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Summary

World energy consumption rises every year. Therefore, producing renewable and
sustainable energy is necessary to protect the viability of this planet. The most well-
known and promising form of renewable energy is that of wind power. The limited
space in terrestrial areas yielded motivation to the growth of offshore wind industry.
Offshore wind turbines (OWT) are most often founded on large-diameter monopiles
(MP). Despite of the significant amount of units installed, their design engages Soil
Structure Interaction (SSI) models based on slender pile response. The current re-
search focuses on developing a nonlinear nonlocal 1D effective model able to predict
the nonlinear response of such a foundation under static loading, incorporating their
rigid behavior. This is considered a first step so as advanced nonlinear SSI is incor-
porated in the design of monopile foundations.

The 1D model is based on Timoshenko beam theory, assuming the beam (rep-
resenting the MP) is founded on a distributed, Winkler-type foundation, consisting
of two types of fully coupled springs, lateral and rotational. These springs allow
the model to capture the 3D continuum reaction of the soil towards rigid behaving
monopiles.

This type of behavior mobilizes a large volume of the continuum. The term
nonlocality describes this global soil response towards the pile. In a nutshell, pertur-
bations in a 3D Finite Element (FE) continuum are performed to capture the global
reaction.

The soil profile considered in this study is homogeneous sand. In the Finite El-
ement model it is modeled with a nonlinear constitutive model. This means that a
nonlinear relation between the loading on the monopile and the respective displace-
ment exists. The resulting nonlinear response should be captured in the 1D effective
model. This is achieved by calculating the stiffness terms of the 1D model for more
than one loading combinations on the MP. The obtained nonlocal stiffness matrices
contain a 3rd dimension along which the nonlinear soil response is captured. The
nonlinear nonlocal stiffness matrices are directly applied in the 1D effective model.

To visualize the performance of the developed model, a comparison between
horizontal force - head displacement and overturning moment - head rotation curves
calculated by 3D Finite Element Analysis and computed by the 1D effective model is
made. The comparison is promising for the examined cases. However, there are still
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steps to be taken in order to further validate the method and expand its applicability.
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Nomenclature

Latin symbols
Ū Auxiliary displacement matrix m2

Fx Lateral reaction force matrix N
Kl,l Lateral-lateral stiffness matrix N/m3

Kl,r Lateral-rotational stiffness matrix N/m2

Kr,l Rotational-lateral stiffness matrix Nm/m3

Kr,r Rotational-rotational stiffness matrix Nm/m2

My Overturning reaction moment matrix Nm
U Matrix of displacements after imposing perturbations m
A Cross sectional area m2

D Pile diameter m
E Young’s Modulus MPa
F Horizontal force N
G Shear modulus GPa
h Vertical discretization height m
I Second moment of area m4

Kr Pile flexibility factor -
L Pile length m
M Overturning moment Nm
m Number of nodes on a pile ring -
n Ratio of pile length over discretization height -
u Lateral pile displacement m
u′ Lateral pile slope -

Greek symbols
Ψ̄ Auxiliary rotational matrix m2

Ψ Matrix of rotation after imposing perturbations m
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δ Skin friction angle ◦

κ Timoshenko Shearing Coefficient -
φ Internal friction angle ◦

ψ Dilatancy angle (Section 3.1) ◦

ψ Lateral pile rotation rad
ψ′ Lateral pile curvature rad/m-1

Abbreviations
1 & 3D One & three dimensions respectively
DoF Degree of Freedom
FD Finite difference
FEA Finite element analysis
FEM Finite element method
LCoE Levelized cost of energy
MC Mohr-Coulomb
MP Monopile
OWT Offshore wind turbine
RNA Rotor nacelle assembly
SSI Soil structure interaction



1
Introduction

This thesis project is motivated by the extensive use of MP foundations in the offshore
wind industry. To clarify, the ultimate goal of this research is to develop a nonlinear
nonlocal 1D effective model capturing the rigid behavior of a MP foundation and being
able to predict its nonlinear response under static loading. This introductory chapter
begins with a fast flashback regarding wind energy, followed by the current industry
techniques and related studies concerning modeling a MP foundation and the respective
Soil Structure Interaction (SSI). Afterwards, the objective of this project is presented
and finally the layout of the text is introduced.

1.1. General Introduction
World energy consumption rises every year. This trend is predicted to continue with
an increase of approximately 30% by 2040 [8]. Therefore, producing renewable and
sustainable energy is necessary to secure the viability of our planet. The most well-
known and promising form of renewable energy is that of wind power. Mankind
has been using the power of wind to its benefit since the 1st century AD [11]. Back
then, the wind flow was used to power machines, but in the late 19th century the
first windmill for production of electricity was built [21].

The interest in wind energy is climbing since then. Especially in the 21st century
the developments of the wind industry were astonishing. Even from the end of the
previous century, wind turbines started to be placed in groups forming wind farms.
Nowadays, not only because of limited space onshore but also due to smoother
and more efficient wind conditions offshore, the wind farms are moving seaward.
By 2015 the global wind power generation capacity had reached 7% of the total.
However, less than 3% of this production was from offshore wind [9]. Nonetheless,
offshore wind industry is flourishing and the challenge of building safe and robust
but economically competitive farms is rising.
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2 1. INTRODUCTION

The most common foundation solution for an offshore wind turbine is a monopile,
large-diameter circular steel structures. In contrast with its relative simplicity and
the significant amount of units being installed, there is still room for improvement
in the design that could decrease the Levelized Cost of Energy (LCoE) [19]. This
efficient design of laterally loaded monopiles is the fundamental motivation of this
thesis project.

1.2. Current industry practice and related studies
Wind industry established in the offshore environment long after the oil & gas in-
dustry. Therefore, the former based on techniques and experience gained by the
latter. Thus, offshore wind industry has adopted the p-y curve approach for model-
ing the SSI of a laterally loaded MP foundation. This approach is a semi-empirical
method which connects the pile displacement y, at specific depths, with the local
soil resistance p. The tangent of such a curve, derivative of resistance with respect to
displacement, is used in a Euler-Bernulli Beam-on-Winkler foundation model (non-
linear elastic springs), developed for both sandy [22, 18] and clayey soils[17].

However, these models have been calibrated with field tests on slender piles and
the contained soil reaction mechanisms are limited to those developed on slender
piles (local due to bending of the pile). In contrast, the size of MP foundation is
growing and the response can not be called flexible. A larger part of the contin-
uum is mobilized to react on the rigid behavior, meaning the response is more global
(nonlocal) [5]. Therefore, extra reaction mechanisms are introduced. Vertical shear-
ing on the pile wall creates distributed moments along the depth. Moreover, at the
tip of the pile due to the rigid “toe kick” a lateral force and moment are introduced
[12, 13]. Neither the last mechanisms nor the nonlocality can be captured with a
model including only uncoupled lateral springs as the p-y method proposes.

These concerns regarding the p-y approach have raised motivation for extensive
work on the subject of modeling SSI for laterally loaded large diameter piles. No-
table was the work of Byrne et al. [7], who developed a 1D FE model based on the
conventional p-y approach. More specifically, it was proposed to model the MP as
a beam based on Timoshenko theory. Moreover, all the aforementioned soil reac-
tion mechanisms are incorporated. To clarify, it is assumed that distributed lateral
force and moment are acting along the embedded length of the pile. The latter is
presumed to be highly important in Ultimate Limit State (ULS) loading, due to the
expected wedge-type failure mechanism of rigidly behaving piles (in contrast with
the flow around mechanism of slender piles). The model also takes into considera-
tion the tip resistance by considering a discrete lateral force and moment acting at
the base of the foundation.
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1.3. OBJECTIVE OF THE RESEARCH 3

All the above-mentioned soil reactions on the pile are represented by reaction
curves. These can be extracted from 3D FEA. The benefit of such a process is that
the more sophisticated and advanced the 3D modeling is, the better the 1D model.
Therefore, there is space for continuous evolution of the method. The research of
Byrne et al.[7] was not the first that proposed the use of a 3D model to capture the
global soil response mobilized by a rigid behavior of laterally loaded MP ([1, 14, 23]
only to mention a few), but it managed to incorporate results of 3D FEA into a
simpler and faster 1D FE design model.

The lastly mentioned achievement of Byrne et al. research [7] was also accom-
plished by Versteijlen et al. with two conceptually different methods. Even though
both were based on FEA results to calibrate an effective 1D model, one method en-
gaged only lateral springs [27] , while the other employed both lateral and rotational
types of springs [26], to represent soil reactions.

The latter research can be considered as the most rigorous because the 1D ef-
fective model is nonlocal. This means that the global nature of the soil response is
not only incorporated, but also represented in the developed finite difference (FD)
model. This, successively, means that the distributed lateral and rotational springs
are fully coupled. Furthermore, the stiffness kernels of the method are obtained in
a direct manner and afterwards can be used independently for design simulations.
The drawback of this method is that it was developed for linear elastic soil prop-
erties. The last assumption of the method is considered correct for the very small
strain regime[4], but it is known that the soil stress-strain relation is nonlinear[24].

1.3. Objective of the research
The previous paragraphs made clear that the p-y approach is not capable of captur-
ing the SSI mechanisms developing when rigid behavior of monopile foundations is
observed. However, the reduced computational time that a 1D model offers is highly
desired. Even though, different approaches have been proposed in literature, only
the nonlocal method of Versteijlen et al. [26] precisely represent the coupled soil
response.

The method was developed assuming linear elastic soil properties. However,
soil responds in a nonlinear manner. Furthermore, it is common to visualize the
response of a laterally loaded MP by two curves, namely the horizontal force head1

displacement and the overturning moment head rotation curves. These incorporate
the nonlinear soil response and can be calculated with the assistance of 3D FEA.
Hence, a question rises :

1The term head refers to the monopile at the mud-line level
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4 1. INTRODUCTION

“Is it feasible for a nonlocal 1D model to match the lateral force head displacement
and overturning moment head rotation curves of a nonlinear 3D model?”

A positive answer to this question means that a faster and simpler 1D model
can accurately predict the response, under quasi-static loading, of a MP foundation
in nonlinear soil. The computational time reduction may not be extensive when
the simulations are time independent. Nevertheless, it would prove that a nonlocal
model can be expanded to nonlinear applications. This is a first step on the way of
incorporating nonlinear SSI in the design of monopile foundations for offshore wind
turbines.

1.4. Outline
This section describes the structure of this report. First of all, in Chapter 2 the non-
linear nonlocal 1D effective model is described. In this chapter firstly an introduction
of the 1D model is presented, followed by the governing equations that represent it.
Subsequently, the stiffness parameters are explained and the computational proce-
dure is depicted in a generic manner. Next, the expansion of the stiffness matrices
to a 3rd dimension (planes), with which the nonlinear soil response is captured, is
analyzed. Finally, the misfit functions, which quantify the quality of the 1D effective
model, are presented.

