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Abstract— We consider multi-agent, or distributed, control of
transportation networks, like traffic, water, and power networks.
These networks typically have a large geographical span, modular
structure, and a large number of components that require control.
We discuss the necessity of a multi-agent control setting in which
multiple agents control parts of the network. As potential control
methodology we consider Model Predictive Control (MPC) in a
multi-agent setting. We first outline a framework for modeling
transportation networks into subsystems using external variables
and then discuss issues that arise when controlling these networks
with multi-agent MPC. Several approaches to these issues are
structured and discussed in terms of the outlined framework.

I. INTRODUCTION

Transportation networks, like power networks, traffic net-
works, and water networks, are usually large in size, consist
of multiple subsystems, have many actuators and sensors,
and therefore show complex dynamics. These transportation
networks can be considered at a generic level, at which
commodity is brought into the network at sources, flows over
links to sinks, and is influenced in its way of flowing by
elements inside the network. Control goals for transportation
networks involve avoiding congestion of links, maximizing
throughput, minimizing costs of control actions, etc.

In a single-agent control approach, a single-agent is used
to control a system. The agent collects information from
measurements of the system to determine which actions to
take. However, the transportation networks we consider are
hard to control by a single agent, since this agent would have
to gather information from all sensors, and process this directly
to provide inputs to all actuators. This is not only hard due to
technical issues like communication delays and computational
requirements, but also due to practical issues like unavailability
of information from one subsystem to another and restricted
control access. For transportation networks a multi-agent (or
distributed) control approach [1] has to be employed in which
several control agents, each with only limited information
gathering and processing skills and moreover limited action
capabilities, control the subsystems (e.g., subnetworks) of
which the overall network is composed. Since the subsystems
they control are part of an overall network, actions taken
by one agent influence actions taken by other agents. The
challenge for multi-agent control design is therefore to make
the control agents work together such that the overall network
performance is as desired.

Multi-agent control in general is not something new; it is in
everyday use for the control of transportation networks. How-
ever, increasing quantitative and qualitative demands make on-
going research in multi-agent control approaches a necessity.
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Already in 1978, Sandell et al. [2] surveyed a wide range of
alternative methods for distributed control. They found that
a good combination of engineering judgment and analysis
can be used to define in a reasonable way an ad-hoc control
structure for a dynamic system. However, instead of ad-hoc
control structures we are interested in structured approaches
applicable to multiple domains of transportation networks.
Important aspects that play a role in this are the way in which
a network is decomposed into subsystems, the way in which
control problems are formulated on these subsystems, and the
way in which agents communicate with one another to come
to their decisions. Those issues are the topics of this paper.

We consider Model Predictive Control (MPC) [3]–[5] for
controlling the transportation networks. MPC in a single-
agent setting has shown successful application in the process
industry over the last decades, and is now gaining increasing
attention in fields like power networks [6], [7], and traffic
networks [8]. MPC is based on solving at each decision step an
optimization problem subject to system dynamics, an objective
function, and constraints on states, actions, and outputs. At
each decision step the optimization yields a sequence of
actions optimizing expected system behavior over a certain
horizon. Actions are implemented until the next decision step,
after which the procedure is repeated. MPC has its success
mainly due to its explicit way of handling constraints, its
possibility to operate without intervention for long periods, and
its built in robustness properties. Basic issues, e.g., stability
and robustness, have extensively been studied for the single-
agent case [5].

For controlling transportation networks in a multi-agent
setting, in this paper we address some issues arising in
MPC for multi-agent settings. These issues have started to be
investigated over the last decades, e.g., by [9]–[21]. This paper
is organized as follows. In Section II we introduce a frame-
work for modeling the transportation networks and control
objectives of our interest. In Section III we then discuss two
important multi-agent control issues: how to predict subsystem
evolution under limited information, and how to communicate
and make decisions. We present several approaches to these
issues in a structured way and relate current state-of-the-art
methods for multi-agent MPC to these approaches in terms
of the given framework. In Section IV we consider in more
detail a particular method to obtain agreement between control
agents. This exposition of topics gives insight into how multi-
agent MPC can be applied to transportation networks.

