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Summary

Fiber reinforced polymer composites are increasingly used in impact­resistant de­
vices, automotives, and aircraft structures due to their high strength­ to­ weight
ratios and their potential for impact energy absorption. Dynamic impact loading
causes complex deformation and failure phenomena in composite laminates. More­
over, the high loading rates in impact scenarios give rise to a significant change in
mechanical properties (e.g. elastic modulus, strength, fracture energy) and failure
characteristics (e.g. failure mechanisms, energy dissipation) of polymer composites.
In other words, both mechanical deformation and failure are strain­rate dependent.
The contributing mechanisms can be roughly classified as viscous material behavior,
changes in failure mechanism, inertia effects and thermome chanical effects. These
effects involve multiple length and time scales. In experiments it is difficult to iso­
late single mechanisms contributing to the overall rate­dependency. Therefore, it
is difficult to quantify the contribution of each mechanism at different scales.

The aim of this thesis is to establish a multiscale numerical framework in which
three of the contributing mechanisms, i.e. the viscous material behavior, changes
in fracture mechanisms and inertia effects, can be investigated at different scales.
The research in this thesis is divided into four parts, one related to the macroscale,
where the composite material is treated as homogeneous, and three on exploring
possibilities to include microscale information, taking into account the microstruc­
ture of fibers and matrix.

The macroscale study concerns investigation of a series of dynamic double can­
tilever beam (DCB) tests of a unidirectional fiber­reinforced polymer (FRP) com­
posite laminate at different loading rates. A rate­dependent cohesive zone model
and an interfacial thick level set (ITLS) model are used to reproduce the dynamic
crack propagation and energy dissipation in the tests. It is found that the intro­
duced rate­dependent cohesive zone model is capable of capturing the average
crack propagation speed with a single set of material parameters. For the ITLS
model a dynamics solution scheme is introduced which relates crack speed to en­
ergy release rate. It is found that this approach can provide a very good match with
experimentally observed arrest and reinitiation phenomena with carefully calibrated
parameters and it is concluded that the relation between crack speed and energy
release rate is a useful ingredient for describing dynamic crack growth.

The following three parts of the work aim at connecting the macroscale to the
microscale. Firstly, a dispersive multiscale model using the asymptotic homogeniza­
tion technique is introduced to capture micro­inertia effects of composites. The ho­
mogenized macroscopic linear momentum equation is enriched with a micro­inertia
term scaled by a so­called “dispersion tensor” that is determined by the composite
microstructure and its elastic properties. Elastic wave propagation problems are
studied and it is found that the dispersive multiscale model shows a considerable
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x Summary

improvement over the non­dispersive model in capturing the dynamic response of
heterogeneous materials. The existence of a representative volume element (RVE)
for unidirectional fiber­reinforced composites is tested by computing the homoge­
nized properties for micromodels of different size. Convergence is found but only
with a relatively large micromodel. Moreover, it is found that the convergence of
the dispersion tensor is sensitive to the spatial distribution pattern.

Secondly, a numerical homogenization technique is developed for describing the
contribution of the viscous properties of polymer resin on macroscopic transverse
response of unidirectional composite plies. A step­by­step numerical homogeniza­
tion procedure is introduced to calibrate a homogenized viscoelastic­viscoplastic
(VE­VP) model. The response of the calibrated VE­VP model is compared against
that of the RVE model for different loading scenarios. It shows that: (1) the ho­
mogenized model captures viscoelastic deformation, rate­dependent yielding, stress
relaxation and unloading behavior of the polymer composite well, although the
assumptions of a single plastic Poisson’s ratio and pure isotropic hardening are
over­simplifications of the composite behavior; (2) the novel step­by­step numeri­
cal homogenization procedure provides an efficient and accurate way for obtaining
material parameters of a VE­VP model.

Thirdly, an embedded cell model of the single­edge­notched­tension (SENT) ge­
ometry is used to study the mode­I dynamic fracture energy and failure mechanisms
of fiber­reinforced polymer composites. In the vicinity of the initial notch tip, a com­
posite microstructure of repeating RVEs is embedded in a homogenized medium. A
series of SENT tests is simulated for different loading velocities and specimen sizes
while the dynamic energy release rate is evaluated using the dynamic version of the
𝐽­integral. The influence and interaction of loading rate, time­dependent material
nonlinearity, structural inertia and matrix ligament bridging on the failure mecha­
nisms and the fracture toughness are evaluated. It is found that with the given
material parameters and studied loading rate range, the failure type is brittle with
many microcracks but limited plasticity in the fracture process zone and a trend of
increasing brittleness for higher strain rates is observed. The inertia effect is evi­
dent for higher strain rates but it is not dominating the response. An 𝑅­curve in the
average sense is found to be strain­rate independent before the fracture process
zone is fully developed and afterwards a velocity­toughness mechanism is dictating
crack growth.



