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Abstract

Operational nearshore current forecasts based on numerical model simula-

tions are gaining popularity as a measure to increase the safety of swimmers.

Applying remotely-sensed bathymetry in these model simulations is often pro-

posed in order to cope with rapidly changing nearshore bathymetry. Errors

in the remotely-sensed bathymetry may negatively affect performance of the

hydrodynamic model. Hence, this study aims to determine the sensitivity of

modelled nearshore currents (with a strong focus on rip currents) to errors in

remotely-sensed bathymetries.

The errors in the remotely-sensed bathymetries (depth inversion algorithm

applied to video stream) were quantified with a length scale-aware validation

technique, providing useful insights in the contribution of pattern and am-

plitude errors to the total error throughout the analysis domain and over a

range of bathymetric length scales. Subsequently, simulations with a nearshore

hydrodynamic model were performed, using both in-situ and remotely-sensed

bathymetries as an input. A comparison of predicted rip currents on either

bathymetry yielded performance statistics for operational current forecasts on

remotely-sensed bathymetries, taking the model with in-situ bathymetry as a

reference. Linking these performance statistics back to the quantified errors in
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the remotely-sensed bathymetry finally revealed the relation between errors in

flow and bathymetry.

Of all rip currents generated on an in-situ bathymetry, 55% were reproduced

on the remotely-sensed bathymetry, showing that models predicting nearshore

currents on remotely-sensed bathymetry have predictive value. Positive rip cur-

rent predictions were promoted significantly by accurate reproduction of the

pattern and amplitude of nearshore bars at length scales between 200 and 400

m. In contrast to the length-scale aware validation technique applied here, com-

monly used domain-wide bulk error metrics lack important information about

spatial variations in the quality of remotely-sensed bathymetry.

Keywords: rip currents, depth inversion, remote sensing, Sand Motor,

numerical modeling, swimmer safety

1. Introduction

Operational prediction of nearshore currents by numerical models is an im-

portant method for mitigation of risks related to swimmer safety (Alvarez-

Ellacuria et al., 2010; Voulgaris et al., 2011; Austin et al., 2012; Kim et al.,

2013; Sembiring et al., 2015). The nearshore currents predicted by these mod-

els are strongly dependent on bathymetric variability, which is most clearly

illustrated by field observations of rip cell circulations related to complex sand

bar patterns (MacMahan et al., 2005; Austin et al., 2010; Winter et al., 2014).

In turn, these sand bar patterns are affected by nearshore hydrodynamics, as

waves and currents reshape the bed continuously. Consequently, sand bar pat-

terns that cause rip cell circulations may change drastically on timescales of

days to weeks (e.g. Holman et al., 2006; Price and Ruessink, 2011). In order to

reliably predict nearshore hydrodynamics for swimmer safety purposes, opera-

tional numerical models should be provided with updated bed levels frequently.

This is virtually impossible to achieve with labour-intensive in-situ bed level

measurement techniques (e.g. a single-beam echo sounder mounted on a per-

sonal watercraft, see MacMahan, 2001). Alternatively, nearshore bathymetry
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can be estimated operationally using remote sensing techniques. The technical

feasibility of coupling remotely-sensed bathymetry to nearshore hydrodynamic

predictions was presented by Radermacher et al. (2014) and Sembiring et al.

(2015), successfully demonstrating the potential of this combination. While

they report the accuracy of the resulting simulated flow fields at their respective

field sites, they do not adress the coupling between errors in the remotely-sensed

bathymetry and the simulated flow fields. The aim of the present research is

to determine the sensitivity of simulated rip current occurrence and location to

errors in remotely-sensed bathymetries. Only geometrically defined rips related

to nearshore sandbar patterns are considered. Other types of rip currents (a.o.

headland rips, transient rips) are excluded here.

Over the last decades, a wide range of depth inversion algorithms has been

developed, which aim to fit a local water depth to remotely-sensed wave param-

eters based on physical relations. For instance, these algorithms may employ

wave fields observed with video or radar to estimate water depth through the

linear dispersion relation (a.o. Bell, 1999; Holman et al., 2013) or model-data

assimilation of video-observed wave breaking patterns (a.o. Aarninkhof et al.,

2005; Van Dongeren et al., 2008). Although these remote sensing techniques are

capable of providing nearshore bathymetry estimates at short time intervals, it

is unclear how errors in the resulting bathymetry estimates translate to errors

in the resulting flow predictions and whether the bathymetric estimates are suf-

ficiently accurate to be applied in the prediction of nearshore hydrodynamics.

In order to be a significant contribution to recreational safety, an opera-

tional hydrodynamic model should adequately predict spatio-temporally vary-

ing nearshore current patterns. Primarily, this concerns correct prediction of

rip current occurrence and location. Remotely-sensed bathymetries applied in

these model simulations should be of sufficient quality to support this aim. Tra-

ditionally, the accuracy of remotely-sensed bathymetry with respect to in-situ

techniques is assessed from bulk error metrics, such as the root-mean-squared

error (RMSE), bias and correlation, or from difference maps (Plant et al., 2007;

Senet et al., 2008; Van Dongeren et al., 2008; Holman et al., 2013; Rutten et al.,
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2017). Previous attempts to assess the quality of hydrodynamic predictions on

remotely-sensed bathymetry by Radermacher et al. (2014) and Sembiring et al.

