϬ.ϴϳ ϮϳϮϭ.ϭϲ

ϭϱ_Ϯϭ_jj_right -ϲ ϲ ϰϯϰϵϬ.ϳϯϴ ϰϭϲϯϵ.Ϭϱ ϱϮϲϯϱ.ϯϳ ϮϮϬ.Ϭ ϮϬϲ.ϰ ϮϬϴ.ϰ ϮϬϯ.Ϭ ϭϵϴ.ϰ ϮϮϵ.ϵ Ϯϳϰ.ϳϵ ϯϭϯϬ.Ϯϴ ϯϮϴϬ.ϴϳ ϮϳϮϭ.ϭϲ
ϭϳ_ϭϳ_jj_left -Ϯ -Ϯ ϰϱϬϴϯ.ϭϬϮ ϰϮϬϮϲ.ϯϯ ϱϭϰϰϳ.ϵϲ ϴϵϯϭϵ.ϲ ϴϰϱϯϮ.ϰ ϵϵϬϳϯ.ϴ Ϯϭϴ.Ϭ ϮϬϯ.ϳ ϮϬϱ.ϳ ϮϬϰ.Ϭ ϭϵϵ.ϴ ϮϮϳ.ϱ Ϯϳϴ.ϯϴ ϯϭϭϲ.ϲϱ ϯϮϵϯ.ϭϱ ϮϴϬϵ.ϴϬ

ϭϳ_ϭϳ_jj_right -Ϯ -Ϯ ϰϰϮϯϲ.ϰϵϲ ϰϮϱϬϲ.Ϭϴ ϰϳϲϮϱ.ϴϮ Ϯϭϯ.Ϭ ϮϬϳ.ϳ ϮϬϯ.ϳ ϮϬϰ.Ϭ ϭϵϱ.ϴ Ϯϭϴ.ϲ Ϯϳϴ.ϯϴ ϯϭϭϲ.ϲϱ ϯϮϵϯ.ϭϱ ϮϴϬϵ.ϴϬ
ϭϴ_ϭϴ_jj_left Ϭ Ϭ ϰϰϳϬϯ.ϱϭϱ ϰϮϴϯϬ.ϭ ϰϴϵϵϮ.ϲϮ ϴϴϰϭϯ.ϯ ϴϱϴϯϳ.ϳ ϵϳϴϳϮ.ϰ Ϯϭϴ.Ϭ ϮϭϮ.ϯ ϮϬϲ.ϰ ϮϬϱ.Ϭ ϭϵϳ.ϴ ϮϮϭ.ϲ Ϯϯϵ.Ϭϴ ϮϳϬϰ.ϭϰ Ϯϳϴϱ.Ϯϳ ϮϰϰϮ.ϳϵ

ϭϴ_ϭϴ_jj_right Ϭ Ϭ ϰϯϳϬϵ.ϳϰϳ ϰϯϬϬϳ.ϲϰ ϰϴϴϳϵ.ϳϰ Ϯϭϲ.Ϭ ϮϬϴ.ϰ ϮϬϳ.Ϭ ϮϬϬ.Ϭ ϭϵϳ.ϴ ϮϮϬ.ϵ Ϯϯϵ.Ϭϴ ϮϳϬϰ.ϭϰ Ϯϳϴϱ.Ϯϳ ϮϰϰϮ.ϳϵ
ϭ_ϯϱ_jj_left -ϯϰ ϯϰ ϯϯϮϯϭ.ϰϳϱ ϮϵϱϴϮ.ϵϮ ϰϰϮϬϳ.Ϭϲ ϲϲϱϱϴ.ϲ ϲϭϴϵϴ.ϱ ϴϱϭϵϲ.ϲ ϭϵϯ.Ϭ ϭϳϮ.Ϭ ϭϳϵ.ϯ ϭϳϰ.Ϭ ϭϲϰ.Ϭ Ϯϭϯ.Ϭ -

ϭ_ϯϱ_jj_right -ϯϰ ϯϰ ϯϯϯϮϳ.ϭϯ ϯϮϯϭϱ.ϱϵ ϰϬϵϴϵ.ϱϳ ϭϵϱ.Ϭ ϭϳϴ.ϲ ϭϳϴ.ϲ ϭϲϴ.Ϭ ϭϲϵ.ϯ ϮϬϰ.ϳ -
ϮϬ_ϭϲ_jj_left ϰ -ϰ ϰϰϲϮϯ.ϬϬϵ ϰϮϱϭϳ.ϰϵ ϰϵϰϬϲ.ϵϰ ϵϬϬϬϴ.Ϯ ϴϱϮϴϰ.ϲ ϵϵϳϵϱ.Ϯ ϮϮϬ.Ϭ ϮϭϮ.ϯ ϮϬϱ.Ϭ ϭϵϲ.Ϭ ϭϵϮ.ϱ ϮϮϯ.Ϯ Ϯϵϯ.Ϭϵ ϯϮϱϲ.ϯϭ ϯϰϯϲ.ϲϲ Ϯϵϯϲ.ϵϲ

ϮϬ_ϭϲ_jj_right ϰ -ϰ ϰϱϯϴϱ.Ϯϭϱ ϰϮϳϲϳ.ϭϱ ϱϬϯϴϴ.Ϯϵ Ϯϭϳ.Ϭ ϮϬϵ.Ϭ ϮϬϲ.ϰ ϮϬϯ.Ϭ ϭϵϴ.ϭ ϮϮϰ.ϵ Ϯϵϯ.Ϭϵ ϯϮϱϲ.ϯϭ ϯϰϯϲ.ϲϲ Ϯϵϯϲ.ϵϲ
ϮϬ_ϮϬ_jj_left ϰ ϰ ϰϰϮϭϬ.ϱϮϲ ϰϮϯϵϴ.ϲϴ ϰϴϭϯϭ.ϭϱ ϴϴϱϰϰ.ϰ ϴϲϭϴϳ.Ϯ ϵϴϳϮϰ.ϲ ϮϮϭ.Ϭ Ϯϭϭ.ϳ ϮϬϯ.ϳ ϭϵϲ.Ϭ ϭϵϰ.ϱ Ϯϭϵ.ϲ Ϯϱϴ.ϯϯ Ϯϵϭϳ.ϱϬ Ϯϵϵϳ.Ϯϵ Ϯϲϭϲ.ϲϲ

ϮϬ_ϮϬ_jj_right ϰ ϰ ϰϰϯϯϯ.ϴϴϮ ϰϯϳϴϴ.ϱϮ ϱϬϱϵϯ.ϰϵ ϮϮϭ.Ϭ Ϯϭϭ.ϳ Ϯϭϭ.Ϭ ϮϭϬ.Ϭ ϮϬϭ.ϭ ϮϮϱ.Ϯ Ϯϱϴ.ϯϯ Ϯϵϭϳ.ϱϬ Ϯϵϵϳ.Ϯϵ Ϯϲϭϲ.ϲϲ
Ϯϱ_ϭϭ_jj_left ϭϰ -ϭϰ ϰϰϲϳϮ.ϳϴϰ ϰϬϵϯϴ.ϵϮ ϰϵϭϱϯ.ϭϴ ϴϵϲϯϭ.ϳ ϴϮϯϳϯ.ϯ ϭϬϬϬϲϳ.ϴ Ϯϭϳ.Ϭ ϮϬϱ.Ϭ ϮϬϰ.ϰ ϮϬϮ.Ϭ ϭϵϰ.ϱ ϮϮϭ.ϵ ϮϴϬ.ϱϵ ϯϭϯϬ.ϰϵ ϯϰϬϲ.ϯϯ ϮϴϬϰ.Ϭϭ

