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Abstract 
The new Medical Device Regulation (MDR) addresses patient safety by mandating 
supporting clinical evidence for the sale and clinical use of medical devices. However, 
it places pressure on medical device manufacturers to supply regulators with robust 
clinical evidence to obtain regulatory approval of new devices they develop. Regulatory 
compliance is therefore more stringent, requiring more effort on part of both regulators 
and manufacturers. This thesis project explored the possibility of developing a new 
method to be used as a regulatory decision-making tool for the approval of newly 
developed knee implants. A Bayesian probabilistic method was developed and 
proposed. This method utilises existing arthroplasty registry and arthroplasty registry 
annual report data to determine if a newly released implant variant is “good”, where a 
“good” implant is one which meets standard regulatory thresholds in term of revision 
risk. This method was implemented on two datasets which were selected based on 
conditions of granularity, measures of implant performance, and accessibility for the 
thesis project. Some advantages and limitations of this method as a regulatory tool 
were proposed, the limitations being based on a clinical appraisal framework. Based 
on this it was concluded that the method indeed showed potential as such a regulatory 
tool, but needs further improvement due to considerations of reliability, precision, and 
the probabilistic nature of the results it yields. Both surgeons and patients can also 
potentially stand to benefit from this method. Aside from the regulatory context, also, 
the method has limitations in the fact that it does not account for other factors that 
may be responsible for complications related to knee arthroplasty surgery. Overall, 
however, this thesis presents a novel approach towards estimating the performance of 
knee implants from existing clinical data. 
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Chapter 1 | Introduction 
1.1 Context 

Total Knee Arthroplasty (TKA) remains one of the most effective treatments for end 
stage osteoarthritis today (Kini, 2022). It boasts high patient satisfaction rates, 
effectively restoring knee function and alleviating pain. Throughout the last decade, the 
TKA, as a surgical intervention, has undergone significant change in both surgical 
technique and implant design and performance (Pande & Dhatrak, 2021). Implant 
design itself has evolved from the initial hinged and Guépar prostheses to modern 
variants of cruciate retaining (CR) and posterior stabilised (PS) implants (Saragaglia et 
al., 2019). This has led to many different prosthesis products in the market, offered by 
many different manufacturers. Their models vary in design, material, and parts. More 
so, a single brand can have multiple designs and implant types. These are called 
variants as defined in the section Variants in the Thesis Context. 

A brand could consist of many models with different sub-components, materials, and 
designs which can be considered separate implants in their own right. These are called 
variants (Phillips & Tucker, 2021). Variants can be regarded as individual knee 
prostheses having a unique combination of characteristics. A list of seven 
characteristics described in the section Variants in the Thesis Context helps uniquely 
identify an implant variant, distinguishing it from other similar variants even if they 
share a common brand name. This approach of looking at implant variants individually 
differs from that used by registry reports, literature studies and rating agencies which 
group many variants under a single brand name. 

Registries, clinical studies, and independent agencies study implant performance, 
safety and efficacy. After all, knee replacement is a major surgical procedure and poor 
implant quality can significantly increase the risk of surgical complication. Once 
implanted in the body, any subsequent operation due to problems with the knee 
implant is difficult and carries a higher risk of complication (Dennis et al., 2011; 
Fitzpatrick et al., 2012; Jenny et al., 2008). It also poses a significant clinical burden on 
the patient and financial burden on the healthcare system (Khan et al., 2016). 
Therefore, it is important that knee implants perform as intended the first time they are 
implanted within the body and hence the need for properly gauging an implant’s 
performance. Implant performance in the context of this thesis is defined entirely in 
terms of revision risk in section Defining Implant Performance. 

Studied implants are rated on this basis and assign performance metrics such as the 
revision risk, which is the probability of a patient needing revision surgery within a 
specified time period of follow-up. Many variants may be studied, and metrics for each 
of them may be published in sources like registry reports and medical research. 
Naturally, implant performance, safety and efficacy can vary significantly based on the 
variant used. It is known that some implants generally come with a higher risk of 
revision and a lower performance, whereas others have a stellar track record with low 
rates of revision. This can be the case even for close variants: those sharing a common 
brand name, such as in the case mentioned by Keohane et al., 2020, 2022 for the 
Nexgen LPS implant and its variants.  
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Differences between implant performance of close variants with a common brand 
name can result in Camouflage (Haddad, 2021a; Phillips & Tucker, 2021; Wilton et al., 
2023a). Camouflage is the association of a brand with only good performing variants, 
overshadowing underperforming variants. Variants with stellar metrics of revision, 
safety and efficacy may paint a good picture of the whole brand. In this process, other 
variants with the same brand name may be associated with the same performance 
metrics, even if they underperform. In some cases, the good picture of a brand has 
masked the presence of variants with known safety concerns (Keohane et al., 2020, 
2022; Wilton et al., 2023b).  

If each new variant is properly vetted with supporting clinical evidence before release 
for open use in surgical contexts, camouflage can be reduced drastically. 
Underperforming variants would be used with caution and would not be overshadowed 
by the good performance of other, more popular variants with the same brand name. 
To a certain extent, this vetting of new variants has been taken up by regulators with the 
new Medical Device Regulation (MDR). Up until recently, regulatory authorities 
approved the use of knee implant variants based on the performance of near variants 
under the same brand name. This is mentioned in the “similar device” clause in the 
Medical Device Directive (MDD) Directive 93/42/EEC (Official Journal of the European 
Communities, 1993). However, due to a series of clinical failures as described in 
section The MDR in the Knee Arthroplasty Context, the new Medical Device Regulation 
(MDR) has taken effect from 2017. The MDR mandates manufacturers to provide 
evidence for individual variants even if it is similar to an already-approved implant in 
terms of prosthesis characteristics. 

Although this reduces the likelihood of camouflage and has positive implications for 
patient safety, this new system puts an immense amount of pressure on manufacturers 
to supply appropriate clinical evidence to regulators for the release of new implant 
variants (Wilkinson & van Boxtel, 2020). This burden is further exacerbated when 
manufacturers release new variants frequently in short innovation cycles. Typically, 
when this happens, new variants closely resemble other already-approved variants. 
Implant characteristics are similar, with changes from an older variant to a newer one 
being incremental. Implants may need to be re-approved from scratch despite the 
presence of clinical evidence from a near variant which has already been approved. 
Previous clinical and surgical evidence associated with a near variant may be 
completely ignored in this process of generating evidence from scratch.    

This thesis explores the possibility of using this evidence from known, tested and 
regulated variants to new ones which enter the market. In other words, it looks at the 
possibility utilising existing evidence to make informed estimations on the 
performance of new variants with similar characteristics. This could serve as a 
foundational effort benefiting both regulators and manufacturers in the field of knee 
implants. A probabilistic Bayesian method is found ideal for achieving this objective.  

1.2 Problem Statement 
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The current regulatory framework for medical devices like knee implants, the MDR, 
mandates supporting clinical evidence for the regulatory approval of each new implant 
variant created by manufacturers for subsequent sale and surgical use. The MDR, in 
doing so, addresses concerns of patient safety and Camouflage, where 
underperforming variants are overshadowed by high-performing ones within the same 
brand. However, this introduces new issues. New implant variants now need to be 
supported by robust clinical evidence for obtaining regulatory approval. This places 
pressure on manufacturers to supply such clinical evidence for each implant variant 
they create because new variants may be frequently released only with incremental 
changes as compared to their predecessor variants. Additionally, it is typically more 
challenging, costlier, and time consuming to obtain clinical evidence for medical 
devices like knee implants compared to medicinal products like drugs. Therefore, there 
is a need to identify a new method that assists this regulatory approval process by 
providing an initial estimate of new implant variants that manufacturers release, even 
if it may be an incremental improvement from a predecessor variant. This method 
would assist this regulatory decision-making process by providing an initial estimate of 
a new variants’ potential performance during clinical use. This method would need to 
be predictive, using available clinical data, because at the regulatory approval stage 
there may be little clinical data associated with the variant in question. Thus, general 
clinical evidence from literature and arthroplasty registries would need to be utilised in 
the method.  

1.3 Research Objectives and Question 

1.3.1 Research Objectives 

OBJ ①  
Examine data from arthroplasty registries, studies of regulated knee implants and 
other clinical data and identify suitable sources of information to develop a method 
to estimate knee implant variant performance. 

Headi ng Placehol der 1 OBJ1  

OBJ ②  
To identify an approach for developing a method to estimate the revision risk 
performance of knee implant variants using existing arthroplasty registry and 
literature on regulated knee implants (medical literature) 

Headi ng Placehol der 2 OBJ2  

OBJ ③ 
Develop a method to estimate knee implant variant performance leveraging 
evidence from arthroplasty registries or clinical data. 

Headi ng Placehol der 3 OBJ3  

OBJ ④ 
Evaluate the method to determine its applicability in regulating knee implant 
variants.  

 

1.3.2 Research Question 

RQ ①  
What method can use existing clinical data from arthroplasty registries and studies 
of regulated total knee implants to estimate the revision risk performance of implant 
variants? 

Headi ng Placehol der 4 RQ1  
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Sub-research question Heading Placeholder 5 RQ2 

RQ ② 
What methods can regulators of medical devices use to improve decision-making 
on the approval of new knee implant variants? 

Headi ng Placehol der 6 RQ3  

1.4 Literature Overview 

This brief literature review section aims to analyse existing research on total knee 
implant variants, focusing mainly on their performance and regulatory implications. It 
synthesises existing research with the overall goal of highlighting the importance of 
individual variant assessment in enhancing patient safety and clinical outcomes in the 
context of this thesis project.  

1.4.1 Literature Search 

A small set of studies curated by one of the supervisors served as motivation for the 
literature search. These included three studies exposing a phenomenon called 
“camouflage” in the context of knee arthroplasty (Haddad, 2021b; J. R. A. Phillips & 
Tucker, 2021; Wilton et al., 2023b) and one on the necessity of more thorough 
evaluation of medical devices (Fraser et al., 2021; Lübbeke et al., 2023a). This paved 
the way for a deeper investigation on this topic with the help the Google Scholar. 
Besides this, studies from the Bone and Joint Journal were also included because of its 
specialisation in arthroplasty. However, due to difficulties in searching for articles in 
this database and the presence of this journals’ papers in Google Scholar, searching 
on this database was avoided. 
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Research on similar articles to those provided by the supervisor revealed many articles 
on medical device regulation (Ben-Menahem et al., 2020; Bowers & Cohen, 2018; 
Vasiljeva et al., 2020a; Wagner & Schanze, 2018) and cases of disastrous failure of 
implants such as metal-on-metal hip implants (Cohen, 2012; Heneghan et al., 2012). 
This phase of the literature review indicated that current regulation on medical devices 
was more stringent that a few years before, and more evidence vetting the safety of new 
devices was necessary before regulatory approval (Nüssler, 2023). This was 
predominantly motivated by medical device failures that affected scores of patients 
(Shatrov & Blankart, 2022). The new regulation also proved beneficial in the context of 
knee arthroplasty because of cases of recent implant failures (Keohane et al., 2020, 
2022; Wilton et al., 2023b). This new regulatory environment for medical devices, 
however, introduced new challenges. More stringent rules for regulatory compliance 
burdens manufacturers to provide enough clinical evidence when bringing new 
medical devices into the market vetting their safety and efficacy (Ben-Menahem et al., 
2020; Wagner & Schanze, 2018). Clinical evidence is not easy to obtain and requires 
significant time and financial investment. Other methods which assess implant safety 
and performance are mostly retrospective and require clinical evidence to make 
properly measure implant safety and performance. Although there exists significant 
research on such methods and ways to generate, synthesise and analyse clinical 
evidence, literature is lacking on predictive methods measuring implant safety and 
performance. Some articles do develop methods to predict the outcomes following 
knee arthroplasty surgery (Andersen et al., 2021; Aram et al., 2018; Devana et al., 2021; 
Fernandes et al., 2017; Hinterwimmer et al., 2022; Huber et al., 2019; Navarro et al., 
2018; Twiggs et al., 2019), but they do not focus on implant performance alone, rather 
also take surgical factors and patient characteristics into account. They seek to predict 
patient outcomes instead of the performance of particular implants. Many of them put 
forth multivariate and machine learning models. 

1.5 Scientific Contributions 

This thesis project presents a novel mathematical method to estimate the 
performance of new knee implant variants using existing clinical data, which is also 
relevant in the current medical device regulatory context. In literature, some studies 
have attempted to predict surgical complications post knee surgery such as revision, 
do not predict the revision risk of implant variants (El-Galaly et al., 2020; Fernandes et 
al., 2017). Additionally, techniques such as machine learning are preferred (Devana et 
al., 2021; Fernandes et al., 2017; Hinterwimmer et al., 2022; Twiggs et al., 2019), and 
Bayesian probabilistic methods have not been used. 
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Chapter 2 | Background 
2.1 Knee Implant Variants 

Total knee implants usually consist of various individual prostheses, each 
distinguished by unique characteristics (Smith et al., 2023) These prostheses serve as 
components within the knee implant, and these can vary widely in type, make, brand, 
model, material, and design. These components articulate with each other to form a 
complete total knee implant 

A knee implant brand often includes multiple knee implants that share some major 
physical characteristics but differ in minor physical characteristics. These differences 
often involve variations in design and the types and combination of components used 
in the implant. Therefore, one single brand can cover a wide range of distinct knee 
implants. Wilton et al., 2023b refer to this range of implants under one common brand 
name as "variants." For example, the Genesis II knee implant brand, manufactured by 
the company Smith & Nephew, highlights the many variants that can fall under one 
brand. The Genesis II knee implant is the most frequently used knee implant in the 
Netherlands as of 2022 (de Reus et al., 2023b). It is not a single implant but a brand 
name consisting of a many implant variants that can differ in design, material 
composition, and the type and combination of components. One variant may 
incorporate a particular version of a component, while another might utilise a different 
material altogether. According to the Genesis II surgical guide (Genesis II DCF Surgical 
Technique, 2022), there are over 80 variants possible. 

2.1.1 Characterising Knee Implant Variants 

Seven implant characteristics can help distinguish variants and differentiate one from 
another. Four of these characteristics are based on the components as mentioned 
above. The type, make brand, model, and design of these four components partly help 
distinguish one variant from another. Two of these components can be considered 
“major”: the femoral and tibial components. The femoral component attaches to the 
femur of a human knee while the tibial component attaches to the tibia of the human 
knee, both ultimately replace the femorotibial articulation in the knee. In addition to 
these two components, knee systems have the “insert” and “patellar” components to 
support the two major components.  The insert functions as a surface for the smooth 
motion of the femoral component, supporting and stabilising the joint while minimising 
friction on knee bending. The patella is a bony structure which is part of normal human 
anatomy. It is often augmented with a component fitting its underside to further 
support knee function. Patellar resurfacing, as this augmentation is called, is a 
controversial procedure in surgical practice, and it is often skipped in total knee 
arthroplasty (Fu et al., 2011).  For all purposes within this report, the “patellar 
component” refers to this augmented patellar structure. Ultimately, these four 
components can help partly characterise a knee implant variant, setting it apart from 
other variants. 

Headi ng Placehol der 7 Characterising Knee Im plant Variants  
Headi ng Placehol der 8 Variants in the Thesis Context  
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Besides these four components, implant variants also have three other characteristics. 
These are not physical components of the knee implant, but  rather elements implant 
design. These includes the 1) type of attachment method to bone (also called cement 
or fixation), 2) the bearing type, and 3) whether it replaces the posterior cruciate (PC) 
ligament. These introduce 3 new characteristics of a knee prosthesis: the cement, 
bearing and ligament. The four components along with these 3 characteristics results 
in a total of 7 prosthesis characteristics, as shown in Table 1 Implant characteristics. 
As shown, each characteristic can also be of many different types. 

Characteristic Types 
Femoral Brand, material 
Tibial Brand, material 
Insert Brand, material, HF, DD, etc. 
Patella Brand, shape, etc. 
Fixation Cemented, cementless, hybrid 
Bearing Mobile bearing, fixed bearing, rotating, hinged 
Ligament Cruciate retaining (CR), minimally stabilised (MS), cruciate sacrificing (CS) 

or posterior stabilised (PS) 
Table 1 Implant characteristics 

Using these seven characteristics, variants can be distinguished from each other. Each 
variant may have a different combination of characteristics setting it apart from other 
variants of the brand. An example of two variants which are quite similar but differ 
based on one of the characteristics (in bold) is shown in Table 2 Two knee prostheses, 
Implant 1 and Implant 2 which could be considered variants. Two knee prostheses, 
Implant 1 and Implant 2 which could be considered variants having a common brand 
name “Genesis II” from the company Smith & Nephew are shown (Smith+Nephew 
Medical Devices and Advanced Wound Care | Global, n.d.). Both these implants have 
a high chance of being referred to collectively as the brand “Genesis II” in registry 
reports, literature studies etc. as was the case in the Landelijke Registratie 
Orthopedische Interventies (LROI) annual registry report (de Reus et al., 2023, p. 131). 
Combining them as a single implant in a report like that of the LROI can have some ill 
consequences, as discussed in the following sections. 

Characteristic Implant 1 Implant 2 
Femoral Genesis II femoral component Genesis II femoral component 
Tibial Genesis II tibial component Genesis II tibial component 
Insert Deep Dished insert CR High Flex insert 
Patella No patella No patella 
Fixation Cemented Cemented 
Bearing Fixed Fixed 
Ligament CR CR 

Table 2 Two knee prostheses, Implant 1 and Implant 2 which could be considered variants 

2.2 Camouflage because of Implant Variants 
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Knee implants are medical devices extensively studied in the field of arthroplasty. 
Consequently, there is a substantial body of medical literature on their use. Published 
refereed journals like the Bone & Joint Journal (BJJ), the Clinical Orthopaedics and 
Related Research (CORR), and The Journal of Bone and Joint Surgery (JBJS) among 
other feature extensive medical research on knee arthroplasty. A significant portion of 
this literature focusses on evaluating the safety of different knee implants and their 
effectiveness in treating arthritis and traumatic injury (such as by Asokan et al., 2021a 
and Broberg et al., 2022). Unfortunately, these studies only consider knee implants at 
the brand level and overlook detailed analyses of specific variants (Wilton et al., 
2023a). Thus, their findings are more relevant to the overall brand and not individual 
variants. Each brand may consist of many individual variants having distinct safety or 
effectiveness profiles which may be different from published results. Therefore, highly 
safe and effective “star” variants can sometimes overshadow potential safety issues 
and low effectiveness of other variants within the same brand. This phenomenon is 
called "Camouflage" by Wilton et al., (2023b). It is also discussed by Phillips & Tucker, 
2022.  

In medical literature and studies from published refereed journals, the safety and 
effectiveness of knee implants are covered by the loose umbrella term "performance." 
Performance is essentially a measure of the outcome of knee implantation surgery and 
can refer to: 

1. A measure of joint function following knee implantation surgery (Mizner et al., 
2011; Stratford & Kennedy, 2006). 

2. Patient-reported outcomes following knee implantation surgery such as knee 
pain(Mizner et al., 2011; Stratford et al., 2003). 

3. Surgical outcome such as length of hospital stay (Mohammed et al., 2022) and 
the chance of surgical complications like infection and re-surgery (Blom et al., 
2004; SooHoo et al., 2006). 

4. Implant function: how well an implant functions as expected after surgery 
such as by resisting wear and tear, remaining intact within the body (Koh et al., 
2019) and the chance of implant failure. 