II. NETWORK MODELING AND CONTROL FRAMEWORK

A. Subsystem-Based Network Model

To describe the transportation networks of our interest
we will employ a subsystem-based network model, which
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follows from a bottom-up approach in which interconnections
between smaller subsystems are defined leading to the overall
network. This way of modeling networks allows us to abstract
from subsystem specific dynamics, while emphasizing the
modularity of the overall network.

Consider n subsystems, e.g., subnetworks. Each of the
subsystems i ∈ {1, . . . ,n} has its own dynamics, modeled by
discrete-time dynamic and algebraic relations, i.e.,

xi
k+1 = f i(xi

k,y
i
k,u

i
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i
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where at time step k, for subsystem i, xi
k are the dynamic states,

yi
k are the outputs and algebraic states, and ui

k are the inputs.
These variables are referred to as local variables. Function f i

represents the dynamic state transitions, while functions gi and
hi form algebraic and inequality constraints.

Interconnections between subsystems, e.g., due to trans-
portation lines, give rise to external variables. A local variable
of subsystem i’s model is an external variable if it corresponds
to a variable in the model of another subsystem j. Using only
the external variables all constraints between subsystems are
expressed, see Fig. 1. We denote for each subsystem i the
external variables by wi, and add them to the subsystem i’s
model by:

wi
k = Ai[(xi

k)
T (yi

k)
T (ui

k)
T ]T , (4)

where T is the transpose, and Ai is of appropriate dimensions
and contains on each entry of a row 0, except for a single 1 at
the entry corresponding to a variable that is an external vari-
able of subsystem i. The interconnecting constraints between
the subsystems are then:

0 = Ainter[(w1
k)

T . . . (wn
k)

T ]T , (5)

where Ainter is of appropriate dimensions and contains a single
1 and a single −1 on each row to indicate which external
variables represent the same quantity; all other entries are 0.

Equations (1)–(4) for all subsystems together with (5)
describe the dynamics of the overall network. When two
subsystems have interconnecting constraints they are referred
to as neighboring subsystems.

B. Multi-Agent Control Problem Formulation

Given the description of the subsystems and the intercon-
nections between them, we assume that for each subsystem
there is a control agent that selects which inputs to send to
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Fig. 1. Illustration of external variables and interconnecting constraints. Each
subsystem has a set of variables. Some of these have corresponding variables
in other subsystem models. External variables introduce these relations.

the actuators of that subsystem. Each control agent has direct
access only to the sensors and actuators within its subsystem,
and indirect access to external variables of neighbors through
communication.

The control agents have to choose their actions such
that desired behavior is obtained. This behavior is specified
through objective functions and constraints. Behavior specified
through an objective function implies soft desires, i.e., desires
that should be achieved as well as possible, but need not
necessarily be achieved. This type of behavior is based on
costs of trajectories of local variables and external variables
involved in the evolution of the subsystem over a horizon N.
Desired behavior is formed by trajectories that have relatively
low costs. Typically the objective function is taken as the
summation of costs per step over the horizon:
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where ˜ over variables indicates the respective variables over
a horizon of N steps, e.g., ũi

k = [(ui
k)

T . . . (ui
k+N−1)

T ]T , W̃ i
k

indicates the external variables of neighboring subsystems of
subsystem i over the horizon, and clocal,i is a cost function
for computing local costs, while cinter,i computes costs due
to interconnections. Behavior specified through constraints
implies hard desires, i.e., desires that have to be met. These
desires can thus be formulated using a function hdes as:

0 ≤ hdes(xi
k,y

k
i ,u

i
k). (7)

Since the variables that each control agent i can set consist
of the inputs ũi

k to its subsystem, each agent effectively tries
to solve the following optimization problem:

min
ũi

k
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i
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i
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i
k), (8)

subject to the desired constraints (7), the subsystem’s dynamics
and constraints (1)–(4), and the interconnecting constraints (5)
involving subsystem i’s external variables over the horizon.