The nonlinear nonlocal 1D effective model is based on 3D FEA results. These
simulations are necessary to incorporate the 3D soil effects in the model and are
specified in Chapter 3. The beginning of the chapter is devoted to explanations re-
garding material properties, element types and meshing techniques, which concern
the 3D FE model. Afterwards, a description of the simulations needed to compute
the stiffness terms for the 1st plane of the matrices (representing the undisturbed soil
resistance) of the nonlinear nonlocal 1D effective model is illustrated. After, three
methods for 3D simulations that could produce the other planes are explained. The
chapter is finalized with a discussion regarding two critical topics concerning non-
linear effects on the procedure.

The results of the study are shown in Chapter 4. Firstly, results regarding the
1st plane of the matrices are documented and examined in contrast with a literature
example. The selection of the approach concerning the 3D simulations, yielding to
the other planes of the matrices, is followed by findings referring to the nonlinear 3D
stiffness matrices. After the interpolation techniques used in the nonlinear nonlocal
1D effective model are discussed, the chapter is summarized by final results in terms
of lateral force head displacement and overturning moment head rotation curves.

Finally, the conclusions of the research and recommendations for improving the
nonlinear nonlocal 1D effective model are offered in Chapter 5.
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2
The Nonlinear Nonlocal 1D

Effective Model

The nonlinear nonlocal 1D effective model is inspired and expands the extensive work
of W.G. Versteijlen on the the subject [26]. This chapter focuses on describing the ap-
plied nonlinear nonlocal 1D effective model. The uniqueness of the model is that the
global behavior of the continuum is precisely represented. This is achieved by employing
nonlinear fully coupled lateral and rotational springs representing the SSI. Moreover,
the stiffness kernels of these springs incorporate all the 3D effects, because they are ex-
tracted from 3D FEA. The chapter starts with the general concept of the model, followed
by the mathematical representation. Before the 3rd dimension (planes) of the stiffness
matrices, capturing the nonlinear behavior, is introduced, the nonlocality is described.
The chapter is finalized by the means of quantification of the quality of the nonlinear
nonlocal 1D effective model.

2.1. General concept
The large-diameter MP foundations behave rigidly to lateral loads. This behavior,
successively, mobilizes a large volume of the continuum generating a global (non-
local) response of the soil. Moreover, soil is known for the nonlinear relation be-
tween stress and strain [24]. Therefore, the fundamental principle of the nonlinear
nonlocal 1D effective model is to precisely represent both the nonlocality and the
nonlinearity of the SSI with MP foundations.

This 1D model is based on Timoshenko beam theory, assuming it is founded on
a distributed, Winkler-type foundation, which consists of two fully coupled types of
springs, lateral and rotational. More elaborate explanation of the stiffness kernels of
these springs follows on the next sections (Sections 2.2, 2.3 and 2.4).

5



6 2. THE NONLINEAR NONLOCAL 1D EFFECTIVE MODEL

This model is developed for quasi-static combinations of horizontal force and
overturning moment at the mud-line level. It can predict deflection, slope, rotation
and curvature along the length of the pile. Its performance is quantified by misfit
functions described in Section 2.6.

2.2. Governing equations of the 1D model
In the previous section it was mentioned that the nonlinear nonlocal 1D effective
model is based on Timoshenko beam theory. The next equations describe the re-
sponse of the system, the first illustrates force and the second moment equilibrium.

GAκ

(
d2u(z)

dz2
− dψ(z)

dz

)
− f(z, u, ψ) = 0 (2.1)

GAκ

(
du(z)

dz
− ψ(z)

)
+ EI

d2ψ(z)

dz2
−m(z, u, ψ) = 0 (2.2)

Regarding the equations, G is the shear modulus of steel, A is the cross sectional
area, κ represents the Timoshenko shearing coefficient (which for the cylindrical
shape of the monopile a value of 0.53 is presumed), while E is the Young’s modulus
and I the second moment of area on the x direction (Figure 2.1). The last term in
both equations is the soil resistance, in terms of distributed lateral force and bending
moment respectively. The sign convention of the 1D model is illustrated on Figure
2.1, which also shows the soil resistance in the form of springs.

To fully define the 1D model, boundary conditions are also necessary. The inter-
nal shear force is equal and opposite to the external force, both at the top and at the
end of the beam. Moreover, the internal bending moment is equal to the external
moment, both at the top and at the end of the beam . The shear force equilibrium
is described by eqs. (2.3) and (2.5), while eqs. (2.4) and (2.6) refer to the moment
equilibrium. Note that at the tip of the pile the external force and moment are as-
sumed to be zero, which is opposite to the discrete shear and moment tip resistance
concept introduced by Byrne et al [6].

GAκ

(
du(z)

dz
−ψ(z)

)∣∣∣∣
z=0

= −F (2.3) EI
dψ(z)

dz

∣∣∣∣
z=0

= M (2.4)

GAκ

(
du(z)

dz
− ψ(z)

)∣∣∣∣
z=L

= 0 (2.5) EI
dψ(z)

dz

∣∣∣∣
z=L

= 0 (2.6)
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2.2. GOVERNING EQUATIONS OF THE 1D MODEL 7

The introduction of the boundary conditions makes the model well defined, but
the soil resistance is in very general terms. Firstly, the lateral resistance is discussed.
The term global (nonlocal) soil reaction implies that every movement in the soil do-
main influences the SSI. Timoshenko beam equations describe the displacement of
the MP using two variables. One is the lateral displacement on the x direction (u)
and the other is the angle of rotation normal to the length of the pile (ψ), see Fig-
ure 2.1 for sign convention. The outcome of these two facts is the establishment of
two types of stiffness representing the lateral SSI with the monopile, Kl,l(z, z̄) and
Kl,r(z, z̄). The former stands for lateral stiffness because of deflection, while the lat-
ter for lateral stiffness due to rotation of the pile respectively. One of the independent
variables (z) represents the dependence on the depth the stiffness is evaluated at.
The other (z̄) symbolizes the dependence of the stiffness on the deformed situation
at other depths, signifying the (coupled) nonlocal soil response.

Similarly, the rotational resistance is also due to rotation and lateral deflection of
the pile. Therefore, two more forms of stiffness are brought in, namely the rotational
stiffness due to rotation of the pile (Kr,r(z, z̄)) and rotational stiffness on account of
the deflection(Kr,l(z, z̄)) of the pile. The use of z and z̄ are identical with the lateral
types of stiffness.

Finally, the aforementioned dependence on the disturbed situation along the
depth (z̄) implies an integration over the depth. The length of the pile is sufficient
for this integration. The reason lays in the way the stiffness kernels are derived.
They are based on reaction forces extracted from 3D FEA, which already incorporate
the global (extended below the tip of the pile) soil response, refer to Section 2.3
for a more detailed explanation. Combining the above-mentioned with eqs. (2.1)
and (2.2), eqs. (2.7) and (2.8) are derived.

GAκ

(
d2u(z)

dz2
− dψ(z)

dz

)
−
∫ L

0

Kl,l(z, z̄)u(z̄)dz̄ −
∫ L

0

Kl,r(z, z̄)ψ(z̄)dz̄ = 0 (2.7)

GAκ

(
du(z)

dz
−ψ(z)

)
+EI

d2ψ(z)

dz2
−
∫ L

0

Kr,r(z, z̄)ψ(z̄)dz̄−
∫ L

0

Kr,l(z, z̄)u(z̄)dz̄ = 0

(2.8)
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8 2. THE NONLINEAR NONLOCAL 1D EFFECTIVE MODEL

Figure 2.1: Schematic representation of the 1D beam model

2.3. Soil stiffness from 3D FEM
So far the introduced model is described by continuous equations. However, when
implementing discrete results of FEA into another model, spacial discretization of
the equilibrium equations is obligatory. The result is that the continuum variable z
is transformed to a vector z1, which implies that all the terms of eqs. (2.7) and (2.8)
are vectors or matrices. At this point, it is important to mention that the 1D effective
model follows the vertical discretization of the 3D FE model (see Section 3.1.2 for
3D meshing information).

The stiffness matrices are now represented by [n+1,n+1] matrices (n being the
ratio of pile length over discretization height), in order to incorporate the nonlocality
of the soil response. How the nonlocality is introduced in the stiffness matrices is
explained with the assistance of the lateral-lateral stiffness matrix, Kl,l :

Later, Section 2.4, it will get explained that the stiffness matrices are expanded
in a 3rd dimension. Therefore, they are described by rows, columns and planes.
The following process is employed for determining all the planes. Extracting each
plane of Kl,l is established on displacement-based simulations (see Figure 2.2). The
number of the simulations needed for every plane is (n + 1). The circumference of

1Bold symbols represent vector or matrix
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2.3. SOIL STIFFNESS FROM 3D FEM 9

the pile geometry is composed by rings of nodes along the depth. The first simulation
requires restraining all the degrees of freedom (DoFs) of all these nodes except for
the nodes at the mud-line. These are horizontally displaced by a specific uniform
amount. The second, demands all the nodes of the circumference to be restrained,
apart from the ring at a depth equal to the vertical discretization. This ring is also
subjected to the same disturbance. The same process is followed for all the rings. In
all (n+1) simulations, the lateral reaction forces on all the nodes of the geometrical
circumference of the pile are gathered (together with the vertical reaction forces and
the displacement field of the pile). For every discrete depth, the horizontal forces of
these nodes are summed and form a column of a force matrix (Fx), also [n+1,n+1].

Figure 2.2: Illustration of the model for the perturbation phase

Except for forces, displacements are necessary when stiffness is to be computed.
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10 2. THE NONLINEAR NONLOCAL 1D EFFECTIVE MODEL

For all the (n+1) simulations, the lateral displacement of the pile is different, because
the perturbation is imposed at another depth. Each deformed shape is collected to
a column of the displacement matrix (U [n+1,n+1]). Moreover, the displacement
matrix has to incorporate the calculation of the integral of equation 2.7. Therefore,
a matrix (Ū) which includes the Trapezium rule for integration, i.e. every cell is
multiplied by the discretization length and the first and last row of the matrix is
halved, is employed.