(2015) demonstrated the difficulty of linking bathymetric errors to hydrody-

namic errors purely based on bulk point-wise error metrics. Nearshore currents

do not just depend on the local water depth, but are influenced by bathymetric

features that span a range of length scales (Wilson et al., 2013; Plant et al.,

2009). Therefore, it is expected that the ability of a depth inversion algorithm

to resolve spatial bathymetric patterns is strongly linked to the accuracy of

nearshore current predictions on the remotely-sensed bathymetry.

Here, the performance of a video-based depth inversion algorithm is studied

with a pattern-aware validation technique applied to the resulting bed topog-

raphy maps (section 3.1). Subsequently, wave-driven nearshore currents are

simulated with a validated numerical model on the remotely-sensed bathyme-

tries and on traditionally obtained vessel-based bathymetries. A comparison of

simulated flow patterns on both types of bathymetries, focused on rip currents,

yields performance statistics of nearshore current predictions on remotely-sensed

bathymetries (section 3.2). Finally, these current prediction performance statis-

tics are linked to the bathymetric error statistics from section 3.1, which high-

light the relation between bathymetric variability and nearshore flows (section

3.3). First, the methodology outlined above will be elaborated upon in section

2, along with a description of the study site.

2. Methodology

2.1. Field site and instrumental setup

In order to assess the accuracy of nearshore currents simulated on a video-

derived bathymetry, data were obtained at the Sand Motor, a mega-scale beach

nourishment in the Netherlands (Stive et al., 2013). The large scientific atten-

tion for this coastal engineering pilot project has yielded extensive field datasets

(De Zeeuw et al., 2017), which have been employed here for comparison to video-

derived bathymetry estimates and hydrodynamic model simulations. The Sand
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Motor was constructed in 2011 as a 17.5 Mm3 sandy peninsula and is intended

to nourish the adjacent coastline throughout the coming decades by natural

alongshore sediment transport. It is situated within the Delfland coastal cell,

an 18 km stretch of coastline between the harbor breakwaters of Rotterdam

and The Hague. At approximately two-monthly intervals, the bathymetry was

surveyed (see Figure 1, panel A) with high accuracy using a single-beam echo

sounder and RTK-DGPS mounted on a personal watercraft for the sub-aqueous

part of the measurement domain and on an all-terrain vehicle for the sub-aerial

part (details provided in De Schipper et al., 2016). The original bed elevation

data were subsampled to a 25 x 25 m resolution (Plant et al., 2002) and sub-

sequently linearly interpolated to a 20 m x 10 m grid (alongshore x cross-shore

resolution). All surveys used in this study are presented in Figure 2.

Figure 1: Overview of available field data and extent of numerical model domain: timeline of

available in-situ bathymetry surveys, periods with cBathy coverage and MegaPEX experiment

(panel A), position of the Sand Motor and the model domain (area covered by bathymetric

data) along the Delfland coast with colours representing water depth and grey shading repre-

senting the dry land (panel B) and nearshore field setup with ADCP stations, depth contours

and Argus camera tower (panel C).

An extensive set of field observations was collected in fall 2014 during the

Mega Perturbation Experiment (abbreviated to MegaPEX), comprising a.o.
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Figure 2: Overview of the six in-situ surveyed bathymetries that are used in this study. The

first two surveys were captured just before and after a severe storm (peak Hs 5 m). The

locations of bars and rip channels remain fairly stable, while the exact shape and orientation

of bathymetric features varies throughout the analysis period. All bed levels in this study are

presented relative to the Dutch vertical datum NAP (approximate mean sea level).

nearshore pressure and velocity measurements with four acoustic doppler cur-

rent profilers (ADCPs) over a four-week period (Figure 1, panel C). This type

of instrument has been successfully applied before for observations of nearshore

current dynamics, a.o. by Brown et al. (2015). The ADCPs were deployed on the

nearshore bars and at the seaward end of an oblique rip channel. They sampled

the vertical current profile in bins of 0.5 m as well as the pressure. Depth-

averaged flow velocities were calculated by averaging over all sub-aqueous bins

(i.e. bins that are submerged more than 99% of the time within a temporal

window of 10 minutes). If no sub-aqueous bins were found at a particular point100

in time, no depth averaged flow velocity was computed for that time. In order

to remove short-term fluctuations from the timeseries, the velocity timeseries

were low-pass filtered with a cut-off period of 10 minutes. Further details of the

ADCPs are provided in Table 1, where h denotes the average water depth, zbbc
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Table 1: ADCP properties.

Station Type h [m] zbbc [m] tav [s]

A4 Nortek Aquadopp profiler 1 MHz 2.16 -1.18 1

R1 Nortek Aquadopp profiler 2 MHz 2.59 -1.27 15

R2 Nortek Aquadopp profiler 1 MHz 1.80 -1.15 1

B2 Nortek Aquadopp profiler 2 MHz 1.79 -1.26 20

is the vertical level of the bottom bin center and tav is the internal averaging

duration of the instrument. Additionally, pressure sensors were deployed at 6

m water depth just north and south of the Sand Motor.