Ϯϱ_ϭϭ_jj_right ϭϰ -ϭϰ ϰϰϵϱϴ.ϴϴϮ ϰϭϰϯϰ.ϰϭ ϱϬϵϭϰ.ϲϮ Ϯϭϱ.Ϭ ϮϬϳ.ϳ ϮϬϵ.ϳ ϮϬϭ.Ϭ ϭϵϰ.ϱ ϮϮϲ.Ϯ ϮϴϬ.ϱϵ ϯϭϯϬ.ϰϵ ϯϰϬϲ.ϯϯ ϮϴϬϰ.Ϭϭ
Ϯϱ_Ϯϱ_jj_left ϭϰ ϭϰ ϰϬϰϭϯ.ϯϰϴ ϰϬϭϮϵ.ϲ ϰϲϰϱϱ.ϰϲ ϴϰϱϬϰ.ϴ ϴϭϱϬϭ.Ϭ ϵϰϴϯϰ.ϳ Ϯϭϰ.Ϭ ϮϬϯ.ϳ ϭϵϱ.ϴ ϭϵϯ.Ϭ ϭϴϵ.ϴ Ϯϭϲ.Ϭ Ϯϴϯ.ϭϰ ϯϯϱϬ.ϲϭ ϯϰϳϰ.ϭϭ Ϯϵϴϱ.ϲϱ

Ϯϱ_Ϯϱ_jj_right ϭϰ ϭϰ ϰϰϬϵϭ.ϰϵϵ ϰϭϯϳϭ.ϰ ϰϴϯϳϵ.ϮϮ ϮϮϬ.Ϭ ϮϬϰ.ϰ ϮϬϬ.ϰ ϭϵϳ.Ϭ ϭϵϱ.ϭ ϮϮϬ.ϯ Ϯϴϯ.ϭϰ ϯϯϱϬ.ϲϭ ϯϰϳϰ.ϭϭ Ϯϵϴϱ.ϲϱ
ϯϬ_ϯϬ_jj_left Ϯϰ Ϯϰ ϯϵϲϮϮ.ϱϳϲ ϯϲϵϵϴ.ϱϭ ϰϴϲϵϱ.ϵϴ ϳϵϬϰϮ.ϲ ϳϰϳϯϴ.ϵ ϵϮϮϵϰ.Ϭ Ϯϭϰ.Ϭ ϭϵϵ.ϭ ϭϴϲ.ϱ ϭϴϯ.Ϭ ϭϳϴ.ϵ ϮϮϯ.Ϯ ϭϯϰ.ϱϳ ϭϳϬϮ.ϱϲ ϭϴϬϬ.ϲϬ ϭϰϱϴ.ϭϭ

ϯϬ_ϯϬ_jj_right Ϯϰ Ϯϰ ϯϵϰϮϬ.Ϭϭϰ ϯϳϳϰϬ.ϯϱ ϰϯϱϵϴ.Ϭϰ Ϯϭϯ.Ϭ ϮϬϭ.ϭ ϭϴϳ.Ϯ ϭϴϰ.Ϭ ϭϳϴ.ϲ ϮϭϬ.Ϭ ϭϯϰ.ϱϳ ϭϳϬϮ.ϱϲ ϭϴϬϬ.ϲϬ ϭϰϱϴ.ϭϭ
ϯϬ_ϲ_jj_left Ϯϰ -Ϯϰ ϰϬϬϱϳ.ϵϵϵ ϯϴϮϲϲ.ϱϴ ϰϱϯϮϱ.ϯϲ ϳϵϵϲϴ.ϰ ϳϱϵϭϳ.ϵ ϵϮϴϳϮ.ϰ ϮϬϰ.Ϭ ϭϵϱ.ϴ ϭϵϳ.ϭ ϭϵϭ.Ϭ ϭϴϳ.Ϯ Ϯϭϯ.Ϭ ϮϲϬ.ϳϭ ϯϮϲϬ.ϮϬ ϯϰϯϰ.ϭϱ ϮϴϬϳ.ϮϮ

ϯϬ_ϲ_jj_right Ϯϰ -Ϯϰ ϯϵϵϭϬ.ϰϬϱ ϯϳϲϱϭ.ϯ ϰϳϱϰϳ.Ϭϲ ϮϬϰ.Ϭ ϭϵϰ.ϱ ϭϵϴ.ϰ ϭϵϯ.Ϭ ϭϴϳ.Ϯ Ϯϭϴ.ϲ ϮϲϬ.ϳϭ ϯϮϲϬ.ϮϬ ϯϰϯϰ.ϭϱ ϮϴϬϳ.ϮϮ
ϯϱ_ϭ_jj_left ϯϰ -ϯϰ ϯϲϯϰϬ.ϬϮϴ ϯϳϲϭϲ.ϴϭ ϰϮϬϴϳ.ϯ ϳϯϱϲϳ.ϯ ϳϯϬϮϲ.ϳ ϴϲϯϯϬ.Ϯ ϭϵϬ.Ϭ ϭϵϱ.ϴ ϭϵϯ.ϴ ϭϴϵ.Ϭ ϭϴϮ.ϲ ϮϬϱ.ϳ Ϯϱϳ.ϰϮ ϯϰϵϵ.Ϭϰ ϯϱϮϰ.ϵϱ Ϯϵϴϭ.ϳϱ

ϯϱ_ϭ_jj_right ϯϰ -ϯϰ ϯϳϮϮϳ.ϯϮ ϯϱϰϬϵ.ϵϯ ϰϰϮϰϮ.ϵϰ ϭϵϯ.Ϭ ϭϴϰ.ϱ ϭϵϰ.ϱ ϭϴϴ.Ϭ ϭϴϱ.Ϯ ϮϭϬ.ϯ Ϯϱϳ.ϰϮ ϯϰϵϵ.Ϭϰ ϯϱϮϰ.ϵϱ Ϯϵϴϭ.ϳϱ
ϯϱ_ϯϱ_jj_left ϯϰ ϯϰ - ϯϮϬϲϵ.ϱϵ ϱϭϲϲϴ.ϵ -ϭ.Ϭ ϲϮϵϭϭ.ϱ ϱϮϬϬϱ.ϰ -ϭ.Ϭ ϭϴϰ.ϱ ϭϵϭ.Ϯ -ϭ.Ϭ ϭϲϬ.ϳ ϮϯϬ.ϴ -

ϯϱ_ϯϱ_jj_right ϯϰ ϯϰ - ϯϬϴϰϭ.ϵϲ ϯϯϲ.ϰϰϵϵ -ϭ.Ϭ ϭϴϲ.ϱ ϭϳϰ.Ϭ -ϭ.Ϭ ϭϲϮ.ϳ ϴϯ.ϴ -
ϱ_ϯϭ_jj_left -Ϯϲ Ϯϲ ϯϰϱϰϯ.ϯϲϵ ϯϱϬϬϭ.ϵ ϰϰϬϰϯ.ϴϳ ϳϬϴϭϳ.ϲ ϲϵϮϲϲ.Ϭ ϰϰϰϭϬ.ϵ ϭϵϲ.Ϭ ϭϴϲ.ϱ ϭϴϭ.Ϯ ϭϳϳ.Ϭ ϭϳϰ.Ϭ Ϯϭϭ.ϳ ϭϵϮ.Ϯϵ Ϯϳϭϱ.ϯϱ Ϯϳϳϲ.ϭϳ ϰϯϮϵ.ϴϵ