Translating the aforementioned into matrix notation, assuming we refer to the
jth simulation we get the following :

f j
th

x,i =
∑m
l=1 f

jth

x,i,l

Ū j
th

z=0 =
1

2
hU j

th

z=0

Ū j
th

z=i = hU j
th

z=i

Ū j
th

z=L =
1

2
hU j

th

z=L

f jth

x =

fjth

x,1
·

fjth

x,i
·

fjth

x,n+1

}
n+ 1 rows Ū jth

=

Ūjth

z=0·
Ūjth

z=i·
Ūjth

z=L

}
n+ 1 rows

Fx =

n+1 columns︷ ︸︸ ︷[
f1st

x · · · f (n+1)th

x

]
Ū =

n+1 columns︷ ︸︸ ︷[
Ū1st · · · Ū (n+1)th

]

Fx =

n+1 columns︷ ︸︸ ︷∣∣∣∣∣∣∣
·

∑m
l=1 f

jth

x,1,l ·
· · ·
·
∑m
l=1 f

jth

x,n+1,l ·

∣∣∣∣∣∣∣
n+1rows Ū =

n+1 columns︷ ︸︸ ︷∣∣∣∣∣∣∣∣∣∣∣

· 1
2hU

jth

z=0 ·
· · ·
· hU j

th

z=i ·
· · ·
· 1

2hU
jth

z=L ·

∣∣∣∣∣∣∣∣∣∣∣


n+ 1rows

where i refer to a random depth along the vertical discretization of the pile, m
represents the number of nodes per ring and n the ratio of pile length over discretiza-
tion height.

Note that at eqs. (2.1) and (2.2) the response of the model is described per
unit length. Hence, the extracted forces should all get divided by the discretization
length. Thus, the equation to get solved for deriving Kl,l (lateral-lateral stiffness
matrix) is :
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2.4. INTRODUCTION OF THE NONLINEARITY 11

1

h
Fx = Kl,lŪ ⇔Kl,l =

FxŪ
−1

h
(2.9)

The collected vertical forces find application in computing the rotational-lateral
stiffness matrix, Kr,l. These vertical forces multiplied by the distance of every node
from the centerline of the pile equal the rotational resistance (moment). Following
similar steps for the moment matrix, the equation for determining Kr,l is :

Kr,l =
MyŪ

−1

h
(2.10)

In addition, following an analogous procedure, imposing rotation instead of
horizontal displacement, the remaining stiffness matrices (rotational-rotational and
lateral-rotational stiffness matrices) can be calculated.

Kr,r =
MyΨ̄

−1

h
(2.11) Kl,r =

FxΨ̄
−1

h
(2.12)

Concluding, the direct benefit of the process is the introduction of the nonlocal-
ity. This is achieved by collecting reaction forces along the length of the pile, even
though the perturbation is at a discrete specific depth. The reaction forces on the
restrained rings illustrate the continuity of the soil domain (nonlocality). The up-
coming section introduces the nonlinearity of the 1D effective model, while the next
chapter elucidates the process.

2.4. Introduction of the nonlinearity
In this research, the 3D FEA include soil modeled with a nonlinear constitutive model
(see Section 3.1.1). This means that a nonlinear relation exists between the load-
ing on the monopile and the respective displacement. The same nonlinear relation
should also be captured in the 1D effective model. Therefore, the stiffness matrices
are extended to a third dimension, which describes this dependence of the response
on the loading magnitude.

This third dimension consists of planes that are calculated exactly as described
before, but in different equilibrium positions of the monopile. The term equilibrium
position refers to a state of displacement field. This is a deformed shape introduced
by loading the monopile at the mud-line level with a combination of a lateral force
and an overturning moment. Therefore, the lateral and rotational perturbations are
imposed not only on the undeformed shape of the pile, giving the first plane of the
3D matrices (0th equilibrium position), but also on deformed shapes offering extra
planes of these matrices (see Figure 2.3). To make things clearer, the meaning of a
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12 2. THE NONLINEAR NONLOCAL 1D EFFECTIVE MODEL

random cell on the lateral-lateral stiffness matrix (Kl,l(i, j, k),1 ≤ i, j ≤ L/h + 1) is
described. This cell represents the part of lateral stiffness at depth of (i−1) ·h ( h the
vertical discretization), which is coupled with the displacement at a depth (j − 1) · h
for the (k−1)th equilibrium position. The exact loading combination responsible for
this position depends on the case under examination, but the process to select them
is explained in the next section.

Figure 2.3: Schematic illustration of the stiffness matrices

2.5. Selection of the equilibrium positions
The equilibrium positions at which the planes of the stiffness matrices are computed
are case sensitive. The selection is based on results of incrementally increasing lat-
eral load of a 3D SSI simulation.

First of all, the fundamental objective of the nonlinear nonlocal 1D effective
model is to predict the response on high loads. Thus, it was decided to keep the
ratio of applied overturning moment over lateral force at the mud- line level con-
stant, at a potential ULS level. More specifically, this ratio (the lever arm) is taken
as 40 for the reference case.

The magnitude of the lateral force must also be determined. For this purpose
two representative stiffnesses are derived: the generalized pile head lateral and ro-
tational stiffness. The first is computed as the ratio of lateral load over displacement
of the monopile at the seabed. The second is calculated as overturning moment over
rotation again at the same elevation. After deriving these quantities for a range of
lateral loading, there is an indication of the model’s (lateral and rotational) stiffness
evolution with respect to the applied lateral load.

It was considered that the important load magnitudes, at which the planes of
the stiffness matrices are computed, are those which are necessary to approximate
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2.6. MISFIT FUNCTIONS 13

(using the wavelet compression [15]) both of the aforementioned evolutions, see
Figures 2.4 and 2.5, with a tolerance of 1%. To clarify, the relative difference be-
tween the computed generalized stiffness values and the respective derived from
the approximation is at maximum 1%. The points needed to accomplish such an
approximation correspond to magnitudes of force, for which the stiffness matrices
will be determined. Lower values of tolerance would lead to a higher amount of
equilibrium positions, increasing the computational time significantly. However, as
it would be discussed later on, Section 4.4.2 ,more equilibrium positions may be
required for improving the accuracy of the process, indicating that either a smaller
tolerance or a different selection process is required.

2.6. Misfit functions
Tis section describes the functions that quantify the quality of the nonlinear nonlocal
1D effective model. The target of the 1D effective model is the 3D response along
the length of the pile, despite the fact that the guidelines focus on limits for the pile
head displacement[10]. Its performance is evaluated by four misfit functions. One
assesses the quality of the fit based on the deflections, one on the slope, one on the
rotation and one on the curvature (u, u′, ψ, ψ′ respectively). These misfit functions
are defined by the eqs. (2.13) to (2.16), but can be summarized by the summed
value (Eq. 2.17). The one fourth on the definition of every misfit function is an
assumption of equal weight factor [26].

Cu =
1

4

∑n+1
i=1 |ui,1d − ui,3d|∑n+1

i=1 |ui,3d|
(2.13) Cu′ =

1

4

∑n+1
i=1

∣∣∣u′i,1d − u′i,3d∣∣∣∑n+1
i=1

∣∣∣u′i,3d∣∣∣ (2.14)

Cψ =
1

4

∑n+1
i=1 |ψi,1d − ψi,3d|∑n+1

i=1 |ψi,3d|
(2.15) Cψ′ =

1

4

∑n+1
i=1

∣∣∣ψ′i,1d − ψ′i,3d∣∣∣∑n+1
i=1

∣∣∣ψ′i,3d∣∣∣ (2.16)

Ctot = Cu + Cu′ + Cψ + Cψ′ (2.17)
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14 2. THE NONLINEAR NONLOCAL 1D EFFECTIVE MODEL

Figure 2.4: Lateral load selection based on generalized lateral stiffness

Figure 2.5: Lateral load selection based on generalized rotational stiffness
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3
3D Simulations

This chapter presents the process followed in the 3D simulations. At the beginning,
information regarding the 3D modeling technique adopted in this project is offered. Af-
terwards, the approach for the 0th equilibrium position is depicted. Next, three different
approaches for the other equilibrium positions are described. Finally, two critical topics
related to nonlinear effects on the procedure are discussed. With the end of the chapter,
the exact steps of the 3D modeling will be clear. Moreover, the reader will gain insight on
the procedure followed when calculating the stiffness matrices of the nonlinear nonlocal
1D effective model.

3.1. General information
First of all, the commercial software Ansys Structural v18.2 was used for the 3D
simulations. The constitutive material models for soil are to some extent limited in
Ansys. However, the last few years more alternatives are available and version 18.2
includes the Mohr-Coulomb (MC) option.

3.1.1. Soil constitutive model and element types
Even though MC is a relatively simple model when describing soil response, it con-
tains the basic soil failure criterion (Figure 3.1) and is commonly used. Moreover, it
is the first attempt to produce a nonlinear nonlocal 1D effective model and it is pre-
sumed that if it can be established on a simple nonlinear constitutive model, it could
later be upgraded with more advanced and sophisticated constitutive soil models.
Hence, MC was employed for modeling the nonlinear soil behavior in Ansys.

15



16 3. 3D SIMULATIONS

Figure 3.1: MC yield surface in principal stresses space (positive sign implies
tension)[3]

Both examined soils in this research are homogeneous sands. Thus, tension cut-
off was applied, since the sandy soils are known for not having tensile strength.
Furthermore, effective density of the soil was considered. The reason behind this
is firstly the fact that any alteration of stress is due to change of effective stress
[25] and secondly the nature of sandy soils. The latter implies the assumption of
instantaneous dissipation of the pore pressure, meaning that the external load is
directly transfered to the soil skeleton. Thus, only the effective part of the geostatic
stresses was considered.

As stated before, the considered soils are homogeneous sands, with properties
summarized in Table 3.1 (Case 1 is considered to be the reference case of this study).
According to Poulos [20] if the pile flexibility factor is smaller than 0.0025 the re-
sponse of the monopile can be called flexible, while if it is larger than 0.208 the
response can be considered rigid. As it can be seen on the the aforementioned table,
the first combination is categorized as intermediate pile behavior, neither rigid nor
flexible, while the second as rigid pile. Ansys provides the option of reducing the
soil strength after yielding, but it was decided to keep the strength parameters (c, φ)
constant. The dilatancy angle mentioned on the table is used for the calculation of
the plastic flow, which is non associated [3]. On the other hand, the monopile was
modeled with linear elastic material, the properties of which are specified on Table
3.2.
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3.1. GENERAL INFORMATION 17

Parameter Units Case 1 Case 2
Effective density (ρ′) kg/m3 1000 1000

Effective Young’s Modulus (E′) MPa 79.7 20
Friction angle (φ) ◦ 38 30

Dilatancy angle (ψ) ◦ 8 0
Cohesion (c) kPa 0.1 0.1

Pile flexibility factor1(Kr) - 0.0625 0.25

Table 3.1: Soil properties

Parameter Units
Diameter (D) m 8

Length (L) m 28
Thickness (t) mm 75

Young’s Modulus (E) GPa 210

Table 3.2: Monopile properties

Finally, the types of element used in the simulations are mentioned. The soil
domain was modeled with SOLID185, while the pile with SHELL181. The former
type is a brick element defined by 8 nodes with three translational degrees of free-
dom (DoFs) at each node. The latter is a shell element with 4 nodes, having three
translation and three rotational degrees of freedom per node.