Revision Risk as a Measure of Performance 

Performance is often expressed in terms of revision risk which can be considered a 
measure of both surgical outcome and implant function. The revision risk, also called 
cumulative percent revision or cumulative failure rate is defined as: 

100 × [1 − 𝑆(𝑡)] 

Where 𝑆(𝑡) is the  survivorship probability estimated by the Kaplan-Meier method for 
the proportion of patients who have not yet experienced a defined censoring event at 
time 𝑡 (Smith et al., 2023, p. 455-456). Censoring events can include patient mortality, 
loss of the patient to follow-up, revision, or closure of data collection. Here revision 
refers to revision total knee surgery. Revision total knee surgery is a surgical procedure 
that involves replacing a previously implanted knee replacement with a new implant, a 
re-surgery. Revision total knee replacement is often required after surgical 
complications like infection or implant failure (such as implant loosening or implant 
instability). A higher revision risk suggests a greater likelihood of a patient requiring 
revision surgery with a specific knee implant, indicating lower performance compared 
to an implant with a lower revision risk, where the likelihood of revision surgery would 
be lower. 
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Both Wilton et al., 2023b and Phillips & Tucker, 2022 define Camouflage in terms of this 
definition of revision risk: Camouflage is the masking of poor revision risk performance 
in some implant variants by the better performance of others within the same brand. 
Poorly performing variants may have a higher revision risk, but this may be 
overshadowed by the lower revision risks of high-performing variants. 

Defining Revision Risk in This Thesis Context 

The above definition of revision risk is not suitable for this thesis, as it implies the use 
of a time-based survival analysis methodology, which is not suitable in this context as 
the focus is more cross-sectional with discrete follow-up periods. A modified version 
of the revision risk is used in this manuscript. The revision risk 𝑹𝒕 is defined as the 
total number of knee implants which have been revised for a specified time period 
of follow-up 𝒕 divided by the total number implanted within this period (S. J. Kim et 
al., 2020). Specific time periods used in this thesis are 1, 3, 5, 10, 15, and 20 years of 
follow-up. This revision risk 𝑅𝑡 is considered an attribute of a knee implant variant. Each 
variant may will have a distinct value of 𝑅𝑡 revealing its revision risk performance. This 
definition of revision risk as a measure of implant performance will be used to define 
“good” implant variants in the next chapter.  

𝑅𝑡 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑝𝑙𝑎𝑛𝑡𝑠 𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑤𝑖𝑡ℎ𝑖𝑛 𝑓𝑜𝑙𝑙𝑜𝑤 − 𝑢𝑝 𝑝𝑒𝑟𝑖𝑜𝑑 𝑡

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑖𝑚𝑝𝑙𝑎𝑛𝑡𝑒𝑑 𝑖𝑛 𝑓𝑜𝑙𝑙𝑜𝑤 − 𝑢𝑝 𝑝𝑒𝑟𝑖𝑜𝑑 𝑡
 

𝐻𝑒𝑟𝑒, 𝑅 ∈ [0,100] 𝑖𝑓 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑖𝑛 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 

Equation 1 Revision risk defined as a probability 
Headi ng Placehol der 9 The Repercussions of Camouflage  

2.2.1 The Repercussions of Camouflage 

Camouflage in knee implants is a serious problem. It can create significant risks for 
patients and introduce new challenges for healthcare providers. When problematic 
knee implants are mislabelled as performing as well as the high-performing ones under 
the same brand, both surgeons and patients can be misled. Surgeons might 
unknowingly choose these underperforming or problematic implants, putting patients 
at risk without their informed consent. This situation is unfair to patients, who may be 
implanted with potentially unsafe implants without proper knowledge of its side effects 
and risks. This happened in the case of the Nexgen LPS implant variant, where patients 
were implanted with faulty implants that led to surgical complications (Brown et al., 
2021; Keohane et al., 2020, 2022). This issue was only with one implant variant under 
the Nexgen brand, and other variants displayed good performance according to many 
surgeons (Wilton et al., 2023a), making it a clear case of Camouflage. Some other 
severe consequences of Camouflage can also include implant recalls, safety alerts, 
and increased costs for healthcare organisations and society (Vasiljeva et al., 2020a; 
Wilton et al., 2023b).  

2.2.2 The Impact of the Medical Device Regulation (MDR) on Camouflage 
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The new Medical Device Regulation (MDR) mandates thorough scrutiny of medical 
devices, especially those classified as “high risk” devices like knee implants, before 
they can be used for knee surgery or total knee arthroplasty (Fraser et al., 2021). The 
MDR is a successor regulation to the Medical Device Directive (MDD), which initially 
set the policy framework for regulating knee implants. Under the MDD, knee implant 
variants could be approved based on the performance of another variant with similar 
characteristics, without necessarily requiring clinical evidence on their performance 
for regulatory approval and subsequent surgical use. 

However, unlike the MDD, the MDR now requires manufacturers to provide clinical 
evidence for all variants of knee implants. This means that manufacturers must provide 
clinical evidence for each implant demonstrating its performance before it can be 
approved for surgical use (Ecker, 2023). By mandating clinical evidence at the variant 
level, the MDR reduces the likelihood of the Camouflage effect, where high-performing 
variants may overshadow those with poorer performance within the same brand. As 
elaborated in the next section, however, the MDR also introduces some new issues 
despite its benefit of reducing Camouflage. g Placehol der 10 Defining Im pl ant Perform ance  

2.3 The Medical Device Regulation (MDR) 
Headi ng Placehol der 11 The MDD and MDR  

The Medical Device Directive (MDD) was in force until 2017. However, due to several 
adverse events in the use of medical devices, the MDD began to be considered 
outdated and insufficient (Nüssler, 2023). The scandalous cases of metal-on-metal hip 
implants (Cohen, 2012) and Poly Implant Prothèse breast prostheses (Greco, 2015) 
spurred on the introduction of the new Medical Device Regulation (MDR) of the EU. This 
is officially called the “Regulation 2017/745 of the European Parliament and of the 
Council of 5 April 2017” (Shatrov & Blankart, 2022).  

The core difference between the MDD and the MDR is the determination of the benefit-
risk profile of a medical device (Wilkinson & van Boxtel, 2020). It includes a new 
definition of "clinical benefit” and a detailed description of intended clinical benefit 
during  testing. It also mentions clinical benefit in definitions of  “clinical performance,” 
“clinical evaluation,” and “clinical evidence” which is not included in corresponding 
definitions in the MDD (Wilkinson & van Boxtel, 2020). Overall, the new MDR and its 
focus on clinical benefits was to ensure “smooth functioning of the internal market” 
and “high standards of quality and safety to meet common safety concerns.” 

2.3.1 The MDR in the Knee Arthroplasty Context 
Headi ng Placehol der 12 The MDR in the Knee Arthropl asty Context  

Both the MDD and MDR are applicable to implantable medical devices like knee 
prostheses too. For the MDD, the Council Directive 93/385/EEC (Directive, 1990) 
specifically looked at active implantable devices like knee prostheses. However, it  did 
not always require rigorous testing for all implantable devices, including knee implants. 
In some cases, approval could be given to a knee system based on literature evidence 
associated with a “similar device” (Directive 93/42/EEC) (Official Journal of the 
European Communities, 1993). Here, a “similar device” could also mean a variant of 
an implant which already has market presence. Consequently, this resulted in 
Camouflage as discussed in the previous sections. Several devices or variants were 
released claiming to have equivalence to previously tested devices in the EU and 
international markets (Vasiljeva et al., 2020a). Consequently, many failed, some quite 
catastrophically, such as metal-on-metal hip implants (Carr, 2017).  
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One striking case of camouflage is that of the NexGen LPS knee system by Zimmer 
Biomet. NexGen had a portfolio of highly successful components and models. 
However, it had many variants consisting of different combinations of its 
subcomponents in total knee systems. Some had different femoral components, 
whereas some had different tibial components. One such combination had a tibial 
component from having a “flex” design and without the standard 
polymethylmethacrylate (PMMA) coating. This variant had alarmingly high revision 
rates due to the loosening of the tibial component after surgery. This issue only 
garnered attention when clinical and registry evidence signalled possible cause for 
concern with this variant (Keohane et al., 2020, 2022; Wilton et al., 2023b). In other 
words, the performance of this variant was “camouflaged” because surgeons earlier 
reported good outcomes. It had already received necessary regulatory approval 
because it was in use at the time alarms were raised. 

The Medical Device Regulation (MDR), therefore, is an apt response to this concern of 
camouflage. It does not completely eliminate the possibility of unpredictable or 
catastrophic events like that of metal-on-meal hip implants, but does put systems in 
place for: 

1. The minimisation of such a risk of such catastrophic events. 
2. The assigning of responsibility, mitigation measures, and regulatory netting if it 

does take place. 

2.4 New Issues 

However, this new regulatory framework introduces new issues as well. The MDR 
increases the regulatory and clinical burden on the manufacturer (Wilkinson & van 
Boxtel, 2020). In fact, the burden of providing: 

1. Plan of clinical evaluation 
2. Clinical evidence 
3. Creating technical documentation 
4. Post-market surveillance plans 

Even if manufacturers have the necessary resources to carry out this long process, 
there are no standard tools and methodologies that they can use. The “gold standard” 
(just like knee arthroplasty is the “gold standard” for end stage knee osteoarthritis) for 
obtaining clinical evidence in medical science is the randomised clinically controlled 
trial (RCT). They are used extensively in the case of drugs in the pharmaceutical 
industry for the approval of new drugs. However, RCTs may not be possible or 
appropriate for the case of medical devices (Wilkinson & van Boxtel, 2020), especially 
knee systems. Some reasons for this are the impracticality of an active control group, 
the risk of not receiving a treatment, and extended follow-up periods (Wilkinson & van 
Boxtel, 2020). Further implant variants may only be incrementally different, for example 
just a difference in a coating material for a certain component. This, in most cases, 
does not warrant another full clinical trial for the whole device. 



17 
 

 

There are also concerns that the new MDR will hinder innovation in this segment of 
medical devices. Manufacturers may reduce their product portfolios and reduce 
incremental innovation that leads to the birth of new variants. Instead, they may focus 
on compliance with new regulations (Ben-Menahem et al., 2020). This is especially true 
for small and medium sized manufacturers who have lesser resources than players 
with a larger market capitalisation (Wagner & Schanze, 2018). 

2.5 The Necessity of a New Approach 

Initial clinical evidence provided by manufacturers may be sufficient for regulatory 
approval of knee implants, but this evidence rarely provides a complete picture of the 
variant’s performance. Robust clinical evidence, which does provide this complete 
picture, typically emerges over time through clinical use and subsequent patient 
observation. Moreover, variants often lack any external clinical evidence at the time of 
regulatory approval (Lübbeke et al., 2023b). Consequently, during the regulatory 
approval process, most stakeholders have limited knowledge of the implant variant's 
performance beyond the evidence provided by the manufacturers. 

Registries also play a part in building a body of evidence surrounding knee implants. 
They collect, maintain and analyse patient-level arthroplasty information at a national 
level (Baker et al., 2023a; Hegde et al., 2023). This data is then utilised for tracking 
implant performance, identifying factors associated with higher revision risks, and 
facilitating post-market surveillance of certain implants (Hegde et al., 2023; Pijls, 
2023). Annual reports published by registries highlight general trends in the field of 
arthroplasty and report implant performance of selected implants. However, such 
annual reports are retrospective and rarely cover the performance of all implant 
variants. Rather, they focus on underperforming variants instead of providing granular 
information on every implant variant (NJR Implant Scrutiny Committee, 2018). Often, 
registries analyse implant variants at the brand level, and a brand can contain multiple 
variants. This leads to Camouflage. 

2.5.1 Limitations of Current Methods for Estimating the Performance of 

Implant Variants 
Headi ng Placehol der 13 Where Current Methods Fall Short  

Traditionally, a variety of analytical techniques have been used to assess implant 
performance in the context of knee arthroplasty. These techniques essentially 
transform clinical data into measurable performance markers such as revision risk. 
Some of these are survivorship analysis and competing risk techniques like the Cox 
proportional hazards analysis, etc. (Jonkergouw et al., 2016). Such techniques are 
extensively used in registry annual reports and other clinical studies assessing implant 
performance. As such, they are seen as a standard in this context. Most registries’ 
annual reports feature some form of survival analysis (Foster et al., 2020). 
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These methods, however, are not predictive. They suffice in transforming raw clinical 
information into measurable metrics like revision risk and as such can be very useful in 
determining the performance of variants which have extensive associated clinical 
evidence. If a new variant is released into the market for sale and surgical use, however, 
these methods cannot be evoked to determine performance because of little 
associated evidence at the time of release (Pietzsch et al., 2004). Yes, the performance 
of close variants in terms of characteristics which have some associated evidence can 
be used to determine the performance of such a new variant using these methods. This 
has been done before. Implants have been regulated based on the performance of 
close variants under the Medical Device Directive (MDD) (see sections The MDD and 
MDR, The MDR in the Knee Arthroplasty Context). However, doing so results in 
Camouflage and could generate misleading results about the performance of certain 
implants, as seen in the section The Repercussions of Camouflage. 

This calls for a methodology which can estimate the performance of new variants at 
the time of regulatory approval when clinical evidence related to the variant is seldom 
available. This would be of immense benefit to the various stakeholders in the approval 
process and serve as a valuable guide for those who may be unfamiliar with the new 
implant. Additionally, any existing evidence, be it from a registry report or a clinical 
study can be incorporated into this estimate to increase its likelihood of displaying the 
variant’s true performance. 
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Chapter 3 | Methodology 
3.1 Research Design 

The research question, RQ1, is exploratory in nature. It aims to identify a method for 
estimating the revision risk performance of knee implant variants using existing clinical 
data from arthroplasty registries and studies of regulated total knee implants.  

According to literature search results, no existing method predicts the revision risk of 
knee implants based only on the implant and its characteristics. Instead, studies such 
as those by Devana et al., (2021) and Fernandes et al., (2017) develop predictive 
techniques for specific outcomes of knee arthroplasty, such as pain, function, and 
surgical complications like infection, rather than revision risk (Hinterwimmer et al., 
2022). These studies also incorporate additional factors such as the surgical method 
and the patient age (Hinterwimmer et al., 2022; Smith et al., 2023).  

Therefore, to address the research question RQ1 and all objectives, this thesis 
develops a new method to  estimate the revision risk performance of knee implant 
variants under the assumption that the implant itself is the primary factor responsible 
for revisions in total knee arthroplasty. While other causes of revision exist, this method 
considers only the impact of the implant's characteristics on revision rates. This 
assumption is further discussed in the Discussion (Discussion on the Bayesian Method 
as a Standalone Approach, Beyond the Regulatory Context) and Limitations (Future 
Work and Limitations) chapters. This methodology section also prioritizes method 
development over data collection, entry, coding, and exploratory and descriptive 
statistical methods. This primary focus on developing and implementing a new 
methodology contrasts with standard quantitative methods outlined by Mertens et al., 
(2017) and Sekaran & Bougie, (2016) which emphasize data collection and analysis 
using statistical techniques to test hypotheses. Three objectives help structure this 
chapter: 

1. OBJ1: Examine existing data and identify suitable sources of information for 
developing the method. 

2. OBJ2: Identify a problem-solving approach for method development such as 
probabilistic, deterministic, frequentist or a Bayesian approaches. This 
approach should fulfil certain criteria for the method to be theoretically 
relevant, as mentioned below. 

3. OBJ3: Develop and iteratively improving the method by applying the identified 
approach and respecting the criteria mentioned below. 

4. OBJ4: Evaluate the method to determine its applicability in regulating knee 
implant variants. 

Criteria to Incorporate Theoretical Context 

To ensure that the developed method is both theoretically relevant and addresses the 
limitations of current methods of estimating implant performance as discussed in the 
previous chapter, it must meet the following criteria shown below. These criteria are 
addressed in OBJ3,  through elements of them are present across all three objectives. 

1. Must use existing information as identified by OBJ1 and must not require the 
collection or generation of clinical evidence. 
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2. Must make distinct estimates of revision risk for each implant variant. This 
ensures that the method is based on the specific characteristics of each 
variant, allowing for distinct estimates of revision risk and prevent Camouflage. 

3. Must be predictive and must make predictions on the performance of any knee 
implant variant, even a new hypothetical variant which has not been created. 
This would enable it to potentially be used as a tool during the regulatory 
approval process for new implant variants, even when clinical evidence for the 
variant is not yet available. 

3.1.1 Structure of the Methodology Section 

The section Data Collection addresses OBJ1, sections Problem Analysis to Method 
Development and The Bayesian Method for Method Development address OBJ2. OBJ3 
and OBJ4 are addressed in the next chapter. The following figure outlines the general 
steps taken in this thesis. 

3.2 Data Collection 

3.2.1 Selection of Data 

The first objective OBJ1 calls for examining data from arthroplasty registries and 
studies of regulated knee implants measuring implant performance. This reveals three 
potential sources of data that could be used for the methodology: 1) Arthroplasty 
registry data, 2) Registry annual report data, and 3) Medical literature from published 
refereed journals. The utility and relevance for this thesis are discussed in separate 
sections. For “examining data” as per OBJ1, some important criteria for the selection 
of suitable data are put forth below. These criteria can also pave the way for answering 
RQ1, showing how existing clinical data from arthroplasty registries and studies of 
regulated knee implants can be used to estimate the performance of implant variants. 
Criteria: 

1. Adequate granularity featuring two or more implant characteristics from the 
total seven characteristics as defined in the section Characterising Knee 
Implant Variants. More characteristics would potentially prove important for 
developing a method to estimate the performance of implant variants which 
can be completely defined on the basis of these 7 characteristics. 

2. Implant performance in terms of revision risk. There are other methods of 
measuring implant performance like the Knee Society Score (KSS) (Knee 
Society Score (KSS) for Total Knee Replacement | APTA, n.d.), the Hospital for 
Special Surgery Scoring system (HSS Hip and Knee Replacement, n.d.), and 
radiological line analysis but these are highly surgical focussing more on 
outcomes of knee arthroplasty surgery rather than implant performance. 
Moreover, assessing the outcome of knee arthroplasty surgery in such a way 
requires clinical evidence and follow-up with patients, which is not within 
scope of this thesis.  

3. Feasibility and accessibility for this thesis project. Obtaining and using this 
data should fit within thesis timelines and scope. 

Arthroplasty Registry Data 
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Arthroplasty registries are organisations that collect surgical information about joint 
replacements: information about patients, techniques and implants with the goal of 
monitoring and improving arthroplasty surgery outcomes (Romanini et al., 2021). They 
include information on hip, knee, shoulder, ankle, wrist and finger arthroplasties (de 
Reus et al., 2023a; Malchau et al., 2018; Smith et al., 2023). Registries can function at 
different levels: national, hospital, or regional. National registries, which function at a 
national or country level, are the most frequently cited in arthroplasty-related studies 
in literature. This is mostly due to their comprehensive coverage of surgical techniques, 
implant characteristics, and patient risk factors on a national scale. The data collected 
at the national level presents a significant advantage: it reflects nationwide patterns in 
policy, institutional practices, and surgical methods (Baker et al., 2023b). Although this 
data is detailed and patient-specific, it is obtained from the same population, 
minimizing the impact of potential differences in ethnicity, culture, and clinical 
practices on surgical outcomes (J. Liu & Chow, 2002). 

Although data from arthroplasty registries are potentially excellent data sources for this 
methodology due to their granularity and comprehensive coverage (Graves, 2010), 
most registry data is proprietary and not publicly accessible. This is primarily because 
the data may contain confidential patient information. Access to such data typically 
requires a detailed application process which is not feasible within the thesis timeline. 
One of the first sources of data that was scoped for potential use in this thesis was 
proprietary registry data from the Dutch Arthroplasty Register, called the Landelijke 
Registratie Orthopedische Interventies (LROI) in Dutch. The Dutch Arthroplasty 
Register is the official arthroplasty register of the Netherlands and records, stores, and 
analyses information about patient-level orthopaedic interventions in the country (Wat 
Is de LROI?, n.d.). This dataset is owned by the LROI and, like other registry datasets, is 
not publicly accessible. An application needs to be made along with a research 
proposal to the Wetenschappelijke adviesraad (WAR) advisory committee of the LROI, 
and only on approval can this data be used for research. Due to thesis deadlines and 
potential delays in obtaining this proprietary data, the application was not made 
arthroplasty registry information was not used in this way. 

