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SUMMARY
Cells in the tumormicroenvironment (TME) influence each other through secretion and sensing of solubleme-
diators, such as cytokines and chemokines.While signaling of interferon g (IFNg) and tumor necrosis factor a
(TNFa) is integral to anti-tumor immune responses, our understanding of the spatiotemporal behavior of
these cytokines is limited. Here, we describe a single cell transcriptome-based approach to infer which sig-
nal(s) an individual cell has received. We demonstrate that, contrary to expectations, CD8+ T cell-derived
IFNg is the dominant modifier of the TME relative to TNFa. Furthermore, we demonstrate that cell pools
that show abundant IFNg sensing are characterized by decreased expression of transforming growth factor
b (TGFb)-induced genes, consistent with IFNg-mediated TME remodeling. Collectively, these data provide
evidence that CD8+ T cell-secreted cytokines should be categorized into local and global tissue modifiers,
and describe a broadly applicable approach to dissect cytokine and chemokine modulation of the TME.
INTRODUCTION

Tumors are composed of a diversity of interacting cell types,

including tumor cells, fibroblasts, endothelial cells, and a variety

of immune cell types. A first type of interactions between the cell

populations that jointly form the tumor microenvironment (TME)

is formed by direct cell-cell contacts, and to describe the effects

of such cellular interactions, technologies such as PIC-seq,

which allows mRNA-sequencing of physically interacting cell

pairs, have been developed.1 Importantly, next to such direct

cell-cell interactions, cells also use soluble factors, such as cyto-

kines, chemokines, and growth factors, to influence the state of

surrounding tissue cells.2

One of the major cytokine-producing cell compartments in tu-

mor tissue is formed by the CD8+ cytotoxic T cell pool, and CD8+

T cells have been demonstrated to play a central role in both im-

mune checkpoint blockade3 and adoptive T cell therapies.4–6

Upon encounter of antigen-expressing target cells, CD8+

T cells release lytic granules containing cytotoxic molecules

such as perforin and granzymes in the synapse that is formed be-

tween the interacting cells. In addition, T cell receptor (TCR)
Cancer Cell 42, 157–167, J
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signaling leads to the secretion of the cytokines interferon g

(IFNg), tumor necrosis factor a (TNFa) and interleukin-2 (IL-2),

which can, on their own or jointly, induce large-scale alterations

in the transcriptome of cells that sense these factors. For

example, IFNg receptor (IFNgR) signaling has been demon-

strated to result in increased expression of components of the

antigen presentation pathway, enhances expression of immune

checkpoint molecules, and can promote recruitment of other im-

mune cells through production of chemokines such as CXCL9,

10 and 11.7,8 In addition, IFNg and TNFa have been demon-

strated to regulate the activation and maturation state of, among

others, macrophages and dendritic cells.9–12 Furthermore, both

IFNgR and TNFa receptor (TNFaR) signaling can, in a context-

dependent fashion, contribute to tumor cell senescence,13

apoptosis8,14 and ferroptosis.15 Finally, besides their direct ef-

fects on tumor cells, both IFNg and TNFa can also be critical

for tumor control through their effects on stromal cells in the tu-

mor vasculature.16–20

In spite of the central role of T cell-produced cytokines in the

modulation of cell behavior in the TME, our understanding of

the spatiotemporal behavior of CD8+ T cell derived cytokines is
anuary 8, 2024 ª 2023 The Authors. Published by Elsevier Inc. 157
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Gene expression informs on cytokine exposure

(A) mRNA expression profiles of selected genes in OVCAR5 cells exposed to indicated concentrations of IFNg, TNFa, or their combination, for the indicated

duration. Top, middle, and bottom panels depict genes that are primarily responsive to TNFa, IFNg, or TNFa plus IFNg, respectively.

(legend continued on next page)
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limited. Specifically, it has not been established whether these

signaling molecules differ in their capacity to not only influence

target cells in the immediate vicinity of sites of antigen recogni-

tion, but also modulate the behavior of cells in the tumor tissue

in a more global manner. Earlier work has demonstrated that cy-

tokines may either be secreted in a multidirectional fashion, or

can selectively be released in the immune synapse, analogous

to the focused release of lytic granules.21 Specifically, following

TCR triggering, membrane-bound TNFa has been shown to be

distributed equally over the cell membrane, as demonstrated

by live imaging of TNFa on activated murine CD4+ T cells.21 In

contrast, in clusters of T cells and antigen-presenting cells,

IFNg, IL-2, IL-4, and IL-5 were all shown to be localized at the

microtubule organizing center (MTOC), consistent with direc-

tional release.21–23 Based on this postulated difference in

mode of secretion, a more profound effect of TNFa relative to,

for instance, IFNg or IL-2 on cells that are distant from the site

of antigen recognition could be expected. However, as the size

of the cell field in which productive cytokine sensing can occur

is also influenced by other parameters, such as cytokine half-

life, receptor-mediated clearance, and binding to extracellular

components, it has been difficult to predict the extent of long

range sensing of different cytokines in the TME.24

Evidence that cytokines can reach (remote) bystander cells

that cannot be recognized by T cells directly has been obtained

in a number of studies in both viral infection and tumor

models.25–30 Specifically, T cell-secreted IFNg in skin and lymph

nodes was shown to induce expression of IFNg-responsive

genes in large regions outside the parasite or virus infected

areas.26,27,31 Likewise, secretion of IFNg and TNFa by CD4+

T cells in tumors has been demonstrated to induce senescence

in tumor cells that cannot be directly recognized by T cells.13 In

case of CD8+ T cells, long-range sensing of IFNg has been

observed by, among other, intravital imaging of fluorescent

IFNgR-signaling reporters in mosaic tumors that contain both

antigen-positive and antigen-negative tumor areas. Using such

fluorescent reporter systems, it was demonstrated that a large

fraction of bystander cells senses IFNg upon intratumoral T cell

activation, and that IFNg sensing can occur in tumor cells at dis-

tances over hundreds of micrometers from the site of T cell acti-

vation.29,30 Collectively, these data on individual cytokines pro-

vide an incentive to develop technology to measure and

deconvolute the joint effects of multiple cytokines on the TME.
(B) Heatmap of bulk gene expression values inferred from OVCAR5 cells expose

durations. Unsupervised hierarchical clustering of data (shown are the 612 genes

then by exposure duration.

(C) Heatmap of bulk gene-expression values for mono-responsive genes and sy

Unsupervised hierarchical clustering of gene expression data shows a nearly ful

(D) UMAP of scRNA-seq data of OVCAR5 cells stimulated with indicated recomb

(E) Gene set scores for scRNA-seq data of in vitro cytokine stimulated cells as in a

densities of score distributions, white dots represent group medians. Area under t

conditions can be distinguished from the control condition, are depicted. Right p

conditions (axes) using gene set scores, as quantified using AUROC values. Com

encircled.

(F) IFNg plateau versus IFNg late gene set scores (see STAR methods) for OVCAR

LOESS-smoothed curves representing local averages, one per stimulus duration

exposure.

(G) IFNg plateau versus IFNg late gene set scores and TNFa early versus TNFa la

from T cell-tumor cell co-cultures for the indicated times as in (F). See also Figur
In the present study, we set out to generate a strategy that allows

the analysis of the effects of a broad set of cytokines simulta-

neously, and also provides information on the timing of such

cytokine exposure. The data obtained demonstrate that, con-

trary to what would be predicted based on their mode of secre-

tion, IFNg is the dominant T cell-secreted modifier of the TME.

RESULTS

Gene expression informs on prior cytokine sensing
In order to measure cytokine sensing in the TME in amanner that

is independent of genetic reporter systems, we explored

whether gene expression signatures can reliably inform on the

type and duration of cytokine exposure. Toward this goal, we

exposed human ovarian carcinoma (OVCAR5) cells to different

cytokines or cytokine combinations for 2–24 h and analyzed

transcriptomes by bulk mRNA sequencing (RNA-seq). In line

with expectations, this revealed large groups of genes that

were selectively induced by IFNg (such as HLA-DRA and

IRF1), or TNFa (such as CCL20 and MMP9). In addition, a gene

set was identified that was either preferentially or exclusively

induced by the combination of these cytokines (e.g., UBD and

CXCL9) (Figure 1A). Furthermore, the relative expression of indi-

vidual genes in these gene sets provided rich information on

cytokine exposure time, distinguishing genes with a ‘‘burst-

like’’ expression pattern (e.g., CCL20 after TNFa exposure),

and genes for which expression showed an exponential increase

over time (e.g., MMP9 after TNFa exposure) (Figure 1A). While

gene expression data were rich in terms of the nature and dura-

tion of cytokine exposure (Figures 1A and 1B), no substantial

differences in gene expression were observed as a function of

cytokine concentration beyond a limited concentration range

(�10-fold range). Importantly, cell culture medium derived from

T cell-tumor cell co-cultures contained high levels of IFNg

(>100 ng/mL) and TNFa (±1 ng/mL) and induced a gene expres-

sion profile that was highly similar to that observed upon dual

IFNg plus TNFa exposure (Figure S1A).