3.1.2. Meshing and calculations
In order to reduce computational time, taking advantage of the plane symmetry,
only half of the space was modeled. Regarding meshing, close to the monopile it is
structured and relatively fine, while further away in the domain mesh can be free
and coarser. Moreover, since the procedure is for the first time established in nonlin-
ear soil properties and the time required for the simulations increases significantly
with finer meshing, the vertical discretization close to the pile was chosen to be 2
meters. The reason for this increase is firstly the additional nodes. The second and
more important reason is that every ring of nodes describing the circumference of
the monopile will get displaced both laterally and rotationally for every equilibrium
position and the finer the discretization the more rings are to be displaced. It should

1Kr =
EIp
EsL4 , EIp being the bending stiffness of the pile, Es the Young’s modulus of soil and L the

length of the pile

CONFIDENTIAL



18 3. 3D SIMULATIONS

be reminded here that the vertical discretization of the pile at the 3D model coin-
cides with the vertical discretization of the 1D model. A typical example of a meshed
model is available on Figure 3.2. Lastly, the applied boundary conditions are noted.
At the bottom of the domain, all the DoFs are fixed, at the circumference the DoFs
related to the horizontal plane are constrained, while for the plane of symmetry the
perpendicular to this plane displacement is restrained.

Figure 3.2: Typical meshed model

In addition, the connection between monopile and soil elements is described.
Even though there is the option of introducing contact elements in-between the two
kind of element, which would allow “sliding” or “gapping”, it was decided to make
this connection rigid, so as the model is relatively simple. Moreover, it is known
that the interaction between soil and pile elements is less strong than between soil
elements and it had been stated that the skin friction angle (δ) could be considered
equal to 2/3 of the internal friction angle (φ) [25]. This means that close to the
pile a material with less strength should be incorporated. However, in this study
homogeneous soil material properties were used even close to the pile, in order the
3D model to remain simple.

Furthermore, regarding the loading combination on the monopile, the moment
at mud-line is imposed by applying a lateral load at a height of 40 m above this level
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3.2. 0TH EQUILIBRIUM POSITION 19

at the centerline of the monopile. In order to achieve a smooth transition of the
point load to the monopile elements, the nodes at the top of the monopile and the
node at which the load is applied are rigidly connected.

Two more subjects are to be discussed. The first refers to the geostatic stress
calculations. The general nature of Ansys comes with a consequence on this grav-
itational loading, the produced displacements. This displacement field is coupled
with the stress field, but it occurred many years ago and it would be unnatural to
include it on the analysis. Thus, a maneuver to eliminate the displacement but keep
the stress field was applied. However, small residual displacements remain in the
soil domain.

Finally, the second subject concerns the size of the soil domain. It is known
that the boundaries of the domain should not influence the results of the analysis.
However, larger model requires more computational time. Therefore, a balance
between these two must be achieved. For this scope, a mesh convergence analysis
was conducted and it was decided that there is no need for a domain larger than 30
times the monopile radius, as it can be seen at Figure 3.3. Lastly, the depth of the
domain was chosen to be slightly larger than double the length of the pile.

Figure 3.3: Mesh convergence analysis results

3.2. 0th Equilibrium position
This equilibrium position produces the first plane of the stiffness matrices and refers
to the undeformed shape of the pile. As it was shown by eqs. (2.7) and (2.8),
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20 3. 3D SIMULATIONS

the stiffness matrices represent pure soil stiffness, because the stiffness of the steel
monopile is incorporated in the other terms of these equations. In general, this
requirement created some challenges on the 3D modeling, but not for this equilib-
rium position simply because there is no need the monopile to be modeled, as no
pre-stress due to the pile displacement needs to be taken into account.

In the previous work of W.G. Versteijlen [26] it is clearly mentioned that the
volume of the steel should be replaced by “cavity”. However, this gap would cause
misalignment with the next equilibrium positions, because the monopile is modeled
with shell elements associated with “virtual” thickness. Therefore, it was decided to
keep this volume filled with soil.

To summarize, the 3D model for the 0th equilibrium position is a pure soil model,
at which first the geostatic stress field is imposed. Afterwards, lateral and rotational
perturbation is independently enforced to all the ring of nodes, as described at Sec-
tion 2.3.

3.3. Next equilibrium positions

The stiffness matrices in the nonlinear nonlocal 1D effective model represent pure
soil stiffness. Therefore, lateral and rotational disturbances are to be imposed in a
3D model which excludes the pile stiffness. Moreover, these perturbations are en-
forced on a deformed shape, introduced by a load combination on the monopile at
the mud-line level. This means that in the 3D simulations there should be phases of
loading that include the stiffness of the pile and others where it should be excluded.
Changing the stiffness of a FE model influences either the force or the displacement
field, because of the generic relation F = K · u. Due to the complexity of this situa-
tion, several approaches were developed and tested. The upcoming subsections are
discussing this effort. They are presented in the order they got developed. The main
reason for the development of every next method was to increase the accuracy of the
nonlinear nonlocal 1D effective model. More elaborate reasoning on the approach
selection follows in Section 4.2.

Table 3.3 summarizes the level of loading for every equilibrium position, for both
the examined cases. The nonlinear behavior of soil starts from very small loading.
Therefore, as it was expected, the selection of equilibrium positions is denser on the
region of “small” loading rather than in the region of “large” loads.
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Table 3.3: Equilibrium positions for the two cases

Case1
F [kN] 60 140 200 600 800 1.2e3 2e3 3.6e3 6e3 10e3

M [MNm] 0.24 5.6 8 24 32 48 80 144 240 400

Case 2
F [kN] 160 200 400 600 1e3 1.4e3 2e3 4e3 10e3 -

M [MNm] 0.64 8 16 24 40 56 90 160 400 -

Although the approaches differ, they all start from the same point. First of all,
there is a model with the geostatic stress and the pile wished in place, because no
installation effects are taken into consideration in this study. To make the upcoming
sections more comprehensible every model is associated with a name. This normal
SSI 3D model will be called the “starting-point” model. Afterwards, a lateral load is
applied at the top of the monopile, which would give a deformed shape, see Figure
3.4, at which the perturbations will later be imposed. At this point, the stiffness of
the monopile should be removed from the model, and that is where the distinction of
the approaches is introduced. The last loading phase of the “starting-point” model is
schematically illustrated on Figure 3.12 and is the starting point of all the upcoming
approaches.

Figure 3.4: Indicative pile displacement in the loading direction- F = 6MN- Case 1
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3.3.1. The “subtraction” approach
As mentioned before, all these approaches have been developed so as at the end
the pure soil resistance can be computed. The characteristic of the “subtraction”
approach is that the resistance of the linear elastic steel material can be calculated
separately and subtracted later on from the combined resistance. Therefore, the per-
turbations are imposed to the “starting-point” model and the reaction forces (on the
x and z direction according to Figure 3.2) on the nodes of the pile are gathered, illus-
tration in Figure 3.5. Furthermore, the same magnitude of perturbation is enforced
to an extra model, which includes the same monopile but founded on a linear elastic
soil with Young’s modulus of 1 Pa, so that its stiffness can be neglected: a “pile on
air” model, Figure 3.6. The former model is considered to compute the combined
resistance while the latter the monopile’s resistance. Hence, the difference of the
forces of the two models would represent the pure soil resistance.

Lastly, a final comment on this approach should be made. This method requires
the perturbation simulations to be applied at two models for every equilibrium posi-
tion. However, due to the well-known superposition principle of linear systems[29],
it is considered that the analyses of “pile on air” is adequate to be performed at the
undeformed shape of the monopile only. These results (forces) can afterwards get
subtracted from the final results of the “starting-point” model for every equilibrium
position.

Figure 3.5: Schematic representa-
tion of the perturbation phase for the
“starting-point” model

Figure 3.6: Schematic representation
of the perturbation phase for the “pile
on air” model

3.3.2. The “rational” approach
This method is also developed with two models. To be more precise, the first is
the “starting-point” model and there is no extra loading phases on it. The second
is the “pure soil” model, a model with only soil elements. The special features of
this approach are the way the “pure soil” model was created and the loading phases
imposed to it.
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First of all, the pure soil model was created so as there is perfect correspondence
of nodes, elements, materials etc. with the “starting-point” model, excluding the
elements of the monopile. This exact agreement is necessary because results of the
one model are transfered to the other. Possible results that could be imposed to the
“pure soil” model are displacements or forces on the nodes. The overall stiffness of
the model is much smaller (due to the absence of the pile), thus enforcing forces
on the nodes would create erroneous displacement field and consequently inaccu-
rate stress field. Therefore, it was decided that the displacement field of the whole
domain of the “starting-point” model would be gathered (Figure 3.7).

These results (displacement field) are imposed to the “pure soil” model as con-
strains and the nodal reactions forces are collected (Figure 3.8). This transfer of the
displacement field from one model to another already introduces small discrepancy
in the stress field. Moreover, by constraining the nodes of the model an obvious
problem rises. If all the nodes are fixed how will the upcoming load phases be intro-
duced?

The solution to this problem has already been indicated. All the nodes of the
model are released (except for the boundaries support), but the just computed nodal
reaction forces are enforced (Figure 3.9). This step is a source of a small distortion
of the deformed shape of the pile. In order the significance of the exact shape of the
MP to be examined, an alternative third step of this method was developed. This
is to keep the shape of the monopile fixed and simultaneously impose the reaction
nodal forces on the remaining domain (Figure 3.11). Finally, as always the last step
is applying the perturbations, Figure 3.10.

Figure 3.7: Schematic representa-
tion of the 1st step of the “rational”
approach - Gather displacement field
from “starting-point” model

Figure 3.8: Schematic representation
of the 2nd step of the “rational” ap-
proach - Impose displacement filed on
the “pure soil” model
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Figure 3.9: Schematic representa-
tion of the 3rd step of the “rational”
approach- Impose force field on the
“pure soil” model

Figure 3.10: Schematic representa-
tion of the 4th step of the “rational”
approach - Impose perturbations on
the “pure soil” model

Figure 3.11: Schematic represen-
tation of the alternative 3rd step
of the “rational” approach - Impose
force field & keep the shape of the
monopile nodes fixed with respect to
each other on the “pure soil” model

3.3.3. The “effective” approach
The uniqueness of this process is the utilization of only one model, the “starting-
point”. Ansys gives an option for deactivating elements of the model in the different
calculation phases. Therefore, after applying the lateral load at the monopile, Figure
3.12, the steel elements are deactivated while the remaining domain is fixed, Figure
3.13. The reason for these constrains is to keep the displacement field unchanged,
even though the stiffness of the domain had been altered. Afterwards, the nodes are
released, with the exception of the circumference of the pile and the boundaries of
the domain, while the nodal reaction forces are enforced, Figure 3.14. Finally, the
perturbations are imposed, Figure 3.15.