ϱ_ϯϭ_jj_right -Ϯϲ Ϯϲ ϯϲϮϳϰ.Ϯϯϴ ϯϰϮϲϰ.ϭϱ ϯϲϳ.Ϭϳϲ ϭϵϱ.Ϭ ϭϴϭ.Ϯ ϭϴϲ.ϱ ϭϳϵ.Ϭ ϭϳϴ.ϲ ϵϮ.ϵ ϭϵϮ.Ϯϵ Ϯϳϭϱ.ϯϱ Ϯϳϳϲ.ϭϳ ϰϯϮϵ.ϴϵ
ϱ_ϱ_jj_left -Ϯϲ -Ϯϲ ϯϲϴϳϭ.ϭϬϱ ϯϲϰϱϬ.Ϯϭ ϰϲϮϵϮ.ϳ ϳϱϱϵϵ.ϵ ϳϰϯϯϭ.ϰ ϵϰϴϭϮ.ϰ ϭϵϬ.Ϭ ϭϴϯ.Ϯ ϮϬϮ.ϰ ϭϵϳ.Ϭ ϭϵϭ.ϴ Ϯϭϱ.ϯ ϭϵϮ.ϯϬ Ϯϱϰϯ.ϲϬ Ϯϱϴϳ.ϬϬ ϮϬϮϴ.ϭϳ

ϱ_ϱ_jj_right -Ϯϲ -Ϯϲ ϯϴϳϮϴ.ϳϵϮ ϯϳϴϴϭ.Ϯϭ ϰϴϱϭϵ.ϲϲ ϭϵϯ.Ϭ ϭϴϱ.Ϯ ϮϬϰ.ϰ ϮϬϮ.Ϭ ϭϵϲ.ϱ ϮϮϬ.ϯ ϭϵϮ.ϯϬ Ϯϱϰϯ.ϲϬ Ϯϱϴϳ.ϬϬ ϮϬϮϴ.ϭϳ

CoŶduĐtaŶaŶĐe/area;µS/µŵ²ͿChip ĐoodiŶates ;ŵŵͿ Oǀerlap area ;Ŷŵ²Ϳ Total Area ;Ŷŵ²Ϳ Bottoŵ ǀertiĐal ǁidth ;ŶŵͿ Top horizoŶtal ǁidth;ŶŵͿ CoŶduĐtaŶĐe
;µSͿ

JasoŶ
Iŵage Ŷaŵe ǆ Ǉ IŵageJ Threshold SegŵeŶt IŵageJ Threshold SegŵeŶt IŵageJ Threshold SegŵeŶt IŵageJ Threshold SegŵeŶt IŵageJ Threshold SegŵeŶt

