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Abstract. Hydrological data collection requires deploy-

ment of physical infrastructure like rain gauges, water level

gauges, as well as use of expensive equipment like echo

sounders. Many countries around the world have recorded a

decrease in deployment of physical infrastructure for hydro-

logical measurements; developing countries especially have

less of this infrastructure and, where it exists, it is poorly

maintained. Satellite remote sensing can bridge this gap, and

has been applied by hydrologists over the years, with the ear-

liest applications in water body and flood mapping. With the

availability of more optical satellites with relatively low tem-

poral resolutions globally, satellite data are commonly used

for mapping of water bodies, testing of inundation models,

precipitation monitoring, and mapping of flood extent. Use

of satellite data to estimate hydrological parameters contin-

ues to increase due to use of better sensors, improvement in

knowledge of and utilization of satellite data, and expansion

of research topics. A review of applications of satellite re-

mote sensing in surface water modelling, mapping and pa-

rameter estimation is presented, and its limitations for sur-

face water applications are also discussed.

1 Introduction

Hydrological data collection still remains a difficult task

nowadays due to non-availability of measurement devices,

inaccessibility of the terrain and limitations of space/time

(Quin et al., 2010; Pereira-Cardenal et al., 2011). A good

alternative to overcome these difficulties is use of satel-

lite remote sensing, which can give a synoptic view of tar-

get areas (Fig. 1) and measure target surface changes and

therefore provide information needed for hydrological stud-

ies, river basin management, water hazard/disaster monitor-

ing/prevention and water management, etc. Through the sci-

ence of remote sensing, information about an object can be

obtained without coming into direct contact with it (Lille-

sand et al., 2004). This capability works by measuring elec-

tromagnetic energy reflected by or radiated from objects on

the Earth’s surface (Fig. 1), in such a way that the differ-

ence in reflectivity of objects enables recognition/detection

and isolation of each type/class (Fig. 2).

Remotely sensed data are of two types, depending on the

main source of energy. Passive remote sensing depends on

natural energy from the Sun. Active remote sensing uses con-

trolled energy sources from instruments beaming sections of

the electromagnetic spectrum. Imagery obtained via instru-

ments that measure reflectance from the Sun is known as op-

tical imagery. Optical imagery from satellites is therefore ac-

quired during the day since it depends on the reflections of

sunlight from objects on the Earth’s surface in the absence of

cloud cover. Depending on the mission specifications, satel-

lites are placed on different kinds of orbits around the Earth.

The orbits include low Earth orbit (LEO), medium Earth or-

bit (MEO), and geo-synchronous orbits (GSO); variations

of these classes of orbits are the polar orbit, the geostation-

ary orbits, the Molniya orbit and the Sun-synchronous orbit.

Most optical satellites used for hydrological applications are

in near-Earth orbits and are therefore able to provide detailed

data at high ground (e.g. Fig. 1), although the best-resolution
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Figure 1. NigeriaSatX satellite image showing rivers in the Niger

delta.

data are usually not freely available and are expensive to ob-

tain. Due to this detailed resolution, optical satellite imagery

is used for inundation mapping, drainage mapping, disaster

monitoring, land-use/land-cover change analysis, etc. (Owe

et al., 2001).

Active remote sensing can provide data as imagery

(e.g. radar), and in the form of pulse measurements (e.g. al-

timeters and scatterometers). Radar is an active source of re-

mote sensing data which acquires data via instruments that

emit radar signal towards the object of interest and mea-

sure the reflected energy from the object. Radar can penetrate

cloud cover and can be acquired at any time, independent of

availability of sunlight. The penetration characteristic of the

SAR satellites enables measurement of soil moisture in bare

areas, making it useful for land-use and land-cover studies as

well as Earth observation and monitoring (Owe et al., 2001).

SAR is a side-looking instrument that sends out signals in-

clined at an angle. For water bodies, the reflectivity of SAR

waves is spectacular, giving a very low radar return and very

dark images. However, when there is surrounding or emer-

gent vegetation, wind, turbulence etc., there can be signifi-

cant backscatter, which affects the accuracy of information

obtained from the radar measurements (Smith, 1997).

Satellite remote sensing has been applied in hydrology for

many years. Table 1 shows some satellite missions and sen-

sors used for hydrological studies and the application areas.

A review by Smith (1997) shows that the earliest hydrolog-

ical applications were in water body and flood mapping; the

review includes many examples of inundation maps devel-

oped from satellite imagery. Owe et al. (2001) also com-

piled papers presented at a conference on applications of re-

mote sensing in many aspects of hydrology. Beyond map-

ping, satellite data in the form of imagery, a digital eleva-

Figure 2. Classified NigeriaSat-1 image of the Niger delta showing

five feature classes.

tion model (DEM), altimetry data, etc., can be used as hy-

draulic model input forcing factors or to constrain model data

during calibration/validation/verification (Pereira-Cardenal

et al., 2011). Satellite-based estimates of river flow, river

width, water levels and flooding extent are used for model

calibration/validation/verification. The choice of suitable ob-

served data can introduce subjectivity into the modelling pro-

cess and subsequently increase uncertainty. Consequently,

satellite data used to benchmark the model output accuracy

can influence model calibration and validation (Stephens et

al., 2012). A review of types of satellite data used for flood

modelling by Yan et al. (2015) discusses satellite data accu-

racy and methods used for error reduction.

The main scope of this review is to present literature find-

ings about application of satellite remote sensing in surface

water modelling, mapping and parameter estimation. The

review limits itself to water flowing within channels and

coastal areas, and therefore excludes applications of satellite

remote sensing for soil moisture measurement, rainfall esti-

mation, rainfall/runoff modelling, and its associated routing

estimations.

The paper is structured into two main parts. The first gives

an overview of applications of SAR, optical, altimetry and

DEM data for estimation of surface water parameters, mod-

elling and mapping. The second part discusses the limitations

of utilizing satellite-derived data in surface water applica-

tions and the future directions aimed to fill the gaps. The

review ends with a conclusion.

Hydrol. Earth Syst. Sci., 19, 3755–3769, 2015 www.hydrol-earth-syst-sci.net/19/3755/2015/
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Table 1. Some satellite missions and sensors used for hydrological studies.