2.2. Remotely-sensed bathymetry

A tower is located at the most elevated point of the Sand Motor, with 8 cam-

eras covering an approximately 230 degree horizontal view angle (part of the

Argus network, see Holman and Stanley, 2007). The depth inversion algorithm

applied to the 2 Hz video stream is named cBathy (detailed description can

be found in Holman et al., 2013). cBathy applies cross-spectral analysis to the

video intensity timeseries in order to determine dominant pairs of frequency and

wave number within a sliding spatial analysis window (Plant et al., 2008) and

subsequently inverts the linear dispersion relation to make an estimate of the

water depth. Timeseries of water depth estimates on a 20 x 10 m analysis grid

(alongshore x cross-shore spacing) are then fed into a Kalman filter (Kalman,

1960) in order to reduce noise and make the depth estimates more robust. Ap-

plications of the cBathy algorithm to Argus imagery at various field sites and

under a range of environmental conditions have demonstrated its capability to

resolve nearshore bathymetry with a bulk root-mean-squared error of approxi-

mately 50 cm (Holman et al., 2013; Wengrove et al., 2013; Radermacher et al.,

2014; Sembiring et al., 2015; Bergsma et al., 2016; Rutten et al., 2017). Depth

estimates were obtained every four hours during daytime since installation of

the camera tower in 2013, with the exception of several periods of down-time

(Figure 1, panel A). For this study, cBathy’s Kalman filter was initiated on 13
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June 2013 and fed with 4-hourly bathymetry estimates. In addition to the algo-

rithm presented by Holman et al. (2013), an outlier removal routine was added

here to prevent several site-specific error sources (mainly ships sailing through

the camera view) from fouling the remotely-sensed bathymetry. Depth esti-

mates falling outside a 1.5 m envelope around the nearest groundtruth survey

or the previous filtered bathymetry estimate were rejected. The process error

calibration parameter was set to a value of 10−4 day−1. This was found to yield

the most accurate bathymetry estimates when compared to in-situ surveyed bed

levels. It was verified that this parameter choice can cope with natural site mor-

phodynamics by comparing cBathy results to a pre and post-storm groundtruth

survey.

The present study emphasises the importance of local bathymetric patterns

when studying nearshore currents. Advanced, pattern-aware comparison and

verification methods for spatial parameter fields have been proposed by many

authors, mostly within the field of meteorology. An extensive overview is pre-

sented by Gilleland et al. (2009). Not all methods perform equally well if the

spatial parameter field consists of nearshore bed levels along a curved coast-

line. Scale separation methods, which assess bandpass-filtered parameter fields

to perform a scale-selective comparison (e.g. Briggs and Levine, 1997), have the

theoretical advantage of quantifying length scales of bathymetric patterns, but

fail to separate variability due to nearshore bar patterns from variability related

to the cross-shore beach profile. This is considered impractical here, as variabil-

ity due to the cross-shore beach profile is irrelevant for this study of nearshore

circulation patterns. The same holds for feature-based methods, which detect

and compare physically relevant features by setting parameter value thresholds

(e.g. Ebert and McBride, 2000).

Here, a neighborhood method is employed, which is comparable to the

method presented by Bosboom and Reniers (2014). The quality of the remotely-

sensed bathymetry with respect to the in-situ bathymetry is determined by com-

puting several error metrics within a circular sliding window of diameter L. This

approach acknowledges both the spatially coherent structure of the bathymetry
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(by calculating bulk metrics over all points within a distance L of each other)

and the spatial variability in bathymetric features encountered along a beach

(by applying a sliding window over the 20 x 10 m cBathy grid). Before the

error metrics are computed, the average beach slope is removed by fitting a

least squares plane to the windowed in-situ bathymetry and subtracting that

from both bathymetries. The error metrics were then computed as follows: let

zi be the in-situ bathymetry and zr the remotely-sensed bathymetry within the

same spatial window of n data points and z′i and z′r their respective counterparts

after subtracting the average slope. The error metrics computed in the sliding

window are (Figure 3 and Equations 1a through 1d): (1) the correlation ρ, (2)

the bias b, (3) the ratio of standard deviations σ̂ and (4) the root-mean-squared

error ε.

ρ =

1
n

n∑
k=1

(z′i,k − z̄′i)(z′r,k − z̄′r)

σiσr
(1a)

b =z̄r − z̄i (1b)

σ̂ =
σr
σi

(1c)

ε =

√√√√ 1

n

n∑
k=1

(zr,k − zi,k)2 (1d)

Here, n is the number of data points inside the circular sliding window,

subscripts i and r indicate in-situ or remotely-sensed quantities respectively,

the overbar denotes window-averaged quantities and σ denotes the standard

deviation of bed levels z′ within the window.

The example shown in Figure 3 treats a spatial window with a relatively good

performance of the depth inversion algorithm. The patterns are matching fairly

well (ρ = 0.93), while the remotely-sensed bathymetry slightly underestimates

the amplitude of bathymetric variability (σ̂ = 0.96). The bias is close to 0 and

the RMSE is 0.27 cm.