Dϭ_left ϰ.Ϯϱ -ϭϯ.ϯϱ ϮϯϬϵϱ Ϯϲϯϲϭ.Ϯ ϮϳϴϬϰ.ϵϴ ϰϲϭϬϳ.ϯ ϱϭϴϭϳ.ϴ ϱϲϴϵϵ.ϱ ϭϯϵ.Ϭ ϭϮϱ.Ϭ ϭϲϱ.ϳ ϭϲϳ.Ϭ ϭϱϳ.ϴ ϭϲϯ.ϳ ϭϬϱ.Ϯ ϮϮϴϭ.ϲ ϮϬϯϬ.ϭ ϭϴϰϴ.ϴ
Dϭ_right ϰ.Ϯϱ -ϭϯ.ϯϱ ϮϯϬϭϮ.ϯϯ Ϯϱϰϱϲ.ϱϱ ϮϵϬϵϰ.ϱϳ ϭϰϮ.Ϭ ϭϯϬ.Ϭ ϭϳϬ.Ϯ ϭϲϭ.Ϭ ϭϱϭ.ϴ ϭϲϭ.ϳ ϭϬϱ.Ϯ ϮϮϴϭ.ϲ ϮϬϯϬ.ϭ ϭϴϰϴ.ϴ
DϮ_left ϭ.ϵϱ -ϭϱ.ϲϱ Ϯϯϰϵϰ.ϱϴ ϯϰϴϯϯ.ϯϰ ϯϰϲϯ.ϭϵϰ ϰϱϳϵϳ.ϯ ϱϴϲϬϰ.ϭ ϮϴϱϳϬ.ϵ ϭϰϰ.Ϭ ϭϮϴ.Ϭ ϴϱ.ϴ ϭϱϴ.Ϭ ϯϬϰ.ϲ ϮϬ.ϴ ϵϵ.ϰ ϮϭϳϬ.ϱ ϭϲϵϲ.Ϯ ϯϰϳϵ.Ϯ
DϮ_right ϭ.ϵϱ -ϭϱ.ϲϱ ϮϮϯϬϮ.ϳϯ ϮϯϳϳϬ.ϳϴ ϮϱϭϬϳ.ϲϲ ϭϯϴ.Ϭ ϭϮϳ.Ϭ ϭϱϳ.ϯ ϭϱϴ.Ϭ ϭϰϮ.ϵ ϭϱϱ.ϴ ϵϵ.ϰ ϮϭϳϬ.ϱ ϭϲϵϲ.Ϯ ϯϰϳϵ.Ϯ
Dϯ_left -Ϭ.ϯϱ -ϭϳ.ϵϱ Ϯϰϭϱϴ.ϵϭ ϯϱϵϵϬ.ϲ ϮϲϭϲϬ.ϵϵ ϰϳϱϴϮ.ϲ ϲϬϬϰϱ.ϴ ϱϮϮϭϱ.ϳ ϭϰϲ.Ϭ ϭϮϵ.Ϭ ϭϲϬ.ϳ ϭϲϬ.Ϭ Ϯϯϵ.ϭ ϭϱϵ.ϳ ϭϬϳ.Ϭ ϮϮϰϴ.ϳ ϭϳϴϭ.ϵ ϮϬϰϵ.ϭ
Dϯ_right -Ϭ.ϯϱ -ϭϳ.ϵϱ ϮϯϰϮϯ.ϳϮ ϮϰϬϱϱ.Ϯϱ ϮϲϬϱϰ.ϲϳ ϭϰϱ.Ϭ ϭϯϯ.ϵ ϭϲϬ.Ϯ ϭϱϲ.Ϭ ϭϰϴ.ϴ ϭϱϵ.ϳ ϭϬϳ.Ϭ ϮϮϰϴ.ϳ ϭϳϴϭ.ϵ ϮϬϰϵ.ϭ
Dϰ_left ϭ.ϵϱ -ϭϭ.Ϭϱ ϰϱϰϬϱ.ϲ ϰϮϳϯϴ.Ϯϲ ϰϴϲϲϮ.ϴϵ ϴϵϴϳϳ.Ϯ ϴϱϳϳϵ.Ϭ ϵϱϴϱϭ.ϭ Ϯϭϯ.Ϭ Ϯϲϭ.ϵ ϮϯϬ.Ϯ ϭϱϯ.Ϭ ϭϰϴ.ϴ ϭϲϱ.ϳ ϭϴϱ.ϴ ϮϬϲϳ.ϯ Ϯϭϲϲ.ϭ ϭϵϯϴ.ϱ
Dϰ_right ϭ.ϵϱ -ϭϭ.Ϭϱ ϰϰϰϳϭ.ϲϭ ϰϯϬϰϬ.ϳϭ ϰϳϭϴϴ.Ϯϯ Ϯϭϱ.Ϭ Ϯϲϱ.ϵ ϮϮϴ.Ϯ ϭϱϰ.Ϭ ϭϰϵ.ϴ ϭϱϲ.ϴ ϭϴϱ.ϴ ϮϬϲϳ.ϯ Ϯϭϲϲ.ϭ ϭϵϯϴ.ϱ
Dϱ_left -Ϭ.ϯϱ -ϭϯ.ϯϱ ϰϰϮϳϴ.ϳϭ ϰϯϯϰϵ.Ϭϰ ϰϴϳϳϰ.ϭϯ ϴϵϰϳϰ.ϳ ϴϴϱϰϱ.ϰ ϵϳϯϮϮ.ϴ ϮϮϬ.Ϭ Ϯϲϱ.ϵ Ϯϯϭ.Ϯ ϭϲϬ.Ϭ ϭϰϱ.ϵ ϭϲϭ.ϳ ϭϵϯ.Ϭ Ϯϭϱϳ.Ϯ Ϯϭϳϵ.ϴ ϭϵϴϯ.Ϯ
Dϱ_right -Ϭ.ϯϱ -ϭϯ.ϯϱ ϰϱϭϵϱ.ϵϳ ϰϱϭϵϲ.ϯϲ ϰϴϱϰϴ.ϳ Ϯϭϵ.Ϭ Ϯϲϳ.ϵ ϮϯϬ.ϳ ϭϱϵ.Ϭ ϭϱϭ.ϴ ϭϲϭ.ϳ ϭϵϯ.Ϭ Ϯϭϱϳ.Ϯ Ϯϭϳϵ.ϴ ϭϵϴϯ.Ϯ
Dϲ_left -Ϯ.ϲϱ -ϭϱ.ϲϱ ϰϱϮϴϬ.ϲϭ ϰϲϵϯϴ.ϱϭ ϰϵϰϵϴ.ϲϲ ϵϬϱϯϱ.ϲ ϵϮϭϰϲ.ϭ ϵϴϯϳϯ.Ϯ Ϯϭϱ.Ϭ Ϯϲϱ.ϵ Ϯϯϭ.ϳ ϭϱϬ.Ϭ ϭϱϲ.ϴ ϭϲϲ.ϳ ϭϵϳ.ϯ Ϯϭϳϵ.ϰ Ϯϭϰϭ.ϯ ϮϬϬϱ.ϴ
Dϲ_right -Ϯ.ϲϱ -ϭϱ.ϲϱ ϰϱϮϱϱ.ϬϮ ϰϱϮϬϳ.ϲ ϰϴϴϳϰ.ϱϰ ϮϮϮ.Ϭ Ϯϲϵ.ϵ Ϯϯϭ.Ϯ ϭϱϰ.Ϭ ϭϱϭ.ϴ ϭϲϮ.ϳ ϭϵϳ.ϯ Ϯϭϳϵ.ϰ Ϯϭϰϭ.ϯ ϮϬϬϱ.ϴ
Dϳ_left ϰ.Ϯϱ -ϭϱ.ϲϱ ϮϯϴϰϮ Ϯϲϱϴϲ.ϱ ϮϴϰϮϰ.ϭϴ ϰϲϬϲϱ.Ϭ ϱϮϮϳϳ.ϲ ϱϱϮϴϲ.ϭ ϭϰϱ.Ϭ ϭϯϰ.ϵ ϭϲϳ.ϳ ϭϱϲ.Ϭ ϭϱϯ.ϴ ϭϲϮ.ϳ ϭϬϴ.Ϭ Ϯϯϰϰ.ϲ ϮϬϲϲ.Ϭ ϭϵϱϯ.ϱ
Dϳ_right ϰ.Ϯϱ -ϭϱ.ϲϱ ϮϮϮϮϯ.Ϭϭ Ϯϱϲϵϭ.ϭϭ Ϯϲϴϲϭ.ϵ ϭϰϴ.Ϭ ϭϯϳ.ϵ ϭϲϮ.ϳ ϭϲϬ.Ϭ ϭϰϴ.ϴ ϭϲϱ.ϳ ϭϬϴ.Ϭ Ϯϯϰϰ.ϲ ϮϬϲϲ.Ϭ ϭϵϱϯ.ϱ
Dϴ_left -Ϭ.ϯϱ -ϭϱ.ϲϱ Ϯϰϴϯϭ.ϭϭ Ϯϲϴϯϲ.ϮϮ Ϯϵϭϵϯ.ϵϵ ϰϵϴϱϰ.ϭ ϱϮϵϰϮ.ϰ ϱϳϰϵϭ.Ϯ ϭϰϳ.Ϭ ϭϯϯ.Ϭ ϭϳϬ.Ϯ ϭϲϬ.Ϭ ϭϱϱ.ϴ ϭϲϮ.ϳ ϭϬϳ.ϳ ϮϭϲϬ.ϯ ϮϬϯϰ.ϯ ϭϴϳϯ.ϯ
Dϴ_right -Ϭ.ϯϱ -ϭϱ.ϲϱ ϮϱϬϮϯ.Ϭϯ ϮϲϭϬϲ.Ϯϭ ϮϴϮϵϳ.ϭϵ ϭϱϮ.Ϭ ϭϰϬ.ϵ ϭϲϳ.ϳ ϭϱϱ.Ϭ ϭϰϴ.ϴ ϭϲϬ.ϳ ϭϬϳ.ϳ ϮϭϲϬ.ϯ ϮϬϯϰ.ϯ ϭϴϳϯ.ϯ
Dϵ_left -Ϭ.ϯϱ -ϭϭ.Ϭϱ Ϯϯϱϭϴ.Ϯ ϮϱϴϬϭ.ϯϵ Ϯϳϭϲϯ.ϭϯ ϰϳϴϭϯ.ϵ ϱϭϴϬϱ.ϴ ϱϱϰϬϯ.Ϯ ϭϰϲ.Ϭ ϭϯϴ.ϵ ϭϲϰ.Ϯ ϭϱϬ.Ϭ ϭϰϰ.ϵ ϭϱϯ.ϴ ϭϬϲ.Ϯ ϮϮϮϭ.Ϯ ϮϬϱϬ.Ϭ ϭϵϭϲ.ϵ