To be able to assign duration and type of cytokine exposure to

individual cells, we compiled a set of cytokine informative genes

through a combination of model training and manual curation. In

brief, to efficiently expand a seed set of �80 informative genes

identified by manual selection, all genes were annotated with

descriptive features (see STAR methods), developed to discern
d to indicated concentrations of TNFa, IFNg, or TNFa plus IFNg, for indicated

from the ‘‘cytokine-responsive class’’), groups samples by exposure type and

nergy genes inferred from in vitro stimulated OVCAR5 cells, as in (A) and (B).

l agreement with assigned gene classes (cluster purity of 0.86).

inant cytokines for 24 h.

. Left panels: dots represent gene set scores of individual cells violins represent

he receiver operator curve (AUROC) values, quantifying how well experimental

anels: Heatmaps showing pairwise distinguishability of indicated experimental

parisons for which indicated gene sets are designed to show separation are

5 cells stimulated with IFNg (100 ng/ml) for the indicated times. Black lines are

. The ratio of each of the two gene set scores informs on duration of cytokine

te gene set scores for OVCAR5 cells stimulated with culture medium obtained

es S1, S2, and Table S1.
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Figure 2. Frequent IFNg but not TNFa

sensing by bystander tumor cells

(A) NSG-b2m�/� mice injected subcutaneously

with a mixture of 10%CDK4R>L antigen expressing

and 90% bystander OVCAR5 tumor cells were

treated with either PBS (control) or CDK4R>L-spe-

cific CD8+ T cells after tumor establishment. Tu-

mors were harvested 44 h after treatment, and

bystander tumor cells were analyzed by scRNA-

seq.

(B) UMAP of single cells based on gene expression

in the ‘‘cytokine-responsive’’ gene class.

(C) TNFa, IFNg, and synergy gene set scores of

single cells derived from OVCAR5 tumors. Dots

represent gene set scores of individual cells, violins

represent densities of score distributions, white

dots represent group medians. Numeric values

reflect AUROC values that quantify separability between experimental conditions. Note that IFNg, but not TNFa, gene set scores are increased in the T cell-

exposed condition as compared to the control condition. See also Figure S3.
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cytokine-responsive from unresponsive genes (Figure S1B). We

next iteratively expanded from this initial seed set by training a

machine learning model with the objective of predicting gene

classes (e.g., ‘‘cytokine-responsive’’ and ‘‘cytokine-unrespon-

sive’’) for all yet unclassified genes (Figures S1C and S1D). After

10 iterations of model training, gene class prediction, and

correction of predicted classes, a set of 612 cytokine-responsive

genes was obtained. (Figure S1E). 90 of these could be classified

as mono-responsive to either IFNg (n = 40) or TNFa (n = 50), i.e.,

with only a single cytokine eliciting a response and IFNg plus

TNFa eliciting a response that did not substantially deviate

from the response to the main excitatory cytokine. This property

renders these genes especially useful when simultaneously as-

sessing the spreading behavior of both cytokines (Figures S1F

and 1C) and allows for the summing of expression values for

component genes to infer cytokine stimulus (see the following

text). Importantly, comparison of these gene sets to the TNFa

and IFNg Hallmark gene sets32 that are frequently used to eval-

uate signaling revealed only modest overlap (Figure S2A).

Whereas the newly developed gene sets consisted solely of

genes that responded strongly and specifically to the cytokine

they were assigned to in OVCAR5 cells, the Hallmark gene

sets showed considerable overlap. Furthermore, a sizable num-

ber of TNFa hallmark genes was shown to respond to IFNg and

vice versa, creating the potential for incorrect signal inference

(Figures S2B–S2D). Next to the set of mono-responsive genes,

a set of synergy genes, which are selectively expressed in the

presence of both IFNg and TNFa, was identified, providing an in-

dependent means to measure co-occurrence of IFNgR and

TNFaR signaling (Figure 1C). Finally, analysis of gene expression

dynamics demonstrated that this approach can inform on cyto-

kine exposure duration (Figure S2E).

Frequent IFNg but not TNFa sensing by bystander tumor
cells in the TME
Having established a number of cytokine- and time-informative

gene sets, we tested whether gene expression upon cytokine

exposure is informative in single cell (sc) transcriptome data. In

an unsupervised analysis, cells exposed to activating concentra-

tions of either IFNg, TNFa, or their combination formed sepa-

rated clusters, both from control cells and each other, (100%
160 Cancer Cell 42, 157–167, January 8, 2024
rejection rate on kBET-test33 with stimuli as batches; median

silhouette width: 0.17) (Figure 1D). To quantify signal strength

for each exposure-specific gene set, we subsequently calcu-

lated cell expression scores for all genes that were included in

either gene set. Using this strategy on scRNA-seq data fromcells

exposed to activating concentrations of IFNg or IFNa revealed a

near perfect separation of IFNg and TNFa exposed cells from

control cells, aswell as a clear separation between cells exposed

to the two different stimuli (Figure 1E). In addition, exposure to

the combination of IFNg plus TNFa could be identified with

high precision, both by analysis of the separate IFNg and TNFa

gene set scores, and by use of the IFNg plus TNFa synergy

gene set (Figure 1E). Furthermore, ability to correctly assign

cytokine stimuli was not affected by the experimental strategy

(protease digestion, flow cytometric sorting) required to obtain

single cell information from tumor material (Figure S2F). Finally,

use of time-informative gene sets on in vitro cultured cells

exposed to recombinant cytokines or culture medium from

T cell-tumor cell co-cultures at different time points demon-

strated the ability of this technique to also infer stimulus duration

from single cell data (Figures 1F, 1G, and Table S1).

Having established methodology for TNFa and IFNg exposure

inference in single cells, we subsequently set out to measure the

degree of T cell-secreted cytokine sensing by tumor cells in the

TME in vivo. To this purpose, OVCAR5 tumors that were

composed of a large fraction of antigen negative (‘‘bystander’’)

tumor cells that could serve as cytokine sensing reporter cells,

plus a small fraction of tumor cells that form targets for neoanti-

gen-specific T cells30 were established in NSG-b2m�/� mice

(Figure 2A). Following treatment of mice bearing such mosaic tu-

mors with TCR-transduced CDK4R>L neoantigen-specific CD8+

T cells, infiltration of CD8+ T cells into tumor tissue is observed

and upon target cell recognition, cytokine production is initiated

in tumor regions composed of antigen-positive tumor cells.30

Note that in this setup, all subsequent analyses of cytokine-spe-

cific gene set scores by scRNA-seq were restricted to antigen

negative bystander cells that cannot be recognized by T cells,

and hence were not influenced by direct cell-to-cell killing of an-

tigen-positive tumor cells.

Having established that T cell infiltration and activity are first

detected around 16 h and increase up to 44 h after T cell transfer
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(Figure S3A), we analyzed bystander tumor cells by scRNA-seq

at 16–44 h after T cell transfer. Unsupervised clustering of

bystander cells derived from 44 h T cell-exposed tumors and

control tumors demonstrated a separation of a large fraction of

bystander cells obtained fromT cell-exposed tumors (Figure 2B).

Thus, the presence of a tumor-reactive CD8+ T cell compartment

substantially modifies the transcriptome of a considerable part of

bystander tumor cells in the TME. Importantly, assignment of

cells to different cytokine exposure conditions revealed that a

large fraction (70.4%) of bystander tumor cells in T cell-treated

mice showed a pronounced IFNg gene set score, whereas

such IFNg sensing was largely absent in tumor cells from control

mice (5.3% of cells) (Figures 2C and S3B). In contrast, presence

of a tumor-reactive T cell compartment did not measurably in-

crease the fraction of TNFa sensing cells, with 5.3% of tumor

cells classified as TNFa sensing in both control and T cell-

exposed tumors (Figures 2C and S3B). In addition, tumor cells

displaying high IFNg gene set scores did not show elevated

TNFa gene set scores (Figure S3B). As a second test of in vivo

TNFa exposure, we calculated synergy gene set scores, which

independently inform on the sensing of the combination of

IFNg plus TNFa (Figures 2C and S3B). Also by this metric, the

presence of a tumor-reactive T cell compartment did not result

in TNFa sensing by an appreciable fraction of bystander tumor

cells. As a majority of TNFa genes displays a burst-like, early,

expression pattern, we next assessed cytokine sensing at the

16 h timepoint, at which measurable T cell infiltration is just

visible (Figure 3A). Already at this time point, a subset of

bystander tumor cells derived from T cell-exposed tumors sepa-

rated from bystander tumor cells in control tumors (Figure 3B).