9



Figure 3: Demonstration of the pattern-aware bathymetry validation method. The loca-

tion and size of the analysis window are indicated in the leftmost panel, along with the

remotely-sensed bathymetry. The top panels show the remotely-sensed and in-situ measured

bathymetries within the analysis window, including the least-squares fitted plane of the in-situ

measured bathymetry. The bottom panels show the residual bathymetries z′r and z′i. Values

of the four error metrics are stated between the bottom panels.

2.3. Numerical model

The present study relates bed level deviations in the remotely-sensed bathymetry

to their impact on the nearshore flow field. To this end, nearshore currents were

simulated on remotely-sensed as well as in-situ surveyed bathymetries with the

Delft3D modeling suite, which has been used sucessfully for nearshore current

simulation in previous studies (Elias et al., 2000; Reniers et al., 2007, 2009,

2010). The model resolves alongshore and cross-shore currents with an accu-

racy in the order of 10 cm/s. Setup and validation of the model are discussed

in more detail in Appendix A. As the model is validated by comparing mod-

elled flow velocities and water levels to quantities measured in the field, the
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model described in the appendix is intended to closely match conditions oc-

curring at the Delfland coast. For the simulations discussed in section 3.2, a

more synthetic version of this model is applied by removing the tidal water level

modulations and associated currents, as this study aims to isolate the relation

between nearshore bathymetry and wave-driven currents. The wave conditions

at the offshore boundary were held constant at Hm0 = 1.5 m, Tp = 6 s and a

directional spreading of 25◦ throughout all simulations, while the off-shore wave

angle varied between simulations. The significant wave height of 1.5 m was

chosen to make sure that sufficient wave energy dissipates on the subtidal bar,

accounting for the generation of rip currents. The chosen wave height represents

an upper limit of the wave energy that can be expected on a bright summer day200

at the Dutch coastline.

As studying the response of nearshore currents to nearshore bathymetry in

a swimmer safety context is naturally focused on the generation of rip currents,

simulated nearshore flow fields were subjected to a rip current detection algo-

rithm. Concentrated patches of strong off-shore velocities (> 0.2 m/s) were

identified as rip currents (see Figure 4 for an example). Rip current detec-

tion was performed on fields of the Generalised Lagrangian Mean flow velocity

(Groeneweg and Klopman, 1998), which is resolved directly from the shallow

water equations in Delft3D (Reniers et al., 2009). Following automated detec-

tion using the velocity threshold value stated above, manual quality control was

performed to alleviate the discrete behavior of the rip current detection method

around the velocity threshold value. The similarity of flow patterns in both

simulations of a simulation pair was checked around every detected rip current.

In some cases, a particular rip current was only detected in one of the two sim-

ulations, although the two simulations had visually similar flow patterns and

similar off-shore velocity magnitudes. This is a result of the offshore directed

flow velocity being just above and below the threshold value in the two simu-

lations respectively. The resulting discrete behavior is considered undesirable.

Therefore, automatic rip current detection in these cases was overruled by clas-

sifying both flow patterns as a rip current. Attempts to automate this correction
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through quantification of flow field similarity were not successful.

Figure 4: Example of rip current detection on computed flow field. Shading represents off-

shore velocity in m/s. Four detected rip current patches have been marked in blue. The thick

black line marks the 0 m bed level contour.

Subsequently, the rip current detection algorithm was applied to model sim-

ulations on six pairs of remotely-sensed and in-situ surveyed bathymetries. Each

bathymetry was subjected to waves under five different off-shore angles of in-

cidence, ranging from -30 to +30 degrees with respect to shore-normal at 15

degree intervals, constituting a total of 30 pairs of model simulations. Detected

rip currents were compared between the two simulations of every pair, result-

ing in statistics regarding positive, false negative and false positive rip current

predictions on the remotely-sensed bathymetry. For a pair of rip currents to

be classified as a positive prediction, the centroids of the detected patches had

to be closer than 0.75 times the sum of the alongshore patch dimensions. This

criterion was found to match best with visual inspections of the similarity of

simulated flow fields. The sensitivity of the results to this criterion is very small,

as only 3% of all detected rip current pairs in this study are situated around

the threshold value (i.e., only 3% of rip current pairs have a relative separation

distance of the rip current patches between 0.5 and 1.25). A rip current pre-

dicted on the in-situ bathymetry, but not on the remotely-sensed bathymetry

was counted as a false negative, while the opposite case was counted as a false

positive.
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3. Results

3.1. Pattern-aware validation of remotely-sensed bathymetry

Six pairs of in-situ surveyed and remotely-sensed bathymetries were sub-

jected to the pattern-aware validation technique introduced in section 2.2. Re-

sults are treated here for the 4 September 2014 bathymetry pair as an example

(see Figure 5).

Figure 5: Bathymetric validation at 4 September 2014 with a window size L of 320 m. Panels

A and B show the in-situ and remotely-sensed bathymetries, while panels C through F show

the four error metrics defined in Equation 1. Bed level contours at 2m intervals were added to

aid interpretation of the error metrics. Camera view boundaries are indicated as white lines.