Dϵ_right -Ϭ.ϯϱ -ϭϭ.Ϭϱ ϮϰϮϵϱ.ϳϭ ϮϲϬϬϰ.ϯϲ ϮϴϮϰϬ.Ϭϵ ϭϰϲ.Ϭ ϭϯϵ.ϵ ϭϲϳ.Ϯ ϭϲϱ.Ϭ ϭϱϭ.ϴ ϭϱϳ.ϴ ϭϬϲ.Ϯ ϮϮϮϭ.Ϯ ϮϬϱϬ.Ϭ ϭϵϭϲ.ϵ
Xϭ_left -Ϭ.ϯϱ -ϴ.ϳϱ ϯϱϮϲϰ.ϱϭ ϯϯϱϯϯ.Ϭϲ ϯϳϭϯϴ.Ϯϳ ϳϬϵϬϲ.Ϭ ϲϳϰϬϱ.ϯ ϳϲϭϳϳ.ϱ Ϯϳϴ.Ϭ ϮϬϲ.ϰ ϭϵϲ.ϱ ϭϱϰ.Ϭ ϭϰϬ.ϵ ϭϱϯ.ϴ ϭϱϯ.ϴ Ϯϭϲϵ.ϭ ϮϮϴϭ.ϳ ϮϬϭϵ.Ϭ
Xϭ_right -Ϭ.ϯϱ -ϴ.ϳϱ ϯϱϲϰϭ.ϰϲ ϯϯϴϳϮ.Ϯϴ ϯϵϬϯϵ.ϭϵ Ϯϳϱ.Ϭ ϮϬϲ.ϰ ϮϬϭ.ϵ ϭϱϳ.Ϭ ϭϰϱ.ϵ ϭϱϳ.ϴ ϭϱϯ.ϴ Ϯϭϲϵ.ϭ ϮϮϴϭ.ϳ ϮϬϭϵ.Ϭ
XϮ_left -Ϯ.ϲϱ -ϭϭ.Ϭϱ ϯϱϵϲϭ.ϯϮ ϯϰϱϲϳ.Ϭϱ ϯϴϯϯϳ.ϯ ϳϮϭϯϳ.Ϯ ϲϴϲϯϳ.ϰ ϳϳϴϴϯ.ϱ Ϯϳϰ.Ϭ ϮϬϵ.ϯ ϭϵϴ.ϵ ϭϱϬ.Ϭ ϭϰϱ.ϵ ϭϲϬ.ϳ ϭϰϵ.ϵ ϮϬϳϴ.Ϭ Ϯϭϴϰ.Ϭ ϭϵϮϰ.ϳ
XϮ_right -Ϯ.ϲϱ -ϭϭ.Ϭϱ ϯϲϭϳϱ.ϴϳ ϯϰϬϳϬ.ϯϵ ϯϵϱϰϲ.ϭϳ Ϯϳϱ.Ϭ ϮϭϬ.ϯ ϮϬϮ.ϵ ϭϱϰ.Ϭ ϭϰϮ.ϵ ϭϲϬ.ϳ ϭϰϵ.ϵ ϮϬϳϴ.Ϭ Ϯϭϴϰ.Ϭ ϭϵϮϰ.ϳ
Xϯ_left -ϰ.ϵϱ -ϭϯ.ϯϱ ϯϰϬϱϳ.ϴϵ ϯϱϰϰϬ.ϯϭ ϯϴϳϵϳ.ϬϮ ϳϬϵϱϴ.ϭ ϳϯϵϵϲ.ϲ ϳϵϯϬϯ.Ϭ Ϯϳϲ.ϱ ϮϬϴ.ϰ ϮϬϬ.ϵ ϭϱϳ.Ϭ ϭϰϵ.ϴ ϭϱϴ.ϳ ϭϱϱ.ϯ Ϯϭϴϴ.ϳ ϮϬϵϴ.ϴ ϭϵϱϴ.ϰ
Xϯ_right -ϰ.ϵϱ -ϭϯ.ϯϱ ϯϲϵϬϬ.Ϯϰ ϯϴϱϱϲ.ϯϯ ϰϬϱϬϱ.ϵϴ Ϯϳϳ.Ϭ Ϯϭϳ.ϯ ϮϬϱ.ϵ ϭϱϵ.Ϭ ϭϱϯ.ϴ ϭϱϴ.ϳ ϭϱϱ.ϯ Ϯϭϴϴ.ϳ ϮϬϵϴ.ϴ ϭϵϱϴ.ϰ
Xϰ_left -ϰ.ϵϱ -ϭϭ.Ϭϱ ϯϳϮϵϮ.ϵϯ ϯϰϱϰϮ.Ϭϯ ϯϴϲϵϮ.ϲϳ ϳϮϲϬϲ.ϲ ϲϵϭϴϮ.ϵ ϳϳϮϴϵ.ϵ ϮϮϱ.Ϭ Ϯϭϲ.ϯ ϮϬϬ.ϵ ϭϲϬ.Ϭ ϭϰϭ.ϰ ϭϱϳ.ϴ ϭϱϯ.ϳ Ϯϭϭϲ.ϵ ϮϮϮϭ.ϳ ϭϵϴϴ.ϳ
Xϰ_right -ϰ.ϵϱ -ϭϭ.Ϭϱ ϯϱϯϭϯ.ϳϮ ϯϰϲϰϬ.ϴϱ ϯϴϱϵϳ.ϭϴ ϮϮϮ.Ϭ Ϯϭϲ.ϯ ϮϬϭ.ϰ ϭϱϳ.Ϭ ϭϰϭ.ϵ ϭϱϱ.ϴ ϭϱϯ.ϳ Ϯϭϭϲ.ϵ ϮϮϮϭ.ϳ ϭϵϴϴ.ϳ
Zϭ_left ϭ.ϵϱ -ϭϯ.ϯϱ ϯϱϭϵϯ.ϲϱ ϯϰϳϱϬ.ϲϴ ϯϲϵϳϱ.ϴϰ ϳϬϮϴϵ.ϵ ϲϲϵϲϮ.ϯ ϳϯϯϭϵ.ϳ Ϯϭϯ.Ϭ ϮϬϳ.ϰ ϭϵϲ.Ϭ ϭϱϱ.Ϭ ϭϰϲ.ϴ ϭϱϮ.ϴ ϭϲϭ.Ϭ ϮϮϵϬ.ϲ ϮϰϬϰ.ϰ Ϯϭϵϱ.ϵ
Zϭ_right ϭ.ϵϱ -ϭϯ.ϯϱ ϯϱϬϵϲ.Ϯϭ ϯϮϮϭϭ.ϲϲ ϯϲϯϰϯ.ϴϰ Ϯϭϯ.Ϭ ϮϬϱ.ϰ ϭϵϯ.ϱ ϭϱϲ.Ϭ ϭϮϴ.ϱ ϭϱϳ.ϴ ϭϲϭ.Ϭ ϮϮϵϬ.ϲ ϮϰϬϰ.ϰ Ϯϭϵϱ.ϵ
ZϮ_left -Ϯ.ϲϱ -ϭϳ.ϵϱ ϯϲϳϱϴ.ϱϭ ϯϲϯϬϮ.ϲϭ ϯϲϳϭϴ.ϵϭ ϳϯϮϴϳ.ϳ ϲϵϳϬϯ.ϭ ϳϰϰϲϴ.ϱ Ϯϭϳ.Ϭ ϮϭϮ.ϯ ϭϵϰ.ϱ ϭϲϭ.Ϭ ϭϱϳ.ϴ ϭϱϵ.ϳ ϭϱϴ.ϰ Ϯϭϲϭ.ϰ ϮϮϳϮ.ϱ ϮϭϮϳ.ϭ
ZϮ_right -Ϯ.ϲϱ -ϭϳ.ϵϱ ϯϲϱϮϵ.Ϯ ϯϯϰϬϬ.ϰϳ ϯϳϳϰϵ.ϲ ϮϮϱ.Ϭ Ϯϭϭ.ϯ ϭϵϳ.ϵ ϭϲϬ.Ϭ ϭϯϴ.ϵ ϭϱϲ.ϴ ϭϱϴ.ϰ Ϯϭϲϭ.ϰ ϮϮϳϮ.ϱ ϮϭϮϳ.ϭ
Zϯ_left ϭ.ϵϱ -ϴ.ϳϱ ϯϱϱϵϴ.ϭϱ ϯϰϮϲϳ.ϳϮ ϯϳϬϰϳ.ϳϭ ϳϭϬϵϯ.ϵ ϲϴϬϮϯ.ϰ ϳϯϳϳϭ.ϱ Ϯϭϱ.Ϭ ϮϬϲ.ϰ ϭϵϱ.Ϭ ϭϱϴ.Ϭ ϭϰϴ.ϴ ϭϱϴ.ϳ ϭϱϱ.Ϭ ϮϭϴϬ.ϭ ϮϮϳϴ.ϱ ϮϭϬϭ.Ϭ
Zϯ_right ϭ.ϵϱ -ϴ.ϳϱ ϯϱϰϵϱ.ϴ ϯϯϳϱϱ.ϲϵ ϯϲϳϮϯ.ϴϯ Ϯϭϵ.Ϭ ϮϬϴ.ϰ ϭϵϰ.ϱ ϭϱϰ.Ϭ ϭϰϯ.ϵ ϭϱϵ.ϳ ϭϱϱ.Ϭ ϮϭϴϬ.ϭ ϮϮϳϴ.ϱ ϮϭϬϭ.Ϭ
Zϰ_left -Ϯ.ϲϱ -ϭϯ.ϯϱ ϯϲϲϱϭ.Ϯϰ ϯϱϲϭϴ.ϴϴ ϰϬϬϮϬ.ϲϲ ϳϮϭϲϰ.ϳ ϲϵϯϲϴ.ϭ ϳϳϳϬϲ.ϯ ϮϮϭ.Ϭ ϮϭϬ.ϯ ϮϬϰ.ϰ ϭϱϳ.Ϭ ϭϱϭ.ϴ ϭϲϬ.ϳ ϭϱϮ.ϭ ϮϭϬϳ.ϲ ϮϭϵϮ.ϱ ϭϵϱϳ.ϯ
Zϰ_right -Ϯ.ϲϱ -ϭϯ.ϯϱ ϯϱϱϭϯ.ϱϭ ϯϯϳϰϵ.Ϯϯ ϯϳϲϴϱ.ϲϭ Ϯϭϵ.Ϭ ϮϬϵ.ϯ ϭϵϳ.ϵ ϭϱϵ.Ϭ ϭϰϰ.ϵ ϭϱϴ.ϳ ϭϱϮ.ϭ ϮϭϬϳ.ϲ ϮϭϵϮ.ϱ ϭϵϱϳ.ϯ