The benefit of using only one model, no need to transfer data between models,
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comes with a consequence. All the loading phases must be subsequent (otherwise
data needs to be transfered), even though the horizontal perturbations are indepen-
dent from the rotational. On the other hand, this independence can reduce the com-
putational time when employing the “rational” approach because the simulations for
the two kinds of disturbance can be simultaneous.

Figure 3.12: Schematic represen-
tation of the last loading phase of
the “starting-point” model- Lateral
loading- 1st step of the “effective” ap-
proach

Figure 3.13: Schematic representa-
tion of the 2nd step of the “effective”
approach - Deactivate the pile

Figure 3.14: Schematic representa-
tion of the 3rd step of the “effective”
approach - Impose force field & keep
the shape of the monopile nodes fixed
with respect to each other

Figure 3.15: Schematic representa-
tion of the 3rd step of the “effective”
approach - Impose perturbations

Concluding the section, a clarification regarding the calculation of the stiffness
matrices is offered. Independently of the followed approach, they are produced
by using total final forces (incorporating all the load phases) acting on the nodes,
combined with the total final displacement. This decision was driven by the idea of
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employing stiffness matrices that would resemble secant terms. If an analogy is made
with a simple single degree of freedom mass founded on a nonlinear spring, the
reason is more comprehensible. The response to a quasi-static incremental loading
of the 1 DoF system would look like Figure 3.16. It can be seen that in order to
linearize and predict a random displacement, a secant stiffness connected to the
final force is used. Extrapolating and adjusting this fact to the examined case, total
forces and displacements were considered the correct values.

Figure 3.16: A quasi-static force displacement curve of a 1 DoF system founded on a
nonlinear spring for quasi-static incremental loading

3.4. Effects of nonlinear behavior in the procedure
Although the process of the ring perturbation has been described in perfect corre-
spondence with the description of W. G. Versteijlen [26], there are two small but
crucial differences that have not been discussed until now. The first is regarding the
direction of the perturbation and the second concerns the magnitude of it. Both of
the topics became significant because of the nonlinear soil properties.

Firstly, the influence of the directionality of the perturbation is examined. Figure
3.17 illustrates a typical deflection and rotation distribution over depth of a laterally
loaded monopile. It can be seen that regarding rotations the sign is constant over
the depth while as far as the deflections are concerned there is a change of sign.
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Figure 3.17: Typical deflection and rotation distribution of a laterally loaded pile

The perturbation should not be an unloading phase for soil domain. Thus, the
imposed disturbances should have the direction of the deflected shape. To clarify, for
the rotary perturbation on the rings, a rotation in the same direction along the length
of the pile is imposed, because the soil behavior (together with the sign of rotation
on the MP) is consistent along the depth. On the other hand, as far as the horizontal
displacements are concerned they are enforced towards the positive direction above
the rotation point of the monopile, while below the center of rotation towards the
negative direction, following the deflected shape.

Secondly, the magnitude of the perturbation is discussed. The fundamental idea
at the beginning of the study was to apply a small in magnitude perturbation so
as the soil domain is as lightly as possible distorted and the stiffness matrices are
representative for the load combination of each equilibrium position. Therefore, it
was selected the lateral displacement to be 0.01mm, while the rotary motion equal
to 10−5rad. In order to check if the perturbations are small enough, it was decided
to compare the results of these analyses with results of simulations with double these
magnitudes.

Figures 3.18 and 3.19 illustrate this comparison for the 0th equilibrium position.
First of all, the former graph is discussed. At the 0th equilibrium position each ring
is independently horizontally displaced by 0.01mm and the local lateral forces on
the every time deflected ring are collected and added. The procedure is exactly the
same to what it was described in Section 2.3, but the forces only at the displaced
rings are of interest. Hence, every depth is represented by a value of perturbation
(always 0.01mm) and a value of force. Moreover, the same process is followed at an
independent set of simulations, but with a horizontal disturbance of 0.02mm. The
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perturbation ratio, between the two sets of simulations, is displayed on the left sub-
plot of Figure 3.18 and of course is constantly 2 along the length of the pile since
these displacements have been imposed. On the right subplot of the same figure
the ratio of the “local” reaction forces on every ring is illustrated, which, with the
exception of the first meters close to the boundaries of the domain, are also perpet-
ually 2. Consequently, the imposed lateral displacement is small enough, because
double magnitude of action creates double magnitude of reaction meaning that the
response is linear and no nonlinearities were introduced due to the perturbation.
Analogously, by applying rotations of 10−5rad and 2 · 10−5rad and gathering instead
of lateral, vertical forces (which multiplied by their distance from the centerline of
the monopile give restoring moments) Figure 3.19 is produced. It can be seen again
that the reaction is proportional to the action thus the imposed rotation is adequately
small.

Figure 3.18: Lateral perturbation and lateral local force ratio along the length of the
pile at the undeformed shape

Unfortunately, the previously mentioned comparison is not enough to prove that
the magnitude of perturbation is appropriate for all the equilibrium positions. Hence,
the same process has been followed for other equilibrium positions as well. Figures
3.20 and 3.21 illustrate the comparison for horizontal perturbations around equilib-
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rium positions of a relatively low and a relatively high lateral load. In the former
situation it can be observed that for perturbations at relatively large depth (where
the deflections are small and the strength high) the response is still linear, however
closer to the top where the deflections are high and the strength small the response
is not linear any more. Regarding, the latter load it is obvious that the response is
far from being linear. The reason for the nonlinear response, even on equilibrium
positions of small loading, is that the soil elements in touch with the displaced nodes
are subjected to intense shear. Furthermore, shearing is a type of loading that can
cause failure to soil elements, thus nonlinear response. Nonetheless, it must be said
that the applying small magnitude of perturbations has not been proven erroneous
either.

Figure 3.19: Rotational perturbation and local moment ratio along the length of the
pile at the undeformed shape
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Figure 3.20: Lateral perturbation and lateral local force ratio along the length of the
pile at the equilibrium position of 160kN

Figure 3.21: Lateral perturbation and lateral local force ratio along the length of the
pile at the equilibrium position of 6 MN
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Trying to decide what the appropriate magnitude of perturbation is, another com-
parison was also examined. It was decided to compute the stiffness matrices, at one
equilibrium position, for different magnitudes of perturbation and compare the so-
lutions of the nonlinear nonlocal 1D effective model. The different magnitudes are
shown on Table 3.4 and the results are illustrated on Figure 3.22. It can be seen
that the smaller the perturbation the better the results of the 1D effective model.
The negligible difference between the 1 · 10−5and 2 · 10−5 indicates that a smaller
magnitude is not necessary. Concluding, it was selected to continue the process with
perturbations of 1 · 10−5m and 1 · 10−5rad.

Type of perturbation Units
Lateral m 1 · 10−5 2 · 10−5 1 · 10−4 1 · 10−3

Rotational rad 1 · 10−5 2 · 10−5 1 · 10−4 1 · 10−3

Table 3.4: Magnitudes of perturbation that were tested

Figure 3.22: Performance comparison for different magnitudes of perturbation - 6 MN
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4
Results

The chapter presents the outcomes of the study. Firstly the focus is on the 0th equilib-
rium position topic. Next, results of the different approaches are shown, compared and
the best approach is selected. Afterwards, intermediate findings are explained and a
discussion on whether the results can be interpolated to intermediate load cases follows.
Finally, the total and combined results are depicted.

4.1. “Linear Regime”
This section presents findings regarding the stiffness matrices of the 0th equilibrium
position. All the following figures refer to Case 1 since it is considered to be the
reference case of this study. First of all, the same configuration holds for all the
figures. To clarify, the columns of all the matrices run on the i direction while the
rows on the j. Moreover, the cells of the first row refer to the mud-line level, whereas
the cells of the last row indicate the tip of the monopile.

The focus now shifts to Figures 4.1 and 4.2. These illustrate the lateral-lateral
stiffness matrix and the rotational-rotational stiffness matrix respectively. It can be
seen that the shape resembles the results of W.G. Versteijlen [26]. The values of
the main diagonal, representing the “local” stiffness, are high. The term “local”
stiffness refer to stiffness at a specific depth connected to the deflection at the same
depth. Moreover, the remaining non-diagonal values, representing the coupling of
the continuum (nonlocality) are significantly lower. The magnitude of these cells
may confusingly seem to be zero, but it is not.
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Figure 4.1: Lateral-lateral stiffness
matrix- Case1 - 0 kN

Figure 4.2: Rotational-rotational
stiffness matrix- Case1 - 0 kN

Figure 4.3 provides assistance so as insight regarding the diagonal values of the
under discussion matrices is gained. In the top left subplot the evolution of the
“local” lateral resistance over the length of the pile is illustrated. To make things
clearer an example is given. The value of the x axis at -10 m is the summation of the
lateral forces acting on the ring at this depth, when this specific ring is displaced.
The same explanation holds for every value on this line.

It can be observed that the magnitude is more or less constant with the exception
of areas close to the boundaries of the monopile. This is rational because the stiffness
of the soil, introduced to the 3D simulations by the Young’s modulus, is constant over
depth. As far as the top layers are concerned, it can be noticed that for the mud-line
level the restoring force is slightly less than half of the constant value. This can be
explained by the absence of soil elements above this level which would create more
resistance in combination with the small strength of the top layers (correlation with
Figure 3.18 at which the ratio of forces on these layers is not exactly 2). Moreover,
this smaller strength at the top layers is to be blamed for the slightly smaller value
at -2 m. Furthermore, the part close to the tip of the pile is to be discussed. At
the tip level it can be noted that the resistance is smaller. A justification for this
phenomenon is that the ring below is not constrained, when the ring of nodes at the
tip is displaced. The auxiliary displacement matrix, which is not shown, is diagonal
having the same value (the imposed perturbation), and incorporating the trapezium
rule of integration. Therefore, the evolution of the “local” lateral stiffness evolves
as depicted on the top right subplot. Following an analogous reasoning the bottom
part of the figure, referring to the “local” rotational stiffness, can be explained.
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Figure 4.3: Evolution of the main diagonal for the lateral-lateral and rotational-
rotational stiffness matrices

The coupling stiffness matrices, illustrated on Figures 4.4 and 4.5, are yet to be
examined. The former figure refer to lateral resistance because of rotation, while
the latter to rotational resistance due to deflection.