In a centralized setting, there would be only one sys-
tem description, one objective function, one set of desired
constraints, and no interconnecting constraints. Employing
an MPC strategy comes down to solving the optimization
problem, implementing the inputs for time step k, and moving
on to the next decision step. An agent can make relatively
adequate predictions about the evolution of the system over
the horizon with all information it has access to, and therefore
it can adequately determine the optimal inputs. Contrarily, in
a multi-agent setting there are multiple subsystems, objective
functions, and constraints, the evolution of each depending
on the interconnecting constraints, and thus on neighboring
external variables. In the next section we discuss how multi-
agent MPC approaches deal with this.

III. MULTI-AGENT MPC

Extending single-agent MPC to multi-agent MPC involves
knowing in advance that the subsystem model a control agent
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has is inherently limited to a certain part of the overall net-
work, which directly follows from the assumption that agents
in a multi-agent control scheme have no global overview and
can only access a relatively small number of sensors and
actuators. Therefore predictions about the future evolution
of external variables of neighbors may be inaccurate and
feasibility may even be lost with the use of longer horizons.
Communication is a means to improve this in multi-agent
MPC, and is part of practically each approach, see, e.g., [12],
[21], [22]. A general multi-agent MPC scenario for an agent
i at time step k is outlined as follows, see also Fig. 2:

1) Make a measurement of the current state of the local
subsystem xi

k, and obtain information from neighboring
agents through communication.

2) Solve optimization problem (8) to find the sequence
of inputs ũi

k over the horizon that minimizes the local
objective function subject to desired constraints (7), the
local dynamics (1)–(4), interconnecting constraints (5),
and predictions of the external variables of neighbors
Ŵ i

k over the horizon based on the communicated in-
formation. During this optimization there may also be
communication with other agents.

3) Implement the first input ui
k of this sequence.

4) Perhaps communicate with other agents.
5) Move on to the next time step k +1.

The way in which external variables of neighbors are
predicted over the horizon and the way in which communica-
tion and decision making is scheduled between agents define
important characteristics of distributed MPC approaches and
are considered in the following subsections.

A. External Variable Predictions

In order to determine the evolution of the local variables
over a certain time horizon, a control agent i needs to have the
current state of the system xi

k, a candidate sequence of inputs
ũi

k, and predictions of the evolution of the external variables Ŵ i
k

of neighbors, see Fig. 3. The predictions of the evolution of the
external variables is based on the information communicated
with the neighboring agents. An external variable predictor

Control Agent

Optimizer
Control Agent

Optimizer

Control Agent

Optimizer

Fig. 2. Schematic example illustration of multi-agent MPC. Control agents
control parts of the overall system. Each of the agents has a model of the
subsystem it controls. Agents communicate with neighboring agents about
external variables. Through an optimization procedure they decide which
actions to implement on their subsystems.
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Fig. 3. Elements used by agent i to predict its subsystem’s evolution.

processes this information to come up with the predictions
over the horizon. There are several options in which the ex-
ternal variable predictor can determine the predictions, briefly
summarized as:

1) Ignore the influence of an external variable.
2) Assume a constant value over the whole horizon based

on a local measurement made or obtained from a neigh-
boring agent.

3) Assume predictions over the whole horizon as obtained
from a neighboring agent [11], [12], [19].

4) Assume upper and lower boundaries on the external
variables, as obtained from a neighboring agent.

5) Assume a model that predicts the values of the external
variables based on dynamics of neighboring subsystems
[21].

6) Learn a model about the evolution of the external
variables given available information from neighboring
agents.

7) Use knowledge about the objective function of neigh-
boring agents together with models of the dynamics of
the neighboring system [22].

Each of the options yields different information that has to be
communicated, and requires different types of built-in skills.