At the scale of the entire Sand Motor, the error metrics reveal a strong

divide between the southern and northern (left and right respectively in the

figure) half of the nourishment on the one hand and between the nearshore and

the off-shore part of the domain on the other hand. These large-scale trends are

complemented with local, small-scale variations. The correlation ρ (panel C)

is close to 1 along the southern edge of the Sand Motor, while it tends to 0 or
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even becomes negative along the northern edge and in the off-shore corners of

the domain.This mismatch of bathymetric patterns on the northern side can be

confirmed by comparing panels A and B of Figure 5. In the off-shore corners,

the bed is almost featureless, which allows residual noise in the remotely-sensed

bathymetry to dominate the correlation.

The spatial variation in the bias b (panel D) largely confirms that the cBathy

algorithm tends to underestimate the water depth at deeper waters, while it

overestimates the water depth near the shoreline (also found by Holman et al.,

2013; Bergsma et al., 2016; Rutten et al., 2017), although the windowed cal-

culation reveals important local differences. Especially the sharply delineated

patches of high bias in the off-shore part show that the bias at deep water dif-

fers between individual camera views. This suggests that the deep water bias

can partly be explained by inadequate or outdated geo-referencing of several

cameras at the Sand Motor Argus station, a problem commonly encountered at

operational camera stations.

Standard deviation ratio σ̂ (panel E) tends to be large in the off-shore part

of the domain, while it is close to 1 in the nearshore. In the off-shore ar-

eas, as was mentioned before, residual noise in the remotely-sensed bathymetry

leads to a relatively high standard deviation compared to the featureless in-situ

bathymetry. The fact that σ̂ is close to 1 in the nearshore areas indicates that

cBathy is generally well-capable of reproducing bathymetric variability there.

Finally, the root-mean squared error (RMSE) ε (panel F) contains strong

spatial variations. This goes to show that the bulk, domain-wide RMSE, which

is often reported in depth inversion validation studies (0.58 m in this case), is not

a very representative indicator of the performance of a depth inversion algorithm

for the entire field site. Performance may differ strongly between particular

zones in the field of view of a camera station. The windowed calculation of ε

already gives more insight and can be regarded as an aggregated error metric

that reflects the combined effect of the three other parameters (Murphy and

Epstein, 1989).

A synoptic overview of these four error metrics throughout all six bathymetry
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pairs can be constructed by cross-shore averaging of the error metrics over the

nearshore part of the profile (between the -1 m and -5 m bed level contours, see

Figure 6). Pattern-aware validation of all bathymetry pairs yields similar results

regarding the large-scale contradictions in performance between the southern

and northern side. At smaller scales, temporal evolution of the bathymetric

quality can be observed. Especially the deterioration of ρ, b and ε around

y = 1000 m from the April 2014 survey onwards is remarkable. This is related

to the development from a rather featureless or cluttered bathymetry before

that date to a bathymetry with well-defined bar patterns in that area. As

the remotely-sensed bathymetry fails to reproduce clear bar patterns along the

northern edge of the nourishment, its skill to reproduce the in-situ bathymetric

patterns there (reflected by ρ) decreases sharply in April 2014.

Figure 6: Nearshore-averaged error metrics for all six bathymetry pairs as a function of

alongshore distance.

3.2. Nearshore current simulations

Thirty nearshore hydrodynamic model pairs with varying bathymetries and

off-shore wave angles were simulated. The resulting flow fields were subjected

to the rip current detection algorithm (section 2.3). Rip currents detected in

pairs of model simulations were classified as positives, false negatives and false

positives. The statistics over all model simulations are presented in Table 2.300

Out of 53 rip currents predicted on the in-situ bathymetry, 55% were positively

predicted on the remotely-sensed bathymetry, while 45% of the rip currents
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Table 2: Rip current prediction performance over 30 simulation pairs.

Prediction Occurrences

Positive 29

False negative 24

False Positive 3

generated on an in-situ bathymetry were missed in simulations with remotely-

sensed bathymetry. Out of 32 rip currents predicted on the remotely-sensed

bathymetry, 9% were found to be false positive predictions that did not occur

on the associated in-situ bathymetry.

It is remarkable that the number of false positives is far lower than the num-

ber of false negatives. This difference may be related to errors in the remotely-

sensed bathymetry and is addressed in more detail in section 4. The map with

the locations of all 56 detected rip currents throughout all simulation pairs

(Figure 7) indicates that rip current formation is constrained to several rip-bar

configurations in the underlying bathymetries. Most false negatives are situated

along the northern edge of the nourishment, while most positives can be found

around the most seaward point of the Sand Motor.

Figure 7: Overview of all detected rip currents throughout all pairs of simulations. Depth

contours of the 22 April 2014 bathymetry are shown as a reference. Markers are slightly

transparent to show overlapping rip currents.
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3.3. Relating bathymetric errors to flow errors

In the previous section, performance statistics of simulated rip currents on

remotely-sensed bathymetry were presented. The source of the input bathymetry

(in-situ or cBathy) was varied between the two simulations in a simulation pair.