Figure 4.4: Lateral-rotational stiff-
ness matrix- Case1 - 0 kN

Figure 4.5: Rotational-lateral stiff-
ness matrix- Case1 - 0 kN
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The shape for both relates to the results of the study by W.G. Versteijlen [26]. How-
ever, especially at the layers close to the boundaries of the pile, discrepancies can be
noticed. The exact relation Kl,r(i, j) = Kr,l(j, i) reported in [26] is not found, but
nonetheless the general behavior is similar.

Concluding, the results of the 0th equilibrium position are described here so as an
insight is offered and confidence on the process is gained by the comparison with the
work of W.G. Versteijlen [26]. However, due to the effects of nonlinear soil behavior
little will these stiffness matrices be used on later calculations.

4.2. Approach selection

All the different approaches examined in Section 3.3 were considered to be a solu-
tion on the problem of removing the stiffness of the monopile from the 3D model.
However, the most appropriate way is yet to be decided. Since all seemed to be
correct, the most preferred will be chosen by comparing the performance of the
nonlinear nonlocal 1D effective model when employing every methodology.

Before the final selection is made, it is fruitful to visually compare the lateral-
lateral stiffness matrices of an equilibrium position. For instance, Figure 4.6 illus-
trates these matrices calculated at the equilibrium position of 2 MN. All the ap-
proaches end up to similar shapes for the examined stiffness matrix. This enhances
the belief that all the proposed methodologies are conceptually correct.

Examining the matrices of Figure 4.6 in more detail, there are two main differ-
ences between the “subtraction” approach and the others. Firstly, the diagonal value
at the mud-line level for the “subtraction” approach is significantly smaller than what
is derived with the other methods. Secondly, it seems like the negative stiffness on
the first column representing the coupling of the continuum is smaller in absolute
value compared with the respective of the other approaches.

The complexity of simulations do not allow intuitive reasoning. However, a dif-
ference between this method and the others, which could introduce these dissimilar-
ities, is that this method includes 3D models that continue above the seabed, while
for the alternative methodologies there is no stiffness at elevation higher than the
mud-line. Indicatively, Figure 4.7 shows a comparison of 3D and 1D results based
on the “subtraction” approach. It can be seen that the 1D model gives a much stiffer
response, therefore this approach is considered inappropriate.
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Figure 4.6: Lateral-lateral stiffness matrices for the different approaches - Case1 -
Equilibrium position of 2 MN

The results of the other methods are satisfying, but it would be too extensive
to document the results for every equilibrium position for all the methods. There-
fore the 1D solutions are summarized in a lateral force - head displacement and an
overturning moment - head rotation curve, available on Figures 4.8 and 4.9.

In the aforementioned figures, it can be noticed that in the majority of points,
the alternative “rational” approach gives a better approximation. Thus, it was con-
cluded that the retainment of the exact shape of the monopile is important. This
was the reason that the “effective” approach was developed integrating this finding.
Moreover, it can be observed that the 3D solution is approximated more accurately
when employing the “effective” approach, especially in high loads.
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Figure 4.7: Comparison of 3D and 1D results using the “subtraction” approach - Case
1

The main reason for the dominance of this approach is the benefit of working
with one FE model. To elucidate, when transferring the displacement field from
one model to another discrepancies are introduced and the higher the magnitude of
the displacements the larger the error. However, it can be expected that with finer
discretization these dissimilarities are to be mitigated.

To summarize this section, it can be confirmed that the “subtraction” approach
did not produce the expected results. On the other hand, the other methodologies
approximate adequately the 3D solution. However, the best approximation occurs
when employing the “effective” method. Thus, the study, from now on, focuses on
results of this methodology exclusively.
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Figure 4.8: Comparison of the methods based on force displacement curve

Figure 4.9: Comparison of the methods based on moment rotation curve
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4.3. Equilibrium positions
This section focuses on results and findings regarding the other equilibrium posi-
tions. First of all, the performance of the nonlinear nonlocal 1D effective model
on a high load is depicted. Indicatively the equilibrium position of 10MN, Figure
4.10, is presented here (all the comparisons are available on Appendix A). It can
be seen that the 1D effective model is performing very well, with a total misfit
of Ctot = 2.7%. In comparison, W.G. Versteijlen had documented total misfits of
Ctot = 1.8%, Ctot = 3.6%, Ctot = 13.4% and Ctot = 7.3% for the examined cases of
his research [26]. Achieving similar total misfit value, when including nonlinear ef-
fects in the SSI, is considered an accomplishment of this study. However, the section
is devoted at two findings regarding the behavior and the shape of the stiffness ma-
trices. On the upcoming explanations the example of lateral-lateral stiffness matrix
is used.

First of all, a detailed explanation of a lateral-lateral stiffness matrix is given.
Comprehending the shape of such a matrix, as shown on the bottom right of Figure
4.6, is a complex task. Therefore, Figure 4.11 was produced to give an insight. This
figure consists of three graphs. It should get reminded that each row of the force
matrix refer to forces acting on the same ring, because of perturbations at different
depths. On the other hand, each column represent forces over depth because of a
disturbance at a specific depth. Once this is clear, it should be intuitive that when a
row of the force matrix is plotted against depth, the coupling of soil reaction between
the depth that this row represent and the other levels is illustrated. This is shown on
the left graph of the aforementioned figure.

At first, the almost constant part of each line is discussed. This part clearly shows
that the influence of perturbation is low at depths away from the level of disturbance.
It can also be noticed that the magnitude of this part firstly increases until the second
row and then decreases and becomes even negative. If this evolution is plotted
against depth, it would create the distribution of lateral reaction force illustrated
on the middle figure (blue line). The shape of distribution of the lateral force over
depth is typical for a laterally loaded monopile and is in correspondence with the
deformed shape shown in the same figure (black line). However, the summation
of this distribution is not exactly equal to the external horizontal load creating this
equilibrium position (6 MN). The reason is that the distribution also includes the
(small) influence of the perturbation as well.

Moreover, the behavior of the peaks is explained. These represent extra force
introduced by the perturbation. It can be seen that the relative increase of force is
getting less as we approach the rotation point of the monopile, with the exception
of the first two rows. This irregularity can be due to boundary effects and the small
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strength of the top layers. However, the general trend can be explained by pre-stress
effects. To clarify, the more the soil is pushed to one direction the more reaction is
available on this direction until the limit of passive reaction is reached [24].

Figure 4.10: Comparison of the 1D effective model performance

Once the left figure is clear, the transition to the shape of the stiffness matrix,
represented by the diagonal, the 4th row and the 4th column on the right graph, is
possible. Each point of the diagonal is computed as the scalar product of every line of
the left graph by the respective column of the inverse displacement matrix (including
the trapezium rule of integration). These columns have negative values except for
the row at which the perturbation is imposed until the rotation point, while the
vise versa happens below it. An example of a column of this matrix for different
equilibrium positions is available on Figure 4.14. The change of sign according to
the position with respect to the rotation point is a consequence of disturbing the soil
in the direction of the deformed shape. Therefore, the diagonal of the lateral-lateral
stiffness matrix is as illustrated on the right graph of Figure 4.11 (magenda line)

As far as the line representing the 4th row of the matrix is concerned, each point
is derived by the scalar product of the green line of the left graph with each of the
columns of the inverse displacement matrix. Combining this with the information in
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the last paragraph regarding the inverse displacement matrix, explains not only the
peak but also the change of sign at the rotation point of the green line on the right
graph. The explanation of the red line in the right graph is analogous.

Figure 4.11: Explanatory graph for the shape of a lateral-lateral stiffness matrix

Another interesting observation is an increase of magnitude on the diagonal of
the lateral-lateral and rotational-rotational stiffness matrices with increasing exter-
nal loading at the equilibrium positions. Once more, the former matrix is used as
explanatory example but the reasoning is similar for the latter as well.

The left graph of Figure 4.12 shows a similar to the left graph of Figure 4.11 plot.
Here, however, only one row of the force matrix is plotted but for all the equilibrium
positions. It can be seen that the constant part is increasing with higher external lat-
eral load at the top of the pile. The external loading is rising, therefore soil reactions
are also intensifying and this is illustrated by this increase. Furthermore, the magni-
tude of the peak climbs because of the same pre-stress effect that it was mentioned
before. The scalar product of these rows with the 3rd column of the inverse displace-
ment matrices (Figure 4.14) computes the stiffness for the cell Kl,l(3, 3). Hence, the
magnitude of the lateral-lateral stiffness for the specific cell is increasing, as it can
be seen on the middle graph. Generalizing, this behavior is occurring for all the cells
of the diagonal, as is depicted on the right part of the below figure.
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Figure 4.12: Explanatory graph for the behavior of the lateral-lateral stiffness matrices
with increasing equilibrium position

4.4. Interpolation in between the planes
On the previous section, Figure 4.10 clearly shows that the developed nonlinear
nonlocal 1D effective model can perform very well on high loads. However, this
performance summarized on Figures 4.8 and 4.9 is only discrete points. The actual
challenge for this model is to approximate the two curves entirely. Of course, the
same procedure for calculating the stiffness matrices of the nonlinear nonlocal 1D
effective model can be applied for every loading. However, such a process is not
efficient because of the extensive computational time required. The solution to this
is an effective interpolation.

It should get clear that the aforementioned interpolation is to be employed in-
between the planes of all the stiffness matrices. Surface interpolation require a
clear trend of evolution for the planes of the matrices. Such a trend can not be
spotted, therefore it was decided to perform single entity interpolation. To clarify,
the estimation of any stiffness value used on the nonlinear nonlocal 1D effective
model is based on the evolution of a specific cell. For example, deriving values
of the lateral-lateral stiffness matrix that refer to depth of -4 m connected to the
displacement at -4 m for case 1, only the values Kl,l(3, 3, x), x = Z

⋂
[1, 11] are used.

Remember that the vertical discretization of both examined cases is 2 m and 11
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equilibrium positions are selected for case 1.

4.4.1. Single entity evolution

Efficient interpolation requires a good estimation of the evolution (in the 3rd dimen-
sion) of each cell. As it was shown and explained on the previous section a cell on
the diagonal of Kl,l or Kr,r has an increasing in magnitude behavior when propa-
gating from the 0th to the last equilibrium position. The behavior of other cells is
still to be discussed.

Firstly, a cell just below the main diagonal of Kl,l is examined. Figure 4.13 is
similar with the left and central part of Figure 4.12. To clarify, on the left subplot the
lateral forces acting at a depth of -6 m because of the perturbations over the length
of the pile, for all the equilibrium positions, are illustrated. An example is given for
clarification purposes. The point of the blue dashed line at the seabed level describes
the force acting on the ring at -6 m because of displacing the ring at the seabed at
the equilibrium position of 10 MN. The scalar product of every line on the left graph
with the 3rd column of the inverse displacement matrix (including the trapezium
rule of integration) calculates every point of the right graph, which is the evolution
of Kl,l(4, 3) with increasing loading. As it can be seen in Figure 4.14 the difference
of the aforementioned column with rising loading is negligible. Therefore, it can be
claimed that the decrease of the examined cell is mainly due to the increase of the
peak of the force on the ring at -6 m. This can be attributed to the already mentioned
pre-stress effect.