However, neither the use of the entire TNFa mono reporter

gene set (Figure 3C, left), nor the use of the TNFa early time-infor-

mative gene set, showed an appreciable TNFa sensing signal

(Figure 3D, right). Note that T cells derived from such tumors

did retain the capacity to produce TNFa, indicating that the

lack of an appreciable tumor cell population that showed TNFa

sensing was not explained by impaired cytokine production (Fig-

ure S3C). As a side note, application of the time reporting IFN-

g-responsive gene sets demonstrated that tumor cells isolated

44 h after T cell infusion that show a given expression of the

IFNg ‘‘plateau gene set score’’ on average showed a slightly

increased expression of the IFNg ‘‘late gene set score,’’ as

compared to tumor cells analyzed 16 h after T cell infusion (Fig-

ure 3D, left). To test whether bystander tumor cells did retain the

capacity to respond to TNFa in vivo when this cytokine is pre-

sent, we intratumorally injected tumors with recombinant cyto-

kines. Importantly, an evident TNFa signal was observed upon

injection of either TNFa (with 53.4% of cells surpassing 95th

percentile of control) or TNFa plus IFNg (51.8%) (Figures 3E

and S3D), Furthermore, a pronounced synergy signal was selec-

tively observed upon intratumoral injection of TNFa plus IFNg

(49.4% of cells), likewise indicating a high sensitivity to detect

TNFaR signaling in vivo.

To test whether the observed difference in long-range IFNg and

TNFa sensing also occurs in syngeneic tumor models, in which

not only tumor cells but also infiltrating immune cells can respond

to T cell-secreted cytokines,34,35 we compiled responsive gene

sets from cytokine-stimulated mouse NRAS mutant melanoma

(NMM) cells (Figure S4A). Application of these gene sets to
bystander cells derived from mosaic NMM tumors demonstrated

that a large fraction of bystander tumor cells (38.0%) responded to

IFNg in T cell-treatedmice, as compared to bystander tumor cells

in mice that did not receive antigen-specific T cells (5.1%), or in

mice in which antigen was lacking (5.7%). In contrast, presence

of a tumor-reactive CD8+ T cell compartment did not induce

sensing of TNFa by bystander tumor cells (4.5% responding cells

vs. 5.1% and 5.7% in the two controls, respectively) (Figures 4A,

4B, and S4B). For NMM tumors, but not for OVCAR5 tumors, it is

possible that cytokine-induced cell death results in a slight under-

estimate of the fraction of cells encountering the combination of

IFNg and TNFa signals. However, for both models, the observed

bias toward IFNg sensing was not predominantly explained by

TNFa induced cell death (Figure S4C). Collectively, these data

demonstrate in two different mouse models, and using gene

sets that either report on the sensing of individual cytokines or

on the combination of IFNg plus TNFa, that widespread sensing

is restricted to T cell-derived IFNg.

IFNg sensing associates with reduced TGFb sensing
The ability to identify bystander tumor cells that have sensed

IFNg in vivo makes it possible to test whether such sensing is

associated with additional changes in cell state. To explore

this, we used Milo36 to identify transcriptionally similar cells

(so-called neighborhoods) in the mouse NMM melanoma data.

64 out of 128 neighborhoods were enriched for bystander tumor

cells derived from T cell-exposed tumors (hereafter referred to as

‘‘T cell-exposed neighborhoods’’) relative to bystander cells

from the PBS control condition (Figure 4C) jointly comprising

74.3% of bystander tumor cells from T cell-exposed tumors.

As a control, none of these neighborhoods were enriched or

depleted for bystander tumor cells derived from T cell treated tu-

mors in which antigen was lacking (Figure 4D, top). As expected,

T cell-exposed neighborhoods showed a prominent IFNg-sens-

ing profile but were also characterized by reduced expression of

a second gene set that showed considerable overlap with genes

induced by in vitro TGFb stimulation of NMM melanoma cells

(Figure 4D). Analysis of selected TGFb responsive genes from

bulk NMM RNA-seq data (Figure S4A bottom panel) showed

that a majority of these (47 out of 70) were negatively correlated

with T cell pressure (Figure 4E). However, a large fraction of

TGFb induced genes also appeared to show reduced expression

upon IFNg exposure (Figure S4A), making it difficult to unambig-

uously ascribe this transcriptional response to lowered TGFb

sensing in T cell neighborhoods using solely gene signatures.

To disentangle the transcriptional effects of co-occurring cyto-

kines that regulate partly overlapping gene sets, we employed

transcriptional deconvolution of cell neighborhoods, aiming to

reconstruct their transcriptomes by algorithmically identifying

optimal mixing weights of whole-transcriptome bulk RNA-seq

profiles (STAR methods), akin to the CIBERSORT approach.37

A high similarity was observed between control neighborhoods

and profiles of TGFb-stimulated and unstimulated cells. In

contrast, T cell-exposed neighborhoods more strongly resem-

bled IFNg expression profiles (Figure 4F). Notably, omission of

TGFb-exposed reference profiles from this analysis increased

reconstruction error and predominantly did so for control neigh-

borhoods (Figure 4G, left). In contrast, exclusion of IFNg-profiles

specifically increased reconstruction error of T cell-exposed
Cancer Cell 42, 157–167, January 8, 2024 161
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(A) NSG-b2m�/� mice injected subcutaneously with a mixture of 10% CDK4R>L antigen expressing and 90% bystander OVCAR5 tumor cells were treated with

PBS (control) or with CDK4R>L-specific CD8
+ T cells after tumor establishment. Tumors were harvested 16 or 44 h after treatment, and bystander tumor cells were

subjected to scRNA-seq.

(B) UMAP of scRNA-seq from bystander cells of control and T cell-exposed OVCAR5 tumors harvested 16 or 44 h after treatment, based on genes in the

‘‘cytokine-responsive’’ class.

(C) Violin plots of TNFa, IFNg, and synergy gene set scores of cells derived fromOVCAR5 tumors, as described in (A). Dots represent gene set scores of individual

cells, violins represent densities of score distributions, white dots represent group medians. Numeric values reflect AUROC values that quantify separability

between experimental conditions.

(D) Scatterplots of time-informative gene sets for in vivo single cell data described in (A). To remove gene expression effects due to exposure duration inde-

pendent from T cell exposure, depicted gene set scores were normalized to control (PBS treated) counterparts in a duration-matched fashion (STAR methods).

(E) TNFa, IFNg, and synergy gene set scores of OVCAR5 tumor cells derived from tumors injectedwith indicated recombinant cytokines. Cytokine exposure times

were chosen based on maximal change in expression of cytokine specific responsive genes after in vitro cytokine exposure, as in Figure 1B. Numeric values

reflect AUROC values that quantify separability between experimental conditions, as in Figure 1E. See also Figure S3.
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neighborhoods (Figure 4G, right). Collectively, these data

demonstrate that T cell pressure modulates bystander tumor

cells toward transcriptional activity that is consistent with IFNg--

sensing and with reduced TGFb-sensing.

DISCUSSION

Next to signaling events induced by direct cell-cell contact, tu-

mor cell behavior is modulated through the sensing of soluble

mediators, such as chemokines and cytokines, offering possibil-

ities for long range communication. Here, we describe and vali-

date a single cell sequencing-based approach to identify such

long-range communication, and also the secondary changes

that are associated with it. Key components of this approach

are the generation of bespoke gene sets that report on cell expo-

sure to a given cytokine or cytokine combination, and also the

employment of multivariate modeling in case signal-specific re-

porter genes are unavailable. We demonstrate in both human-

ized and syngeneic tumor models that CD8+ T cells predomi-

nantly modulate the behavior of the tumor mass through IFNg

release, while no substantial evidence for widespread TNFa

sensing is obtained. This lack of TNFa sensing is observed in

spite of ongoing IFNg sensing by a large fraction of the tumor

mass, and hence continuous T cell activity (as a single intratu-

moral application of IFNg results in just a transient burst of

IFNg sensing). In addition, we note that bystander tumor cells

do retain the capacity to respond to TNFa in vivowhen this signal

is artificially provided. In theory, the methodology that we

describe is subject to inferential bias in case the studied signals

influence cell survival. In our case, such cell survival effects do

not form a significant confounder, but it is important to be aware

of this possibility when examining other cell models. The cumu-

lative CD8+ T cell-derived IFNg and TNFa levels will vary across

tumors, depending on e.g., the fraction of tumor cells presenting

relevant antigen and T cell density. Importantly though, we

consider it likely that, unless local TME signals would differen-
Figure 4. Frequent IFNg sensing in a syngeneic tumor model and relat

(A) Rag2�/� mice were injected subcutaneously with a mixture of 10% OVA anti

tumor cells only, and, following tumor establishment, were treated with either PB

harvested for scRNA-seq analysis 44 h after treatment.

(B) TNFa and IFNg gene set scores, determined using the genes shown in a, fo

exposed-Ag� bystander NMM tumor cells only tumors, and PBS treated tumor

represent densities of score distributions, white dots represent group medians.

(C) Left panel: UMAP of NMM melanoma single cell data, as described in (A) and

enrichment or depletion for any of the experimental conditions in neighborhoods

(Spatial FDR >0.05), as well as homogeneous neighborhoods, are colored white

(D) Left panel: heatmap of top 250 genes (rows) most strongly correlated (Spear

neighborhoods (columns) of transcriptionally similar cells. Depicted values are ne

enrichment of cells from the T cell-exposed condition. Top panels show log fol

condition relative to control condition. Right panel: heatmap showing bulk RNA-se

same genes as in the heatmap in the left panel, ordered identically.

(E) As in (D), but for TGFb responsive genes selected on bulk RNA-seq data.