Mission Sensor(s) Application (hydrological)

Aqua AIRS, AMSR-E, AMSU-A, Surface temperatures of land

CERES, HiRDLS, HSB, MODIS and ocean (flood mapping)

CryoSat DORIS-NG, laser reflectors Ice thickness (applied also

(ESA), SIRAL for near-shore mapping and

inland water monitoring)

Envisat AATSR, ASAR, ASAR Physical oceanography, ice

(image mode), ASAR and snow (ocean/river water

(wave mode), DORIS-NG, level altimetry)

MERIS, MIPAS

ERS1 AMI/SAR/image, Earth resources, physical

AMI/SAR/wave, oceanography (altimetry)

ERS2 AMI/scatterometer, ATSR Earth resources, physical

AMI/SAR/image,AMI/SAR/wave, oceanography (altimetry)

AMI/scatterometer, ATSR/M

Jason1 DORIS-NG, JMR, LRA, Physical oceanography (ocean/

POSEIDON-2 (SSALT-2), TRSR river water level altimetry)

Jason2 AMR, DORIS-NG, GPSP, JMR, Physical oceanography

LRA, POSEIDON-3 (altimetry)

Radarsat 1/2 C-band SAR, X-band SAR Flood mapping/modelling

Sentinel 1 C-band SAR Flood mapping/modelling

SRTM C-band SAR, X-band SAR Digital elevation models,

flood modelling

SPOT 4 DORIS (SPOT), Digital terrain models,

HRVIR, VEGETATION environmental monitoring

SPOT 5 DORIS-NG (SPOT), HRG, Digital terrain models,

HRS, VEGETATION environmental monitoring

Terra MODIS, MOPITT, MISR, Physical processes, surface

ASTER, CERES temperatures of land and

ocean (surface water mapping)

Topex/Poseidon DORIS, LRA, POSEIDON-1 Physical oceanography

(SSALT-1), TMR, TOPEX (altimetry)

2 Overview of satellite data applications for surface

water studies

2.1 SAR data applications

SAR data are useful for flood extent measurements even in

cloud-covered areas, and are therefore often used to make

flood maps (e.g. Schumann et al., 2007; Horritt, 2006; Di

Baldassarre et al., 2009; Vermeulen et al., 2005; Mason et

al., 2007; Long et al., 2014). The variation of radar backscat-

ter from different targets enables flood extent mapping. Sev-

eral methods have been used to delineate the flooding ex-

tent from SAR data; e.g. utilization of multi-polarized ad-

vanced SAR images, application of a statistical active control

model, multi-temporal image enhancement and differencing,

histogram thresholding/clustering, radiometric thresholding,

pixel-based segmentation, and use of artificial neural net-

works (Long et al., 2014). Multi-temporal image flood map-

ping involves acquiring flooding and non-flood images of the

same area and combing them to get an image which indicates

change by colours appearing in the image. A modification of

the multi-temporal technique introduces an index that shows

the changing areas (Skakun, 2010). Sarhadi et al. (2012) ap-

plied satellite stereoscopic images of Cartosat-1 to delineate

flood hazard maps; the method used rational polynomial co-

efficients to extract a high-resolution digital terrain model

(DTM) and detailed parameterization of the channel in the

Halil Rud basin and Jiroft in south-eastern Iran.

www.hydrol-earth-syst-sci.net/19/3755/2015/ Hydrol. Earth Syst. Sci., 19, 3755–3769, 2015
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Segmentation threshold algorithms are used to delineate

flood extents after a threshold has been manually chosen.

Flood extent maps were created over 4 years of seasonal

flooding in the Chobe floodplain, Namibia (Long et al.,

2014). Eleven scenes of SAR data were enhanced using

adaptive Gamma filtering (to remove speckles) and differ-

ence images created by subtracting from the reference non-

flood season image. The histograms of the difference images

were then used to create thresholds separating flooded and

non-flooded areas. The threshold for flooded areas was de-

termined by subtracting the standard deviation multiplied by

a coefficient Kf from the mean pixel value. For flooding un-

der vegetated areas, the threshold was determined by adding

the standard deviation multiplied by a coefficient Kfv to the

mean pixel value. The flood maps were then created using

segmentation clustering in ENVI. Segmentation based on

self-organizing Kohonen map (SOM) neural networks was

used by Skakun (2010) to map flooding from five rivers in

China, India, Hungary, Ukraine, Laos and Thailand. Train-

ing and testing of the neural networks were based on ground-

truth data which enabled classification of water and dry land

pixels. SOM produces a low-dimensional representation of

the input space that still preserves the topological properties

of the input space. The method enabled automatic discovery

of statistically salient features of pattern vectors, clustering

and classification of new patterns. The resulting flood maps

show an 85–95 % classification rate compared with indepen-

dent testing data, showing the applicability of the method for

emergency flood mapping.

The interferometric phase difference between two SAR

images is called the interferogram and includes signatures

from topography, noise, displacement, atmospheric effects

and baseline error. The advantage of phase changes in inter-

ferometer SAR (InSAR) data enables detection of changes

in the Earth’s land use and land cover. This characteristic

is very useful for identification of flooded areas over wet-

lands as used by Dellepiane et al. (2004). The method, based

on fuzzy connectivity concepts, automatically selected the

coastline from two InSAR images using the coherence of the

two images.

InSAR has been used to calculate the changes in water lev-

els using satellite altimetry data for calibration (Kim et al.,

2009; Jung et al., 2010). To obtain the displacement phase

used to obtain the change in water height, all other signals

are removed. The interferogram data give the relative wa-

ter level change between two locations. Where there is mea-

sured water level data (within an acceptable radius), the rel-

ative water level change can be converted into the absolute

water level change. Jung el al. (2010) used interferomet-

ric SAR data from JERS-1 to study change in water levels

for the Amazon and Congo rivers. The data were acquired

for the low-flow and high-flow seasons and processed us-

ing the “two pass” method which includes flat Earth phase

removal and interferometric phase removal. Flooded vegeta-

tion, non-flooded areas and open water were differentiated

based on backscatter “noise floor” and “mean interferomet-

ric coherence” of flooded and non-flooded areas. The tem-

poral variation in water level dh/dt was obtained by convert-

ing the phase changes in imagery to water level referenced

to the WGS84 datum using altimeter measurements from

Topex/Poseidon. Using dh/dt to characterize the Amazon

floodplain showed increasing dh/dt from upstream to down-

stream within a complex pattern of interconnected channels

with distinct boundaries and varying dh/dt . The Congo River

characterization of dh/dt showed a uniformity and limited

connectivity between the river and the adjoining wetlands.