Unfortunately, the monotonic behavior of the already examined cells is not al-
ways observed. As it can be seen on Figure 4.15 non-monotonic evolution may
occur. This can be explained only if it is separated into smaller areas, where the
mechanisms responsible for a change are detectable. Therefore, Figures 4.16, 4.17
and 4.18 are produced to assist on the explanation of this behavior.

First of all, the first of the three figures is discussed. On the left part of the
graph, the deflection shape for the first five equilibrium positions of case 1 is shown.
Moreover, rectangles representing the depths at which at least one soil element next
to the pile has entered the perfectly plastic region (before imposing the perturbation)
are illustrated.
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Figure 4.13: Behavior of Kl,l(4, 3) with increasing loading

To derive these areas the principal stresses of the soil elements attached to the
monopile were extracted from the 3D FEA. Based on these principle stresses and the
Mohr- Coulomb failure criterion generalized to any state of stress (Equation 4.1[3])
the yielding deviatoric stress of every element was calculated and compared with the
acting stress. If the acting deviatoric stress was equal to the yield deviatoric stress the
element was considered to have entered the plastic region. Mind that in Equation
4.1 compression is considered positive. Furthermore, p is the mean pressure, qy the
yielding deviatoric stress and θ the Lode’s angle.

qy√
3

(
cosθ − sinθsinφ√

3

)
= p · sinφ+ c · cosφ (4.1)
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Figure 4.14: 3rd column of inverse displacement matrix with increasing loading

In the central part of Figure 4.16 the forces acting at a depth of -12 m because of
disturbances over the length of the pile are plotted against the depth for respective
equilibrium positions (similarly to the left graph on Figure 4.12). On the other hand,
the right subplot illustrates the evolution of Kl,l(7, 3) with increasing loading.

A change on this evolution can be spotted in between 200 kN and 600 kN ,
where the stiffness changes sign. This can be explained by the central and left part
of the figure. Remember that the relative difference of the column of the inverse
displacement matrix is negligible especially for small loading (Figure 4.14). In the
middle graph, it can be seen that the force distribution on the examined ring is
similar up to the 200 kN equilibrium position, while it changes for the 600 kN case.
This is the reason of the change in sign, but why is this alteration observed?

Answer can be given by the plastic regions illustrated on the left subplot. It
can be noticed that the depth at which soil elements have been plastified is only
until -4 m for loading of 200 kN. These elements are relatively far away from the
examined depth, thus the influence on the force acting on the ring of nodes is small.
In contrast, regarding the equilibrium position of 600 kN the plastification depth
have reached much closer to the under discussion depth and the influence is more
severe. Concluding, the behavior of Kl,l(7, 3) for relatively small loading is mostly
influenced by the depth the plastification area has reached.

Figure 4.17 depicts the same kind of plots as Figure 4.16, but for higher loading.
The configuration and the illustration are identical for the two graphs. In addition,
on the left graph of the former figure the percentages illustrate the amount of plas-
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tified elements attached to the pile. On the right part of the under discussion figure,
it can be observed that the behavior changes twice in this range of loading. Remem-
ber that up to 600 kN the stiffness was increasing. This alteration is attributed to
redistribution of forces.

Firstly, the decrease of stiffness up to the equilibrium position of 1.2 MN is ex-
amined. As it can be seen on the left part of the figure, for the equilibrium position
of 600 kN the plastification area has not reached the under discussion depth (-12
m), while for external loading of 800 kN and 1.2 MN elements at this depth have
entered the plastic region. Therefore, redistribution of forces occur, resulting in the
reduction of stiffness.

On the other hand, from the equilibrium position of 1.2 MN to 2 MN an increase
on the stiffness is observed. This can be justified by the increase of force at -4 m
due to pre-stress effects. Moreover, the increase of plastified elements to almost
70% makes the redistribution of forces extensive. This complex phenomenon makes
further explanations on this increase difficult to be given.

Finally, the depth at which elements have entered the plastic region for the 2
MN equilibrium position should be discussed. It is counter-intuitive the fact that
plastification has occurred to elements at the rotation point, where the displacement
is very small, while the elements in between -16 m and -18 m are still in the elastic
region. This can be explained by the change of depth of the rotation point with
increasing loading. As it can be seen on Figure 4.16 the rotation point is in between
-16 m and -18 m , while only for loading greater than 600 kN the rotation point
drops below - 18 m. Therefore, the accumulated shearing induced to the elements
below -18 m is higher than the respective shearing in between -16 m and -18 m,
which explains the plastification region.

Lastly, Figure 4.18 should get discussed. For loading higher than 2 MN elements
that have entered the plastic region exist all over the depth. Thus the rectangles that
describe the plastified region are excluded from the left part of the graph. However,
the percentage of the plastified elements is available on the bottom right corner. It
can be seen that for the highest two loading combinations this percentage is almost
constant, which explains the approximately steady value on the right graph. The
previous up and down of this stiffness should be connected with the redistribution
of forces due to change of the number of the plastified elements.
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Figure 4.15: Behavior of Kl,l(7, 3) with increasing loading

Figure 4.16: Behavior of Kl,l(7, 3) with increasing loading - small loading region
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Figure 4.17: Behavior of Kl,l(7, 3) with increasing loading - intermediate loading
region

Figure 4.18: Behavior of Kl,l(7, 3) with increasing loading - high loading region
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Concluding, a constant trend for the evolution (along the 3rd dimension) of the
stiffness cells can not be found or predicted, therefore the interpolation difficulty is
rising.

4.4.2. Interpolation technique
As it was explained on the previous paragraphs, a clear constant trend on the evo-
lution of the single entities of the stiffness matrices can not be detected. Therefore,
as it is illustrated on Figure 4.19 the interpolation based on polynomial functions
can give erroneous results. The reason lies in the fact that when estimating with a
polynomial function, it is silently assumed that the individual points at which the
interpolation is established follow a specific distribution. Previously, it was shown
that the evolution of each cell is very difficult to be put into boundaries, therefore
such an interpolation is rational to fail.

Figure 4.19: Force head displacement curve for different interpolation techniques -
Case 1

On the other hand, this problem can be solved if the interpolation is constrained
between two in a row planes every time. This can be achieved with either a linear or
a spline interpolation technique. The term “smooth spline interpolation” mentioned
on the Figure 4.19 is explained on Appendix B. On the aforementioned figure, the
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linear interpolation gives very good result. However, Figure 4.20 represents the
respective results of Case 2 . It is obvious that the interpolated solutions are far from
being correct.

To improve the results of case 2, information before interpolating needs to be
added. To clarify, more anchor points should be computed, meaning the stiffness
matrices need to be calculated to extra equilibrium positions as well. By adding
three extra planes on the matrices, at equilibrium positions of 5.6 MN, 7.2 MN and
8 MN the results improve significantly, see Figure 4.21. On this figure it can be seen
that the smooth spline interpolation gives a good approximation, but the linear needs
more anchor points. By increasing them even more, Figure 4.22 is produced. It can
be seen that the linear interpolation gives a fair agreement with the 3D solution,
but it is not smooth. The reason for this may be the extensive plastification zone,
note that the head displacement touches 30 cm of deflection, in combination with
the coarse discretization. On the other hand, by adding two extra anchor positions
at case 1, at 4.8 MN and 8 MN, the results of linear interpolation can be improved
and become smoother (Figure 4.23). Therefore, it can be concluded that the more
equilibrium positions the better the approximation is.

Figure 4.20: Force head displacement curve for case 2
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Figure 4.21: Force head displacement curve case 2 - Three extra equilibrium positions

Figure 4.22: Force head displacement curve case 2 - Six extra equilibrium positions

CONFIDENTIAL



4.5. FINAL RESULTS 53

Figure 4.23: Force head displacement curve case 1 - Two extra equilibrium positions

4.5. Final Results

This section provides the final comparison of the 3D with the nonlinear nonlocal 1D
effective model in terms of lateral force - head displacement (Figures 4.24 and 4.25)
and overturning moment - head rotation curves, Figures 4.26 and 4.27. It can be
seen that for both cases the final fit using linear interpolation is very well. It needs
to be mentioned though that for the below results of case 1, two extra equilibrium
positions are added as anchor points with respect to the initial selection. On the
other hand, for case 2, six extra equilibrium positions were added compared to the
initial estimation.
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Figure 4.24: Force head displacement curve case 2

Figure 4.25: Force head displacement curve case 1
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Figure 4.26: Moment head rotation curve case 2

Figure 4.27: Moment head rotation curve case 1
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5
Conclusions and

Recommendations

A nonlocal 1D effective model able to predict the response of large monopiles in static
and dynamic loading had recently been developed with the assumption of linear soil.
This thesis project is an attempt to extend its applications to nonlinear continuum
and static loading. The nonlinear nonlocal 1D effective model is a Timoshenko beam
founded on a distributed, Winkler-type foundation, consisting of two types of fully cou-
pled springs, lateral and rotational. It is established on results of 3D FEA. The stiffness
matrices of the nonlinear nonlocal 1D effective model are expanded to a third dimension
so as nonlinearity of the SSI is captured. The performance of the 1D effective model is
assessed by comparing the lateral force - head displacement and the overturning mo-
ment - head rotation curves produced with the respective of 3D FEA. This chapter not
only illustrates the conclusions of the study, but also gives recommendations for future
work on the topic.

5.1. Conclusions
The project involved different challenges. For the reader’s convenience and easiness,
the conclusions follow the sequence of the outline of this study.

• Every plane on the 3rd dimension of the stiffness matrices represents the non-
local (coupled) soil resistance at different equilibrium positions. The term
equilibrium position refers to a state of displacement field. This is a deformed
situation caused by loading the monopile at the mud-line level with a combi-
nation of a lateral force and an overturning moment. The selection of these
positions is of great importance. If this choice is not fine enough, the interpo-
lated results will be of low accuracy.
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• To calculate each plane of the stiffness matrices, perturbations are imposed
along the length of the pile. These should follow the direction of the deformed
shape. At the beginning of the study, it was examined whether the results are
influenced by the direction of the enforced perturbation. It was observed that
they are sensitive and that imposing a unidirectional lateral perturbation along
the depth is not appropriate for capturing the nonlocal soil response.

• The magnitude of the aforementioned perturbations is also very important.
With smaller magnitude, better performance of the nonlinear nonlocal 1D ef-
fective model was observed.