Option 1 is used in a completely decentralized setting.
A control agent ignores the presence of other subsystems
completely. Basically, it employs its own conventional MPC
approach. This type of control scheme can be used when con-
straints between external variables are weak or non-existing.
The advantage is the lack of communication overhead, al-
though if the interconnecting constraints turn out not to be
negligible, control performance can degenerate.

Option 2 is used when a control agent can measure the
values of external variables of interest or obtain their values
through communication, and it assumes the values of these
external variables to be valid over the whole horizon. This type
of control may be useful when the external variables change
slowly. This approach may also be used to on-line monitor
the interconnecting constraints and switch to a different option
when the constraints start changing significantly. E.g., when
the interconnecting constraints do not change, control could
be completely decentralized. When they do change, commu-
nication has to be introduced.

298



Option 3 is employed by an agent that obtains predictions of
the external variables over the whole horizon. This is an ideal
situation for the local agent, as long as the neighboring agent
providing the predictions will make sure that they are correct.
In practice, if the subsystem of the neighboring agent relies on
other neighboring subsystems this will be difficult to ensure.
Iterations as discussed in the next section are necessary.

Option 4 assumes that neighboring agents do not communi-
cate exact trajectories, but instead bounds on the values of the
external variables. By enforcing these bounds, the local agent
can compute worst-case optimal inputs. The agent providing
the bounds also has to make sure that its actual trajectory stays
within the bounds it communicated. So-called compatibility
constraints can do this for certain linear-time invariant systems
[21].

When option 5 is used the local control agent knows the
dynamics or part of the dynamics that generate the external
variables [21]. This is, e.g., the case when the local agent
has a copy of the subsystem models used by its neighbors.
These models will depend on variables from the neighboring
subsystems, like inputs, and perhaps external variables of
neighbors of neighbors. The local agent can deal with these
variables as with any external variables. The advantage of this
option is that more about the structure of the external variables
is known. A disadvantage can be increased computational time
to determine the predictions.

Option 6 can be employed if the agent does not have a
model of the subsystem that generates the external variables.
Instead it may employ learning techniques and build up
experience to learn a model.

Finally, option 7 can be used when the agent has information
about the objectives and subsystem models of its neighboring
agents. The agent can then use this to compute which actions
the neighbors will take [22]. It can determine the actions that
will be applied to that subsystem and consequently determine
the evolution of the external variables. Knowledge about the
objectives of neighboring systems can be used to make local
decisions that are not counteracting the objectives of other
subsystems. A disadvantage of this approach is that one
controller effectively is solving the control problems of multi-
ple subsystems. In an approach that somehow communicates
the computed actions to the neighboring systems this could
become an advantage however.

B. Communication and Decision-Making Schemes

The goal of communication is to inform neighbors and
get information from neighbors that is necessary to choose
the right actions. An agent can employ different schemes for
communication and decision making, see Fig. 4:

1) It can receive information while deciding and only send
directly after having decided (Fig. 4a).

2) It can receive and send after all agents have decided
[19], [21], [22] (Fig. 4b).

3) It can receive after a neighboring agent has decided and
send after deciding on its own actions (Fig. 4c).

time

d)

c)

agent 1

agent 2

agent 1

agent 1

agent 1

agent 1

agent 2

agent 2

agent 2

agent 2
e)

b)

a)

Fig. 4. Different communication schemes between two agents. Arrows are
information exchange. Dotted lines are actions being implemented. Horizontal
lines are optimization problems being solved.

4) It can receive and send a number of times before
deciding when all agents are ready to do so [11], [12],
[20] (Fig. 4d,e).

Scheme 1 forms the ideal case, since agents do not have
to wait for other agents to finish their optimization problems.
Also, the amount of communication between agents is mini-
mal, since it only takes place after an optimization. However,
agents will have to include newly received information from
neighboring agents at any time while solving their own opti-
mization problems. No multi-agent MPC methods can do this
at present.