Schumann et al. (2007) used Envisat ASAR data to identify

spatial clusters of channel roughness in order to calibrate a

HEC-RAS model of Alzette River flooding. ERS SAR data

of the same event and an aerial photo of an earlier event were

used for validation of the calibrated model and overall model

performance was compared to measured high water marks at

seven points during the flood event. The mean cross-sectional

water levels used for model evaluation were estimated from

the intersection of ASAR flood extent boundaries with a li-

dar DEM. At each cross section, ranges of channel roughness

values are run in a Monte Carlo simulation and the cumula-

tive distribution functions (CDFs) of the values are gener-

ated; these CDFs are compared with a CDF of a uniformly

distributed model (where model functioning is the same over

the entire parameter space). The deviation of the individual

CDFs from the CDF of uniform distribution gives the mea-

sure of the parameter sensitivity, the sum of which shows the

local functioning of the model at that cross section. CDFs

with similar error characteristics are grouped into clusters

using k-mean clustering. The results showed that two clus-

ters of roughness values are enough to measure the parameter

sensitivity.

To utilize SAR data for flood depth estimation, methods

have been developed that derive flood heights from flood ex-

tent data. The methods used combine SAR data with ele-

vation data sources like DEMs, altimetry, and triangular ir-

regular networks (TINs). Mason et al. (2007) and Schumann

et al. (2006) estimated the mean cross-sectional water levels

used for model evaluation from the intersection of SAR flood

extent boundaries with a lidar DEM. Schumann et al. (2006)

used linear regression and an elevation-based model (RE-

FIX) to convert SAR flood extent to heights and derived

the flood water depth. Assuming a horizontal water height

at cross sections, the water levels on the left and right banks

were taken and used to subtract the floodplain DEM values

to get the water height. The flood water line was then ex-

tracted using the regression equation: H = a · d + b, where

a= slope of the regression line, d = downstream water dis-

tance, and b= intercept. Using the cross sections as break

lines and the flood water heights extracted, a TIN of the wa-

ter heights at each cross section was produced. The flood wa-

ter depth was derived by subtracting the DEM at the cross-

sectional interception points from the flood water height TIN.

The result showed an RMSE of 18 cm for a channel with

Hydrol. Earth Syst. Sci., 19, 3755–3769, 2015 www.hydrol-earth-syst-sci.net/19/3755/2015/
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no hydraulic structures and 31 cm for a channel with many

hydraulic structures and changes in slope. The study recom-

mends that nonlinear regression/piece-wise regression can be

used in the case of sudden changes in slope (due to hydraulic

structures) that cause the channel geometry to change.

Altimetry data from ENVISAT were combined with In-

SAR data from PALSAR and Radarsat-1 to compute absolute

water level changes over the wetlands of Louisiana (Kim et

al., 2009). The two-pass InSAR method was used to check

the two SAR images acquired at different times for phase

differences. The ENVISAT altimetry data were used as the

reference absolute water level change dh0/dt to compute the

all the changes in water level over the domain. The results

obtained for water level changes showed better comparison

with the wetland gauge than with the channel gauge, which

had many levees interrupting the flow. Westahoff et al. (2010)

mapped probabilistic flood extents from SAR data by us-

ing the amount of backscatter and local incidence angles to

create histograms that distinguish between wet and dry ar-

eas. The histograms were used to calculate the probability of

flooding of every pixel.

Satellite data are used to calibrate hydrologic models, es-

pecially in un-gauged catchments (Vermeulen et al., 2005;

Sun et al., 2009). Calibration of flood inundation models can

be done using several model parameters, but the most sen-

sitive parameter that shows a direct relationship with water

stage and therefore flooding extent and timing is the chan-

nel roughness (Schumann et al., 2007). Woldemicheal et

al. (2010) showed that for braided rivers where the hydraulic

radius is obtained from indirect sources like satellite data,

Manning’s roughness coefficients can be used to minimize

computed water level outliers. Roughness coefficient values

to be used for calibration can be determined via flood mod-

elling where the measured data are available.

Satellite-based maps of flood extent have been used to cal-

ibrate flood inundation models either based on single or mul-

tiple flood events (Di Baldassarre et al., 2009). Horritt (2006)

calibrated and validated a model of uncertain flood inun-

dation extent for the Severn River using observed flooded

extent mapped from satellite imagery. Model accuracy was

checked using reliability diagrams, and model precision was

checked using an entropy-like measure which computes the

level of uncertainty in the flood inundation map. The ensem-

ble model outputs were compared with ERS and Radarsat

data for calibration using the measure of fit. The results

showed that the mapped flood extent produced only a mod-

est reduction in the uncertainty of model predictions because

the timing of satellite passes did not coincide with the flood

event. Di Baldassarre et al. (2009) showed that satellite flood

imagery acquired during an event can be reliable for flood

mapping. They used imagery of a single event covered by

two satellite passes captured almost at the same time to de-

velop a method to calibrate flood inundation models based

on “possible” inundation extents from the two imageries.

Hydrodynamic flood model extents were compared with the

satellite flood extent maps in order to calibrate the floodplain

frictional parameters and determine the best satellite resolu-

tion for flood extent mapping. In spite of their different res-

olutions the result showed that both satellite imageries could

be used for model calibration, but different frictional values

have to be used in the model.

For un-gauged basins where hydrological data are inacces-

sible, satellite measurement of river width can be used for hy-

drological model calibration (Schumann et al., 2013; Sun et

al., 2009). River width can be estimated from several sources

of satellite data, making it more readily available than dis-

charge or water level. Sun et al. (2009) used measured river

width from satellite SAR imagery to calibrate HYMOD hy-

drological model. The model calibration based on river width

gave an 88.24 % Nash coefficient, with a larger error during

low-flow than high-flow periods, implying its usefulness for

flood discharge calculations. From the results, braided rivers

showed lower errors for good Q–W relations from satellites.

However, a small error in width measurement can lead to

a large error in discharge estimation as the discharge vari-

ability was much larger than the width variability. Sun et

al. (2010) used the GLUE methodology to reduce this un-

certainty in calibration of river width-to-discharge estimation

with the HYMOD hydrological model. From 50 000 samples

of the parameter sets, 151 (likelihood equals RMSE values)

succeeded as behavioural sets to be used in the model to

simulate the measured satellite river widths. River discharge

simulated with the successful parameters (likelihood equals

Nash–Sutcliffe efficiency) gave good discharge simulation

with a correlation R2
= 0.92.