• Even the smallest employed magnitude (1·10−5 m\rad according to the type of
perturbation) may induce extensive disturbance in the soil domain, especially
at equilibrium positions of small load combination. Consequently, very large
soil reactions are produced, which result in stiffer response of the nonlinear
nonlocal 1D effective model than expected.

• The perturbations must be imposed in a 3D model excluding the stiffness of
the pile. For this purpose, the displacement field of a 3D FEA was transfered to
another 3D FE model as input. This transfer creates small discrepancies that
in the end make the results less accurate. Moreover, the shape of the monopile
was distorted. The preservation of the exact deformed shape of the MP proved
to be important. In order to mitigate the induced error, a single 3D model
approach was developed, producing the best results.

• The nonlinear nonlocal 1D effective model engages four stiffness matrices. The
lateral-lateral represent lateral soil resistance due to pile lateral displacement,
while the rotational-rotational symbolizes rotational soil resistance due to pile
rotation. On the other hand, the last two, lateral-rotational and rotational-
lateral, signify coupling of lateral resistance with rotation and vise versa. The
main diagonal of the first two stiffness matrices are called “local” lateral and
“local” rotational stiffness respectively. Counter-intuitively these terms increase
when propagating along the 3rd dimension of the matrices. In contrast, the
stiffness values exactly above and below the main diagonal of the implied ma-
trices, are decreasing. The evolution of the remaining cells can be explained,
but can not be predicted.

• A clear trend for the evolution of the planes of the stiffness matrices could
not be identified. Therefore, single entity interpolation in between sequential
planes was used. Both linear and spline interpolation was examined as inter-
polating techniques. Both give good results, but the spline interpolation give
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slightly smoother results for the second case. However, the spline interpolation
assumes a third order polynomial distribution, which is questionable, therefore
it should not be chosen as “panacea” technique for alternative cases.

• Regarding the linear interpolation, it was found that the results become more
accurate and the two curves (lateral force - head displacement and overturning
moment - head rotation) get a better fit when the equilibrium positions have a
finer selection. Even though, it was assumed and proved that in high loading
the selection can be coarser, for the second case the initial selection was not
adequate.

Concluding,the extension of the nonlocal 1D effective model to nonlinear SSI,
under quasi-static loading, is considered successful. The majority of the individual
comparisons (between the 3D and the 1D effective model solution along the length
of the pile for a discrete load combination) showed excellent fitting, especially for
high loading. The final aggregate performance in terms of lateral force - head dis-
placement and overturning moment - head rotation curve is also very accurate.

Regarding the first case, the nonlinear nonlocal 1D effective model performs un-
expectedly for an external force of 600 kN (Figure A.9). That is also the reason
for the not very correct response at the interpolated 400 kN position (Figure 4.25).
This behavior can be attributed to the fact that the rotation point for external load-
ing of 600 kN is very close to a discretization depth. This means that the applied
perturbation at this ring is relatively large compared to its equilibrium displacement
(See also Appendix C). This “large disturbance” can be blamed for this unanticipated
behavior. Generalizing, it could be the reason for the larger misfit observed in the
small loading region compared to the misfit in the large loading region. A solution
is offered in the next section.

5.2. Recommendations
This section is divided into three parts. Firstly, recommendations regarding extra
validation of the exact procedure are given. Afterwards, suggestions concerning
improvement of the method are made, while at the end a proposal for a slightly
different methodology is presented.

First of all, recommendations for extra steps :

• A flexible pile behavior, according to Poulos [20], could be tested.

• It should be examined what the influence of finer meshing in the 3D FEA (con-
sequently finer discretization of the 1D effective model) is on the accuracy of
the nonlinear nonlocal 1D effective model.

CONFIDENTIAL



60 5. CONCLUSIONS AND RECOMMENDATIONS

• For the first case the examined force range could be extended. Even though the
lateral force is high (10 MN), the head deflection of the pile is still relatively
small.

• An in depth investigation of the redistribution of forces could be fruitful. When
an element enters the plastic region, the surrounding elements react to any
extra loading. An awareness of this redistribution’s path would give an extra
insight into the method.

Next, suggestions for improving the procedure :

• The soil modeling can be more realistic by adding layers of soil with different
properties. The soil monopile interaction can be modeled more advanced. For
example, contact elements that allow sliding and gaping can be used. More-
over, the area close to the pile can have reduced strength parameters to account
for the skin friction in-between soil and pile elements.

• The magnitude of the imposed ring perturbation could be reduced even more,
especially on cases it is applied on rings with small deflection at the equilibrium
positions. In order to achieve this “small” kinematic loading, the uniformly,
over depth, distributed magnitude of perturbation could vary. For instance, it
could be a percentage of the deflection at each depth.

• A different selection process of the equilibrium positions can be followed. A
more sophisticated procedure, for example amount of plastified elements on
the domain, may prove to be more efficient and refinement of the equilibrium
positions may be avoided.

• The nonlinear nonlocal 1D effective model should be extended to different
overturning moment over lateral force ratio applications. A solution could be
to expand the stiffness matrices in a 4th dimension to capture the dependence
of the response to this ratio. Every shelf (4th dimension) will consist of 3D
matrices calculated as described in this study, but for different moment over
force ratio.

• The developed nonlinear nonlocal 1D effective model engages secant stiffness
matrices. If an extension to cyclic loading is desired, a transformation to a
model employing tangent stiffness matrices is required.

Finally, a possibly beneficial slight adjustment of the method is discussed. The
imposed lateral perturbations refer to nodes. However, this perturbation introduces
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intense shear on the horizontal plane for the attached soil elements. In contrast, we
are interested on lateral soil resistance, which can be connected to surface movement
rather than disturbance on a line. Therefore, the proposal is to perform perturba-
tions of areas of the circumference and not of nodes when calculating the lateral-
lateral and rotational-lateral stiffness matrix. The remaining process can remain
unchanged. Of course, this alteration should firstly be checked on soil with linear
properties to prove its validity.

To summarize the research, the nonlinear nonlocal 1D effective model is able to
accurately predict the response of a monopile foundation under quasi-static loading,
the complete process to be followed is illustrated in Appendix D. However, its appli-
cability was examined at a specific ratio of overturning moment over lateral force.
Therefore, the model should get extended so as it predicts the response to different
quasi-static load combinations as well. When it proves its validity, an attempt to
broaden its application range to dynamic loading should be made. Upon this accom-
plishment, it can be used in the offshore wind industry so as advanced nonlinear SSI
is incorporated in the design of monopile foundations.
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A
Comparison of equilibrium

positions

A.1. Case 1

Figure A.1: Comparison of effective 1D model with 3D
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Figure A.2: Comparison of effective 1D model with 3D

Figure A.3: Comparison of effective 1D model with 3D
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Figure A.4: Comparison of effective 1D model with 3D

Figure A.5: Comparison of effective 1D model with 3D
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Figure A.6: Comparison of effective 1D model with 3D

Figure A.7: Comparison of effective 1D model with 3D
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Figure A.8: Comparison of effective 1D model with 3D

Figure A.9: Comparison of effective 1D model with 3D
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Figure A.10: Comparison of effective 1D model with 3D

Figure A.11: Comparison of effective 1D model with 3D

CONFIDENTIAL



A.2. CASE 2 69

Figure A.12: Comparison of effective 1D model with 3D

A.2. Case 2

Figure A.13: Comparison of effective 1D model with 3D
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Figure A.14: Comparison of effective 1D model with 3D

Figure A.15: Comparison of effective 1D model with 3D
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Figure A.16: Comparison of effective 1D model with 3D

Figure A.17: Comparison of effective 1D model with 3D

CONFIDENTIAL



72 A. COMPARISON OF EQUILIBRIUM POSITIONS

Figure A.18: Comparison of effective 1D model with 3D

Figure A.19: Comparison of effective 1D model with 3D
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Figure A.20: Comparison of effective 1D model with 3D

Figure A.21: Comparison of effective 1D model with 3D
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Figure A.22: Comparison of effective 1D model with 3D

Figure A.23: Comparison of effective 1D model with 3D
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B
Smooth spline interpolation

Spline is an interpolation based on piecewise polynomial fitting [28]. To clarify, in-
between every two anchor points a polynomial function describes the distribution of
under examination parameter. The order of the polynomial fitting used in this study
was third. Therefore, there are 4 unknowns for every fitting function.

According to the number of anchor points, the total number of unknowns changes.
For example, for case 1, employing 11 equilibrium positions, 40 unknowns for each
cell of all the stiffness matrices should be computed. Thus, equal number of equa-
tions is needed. The mathematical expression of a spline and the equations for
calculating the terms of the cubic spline are available on the following equations:

S(x) =


C1(x),x0≤x≤x1

···
Ci(x),xi−1≤x≤xi

···
C10(x),x9≤x≤x10

Ci(xi−1) = yi−1

Ci(xi) = yi
C ′i(xi) = C ′i+1(xi)
C ′′i (xi) = C ′′i+1(xi)

C ′′1 (x0) = 0
C ′′10(x10) = 0

(B.1)

However, in this study a “smooth” spline interpolation was engaged, using Mat-
lab. The term smooth comes from the fact that the spline is combined with a least
square approximation, meaning there is a smoothing parameter that introduces a
combination of least square and spline interpolation [16]. This parameter was not
specified, but Matlab was automatically computing the best fit.
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C
Unexpected behavior of 1D

effective model

The behavior of the nonlinear nonlocal 1D effective model in case 1 for the equilib-
rium position of 600 kN is unanticipated (Figure A.9). The left part of Figure C.1
shows the deformed shape for this equilibrium position. Moreover, the deflection
at -18 m is mentioned on the plot. It can be seen that it is smaller than the ap-
plied perturbation (0.01mm), which opposes to the idea of imposing small lateral
disturbances. This relatively large magnitude of perturbation is considered to be the
reason for the unpredictable large misfit (Figure A.9).

The calculated stiffness matrices at the aforementioned equilibrium position also
influence the performance of the nonlinear nonlocal effective 1D model for similar
loading, because they are used as anchor planes for the interpolation. That was the
case for external lateral force of 400 kN (see Figure 4.25). To overcome this problem,
it was decided to derive the stiffness matrices of the 400 kN equilibrium position
following the perturbation procedure. However, the quality of the fit between the
1D and the 3D results is low (Figure C.2). A suspected reason is again the relative
magnitude of perturbation. As illustrated on the right subplot of Figure C.1, the
deflection at - 18 m is almost 100 times smaller than the imposed perturbation on
this level.
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Figure C.1: Deformed shape for equilibrium positions at 600 kN and 400 kN

Figure C.2: Comparison of effective 1D model with 3D

CONFIDENTIAL



D

Procedure
79



80 D. PROCEDURE

Figure D.1: Flowchart of the procedure for building the nonlinear nonlocal 1D effec-
tive model
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