However, another dataset provided by one of the supervisors also showed great utility 
for the methodology. It was a proprietary dataset that contained information about 
different implants used for arthroplasty surgery in the Netherlands aggregated by 
prosthesis characteristics. In fact, this dataset is quite similar to the dataset that would 
have been obtained by application to the WAR from the LROI. It fulfils all criteria for this 
thesis: great granularity with 6 prosthesis characteristics, accessibility and 
performance is expressed in terms of revision risk. Therefore, this dataset has been 
selected and used for developing and implanting the methodology. 
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Registry Annual Report Data 

Another important potential source of data are registry reports published by various 
registries of the world. Registry annual reports are valuable sources of arthroplasty 
information and  are effectively reported outcomes of analyses carried out with the 
data the registries collect and possess. Annual reports from different registries vary a 
lot in terms of the variables they collect, the analyses conducted, and the presentation 
of results in the report (Serra-Sutton et al., 2009). For use in this methodology, an 
annual report with adequate granularity had to be selected. Some reports were highly 
granular and reported outcomes of many different prostheses by characteristics, 
whereas others were not and only general or aggregate results. The Australian National 
Report was identified as one of the most detailed registry reports by country (Smith et 
al., 2023) featuring the granularity of two prosthesis characteristics–the femur and tibia 
components. It fulfilled the other two criteria as well: accessibility because this report 
is publicly available and implant performance being measured in terms of revision risk. 
Another potential option was the National Joint Registry (NJR) Annual Report of the UK 
and Wales (Reed et al., 2023) which also fulfilled all criteria. However, the Australian 
report was preferred because importing data from this report was more convenient, 
and it was a good first choice for the methodology. Unfortunately, the Dutch Annual 
Report (de Reus et al., 2023a) is not granular enough and was not used in the method. 

Medical Literature 

Medical literature was not used for this thesis because most studies measuring 
implant performance were not granular enough. Additionally, many studies focussed 
on other performance measures like the KSS, HSS, etc. more than the revision risks.  

Final Selection of Datasets 

This method was finally developed using two datasets: 

1. Data from the Australian National Registry Annual Report 2023 (Smith et al., 
2023). This report contains aggregate information on knee, hip, shoulder, wrist, 
and ankle arthroplasty surgeries in Australia. This dataset is referred to as the 
“AOANJRR dataset” henceforth. 

2. A proprietary dataset from one of the supervisors. This is knee arthroplasty data 
from the Netherlands. This is henceforth called the LROI dataset.  

As such, data collection from people, patients, or medical personnel is not required 
and because information from both these datasets will be used, and sampling is not 
required.  

3.2.2 About the AOANJRR and LROI datasets 
Headi ng Placehol der 14 About the AOANJRR and LROI datas ets  

The AOANJRR dataset is in the form of a report published by the Australian National 
Registry. The Australian National Registry itself collects and owns patient-level 
information for arthroplasty surgeries in Australia (Home - AOANJRR, n.d.). The owned 
data is quite granular: it contains details of each surgery with patient information, 
surgical details, prosthesis characteristics, among others (Smith et al., 2023). As of 
2023, there were over 880.000 primary total knee replacements in the country recorded 
since 2000. The registry therefore maintains a record of these 880.000+ surgeries in its 
database. Other countries also maintain such arthroplasty databases with the help of 
their own national registries. These databases are almost always proprietary because 
they contain confidential patient information (Banerjee et al., 2014). 
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Registries, with the help of this highly granular, patient-level information, can choose 
to do a variety of analysis to generate insights on arthroplasty surgeries in the country. 
Such insights can be about the performance of particular prosthesis variants, about 
the success of specific surgical techniques, or the consequence of using certain tools 
during surgery. They later publish these insights in their annual registry reports. This is 
the case for the AOANJRR registry as well (Smith et al., 2023). Because the registry 
reports contain the results of the analyses and not patient level information, 
information contained in these annual reports is at a coarse, super-aggregate level. 
This contrasts with the datasets possessed by the registries themselves, which is 
extensive and granular (Rubinger et al., 2023). However, despite its coarse nature, 
information from the AOANJRR annual report can be used for the Bayesian method 
developed below. 

  

 

 

 

Figure 1 Granularity of different datasets 

The proprietary LROI dataset provided by the supervisors differs from the AOANJRR 
dataset. Unlike the super-aggregate level of annual report data, this LROI dataset 
contains information at a finer level of granularity, although it is not at the finest level of 
granularity as contained in registry databases. Essentially, it is LROI registry data 
aggregated by prosthesis characteristics. As such, no patient level information can be 
identified in this dataset. Hence it can be considered a “medium”-aggregate dataset. 

3.2.3 Structure of the AOANJRR Dataset 

The Australian registry has one of the most detailed annual reports in the world. Data 
is contained within 52 tables within the report covering many different aspects of total 
knee arthroplasty. As seen in the section Implementing the Bayesian Method with 
AOANJRR Data, tables KT9, KT10 and KT11 and the data contained within them will be 
used in the developed Bayesian Method. Truncated versions showing the first three 
rows of tables KT9, KT10 and KT11 are shown below. All three of these consist of 10 
columns. The first two columns show two prosthesis characteristics: the femur and 
tibia name. Two other columns show the number of implants used and the number of 
implants revised. The others show revision risks along with lower and upper 95% 
confidence intervals (in brackets) for 1, 3, 5, 10, 15 and 20 years of follow-up. Since 
these tables only contain two prosthesis characteristics—the femoral and tibial 
components—implant variants cannot be fully defined. However, there is more 
granularity compared to implants defined at the brand level. The combination of the 
femoral and tibial components in the first two columns of the AOANJRR report tables 
can further subdivide an implant brand into roughly defined implant variants, defined 
only with the femur-tibia combination. Additional subdivision based on other 
characteristics could lead to fully defined variants, but this dataset does not allow for 
that as it only includes two implant characteristics. 

1. Femoral component: The femoral component that features in the knee 
implant. This usually includes the brand name. 

Low granularity High granularity 

AOANJRR 
annual 

report data 

LROI 
data 

Proprietary 
registry 

data 
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2. Tibial component: The tibial component that features in the knee implant. This 
usually includes the brand name. 

3. N Total: The total number of implants that have been used since the inception 
of the Australian national registry (AOANJRR). 

4. N Revised: The total number of implants that were revised after primary total 
knee arthroplasty surgery since the inception of the Australian national registry 
(AOANJRR). 

5. <X> Yr. Revision (%): This is a percentage and an indicator of performance. It 
denotes the mean value of revision risk for an implant with a particular femur-
tibia combination. The revision risk is the percentage of implants that 
underwent revision after primary knee arthroplasty surgery within <X> years of 
follow-up or those that were lost to follow-up within this period. Here revision 
refers to revision total knee arthroplasty, where the implant is surgically 
replaced or removed in its entirety in case of surgical complications, implant 
failure or poor surgical outcomes like excessive pain and little functional 
improvement. 

6. Lower and Upper 95% Confidence Intervals: The lower and upper confidence 
intervals accompany the mean value of revision risk for each femur-tibia 
combination. The confidence interval specifies a set having a specified 
probability of containing the true value of revision risk within it (Smith et al., 
2023, p. 455). 

 



Femoral 
Component 

Tibial 
Component 

N 
Revised 

N 
Total 

1 Yr. 
Revision 

(%) 

3 Yr. 
Revision 

(%) 

5 Yr. 
Revision 

(%) 

10 Yr. 
Revision 

(%) 

15 Yr. 
Revision 

(%) 

20 Yr. 
Revision 

(%) 

ACS ACS Fixed 24 769 
1.6 (0.9, 

2.8) 
2.8 (1.8, 

4.3) 
3.4 (2.3, 

5.1) 
No data No data No data 

ACS ACS Mobile 43 1492 
1.0 (0.6, 

1.7) 
2.1 (1.4, 

3.1) 
3.4 (2.5, 

4.8) 
4.3 (3.1, 

5.9) 
No data No data 

Active Knee Active Knee 131 3516 
0.9 (0.6, 

1.3) 
2.6 (2.1, 

3.2) 
3.5 (2.9, 

4.3) 
5.4 (4.4, 

6.4) 
7.4 (5.1, 

10.7) 
No data 

Table 3 Table KT9 of the AOANJRR Annual Report Showing Cumulative Percent Revision Along with Lower and Upper 95% Confidence Intervals of Cemented Primary Total 
Knee Replacement by Prosthesis Combination 

Femoral 
Component 

Tibial 
Component 

N 
Revised 

N 
Total 

1 Yr. 
Revision 

(%) 

3 Yr. 
Revision 

(%) 

5 Yr. 
Revision 

(%) 

10 Yr. 
Revision 

(%) 

15 Yr. 
Revision 

(%) 

20 Yr. 
Revision 

(%) 

ACS ACS Fixed 55 1171 1.6 (1.0, 2.5) 3.9 (2.9, 5.2) 4.6 (3.5, 6.1) 6.0 (4.6, 7.9) No data No data 

Active Knee Active Knee 588 4896 1.4 (1.1, 1.7) 4.0 (3.4, 4.5) 5.6 (5.0, 6.3) 
9.6 (8.8, 

10.5) 
13.4 (12.3, 

14.5) 
16.3 (14.8, 

17.9) 
Apex Knee 
CR 

Apex Knee 28 508 2.3 (1.3, 4.1) 5.2 (3.5, 7.6) 5.6 (3.9, 8.2) 6.2 (4.3, 8.9) No data No data 

Table 4 Table KT10 of the AOANJRR Annual Report Showing Cumulative Percent Revision Along with Lower and Upper 95% Confidence Intervals of Uncemented Primary 
Total Knee Replacement by Prosthesis Combination 

Femoral 
Component 

Tibial 
Component 

N 
Revised 

N 
Total 

1 Yr. 
Revision 

(%) 

3 Yr. 
Revision 

(%) 

5 Yr. 
Revision 

(%) 

10 Yr. 
Revision 

(%) 

15 Yr. 
Revision 

(%) 

20 Yr. 
Revision 

(%) 

ACS ACS Fixed 68 1528 1.3 (0.8, 2.0) 3.8 (2.9, 4.9) 4.5 (3.5, 5.8) No data No data No data 

Active Knee Active Knee 165 2324 0.6 (0.4, 1.1) 2.8 (2.2, 3.5) 3.8 (3.1, 4.7) 6.8 (5.7, 
8.0) 

10.4 (8.8, 
12.4) 

No data 

Advance Advance II 24 428 0.7 (0.2, 2.2) 2.4 (1.3, 4.4) 3.4 (2.0, 5.7) 
5.3 (3.4, 
8.1) 

6.8 (4.5, 
10.3) 

No data 

Table 5 Table KT11 of the AOANJRR Annual Report Showing Cumulative Percent Revision Along with Lower and Upper 95% Confidence Intervals of Hybrid Primary Total 
Knee Replacement by Prosthesis Combination 

 



3.2.4 Structure of the LROI Dataset 

The LROI dataset is nothing but patient level information from the LROI aggregated by 
prosthesis characteristics: femur name, tibia name, stability method used, mobility, 
patella use, and stability. This dataset does not contain any patient information and as 
such no such information can even be deduced with it. It is the same information as 
contained in the LROI registry database which is used to produce LROI annual reports, 
albeit older and with patient characteristics removed. The first three rows of this 
dataset are shown in Table 6.  

The dataset itself consists of multiple rows and 13 columns. Each row represents an 
implant variant that has been utilised for knee arthroplasty surgery in the Netherlands. 
The first six columns consist of implant characteristics while the other columns 
provide information on the number of implants used since the start of the registry data 
collection, along with the mean and standard deviation of revision risks for each variant 
at 3, 5, and 10 years of follow-up.  

7. Femur: The femoral component that features in the knee implant variant. This 
usually includes the brand name. 

8. Tibia: The tibial component that features in the knee implant variant. This also 
typically includes the brand name. 

9. Fixation: The type of fixation used in the knee implant variant. The types of  
fixation are cemented, uncemented and hybrid. 

10. Mobility: This refers to the type of bearing design that the knee implant variant 
uses. It can be of types fixed bearing, mobile bearing, and rotating platform.  

11. Patella Usage: This refers to if a patella has been used in the knee implant 
variant.  

12. N Implants: The total number of variants that have been implanted since the 
inception of the Dutch national registry (LROI). 

13. <X> Year Revision: This is a percentage and an indicator of performance. It 
denotes the mean value of revision risk for a particular implant variant. The 
definition of revision risk and revision remains the same as for the AOANJRR 
dataset. 

14. <X> Year SD: This is also a percentage. It is the standard deviation of the 
revision risk specified above within <X> years of follow-up. 

 



 

Femur Tibia Fixation Mobility Patella Usage Stability N implants1 3 Yr. Revision (%) 3 Yr. SD2 (%) 5 Yr. Revision (%) 5 Yr. SD (%) 10 Yr. Revision (%) 10 Yr. SD (%) 

ProsF 1 ProsT 2 Cemented Fixed3 No patella MS4 522 3.5 0.6 4.9 0.5 6.1 0.6 

ProsF 1 ProsT 2 Cemented Fixed Patella present MS 252 1.7 1.1 4.2 2.2 3.8 2.2 

ProsF 1 ProsT 2 Cemented Fixed No patella MS 15 25 30.6 60 33.9 No data No data 

Table 6 The LROI dataset in raw form (truncated and some terms have been abbreviated), DUMMY DATA ONLY

 
1 N Implants: Number of Implants used 
2 SD: Standard Deviation 
3 Fixed: Fixed Bearing design 
4 MS: Minimally Stabilized 



3.3 Problem Analysis to Method Development 

The preceding section identified the AOANJRR and LROI datasets for method 
development, contributing to the achievement of OBJ1. This section addresses both 
OBJ2 and OBJ3 by identifying a suitable problem-solving approach for method 
development and then applying this approach to develop the method. The criteria for 
incorporating the theoretical context in the has also been used. 

3.3.1 Initial Considerations for Method Development 

Incorporation of Implant Characteristics into the Method 

Variants were also defined by seven implant characteristics. The combination of these 
characteristics differentiates one variant from another, even within the same brand. 
Incorporating these characteristics into the method would yield distinct performance 
metrics for each variant. This approach is essential for progressing further, beyond the 
Camouflage effect, where a single performance metric represented an entire brand of 
implants. Additionally, manufacturers often develop and create implants with 
incremental improvements compared to their predecessors, resulting in new implant 
variants that are closely related to already regulated ones, sharing many similar 
characteristics (Ahmad et al., 2015; Williams et al., 2010). Therefore, incorporating 
these characteristics into the method can be of advantage as it ensures that new 
variants reflect their own, distinct performance metric, even if it differs from that of 
other variants within the same brand. This method would address RQ2 and assist 
decision-making at the regulatory stage for new variants by estimating their potential 
performance without the need for clinical evidence. If the method cannot differentiate 
between variants, it would revert to the limitations of the MDD regulation, where 
implant variants were approved based on the performance of similar variants. 

Definition of “Good” Implant Variant Performance 

RQ2 calls for methods to support decision-making for the approval of variants in a 
regulatory context. To develop such a method addressing RQ2, it is necessary to define 
"good" variants according to regulatory specifications. An implant variant is considered 
"good" if its revision risk remains below threshold values of revision risk commonly 
accepted by regulators, surgeons, and the arthroplasty field in general. If this threshold 
value for a period of follow-up 𝑡 is 𝜏𝑡, then an implant variant is considered good if: 

𝑅𝑡 < 𝜏𝑡 

Threshold values specified by the Orthopaedic Data Evaluation Panel (ODEP) 
(Methodology for Total Knees, 2020) can be used because they are commonly used in 
the field of arthroplasty as a measure of implant performance in the (Hoogervorst et 
al., 2024; Malviya et al., 2017). The ODEP is an organisation which rates implants based 
on clinical evidence from registries and that submitted by manufacturers (Hoogervorst 
et al., 2024). Benchmarks set by the ODEP are often used for the monitoring of various 
implants (Samaniego Alonso et al., 2018). For an implant variant to achieve the A* 
rating from ODEP, it needs to have a revision risk less than 3.5% at 3 years of follow-up. 
Mathematically, this is (𝑅𝑡 < 𝜏𝑡) and 𝑡 = 3 years. According to the criteria ODEP A* 
total knee implants each value of 𝑡 has a particular value of 𝜏 as shown in Table 7. 
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Years 𝒕 Associated 𝝉 (%) 

1 3.00 

3 3.50 

5 4.00 

10 5.00 

15 6.50 

20 8.00 
Table 7 

If the method can reveal, in its results, whether the revision risk of a variant is less than 
this ODEP threshold for a period of follow-up, it can effectively indicate whether this 
variant would be good enough for use in a surgical context according to regulators, 
surgeons and patients alike. 

A binary variable 𝑌𝑡 will be used to denote good performance associated with a knee 
implant variant for a period of follow-up 𝑡. A value of 1 would indicate that the implant 
variant displays good performance, whereas a value of 0 would indicate that the 
implant underperforms as per ODEP thresholds. This is shown below: 

𝑌𝑡 = {
    1     𝑖𝑓    𝑅𝑡 <  𝜏𝑡

    0     𝑖𝑓    𝑅𝑡 ≥  𝜏𝑡
 

Equation 2 Binary Variable Defining Good Implant Variant Performance 

3.3.2 The Argument for a Non-Deterministic Method: Uncertainty 

An implant variant has been defined as the combination of seven characteristics, and 
an appropriate inference about the performance of an implant variant would be how its 
revision risk compares to a threshold value. This is given by 𝑌𝑡 as per Equation 2. The 
method to be developed should yield such an inference while incorporating these 
seven characteristics. It is assumed that implant characteristics impact whether an 
implant meets regulatory thresholds, and specific combinations of characteristics 
may determine if an implant meets or fails to meet these thresholds in terms of revision 
risk. If meeting regulatory thresholds is considered an event, any deterministic 
statement would suggest that certain combinations of characteristics would always 
lead to this event, and the same combinations would consistently produce similar 
outcomes (Soltani & Moayyeri, 2007). However, this is not the case. 

There is considerable uncertainty involved in the revision risk of an implant, with many 
other factors influencing this risk beyond the implant's characteristics (Zhang et al., 
2016). Here inductive reasoning can be suitable for explaining implant performance, as 
it can demonstrate that the presence of particular characteristics makes the 
occurrence of the event highly likely with high inductive probability, and not certainty. 
Uncertainty is inherent in the context of surgery and knee arthroplasty because one 
there could be many interacting factors that could influence implant performance 
(Hunink et al., 2001; Jacob, 2000). The degree of uncertainty can be expressed in terms 
of probability to quantify this uncertainty (Soltani & Moayyeri, 2007). Implant variant 
performance can therefore be defined in terms of probability making the result of the 
methodology non-deterministic. The method that will be developed should yield the 
probability of the revision risk meeting regulatory thresholds at specific periods of 
follow-up: 

𝑃(𝑌𝑡 = 1) 

3.3.3 The Argument for a Bayesian Probabilistic Method 
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Probabilistic methods can be classified as either frequentist or Bayesian (Pek & Van 
Zandt, 2020a). Frequentist methods interpret probabilities as the long-term frequency 
of events occurring across repeated independent trials. Conversely, Bayesian 
approaches interpret probabilities as the degree of belief in an event based on the 
available information (Vallverdú, 2008). In evaluating performance as the probability of 
revision falling below specific thresholds, a Bayesian approach is more appropriate. 
This is because Bayesian methods treat the revision risk as a random variable that can 
change with new evidence, rather than as a fixed but unknown parameter (Winkler, 
2001). New evidence, such as prosthesis characteristics, can be incorporated into the 
Bayesian method, allowing for the inclusion of multiple characteristics. Prior 
information from datasets can also be effectively integrated into a Bayesian approach, 
which is not possible with a frequentist approach which tend to disregard such 
evidence (Gleason & Harris, 2019). Frequentist approaches are traditionally used with 
techniques like hypothesis testing which result in robust, specific conclusions from a 
large body of evidence (Bendtsen, 2018) such as meta-analyses (Howard et al., 2015). 
Rather than deriving such concise, specific conclusions about variant performance, 
this thesis attempts to leverage a Bayesian approach to provide a comprehensive, 
more generalisable interpretation of implant variant performance given evidence from 
the two datasets. 