In Scheme 2 the agents solve their problems at the same
time as well. The amount of communication is low, since
agents wait with exchanging information and implementing
their action until all agents have finished their optimization
problems. This however is a disadvantage for fast agents, since
they will have to wait for the slow agents. Moreover, since
communication is done afterward, it is delayed, which may
prevent convergence to a feasible overall solution. For certain
linear time-invariant systems stability can be proven when
a contracting so-called stability constraint is placed on the
first state of each subsystem [19]. Stability results for settings
where the evolution of external variables does not depend on
neighbors of neighbors are given in [21], [22].

In Scheme 3 only one of the agents solves its optimization
problem at a time. At the end of its optimization, it implements
its decision, and sends information to a next agent. Clearly,
also in this scheme a disadvantage is that agents have to wait
until it is their turn to solve their optimization problem.

In Scheme 4 decisions are made after a sequence of
optimization-communication steps. The iterations are a way
for the agents to obtain agreement about the values of the
external variables over the horizon. The iterations continue
until convergence is obtained or until a maximum number of it-
erations is reached. This scheme requires more communication
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and computation resources than the previous schemes, how-
ever, it may result in globally feasible solutions. A distinction
can again be made between serially working agents [12], [20]
and parallel working agents [11]. Conditions for convergence
of iterations to local solutions and global solutions are given
in [12] for the case of serially working agents. A Lagrangian-
based scheme for the parallel case is employed in [11]. In the
next section we consider in more detail this type of scheme.

IV. LAGRANGIAN-BASED MULTI-AGENT MPC

In this section we discuss a specific communication and
decision scheme that falls in the Scheme 4 class as dis-
cussed in Section III-B: it is a scheme in which a number
of optimization-communication iterations is performed before
agents decide on their actions. In particular, the scheme is
based on parallel working agents. Moreover, each agent uses
Option 3 of Section III-A to determine the values of the
neighboring external variables: each agent receives predictions
of these external variables of its neighboring agents through
communication.

A. Conceptual Description

For feasible overall solutions, the interconnecting con-
straints as defined in (5) need to be satisfied at all times. As
discussed above, when one agent solves its optimization prob-
lem it needs to assume a trajectory for the external variables
of its neighboring subsystems over the horizon. As discussed
above as well, it is likely that an assumed trajectory will not
appear in the true system evolution if not all agents having
external variables relating to the assumed trajectory keep their
respective assumed trajectories. They would only have an
incentive to stick to their communicated trajectories if these
trajectories yield optimal inputs for their own subsystems.

Even if the agents make an agreement in advance to stick
to the trajectories communicated, in practice they may not
be able to stick to this agreement, since at the time of
trajectory generation the agents did not know what the values
of the external variables of the other agents will be and may
therefore require infeasible inputs to local subsystems to stick
to the communicated trajectories. Instead of holding on to
the first trajectories communicated agents perform a number
of iterations to come to an agreement on external variable
trajectories that are optimal to all agents.

In each iteration each agent optimizes both over its local
inputs and over the predictions of neighboring external tra-
jectories. In this way, each agent is sure that the predicted
trajectories it assumes are optimal for its own subsystem.
After each of the agents has in this way determined its own
optimal inputs and predicted external variables trajectory, it
communicates the predicted external variable trajectories to the
neighboring agents. This basically means that each agent tells
its neighboring agents how it would like to see the external
variables of those agents to evolve over the horizon.

Ideally, the external variable trajectories that those neighbor-
ing agents receive will exactly correspond to their predictions
of their external variable trajectories if they would implement

their optimal input sequences. However, it is more likely that
the received trajectories will not correspond to their predicted
trajectories, as discussed before. To encourage the agents
to come to an agreement on the predicted external variable
trajectories a penalty term is added to the objective function
of each agent. By adjusting the penalty terms over a series of
iterations, convergence can be obtained.

B. Algorithmic Description

The conceptual ideas described above are implemented by
the following algorithm which is the result of a Lagrangian
relaxation [23]. We consider two agents, i and j, that have to
agree on their external variable trajectories.