(F) Deconvolution mixing weights of neighborhoods in an independent bulk RNA

highly selected reference profiles are shown, jointly comprising 94% of all assign

(G) Left: Increase in reconstruction error when the 17 reference profiles with TGF

testing was employed to test whether increase in reconstruction error could be ex

but omitting the 17 reference profiles with IFNg.

(H) Model visualizing secondary effects of long range IFNg sensing. In parallel to

instance, CXCL9/10/11 chemokine fields and subsequent increased immune cell i

by decreasing TGFb sensing. See also Figure S4.
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tially influence production of either cytokine, the ratio between

T cell produced TNFa and IFNg will be constant due to their

shared dependence on TCR-triggering. Hence, our observation

of a differential reach of CD8+ T cell-derived IFNg and TNFa is

expected to generalize to unseen settings.

Prior work has demonstrated that exposure to IFNg and TNFa

can influence tumor control by, for instance, inhibiting growth of

antigen loss variants13,18,29,30 and modifying behavior of tumor

stromal cells.16,38 Here we demonstrate that, whereas T cell-

derived IFNg modulates the behavior of a large fraction of anti-

gen-negative cells in the TME, such global effects are not

observed for TNFa. These observations lead us to propose a

distinction between cytokines that act as local versus global mod-

ifiers of the TME. Importantly, modification of tumor growth

through the global TMEmodifier IFNgmay be expected to already

occur in settings in which T cell activity is heterogeneous and

restricted to smaller areas of the tumor cell mass. In contrast,

the effect of local TME modifiers such as TNFa may be most

apparent in case of a stronger and more homogeneous intratu-

moral T cell response. Notably, should other cell types show a

drastically different ratio of IFNg and TNFa production, it would

be of interest to evaluate differential sensing in these settings.

Finally, the ability to detect sensing of individual cytokines and

chemokines makes it possible to determine whether such

sensing is associated with additional alterations in cell state. In

the current work, we demonstrate that cell states induced by

T cell activity are not only consistent with abundant IFNg sensing

but also with decreased TGFb-induced gene expression.

Conceivably, intratumoral IFNg sensing could result in reduced

availability of bioactive TGFb, for instance through induction of

a more pro-inflammatory macrophage state39,40(Figure 4H). In

addition, we provide evidence for mutual negative regulation be-

tween the two cytokines. These data add to an emerging view on

the role of tumor-reactive CD8+ T cells, in which TCR signaling

induced cytokine secretion, and in particular IFNg secretion, re-

sults in a global alteration of the tumor micromilieu.
ionship with reduced TGFb sensing

gen expressing and 90% Ag� bystander NMM tumor cells, or with Ag� NMM

S (control) or OT-1 CD8+ T cells, as indicated. Ag� bystander tumor cells were

r the T cell-exposed condition (green) and the two control conditions (T cell-

s, shades of gray). Dots represent gene set scores of individual cells, violins

(B). Middle and right panels: a Milo model36 was fitted to the data to test for

of transcriptionally similar cells. Non-significantly imbalanced neighborhoods

.

man correlation) with enrichment for the T cell-exposed condition in cell state

ighborhood averages. Neighborhoods are ordered according to compositional

d change in differential abundance (logFC DA) for the indicated experimental

q gene expression profiles of NMMcells exposed to indicated cytokines for the

-seq experiment. Neighborhoods ordered as in (D). Only the 6 out of 28 most

ed similarity.

b are omitted as compared to when all 28 profiles are included. Permutation

plained by a lower number of reference profiles (STARmethods). Right: As left,

the mechanism in which long range IFNg sensing leads to generation of, for

nfiltration, long range IFNg sensingmay result in secondary changes in the TME
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CFP-pMX (retroviral) Hoekstra et al.30 N/A

IGS-PCDH (lentiviral) Hoekstra et al.30 N/A
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Matrigel (Basement Membrane Matrix) Corning CAT#: 354234

Critical commercial assays
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HiSeq SBS Kit V4 50 cycle kit Illumina CAT#: FC-401-4002

NovaSeq 6000 SP Reagent Kit v1.5 Illumina CAT#: 20028401
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NextSeq 500/550 High Output Kit v2.5 Illumina CAT#: 20024906
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NextSeq 500/550 Mid Output Kit v2.5 Illumina CAT#: 20024904
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Deposited data

Raw sequencing data and metadata This paper GEO: GSE220738

Preprocessed version of sequencing data This paper, hosted on Mendeley https://doi.org/10.17632/2wwjdppm7f.2

Experimental models: Cell lines
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(OVCAR5) cells

(F. Scheeren, The Netherlands

Cancer Institute, The Netherlands)

N/A

murine NRASQ61R mutant

melanoma (NMM) cells

Norman Sharpless, University of

North Carolina, USA41

N/A

Experimental models: Organisms/strains

Mouse: NOD-scid Il2rynullB2mnull

(NSG-b2m�/�)
Jackson Laboratories Strain #:010636

Mouse: C57BL/6; RAG2 KO mouse Jackson Laboratories Strain #:008449

Mouse: C57BL/6; UBC-GFP mouse Crossed in house N/A

Mouse: C57BL/6; OT-I mouse Crossed in house N/A

Oligonucleotides

N/A N/A N/A

Recombinant DNA

See under ‘‘bacteria and

viral strains’’ subheading

Software and algorithms

GraphPad Prism version 9

R package devtools 2.4.5 Wickham et al. 50 https://CRAN.R-project.org/package=devtools

R package ComplexHeatmap 2.9.3 Gu et al. 51 N/A

R package credentials 1.3.2 Ooms et al. 52 https://CRAN.R-project.org/package=credentials

R package miloR 1.0.0 Morgan et al. 36,53 https://marionilab.github.io/miloR

R package car 3.1.1 Fox et al. 54 https://socialsciences.mcmaster.ca/

jfox/Books/Companion/

R package parsnip 1.0.3 Kuhn et al. 55 https://CRAN.R-project.org/package=parsnip

R package tidymodels 1.0.0 Kuhn et al. 56 https://www.tidymodels.org

R package yardstick 0.0.9 Kuhn et al. 57 https://CRAN.R-project.org/package=yardstick

R package ranger 0.14.1 Wright et al. 58 N/A

R package kknn 1.3.1 Schliep et al. 59 https://CRAN.R-project.org/package=kknn

R package curl 5.0.0 Ooms et al. 60 https://CRAN.R-project.org/package=curl

R package ggpubr 0.6.0 Kassambara et al. 61 https://CRAN.R-project.org/package=ggpubr

R package ArrayExpress 1.52.0 Kauffmann et al. 62 N/A

R package umap 0.2.10.0 Konopka et al. 63 https://CRAN.R-project.org/package=umap

R package progressr 0.13.0 Bengtsson et al. 64 https://CRAN.R-project.org/package=progressr

R package rsample 1.1.1 Frick et al. 65 https://CRAN.R-project.org/package=rsample

R package Hmisc 4.8.0 Harrell Jr et al. 66 https://CRAN.R-project.org/package=Hmisc

R package preprocessCore 1.57.0 Bolstad et al. (?)67 https://github.com/bmbolstad/preprocessCore

R package envnames 0.4.1 Mastropietro et al. 68 https://CRAN.R-project.org/package=envnames

R package pracma 2.4.2 Borchers et al. 69 https://CRAN.R-project.org/package=pracma

R package DESeq2 1.32.0 Love et al. 70 N/A

R package wesanderson 0.3.6 Ram et al. 71 https://CRAN.R-project.org/package=wesanderson

R package biomaRt 2.48.3 Durinck et al. 72 N/A

R package furrr 0.3.1 Vaughan et al. 73 https://CRAN.R-project.org/package=furrr

R package fgsea 1.18.0 Korotkevich et al. 74 http://biorxiv.org/content/early/2016/06/20/060012

(Continued on next page)

ll
OPEN ACCESSReport

Cancer Cell 42, 157–167.e1–e9, January 8, 2024 e2

https://doi.org/10.17632/2wwjdppm7f.2
https://CRAN.R-project.org/package=devtools
https://CRAN.R-project.org/package=credentials
https://marionilab.github.io/miloR
https://socialsciences.mcmaster.ca/jfox/Books/Companion/
https://socialsciences.mcmaster.ca/jfox/Books/Companion/
https://CRAN.R-project.org/package=parsnip
https://www.tidymodels.org
https://CRAN.R-project.org/package=yardstick
https://CRAN.R-project.org/package=kknn
https://CRAN.R-project.org/package=curl
https://cran.r-project.org/package=ggpubr
https://CRAN.R-project.org/package=umap
https://CRAN.R-project.org/package=progressr
https://CRAN.R-project.org/package=rsample
https://CRAN.R-project.org/package=Hmisc
https://github.com/bmbolstad/preprocessCore
https://CRAN.R-project.org/package=envnames
https://CRAN.R-project.org/package=pracma
https://CRAN.R-project.org/package=wesanderson
https://CRAN.R-project.org/package=furrr
http://biorxiv.org/content/early/2016/06/20/060012


Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

R package naturalsort 0.1.3 Abe et al. 75 https://CRAN.R-project.org/package=naturalsort