3.4 Bayesian Approach for Method Development 

A Bayesian approach has been selected as the probabilistic method. In the section 
Bayesian Methods: A General Overview, some concepts of Bayesian thinking are put 
forth. 

3.4.1 Bayesian Approach in the Context of Knee Arthroplasty 

The Bayesian approach is a set of statistical techniques helpful in the interpretation of 
probabilities. As seen in the previous section, it is different from the frequentist 
approach, a more traditional form of probability reasoning (Kan et al., 2016). While 
frequentist approaches usually look at the long-term frequency properties of events 
over repeated trials, Bayesian strategies incorporate prior information and update 
probabilities as new data becomes available (Pek & Van Zandt, 2020b; Zyphur & 
Oswald, 2015). This probabilistic approach involves representing quantities with 
probability distributions. Quantities, also called variables, are essentially the 
mathematical representation of events related to the subject of the study. These can 
be both events that are to be estimated or predicted (dependent variables) or other 
events related to the subject of the analysis. In the case of total knee arthroplasty and 
this thesis, the subject of analysis is the revision risk performance of knee implant 
variants given by 𝑌𝑡. Bayesian methods express values in terms of probabilities making 
this term  𝑃(𝑌𝑡 = 1). 
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Bayesian thinking also allows the conditioning of unknown events on other known 
events. These “unknown” events can be phenomena for which there is little information 
available; those which are “hidden” or “unobservable” (Grover, 2012, p. 59). Known 
events serve as evidence which can help make informed estimations of the 
unobservable events. Bayesian approaches have been used extensively in both 
medical and pharmacological sciences. It has many applications: from the planning 
and analysis of clinical trials (Chow et al., 2012; Edwards et al., 2024a; J. P. Liu et al., 
2002; Schmidli et al., 2014a, 2014b; Schnell-Inderst et al., 2017; Tsou et al., 2012; 
Weber et al., 2019) to effective clinical diagnosing (Athanasiou & Darzi, 2011, p. 156). 

The Bayes Theorem in the form of Equation 5 Bayesian Equation for the Performance of 
a Total Knee Implant results in a 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 which reflects an updated belief on the 
performance, in light of the implant characteristics. Initial belief about implant 
performance is reflected in the prior assumption, an initial belief as to how the implant 
will perform. The posterior, therefore, is just the prior which has been updated in light 
of new “evidence” of known implant characteristics. Since the performance is defined 
in terms of the implant’s revision risk meeting regulatory thresholds, the 𝑝𝑟𝑖𝑜𝑟 is the 
probability that the implant meets regulatory limits, and the 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 is the probability 
that the implant meets regulatory limits given its characteristics. The 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 is 
calculated according to the Bayes’ Theorem (Equation 4). Each term on  the right side 
of the equation is calculated in order to obtain the posterior: the prior, the likelihood 
and the denominator (henceforth called normalising constant).  

The core engine of the Bayesian approach is Bayes' Theorem, which is universally 
applicable regardless of context. Bayes' theorem consists of the four terms: the prior, 
posterior, likelihood, and normalizing constant. The posterior is the output of the 
Bayesian method representing a final belief about the quantity to be estimate in terms 
of a probability distribution (Edwards et al., 2024b; Schmidli et al., 2014c). In this 
context it would represent an updated estimate of 𝑃(𝑌𝑡 = 1) by incorporating 
information from the two datasets. This is the probability of whether an implant 
variants’ revision risk meets the regulatory threshold at a specific period of surgical 
follow-up. The calculation of the posterior requires the determination of each of the 
other terms in Bayes’ Theorem: the prior, likelihood and the normalising constant while 
also integrating the information from the two datasets, ensuring that the posterior 
reflects the performance of the implant variant. The prior, in contrast to the posterior, 
represents an initial belief about the variable to be estimated (Edwards et al., 2024b; 
Schmidli et al., 2014c). This belief can be expressed again as a probability distribution, 
representing a range of probable values for the variable and the likelihood of each value 
(Held & Bové, 2020). Initially, both the prior and the posterior are assumed to be a single 
point estimates, but as the method is refined, they evolve into a Beta distributions. 
Headi ng Placehol der 15 Bayesian Met hods: A General Overview  

3.4.2 Informative Priors: from Probability to Probability Distribution 
Headi ng Placehol der 16 Priors Used for this Thesis : Point Estimates and Uniform Distributions  
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A point estimate is a variable that takes a single value. In the Bayesian method, both 
priors and posteriors are initially treated as point estimates. This approach is later 
refined to a distribution as the Bayesian method is iteratively developed, with the 
variable changing from 𝑌𝑡, a point estimate, to just the revision risk of a variant 𝑅𝑡, which 
is a distribution. Unlike a point estimate, a distribution assumes the variable to be a 
continuous random variable, representing a Probability Density Function (PDF). If the 
revision risk is a random variable 𝑅𝑡 with its own distribution, it allows for the 
incorporation of more information into the method, making the posterior more 
informative, ultimately providing a broader understanding of the performance and 
revision risk of implant variants. The chosen distribution here is the Beta distribution, 
which ranges from 0 to 1. A Beta-distributed variable (𝑅𝑡 in this case) has a fixed 
probability of taking any sub-range of values within the distribution, as indicated by the 
area under the curve (Thomopoulos et al., 2018). The Beta distribution, as 
demonstrated later, can help incorporate certain aspects of the datasets, such as 
confidence intervals. However, the Bayesian method initially uses point estimates and 
only later evolves iteratively to incorporate distributions. 

3.4.3 The Bayes’ Theorem 

Bayes’ Theorem is key to the Bayesian approach. It is the core engine for the 
computation of the posterior with the help of other Bayesian terms. It essentially allows 
the update of priors to obtain the posterior (Edwards et al., 2024b; Zyphur & Oswald, 
2015). The Bayes’ theorem is shown below: 

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴) ∙ 𝑃(𝐴)

𝑃(𝐵)
 𝑤ℎ𝑒𝑟𝑒 𝑃(𝐵) ≠ 0 

Equation 3 Bayes' Theorem 

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =
𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 × 𝑝𝑟𝑖𝑜𝑟

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑖𝑛𝑔 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
 

Equation 4 Bayes' Theorem in General Form 

Here 𝑃(𝐴|𝐵) refers to the probability of event 𝐴 given that event 𝐵 has already occurred. 
It is also called conditional probability. 𝑃(𝐵|𝐴) refers to the probability of event 𝐴 
happening given even 𝐵 and is also called the likelihood. 𝑃(𝐴) and 𝑃(𝐵) refer to the 
probabilities of these individual events. 

In this context the event 𝐴 can be the event of a knee implant variant displaying good 
enough performance given by 𝑃(𝑌𝑡 = 1). Event 𝐵 can be new information related to the 
implant from the datasets. In this case, this new information is taken to be one or more 
implant characteristics. Fixation, for example, is an implant characteristic which 
specifies the method by which prosthetic components are fixed to a patient’s bone 
during total knee arthroplasty surgery. Types of fixation can be cemented fixation, 
uncemented fixation and hybrid fixation. This can be represented by 𝐹𝑐𝑒𝑚𝑒𝑛𝑡𝑒𝑑, 
𝐹𝑢𝑛𝑐𝑒𝑚𝑒𝑛𝑡𝑒𝑑 and 𝐹ℎ𝑦𝑏𝑟𝑖𝑑  respectively. If the event 𝐵 represents the event of an implant 
having a particular fixation type 𝐹, events 𝐴 and 𝐵 become: 

𝐴: 𝑃(𝑌𝑡 = 1) 

𝐵: 𝐹 

 Therefore, the Bayesian equation becomes: 
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𝑃(𝑌𝑡 = 1 | 𝐹) =
𝑃(𝐹 | 𝑌𝑡 = 1) ∙ 𝑃(𝑌𝑡 = 1)

𝑃(𝐹)
 

Equation 5 Bayesian Equation for the Performance of a Total Knee Implant with One Characteristic, the 
Fixation Type 

For an implant variant with a cemented fixation type and at a follow-up period of 3 
years, 𝐹 =  𝐹𝑐𝑒𝑚𝑒𝑛𝑡𝑒𝑑 and  𝑡 = 3 years. The Bayesian equation then becomes: 

𝑃(𝑌3 = 1 | 𝐹𝑐𝑒𝑚𝑒𝑛𝑡𝑒𝑑) =
𝑃(𝐹𝑐𝑒𝑚𝑒𝑛𝑡𝑒𝑑  | 𝑌3 = 1) ∙ 𝑃(𝑌3 = 1)

𝑃(𝐹𝑐𝑒𝑚𝑒𝑛𝑡𝑒𝑑)
 

3.4.4 Developing the Bayesian Method 

The next chapter The Bayesian Method Implemented finally develops the Bayesian 
Method and obtains 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟𝑠 with the help of information from the two datasets. This 
section also refines this Bayesian method in stages:  An initial method is first developed 
and implemented with the AOANJRR dataset. This method is then iteratively refined by 
making small enhancements that help make the results (in the form of the 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟) 
more meaningful. Assumptions made are also modified. Enhancements are described 
in the sections themselves. The sections which show this iterative refinement are 
linked below: 

1. Operationalisation 
2. Implementing the Bayesian Method with the AOANJRR Dataset 
3. Bayesian Method Using Upper Limit Values and AOANJRR Data 
4. Bayesian Method Using Mean Values and LROI Data 
5. Bayesian Method Using Upper Limit Values and LROI Data 
6. Bayesian Method Using Mean Values, LROI Data, and Two Implant 

Characteristics 
7. Bayesian Method Using Mean Values, LROI Data, and Three Implant 

Characteristics 

These sections will provide a step-by-step account of the iterative improvements made 
to the Bayesian method, highlighting how each enhancement contributes to more 
accurate and meaningful posterior calculations. From the fourth iteration confidence 
intervals have been incorporated. This is accompanied by a slight change in the 
definition of implant variant performance and the results produced by posterior 
calculations. 
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Chapter 4 | The Bayesian Method 
Implemented and Results 

Headi ng Placehol der 17  The Bayesi an Method Im plemented  

4.1 Operationalisation 
Headi ng Pl acehol der 18 O perationalisation  

In this implementation, as mentioned in the previous section, the posterior is 
calculated by evaluating each prior, likelihood, and the normalising constant. This 
section operationalises using generic calculations without the datasets. Later, the 
datasets are introduced, and results are obtained based on the calculations in this 
section.  

4.1.1 Terms of the Bayesian Equation 

The calculation for each of the Bayesian Equation terms is shown below for an implant 
with one characteristic: the fixation type 𝐹 at a period of follow-up 𝑡. 

1. The 𝒑𝒐𝒔𝒕𝒆𝒓𝒊𝒐𝒓 is given by the term 𝑃(𝑌𝑡 = 1 | 𝐹). This term is the result of the 
Bayesian method, and it can be calculated using Equation 5. 
 

2. The 𝒑𝒓𝒊𝒐𝒓 is given by the term 𝑃(𝑌𝑡 = 1). It is an initial estimate of whether the 
variant meets the regulatory threshold for 𝑡 years of follow-up and is calculated 
without using the datasets. Since it is a probability, it is simply the ratio of 
implants meeting this regulatory threshold (for which 𝑌𝑡 = 1) and the total 
number of implants considered. This is given by: 

𝑝𝑟𝑖𝑜𝑟

=  
𝐶𝑜𝑢𝑛𝑡(𝐼𝑚𝑝𝑙𝑎𝑛𝑡𝑠 𝑤𝑖𝑡ℎ 𝑟𝑒𝑣𝑖𝑠𝑖𝑜𝑛 𝑟𝑖𝑠𝑘 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑎𝑡 𝑓𝑜𝑙𝑙𝑜𝑤 − 𝑢𝑝 𝑝𝑒𝑟𝑖𝑜𝑑 𝑡)

𝐶𝑜𝑢𝑛𝑡(𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑝𝑙𝑎𝑛𝑡𝑠 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑 𝑎𝑡 𝑓𝑜𝑙𝑙𝑜𝑤 − 𝑢𝑝 𝑝𝑒𝑟𝑖𝑜𝑑 𝑡)
 

Equation 6 Prior Calculation 

 
3. The 𝒍𝒊𝒌𝒆𝒍𝒊𝒉𝒐𝒐𝒅 is expressed by 𝑃(𝐹 | 𝑌𝑡 = 1) and is the probability of an 

implant variant having a particular method of fixation given that its revision risk 
meets regulatory the regulatory threshold at 𝑡 period of follow-up. Out of the 
total number of variants considered, the likelihood is the number of variants 
which meet the regulatory threshold and have the particular method of fixation 
at 𝑡 follow-up period divided by the total number of implants considered. 
Mathematically the likelihood term can be expanded using the rule of 
conditional probability: 

𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 =  𝑃(𝐹 | 𝑌𝑡 = 1) 

=  
𝑃(𝐹 ∩ (𝑌𝑡 = 1))

𝑃(𝐹)
 

=
𝐶𝑜𝑢𝑛𝑡(𝐼𝑚𝑝𝑙𝑎𝑛𝑡𝑠 𝑤𝑖𝑡ℎ 𝑓𝑖𝑥𝑎𝑡𝑖𝑜𝑛 𝐹 𝐴𝑁𝐷 ℎ𝑎𝑣𝑖𝑛𝑔 𝑟𝑒𝑣𝑖𝑠𝑖𝑜𝑛 𝑟𝑖𝑠𝑘 <  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑎𝑡 𝑡)

𝐶𝑜𝑢𝑛𝑡(𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑝𝑙𝑎𝑛𝑡𝑠 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑 𝑎𝑡 𝑡)
 

Equation 7 Likelihood Calculation 

4. The 𝒏𝒐𝒓𝒎𝒂𝒍𝒊𝒔𝒊𝒏𝒈 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕 (NC) is the probability of the implant variant 
having a particular method of fixation out of all the implant variants considered. 
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𝑃(𝐹 = 𝑐𝑒𝑚𝑒𝑛𝑡𝑒𝑑) =
𝐶𝑜𝑢𝑛𝑡(𝐼𝑚𝑝𝑙𝑎𝑛𝑡𝑠 𝑤𝑖𝑡ℎ 𝐹𝑖𝑥𝑎𝑡𝑖𝑜𝑛 𝐹 𝑎𝑡 𝑡)

𝐶𝑜𝑢𝑛𝑡(𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑝𝑙𝑎𝑛𝑡𝑠 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑 𝑎𝑡 𝑡)
 

Equation 8 Normalising Constant Calculation 

4.2 Implementing the Bayesian Method with the 

AOANJRR Dataset 
Headi ng Placehol der 19 Impl ementing the Bay esian Method with AOANJRR Data  

The Bayesian Method has been implemented using the AOANJRR dataset in this 
section. This method yields the probability of an implant variant with a particular 
method of fixation meeting regulatory thresholds at 1, 3, 5, 10, 15, and 20 years of 
follow-up. Only the mean values will be taken into account for the calculation of each 
of the Bayes’ Theorem terms. In tables KT9 to KT11, the mean value is the decimal 
number outside of the brackets in each cell. Additionally, missing data from these 
tables is not considered. For now, only one the implant characteristic fixation has been 
used. 

The total number of implants considered were all the implants featured by distinct 
prosthesis characteristics (femur and tibial components) in tables KT9 to KT11. There 
were a total of 390 cemented implants, 177 uncemented implants, and 204 hybrid 
implants. 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑝𝑙𝑎𝑛𝑡𝑠 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑

= 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑝𝑙𝑎𝑛𝑡𝑠 𝑔𝑖𝑣𝑒𝑛 𝑖𝑛 𝑡𝑎𝑏𝑙𝑒𝑠 𝐾𝑇9 𝑡𝑜 𝐾𝑇11 

4.2.1 Calculating the Prior 

The prior is calculated according to Equation 6 for six values of 𝑡: 1, 3, 5, 10, 15, and 20 
years of follow-up. Since the prior does not depend on the fixation, it remains the same 
for all fixations. 

4.2.2 Calculating the Likelihood 

The likelihood is calculated according to Equation 7 for all six values of 𝑡. 

4.2.3 Calculating the Normalising Constant 

The NC is obtained using  Equation 8. 

4.2.4 Obtaining the Posterior 

The result, the 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟, is obtained using Equation 8 using all the values of the prior, 
likelihood and NC. The results are shown in Table 7. 

4.2.5 Posterior 
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Years 

𝒕 

Threshold 

(%) 𝝉 

Fixation 

type 

Prior 

(%) 

Likelihood 

(%) 

NC 

(%) 

Posterior 

(%) 

Posterior – 

Prior (%) 

1 3.00 Cemented 98.18 51.85 51.82 98.25 0.07 

3 3.50 Cemented 75.23 56.1 52.29 80.7 5.47 

5 4.00 Cemented 63.81 62.69 53.33 75 11.19 

10 5.00 Cemented 45.68 64.86 49.38 60 14.32 

15 6.50 Cemented 50 48 44 54.55 4.55 

20 8.00 Cemented 39.13 55.56 52.17 41.67 2.54 

1 3.00 Uncemented 98.18 20.37 20.91 95.65 -2.53 

3 3.50 Uncemented 75.23 14.63 21.1 52.17 -23.06 

5 4.00 Uncemented 63.81 8.96 20 28.57 -35.24 

10 5.00 Uncemented 45.68 13.51 25.93 23.81 -21.87 

15 6.50 Uncemented 50 16 24 33.33 -16.67 

20 8.00 Uncemented 39.13 11.11 21.74 20 -19.13 

1 3.00 Hybrid 98.18 27.78 27.27 100 1.82 

3 3.50 Hybrid 75.23 29.27 26.61 82.76 7.53 

5 4.00 Hybrid 63.81 28.36 26.67 67.86 4.05 

10 5.00 Hybrid 45.68 21.62 24.69 40 -5.68 

15 6.50 Hybrid 50 36 32 56.25 6.25 

20 8.00 Hybrid 39.13 33.33 26.09 50 10.87 

Table 8 Posterior for the Bayesian Method with the AOANJRR Dataset 

4.2.6 Results of this Iteration of the Method 

This method, when implemented with the AOANJRR dataset, generates results as the 
probability of the implant being “good”.  This is the first iteration, and this method will 
be refined in further iterations. The posteriors in  
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Years 

𝒕 

Threshold 

(%) 𝝉 

Fixation 

type 

Prior 

(%) 

Likelihood 

(%) 

NC 

(%) 

Posterior 

(%) 

Posterior – 

Prior (%) 

1 3.00 Cemented 98.18 51.85 51.82 98.25 0.07 

3 3.50 Cemented 75.23 56.1 52.29 80.7 5.47 

5 4.00 Cemented 63.81 62.69 53.33 75 11.19 

10 5.00 Cemented 45.68 64.86 49.38 60 14.32 

15 6.50 Cemented 50 48 44 54.55 4.55 

20 8.00 Cemented 39.13 55.56 52.17 41.67 2.54 

1 3.00 Uncemented 98.18 20.37 20.91 95.65 -2.53 

3 3.50 Uncemented 75.23 14.63 21.1 52.17 -23.06 

5 4.00 Uncemented 63.81 8.96 20 28.57 -35.24 

10 5.00 Uncemented 45.68 13.51 25.93 23.81 -21.87 

15 6.50 Uncemented 50 16 24 33.33 -16.67 

20 8.00 Uncemented 39.13 11.11 21.74 20 -19.13 

1 3.00 Hybrid 98.18 27.78 27.27 100 1.82 

3 3.50 Hybrid 75.23 29.27 26.61 82.76 7.53 

5 4.00 Hybrid 63.81 28.36 26.67 67.86 4.05 

10 5.00 Hybrid 45.68 21.62 24.69 40 -5.68 

15 6.50 Hybrid 50 36 32 56.25 6.25 

20 8.00 Hybrid 39.13 33.33 26.09 50 10.87 

Table 8 indicate the probability of revision risk being below the threshold value given 
that they have the particular characteristic F. 

Overall, the posterior probabilities generally reduce for increasing years of observation. 
This is true for all cemented, uncemented, and hybrid. Highest probabilities are for 𝑡 =

1 year of follow-up. Interestingly, for uncemented implants the probability that revision 
risk below the threshold falls dramatically from 1 to 3 years. The difference between 
the posterior and prior is positive for cemented implants, negative for uncemented 
implants, and generally positive for hybrid. Its magnitude, however, is generally the 
greatest for uncemented implants. 