Therefore, it is expected that observed differences between simulated flow fields

and detected rip currents can (partly) be explained based on the pattern-aware

bathymetry error metrics that were presented in section 3.1. For every detected

rip current, the associated bathymetry errors at the center point of the rip cur-

rent patch were extracted (in case of a positive rip current prediction, the mean

location of the two patch centroids from both simulations was used). The bathy-

metric analysis length scale L was varied between 80 m and 400 m in steps of 40

m. The resulting parameters (ρ, b, σ̂ and ε) were transformed in order to make

their relation to bathymetric performance monotonous, i.e. a low parameter

value means good performance and a high parameter value means bad perfor-

mance, or vice versa. Parameters ρ and ε naturally possess this property. The

absolute value was taken of b, while σ̂ was transformed to |σ̂−1|. Subsequently,

parameters were normalised to have zero mean and a standard deviation of 1.

Normalised equivalents of the bathymetric error metrics are indicated with sub-

script n. Good performance is indicated by high ρn, low bn, low σ̂n and low

εn.

Normalised bathymetric error metrics can now be compared for positive and

false negative rip current predictions (Figure 8). False positives are omitted

here due to the low number of observations (3). Bootstrapped mean parameter

values and associated 95% confidence intervals per class (positive or false nega-

tive) were obtained from 104 realisations. The relative distance ∆ between the

two class averages was computed through dividing the absolute distance by half

the sum of the confidence intervals of the two classes. The case 0 < ∆ < 1 cor-

responds with overlapping confidence intervals of the two classes and therefore

insignificant discriminative power of the associated bathymetric error metric.

The case ∆ > 1 corresponds with non-overlapping confidence intervals and sig-

nificant discriminative power.
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Figure 8: Normalised bathymetric error metrics for positive and false negative rip current

predictions with L = 320 m. Bootstrapped mean values and 95% confidence intervals are

presented for every parameter. Non-overlapping confidence intervals indicate discriminative

power of the associated error metric, which holds for ρn, σ̂n and εn.

The value of ∆ has been computed for every error metric over a range of

bathymetric length scales L (Figure 9). The bathymetric correlation ρ signif-

icantly differentiates between positives and false negatives for L between 200

and 400 m, the maximum value occuring at L = 320 m. Within this range of

length scales, positive rip current predicitons are associated with significantly

better correlated remotely-sensed bathymetry than false negatives. The ratio of

standard deviations σ̂ has significant discriminative power between L = 240 m

and L = 360 m, the maximum value again occurring at L = 320 m. For positive

rip current predictions, σ̂ is significantly closer to unity (i.e. equal standard

deviations and therefore equal levels of bathymetric variability) than for false

negatives. The bathymetric root-mean-squared error ε significantly differenti-

ates between classes for 320 < L < 400 m, but has less discriminative strength

than ρ and σ̂. The bias b of the remotely-sensed bathymetry does not have a

significant influence on rip current prediction performance, as ∆b remains below

unity for all tested length scales. The sharp decline of ∆ for σ̂ above L = 320 m
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is remarkable, since the discriminative power of ρ and ε still remains significant.

As L increases towards 400 m, the positive rip current predictions around the

most seaward point of the nourishment start being associated with low bathy-

metric skill along the northern edge. Analogously, negative predictions along

the northern edge start being associated with high bathymetric skill around the

most seaward point. This effect, which clutters the relations between flow per-

formance and bathymetric skill, appears to start at smaller L for σ̂ than for ρ

and ε due to differences in the spatio-temporal evolution of these parameters.

Figure 9: Relative distance ∆ as a function of analysis length scale L for all bathymetric error

metrics, indicating their discriminative strength.

Additionally, three flow-related parameters are examined for their discrimi-

native strength. These parameters, being the maximum cross-shore flow velocity

found in a rip current patch U , the off-shore wave angle with respect to the local

shoreline orientation α and the mean alongshore flow velocity in a rip current

patch V , are derived directly from the hydrodynamic simulations and therefore

do not depend on L. Neither of the three selected parameters significantly dif-

ferentiates between positives and false negatives, as ∆ remains below unity in

each case.
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4. Discussion

The results presented in section 3 show that an operational rip current pre-

diction system with updated remotely-sensed bathymetry performs best if the

remotely-sensed bathymetry correlates well with the groundtruth bathymetry

and if the amount of variability in both bathymetries is comparable. These

relations are significant at bathymetric length scale approximately between 200

and 400 m. It implies that adequate reproduction of the pattern (related to ρ)

and amplitude (related to σ̂) of large nearshore sand bars by the depth inver-

sion algorithm is most important for skilful rip current prediction. The relevant

range of length scales derived here is of the same order as the scales reported

by Plant et al. (2007) and Wilson et al. (2013) as the most important scales

regarding cross-shore current generation. Relating length scale dependence of

nearshore currents to a shallow water Reynolds number, as presented by Wilson

et al. (2013), is only viable in a weakly alongshore varying regime. The presence

of pronounced bathymetric variability and associated rip currents in this study

hampers that approach.

False positive rip current predictions were only found in three cases, whereas

false negatives are more abundant in the dataset. Because three data points are

not enough to infer statistically significant relations, determining the factors

promoting false positive rip current predictions based on the model simulations

is difficult. However, this result may be expected based on the facts that (1)

cBathy tends to overestimate nearshore water depth (e.g. Rutten et al., 2017)

and (2) cBathy typically smoothens real-world bar patterns but hardly ever

exaggerates bar patterns or generates non-existent bars. A positive bias of400

water depth in the nearshore and removal of breaker bars will promote the

probability of underestimating wave breaking on the sub-tidal bar and thereby

reduces bathymetric rip current forcing, leading to false negatives rather than

false positives.