Model use in forecasting is affected by the propagation

of the input uncertainties which make it less accurate. Data

assimilation can be used to reduce the accumulation of er-

rors in hydraulic models. Assimilation combines model pre-

dictions with observations and quantifies the errors between

them in order to determine the optimal model and improve

future forecasts (Mcmillan et al., 2013). Types of assimi-

lation techniques include Kalman filter (and its variations),

particle filter and variational technique. Particle filter assimi-

lation is a Bayesian learning system which accounts for input

data uncertainty propagation by selecting suitable input data

from randomly generated ones without assuming any partic-

ular distribution of their PDF (Noh et al., 2011). The particle

filter technique was used in studies like Matgen et al. (2010)

and Giustarini et al. (2011), where input data are in the form

of ensemble flow outputs of a hydrological model. In Gius-

tarini et al. (2011) to assimilate water levels derived from

two SAR images of flooding in the Alzette River into a hy-

draulic model, 64 upstream flows were generated from an en-

semble hydrologic model and used as the upstream boundary

conditions. The most commonly used data assimilation tech-

nique however is the Kalman filter, which is a state-space

filtering method which assumes a Gaussian distribution of er-

rors. Vermeulen et al. (2005) used SAR-derived flood maps

and time series data to make flood forecasting more accurate

www.hydrol-earth-syst-sci.net/19/3755/2015/ Hydrol. Earth Syst. Sci., 19, 3755–3769, 2015
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through data assimilation. The assimilation process based

on the Kalman filtering technique used adaptation factors

to multiply the original model output and an adaptation fac-

tor in order to generate a new parameter value. The process

included calculation of water levels/discharge on the Rhine

River by combining hydrologic modelling of the sub-basins

and hydraulic modelling using downstream measured data.

Data assimilation was done using measured water levels to

determine the roughness coefficients which calibrate the cal-

culated water levels. The model output water levels were

compared with water levels derived from flood maps but be-

cause the natural flow of the channel or floodplain has been

modified, good results were only obtained when the geo-

referencing of the map is deliberately shifted or the flood-

ing extent is exaggerated by adding some random noise over

a large area of 7–12 km. Barneveld et al. (2008) applied the

same method and models for flood forecasting on the Rhine

River and produced good results of 10-day forecasts; there-

fore assimilating data for natural catchments results in better

forecast model values. More information on hydrologic data

assimilation techniques can be found in Matgen et al. (2010),

Chen et al. (2013) and García-Pintado et al. (2015).

2.2 Satellite altimetry data applications

Satellite altimetry (Fig. 3) works on the principle of return

echo of pulses sent from the satellite nadir point and reflected

from the surfaces of open water.

The height of the water surface is extracted from the dis-

tance between the satellite and the water body with reference

to a local datum given as

h= R−

(
c
1t

2

)
−

∑
cor, (1)

where h is water level, R is the distance between the satellite

altimeter and the water body, c is the speed of light, 1t /2

is two-way travel time of radar pulse, and
∑

cor is the sum

of corrections for ionospheric, wet and dry tropospheric, and

tidal corrections.

This principle (Fig. 3) has its limitations as the accuracy

of the data is affected by atmospheric conditions, sensor and

satellite characteristics, and reflectance conditions (Belaud et

al., 2010).

Although satellite altimetry was developed and optimized

to measure ocean level changes (not rivers), it has been

demonstrated as a source of data over large rivers and lakes

(Tarpanelli et al., 2013; Jarihani et al., 2013). Typical altime-

ter footprints are in kilometres; e.g. ENVISAT ranges from

1.6 to 10.8 km, TOPEX/POSEIDON from 2.0 to 16.4 km.

Thus satellite altimetry data are used as the primary source of

water level data in ungauged basins, and as a secondary data

source to compare with measured data in sparsely gauged

basins.

Oftentimes the selection of altimeter water level data to be

used depends on the time and season of acquisition (Papa

Figure 3. An illustration of height measurement using satellite al-

timetry.

et al., 2012). Data acquired during high flows give better

measurements than low-flow season data which usually have

artefacts (in the form of islets, river banks, vegetation, etc.)

that reduce the accuracy of the data in comparison with lo-

cal gauge data. Analysing data over the Ganga–Brahmaputra

rivers, Papa et al. (2012) got mean errors less than 20 cm

when high-flow altimetry data were compared with measured

data, but low-flow data showed errors larger than 30 cm.

Siddique-E-Akbor et al. (2011) used data from ENVISAT

to compare with 1-D HECRAS model output water levels

in order to check for accuracy and ability to get the sea-

sonal trend. The model was run for periods of available EN-

VISAT data and the output compared with the ENVISAT

time series. The results showed RMSE ranging from 0.70

to 2.4 m, with the best correlation obtained during high-flow

seasons. The study suggests the use of calibrated hydrody-

namic/hydrologic model outputs to benchmark altimetry data

in ungauged and poorly gauged catchments.

Virtual altimeter gauging stations are located at the inter-

section of satellite tracts with water bodies. Santos da Silver

et al. (2007) used virtual altimeter stations as water level data

sources for ungauged catchments. They chose the median

values of virtual stations that fell within river water bodies as

water levels for the river and compared with measured val-

ues from gauging stations located within 20 km of the virtual

stations using weighted linear regression. In order to avoid

comparing two areas with different hydrological conditions,

a ratio χ was computed of the discrepancy between the EN-

Hydrol. Earth Syst. Sci., 19, 3755–3769, 2015 www.hydrol-earth-syst-sci.net/19/3755/2015/
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VISAT master points and the linear regression and the un-

certainties associated with the ENVISAT master points. The

developed method enabled a comparison that produced re-

gression coefficient greater than 0.95 between the ENVISAT

and gauges series. Santos da Silver et al. (2012) used 533 EN-

VISAT virtual stations and 106 gauging data to map extreme

stage variations along 32 Amazon basin rivers and analysed

for drought in the catchment. Using 2005 drought and 2009

flooding events as a basis, data from 2002 to 2005 were anal-

ysed and time series of ENVISAT per virtual station were av-

eraged to get monthly values. Values of the mean amplitude

stage variation for the measured gauges showed good consis-

tency with those of satellite altimetry and results for drought

showed a range between −4 and 1 m of anomalies. Getirana

et al. (2009) went even further and developed a rating curve

of discharge values using virtual stations from ENVISAT for

the upper part of the Branco River basin, Brazil. Virtual sta-

tion data were compared with nearby gauge data to check for

seasonal similarity and trend, and those virtual stations with

standard deviations < 0.1 m were chosen. The method used

a distributed hydrological model to derive discharge values

for the virtual stations. Model calibration and validation re-

sults showed good correlation with measured data, and the

rating curve showed a 2.5–5 % increase in bias when com-

pared with rating curves from measured data. The calibration

results were affected by rainfall data spatial distribution.