CoŶduĐtaŶaŶĐe/area;µS/µŵ²ͿChip ĐoodiŶates ;ŵŵͿ Oǀerlap area ;Ŷŵ²Ϳ Total Area ;Ŷŵ²Ϳ Bottoŵ ǀertiĐal ǁidth ;ŶŵͿ Top horizoŶtal ǁidth;ŶŵͿ CoŶduĐtaŶĐe
;µSͿ

Nighthaǁk
Iŵage Ŷaŵe ǆ Ǉ IŵageJ Threshold SegŵeŶt IŵageJ Threshold SegŵeŶt IŵageJ Threshold SegŵeŶt IŵageJ Threshold SegŵeŶt IŵageJ Threshold SegŵeŶt

ϭϬ_ϭϬ -ϭϲ.ϬϬ -ϭϲ.ϬϬ ϰϯϳϭϰ.ϲ ϰϰϮϰϬ.ϯ ϱϮϱϬϳ.ϳ ϴϳϰϮϵ.Ϯ ϴϴϰϴϬ.ϲ ϭϬϱϬϭϱ.ϯ ϭϵϵ.Ϭ ϮϬϰ.ϳ ϮϮϴ.Ϯ ϮϬϯ.Ϭ ϮϬϬ.Ϯ ϮϮϮ.ϴ ϭϵϰ.ϰ ϮϮϮϯ.ϲ Ϯϭϵϳ.Ϯ ϭϴϱϭ.ϯ
ϭϬ_Ϯϲ -ϭϲ.ϬϬ ϭϲ.ϬϬ ϰϮϰϱϵ.ϱ ϰϬϵϰϬ.Ϭ ϰϳϲϲϲ.ϭ ϴϰϵϭϴ.ϵ ϴϭϴϴϬ.Ϭ ϵϱϯϯϮ.ϯ ϭϵϵ.Ϭ ϭϵϯ.ϵ Ϯϭϴ.ϯ ϮϬϳ.Ϭ ϮϬϬ.Ϯ ϮϬϰ.ϳ ϭϵϵ.Ϯ Ϯϯϰϱ.ϯ ϮϰϯϮ.ϯ ϮϬϴϵ.ϭ
ϭϰ_ϭϯ -ϴ.ϬϬ -ϭϬ.ϬϬ ϰϲϯϵϭ.ϰ ϰϱϳϰϬ.ϵ ϱϱϵϳϲ.ϳ ϵϮϳϴϮ.ϴ ϵϭϰϴϭ.ϳ ϭϭϭϵϱϯ.ϱ ϮϬϱ.Ϭ Ϯϭϭ.ϱ Ϯϯϱ.ϵ Ϯϭϱ.Ϭ ϮϬϯ.ϴ ϮϮϳ.ϯ ϭϵϯ.ϰ ϮϬϴϯ.ϵ Ϯϭϭϯ.ϱ ϭϳϮϳ.ϭ
ϭϱ_ϭϱ -ϲ.ϬϬ -ϲ.ϬϬ ϰϲϭϱϰ.ϰ ϰϱϲϰϲ.ϱ ϱϯϱϭϱ.ϳ ϵϮϯϬϴ.ϵ ϵϭϮϵϯ.Ϭ ϭϬϳϬϯϭ.ϰ ϮϬϯ.Ϭ ϮϬϰ.ϳ ϮϯϬ.ϱ Ϯϭϳ.Ϭ ϮϬϳ.ϱ ϮϮϮ.ϴ ϭϵϬ.ϰ ϮϬϲϮ.ϱ ϮϬϴϱ.ϱ ϭϳϳϴ.ϴ
ϭϱ_Ϯϭ -ϲ.ϬϬ ϲ.ϬϬ ϰϴϬϭϰ.ϱ ϰϳϲϳϳ.ϴ ϱϱϱϵϵ.Ϯ ϵϲϬϮϴ.ϵ ϵϱϯϱϱ.ϳ ϭϭϭϭϵϴ.ϱ ϮϬϴ.Ϭ ϮϬϲ.ϲ Ϯϯϱ.ϵ Ϯϭϭ.Ϭ ϮϭϮ.ϵ ϮϮϭ.ϵ ϭϵϵ.ϭ ϮϬϳϯ.ϱ ϮϬϴϴ.Ϯ ϭϳϵϬ.ϳ
ϭϳ_ϭϳ -Ϯ.ϬϬ Ϯ.ϬϬ ϰϱϱϯϳ.ϰ ϰϱϳϮϬ.ϭ ϱϱϬϭϯ.ϱ ϵϭϬϳϰ.ϴ ϵϭϰϰϬ.Ϯ ϭϭϬϬϮϲ.ϵ ϮϬϴ.Ϭ ϮϬϱ.ϳ Ϯϯϯ.ϴ Ϯϭϴ.Ϭ Ϯϭϭ.ϭ ϮϯϮ.ϳ ϭϵϬ.ϱ ϮϬϵϭ.ϲ ϮϬϴϯ.Ϯ ϭϳϯϭ.ϯ
ϭϴ_ϭϳ Ϭ.ϬϬ Ϯ.ϬϬ ϰϲϬϱϱ.Ϭ ϰϲϯϲϯ.ϵ ϱϳϱϱϭ.ϴ ϵϮϭϬϵ.ϵ ϵϮϳϮϳ.ϴ ϭϭϱϭϬϯ.ϲ ϮϬϵ.Ϭ ϮϬϳ.ϱ Ϯϯϵ.ϵ Ϯϭϳ.Ϭ ϮϬϲ.ϲ ϮϮϵ.ϭ ϭϵϭ.ϱ ϮϬϳϴ.ϳ ϮϬϲϰ.ϵ ϭϲϲϯ.ϱ
ϭϴ_ϭϴ Ϭ.ϬϬ Ϭ.ϬϬ ϰϱϰϲϱ.ϰ ϰϰϱϲϲ.ϲ ϱϯϳϲϮ.Ϯ ϵϬϵϯϬ.ϵ ϴϵϭϯϯ.Ϯ ϭϬϳϱϮϰ.ϰ ϮϬϵ.Ϭ ϮϬϲ.ϲ Ϯϯϭ.ϴ Ϯϭϳ.Ϭ ϮϬϳ.ϱ ϮϮϬ.ϭ ϮϬϬ.ϯ ϮϮϬϮ.Ϯ ϮϮϰϲ.ϲ ϭϴϲϮ.ϰ
ϮϬ_ϭϲ ϰ.ϬϬ -ϰ.ϬϬ ϰϱϵϬϮ.ϵ ϰϱϱϴϮ.ϭ ϱϱϭϬϬ.ϱ ϵϭϴϬϱ.ϵ ϵϭϭϲϰ.ϭ ϭϭϬϮϬϭ.Ϭ ϮϬϲ.Ϭ ϮϬϰ.ϳ Ϯϯϰ.ϱ Ϯϭϳ.Ϭ ϮϬϳ.ϱ Ϯϭϴ.ϯ ϭϵϵ.ϭ Ϯϭϲϵ.ϭ Ϯϭϴϰ.ϰ ϭϴϬϳ.ϭ
ϮϬ_ϮϬ ϰ.ϬϬ ϰ.ϬϬ ϰϱϲϱϱ.ϱ ϰϲϯϭϱ.ϵ ϱϯϭϲϭ.ϴ ϵϭϯϭϬ.ϵ ϵϮϲϯϭ.ϳ ϭϬϲϯϮϯ.ϲ ϮϬϲ.Ϭ ϮϬϮ.ϵ ϮϯϬ.ϱ Ϯϭϳ.Ϭ ϮϭϮ.ϵ Ϯϭϲ.ϱ ϭϵϵ.ϱ Ϯϭϴϱ.Ϯ Ϯϭϱϰ.Ϭ ϭϴϳϲ.ϲ
Ϯϱ_ϭϭ Ϯϰ.ϬϬ -ϭϰ.ϬϬ ϰϰϲϭϲ.ϯ ϭϴϮϴϱ.ϳ ϱϭϰϭϯ.ϰ ϴϵϮϯϮ.ϲ ϯϲϱϳϭ.ϯ ϭϬϮϴϮϲ.ϴ ϮϬϲ.Ϭ ϮϬϮ.Ϭ ϮϮϱ.ϱ Ϯϭϲ.Ϭ ϮϬϰ.ϳ ϮϮϲ.ϰ ϭϴϱ.ϱ ϮϬϳϴ.ϴ ϱϬϳϮ.ϯ ϭϴϬϰ.Ϭ