The numerical model simulations in the framework of this study were per-

formed with a constant off-shore significant wave height of 1.5 m and a constant
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water level equal to mean sea level. This combination of parameters was ob-

served to induce wave breaking all along the sub-tidal bar, thereby promoting

rip current generation in areas with sufficient alongshore bathymetric variability.

This choice is justified by the fact that the added value of updated remotely-

sensed bathymetry is primarily created by the ability to detect spatio-temporal

variability in nearshore bar patterns. Whether or not rip currents are generated

over a certain bathymetric pattern is mostly governed by the amount of wave

energy dissipation and therefore by the ratio of the wave height at the bar crest

over the local water depth, Hb/hb. As the bar crest height varies along the

coastline, progressively decreasing the off-shore wave height or increasing the

(tidal) surface elevation in the numerical model simulations would lead to less

and less alongshore sections with wave breaking at the sub-tidal bar. Ignoring

potential dependencies between bar crest height and alongshore bathymetric

variability, there is no reason to believe that a lower wave height would alter

the relative performance statistics presented in Table 2. However, regarding the

relations between bathymetric quality and rip current prediction identified in

Figure 9, it is expected that the importance of bathymetric bias would strongly

increase if the off-shore wave height is lowered. The breaker parameter for a

biased bathymetry is actually Hb/(hb + b), which becomes very sensitive to the

exact value of b if the breaker parameter at the bar crest is in the critical range

between wave breaking and no wave breaking.

Generally, operational nearshore current prediction with video-derived bathymetry

is thought to be a valuable tool for beach safety management. The present study

showed that the tool has predictive value (55% positive predictions at the Sand

Motor), although the exact percentage of positive predictions cannot be directly

translated to other field sites. Errors in the remotely-sensed bathymetry were

found to vary strongly throughout the camera domain, possibly depending on

camera graze angles, geo-referencing and wave incidence angles. The Sand Mo-

tor camera station has a rather complex geometry, with a strongly curved coast-

line and a large area of interest. Hence, rip current prediction performance is

likely to be higher along a straight coastline. Nevertheless, in day-to-day beach
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safety management, numerically generated rip current predictions should always

be regarded as one out of multiple information sources for lifeguards (their own

experience and visual observations being other very important sources).

An important aspect of determining the merits of remotely-sensed bathymetry

for rip current prediction is the trade-off between using outdated, but more

accurate in-situ surveyed bathymetries or up-to-date but error-prone remotely-

sensed bathymetries. The mobility of nearshore sand bar patterns plays a central

role in this respect, as it determines the rate at which an outdated in-situ survey

loses its power to predict the actual bathymetry. The trade-off between these

two sources of bathymetry has not been addressed here, as it is outside of the

scope of the present study. Recognising that an optimal prediction of up-to-date

nearshore bathymetry would rely on assimilation of outdated in-situ data and

up-to-date remotely-sensed data, insight in the relative accuracy of both data

sources under increasing age of the in-situ data would help to determine the

optimal assimilation scheme.

5. Conclusions

The present study has assessed the sensitivity of operational rip current

forecasts to video-derived bathymetry estimates. It was found that rip cur-

rents predicted on remotely sensed bathymetry have predictive value. Of all

rip currents generated on an in-situ bathymetry, 55% were reproduced on the

remotely-sensed bathymetry. The system is prone to false negative predictions,

meaning that 45% of rip currents generated on the groundtruth bathymetry are

not reproduced on the remotely sensed bathymetry. In contrast, false positive

predictions are rare, meaning that only 9% of rip currents predicted on the re-

motely sensed bathymetry do not occur on the in-situ bathymetry. This fact

can be applied when using operational rip current forecasts in daily beach man-

agement, as rip currents predicted on remotely sensed bathymetry will have a

very high probability of occurring in reality.

Errors in the remotely sensed bathymetry were found to exhibit strong
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spatial variability due to dependence of depth inversion performance on the

water depth and on camera-specific error sources (quality of the camera geo-

referencing, camera resolution in real-world coordinates and alongshore differ-

ences in coastline orientation and wave incidence). Generally, depth estimates

in the offshore part of the camera domain are characterised by a negative bias

and a relatively high noise level, while nearshore depth estimates have a posi-

tive bias but contain realistic bar patterns (in the absense of afore-mentioned

camera-specific errors sources).

The performance of rip current prediction on remotely sensed bathymetry

was found to depend on the ability of the depth inversion algorithm to reproduce

patterns and amplitudes of nearshore bars. Positive rip current predictions were

promoted significantly by accurate reproduction of the pattern and amplitude

of nearshore bars at length scales between 200 and 400 m. The angle of wave

incidence, cross-shore rip current intensity and strength of the alongshore flow

velocity did not significantly influence rip current prediction performance.