1) Both agents initialize penalty terms λ i
0,λ

j
0 for each of

their external variables to arbitrary but similar values,
i.e., λ i

0 = λ j
0 , and set iteration counter s to 0.

2) The agents solve their own optimization problems in
parallel. I.e., Agent i solves at step k, iteration s:

(ũi
k|s+1, w̃

i
k|s+1) = arg min

ũi
k,w̃

i
k

Ji(x̃i
k+1, ỹ

i
k, ũ

i
k, w̃

i
k)+(λ i

s)
T w̃i

k,

subject to (1)–(4), while Agent j solves:

(ũ j
k|s+1, ŵ

j
k|s+1) = arg min

ũ j
k,w̃

j
k

J j(x̃ j
k+1, ỹ

j
k, ũ

j
k, w̃

j
k)− (λ j

s )T w̃ j
k,

subject to (1)–(4).
3) After the agents have solved their problem and found

inputs and external variable trajectories, the agents ex-
change external variable trajectories. I.e., Agent i sets
Ŵ i

k|s+1 to w̃ j
k|s+1 as received from Agent j, while Agent

j sets Ŵ j
k|s+1 to w̃i

k|s+1 as received from Agent i.
4) After this, Agent i updates its λ i terms as:

λ i
s+1 = λ i

s + ε(w̃i
k|s+1 −Ŵ i

k|s+1),

where ε is a small positive real number, while Agent j
performs the update:

λ j
s+1 = λ j

s + ε(Ŵ j
k|s+1 − w̃ j

k|s+1).

5) The agents increase iteration counter s and continue with
step 2, until convergence of the external variables is
obtained or a maximum number of iterations has been
reached.

It is easy to verify that the λ updates encourage agents to
converge to agreement. Intuitively, the term penalizes the
value of the external variables that an agent broadcasts to
its neighbors. The term is adjusted in such a way that when
the value of the external variables of the agent itself are
higher than a neighbor asks them to be, the term is increased,
such that the agent will lower its values for the external
variables. On the contrary, when the values of the agent
itself are lower than requested by its neighbors, the term is
decreased, such that it is less costly to increase the value of
its external variables. For strongly convex problems the agents
are guaranteed to converge to the overall optimal solution [23].
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V. CONCLUSIONS AND FUTURE RESEARCH

Control of transportation networks that can be found in
traffic, power, and water management, requires multi-agent
control approaches. Model Predictive Control (MPC) in a
multi-agent setting is proposed for this task. In such a multi-
agent setting each control agent employs MPC to control
its subsystem by making predictions about the evolution of
its subsystem over a horizon. Due to the interconnecting
constraints between subsystems making predictions about the
evolution of an agent’s subsystem by an individual agent is
hard. Communication between agents has to be employed to
improve the predictions and subsequently improve the decision
making. What information to communicate, when to do this,
and when to decide on which actions to take are main issues
in multi-agent MPC.

In this paper we have introduced a framework for modeling
networks by considering them as consisting of subsystems
with external variables that define interconnecting constraints.
We have discussed several ways in which agents can make
predictions about the evolution of their subsystems. These
ways differ in how information from neighboring agents is
used to make predictions about the evolution of the external
variables. Moreover, we have considered several communi-
cation and decision-making schemes that structure in which
order agents communicate and at what time they decide to take
actions. Finally, we have elaborated on a particular multi-agent
MPC scheme that is based on Lagrangian multipliers, and we
have given both a conceptual and algorithmic description of
this scheme.

Some of the options for taking into account information
from neighbors and for communicating and decision making
have been published before, mostly in the context of networks
consisting of linear time-invariant subsystems. Future research
consists of extending these results to networks with nonlinear
dynamics, both involving continuous and discrete elements.
Moreover, comparisons will be made between the different
ways of making external variable predictions and the different
communication and decision-making schemes. These compar-
isons are necessary to further clarify how multi-agent MPC
can optimally be used for control of transportation networks.
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