R package tidyverse 1.3.2 Wickham et al. 76 http://www.tidyverse.org

R package knitr 1.42 Yihui Xie 77 https://yihui.org/knitr/

R package tikzDevice 0.12.4 Sharpsteen et al. 78 https://CRAN.R-project.org/package=tikzDevice

R package scran 1.20.1 Lun et al. 79 N/A

R package SingleCellExperiment 1.14.1 Amezquita et al. 80 https://www.nature.com/articles/

s41592-019-0654-x

R package limma 3.50.1 Ritchie et al. 81 N/A

R package edgeR 3.36.0 Robinson et al. 82 N/A

R package ROCR 1.0.11 Sing et al. 83 http://rocr.bioinf.mpi-sb.mpg.de

R package Seurat 4.3.0 Hao et al. 84 https://doi.org/10.1016/j.cell.2021.04.048

R package GGally 2.1.2 Schloerke et al. 85 https://CRAN.R-project.org/package=GGally

R package pacman 0.5.1 Rinker et al. 86 http://github.com/trinker/pacman

R package circlize 0.4.15 Gu et al. 87 N/A

R package NMF 0.25 Renaud et al. 88 https://bmcbioinformatics.biomedcentral.com/

articles/10.1186/1471-2105-11-367

R package e1071 1.7.13 Meyer et al. 89 https://CRAN.R-project.org/package=e1071

Nextflow core kallisto pipeline version 0.9 Ewels et al. 90 https://doi.org/10.5281/zenodo.1400710

Kallisto version 0.46.2 Bray et al. 91 https://doi.org/10.1038/nbt.3519

R programming language, version 4.1 R Core Team 92 https://www.R-project.org/

R package targets 0.14.2 Landau et al. 49 https://doi.org/10.21105/joss.02959

R package glmnet 4.1.6 Friedman et al., 48 https://www.jstatsoft.org/v33/i01/

R package SCTransform 0.3.5 Hafemeister et al., 44 https://doi.org/10.1186/s13059-019-1874-1

itreecount N/A https://github.com/NKI-GCF/itreecount

All code to reproduce the

analyses and figures

This paper https://doi.org/10.5281/zenodo.10142533
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, T.N. Schu-

macher (t.schumacher@nki.nl).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Raw bulk and single-cell RNA-seq data have been deposited at GEO and are publicly available as of the date of publication.

Accession numbers are listed in the key resources table. Preprocessed bulk and single-cell RNA-seq have been deposited at

Mendeley Data and are publicly available as of the date of publication. The DOI is listed in the key resources table.

d All original code has been deposited at Zenodo and is publicly available as of the date of publication. The DOI is listed in the key

resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request
EXPERIMENTAL MODEL AND PARTICIPANT DETAILS

Tumor cell culture and viral transductions
HumanOVCAR5OVCAR5 cells (F. Scheeren, The Netherlands Cancer Institute, The Netherlands) andmurine NRASQ61Rmutant mel-

anoma cells (NMM) (Norman Sharpless, University of North Carolina, USA,41) were cultured at 37�C/5% CO2 in IMDM (Gibco) sup-

plemented with 10% FCS (Sigma), 100 U/ml penicillin (Roche), 100 mg/mL streptomycin (Roche), and GlutaMax (Gibco, 1x). Identity

of OVCAR5 cells was validated by short tandem repeat analysis, STR data were not available for the NMM cell line. The following

vectors were utilized: the CDK4R>L-GFP-pMX, CFP-pMX, and IGS-PCDH vectors as described in,30 the OVA-mPlumb-pLenti vector
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as described in,42 and the CDK4R>L specific TCR (clone 17, NKI12)- pMP71 vector, as described in.43 For retroviral transduction of

human cells and mouse cells, FLYRD18 packaging cells (ECACC no. 95091902), and Phoenix-ECO packaging cells (ATCC, CRL-

3214), were plated into 6 well plate dishes at 0.53106 cells per well, respectively. After 24 h, cells were transfected with 3 mg of

one of the indicated retroviral vectors using X-tremeGENE (Roche), according to the manufacturer’s protocol. After 48 h, virus su-

pernatant was harvested, filtered through a 0.45-mm filter and added to tumor cells in the presence of 8 mg/mL polybrene (Sigma)

in a 1:1 dilution in medium. For lentiviral transductions, HEK293T cells (ATCC, CRL-3216) were plated at 3x106 cells per 10 cm

dish. After 24 h, cells were transfected with 8 mg of one of the above indicated lentiviral plasmids, plus the lentiviral packaging

and envelope plasmids psPAX (Addgene #12260) and pMD2.G (Addgene #12259) (3 mg each) using X-tremeGENE (Roche), accord-

ing to the manufacturer’s protocol. 2–3 days after transfection, supernatant of transfected cells was harvested, filtered through 0.45-

mm filters, and added to OVCAR5 or NMM cells in a 1:1 dilution in medium. Antigen-positive GFP+ OVCAR5 cells were generated by

retroviral transduction with the pMX-CDK4R>L-GFP vector. Antigen-positive mPlumb+ NMM cells were generated by lentiviral trans-

duction with the pLenti-OVA-mPlumb vector. Antigen-negative CFP+ bystander OVCAR5 and NMM cells were generated by retro-

viral transduction with the pMX-CFP vector. After transduction, indicated cell populations were sorted on a FACSaria Fusion (BD bio-

sciences) to >90% purity. Ag�CFP+IGS reporter cells were generated as described.30

Mice
NOD-scid Il2rynullB2mnull (NSG-b2m�/�), C57BL/6; RAG2 KO, C57BL/6; UBC-GFP, and C57BL/6; OT-I mice were obtained from

Jackson Laboratories. UBC-GFP and OT-I mice were crossed to obtain GFP-OT-I donor mice for adoptive cell transfer experiments.

All animal experiments were approved by the Animal Welfare Committee of The Netherlands Cancer Institute (NKI), in accordance

with national guidelines. All animals were maintained in the animal department of NKI, housed in individually ventilated cage systems

under specific pathogen-free conditions and received food and water ad libitum. Mice were used at 8 to 26 weeks of age. Animals of

the same sex were randomly assigned to experimental groups, both male and female mice were used in this study.

METHOD DETAILS

Generation and culture of TCR-modified T cells
Retroviral transduction and culture of human T cells was performed as described previously.30 To obtain murine GFP+ OT-1 CD8+

T cells, spleens fromC57BL/6; UBC-GFP; OT-I mice were passed through 70 mm strainers (Falcon) to obtain single cell suspensions.

Splenocytes were then negatively enriched with the Mouse CD8 T Lymphocyte Enrichment Set (BD Biosciences) and activated at

1x106 cells per 24 well for 48 h with 2 mg/ml Concanavalin A (Merck) in RPMI 1640 supplemented with 8% FCS, penicillin/strepto-

mycin, 50 mM b-mercapto-ethanol (Gibco), 10 ng/mL IL-2 (Immunotools), 0.5 ng/mL IL-7 (Immunotools) and 1 ng/mL IL-15 (Immu-

notools). After 48 h, cells were spun down and taken up in fresh medium at a concentration 1x106 cells/ml. Cells were kept at a con-

centration of 1x106/mL, with refreshment of media every 24 h, for 2–5 days before adoptive transfer.

In vitro cytokine stimulation
Ag�CFP+ tumor cells were plated at 200,000 cells per well in 6-well plates for 24 h and were then treated with either human IFNg

(Invitrogen), human TNFa (Peprotech), murine IFNg (Thermo Fisher), murine TNFa (Peprotech) or murine TGFb (ebioscience) the indi-

cated combination, or were treated with culture medium from T cell - tumor cell co-cultures (see below), at the indicated concentra-

tions or dilutions. At the indicated times, cells were harvested and used for bulk or single-cell RNA-seq, as indicated. For bulk RNA-

seq, cells were lysed in RLT lysis buffer (Qiagen) and stored at�80�C before sequencing. The bulk RNA-seq datasets obtained from

these in vitro cytokine-stimulated cells at different time points are referred to as the ‘‘OVCAR5 bulk RNA-seq reference dataset’’ and

‘‘NMMbulk RNA-seq reference dataset’’ throughout themanuscript. For single-cell RNA-seq, cells were stainedwith TotalSeq Hash-

tag antibodies (TotalSeq-B, Biolegend) and pooled, using an equal number of cells from each sample, to form one pool of cells for

single cell RNA-seq analysis. Cell death and total cell counts were analyzed at 16 h or 44 h after treatment by IR-Dye staining and

subsequent flow cytometry using AccuCountBlank 15.2-mm beads (Spherotech). To obtain culture medium from T cell - tumor

cell co-cultures, Ag+ GFP+ OVCAR5 tumor cells were plated at 2x106 per 10 cm culture dish. After 1 day, 4x106 CDK4R>L-specific

CD8+ T cells were added, and culture medium was harvested after 24 h, filtered through a 0.45 mm filter (GE) and stored at �80�C.