4.3 Bayesian Method Using Upper Limit Values and 

AOANJRR Data 
Headi ng Placehol der 20 Bayesian Met hod Usi ng Upper Limit Val ues and AOANJRR Data  

In the AOANJRR data, like in most registries, there is a confidence interval specified 
along with mean values. They include two terms: an upper and a lower confidence 
interval, creating a set of possible values for a summary measure (Smith et al., 2023). 
The true value of the measure has a fixed probability of being inside this set. Usually, 
this probability is 95% (Lettin et al., 1991; Nelissen et al., 1992). Confidence intervals 
are used extensively in registry reports such as the Dutch Arthroplasty Annual Report 
(LROI) (de Reus et al., 2023b) and that of the UK and Wales (Reed et al., 2023). The 95% 
confidence interval is also standard in literature studies of knee arthroplasty, such as 
that used by (Bae et al., 2012) and has statistical roots (Lettin et al., 1991; Nelissen et 
al., 1992). 



38 
 

 

The International Society of Arthroplasty Registries recommends a “superiority 
approach” based on the upper limits of confidence intervals to select benchmarked 
prostheses with the lowest rates of revision (International Prosthesis Benchmarking 
Working Group Guidance Document, 2018; Smith et al., 2023). Implementing the 
Bayesian method with upper limits provides a different set of results in accordance 
with this superiority approach. The results of the implementation of this method using 
upper limits are shown below. 

Improvement from the previous method  

The upper limit values have been used instead of the mean values from the AOANJRR 
dataset tables.  

 

4.3.1 Posterior 

Years 

𝒕 

Threshold 

(%) 𝝉 

Fixation 

type 

Prior 

(%) 

Likelihood 

(%) 

NC 

(%) 

Posterior 

(%) 

Posterior - 

Prior (%) 

1 3.00 Cemented 88.18 52.58 51.82 89.47 1.29 

3 3.50 Cemented 52.29 64.91 52.29 64.91 12.62 

5 4.00 Cemented 43.81 65.22 53.33 53.57 9.76 

10 5.00 Cemented 29.63 50 49.38 30 0.37 

15 6.50 Cemented 32 37.5 44 27.27 -4.73 

20 8.00 Cemented 34.78 50 52.17 33.33 -1.45 

1 3.00 Uncemented 88.18 18.56 20.91 78.26 -9.92 

3 3.50 Uncemented 52.29 12.28 21.1 30.43 -21.86 

5 4.00 Uncemented 43.81 10.87 20 23.81 -20 

10 5.00 Uncemented 29.63 20.83 25.93 23.81 -5.82 

15 6.50 Uncemented 32 25 24 33.33 1.33 

20 8.00 Uncemented 34.78 12.5 21.74 20 -14.78 

1 3.00 Hybrid 88.18 28.87 27.27 93.33 5.15 

3 3.50 Hybrid 52.29 22.81 26.61 44.83 -7.46 

5 4.00 Hybrid 43.81 23.91 26.67 39.29 -4.52 

10 5.00 Hybrid 29.63 29.17 24.69 35 5.37 

15 6.50 Hybrid 32 37.5 32 37.5 5.5 

20 8.00 Hybrid 34.78 37.5 26.09 50 15.22 

Table 9 Posterior for the Bayesian Method with the AOANJRR Dataset Using Upper Limit Values 

4.3.2 Results of this Iteration of the Method 

This method uses the upper limit of the 95% confidence interval from the dataset 
instead of the mean. It generates results in the same form as the previous iteration of 
the method in the form of a probability of the implant being “good” and results are 
consistent with that of the previous iteration. 
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The posterior probabilities are lesser than that of the method using mean values 
(section Implementing the Bayesian Method with AOANJRR Data). Otherwise, many of 
the results follow similar patterns as those in the last section, like the reducing 
posterior magnitude for increasing years of follow-up. Additionally, similar to the 
previous method, there is an unusual drop in values from 1 year to 3 years of follow-up 
for both uncemented and hybrid implants. The difference between the prior and the 
posterior is largely the same but are more mixed than that in the previous method. For 
example, the cemented implants show a reduction in the posterior compared to the 
prior at 15 and 20 years of follow-up which was not the case in the previous method.  

4.4 Bayesian Method Using Mean Values and LROI 

Data 

In this section, the Bayesian method is implemented with the LROI dataset as well first 
with mean values, as in this section and later with upper limit values. Mean values given 
in the columns 3yearrevision, 5yearrevision, and  10yearrevision are used for obtaining 
the posterior. 

Improvement from the previous method  

The LROI dataset is used for this iteration with mean values. 
 

4.4.1 Posterior 

Years 

𝒕 

Threshold 

(%) 𝝉 

Fixation 

type 

Prior 

(%) 

Likelihood 

(%) 

Normalising 

constant (%) 

Posterior 

(%) 

Posterior - 

Prior (%) 

3 3.50 Cemented 63.81 54.98 56.63 61.95 -1.86 

5 4.00 Cemented 58.41 57.07 58.41 57.07 -1.34 

        

        

        

        

        

        

        

Table 10 Posterior for the Bayesian Method with the LROI Dataset Using Mean Values, REDACTED 

4.4.2 Results 

The posteriors for the implants show much less variation in magnitude and in the 
pattern of increase or decrease compared to the AOANJRR dataset. Whether the 
posterior increases or decreases relative to the prior remains generally consistent 
across all years for cemented, uncemented and hybrid implants. However, in contrast 
to the previous method, the posterior for cemented implants generally decreases, 
while for uncemented and hybrid implants, they generally increase. For the AOANJRR 
dataset, the posteriors for cemented implants decreased and for uncemented 
implants, they increased relative to the prior. 



40 
 

 

4.5 Bayesian Method Using Upper Limit Values and 

LROI Data 

As done with the AOANJRR dataset, the posterior in this next iteration is calculated 
using the upper limit values instead of mean values. The LROI dataset contains data in 
the form of mean (𝜇) and standard deviation (𝜎) values instead of confidence intervals 
for each variant (row) in the dataset. Lower and upper limit values for each 𝑡 is deduced 
by making a normal assumption using the following formula: 

𝑙𝑜𝑤𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 =  𝜇 − 2𝜎 

𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 =  𝜇 + 2𝜎 

The lower and upper limits are obtained for each row in the LROI dataset and for each 
value of 𝑡. Bayesian calculations with the upper limit are then done using the same 
method as that for the AOANJRR dataset. 

Improvement from the previous method  

The LROI dataset is used for this iteration with upper limit values. 
 

4.5.1 Posterior 

Years 

𝒕 

Threshold  

(%) 𝝉 

Fixation 

type 

Prior 

(%) 

Likelihood 

(%) 

Normalising 

constant (%) 

Posterior 

(%) 

Posterior – 

Prior (%) 

3 3.50 Cemented 53.59 51.55 56.63 48.78 -4.81 

5 4.00 Cemented 46.18 53.64 58.41 42.41 -3.77 

        

        

        

        

        

        

        
Table 11 Posterior for the Bayesian Method with the LROI Dataset Using Upper Limit Values, REDACTED 

4.5.2 Results 

The difference between the posterior and the prior follows largely a similar pattern as 
the method with the LROI dataset and mean values, but the magnitude of this 
difference is larger for all characteristic types. The posteriors for cemented implants 
decrease relative to the prior, while they increase for uncemented and hybrid implants. 

4.6 Bayesian Method Using Upper Limit Values, LROI 

Data and Two Implant Characteristics 
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The LROI dataset allows for the incorporation of multiple characteristics. The Fixation 
type was used as a characteristic in all the previous methods. In this method, a new 
characteristic, Mobility (𝑀) is incorporated along with Fixation (𝐹). The Bayesian 
equation and each terms’ calculation change to include the new characteristic 𝑀 for 
each 𝑡. This means that the posterior is an updated estimate of the revision risk after 
the incorporation of both the Fixation and Mobility characteristics of a variant. The prior 
remains the same, but “new information” of two implant characteristics is used to 
condition it. There are 27 different combinations of characteristics 𝐹, 𝑀 and time 𝑡, 
evident in the posterior. 

Improvement from the previous method  

The LROI dataset is used for this iteration with upper limit values, but with two 
characteristics. 

 

1. The 𝒑𝒐𝒔𝒕𝒆𝒓𝒊𝒐𝒓 is given by the term 𝑃(𝑌𝑡 = 1 | 𝐹, 𝑀). This term is the result of 
the Bayesian method, and it can be calculated using Equation 5. 
 

2. The 𝒑𝒓𝒊𝒐𝒓 is given by the term 𝑃(𝑌𝑡 = 1), and remains the same as the method 
iterations above. 
 

3. The 𝒍𝒊𝒌𝒆𝒍𝒊𝒉𝒐𝒐𝒅 is expressed by 𝑃(𝐹, 𝑀 | 𝑌𝑡 = 1) and is the probability of an 
implant variant having a particular combination of Fixation and Mobility types 
given that its revision risk meets regulatory the regulatory threshold at 𝑡 period 
of follow-up. Mathematically the likelihood term can be expanded using the 
rule of conditional probability: 

𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 =  𝑃(𝐹, 𝑀 | 𝑌𝑡 = 1) 

=  
𝑃(𝐹 ∩ 𝑀 ∩ (𝑌𝑡 = 1))

𝑃(𝐹 ∩ 𝑀)
 

=
𝐶𝑜𝑢𝑛𝑡(𝐼𝑚𝑝𝑙𝑎𝑛𝑡𝑠 𝑤𝑖𝑡ℎ 𝐹𝑖𝑥𝑎𝑡𝑖𝑜𝑛 𝐹 𝑎𝑛𝑑 𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦 𝑀 𝐴𝑁𝐷 ℎ𝑎𝑣𝑖𝑛𝑔 𝑟𝑒𝑣𝑖𝑠𝑖𝑜𝑛 𝑟𝑖𝑠𝑘 <  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑎𝑡 𝑡)

𝐶𝑜𝑢𝑛𝑡(𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑝𝑙𝑎𝑛𝑡𝑠 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑 𝑎𝑡 𝑡)
 

4. The 𝒏𝒐𝒓𝒎𝒂𝒍𝒊𝒔𝒊𝒏𝒈 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕 (NC) is the probability of the implant variant 
having a particular method of fixation and mobility out of all the implant 
variants considered. 

𝑃(𝐹 = 𝑐𝑒𝑚𝑒𝑛𝑡𝑒𝑑) =
𝐶𝑜𝑢𝑛𝑡(𝐼𝑚𝑝𝑙𝑎𝑛𝑡𝑠 𝑤𝑖𝑡ℎ 𝐹𝑖𝑥𝑎𝑡𝑖𝑜𝑛 𝐹 𝑎𝑛𝑑 𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦 𝑀 𝑎𝑡 𝑡)

𝐶𝑜𝑢𝑛𝑡(𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑝𝑙𝑎𝑛𝑡𝑠 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑 𝑎𝑡 𝑡)
 

4.6.1 Posterior 
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𝒕 𝝉 (%) Fixation Mobility Prior 

(%) 

Likelihood 

(%) 

NC 

(%) 

Posterior 

(%) 

Posterior – 

Prior (%) 

3 3.5 Cemented Fixed 53.59 30.93 37.02 44.78 -8.81 

3 3.5 Cemented Mobile 53.59 3.09 3.31 50 -3.59 

3 3.5 Cemented Rotating 53.59 17.53 16.3 57.63 4.04 

         

         

         

         

         

         

         

Table 12 Posterior for the Bayesian Method with the LROI Dataset Using Upper Limit Values and Two 
Characteristics, REDACTED 

4.6.2 Results 

Adding the Mobility characteristic introduces more nuance into the posterior. The prior 
changes differently for different combinations of Fixation and Mobility. In this case, for 
instance, there are 9 rows each for cemented, uncemented, and hybrid characteristic 
types to account for these different combinations. For each Fixation and follow-up 𝑡, 
there are now three associated Mobility characteristics Fixed, Mobile and Rotating with 
different (Posterior – Prior) values for each. Cemented and Fixed implants show a 
reduction in the posterior relative to the prior as with in the last method with the 
cemented characteristic. However, cemented implants with mobile and rotating 
characteristics generally show an increase in the posterior which contrasts with results 
from the previous method. For uncemented Fixation implants, there is an increase in 
the posterior for fixed and rotating characteristics, but a decrease for mobile generally. 
Most hybrid implants show an increase in the posterior. 

4.7 Bayesian Method Using Upper Limit Values and 

LROI Data and Three Implant Characteristics 

The Bayesian Method is next implemented with three characteristics and the posterior 
is shown below. 

Improvement from the previous method  

The LROI dataset is used for this iteration with upper limit values and three 
characteristics. 
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𝒕 𝝉 (%) F M S Prior 

(%) 

Likelihood 

(%) 

NC (%) Posterior 

(%) 

Posterior 

– Prior 

(%) 

3 3.50 Cemented Fixed MS 53.59 15.98 14.09 60.78 7.19 

5 4.00 Cemented Fixed MS 46.18 18.54 14.98 57.14 10.96 

10 5.00 Cemented Fixed MS 38.39 22.09 16.52 51.35 12.96 

          

          

          

          

          

          

          

Table 13 Posterior for the Bayesian Method with the LROI Dataset Using Upper Limit Values and Three 
Characteristics, REDACTED 

4.7.1 Results 

There are now 45 different rows for each Fixation characteristic, accounting for 
different combinations of Mobility and Stability characteristics. Cemented, fixed and 
posterior stabilised implants show similar results to cemented and fixed implants from 
the previous method (posterior decrease compared to the prior), but with greater 
decrease from the prior to the posterior. The difference between the posterior and prior 
for the cemented, mobile and posterior stabilised implants is also negative. Cemented, 
fixed and minimally stabilised implants on the other hand, show an increase in the 
posterior relative to the prior unlike the previous method. If implant combinations with 
zero likelihoods and NCs are ignored, uncemented implants generally show an 
increase in the posterior irrespective of Mobility and Stability characters. Hybrid 
implant combinations generally show mixed results, unlike the previous method where 
all hybrid implant combinations showed an increase in the posterior relative to the 
prior. 
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Chapter 5 | Discussion, Future Work 
and Limitations 
5.1 Key Results of the Bayesian Method: 

Arthroplasty Literature Perspective 

This section discusses some key results of the developed Bayesian method and its 
alignment to both medical literature and the context of this thesis. 

 

5.1.1 Results From the Method with AOANJRR Data 

Reducing Priors and Posteriors for Increasing Years of Follow-up for the Method with 

Point Estimates and the AOANJRR Dataset 

One of the first findings of the Bayesian method with point estimates and the AOANJRR 
dataset are decreasing posterior magnitudes over increasing years of follow-up. This 
trend is consistent when the method is applied with both the mean values and the 
upper limits of the 95% confidence interval, and it holds true for all fixation methods: 
cemented, uncemented, and hybrid. This indicates a decreasing likelihood of an 
implant with a particular fixation method meeting the regulatory threshold over longer 
follow-up periods. For example, the probability of a cemented prosthesis having a 
revision risk below the set threshold is generally lower at 5 years than at 3 years of 
follow-up. The priors also exhibit a similar trend, decreasing in magnitude with 
increasing follow-up years.  

This result is generally consistent with literature. 

One reason could be that more years of follow-up up enable a prosthesis to display its 
true performance and unfortunately, not many prosthesis truly perform as expected. 
During the initial periods of follow-up like 1 and 3 years, the true performance of a 
prosthesis may be masked by the quality of surgery, palliative, and post-operative care. 
Even if the implant underperforms and does not function as expected, this quality of 
care may delay or prevent revision surgery at these periods. Quality may also include 
factors like proper patient selection, accurate implant positioning, and optimising 
modifiable risk factors. These have been directly shown to reduce the incidence of 
revision and the readmission of patients (Roman et al., 2022; Urish et al., 2020). 
However, with larger periods of follow-up such as at 5 and 10 years, the actual 
performance of the implant has a larger effect on the chance of revision. Time since 
primary knee arthroplasty is an important factor in predicting some outcomes of 
primary knee arthroplasty like revision, and more time (or a larger follow-up period) 
leads to worse outcomes for revision (Gandhi et al., 2010). 

5.1.2 Results From the Method with the LROI Dataset 

Large (Unexpected) Linear Deviation for Cemented Implant Variants 
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The posterior distributions of cemented implant variants deviate significantly from 
their prior distributions, leading to an increase in the posterior revision risk estimate for 
these implants. This suggests that a variant with a cemented fixation is less likely to be 
considered "good" compared to those with uncemented or hybrid fixation. Additionally, 
the peaks of the posterior distributions for cemented implants are much lower than 
their prior peaks and are more spread out. In contrast, the peaks for uncemented and 
hybrid implants are closer to their prior peaks and more concentrated. This indicates a 
broader potential range of revision risk for cemented implants compared to 
uncemented and hybrid ones. A higher number of cemented implant variants have a 
revision risk outside the threshold values than variants with other modes of fixation.  

This result is opposite to those obtained from the AOANJRR dataset but proves that this 
Bayesian method can produce distinct results on the basis of data used and can be 
used with various data sources. As see below, the results, although surprising, are 
generally consistent with literature. 

These findings are surprising. While numerous systematic reviews and studies show 
mixed outcomes regarding the revision risk associated with cemented, uncemented, 
and hybrid implants, none suggest that cemented implants are likely to perform worse 
than uncemented or hybrid implants (Batailler et al., 2020; Irmola et al., 2020; Y. H. Kim 
et al., 2014, 2021; Nugent et al., 2019; Stempin et al., 2018). In fact, in the Netherlands, 
cemented implants are still regarded as the "gold standard" for knee arthroplasty, with 
the lowest associated revision risks for implants using cemented fixation methods (de 
Reus et al., 2023a; Humez et al., 2024). There is a dominance of cemented total knee 
arthroplasty in the Netherlands at 90% of the primary total knee arthroplasty surgeries 
being cemented (Humez et al., 2024). A higher number of cemented implants would 
also result in a higher total number of revisions, increasing the revision risk estimate. 
More so, given this dominance of cemented arthroplasties in the Netherlands, there 
could be an increased revision risk for cemented implants because of the reasons 
below: 

1. Better quality of uncemented implant surgery and uncemented implants 
themselves, reducing revision risk of such implants more than cemented ones. 
Uncemented and hybrid knee arthroplasty is technically more complex than 
cemented knee arthroplasty, requiring more precise surgical process in the 
form of accurate bone cuts and implant position (Newman et al., 2020). If 
performed by inexperienced surgeons such as residents, there is a higher 
chance of implant and surgical failure (van Es et al., 2022), necessitating 
revision. However, in the Netherlands, Theelen et al., 2018 have highlighted 
that both experienced surgeons and residents achieve comparable outcomes 
for knee surgery in terms of implant positioning and revision risk. 

2. Confounding effects of other characteristics like Bearing and Mobility: Implants 
with the "posterior stabilised (PS)" type of "Ligament" characteristic are known 
to have a higher revision risk with cemented fixation (van Es et al., 2022). Since 
nearly half of all knee surgeries in the Netherlands involve PS-type implants and 
around 90% of these are cemented, this combination of characteristic types 
increases the revision risk for cemented knee implants.  



46 
 

 

3. Infection rates, which can necessitate revision, tend to be higher for cemented 
implants (Nakama et al., 2012; Quispel et al., 2021), thus increasing their 
revision risk. Even when accounting for debridement, antibiotics, and implant 
retention (DAIR), which is the process of treating an infection, the revision risk 
for cemented implants can still be overestimated. 