Ϯϱ_Ϯϱ ϭϰ.ϬϬ ϭϰ.ϬϬ ϰϯϴϵϱ.ϳ ϰϮϱϱϬ.ϰ ϰϵϭϱϴ.Ϯ ϴϳϳϵϭ.ϱ ϴϱϭϬϬ.ϴ ϵϴϯϭϲ.ϰ ϭϵϴ.Ϭ ϭϵϰ.ϴ ϮϮϭ.ϵ Ϯϭϲ.Ϭ ϮϬϱ.ϳ ϮϬϲ.ϲ ϭϴϯ.ϯ ϮϬϴϴ.ϰ Ϯϭϱϰ.ϰ ϭϴϲϰ.ϴ
Ϯϲ_ϮϮ ϭϲ.ϬϬ ϴ.ϬϬ ϰϯϳϳϭ.Ϯ ϱϲϴϰ.ϲ ϱϮϱϳϴ.ϱ ϴϳϱϰϮ.ϰ ϭϭϯϲϵ.Ϯ ϭϬϱϭϱϲ.ϵ ϭϵϵ.Ϭ ϮϬϭ.ϲ ϮϮϴ.ϳ Ϯϭϴ.Ϭ ϭϲϱ.ϭ Ϯϭϲ.ϱ ϭϴϴ.ϯ ϮϭϱϬ.ϰ ϭϲϱϱϳ.ϵ ϭϳϵϬ.Ϯ
Ϯϳ_ϭ ϭϴ.ϬϬ -ϯϰ.ϬϬ ϰϯϮϴϭ.ϵ ϮϰϬϯϭ.Ϯ ϱϭϳϬϭ.ϰ ϴϲϱϲϯ.ϴ ϰϴϬϲϮ.ϯ ϭϬϯϰϬϮ.ϵ ϭϵϲ.Ϭ ϮϬϭ.ϭ ϮϮϲ.ϰ Ϯϭϲ.Ϭ ϵϵ.Ϯ ϮϯϬ.Ϭ ϭϲϴ.Ϭ ϭϵϰϬ.ϰ ϯϰϵϰ.ϴ ϭϲϮϰ.ϰ
Ϯϳ_ϳ ϭϴ.ϬϬ -Ϯϰ.ϬϬ ϰϮϬϵϯ.ϭ ϭϴϱϮϲ.ϰ ϱϮϲϳϴ.ϱ ϴϰϭϴϲ.Ϯ ϯϳϬϱϮ.ϴ ϭϬϱϯϱϳ.Ϭ ϭϵϲ.Ϭ ϭϵϱ.ϳ ϮϮϳ.ϯ ϮϭϮ.Ϭ ϮϬϭ.ϭ Ϯϯϰ.ϱ ϭϳϴ.ϱ Ϯϭϭϵ.ϵ ϰϴϭϲ.ϲ ϭϲϵϰ.Ϭ
Ϯ_ϯϱ -ϯϮ.ϬϬ ϯϰ.ϬϬ ϯϰϰϳϬ.ϯ ϯϲϲϴϴ.ϯ ϰϬϴϯϲ.Ϯ ϲϴϵϰϬ.ϱ ϳϯϯϳϲ.ϱ ϴϭϲϳϮ.ϱ ϭϴϮ.Ϭ ϭϴϬ.ϰ ϮϬϮ.ϱ ϭϵϯ.Ϭ ϭϴϯ.ϭ ϭϴϲ.ϳ ϭϳϳ.ϰ Ϯϱϳϯ.ϭ Ϯϰϭϳ.ϱ ϮϭϳϮ.Ϭ
ϯϬ_ϯϬ Ϯϰ.ϬϬ Ϯϰ.ϬϬ ϰϬϳϵϳ.ϲ ϯϱϳϰϲ.ϭ ϰϳϬϲϵ.Ϭ ϴϭϱϵϱ.Ϯ ϳϭϰϵϮ.ϯ ϵϰϭϯϳ.ϵ ϭϵϳ.Ϭ ϭϴϯ.ϭ Ϯϭϲ.ϵ Ϯϭϰ.Ϭ ϭϴϱ.ϴ ϭϵϴ.ϰ -
ϯϬ_ϲ Ϯϰ.ϬϬ -Ϯϰ.ϬϬ ϰϭϴϴϴ.ϱ ϭϯϲϲϬ.Ϭ ϱϬϬϵϱ.ϰ ϴϯϳϳϳ.Ϭ ϮϳϯϮϬ.Ϭ ϭϬϬϭϵϬ.ϵ ϮϬϬ.Ϭ ϯϳ.ϵ ϮϮϮ.ϯ ϮϬϴ.Ϭ Ϯϱϵ.ϴ ϮϯϬ.ϵ -
ϯϮ_Ϯ Ϯϴ.ϬϬ -ϯϮ.ϬϬ ϰϬϬϵϬ.Ϭ ϭϱϮϭϬ.ϳ ϱϳϱϴϲ.Ϭ ϴϬϭϳϵ.ϵ ϯϬϰϮϭ.ϰ ϭϭϱϭϳϭ.ϵ ϭϵϲ.Ϭ ϮϭϮ.ϵ Ϯϯϵ.ϱ ϮϬϯ.Ϭ ϮϮϮ.ϴ ϮϯϬ.ϵ ϭϱϮ.ϲ ϭϵϬϯ.Ϭ ϱϬϭϱ.ϱ ϭϯϮϰ.ϴ
ϯϰ_ϯϰ ϯϮ.ϬϬ ϯϮ.ϬϬ ϯϱϵϵϳ.ϵ ϯϱϬϴϭ.Ϭ ϰϯϴϰϯ.Ϯ ϳϭϵϵϱ.ϴ ϳϬϭϲϮ.ϭ ϴϳϲϴϲ.ϰ ϭϴϯ.Ϭ ϭϴϬ.ϰ ϮϬϵ.ϳ ϮϬϭ.Ϭ ϭϴϰ.ϵ ϭϵϯ.ϵ ϭϳϵ.Ϭ Ϯϰϴϲ.ϯ Ϯϱϱϭ.Ϯ ϮϬϰϭ.ϰ
ϯϱ_ϭ ϯϰ.ϬϬ -ϯϰ.ϬϬ ϰϬϮϬϭ.ϲ ϰϮϵϴϯ.Ϯ ϱϬϴϵϬ.ϯ ϴϬϰϬϯ.ϭ ϴϱϵϲϲ.ϱ ϭϬϭϳϴϬ.ϲ ϭϵϳ.Ϭ ϭϵϵ.ϯ ϮϮϰ.ϲ ϮϬϭ.Ϭ ϭϵϵ.ϯ ϮϮϯ.ϳ ϭϱϬ.ϲ ϭϴϳϮ.ϲ ϭϳϱϭ.ϰ ϭϰϳϵ.ϯ
ϯϱ_ϯϱ ϯϰ.ϬϬ ϯϰ.ϬϬ ϯϯϲϭϯ.ϴ ϯϴϰϮϲ.ϰ ϰϬϯϴϳ.ϭ ϲϳϮϮϳ.ϳ ϳϲϴϱϮ.ϵ ϴϬϳϳϰ.ϯ ϭϳϴ.Ϭ ϭϳϯ.Ϯ ϮϬϭ.ϭ ϭϵϴ.Ϭ ϮϬϮ.ϵ ϭϴϮ.Ϯ ϭϱϯ.ϳ ϮϮϴϲ.Ϭ ϭϵϵϵ.ϳ ϭϵϬϮ.ϲ
ϱ_ϯϭ -Ϯϲ.ϬϬ Ϯϲ.ϬϬ ϯϴϲϯϭ.ϵ ϯϳϭϮϬ.ϳ ϰϲϴϬϵ.ϰ ϳϳϮϲϯ.ϳ ϳϰϮϰϭ.ϰ ϵϯϲϭϴ.ϵ ϭϵϯ.Ϭ ϭϴϵ.ϰ Ϯϭϲ.Ϭ ϮϬϬ.Ϭ ϭϴϵ.ϰ ϮϬϭ.ϭ ϭϴϵ.ϰ Ϯϰϱϭ.ϲ Ϯϱϱϭ.ϰ ϮϬϮϯ.ϯ
ϱ_ϱ -Ϯϲ.ϬϬ -Ϯϲ.ϬϬ ϰϬϰϮϳ.Ϯ ϭϱϱϵϯ.ϲ ϰϲϴϭϭ.ϭ ϴϬϴϱϰ.ϰ ϯϭϭϴϳ.ϯ ϵϯϲϮϮ.ϭ ϭϵϵ.Ϭ ϮϬϱ.ϳ Ϯϭϱ.ϭ ϭϵϵ.Ϭ ϭϴϯ.ϭ Ϯϭϰ.ϳ ϭϳϵ.ϳ ϮϮϮϮ.ϰ ϱϳϲϭ.ϲ ϭϵϭϵ.ϯ
ϳ_ϳ -Ϯϰ.ϬϬ -Ϯϰ.ϬϬ ϰϬϭϱϮ.Ϯ ϰϰϲϭϳ.ϲ ϰϵϳϲϭ.ϵ ϴϬϯϬϰ.ϱ ϴϵϮϯϱ.ϯ ϵϵϱϮϯ.ϴ ϮϬϬ.Ϭ ϮϬϲ.ϲ ϮϮϯ.Ϯ ϮϬϬ.Ϭ ϮϬϭ.ϭ ϮϭϮ.Ϭ ϭϴϰ.ϴ ϮϯϬϭ.ϲ ϮϬϳϭ.ϯ ϭϴϱϳ.ϭ