In vivo tumor models
8x106 OVCAR5 cells or 2x105 NMM cells were injected subcutaneously into the flank of NSG-b2m�/� mice or C57BL/6; RAG2�/�

mice, respectively, in 50 mL PBS (Gibco) and 50 mL matrigel (Corning), using the indicated mixtures of tumor cell variants. At day

7–8 after tumor inoculation, tumor-bearing mice received an intravenous injection of either 100 mL PBS or 5 3 106 CDK4R>L TCR-

transduced CD8+ T cells or GFP+ OT-1 CD8+ T cells in 100 mL PBS, as indicated. On days 0, 1 and 2 after T cell transfer, NSG-

b2m�/� mice received injections of 7.2 3 105 IU IL-2 (Proleukin, Novartis) dissolved in 200 mL PBS, twice daily, with an interval of

6–12 h between injections, to support T cell engraftment. At the indicated times after T cell transfer, mice were sacrificed and tumors

were harvested. Harvested tumors were manually minced and enzymatically digested in RPMI medium (Gibco) supplemented with 5

W€unsch units/ml TH Liberase/ml (Roche) 25 mg/mL DNase I (Roche) for 20min at 37 �C under continuous shaking. Subsequently, cell

digests were filtered through a 70-mm strainer (Falcon) and single-cell suspensions were stained with IR-Dye (Invitrogen) and

TotalSeq Hastag antibodies (TotalSeq-A or B, Biolegend). Cells from each sample were combined at equal numbers, and CFP+
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(i.e., bystander) tumor cells were sorted from this cell pool on a FACSaria Fusion (BD biosciences) and analyzed by single-cell RNA-

seq (see below). Tomeasure cytokine production of intratumoral T cells ex vivo, tumor cells from digested tumors were subsequently

cultured in vitro in the presence of Ag�CFP+ tumor cells (for digests from control tumors) or CDK4R>L Ag
+ tumor cells (for digests from

Ag+/Ag� mixed tumors) for 3 h in the presence of Golgi-plug (BD biosciences) to block cytokine secretion. Cells were subsequently

stained for intracellular IFNg and TNFa and analyzed by flow cytometry.

Intratumoral cytokine injection
Where indicated, tumors of �150 mm3 size were intratumorally injected with 15ul PBS containing the indicated cytokines (100 ng

IFNg, 10 ng TNFa or 100 ng IFNg plus 10 ng TNFa per mL of tumor mass), using a Veo insulin syringe with a BD Ultra-Fine 6 mm

x 31G needle (BD biosciences). At the indicated times after injection, tumors were harvested, digested, sorted, and bystander tumor

cells were analyzed by single-cell RNA-seq as described below.

Flow cytometry
For analysis of immune infiltrates in NSG-b2m�/� mice, cells were stained with fluorochrome-labeled anti-human CD3 antibody

(clone OKT3; BD biosciences) in FACS buffer (PBS supplemented with 0.5% w/v bovine serum albumin (Sigma) and EDTA

(2 mM, Life Technologies)) for 20–30 min at 4�C, while protected from light. For analysis of cytokine secretion of intratumoral

T cells, cells were stained for anti-human CD3 (clone OKT3; BD biosciences), anti-mouse TCRb constant domain (clone H57-597;

BD Biosciences), anti-human IFNg (clone 4S.B3; BD Biosciences) and anti-human TNFa (clone MAb11, eBioscience). After incuba-

tion, cells were washed twice with FACS buffer before resuspension in FACS buffer for analysis. IR-Dye (Invitrogen) was used to allow

for live cell selection.

Bulk mRNA sequencing
Total RNAwas isolated using the RNeasyMini Kit (74106, Qiagen), including an on-columnDNase digestion (79254, Qiagen), accord-

ing to the manufacturer’s instructions. RNA quality and quantity was assessed on the 2100 Bioanalyzer instrument, following the

manufacturer’s instructions ‘‘Agilent RNA 6000 Nano’’ (G2938-90034, Agilent Technologies). Total RNA samples having RIN

values > 8 were subjected to TruSeq stranded mRNA library preparation, according to the manufacturer’s instructions (Document

# 1000000040498, Illumina). StrandedmRNA libraries were analyzed on a 2100 Bioanalyzer instrument, following themanufacturer’s

protocol ‘‘Agilent DNA 7500 kit’’ (G2938-90024, Agilent Technologies), diluted to 10 nM and pooled equimolar into multiplex

sequencing pools for sequencing on HiSeq 2500 and NovaSeq 6000 instruments (Illumina). HiSeq 2500 single-end sequencing

was performed using 65 cycles for Read 1, and 10 cycles for Read i7, using HiSeq SR Cluster Kit v4 cBot (GD-401-4001, Illumina)

and HiSeq SBS Kit V4 50 cycle kit (FC-401-4002, Illumina). NovaSeq 6000 paired-end sequencing was performed using 54 cycles for

Read 1, 19 cycles for Read i7, 10 cycles for Read i5, and 54 cycles for Read 2, using the NovaSeq 6000 SP Reagent Kit v1.5 (100

cycles) (20028401, Illumina).

Single cell gene expression library generation and sequencing
Single cell suspensions were diluted to a final concentration of 1,000 cells/ml in 1xPBS containing 0.04% weight/volume BSA. The

Chromium Controller platform of 10X Genomics was used for single cell partitioning and barcoding. Per single cell suspension,

each cell’s transcriptomewas barcoded during reverse transcription, pooled cDNAwas amplified and Single Cell 30 Gene Expression

libraries and Cell Hashing libraries via Feature barcode technology were prepared, according to the manufacturer’s protocol

(CG000183, CG000206 and CG000317, 10X Genomics). All libraries were quantified on a 2100 Bioanalyzer Instrument following

the Agilent Technologies Protocol (Agilent DNA 7500 kit, G2938-90024). Sequence library pools were composed and quantified

by qPCR, according to the KAPA Library Quantification Kit Illumina Platforms protocol (KR0405, KAPA Biosystems). HiSeq 2500,

NextSeq 550 or NovaSeq 6000 Illumina sequencing systems were used for paired-end sequencing of the Single Cell 30 Gene Expres-

sion libraries and Cell Hashing libraries, respectively, at a sequencing depth of between 20,000–60,000 reads/cell and approximately

3,500 reads/cell. HiSeq 2500 paired-end sequencingwas performed using 100 cycles for Read 1, 8 cycles for Read i7, and 100 cycles

for Read 2, using HiSeq PE Cluster Kit V4 (PE-401-4001, Illumina) and multiple HiSeq SBS Kit V4 50 cycle kits (FC-401-4002, Illu-

mina). NextSeq 550 paired-end sequencing was performed using 28 cycles for Read 1, 10 cycles for Read i7, and 54 cycles for

Read 2, using the NextSeq 500/550 High Output Kit v2.5 (75 Cycles) (20024906, Illumina) and NextSeq 500/550 Mid Output Kit

v2.5 (150 Cycles) (20024904, Illumina). Novaseq 6000 paired-end sequencing was performed using 28 cycles for Read 1, 10 cycles

for each Read i7 and i5, and 90 cycles for Read 2, using the NovaSeq 6000 S2 Reagent Kit v1.5 (100 cycles) (20028316, Illumina).

Gene expression and antibody sequencing reads were mapped to the GRCh38 human reference genome (refdata-cellranger-

GRCh38–3.0.0) and antibody reference sequences, respectively, using CellRanger Version 5.0.1 in multi mode (10x Genomics)

with default parameters. The genomic sequence of the Katushka fluorescent protein (named as ENSG00000555555) was added

to the human reference prior to mapping.

Bulk RNA-seq data preprocessing
Bulk raw read counts of human OVCAR5 samples were mapped to CellRanger’s reference transcriptome refdata-cellranger-

GRCh38–3.0.0 using version 0.9 of the Nextflow core kallisto pipeline with kallisto 0.46.2. Read count distributions were a priori as-

sessed using an awk script (as adapted from https://www.biostars.org/p/243552/). Transcript counts were collapsed to genes using
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the R package tximport and Ensembl gene identifiers (IDs) were converted to HUGO gene names using a self-made lookup table

generated from the CellRanger gtf file. Gene read counts were loaded into the R Seurat package, then TMM-library size normalized

using edgeR and finally additionally corrected using Seurat’s regularized negative binomial model regression, in the samemanner as

the single cell data (SCT normalization44). The last step had the effect of setting lowly expressed genes (fewer than 1 unit of TMM-

normalized gene expression) to zero and also reduced the contrast in expression between highly and lowly expressed genes. Bulk

sequencing data of murine NMM samples were aligned paired-end, strand and transcriptome aware, with hisat245 against GRCm38.

Counts per gene were made using itreecount (https://github.com/NKI-GCF/itreecount) and annotated using ensembl gtf version 87.

Selection of cytokine-responsive genes
To identify cytokine-responsive genes for the OVCAR5 cell line using machine learning, we first devised a set of gene-characterizing

features. A limma voom model46 of the form y�Xcbc+ Xdbd, where y reflects per gene expression levels, Xs are design matrices, c

reflect stimulus nature and concentration (one term for each combination of a tested stimulus and concentration), and d reflects stim-

ulus exposure duration, was fitted to the ‘OVCAR5 bulk RNA-seq reference dataset’ described in the section ‘in vitro cytokine stim-

ulation’ and Figure 1. Duration coefficients were included to absorb confounding duration gene expression dynamics that were

independent of the nature of stimulus. Interaction terms between stimuli and durations were not included as the design matrices

would not be full-rank, as we had exactly one replicate per experimental condition. We collected the following statistics.