Although use of satellite altimetry for river stage monitor-

ing is usually applied to large rivers with a few kilometres’

width (Papa et al., 2012), altimetry data were used to esti-

mate discharge in an ungauged part of the Po River basin

(width: 200–300 m) using cross-sectional data (Tarpanelli

et al., 2013). They used a simplified routing model (RCM)

based on upstream data, wave travel time and hydraulic con-

ditions on two river sections to get the flow in the second

river section. The results showed good agreement between

simulated and in situ discharges, and gave lower RMSEs (rel-

ative to the mean observed discharge) than calculated results

using an empirical equation also based on cross-sectional ge-

ometry. Seyler et al. (2009) used altimetry virtual stations to

estimate river slope. The calculated river slopes were used

to get the river bank full discharge, and the results com-

pared well with gauge data. Lake water volumes were cal-

culated for Lake Mead (USA) and Lake Tana (Ethiopia)

using five altimetry data products: T/P (Topex/Poseidon),

Jason-1, Jason-2, GFO (Geosat Fellow On), ICESat and EN-

VISAT (Duan and Bastiaanssen, 2013). The method used

Landsat TM/ETM+ imagery data to map the water surface

areas using the Modified Normalized Difference Water In-

dex (MNDWI) method which enables robust extraction of

water bodies from optical data (Zhang et al., 2006). The cal-

culated water surface areas agreed with in situ measured data,

with an R2 of 0.99 for Lake Mead and 0.89 for Lake Tana,

and with RMSEs of 2.19 % for Lake Mead and 4.64 % for

Lake Tana. The water volume was estimated using the low-

est altimeter water level as the reference water level; this is

then subtracted from all the other measurements to obtain the

water level above lowest level (WLALL) to be used for vol-

ume estimation. Using regression analysis a relationship was

established between the estimated water surface areas and the

WLALL as A= f (WLALL)= aWLALL2+ bWLALL+ c;

where a, b, and c, are constants. The integral of this re-

lation provides the water volume above the lowest water

level (WVALL). The estimated water volumes agreed well

with in situ water volumes for both Lake Mead and Lake

Tana with R2> 0.95 and RMSE ranging between 4.6 and

13.1 %.

2.3 Optical satellite data

Depending on its contents, water reflects electromagnetic

waves differently; pure clear water reflects differently from

muddy water or water containing vegetation (floating or sub-

merged). The amount of energy measured from the satellite

sensor also depends on the bands used; the blue band pen-

etrates water up to 10 m, the red band is partially absorbed,

and the near-infrared band is totally absorbed. These sensor

properties consequently affect the image, so that an image

acquired using the blue band will measure reflectance from

any submerged vegetation within its reach, while red/near-

infrared images will show water as dark grey/black, respec-

tively (Meijerink et al., 2007).

With the availability of more optical satellites with rel-

atively low temporal resolutions globally, many scenes of

archived data can be accessed and used for change detection

studies and flood extent mapping in areas with little cloud

cover. Penton and Overton (2007) combined flood mask ex-

tents from LandSat ETM of four flood events with a lidar

DEM to produce water heights for the floodplain. The heights

of the flood mask water points were used to interpolate a

water height surface which was subtracted from the DEM

to produce the inundation map. To check for water surface

change, satellite microwave data from the AMSR-E satellite

were used to calibrate the CREST hydrologic model using

ratio brightness temperature measurements over water bod-

ies and calibrated dry areas (Khan et al., 2012). The AMSR-

E detected water surface signal frequency was compared

with gauge flow with a probability of exceedance< 25 %

and showed good agreement. The output of model calibrated

with AMSR-E detected water surface signal showed good

agreement with observed flow frequency. Results of val-

idation were equally good with high correlation between

model results and observed flows with probability of ex-

ceedance< 25 %. The output of the model calibrated with

AMSR-E detected water surface signal showed good agree-

ment with observed flow frequency (Nash–Sutcliffe coeffi-

cient of 0.90 and a correlation coefficient of 0.80).

Due to inaccessibility of the coastal terrain, many remote

wetlands and swamps have few or no gauges, and are not

covered by national gridding systems. As a result, such ar-

eas are not included in topographic mapping projects; even
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where data are available, the resolution is usually very coarse

and not detailed (e.g. in Ezer and Liu, 2010). The morphol-

ogy of coastal areas is affected by sediment supply, sea level

change, littoral transport, storm surges, as well as hydrody-

namics at the river mouths of deltaic areas (Kumar et al.,

2010). Tidal flat morphology, for example, changes with the

tidal cycle, and this can affect navigation, coastal defence,

fishing, etc. The monitoring and modelling of tidal flat mor-

phology is thus important (Mason et al., 2010). Apart from

natural causes, coastal areas are affected by human activities

like sand mining, and construction of coastal infrastructure

like ports, harbours, groins and other coastal defence sys-

tems.

Satellite data are used to study coastal morphological

changes that affect the ecosystem and biodiversity of coastal

areas. Kumar et al. (2010) studied the morphological changes

in coastal parts of Karnataka State, India, using satellite and

ancillary data. They calculated the rate of shoreline change

over a 95-year period (1910–2005) and used the results

to predict future shoreline change rates to 2029. Twenty-

five LandSat TM imageries were used to map the tidal mud-

flats of Cooks Inlet, Alaska, by integrating with an inunda-

tion model (Ezer and Liu, 2010). The morphology of Cooks

Inlet is such that tidal floods move much faster than the

ebbing period which moves very slowly; therefore areas at

the far end of the mudflats take several hours before tidal

waters lower. To study their morphology as a test bed for

prediction of floods and its effects, mapping of these fre-

quently flooded areas was done using the LandSat imagery

to delineate water-only areas, and show the range of shore-

line data and water levels. The model results calculated the

water depth and gave the estimated 3-D topography of Cooks

Inlet. Similarly, four LandSat TM images of the Ganges–

Brahmaputra River mouth taken during low-flow and high-

flow seasons were used by Islam et al. (2002) to estimate sus-

pended sediment concentration. The method used converted

the digital numbers of the imageries to radiance values and

subsequently to spectral reflectance and linearly related them

to suspended sediment concentration (SSC). The SSC results

showed a higher distribution of suspended sediments during

high-discharge seasons when the turbidity zone moves fur-

ther seaward, reaching depths of 10 m, than during low-flow

periods when the turbidity zone remains close to the shore.