CoŶduĐtaŶaŶĐe/area;µS/µŵ²ͿChip ĐoodiŶates ;ŵŵͿ Oǀerlap area ;Ŷŵ²Ϳ Total Area ;Ŷŵ²Ϳ Bottoŵ ǀertiĐal ǁidth ;ŶŵͿ Top horizoŶtal ǁidth;ŶŵͿ CoŶduĐtaŶĐe
;µSͿ

.3.3 Images

Below the SEM images where the overlap area is marked red. Four red lines are drawn

where the edges have been found for the thresholding method. The next page contains the

segmentation method.

(a) Blackbird 1.

(b) Blackbird 4.

(c) Jason.

(d)Nighthawk.

(e)Blackbird 2.

Figure 15: All the junctions measured with the thresholding method stitched together for each data set.

Any remeasurement with the GUI is represented next to the original measurement in the stitched image.

(a) Blackbird 1.

(b) Blackbird 4.

(c) Jason.

(d)Nighthawk.

(e)Blackbird 2.

Figure 16: All the junctions measured with the segmentation method stitched together for each data set.

	Introduction
	Theory
	Harmonic resonators and coplanar waveguide
	Qubit
	Image processing
	Separating an feature
	Convolution filters
	K-means algorithm
	Template matching

	Base layer
	Fabrication
	pyclq_base method
	Results

	Josephson Junctions
	Design and fabrication
	pyclq_jj method
	Devices

	Results

	Airbridges
	Fabrication
	pyclq_ab method
	Results

	Conclusion
	 Bibliography
	 Appendix
	Pseudo codes
	Pyclq_AB
	Pyclq_jj
	Plots
	Tables
	Images