The results presented here imply that spatio-temporal maps of the pattern

and amplitude errors of remotely-sensed bathymetry can be used to predict the

performance of nearshore circulations simulated on that bathymetry. In con-

trast, domain-wide bulk error metrics lack important information about spatial

variations in the quality of remotely-sensed bathymetry.
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Appendix A. Numerical model

Appendix A.1. Numerical model setup

A hydrodynamic model of the Sand Motor was constructed with the model-

ing suite Delft3D (Lesser et al., 2004), which numerically integrates the shallow

water equations. Forcing of the flow by waves was taken into account by solving

the wave action balance with the SWAN model (Booij et al., 1999). The main

model domain (flow and waves) covers an area of 9.4 x 4.0 km (alongshore x

cross-shore) and has a curvi-linear grid that follows the coastline orientation.

The spatial extent of the grid is equal to the shaded area in panel B of Figure

1. The wave model was nested in a coarse, rectangular model grid with a larger

alongshore extent to account for realistic boundary conditions along the lateral

boundaries of the detailed model. A grid resolution of 5 m was adopted in the

nearshore area in order to accurately represent wave breaking and forcing of

wave-driven currents. The time step for numerical integration was 6 seconds.
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Tidal currents were forced by varying water levels imposed at the off-shore

model boundary. Water level data were obtained from pressure sensors at 6 m

water depth, which have been corrected for changes in athmospheric pressure

and low-pass filtered with a cut-off period of 15 minutes. A tidal water level

gradient was superimposed in alongshore direction, based on gradients predicted

by the continental shelf model and nested coastal strip model (Sembiring et al.,

2015), which propagate the astronomical tide from the edge of the European

continental shelf to the Dutch coast. This approach was shown to yield accurate

tidal currents in the shallow coastal waters around the Sand Motor (Raderma-

cher et al., 2017). Neumann boundary conditions were imposed at the lateral

boundaries of the flow model. Friction was specified with the Chzy formula-

tion and a friction coefficient of 50 m1/2/s. Horizontal Large Eddy Simulation

(HLES, Uittenbogaard and Van Vossen, 2003) was applied for turbulence clo-

sure, providing spatially and temporally varying turbulent viscosities with an

averaging duration of 30 minutes and a background viscosity of 0.01 m2/s.

Parametric boundary conditions for the largest wave grid were obtained

from a nearshore waverider buoy at 11 m depth just north of the Sand Motor.

Wave conditions were corrected for shoaling and refraction and shifted in time

to represent conditions at the off-shore model boundary. Depth-induced wave

breaking was accounted for by a combination of the wave energy dissipation

formulation by Roelvink (1993) and a roller energy balance (Svendsen, 1984)

with breaker parameter γ = 0.8 and roller slope β = 0.1.

This model setup is very similar to the approach of Reniers et al. (2007),

Reniers et al. (2009) and Reniers et al. (2010), who successfully demonstrated

the capability of the Delft3D suite to model nearshore current dynamics.

Appendix A.2. Comparison to field observations

Calculated wave and flow parameters are now compared to quantities ob-

served in the field over a 6-day period in early October 2014 (Figure A.10). Over

this period, the wave energy was relatively high and the wave height peaked

twice at approximately 1.5 m. This gave rise to distinct wave-driven currents

30



in the nearshore, which makes it a relevant period for model-data comparison

in the light of operational forecasts of potentially hazardous currents.

Figure A.10: Comparison of measured (red) and computed (black) flow and wave quantities.

The panels show the depth-averaged alongshore velocity component (panel A), depth-averaged

cross-shore velocity component (panels B-E), water level (panel F) and significant wave height

(panel G) at various measurement stations. Shaded periods in panels B and E are analysed

in more detail.

Alongshore currents observed in the field (panel A of Figure A.10) are mostly

dominated by the semi-diurnal tidal currents, with positive currents correspond-

ing to flood flow in northeastern direction. Around the second wave energy peak

at 7 October, which had more oblique southwesterly waves than the first peak,

alongshore wave-driven currents can be seen to dominate the alongshore velocity

signal. The numerical model is well-capable of resolving alongshore currents,

with very similar performance across all ADCP stations.
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Cross-shore currents (panels B-E) exhibit more variability between different

stations. During calm conditions, separation of the tidal flow and creation of

large-scale tidal eddies causes slight tidal modulations of the cross-shore flow

velocity (see Radermacher et al., 2017, for a more elaborate analysis of tidal cur-700

rents around the Sand Motor). The two wave energy peaks drive more intense

cross-shore currents. The maximum wave height is similar during both peaks,

but the first peak is observed to drive less intense cross-shore currents as it coin-

cides with high water. This leads to less intense wave breaking on the subtidal

bars and consequently to weaker forcing of nearshore circulations (e.g. Brander,

1999). The modelled cross-shore currents are in reasonable agreement with the

field observations, especially in the second half of the comparison period. Differ-

ences are in part attributed to schematisations in the modelling approach, but

may also result from slight spatial shifts of modelled flow patterns. The latter

is illustrated by a comparison of computed flow fields around ADCP locations

A4 and B2 during two events with strong cross-shore currents (Figure A.11).

Figure A.11: Computed flow fields and observed local flow velocities at A4 and B2 during two

events with strong cross-shore currents.
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