Method with Three Characteristics: Lower Posteriors for PS Implant Variants 

Posterior Stabilised (PS) implants, irrespective of other characteristics in the method, 
consistently show reduced posteriors for almost all combinations of characteristics 
except uncemented fixed PS and uncemented rotating PS variants. These results are 
expected and in line with literature. Both Porteous & Curtis, (2021) and Spekenbrink-
Spooren et al., (2018) found a greater revision risk for PS implants in the Netherlands. 
Spekenbrink-Spooren et al., (2018) mention that surgeons’ choice of PS or CR implants 
for patients is largely on the basis of personal preference and training, and greater 
emphasis on patient characteristics is needed. This might still be the case. The greater 
incidence of revision for PS knees was more prominent for younger patients, typically 
less than 60 years of age for a mid-term follow-up period of 8 years. This can explain 
the increase in the posterior for the uncemented species of PS implants, which is 
opposite to that of all other PS variants. Uncemented knee implants are often preferred 
for younger patients because they are thought to last longer and withstand greater 
mechanical stress, which is more suitable for an active lifestyle (Chen & Li, 2019). Mid-
term follow-up for younger patients and uncemented PS variants, therefore, may be 
better than cemented PS variants, resulting in an increase in the posterior probability 
that the variants will be “good”. 

This result is consistent with literature and highlights the advantage of the method with 
multiple characteristics. This method can make distinct posterior estimates for 
combinations of characteristics which define a variant, providing more insightful 
estimates showing how the interplay of characteristics impacts variant performance. 
More on this line of reasoning is highlighted in the next section. 

5.1.3 Comparison of Dutch and Australian Dataset Results 

Contrasting Posteriors for Cemented, Uncemented and Hybrid Variants 

Results of the method with the AOANJRR and LROI datasets can be compared for the 
method with one characteristic (Fixation) and upper limits. Cemented and hybrid 
implants show an increase from the prior to the posterior probabilities while 
uncemented ones show a decrease for the AOANJRR dataset. On the other hand, for 
the LROI dataset, uncemented and hybrid implants show an increase of the posterior 
relative to the prior while cemented implants show a decrease. 
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Dutch arthroplasty circles, including surgeons, often use ODEP ratings and thresholds 
for the selection of implants, especially hip implants (Poolman et al., 2015; Van Dooren 
et al., 2024). ODEP ratings for implant influence choice of implant for surgery and 
making policy decisions such as criteria set by the Dutch Orthopaedic Association 
(NOV) (Poolman et al., 2015). In the selection of knee implant variants, surgeons may 
choose those with “good” ODEP ratings which have associated revision risks below the 
ODEP thresholds. For instance, a surgeon deciding on choosing a variant for a patient, 
might favour ODEP rated A* over others. A* implant variants already have an associated 
revision risk below the thresholds used in this method. Therefore, for the Dutch data, it 
is to be expected that all types of Fixation, variants should show an increase in the 
posterior, indicating a higher chance that the variant used will meet ODEP thresholds. 
This is the case for uncemented and hybrid implants which show an increase in the 
posterior. Cemented implants, conversely, show a decrease. This can be explained by 
the fact that cemented implants account for around 55% of the number individual 
variant types recorded in the LROI dataset. For cemented variants, there are many 
available options for variants, many of which do not meet the thresholds, but are still 
used, albeit less frequently. However, they are given equal weight in the method. This 
reveals an option to incorporate the number of implants used as weights in the 
Bayesian method, which would potentially alter the results. 

For Australia, ODEP benchmarking thresholds are not as commonly used as the UK and 
western Europe (Wyatt et al., 2021). Different systems are in place such as the 
Australian superior clinical performance programme (Prostheses Cover under Private 
Health Insurance, 2020). Results of the method may reflect general, overall implant 
performance, favouring cemented implants. Cemented knee implants historically 
have had a lower associated revision risk, and again, are still considered the gold 
standard for knee arthroplasty (Asokan et al., 2021b; Hannon et al., 2023; Irmola et al., 
2000). The Australian registry is also known to be skewed towards cemented implants, 
which could explain some of the results (Gupta et al., 2020). 

Again, this result is valid, explained with literature as below. This section shows how the 
Bayesian method produces distinct results for different datasets from different 
countries, highlighting potential differences in surgical practice and regulatory and 
institutional policy. 

 

5.1.4 Overall Results 

Overall, the results generated by the Bayesian method is consistent with literature. 
More so, it produces distinct results based on the datasets of two countries, which 
highlight differences in surgical practice, and regulatory and institutional policy. The 
method with multiple characteristics and results yielded by it are highly relevant in a 
regulatory context.  
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5.2 The Bayesian Method in a Regulatory Context 

This section further delves into the thesis context by directly addressing research 
questions and objectives. 

 

The developed method yields results as the probability of an implant variant being 
“good” by assessing if its revision risk meets ODEP thresholds. The following section 
discusses the method itself and examines how its results align with the regulatory 
background and overall context, especially that of the MDR, addressing OBJ4 and RQ2. 
It discusses whether the method can be utilized during regulatory approval to assist 
regulators in approving new implant variants for surgical use and for subsequent post-
market surveillance. It will also explore if this method can alleviate the burden on 
manufacturers to provide new clinical evidence and assess the advantages and 
disadvantages for stakeholders like patients, surgeons, industry, and authorities like 
regulatory bodies. 

5.2.1 Potential Benefits of Implementing the Method for Regulating 

Variants 

A tool like the Bayesian Method would have many advantages for patients, surgeons, 
regulators and manufacturers alike. 

• There is speculation that increased regulatory compliance requirements 
specified by the MDR may discourage innovation of new medical implants 
(Vasiljeva et al., 2020b). However, discouraging innovation may also affect 
patient safety by not allowing potentially safer materials to be made available 
in the form of new implants (Bernasconi, 2019; Kjaersgaard-Andersen, 2019). 
Here, the Bayesian method can, if used to make decisions on the approval of 
new variants, may streamline this regulatory approval process by providing an 
initial estimate about the performance of a new variant, thereby striking a 
balance between innovation and patient safety. 

• The MDR mandates Post-Market Follow-up (PMCF) for knee implants that lack 
long-term clinical follow-up (Gerbers & Nelissen, 2024). The Bayesian method 
can enhance this process by continuously analysing data collected from the 
surgical use of the implant to identify underperforming variants. Registry 
datasets, which are periodically updated with new information, can be a 
valuable source of data for use with the method. Regularly analysing this data 
can help promptly identify and report potential underperforming variants. This 
approach is also supported by Wilton et al., (2023b) who call for regular 
analysis of registry data to quickly detect and address underperforming knee 
implant variants. 

 

 

 

 



49 
 

 

5.2.2 Critical Evaluation and Potential Limitations of Implementing the 

Bayesian Method for Regulating Variants 

In the section below, the developed Bayesian method is critically evaluated as a 
potential tool to assist regulators in approving and regulating new implant variants for 
surgical use. Besides using context from previous sections, aspects of the Critical 
Appraisal Skills Programme (CASP), which provides frameworks for evaluating various 
studies in healthcare, is also incorporated. “Critical appraisal” is a method for 
assessing the methodological quality of studies (Jayaraman et al., 2018; Munn et al., 
2019), involving a thorough and systematic evaluation of a study’s trustworthiness, 
quality, and rigor (Booth et al., 2021; Tod et al., 2022). The CASP is particularly relevant 
for knee arthroplasty and its outcomes, with numerous studies utilizing it for evidence 
synthesis, meta-analysis, and systematic and scoping reviews (Moutzouri et al., 2017; 
Nisar et al., 2022; Pryce et al., 2024; van der Sluis et al., 2021). The CASP provides many 
checklists for appraising different types of studies (CASP Checklists - Critical Appraisal 
Skills Programme, 2024). 

Specifically, the clinical Prediction Rule Checklist (“CASP Clinical Prediction Rule 
Checklist,” 2023) will be used to assess the method. This is because if the method is 
used in a regulatory context, it will be used as a predictive tool to estimate the 
performance of implant variants at the time of regulatory approval. Although this 
checklist is designed for patient evaluation, parts of it can still be applied to assess the 
method itself. This CASP Checklist has yes/no questions, some of which are relevant 
to discussing the Bayesian method. These questions are not answered directly but are 
used as starting points for a discussion on the suitability of the method for regulatory 
decision-making on the approval of new variants for clinical use.  

Reliability of Method Results 

Question 9: Would the prediction rule be reliable and the results interpretable if used? 

If the Bayesian method is to be used for the approval of new variants, it must be reliable 
and produce interpretable results. It should be applicable to all implant variants, 
including new ones. However, new implant variants may not conform to the seven 
implant characteristics that define each variant. Changes in design and new 
technologies (such as a new implant material, for example, which is not included in the 
implant characteristics defining a variant) or the introduction of potential new implant 
characteristics could affect the method's applicability in this regulatory decision-
making context. Consequently, the Bayesian method must be adaptable and account 
for such new implant variants and ensuring that it remains effective and applicable 
even as new implant variants and innovations emerge (Behan et al., 2017; Garretsen, 
2017). Additionally, the method must first be refined to reliably estimate revision risks 
for implant variants that are fully defined by the seven characteristics. This means that 
the method must also be developed to include multiple characteristics instead of just 
one as demonstrated in the method implementations in the previous sections.  

Definition, Relevance and Precision of the Predictive Method Outcome 

Question 1: Is the method clearly defined? 
Sub question 1: Is the outcome relevant and is it clinically reasonable (the outcome can 
be expressed as a probability or as a course of action)? 
Question 8: How precise was the estimate of treatment effect? 
Sub question 8: Is the rule robust, has there been any attempt to refine it? 
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The Bayesian method produces a probability that indicates the likelihood of a variant 
meeting standard threshold values for revision risk. By considering the “treatment 
effect” as the revision risk, this method can predict a variant’s performance with high 
precision, as it generates a single estimate based on the characteristics defining the 
variant. Also, through iterative refinement, the robustness of this method has been 
increased. Consequently, its precision and robustness can make it a valuable tool for 
supporting regulatory decision-making in the approval of new variants. 

The MDR requires manufacturers to actively monitor regulated variants which are in 
surgical use and identify previously unknown risks that could not be detected before 
regulatory approval. This is called post-market surveillance (M. Fink & Akra, 2020). 
Incorporating data from post-market surveillance into the method can lead to more 
robust estimates of variant performance, but only in the post-market surveillance 
phase which occurs after the regulatory approval phase. 

The Probabilistic Nature of the Method’s Results: Insufficiency for Regulatory Decision-

making 

The method yields the probability of a new implant variant being “good”, rather than a 
binary result indicating whether the implant will be good or not. Bayesian approaches 
are already favoured for decision-making by regulatory agencies (Bonangelino et al., 
2011). However, this method’s results offer a limited view of knee implant 
performance, which is insufficient for regulatory decision-making that requires 
consideration of multiple factors such as overall patient safety, safety for the intended 
population, patient preferences, innovation, and overall economic policy (Aftab, 2022; 
Bonangelino et al., 2011; Broekhuizen et al., 2015; Ho et al., 2015; McDermott & 
Kearney, 2024). Therefore, this method should only be used alongside other methods, 
such as benefit-risk analysis often employed by regulators (Broekhuizen et al., 2015), 
and not as a standalone method to determine an implant's performance for regulatory 
approval. 

5.2.3 Other Considerations 

The Bayesian method can use existing data to effectively estimate the revision risk of 
implant variants based on their characteristics, even when considered outside the 
regulatory context. This section discusses the method as a mathematical solution to 
the problem of estimating the revision risk of variants and its effectiveness. 

Choice of Datasets: The Dependence of Method Implementation and Results on Input 

Data Quality 

Two datasets were selected to develop and implement the method: the AOANJRR and 
LROI datasets. Initially, three potential data sources were identified for method 
development: arthroplasty registry data, registry annual report data, and medical 
literature. Ultimately, only arthroplasty registry data (LROI dataset) and registry annual 
report data (AOANJRR dataset) were chosen based on criteria of granularity, the 
expression of implant performance in terms of revision risk, and the feasibility of 
obtaining the data for this thesis project. Medical literature was rejected as a source of 
data due to inadequate granularity and the use of outcome assessment methods other 
than revision risk.  
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The nature of the dataset influences the posterior outcomes and, consequently, the 
results of the method. When the method was applied to the AOANJRR and LROI 
datasets, the method produced different results, despite the method itself remaining 
the same with both datasets. This difference comes from the nature of the two 
datasets: the AOANJRR is a registry report, while the LROI is detailed, raw data 
aggregated from individual patient surgical records by the Dutch registry organisation, 
the LROI. Essentially, the LROI annual report data is more detailed and direct, whereas 
the AOANJRR data is a summarized version of patient information, analysed by the 
Australian registry (Smith et al., 2023). This is why the LROI dataset contains more 
implant characteristics than the AOANJRR dataset. 

Differences in data granularity can affect the implementation and results of the 
method. Granularity has been known to introduce confounding factors in the analysis 
of joint arthroplasty registry data (Cahue et al., 2019). Similarly, in this analysis, varying 
levels of granularity could lead to confounding factors that might distort the results and 
their interpretation. For example, it is known that a cemented implant has a higher 
revision risk when it is posterior stabilized (van Es et al., 2022). Including this 
characteristic in the input data could skew the results of the Bayesian method. The 
LROI dataset includes this posterior stabilized characteristic, whereas the AOANJRR 
dataset does not, which means that the estimates of revision risk for cemented 
implants could be different for these two datasets because of their granularity. This was 
indeed the case: revision risk estimates for cemented implant variants with the LROI 
dataset were unexpectedly different compared to results using the AOANJRR dataset. 
This anomality is discussed in the next section. 

The Complexity of Predicting the Revision Risk as a Surgical Outcome: Other Factors 

Influencing Surgical Outcomes Besides Implant Characteristics 

Predicting general surgical outcomes like revision is inherently complex due to the 
many potential causes of revision (El-Galaly et al., 2020). Causes of revision can be 
many and may range from pain and implant failure to infection (Inui et al., 2023). This 
method, however, treats revision as an independent outcome, attributing it solely to 
the characteristics and nature of the implant itself, without investigating the underlying 
reasons for revision. It operates on the assumption that the characteristics of the 
implant are the primary factors responsible for revision and does not consider other 
potential causes that may not be related to the implant. 

Arthroplasty registry annual reports, such as the AOANJRR report, highlight many 
diagnosed causes of revision (Smith et al., 2023, p. 248), as given below: 

1. Infection 
2. Loosening 
3. Instability 
4. Pain 
5. Patellofemoral pain 
6. Patella erosion 
7. Arthrofibrosis 
8. Fracture 
9. Malalignment 
10. Tibial insert wear 
11. Lysis 
12. Incorrect sizing 
13. Metal related pathology (such as metal allergies) 
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14. Other 

For each complication other than infection, there can be various reasons for revision, 
other than issues with the implant itself. For instance, inadequate component 
alignment during arthroplasty surgery can lead to instability and pain, which may not 
be attributable to a fault with the implant (Inui et al., 2023). The AOANJRR annual report 
identified several additional factors that can influence revision risks, such as age, 
comorbidities, and the use of computerized surgical methods, suggesting that these 
factors may also play a role in implant revision (Smith et al., 2023). 

Considering all these factors is not feasible with the developed method and may 
remain challenging even with further refinement. Accounting for variables such as age, 
surgical methods, and other factors would require more detailed datasets and could 
be explored in future work. If these factors are incorporated, the method could yield 
more well-rounded, comprehensive results. Currently, by focusing solely on implant 
characteristics, the method can be seen to produce results for “aseptic revision”, 
meaning revision for causes which are not related to infection (Okafor et al., 2021). 
Implants themselves are generally not considered to cause infections in patients 
undergoing total knee arthroplasty (Matar et al., 2010).  

The Value of the Method with Multiple Characteristics 

The method with multiple characteristics is what the Bayesian method is envisioned to 
be: a method that can estimate the performance of a full variant on the basis of all its 
characteristics. The development of the method with the LROI dataset from one 
characteristic to three characteristics shows the value of adding more characters into 
it. Moving from one characteristic Fixation to two characters Fixation and Mobility 
introduces more nuance to the results. The posterior moves differently for different 
combinations of characters resulting in different estimates of whether an implant 
variant is “good”. For example, in the method with LROI data and one characteristic, 
cemented implants show a decrease in the posterior relative to the prior. Adding the 
Mobility characteristic shows that only cemented and fixed implants show a reduction 
in the posterior, but cemented and mobile and cemented and rotating show an 
increase. This level of nuance was not possible in the method with only one 
characteristic. This goes to show that the interplay of different characters also results 
in distinct posterior estimates for each combination. 

Camouflage was also an important issue discussed in the previous chapters. The 
current framework of the MDR strongly discourages Camouflage by calling for each 
novel implant variant to be clinically tested before surgical use. This method with 
multiple characteristics, because it makes distinct estimates for each combination, 
also separates variants from each other in terms of performance. It does not group 
variants into brands. As a result, this approach is unlikely to lead to a regression to the 
previous status quo. 

As seen in the method with three characteristics, however, there are certain zero values 
in the posterior where the method fails. This tends to occur more frequently for a larger 
number of characters. The incorporation of confidence intervals into the method may 
prove beneficial in capturing larger uncertainty and accounting for the possibility of 
zero values in the method. This is explored in Appendix B. 
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5.3 Application for Regulatory Decision-making 

Here, some practical considerations for the implementation of the Bayesian Method 
as a regulatory decision-making tool are put forth. 

 

As mentioned in the previous section, the method yields results in the form of a 
probability that the implant is “good”. A prior assumption about implant performance 
is made, which after conditioning on implant characteristics results in an updated, 
posterior estimate of the implant being “good”. This update can either be an increase, 
decrease or no change of the prior into the posterior probability. For any implant 
variant, an increase from the prior to the posterior can signify that conditioning on one 
or more of the variant’s implant characteristics results in a higher probability of its 
revision risk meeting thresholds, a higher chance that the variant is “good” than the 
prior assumption. A reduction from the prior to posterior probabilities can indicate that 
the variant with that particular set of characteristics may have a lesser chance of being 
“good” than the prior assumption. The magnitude of such an increase or decrease can 
indicate the strength of influence of the variant’s characteristics. This inference of 
results can be of benefit in the regulatory context, as highlighted below. 

5.3.1 Increase and Decrease of the Prior Probabilities as Eligibility for 

Making a Clinical Equivalence Claim 

The main objective of the regulatory framework of the MDR is to maintain a high level 
of patient safety and health while supporting innovation for medical devices (M. Fink & 
Akra, 2023). In the case of knee implant variants, regulators strive to ensure the 
performance, safety and quality of new devices (Wadhwa et al., 2019). Regulatory 
assessment of knee implants, therefore, must translate to these objectives of 
performance, effectiveness, safety and quality. If this method is used as a regulatory 
tool for the approval of new knee implant variants, its results must align with the 
decision-making process during regulatory approval. 

This report proposes that the “clinical equivalence” clause of the MDR be based on the 
results of this method as a support for regulatory decision-making on the approval of 
new knee implant variants. In this way, it would not be used for making direct decisions 
on the regulation of novel knee implant variants, but still impact this process of 
regulation positively without compromising overall patient safety. Using the method 
directly for regulatory decision-making may have negative consequences for patient 
safety especially in light of the critique of the method as put forth above. It might also 
negate the MDR’s regulatory rigour and emphasis on patient safety. Using the method 
for eligibility in equivalence claims can strike the fine balance between overall patient 
safety and preventing catastrophic implant failures, and medical device innovation. 
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If a new variant pending regulatory approval shows a sufficient increase in the prior 
when tested with this method, it is proposed that the manufacturer of a novel knee 
implant can claim “clinical equivalence” to another implant variant if required by them. 
“Equivalence” in the context of knee implants and the MDR is an alternative to clinical 
trials for obtaining approval for surgical use (Overgaard et al., 2023). It is the degree of 
similarity of an implant variant to another regulated variant in clinical use (Davies & 
Davies, 2021). Making an equivalence claim allows a new variant to be approved for 
surgical use without requiring pre-market clinical trials (Overgaard et al., 2023), which 
are difficult, expensive and time-consuming to do. Although the concept of 
equivalence was present in the previous MDD as well, the MDR mandates a stricter 
policy for manufacturers to make an equivalence claim for the release of new variants. 
This includes demonstrating technical, biological and clinical equivalence of a new 
variant to an already-approved variant in surgical use. This report proposes that 
manufacturers should be allowed to make a clinical equivalence claim if the results 
indicate a higher probability of the variant being “good”. 