Yang and Ouchic (2012) used 2000–2009 optical and SAR

satellite imagery and in situ data of the Han estuary in South

Korea to study bar morphology by relating it to tides and pre-

cipitation using regression analysis. The results showed areas

closer to the sea correlating bar size/shape with tides, and ar-

eas closer to the river mouths correlating with precipitation.

Optical satellite images of Sumatra were used to study

post-tsunami coastal recovery based on beach nourishment

and sediment refilling. Liew et al. (2010) used 1 m Ikonos

images of pre-tsunami, tsunami, and post-tsunami periods

to show that coasts affected by tsunamis naturally rebuild to

their former morphological states in areas with little anthro-

pogenic activity. The results showed straight beaches rebuild-

ing a few weeks after the tsunami, but recovery of barrier

beaches and lagoons is much slower, enabling inland rivers

and streams to directly discharge into the ocean. Thus, they

concluded that due to the fast recovery of coastal features

post tsunami, sedimentary deposits are better indicators of

coastal geomorphology than tsunami events.

2.4 Satellite-derived DEM data applications

Satellite data provide topographic information in the form

of digital elevation models (DEMs) generated from radar

echoes of spot heights, e.g. ASTER DEM, SRTM, and SPOT

DEM. The most common and freely available DEM is the

Shuttle Radar Topographic Mission (SRTM) DEM flown in

February 2000 which covered 85 % of the Earth’s surface.

SRTM which was obtained through SAR interferometry of

C-band signals is available in 30 and 90 m spatial resolutions

and an approximate vertical accuracy of 3.7 m (Syvitski et

al., 2012). The vertical accuracy of SRTM is higher in areas

with gentle slopes than on steep slopes; on low-lying flood-

plains SRTM has shown less than 2 m accuracy. More in-

formation on SRTM DEM accuracy can be found in Yan et

al. (2015) and Jarihani et al. (2015).

At the land–water boundary in areas with gentle slopes,

satellite DEMs can be used to measure river stage when

combined with high-resolution imagery. Such combinations

have been used in flood inundation mapping, although there

is less accuracy in situations where the water edge is ob-

scured by vegetation (Smith, 1997). Syvitski et al. (2012)

adjusted SRTM data using ocean heights measured by the

TOPEX/POSEIDON satellite altimeter to enable the map-

ping of floodplain zones. Advanced microwave Scanning Ra-

diometer (AMSR-E) data provided brightness temperature

measurements of the floodplain. The ratio of land area bright-

ness temperatures to water area brightness temperature gave

the discharge estimator; chosen dry areas were used as cal-

ibration areas for measurements over water-covered areas.

A rating curve of the ratio versus discharge was then used

to extract the discharge values. Four floodplain zones were

classified around the world from the 33 floodplains stud-

ied, namely, container valleys, floodplain depressions, nodal

avulsions and delta plains. SRTM data measure surface level

which over river channels is equivalent to water levels when

the land water boundary is delineated. Jung et al. (2010)

used in situ (bathymetry and cross-sectional) data and SRTM

DEM water levels to derive water surface slope and to cal-

culate the discharge of the Brahmaputra River. The cross-

sectional water level was obtained by fitting a first-degree

polynomial function to the SRTM data elevation. The aver-

age calculated discharge results when compared to in situ

gauge reading gave a difference of 2.3 %. Two DEMs of

Morecambe Bay were used to determine the relative change

in inter-tidal sediment volume above and below mean sea

level (Mason et al., 2010). The first set of DEMs was de-
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rived from satellite SAR imagery and the second set from

lidar. By using the sea height as zero level the lidar DEM

was normalized to the same height as the SAR DEM. The

relative change in sediment volume was derived by subtract-

ing the normalized lidar DEM heights from the SAR DEM.

SRTM 30 m data were combined with MODIS 500 m water

mask data to produce 30 m static water masks of 2003 flood-

ing along the Mississippi River (Li et al., 2013). The method

involved using SRTM to mark the minimum water level from

the MODIS water mask, which is then used to calculate the

maximum water level for that pixel using a water fraction

relation. All SRTM 30 m pixels with heights between min-

imum and maximum water levels are classified as water,

and all those with heights higher than the maximum level

are classified as dry. Consequently, the 500 m MODIS water

mask is integrated into a 30 m water mask with the SRTM.

The results gave detailed flood maps with the same flooding

coverage as the MODIS water masks but enlarged 18 times.

The flood maps were compared with Landsat TM images of

the flood and showed over 94 % match in water area cover-

age. Errors/mismatch were found to be mostly around areas

with trees and vegetation cover.

3 Future needs and direction

3.1 Gaps and limitations

As useful as satellite data applications have been in estimat-

ing surface water parameters, the measurements come with

limitations due to sensor specifications/errors, pre- and post-

data processing techniques, calibration, measurement condi-

tions, satellite distance from the targets, etc. Optical satellite

data for example are limited to daytime acquisition due to

their dependence on sunlight, and are not very useful in ar-

eas perpetually covered by clouds because the target cannot

be reached (Smith, 1997).

Since satellite data are used for calibration, their accuracy

when compared with measured data is very important. Satel-

lite data accuracy is estimated using different error measure-

ment techniques (e.g. RMSE, mean error), checking for cor-

relation with measured data or measuring the coefficient of

determination (e.g. Tarpanelli et al., 2013). There are mul-

tiple sources of error that can affect the data; for example,

the uncertainties in using satellite river width for calibration

include the satellite estimation of the river width, the power

relation between the discharge and river width (which is an

approximation of the conditions at a river cross section when

there is no backwater effect) and the assumption of a sta-

ble/static river cross section. However, these sources of un-

certainty are lowest for the period of satellite data acquisi-

tion, and increase with change in season and hydraulic con-

ditions (Sun et al., 2010).

3.1.1 SAR

The quality and usefulness of SAR data for hydrological

studies depend on meteorological conditions (wind and rain),

emergent vegetation, incidence angle and the polarization

mode used for data acquisition. Horizontal–horizontal (HH)

polarization gives better results for flood extent mapping than

vertical–horizontal (VH) and vertical–vertical (VV) polar-

izations. However, VH and VV polarizations are also use-

ful since VV polarization data highlight vertical features like

vegetation, and VH polarization data reflect the horizontal

nature of the smoothed flood water (Schumann et al., 2007).