(1) Maximum t-statistics and effect sizes for the bc terms were extracted from the fitted limma object.

(2) A cytokine specificity score, capturing the relative response to either TNFa or IFNg, which was computed as |bTNFa|/(|bTNFa|+

|bIFNg|), where indicated coefficients reflect those of the highest tested concentrations of indicated cytokines (10 ng/mL for

TNFa and 100 ng/mL for IFNg). We have not noticed any genes responding more strongly to lower concentrations of a given

stimulus, justifying this approach.

(3) A set of genes respondedmore strongly to the combination of IFNg and TNFa than expected based on their response to these

stimuli in isolation. To describe this synergistic behavior, a combined TNFa plus IFNg synergy gene set score was computed

as bIFNg+TNFa/(bTNFa+bIFNg)-1, where indicated coefficients again reflect the highest tested concentrations.

(4) As some genes responded very strongly to stimuli but only at specific timepoints and such effects would get diluted in the

aforementioned limma model (which can be interpreted as an estimated average effect of concentration across the different

tested exposure durations), single time point statistics were additionally extracted. For each stimulus and time point, the log2

fold difference with the duration-matched unstimulated control sample was computed, resulting in 3 additional statistics

(IFNg, TNFa and IFNg plus TNFa), as well as the maximum of these three statistics.

(5) Genes for which one stimuluswas consistently higher across the four tested timepoints appearedmore informative than genes

for which this was more variable. To describe this, the maximum number of exposure durations for which any given cytokine

and concentration yielded the highest or lowest response was evaluated, yielding another two integral statistics ranging be-

tween 1 and 4.

(6) With the same goal in mind, the Pearson correlation between all three pairs of consecutive timepoints (2 & 6, 6 & 12, 12 & 24)

across the different stimuli was recorded and summarized by the median across the three different sets. High-scoring genes

on this metric will have high similarity in the ordering of stimuli in terms of effectuated gene expression across exposure du-

rations. Line plots (as in Figure S2C) of such genes will appear ordered, i.e., with a low degree of line crossing.

(7) Themaximum (log2-transformed) gene expression for each gene in the TMM-normalized expression data across sampleswas

extracted, as well as the difference between the maximum and minimum gene expression values across samples.

The above features were computed for all 33,514 detected genes. As simple thresholding using these statistics gave suboptimal

results (data not shown), the set of gene classifications was augmented from an original manually classified set of genes (n = 80) in an

iterative process of i) random forest model fitting on already classified genes, with gene class as the response variable and the afore-

mentioned features as explanatory variables ii) class prediction for previously unclassified genes and iii) manual curation of these

model predictions (Figure S2A). For step i), classification random forests were trained using the ranger engine in R the tidymodels

library with importance set to ‘impurity’, using the aforementioned gene descriptive statistics. The mtry parameter was optimized

using 3-fold cross validation on a random, unique sample of 75% of the already classified genes, leaving 25% of the genes for vali-

dation purposes. A final model was trained on all the training data using optimal hyperparameters. The model was trained to discern

between the following gene classes: ‘cytokine-unresponsive’ (a gene for which none of the evaluated exposures leads to clearly

elevated gene expression as judged by inspection of line-plot as in Figure S2C) and ‘cytokine-responsive’ (responsive to at least

one cytokine stimulus). The latter class was then subdivided into the following classes: ‘mono-responsive (a cytokine-responsive

gene responding strongly to one of the two tested cytokines but not to the other, and for which the combination of TNFa plus

IFNg does not behave differently from the dominant cytokine), ‘synergistically-responsive’ (a cytokine-responsive gene responding

solely to the combination of TNFa plus IFNg and not to the individual cytokines), ‘other synergy’ (a cytokine-responsive gene that

shows a moderate degree of stimulus synergy but for which individual cytokines also effectuate noticeable gene expression),

‘anti-synergy‘ (a cytokine-responsive gene whose response to the combination of stimuli is weaker than to the sum of the individual

stimuli), ‘lowly expressed’ (possibly too lowly expressed to be reliably detectable in single cell data) and ‘cytokine-responsive, other’

(responsive to cytokine exposure, but not fitting to any of the aforementioned class descriptions). Step ii) the final model was used to
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predict classes for all previously unclassified genes. Step iii) all ’cytokine-responsive’ genes (and some ‘cytokine-unresponsive’

genes as well, to ensure the absence of false negative predictions) were inspected and predictions were adjusted where needed.

After 10 iterations of model training and prediction curation, 612 cytokine-responsive genes were acquired (Figure S2D), at which

point the yield of informative additional genes per additional cycle had slowed down to just a handful, suggesting nearly full extraction

of all cytokine-responsive genes. For the purposes of this study, in which the ‘other synergy’, ‘anti-synergy’ and ‘lowly expressed’

classes are superfluous, genes belonging to these classes were next reclassified as ‘cytokine-responsive, other’ (Figure S2B). In

addition, the ‘mono-responsive’ class was partitioned into ‘IFNg mono-responsive’ (genes with cytokine specificity score % 0.5)

and ‘TNFa mono-responsive’ (genes with cytokine specificity score >0.5). Additionally, the following ‘time-informative’ gene sets

were compiled bymanual sub-selection from all 612 cytokine-responsive genes: IFNg late and TNFa late (cytokine-responsive genes

with a most pronounced response at 12–24 h of stimulation), IFNg plateau (IFNg-responsive genes rising in expression until 6 h, after

which they remain constant) and TNFa early (genes respondingmost pronounced at 2 h of stimulation). TNFa plateau, as well as IFNg

early, mono-responsive genes could not be identified.

For the selection of genes for the IFNg and TNFa gene sets for the murine NMM cell line, genes were prioritized using a simplifi-

cation of the analysis done on the human OVCAR5 data. An identical limma model was fitted to the MNN bulk RNA-seq reference

dataset, a candidate gene list was generated based on the resulting moderated t-statistics and candidate genes were then manually

filtered for cytokine-unresponsive genes by inspecting their ‘line’ plots (as in Figure 1A), resulting in a total of 134 mono-responsive

genes. TGFb-responsive genes in theMilo analysis (Figure 4E) were identified by filtering based on limmamoderated t-statistics, with

a limma model as described above applied resulting in one t-statistic for each of the evaluated single stimuli per gene. Genes were

included if they were found mono-responsive to TGFb, i.e., a) a t-statistic surpassing 4.2 for TGFb and b) below 1 for all other eval-

uated single stimuli. Genes were then filtered for biological, as opposed to purely technical, expression variation using the modelGe-

neVar function in the R package scran, which was called with log2(cpm +1) transformed data and with exposure duration meta in-

formation as the function’s argument to ‘block’. Genes were required to have bio >0 and FDR% 10^-7, resulting in a total of 73 TGFb

mono-responsive genes.

Human ovarian carcinoma single cell sequencing data preprocessing
CellRanger UMI count data was loaded into R Seurat objects and cells with less than 1,000 detected RNA features were filtered out.

Across single cell sequencing experiments, either a single or two hashtag bar codes per sample (i.e., experimental condition) were

employed, the latter to allow inclusion of a larger number of samples than the number of available hashtagging antibodies. Sample

assignment for experiments employing single hashtagging was done using Seurat’s HTODemux functionality on the CLR-normalized

barcode hashtag data using default settings. Sample assignment for experiments employing double hashtagging was done using a

custom functionality. First, HTOs were CLR normalized using Seurat’s NormalizeData. Next, the product of normalized hashtag

counts was computed for each theoretically possible combination of two different hashtag antibodies. Cells were assigned to the

sample corresponding to the highest product of CLR-normalized hashtag counts. Low-confidence assignments were then filtered

out based on the fold difference between the dominant and second to dominant hashtag combination. A threshold value of 2 for

this statistic was picked by comparing cells for which the dominant combination of hashtags was expected (i.e., a combination

included in the experimental design) and those for which it was not. Cells were additionally filtered for a maximummitochondrial con-

tent of 30%. SCT total UMI count normalization was performed on the remaining set of cells.44 We next identified the most variable

features in the experiment (Seurat’s FindVariableFeatures with default settings) and performed principal component analysis with 10

principal components (sufficient, as indicated by scree plots, obtained using Seurat’s RunPCA, default settings) and a UMAP (Seur-

at’s RunUMAP, default settings) over the principal component scores. Next, outlying clusters in the UMAP were automatically iden-

tified using density-based clustering on the UMAP cell coordinates with DBSCAN (fpc package) using parameters: eps = 0.6 and

MinPts = 6. Small DBSCAN clusters (less than 1/(5c) cells, where c is the number of detected DBSCAN clusters) were then marked

as outlying clusters and removed from downstream analyses. Using differential gene expression analysis (Seurat’s FindMarkers) and

GSEA with (R ‘fgsea’ package) with REACTOME pathways47 on the logFC-ranked list of differentially expressed genes (filtered first

FDR-adjusted p value% 0.1) between the outlying cluster and themain body of cells (i.e., the composite of non-outlying clusters), we

identified these outlying clusters (0%–2.7% of cells across experiments) to likely consist of keratinocytes and/or fibroblasts, char-

acterized by high KRT81, S100A9 and LDHB counts. SCT normalization was redone on the remaining cells. Using the intersection

of cytokine-responsive genes and detectable genes for each experiment, PCA was recomputed with 10 PCs and UMAPs were re-

computed based on the PC scores.