The concept of equivalence may have been exploited in the past by manufacturers to 
obtain regulatory approval for the clinical use of implant variants (Fraser et al., 2021). 
Subpar implant may have been introduced for clinical use. Using the method as part of 
making equivalence claims may help a manufacturer skip the high time and monetary 
investment of conducting clinical trials for every variant they release, ultimately helping 
strike a balance between manufacturer-led innovation and patient safety. 

In case, however, the posterior is less than the prior, equivalence claims can be barred 
for the variant from its manufacturer. A reduction in the prior could imply that the 
combination of characteristics has resulted in a lesser chance that the variant will 
meet thresholds. This is reflected in the Bayesian calculation. When the posterior is 
lesser in magnitude than the prior, the likelihood is lesser than the normalising 
constant, meaning that the particular combination of characteristics has resulted in a 
greater percentage of variants which do not meet the thresholds. Therefore, the 
variants with these characteristics may have a greater chance of not performing as 
expected. This warrants greater scrutiny of such variants. For the approval of such a 
variant, clinical investigation must be conducted in accordance with the MDR, Annex 
XV (Directive 2017/745). 

The magnitude of the posterior probability of a variant should also be sufficiently high 
to make its manufacturer eligible for making a clinical equivalence claim. Some work 
has been conducted to quantify uncertainty in a regulatory and medical context such 
as by Vreman et al., (2020) and Stern, (2017). However, due to the novel nature of this 
thesis, interpretation of probabilities for making binary regulatory decisions on 
approval is difficult. Therefore, this report proposes a purely statistical value of 70%.  
This thesis recommends further work in the interpretation of probabilistic results for 
making regulatory approval decisions, which are binary in nature, especially in a 
medical device context. To further incorporate uncertainty into the Bayesian method, 
statistical confidence intervals can be used in the method itself. Confidence intervals 
are used extensively in the knee implant context, such as those used for revision risks 
in the AOANJRR annual report (Smith et al., 2023). Confidence intervals provide bounds 
between which true values can lie. This can be of help in the interpretation of results in 
a binary regulatory decision-making context. Such an improvement of the Bayesian 
method with confidence intervals is suggested developed in Appendix B. 

5.3.2 Final Recommendation 
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Although there are advantages of using the Bayesian method for regulatory decision-
making, the method would need to be refined further before use. At this stage, it can 
only serve as a supplement to strong clinical evidence and cannot be used 
independently to fully gauge the safety or effectiveness of a new variant for regulatory 
approval. Therefore, it has been suggested that the possibility of Clinical Equivalence 
be based on the results of this method.  

5.4 Ethical Issues 

This method, if used as intended in the last section as an aid to regulatory decision-
making, may have consequences for patient safety, surgical and regulatory practice, 
the medical industry, and society. Some core ethical issues in the context of the 
developed method are elaborated below. 

5.4.1 The Paradox of Innovation and Patient Safety 

As previously discussed, innovation in knee implants can introduce better and 
potentially safer variants to the market (Bernasconi, 2019; Kjaersgaard-Andersen, 
2019), positively impacting patient safety. However, this process may also compromise 
patient safety if new implants are tested on patients: medical devices, including knee 
implants, are largely tested during clinical use and a limited amount of clinical 
evidence is available before introduction into the market for surgical use (Pietzsch et 
al., 2004). Consequently, implant testing and clinical use are not separate (Vinck et al., 
2011), making patients susceptible to adverse events of implant failure associated with 
some new, untested knee implants. This presents an ethical dilemma concerning the 
release of new knee implant variants, and more ethical discourse is needed. Ethical 
debate is particularly important when the distinction between implant testing and 
clinical practice is blurred, because there may be limited reviews by ethics committees 
in such a case (Garretsen, 2017). 

Here, the developed method can be useful. Implants deemed "good" by the method 
can be used and tested as they are, while those deemed not "good" may receive more 
attention through a stepwise introduction for surgical use and testing. This stepwise 
approach reduces health risks for patients during testing (Neyt et al., 2017; Sauerland 
et al., 2014). 

5.4.2 Transparency of Clinical Data for Patients and Surgeons 

Unlike medicinal products, clinical data on medical devices that have been obtained 
from clinical trials, is not publicly available (Hulstaert et al., 2023). There is a lack of 
transparency of clinical data on medical devices like knee implants preventing 1) 
Patients from making fully informed decisions about their intervention and treatments 
(Garretsen, 2017) and 2) Surgeons from having more detailed information about the 
performance of implant they may choose to use in practice. This is because surgeons 
are responsible for choosing implants with the best long-term survival and function 
and need to remain updated about trends in usage and survivorship of different 
implants (Porteous & Curtis, 2021a). 
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As previously mentioned, surgeons can also use the Bayesian method to make more 
informed decisions about the implants they use in surgical practice. This approach 
allows them to better understand the potential performance of the chosen implant and 
be in a better position to explain their choice to patients. Involving patients in surgical 
decision-making process on treatment options has been shown to lead to better 
surgical outcomes. (Charles et al., 1997; O’Neill et al., 2007). 

Interestingly, there have been developments in the transparency of clinical data with 
the introduction of the MDR. Both the MDD and the MDR prioritize the confidentiality of 
clinical data over public disclosure (Garretsen, 2017; Hulstaert et al., 2023). With the 
new MDR, although clinical data is still not fully accessible to the public, efforts are 
being made to inform the public about important safety and performance aspects of 
medical devices through the European Database on Medical Devices (EUDAMED). 
EUDAMED, as part of the MDR, aims to maintain a comprehensive record of all medical 
devices in the EU and to increase transparency of clinical studies on medical devices 
(European Database on Medical Devices, 2021). However, it is still unclear how much 
information will be available in this database. 

 

5.4.3 Stakeholder Impact 

Manufacturers and Regulators 

The above recommendation would not affect manufacturers in any way because they 
would still have to comply to all regulatory rules. For regulators, however, the method 
can influence decision-making on the approval of new implants. While it would not 
replace the entire approval process due to the wide scope of regulatory decision-
making, it could provide an overview of implant performance for implant variants in the 
regulatory approval process, especially for non-medical stakeholders.  

Surgeons and Patients 

This method could be highly beneficial for surgeons, who typically have the final say in 
implant choice and make final decisions on implant characteristics, components, and 
surgical methods (Porteous & Curtis, 2021; Wilton et al., 2023b). By using the Bayesian 
method, surgeons can make more informed decisions about the variants they choose 
to use in practice and better understand the expected outcomes in terms of revision 
risk. They will also be in a better position to explain the choice of implant to the patient 
using this method’s results. Involving both patient and surgeon in the decision-making 
process is often considered the best approach to surgical decision-making (Charles et 
al., 1997). Decision-making aids like this method used along with the patient could 
improve the decision process of selecting implants, thereby keeping patients informed 
and potentially enhancing surgical outcomes (O’Neill et al., 2007). 

5.5 Future Work and Limitations 

This section outlines potential directions for future work, inspired by some 
limitations faced during the thesis project. 
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1. Core Assumptions: This thesis considers only the implant characteristics as 
factors influencing its revision risk. This is a limitation because, revision can 
result from many causes, and not only from implant failure. Other surgical 
complications like infection and pain can also result in revision surgery, 
increasing the revision risk of the implant used. This has been addressed in the 
section The Complexity of Predicting the Revision Risk as a Surgical Outcome: 
Other Factors Influencing Surgical Outcomes Besides Implant Characteristics. 

2.  Data Selection: Two sources of data were identified, the AOANJR arthroplasty 
registry annual report and the proprietary LROI dataset. Medical literature was 
rejected as a potential source of data. 

a. Other data in the AOANJR annual report: The AOANJRR contains, in 
other tables, revision risk estimates for knee implants by factors like 
age, surgical technique, patient obesity. These have not been 
incorporated into the method and as they do not fall under implant 
characteristics. Incorporating this revision risk data into the method 
can be a direction of future work. 

b. Medical literature data: Medical literature can be a potentially wide 
source of information but cannot be incorporated into the Bayesian 
method currently due to inadequate data granularity. However, this 
source of information can be explored in future work as well. 

3. Probabilistic Bayesian Method: A probabilistic Bayesian approach has been 
chosen for the method due to the uncertainty associated with an implant's 
revision risk. This approach allows the revision risk to be updated with new 
evidence, rather than being treated as a fixed parameter. Here, machine 
learning (ML) methods can also be explored for use due to its advantage of 
detecting non-linear relationships in datasets (Cabitza et al., 2018), which can 
potentially be used to make better predictions on revision risk for knee 
implants.  

4. Obtaining Information for the Prior: An informative prior is obtained from the 
datasets by taking a weighted average of both the mean and standard deviation. 
This is a stopgap approach to restrict the thesis to its scope and is a limitation. 
Other methods of making an initial estimate of an implant’s performance  for 
the prior distribution may be explored in future work.  

5. Choice of Prior, Likelihood and Posterior Distributions: The prior is assumed 
to be a Beta distribution which is a conjugate prior for the likelihood, which is a 
Bernoulli distribution. This makes an analytical solution to the Bayesian 
equation possible, and the posterior is also a Beta distribution. The effect of 
using different kinds of distributions is outside the scope of this thesis and may 
be explored in further work. 

6. Incorporating Confidence Intervals: Confidence intervals can be 
incorporated into the Bayesian method to accommodate larger uncertainty in 
the method and allow for better interpretation of the posterior results. 

7. New Characteristics in New Variants: New variants can have characteristics 
which are outside of the defined 7 characteristics. This could make the method 
less robust. Further work could explore the possibilities of defining a variant in 
terms of greater than these 7 characteristics. 
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Chapter 6 | Conclusion 
This thesis began with the goal of identifying a method to predict the revision risk 
performance of new knee implants using data from arthroplasty registries and studies 
of regulated total knee implants. The effectiveness of such a method as a regulatory 
decision-making tool for approving new knee implants was also to be explored. 
However, no such method could be found in the literature. Therefore, a new method 
was developed from basic mathematical concepts. To retain the regulatory and knee 
arthroplasty context, three criteria were defined for the new method. A probabilistic 
Bayesian method was developed using specifically chosen datasets: the AOANJRR and 
the LROI datasets. 

The method was evaluated in a two-fold manner 1) On the basis of its results with the 
two datasets and 2) In a regulatory context. The results of the method were largely 
consistent and aligned with medical literature in the field of knee arthroplasty. In the 
regulatory context, the developed method's benefits and limitations were examined, 
with the limitations evaluated using the CASP Predictive Rule Checklist. Although the 
method has benefits striking a balance between innovation and patient safety, 
limitations include probabilistic nature of the methods results, dependency on the 
choice of datasets, and the confounding effects of other factors influencing revision. 
Taking these benefits and limitations into account,  a final recommendation was made: 
to use the Bayesian method for determining eligibility for clinical equivalence in the 
regulatory approval of novel knee implant variants. This approach strikes a balance 
between overall patient safety and innovation in the field of medical devices. Following 
this, directions for further work were suggested, inspired by the limitations 
encountered: exploring more characteristics to define variants, incorporating 
confidence intervals, and the use of other data sources like medical literature as wider 
information sources. Incorporating confidence intervals shows promise in quantifying 
the uncertainty in the method so that its results may be better suited for regulatory 
decision-making. Appendix B shows the development of the method while 
incorporating confidence intervals and may serve as a starter for future work.   

In conclusion, this thesis demonstrates the potential of a probabilistic Bayesian 
method for predicting knee implant revision risk, especially in the current medical 
device regulatory setting. Despite this, however, the method requires further 
refinement to address identified limitations and incorporate broader influencing 
factors. By doing so, this method could be used as a regulatory tool, addressing issues 
with the current regulatory environment, positively impacting surgeons, patients, 
regulators and the medical industry. 
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Chapter 8 | Appendix A 
8.1 Supplementary Material: Code 

The code for the Bayesian Method and all its iterations along with the AOANJRR 
dataset used has been uploaded to the repository: 

https://github.com/Shounak-Paul/Master-Thesis/  

Chapter 9 | Appendix B 
9.1 Incorporating Confidence Intervals in the 

Bayesian Method 
Headi ng Placehol der 21 Incorporating Confi dence Intervals i n the Bayesian Method  

As seen in the developed method, a 95% confidence interval was also present for 
each value of revision risk in tables KT9 to KT11 in the AOANJRR registry. These 
intervals can be fully incorporated into the Bayesian method, rather than only 
using the upper limit values. This approach is similar to the "superiority" method 
used in survival analysis to define "good" implant performance: according to this 
method, the upper limit of the 95% confidence interval must be less than the 
benchmark revision risk value for the group of implants (Smith et al., 2023). 
However, this updated Bayesian method developed in the section below differs 
from the superiority approach by utilizing the entire confidence interval rather 
than just the upper limit. In this updated Bayesian method, the overall Bayes' 
equation remains unchanged, but the interpretation of registry information for 
calculating each term in Bayes' Theorem is revised. Rather than representing a 
single value, the posterior, prior, and likelihoods are assumed to be probability 
distributions, enabling more comprehensive inferences of implant variant 
performance compared to their representation as singular point estimates. This 
method’s incorporation of confidence intervals in the form of distributions allows 
for a more subjective interpretation of the posteriors to determine good 
performance. Confidence intervals are also used in the case of the LROI dataset. 

9.1.1 Choice of Distributions for the Prior, Likelihood and NC 

https://github.com/Shounak-Paul/Master-Thesis/
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In Bayes’ Theorem, the prior, likelihood, and the reciprocal of the normalizing 
constant are multiplied to yield the posterior. When the prior and likelihood are 
treated as probability distributions instead of point estimates, multiplication of 
the prior and likelihood results in a posterior which is also a distribution. This 
process is often referred to as “aggregating” probability distributions 
(Grientschnig & Ignacio, 2014), and it can result in posterior distributions that 
differ in shape from the prior or likelihood (Clemen & Winkler, 1999; Genest & 
Zidek, 1986). For some combinations of prior and likelihood distributions, 
obtaining the posterior may not be possible analytically, and numerical methods 
may be required (D. Fink, 1997). Determining such posterior probability 
distributions is a different field of mathematical inquiry beyond the scope of this 
thesis and the impact of different distributions has not been considered here. 
Instead, the concept of “conjugate priors” is used to determine posterior 
distributions without numerical approximation or extensive calculation. 
Conjugate priors are prior distributions for likelihoods that result in tractable 
analytical solutions and yield posterior distributions with known shapes (D. Fink, 
1997). This means that an analytical solution for the Bayes’ equation will be 
available as a posterior. In the Bayesian method below, the likelihood is a 
Bernoulli distribution, and a Beta distribution is chosen as a suitable conjugate 
prior (Schmidli et al., 2014d). This results in a Beta distribution as the posterior. 

9.1.2 The New Bayesian Approach for this Method 

Deriving the New Form of the Bayes’ Equation 

Suppose that 𝐹 denotes a characteristic “fixation” for an implant variant and 𝑅𝑡 a 
random variable for its revision risk at a follow-up period 𝑡 as defined previously. 
𝑅𝑡 helps determine if the performance of a variant is “good” when compared to 
regulatory thresholds. Let 𝐹𝑐𝑒𝑚 be a binary random variable denoting the presence 
of the cemented method of fixation where 𝐹𝑐𝑒𝑚 = 1  for an implant variant having 
this cemented method of fixation and 𝐹𝑐𝑒𝑚 = 0 for a variant with any other mode 
of fixation.  

Let the probability of selecting a cemented variant which is “good” (𝑅𝑡 within 
threshold), denoted by 𝑃(𝐹𝑐𝑒𝑚 = 1 | 𝑅𝑡), be 𝑣𝑡 and of selecting any other variant 
be 𝑃(𝐹𝑐𝑒𝑚 = 0 | 𝑅𝑡) = 1 − 𝑣𝑡. Then, if among 𝑛 implant variants with fixations 
𝑓𝑐𝑒𝑚,1, 𝑓𝑐𝑒𝑚,2, … , 𝑓𝑐𝑒𝑚,𝑛, the probability of selecting a cemented, good performing 
one at period 𝑡 is 𝑣𝑡, it follows that such a probability for the 𝑖𝑡ℎ variant is given by 
𝑝(𝐹𝑐𝑒𝑚 = 𝑓𝑖 | 𝑅𝑡). This probability then becomes: 

𝑝(𝐹𝑐𝑒𝑚 = 𝑓𝑖 | 𝑅𝑡) = 𝑣𝑡
𝑓𝑖(1 − 𝑣𝑡)1−𝑓𝑖 

Since selecting a variant is independent of selecting any other, for 𝑛 variants 
selected randomly, the probability of selecting 𝑛 variants with cemented or non-
cemented fixations 𝑓𝑐𝑒𝑚,1, 𝑓𝑐𝑒𝑚,2, … , 𝑓𝑐𝑒𝑚,𝑛  at 𝑡 is: 

𝑝(𝑓𝑐𝑒𝑚,1, 𝑓𝑐𝑒𝑚,2, … , 𝑓𝑐𝑒𝑚,𝑛 | 𝑅𝑡) = ∏ 𝑃(𝐹𝑐𝑒𝑚 = 𝑓𝑖  | 𝑅𝑡)

𝑛

𝑖=1

= ∏ 𝑣𝑡
𝑓𝑖(1 − 𝑣𝑡)1−𝑓𝑖

𝑛

𝑖=1

 

This is a 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑣) distribution with a parameter 𝑣𝑡, representing the likelihood 
of observing 𝑛𝑡 cemented implant variants. If there are 𝑘𝑡 such variants which are 
cemented, which means for those with 𝑓𝑖 = 1, this Bernoulli distribution reduces 
to: 
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𝑝(𝑓𝑐𝑒𝑚,1, 𝑓𝑐𝑒𝑚,2, … , 𝑓𝑐𝑒𝑚,𝑛 | 𝑅𝑡) =  𝑣𝑡
𝑘𝑡(1 − 𝑣𝑡)𝑛𝑡−𝑘𝑡  

Equation 9 Bernoulli distribution equation for a cemented implant variant given its revision risk 

This represents the Bernoulli likelihood, indicating the likelihood of a variant 
being cemented given its revision risk. Information about 𝑣𝑡 will be considered as 
“evidence” to update prior beliefs about 𝑅𝑡 into posterior beliefs about the 𝑅𝑡 to 
judge whether the variant’s performance is “good” enough by comparing it to 
regulatory threshold 𝜏𝑡. Both prior and posterior beliefs about 𝑅𝑡 will be reflected 
in prior and posterior distributions. The thresholds will be considered after the 
Bayesian implementation to interpret the posterior 𝑅𝑡 distributions. Th likelihood 
is obtained with the help of information from the datasets as shown in the next 
section. 