Another important factor for SAR data use in hydrology is

the river size. Until the recent launch of CSK, Radarsat-2,

PALSAR, and TerraSAR-X, most available SAR satellites

had large spatial resolutions which excluded smaller rivers

from being captured, since it was difficult to delineate them

in an image (Sun et al., 2009).

Satellite SAR used for delineation of water extent has the

limitation of floodplain vegetation being included and clas-

sified as water pixels; moreover, the height of the SAR wa-

terline does not show the variation in water height with flow

direction.

3.1.2 Altimetry

For river stage estimation and wetlands delineation, prob-

lems encountered with satellite altimetry data include incor-

rect processing of radar echoes over rivers/lakes by satellite

trackers, poor temporal resolution, and lack of information

within the data about the atmospheric wet vapour content

over lakes/rivers (Crétaux et al., 2009). The errors recorded

while using altimeter water level data can however be in-

creased by incorrect choice of data, which frequently occurs

when dry area data are retained within the data for comput-

ing water stages in low-flow seasons (Santos da Silva et al.,

2007). The difference between altimeter and gauge measure-

ments also increases with distance between the points, topog-

raphy and river width (León, et al., 2006). When compared

with gauge data, RMSEs of altimetry data measured over the

Amazon have ranges from 30 to 70 cm using data from EN-

VISAT, ERS2, and GeoSaT (Tarpanelli et al., 2013); how-

ever, at cross track situations where altimetry measurements

are taken at the same location with a gauging station, the dif-

ference can be < 20 cm (Seyler et al., 2009). The accuracy

of altimeter measurements over rivers is also affected by the

river width and the morphology of the river banks so that data

on narrow rivers and vegetated banks have lower accuracy

(Papa et al., 2012). Furthermore, the specifications of the al-

timetry system itself can affect the quality of measurements;

for example, ENVISAT data have been shown to have lower

RMSE compared to ERS2 data due to ENVISAT’s ability to

switch frequency modes in response to changes in terrain and

its smaller bin width (Tarpanelli et al., 2013).
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3.1.3 DEM

The limitation of a satellite DEM is in the data quality.

DEM data needed for modelling and other analyses that re-

quire topographic data depend on the acquisition method, the

data processing and the characteristics of the mapped terrain.

Satellite-derived DEMs have less vertical accuracy, higher

bias and higher RMSE than other DEMs derived from air-

borne lidar and airborne IFSAR (Fraser and Ravanbakhsh,

2011).

In spite of their limited accuracy satellite DEMs have

global or almost global coverage unlike airborne DEMs.

Therefore they are useful sources of topographic data,

especially for low-lying coastal areas with gentle slopes

(Gorokhovich and Voustianiouk, 2006; Schumann et al.,

2008), and consequently applicable for inundation modelling

(Karlsson and Arnberg, 2011). Figure 4 shows results of

flood modelling undertaken for the lower Niger River (Nige-

ria) using SRTM 30 and 90 m. The Niger River overflowed

its banks in 2007 and flooded a large part of the floodplain.

MODIS satellite data were used to map the flood and pro-

vided the only reference record of the flood. Figure 4 shows

that the model results are comparable with the MODIS flood-

ing extent.

Generally, satellite-based DEMs are either generated from

radar echoes of spot heights or from SAR interferometry.

However, Mason et al. (2010) also derived DEMs from SAR

images. The method involved using SAR water height to in-

terpolate a set of water lines, which were then used to pro-

duce a 50 m DEM of the intertidal zone with an accuracy of

40 cm. The method is however limited by the temporal de-

correlation of the waterline heights.

3.2 Current data use strategies

Innovative methodologies are being introduced by scientists

to better exploit satellite data to overcome the data limi-

tations within present uncertainties. For example cloud fil-

tering techniques have been developed that remove a high

percentage of the clouds in optical data, thus adding to

data availability. In terms of temporal limitations, combin-

ing MODIS data with its high temporal resolution with other

types of satellite data is a technique that is now exploited

more (Jarihani et al., 2014). The technique generates new

data sets that blend higher spatial resolution at the high tem-

poral resolution of MODIS. When combined with DEM data,

for example, flood maps that provide daily information can

be easily generated (Li et al., 2013). SRTM has been com-

bined with MODIS data to generate a 250 m water mask

called MOD44W; because of the high temporal resolution

of MODIS this product can be updated regularly to provide

static water masks (Li et al., 2013).

Use of satellite SAR for flood extent mapping and model

calibration can be improved through combination with other

higher-resolution data to increase precision in flood height

Figure 4. Model simulation result of flooding on the Niger

River (2007) using SRTM topographic data.

determination. To improve the vertical accuracy of SAR wa-

terline extent during floods, Mason et al. (2007) used water-

line data extracted from ERS-1 SAR corrected with 1 m res-

olution lidar heights (along the Thames River bank) to cal-

ibrate a LISFLOOD model of flood extent. The output wa-

terline when compared with waterline measured from aerial

photos showed a lower root mean squared error than those

obtained using SAR data only.

Satellite DEMs that are enhanced through vegetation

smoothing or hydrological correction have shown lower er-

rors compared with the original data (Jarihani et al., 2015).

Due to the availability of the hydrologically corrected SRTM

DEM, a global static 30 m water mask has been generated

which is very useful for flood detection, especially in data-

scarce areas.

To improve the use of satellite altimetry data, interpola-

tion methods have been developed to correct the data ac-

curacy and precision by comparing the data with lakes and

reservoir measurements. Thus the correlation with measured

gauge data, range of RMSE and reduction in discrepancies

have improved to levels> 0.95 correlation during validation

(Ričko et al., 2012). Altimeter measurements over modified

channels is however less reliable than that of natural catch-

ments (Kim et al., 2009).

The use of altimeter data is also limited by the poor tempo-

ral resolution of satellite altimeters; which range from days to

several weeks. Belaud et al. (2010) developed a method to in-

terpolate river water levels in-between satellite observations

in order to provide continuous data. The developed method

used upstream ground station measurements and altimetry
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data as output to calibrate a propagation model by adjusting

the satellite observed values. The propagation model used a

transfer function to predict water level variations based on the

relationship between the propagation times and water levels.