Murine NRAS mutant melanoma single cell sequencing data preprocessing
The murine NMMdata were preprocessed identically to the human OVCAR5 single cell data. Inspecting the initial UMAP, we noticed

two clusters of cells. Characterizing the smaller cluster (DBSCAN cluster 2, 21.5% of cells), we noticed a 7.2-fold difference in mean

UMIs between clusters (47,753 versus 6,654 mean UMI), suggestive of the presence of dying cells and/or cell fragments in the sec-

ond cluster. Cells in this cluster were then removed, and SCT normalization, PCA and UMAP computation was repeated on the re-

maining cells.
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Heatmap visualization of bulk RNA-seq data
TMM and SCT normalized data were log2-transformed and subsequently Z-scaled across genes/features. Unless indicated other-

wise, rows (genes) and columns (samples) were subsequently clustered using complete linkage hierarchical clustering (hclust func-

tion in R), using Spearman correlation distance (computed as 1 � c, where c is the correlation between two samples) for genes (rows)

and Euclidean distance for samples (columns).

Gene set scores for single cell data
For both OVCAR5 and NMM cell lines, gene set scores were computed by summing SCT-normalized expression values of a gene

set’s member genes. Where indicated, gene set scores were normalized to the distribution of gene set scores of a relevant, dura-

tion-matched control condition with the following transformation: f(x)=(x-m(xc))/IQR(xc), wherem represents themedian, xc is a vector

of scores for the same gene set for a reference condition and IQR(xc) is the interquartile range in that reference population.

Quantification of separability of experimental conditions using gene set scores
To distinguishmore than two classes at a time, as in Figure 2B, we trained SVMmodels using theGaussian kernel on 75%of the data,

leaving the remaining 25% as validation data, with the R tidymodels framework. Hyperparameters cost and rbf_sigma were opti-

mized in a 10-fold cross validation within the training data. Optimal parameters were then used to train a final model on the full

set of training data, of which the performance was subsequently evaluated on the validation data. Included confusion matrices

show the correspondence between actual and predicted class labels in the validation data, using a model trained on independent

data, ignoring the fact that single cell transcriptomes in the training and validation sets were jointly preprocessed.

Milo neighborhood analysis of single cell data
A PCA of the murine single cell data was computed using the 2,000 most variable genes (as identified using Seurat’s

FindVariableGenes with default settings) and 20 principal components. A KNN graph of the data was constructed on the principal

component scores with Milo’s buildGraph function using k = 10 and d = 20. Neighborhoods were defined using makeNhoods,

with refined = TRUE, prop = 0.1 and identical settings for k and d as aforementioned. Neighborhoods were tested for differential

abundance of the three experimental conditions using the testNhoods function, with a design matrix that was obtained from a meta-

data table with the following Rmodel formula:�1 + experimental condition, resulting in an intercept term and a regression coefficient

for the second and third experimental conditions. In visualizations of the KNN graph, effect sizes (logFC DA) associated with a Spatial

FDR >0.05 were whitened.

Deconvolution analysis of single cell neighborhood expression
A gene expressionmatrix of g genes (rows) by n single cell neighborhoods (SCNs, columns) in linear spacewas extracted using theMilo

nhoodExpression class method, TMM-transformed to normalize library sizes and finally log10-transformed, i.e., MN =

log 10ðTMMðXÞ + 1Þ, wherein X is the output of nhoodExpression and MN is the processed matrix of SCN expression. Similarly, a

g x 28 reference profile matrixMR consisting of bulk reference RNA-seq libraries with the 28 conditions/columns unstimulated 2 h - un-

stimulated 24h (i.e., no stimulation for 2 h followed by no stimulation for another 24 h), unstimulated 2 h - 10 ng/mL TGFb 24 h, unsti-

mulated 2 h - 100 ng/mL IFNy 24 h, 10 ng/mL TGFb 2 h - unstimulated 24 h, 10 ng/mL TGFb 2 h - 100 ng/mL IFNy 24 h, 100 ng/mL IFNy

2 h - unstimulated 24 h, 100 ng/mL IFNy 2 h - 10 ng/mL TGFb 24 h, unstimulated 6 h - unstimulated 24 h, unstimulated 6 h - 10 ng/mL

TGFb 24 h, unstimulated 6 h - 100 ng/mL IFNy 24 h, 10 ng/mL TGFb 6 h - unstimulated 24 h, 10 ng/mL TGFb 6 h - 100 ng/mL IFNy 24 h,

100 ng/mL IFNy 6 h - unstimulated 24 h, 100 ng/mL IFNy 6 h - 10 ng/mL TGFb 24 h, unstimulated 12 h - unstimulated 24 h, unstimulated

12 h - 10 ng/mL TGFb 24 h, unstimulated 12 h - 100 ng/mL IFNy 24 h, 10 ng/mL TGFb 12 h - unstimulated 24 h, 10 ng/mL TGFb 12 h -

100 ng/mL IFNy 24 h, 100 ng/mL IFNy 12 h - unstimulated 24 h, 100 ng/mL IFNy 12 h - 10 ng/mL TGFb 24 h, unstimulated 24 h - un-

stimulated 24 h, unstimulated 24 h - 10 ng/mL TGFb 24 h, unstimulated 24 h - 100 ng/mL IFNy 24 h, unstimulated 24 h - 100 ng/mL IFNy

10 ng/mL TGFb 24 h, 10 ng/mL TGFb 24 h - unstimulated 24 h, 10 ng/mL TGFb 24 h - 100 ng/mL IFNy 24 h, 100 ng/mL IFNy 24 h -

unstimulated 24 h, 100 ng/mL IFNy 24 h - 10 ng/mL TGFb 24 h in the columns and genes in the rows) were TMM-normalized and

then similarly log10-transformed. The matrices were identically row-ordered (genes), with as rows the intersection of detected genes

in the two unprocessed source matrices (g = 14;620Þ such that they predominantly consisted of genes that are minimally or not

responsive to the cytokines of interest.

To estimate an SCN’s stimulus exposure, its transcriptome was modeled as a linear combination of the columns (samples) of MR

using lasso l1-penalized multivariate regression with the regression coefficients (b) constrained to be larger than or equal to 0, such

that they can be interpreted as mixing weights. The cv.glmnet function from the R package glmnet was used for this regression,48 as

well as to optimize the lambda penalty for regression coefficients with arguments: lower.limits = c(0), family = ’Gaussian’, alpha =

0.99. The mean squared error between the original transcriptome (y) and reconstructed transcriptome (x b), i.e.,. E½ðy � x bÞ2�,
was then extracted from the cv.glmnet object with lambda set to the value that minimized the cross validation error. To assess

the importance of a subset of reference samples (columns) c for the reconstruction of any particular SCN, the reconstruction error

was recomputed with the remaining columns ofMR after having removed samples/columns c. In this, a large increase in error can be

interpreted as an indication that the samples c contain co-variation in gene expression that cannot be accommodated by any of the

remaining reference samples. To quantify the possibility that reconstruction error was simply raised by providing the optimization

algorithm a smaller set of basis vectors to work with (i.e., by limiting the span ofMR), permutation testing was employed. Specifically,
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the reconstruction error was first computed with 1,000 random selections of s reference profiles, where s is the number of reference

profiles that were not associated with the reference profiles (columns) of which the importance is assessed. For example, to assess

the importance of TGFb stimulation, s is the number of profiles obtained from experiments where no TGFb stimulation was applied

(i.e., only unstimulated and IFNg stimulated samples, s = 11, Figure 4G, left). Similarly, to assess the importance of IFNg stimulation,

s represents the number of profiles obtained from experiments where no IFNg stimulation was applied (i.e., only unstimulated and

TGFb-stimulated samples, s = 11, Figure 4G, right). The quantile of the observed error in the distribution of permutation errors

was then acquired using the R function ecdf. SCN reconstruction was finally labeled as worse (or better) than expected if the

observed error was in the 97.5st or higher (or 2.5 th or lower) percentile of the permutation distribution.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses for flow cytometry data were performed in Prism (GraphPad). Statistical details for experiments, including the

statistical test used, the value of n, what n represents, and the obtained p values can be found in the figure and/or figure legends.

No statistical method was used to predetermine sample sizes. No data were excluded from the analyses.

AUROC values used for single cell RNA-seq data in the main text and figures represent the area under the receiver operator curve

from a binary classifier aiming to separate the two indicated experimental conditions with the indicated gene set score as the sole

explanatory variable. These scores were computed using the roc_auc_vec function in the R yardstick package. AUROC values range

between 0.5 (signifying no separation between experimental conditions) and 1 (signifying complete separation between experimental

conditions).
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