A suitable prior distribution for representing prior beliefs of 𝑅𝑡 is a Beta 
distribution because it is conjugate to the likelihood’s Bernoulli distribution. This 
will represent prior assumptions about the revision risk at 𝑡 (𝑅𝑡) for an implant 
variant before considering evidence in the form of any characteristic such as 
fixation. The notation of this prior distribution is 𝐵𝑒𝑡𝑎(𝑎𝑡 , 𝑏𝑡) where 𝑎𝑡 and 𝑏𝑡 are 
shape parameters. Prior information reflecting initial beliefs about 𝑅𝑡 can be 
incorporated into the distribution using these shape parameters. This prior 
information will be obtained from the two datasets during the implementation of 
the method in the next section. The PDF for the prior this Beta distribution is given 
by: 

𝑝(𝑅𝑡) =
1

𝐵(𝑎𝑡 , 𝑏𝑡)
𝑅𝑡

𝑎𝑡−1(1 − 𝑅𝑡)𝑏𝑡−1,   𝑓𝑜𝑟 𝑅𝑡 ∈ [0,1] 

𝑤ℎ𝑒𝑟𝑒 𝐵(𝑎𝑡 , 𝑏𝑡) is the Beta function which normalises this Beta distribution in the 
range [0,1]. Since the revision risk 𝑅𝑡 is assumed to depend on the presence or 
absence of the fixation “cemented”, this PDF can also be written with 𝑣𝑡 as: 

𝑝(𝑅𝑡) =
1

𝐵(𝑎𝑡 , 𝑏𝑡)
𝑣𝑡

𝑎𝑡−1(1 − 𝑣𝑡)𝑏𝑡−1,   𝑓𝑜𝑟 𝑅𝑡 ∈ [0,1] 

Now, the posterior is obtained by incorporating both the prior and likelihood into 
the Bayes’ equation, given below: 

𝑝(𝑅𝑡 | 𝑓𝑐𝑒𝑚,1, 𝑓𝑐𝑒𝑚,2, … , 𝑓𝑐𝑒𝑚,𝑛) =
1

𝐵(𝑎𝑡 , 𝑏𝑡)
(𝑓𝑐𝑒𝑚,1, 𝑓𝑐𝑒𝑚,2, … , 𝑓𝑐𝑒𝑚,𝑛 | 𝑅𝑡)𝑝(𝑅𝑡)  

=
1

𝐵(𝑎𝑡 , 𝑏𝑡)
𝑣𝑡

𝑎𝑡−1(1 − 𝑣𝑡)𝑏𝑡−1 ∙  𝑣𝑡
𝑘𝑡(1 − 𝑣𝑡)𝑛𝑡−𝑘𝑡  

=
1

𝐵(𝑎𝑡 , 𝑏𝑡)
𝑣𝑡

𝑎𝑡+𝑘𝑡−1(1 − 𝑣𝑡)𝑏𝑡+𝑛𝑡−𝑘𝑡−1  𝑄. 𝐸. 𝐷. 

Equation 10 Posterior for the revision risk at Period t for an implant variant given the fixation method 

The posterior, as expected, is a Beta distribution with new parameters 𝑎𝑡 +

𝑘𝑡  𝑎𝑛𝑑 𝑏𝑡 + 𝑛𝑡 − 𝑘𝑡.  

𝑅𝑡  | 𝑓𝑐𝑒𝑚,1, 𝑓𝑐𝑒𝑚,2, … , 𝑓𝑐𝑒𝑚,𝑛 ~ 𝐵𝑒𝑡𝑎(𝑎𝑡 + 𝑘𝑡, 𝑏𝑡 + 𝑛𝑡 − 𝑘𝑡) 
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The posterior represents updated beliefs about 𝑅𝑡 in the form of a distribution 
after the incorporation of evidence of a particular type of a characteristic from the 
datasets. Since the posterior is a distribution, it provides a range of possible 
values for 𝑅𝑡 and indicates the probability associated with each of these values. 
Similar posteriors can be generated for other types of the characteristics also. In 
this case, the characteristic considered is Fixation, and characteristic types can 
be cemented, uncemented, and hybrid. 

9.1.3 Determination of the Prior, Likelihood and Posterior 

Distributions from the AOANJRR Dataset for the New Form of the 

Bayes’ Equation 

Prior Calculation Procedure 

The prior represents an initial belief about an implant’s revision risk, which is 
expressed as a Beta distribution. The steps below highlight how this Beta 
distribution, defined by two parameters a and b, is obtained with information from 
the AOANJRR dataset. 

1. For each implant in the AOANJRR dataset, the revision risk is expressed in 
terms of a mean (𝜇𝑖) and standard deviation (SD) (𝜎𝑖) for each follow-up 
period. While the mean value of the revision risk is provided in the dataset, the 
SD value is not present. Thus, the SD needs to be calculated, which is done 
with the help of the 95% confidence intervals for each implant in the dataset 
using the formula below: 

(𝑢𝑝𝑝𝑒𝑟 95% 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒) − (𝑙𝑜𝑤𝑒𝑟 95% 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒) = 4𝜎𝑖 

Now, there is a value of 𝜇𝑖  and 𝜎𝑖 for each implant in the dataset. 
 

2. The weighted averages of 𝜇𝑖  and 𝜎𝑖, represented by 𝜇𝑤𝑎 and 𝜎𝑤𝑎 respectively, 
is calculated for all implants in the dataset using the number of implants of 
the column “N Total” of the dataset as the weight for each implant (𝑤𝑖). For 𝑛 
implants in the dataset, this is given by: 

𝜇𝑤𝑎 =
∑ 𝑤𝑖𝜇𝑖

𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

 

𝜎𝑤𝑎 =
∑ 𝑤𝑖𝜎𝑖

𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

 

 
3. 𝜇𝑤𝑎 and 𝜎𝑤𝑎 represent a quantified initial belief of the revision risk 

performance of an implant.  Note that  this method of forming of quantifying 
an initial belief is highly limited, and better methods of obtaining more 
statistically relevant prior estimates may be present. However, due to 
limitation in the thesis timeline, this method has been used and further 
investigation into obtaining more relevant priors may be explored in other 
future work. 
 

4. A Beta distribution is then obtained by converting 𝜇𝑤𝑎 and 𝜎𝑤𝑎 into Beta 
distribution parameters 𝑎𝑡 and 𝑎𝑡 with the formula below for each 𝑡: 
For  𝜇𝑤𝑎 ∈ [0,1] and 𝜎𝑤𝑎

2 <  𝜇𝑤𝑎(1 −  𝜇𝑤𝑎) then: 
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𝜀 =  
 𝜇𝑤𝑎(1 −  𝜇𝑤𝑎)

𝜎𝑤𝑎
2

− 1 

 
𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑎𝑡 =  𝜇𝑤𝑎𝜀 

 
𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑏𝑡 = (1 −  𝜇𝑤𝑎)𝜀 

 
The Beta distribution for the prior is completely defined with the two 
parameters 𝑎 and 𝑏. A prior is constructed for each 1- 3-, 5-, 10-, 15-, and 20-
year follow-up periods. 

Likelihood Calculation Procedure 

The likelihood in the form in Equation 9 need not be computed because the 
posterior can be obtained directly using the values of 𝑘𝑡 and 𝑛𝑡. Recall that the 
posterior is of the form 𝐵𝑒𝑡𝑎(𝑎𝑡 + 𝑘𝑡 , 𝑏𝑡 + 𝑛𝑡 − 𝑘𝑡). 𝑘𝑡 and 𝑛𝑡 are calculated using 
the equations below:  

𝑘𝑡 = 𝐶𝑜𝑢𝑛𝑡(𝐼𝑚𝑝𝑙𝑎𝑛𝑡𝑠 𝑤𝑖𝑡ℎ 𝑓𝑖𝑥𝑎𝑡𝑖𝑜𝑛 𝐹 𝐴𝑁𝐷 𝑁𝑂𝑇(ℎ𝑎𝑣𝑖𝑛𝑔 𝑟𝑒𝑣𝑖𝑠𝑖𝑜𝑛 𝑟𝑖𝑠𝑘 

<  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑎𝑡 𝑡)) 

𝑛𝑡 = 𝐶𝑜𝑢𝑛𝑡(𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑝𝑙𝑎𝑛𝑡𝑠 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑 𝑎𝑡 𝑡) 

This approach might seem counterintuitive for determining 𝑘𝑡. The likelihood 
represents the number of "successes", which in this context, are the number of 
implant variants with fixation type 𝐹 that are considered "not good" in terms of 
performance, rather than those that are "good." This is because the likelihood 
function is conditioned on the revision risk 𝑅𝑡, where "good" performance is 
inversely related to revision risk: a higher revision could indicate poorer 
performance, while a lower revision risk suggests better performance. Calculating 
the likelihood in thistatis way gives a higher revision risk estimate if the effect of 
the characteristic, here fixation 𝐹, results in poorer performance. 

Normalising Constant Calculation Procedure 

The NC is embedded in the posterior, and explicit calculation is not necessary. 

Posterior Calculation Procedure 

The posterior has been derived to be a distribution 𝐵𝑒𝑡𝑎(𝑎𝑡 + 𝑘𝑡 , 𝑏𝑡 + 𝑛𝑡 − 𝑘𝑡) or 
𝐵𝑒𝑡𝑎(𝑎𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 , 𝑏𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟) . There is a distinct posterior for each follow-up period 
and type of fixation. 

Expression of the Bayesian Calculation and Results 

A single table, along with figures showing the prior and posterior distributions for 
each 𝑡 has been used in the next section for the implementation of the Bayesian 
method to the AOANJRR dataset. The table contains the following columns: 

1. The years of follow-up 𝑡. 
2. The characteristic type of the implant. 
3. The prior: 

a. Value of mean, 𝜇𝑤𝑎. 
b. Value of SD, 𝜎𝑤𝑎. 
c. Prior parameter 𝑎. 
d. Prior parameter 𝑏. 

4. The likelihood: 
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a. Value of 𝑘𝑡. 
b. Value of 𝑛𝑡. 

5. The posterior: 
a. Value of 𝑎𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟. 
b. Value of 𝑏𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟. 

The figure shows, for each combination of 𝑡 and Fixation type, the prior and 
posterior Beta distributions. 

Evaluation of the Prior and Posterior: Answering the Question - Is the Implant Good 

Enough After Incorporating Evidence? 

Since the posterior is a distribution, it provides a range of possible values for 𝑅𝑡 
and indicates the probability associated with any sub-range within [0,1]. For an 
implant to be “good”, its revision risk 𝑅𝑡 should be below the threshold 𝜏𝑡. The 
probability of the range [0, 𝜏𝑡), which is 𝑃(0 <  𝑅𝑡 < 𝜏𝑡) is determined for both the 
prior and the posterior to allow for discussion of the results of this method. This is 
the probability of whether an implant variant is “good”. A new table is included 
after the Results and Calculations table showing the mean, SD, and probability of 
the interval [0, 𝜏𝑡) for 𝑅𝑡. 

9.1.4 Determination of the Prior, Likelihood and Posterior 

Distributions from the LROI Dataset for the New Form of the Bayes’ 

Equation 

The LROI dataset already includes the mean (𝜇𝑖) and standard deviation (SD) (𝜎𝑖) 
for each implant variant. Therefore, the prior is computed similarly to the 
AOANJRR dataset, but starting from step 2 of the procedure as defined in the last 
section. The procedures for calculating the prior, likelihood, and posterior remain 
the same. The Bayesian implementation is also expressed in the same manner as 
in the previous method, with the table and figures showing the prior and posterior. 
Additionally, the posteriors are only calculated for the 3, 5, and 10-year follow-up 
periods, as the LROI dataset does not include data for 1, 15 and 20-year follow-up 
periods. 

9.2 Implementation and Results of the Bayesian 

Method with Confidence Intervals and the 

AOANJRR Dataset 
Headi ng Placehol der 22 Impl ementing the Bay esian Method with Confidence I ntervals and AOANJRR Data  
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The new Bayesian methods is implemented using the method outlined in the 
previous section. A posterior distribution of the revision risk is determined for 
each 𝑡 and Fixation type. This posterior represents an updated estimate of the 
revision risk for an implant variant with a particular characteristic type, taking into 
account the characteristic and revision risk information from the AOANJRR 
dataset. In this case the characteristic is Fixation, and characteristic types can be 
cemented, uncemented, and hybrid as shown in Table 14. Both the prior and 
posterior Beta distributions for 5 and 10 years of follow-up, shown in Figure 2 and 
Figure 3, is relevant for the discussion chapter. Figures for 1, 3, 15, and 20 years of 
follow-up are included in the supplementary material. 

Improvement from the previous method  

Confidence intervals has been incorporated into the method using a Beta 
distribution as the prior and a Bernoulli distribution as the likelihood. The prior 
and posterior are now both Beta distributions. 

9.2.1 Results of this Iteration of the Method 

This iteration of the method generates 18 posterior results for each combination 
of fixation characteristic and follow-up period. The probability of the range [0, 𝜏𝑡) 
is then deduced for the prior and posterior allowing for interpretation of whether 
an implant variant is “good”. Thus, the developed method yields results that fit 
well within the thesis context, while also incorporating confidence intervals. Since 
the posterior is now in the form of a Beta distribution, it allows for a more detailed 
interpretation of the revision risk of the implant variant by the investigation of 
probabilities beyond just the range [0, 𝜏𝑡). 

The posterior distribution shifts to the right compared to the prior for cemented, 
uncemented, and hybrid characteristics, with this shift becoming more 
pronounced over longer follow-up periods. This result is discussed in the section 
Further Discussion of Key Results of the Implemented Bayesian Method. For all 
three characteristics, the probability of the range [0, 𝜏𝑡) is 100% at 1 and 3 years 
of follow-up. This indicates that, according to this method, there is a 100% chance 
that the implant with the specified characteristic falls within ODEP thresholds. 
Posterior probabilities for the range  [0, 𝜏𝑡) are lower than prior probabilities. 



 Prior 
Likelihood 

parameters 
Posterior 

Year 

𝒕 

Fixation 

type 

Prior 

mean (%) 

Prior SD5 

(%) 

Prior Beta 

parameter 𝒂 

Prior Beta 

parameter 𝒃 

Condition 

𝝈𝒘𝒂
𝟐

<  𝝁𝒘𝒂(𝟏
−  𝝁𝒘𝒂) 

𝒌𝒕 𝒏𝒕 
Posterior Beta 

parameter 𝒂 

Posterior Beta 

parameter 𝒃 

1 Cemented 0.96 0.09 106.44 11007.91 Yes 1 110 107.44 11116.91 

3 Cemented 2.54 0.15 275.45 10565.56 Yes 11 109 286.45 10663.56 

5 Cemented 3.34 0.18 343.98 9959.20 Yes 14 105 357.98 10050.20 

10 Cemented 4.87 0.22 450.03 8787.52 Yes 16 81 466.03 8852.52 

15 Cemented 6.36 0.31 397.35 5849.84 Yes 10 50 407.35 5889.84 

20 Cemented 7.93 0.60 162.79 1891.04 Yes 7 23 169.79 1907.04 

1 Uncemented 0.96 0.09 106.44 11007.91 Yes 1 110 107.44 11116.91 

3 Uncemented 2.54 0.15 275.45 10565.56 Yes 11 109 286.45 10663.56 

5 Uncemented 3.34 0.18 343.98 9959.20 Yes 15 105 358.98 10049.20 

10 Uncemented 4.87 0.22 450.03 8787.52 Yes 16 81 466.03 8852.52 

15 Uncemented 6.36 0.31 397.35 5849.84 Yes 8 50 405.35 5891.84 

20 Uncemented 7.93 0.60 162.79 1891.04 Yes 4 23 166.79 1910.04 

1 Hybrid 0.96 0.09 106.44 11007.91 Yes 0 110 106.44 11117.91 

3 Hybrid 2.54 0.15 275.45 10565.56 Yes 5 109 280.45 10669.56 

5 Hybrid 3.34 0.18 343.98 9959.20 Yes 9 105 352.98 10055.20 

10 Hybrid 4.87 0.22 450.03 8787.52 Yes 12 81 462.03 8856.52 

15 Hybrid 6.36 0.31 397.35 5849.84 Yes 7 50 404.35 5892.84 

20 Hybrid 7.93 0.60 162.79 1891.04 Yes 3 23 165.79 1911.04 
Table 14 Results and Calculations of the Implemented Bayesian Method Incorporating Confidence Intervals Using the AOANJRR Dataset 

 

 
5 SD: Standard Deviation 



Table 15 Prior and Posterior Probabilities of the Implant's Revision Risk Being Below the Threshold 
Value or the Probability of the Implant being "Good" with the AOANJRR Dataset 

Year 

Threshold 

Interval  
𝟎 <  𝑹𝒕 < 𝝉𝒕 

(%) 

Fixation 

Type 

Prior 

Probability of 

Threshold 

Interval (%) 

Posterior 

Probability of 

Threshold 

Interval (%)  

1 [0.00,3.00) Cemented 100.00 100.00 

3 [0.00,3.50) Cemented 100.00 100.00 

5 [0.00,4.00) Cemented 99.98 99.87 

10 [0.00,5.00) Cemented 71.98 50.37 

15 [0.00,6.50) Cemented 67.86 54.59 

20 [0.00,8.00) Cemented 55.81 39.30 

1 [0.00,3.00) Uncemented 100.00 100.00 

3 [0.00,3.50) Uncemented 100.00 100.00 

5 [0.00,4.00) Uncemented 99.98 99.84 

10 [0.00,5.00) Uncemented 71.98 50.37 

15 [0.00,6.50) Uncemented 67.86 58.62 

20 [0.00,8.00) Uncemented 55.81 48.81 

1 [0.00,3.00) Hybrid 100.00 100.00 

3 [0.00,3.50) Hybrid 100.00 100.00 

5 [0.00,4.00) Hybrid 99.98 99.95 

10 [0.00,5.00) Hybrid 71.98 57.92 

15 [0.00,6.50) Hybrid 67.86 60.61 

20 [0.00,8.00) Hybrid 55.81 52.04 
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Figure 2 Prior and Posterior Beta Distributions at 5 Years of Follow-up with the AOANJRR Dataset 

 

Figure 3 Prior and Posterior Beta Distributions at 10 Years of Follow-up with the AOANJRR Dataset 

9.3 Implementation and Results of the Bayesian 

Method with Confidence Intervals and the LROI 

Dataset 
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The same method as that in the previous section has been implemented with the 
LROI dataset. This posterior represents an updated estimate of the revision risk 
for an implant variant given a particular characteristic type, given Fixation and 
revision risk information from the LROI dataset  at  3, 5, and 10-years of follow-up. 
This is shown in Table 16. The prior and posterior distributions for 5 and 10 years 
of follow-up, shown in Figure 5 and Figure 6, is relevant for the discussion chapter. 
The figure for the 3-year follow-up period is included in the supplementary 
material. 

9.3.1 Results of this Iteration of the Method 

The iteration of the method remains the same as the previous but is just 
implemented with the LROI dataset. It produces results in the same form as that 
in the previous iteration of the method, and there are 9 combinations of the types 
of fixation and years of follow-up. For later interpretation, the probability of the 
interval [0, 𝜏𝑡) is calculated. 

There is a large deviation of the posterior compared to the prior distribution and 
the posterior probabilities for the interval [0, 𝜏𝑡) for cemented implants is zero, 
while the prior probability is not. This is discussed in the section Further 
Discussion of Key Results of the Implemented Bayesian Method. Posterior 
probabilities are also lower than the prior probabilities for all the types of 
characteristics and years of follow-up.  

 



 Prior 
Likelihood 

parameters 
Posterior 

Year 

𝒕 

Fixation 

type 

Prior 

mean 

(%) 

Prior 

SD6 (%) 

Prior Beta 

parameter 𝒂 

Prior Beta 

parameter 𝒃 

Condition 

𝝈𝒘𝒂
𝟐

<  𝝁𝒘𝒂(𝟏
−  𝝁𝒘𝒂) 

𝒌𝒕 𝒏𝒕 
Posterior Beta 

parameter 𝒂 

Posterior Beta 

parameter 𝒃 

3 Cemented 3.34 0.26 159.99 4632.39 Yes 127 362 286.99 4867.39 

5 Cemented 4.33 0.31 192.41 4252.90 Yes 109 327 301.41 4470.90 

10 Cemented 5.75 0.41 186.22 3050.86 Yes 69 224 255.22 3205.86 

           

           

           

           

           

           
Table 16 Results and Calculations of the Implemented Bayesian Method Incorporating Confidence Intervals Using the LROI Dataset, REDACTED 

 

 
6 SD: Standard Deviation 



Year 
Threshold Interval  

𝟎 <  𝑹𝒕 < 𝝉𝒕 (%) 
Fixation type Prior Probability (%) Posterior Probability (%) 

3 [0.00,3.50) Cemented 73.84 0.00 

5 [0.00,4.00) Cemented 14.00 0.00 

10 [0.00,5.00) Cemented 2.88 0.00 

     

     

     

     

     

     
Figure 4 Prior and Posterior Probabilities of the Implant's Revision Risk Being Below the Threshold Value or the Probability of the 
Implant being "Good" with the LROI Dataset, REDACTED 

 

Figure 5 Prior and Posterior Beta Distributions at 5 Years of Follow-up with the LROI Dataset 

 

Figure 6 Prior and Posterior Beta Distributions at 10 Years of Follow-up with the LROI Dataset 