The results were able to predict flood peaks during periods

of no satellite coverage. Crétaux et al. (2011) addressed the

problem of data gaps by combining three sets of altimetry

data (TOPEX/POSEIDON, ENVISAT1 and JASON2) with

MODIS measurements of water extent to monitor wetlands

and floodplains in arid/semi arid regions. The MODIS data

were used to classify the open water pixels whose relative

values were then extracted from altimetry data. The results

provided relative water heights, due to the low temporal res-

olution of the altimetry data sets. Altimeter data from ICESat

were used to calibrate a large-scale LISFLOOD-FP hydro-

dynamic flood model of the Zambezi River, Mozambique

(Schumann et al., 2013). Eight in-channel water levels from

ICESat from one altimeter pass were used for calibration of

model output. The models with a mean bias within one stan-

dard deviation of the ICESat values were accepted as com-

parable with Landsat measured flooding extents. The results

showed 86 % agreement between the Landsat flood extent

and the accepted model outputs, corresponding to a mean dis-

tance of 1.42–1.60 km. After calibration the model upstream

boundary was changed to forecast flow values in order to

forecast downstream flooding. The results correlated with the

baseline model, but showed that with a lead time of 5 days,

better basin-wide precipitation observations will enable flood

forecasting on the Zambezi.

3.3 Future direction

The available literature shows that efforts have been made to

develop an empirical relationship between satellite-derived

surface water extents (including flooded areas) with river

stage or discharge. Such a relationship has been established

for braided rivers; for non-braided rivers, the results have

depended on the river system; thus, inundation area can in-

crease or decrease with stage. With better SAR missions such

as TerraSAR-X–TanDEM-X formation, DEM data with good

vertical accuracy are now available for better hydraulic flood

modelling. TanDEM-X has 12.5 m spatial resolution and pro-

duces less than 2 m vertical accuracy (DLR, 2015). Although

made for polar ice change estimation and monitoring, the

high spatial coverage of Cryosat-2 is also being exploited

for near-shore mapping and inland water monitoring (Vill-

ladsen et al., 2014). Cryosat-2, which operates in SAR and

interferometric modes, has a drifting orbit and therefore (un-

like all the other satellites) has few repetitive data (since the

repeat cycle is 369 days). Its high spatial density coverage

makes it good for hydraulic modelling (and all its evaluations

have produced good results). With successful use of Cryosat-

2 data to obtain river water levels and topography, the use of

drifting orbits is being proposed as more suitable for river

water surface topography mapping, derivation of river pro-

files and building of pseudo time series (Bercher et al., 2014).

Other satellite products that improve the accuracy of

satellite data based research in hydrology include Cosmo-

SkyMed from the Italian Space Agency, Radarsat-2 from

the Canadian Space Agency, and Sentinel-1 from ESA

(Schumann et al., 2015). Others are Global Change Ob-

servation Mission-Water (GCOM-W) from the Japan Space

Agency (JAXA), Global Precipitation Measurement (GPM)

from JAXA/USA, and Soil Moisture Active Passive (SMAP)

from the USA.

To improve the quality of satellite SAR and topographic

data, new satellite missions with higher-precision instru-

ments are being planned. One such mission is the Sentinel

constellation that will consist of seven satellites, two of

which (Sentinel 3 and 6) are especially dedicated to hydro-

logical purposes. Sentinel 1 is already in orbit and undergo-

ing calibration; it has a C-band SAR instrument to continue

present C-band data provision. Sentinel 3 is planned to pro-

vide fast data for flood emergencies; therefore, it has three

instruments, one of which is a dual-frequency (Ku- and C-

band) advanced synthetic aperture radar altimeter (SRAL)

that will provide accurate topographic data of oceans, ice

sheets, sea ice, rivers and lakes (ESA, 2015). Sentinel 6,

which will compliment the Sentinel 3 data, will carry on

board a high-precision radar altimeter. The Radarsat constel-

lation, a new low Earth orbit (LEO) C-band SAR mission, is

under development by the Canadian Space Agency (CSA).

The constellation which will have several operating modes

will provide interferometric SAR data that can be used for

wetlands and coastal change mapping, flood disaster warn-

ing and response with resolutions 3, 5, 16, 30, 50 and 100 m

(CSA, 2015).

Other upcoming satellite missions like Surface Water

and Ocean Topography (SWOT) made especially to survey

global surface water have specifications that will enable bet-

ter use of satellite data in hydrology. SWOT, which uses a

wide-swath altimetry technology, will also observe the fine

details of the ocean’s surface topography and measure how

water bodies change over time with repeated high-resolution

elevation measurements. The mission, scheduled to be

launched in 2020, is an international collaboration between

the US National Aeronautics and Space Agency (NASA)

and Centre National Etudes Spatiales (CNES) of France,

supported by the Canadian Space Agency (CSA) and the

UK Space Agency (UKSA) (Pavelsky et al., 2015). Another

product of international cooperation that will support hydro-

logical research is the Jason3 altimetry mission from NOAA,

due to be launched in July 2015. The Jason3 mission is ded-

icated to the measurement of sea surface height, waves, and

wind speed, and will provide useful data to monitor sea level

rise, coastal area modelling of oil spills, forecasting of hur-

ricanes, etc. To enable precise detection of sea level change,

Jason3 combines GPS, radar altimetry, and a microwave ra-

diometer to produce data within 1 cm accuracy every 10 days
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(NOAA, 2015). Jason3 is jointly owned by US National

Oceanic and Atmospheric Administration (NOAA), CNES-

France, European Organisation for the Exploitation of Mete-

orological Satellites (EUMETSAT), and US NASA.

4 Conclusions

Satellite remote sensing provides a source of hydrological

data that is unhindered by geopolitical boundaries, has ac-

cess to remote/unreachable areas, and provides frequent and

reliable data (Jung et al., 2010). Use of satellite data to es-

timate hydrological parameters continues to increase due to

greater availability of satellite data, improvement in knowl-

edge of and utilization of satellite data, as well as expansion

of research topics. A very important catalyst for this growth

in satellite data utilization is the ability to use it in a GIS

environment. GIS enables comparison and deduction of re-

lationships that exist amongst the complex data sources used

for analysis. Thus relationships like the effects of land-use

change on surrounding water bodies or water management

are easily analysed and depicted. Consequently, satellite data

are commonly used for mapping of water bodies, testing of

inundation models, soil moisture measurements, precipita-

tion monitoring, estimation of evapo-transpiration, and map-

ping of flood extent.

Data quality, pre-/post-data processing, etc., introduce new

errors and increase the uncertainties in satellite data utiliza-

tion. However, several methods have been developed to quan-

tify the errors and produce acceptable results. Moreover, a

number of satellite missions to address issues of climate

change are being planned; some of these are dedicated to

water resource management and will carry high-precision

instruments. The products of these missions will have less

error; consequently, results obtained will be more accurate,

thereby filling the gap in data availability.
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