Samenvatting

Vezel versterkte kunststof composieten worden gebruikt in de auto en vliegtuig
industrie vanwege hun hoge sterkte­gewichtsverhouding en hun vermogen om im­
pact energie te absorberen. Dynamische belasting als gevolg van impact resulteert
in complexe vervorming en falen van de composieten. Vooral de hoge belasting­
snelheid in impact situaties leidt tot een significante verandering in mechanische
eigenschappen (b.v. elasticiteitsmodulus, materiaal sterkte, scheur energie) en faal
eigenschappen (b.v. faal mechanismes, energie dissipatie) in polymeer composiet.
In andere woorden, zowel de mechanische deformatie en faal eigenschappen zijn
rek snelheid afhankelijk. De bijdragende mechanismes kunnen verdeeld worden in
viskeus materiaal gedrag, veranderingen in faal mechanismes, inertie effecten en
thermo­mechanische effecten. Deze effecten zijn betrokken over meerdere lengte­
en tijdsschalen. Het is moeilijk om in een experiment de bijdrage op de totale rek­
afhankelijkheid van één enkel mechanisme te isoleren. Dit maakt het lastig om de
bijdrage van elk mechanisme te kwantificeren voor verschillende schalen.

Het doel van deze thesis is het ontwikkelen van een multi­schaal numerieke
methode waarmee de drie mechanismes: viskeus materiaal gedrag, veranderingen
in faal mechanismes en inertie effecten, kunnen worden onderzocht in verschillende
schalen. Het onderzoek in deze thesis is onderverdeeld in vier delen. Een daarvan
is gerelateerd aan de macro­schaal, waar het composieten materiaal is behandeld
als homogeen. De andere drie delen onderzoeken de mogelijkheid in het toevoegen
van micro­schaal informatie, waarbij de microstructuur van de vezels en het matrix
materiaal wordt meegenomen.

De macro­schaal studie onderzoekt een serie van double cantilever beam (DCB)
testen gemaakt van uni­directioneel vezel versterkt polymeer composiet voor ver­
schillende belastingsnelheden. Een snelheidsafhankelijk cohesive zone (CZ) model
en een interfacial thick level set (ITLS) model zijn gebruikt om de dynamische scheur
propagatie en energie dissipatie te reproduceren zoals geobserveerd in de experi­
menten. Het CZ model kan de gemiddelde scheurgroei snelheid reproduceren met
een enkele set van materiaal parameters. Voor het ITLS model is een dynamische
oplossingsschema geïntroduceerd welke de scheursnelheid relateert aan de energy
release rate (ERR). Deze methode leidt met zorgvuldig gekalibreerde parameters
tot een zeer goede overeenkomst met experiment op het gebied van scheur­stops
en het opnieuw initialiseren van scheuren. Hierbij is geconcludeerd dat de relatie
tussen scheurgroei snelheid en ERR zeer nuttig is om het dynamische scheurgroei
proces te beschrijven.

De volgende drie delen van het onderzoek richten zich op het verbinden van de
macroschaal met de microschaal. Ten eerste, een dispersie multi­schaal model met
een asymptotische homogenisatie techniek is geïntroduceerd om de effecten van
micro­inertie van composieten te simuleren. De gehomogeniseerde macroscopische

xi
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lineaire momentum relatie is verrijkt met een micro­inertie contributie geschaald bij
een dispersie tensor welke is bepaald door de composieten micro­structuur en zijn
elastische eigenschappen. Elastische golf propagatie problemen zijn bestudeerd,
en het is gevonden dat het dispersie multi­schaal model een aanzienlijke verbete­
ring is voor het modelleren van het dynamische gedrag van heterogene materialen
ten opzichte van een non­dispersie model. Het bestaan van een representatief vo­
lume element (RVE) voor uni­directioneel vezel versterkte composieten is getest
door de homogene eigenschappen van micromodellen van verschillende grote te
berekenen. Convergentie werd alleen gevonden met een relatief groot micromo­
del. Daarnaast, convergentie van de dispersie tensor is gevoelig voor het ruimtelijk
verdelingspatroon.

Ten tweede, een numerieke homogenisatie techniek is ontwikkeld welke de bij­
drage van de viskeuze eigenschappen van het polymeer hars op de macroscopische
dwars reactie van uni­directioneel composieten kan beschrijven. Een homogenisa­
tie procedure is geïntroduceerd om het gehomogeniseerde viskeus elastisch­viskeus
plastisch (VE­VP) model te kalibreren. De reactie van het gekalibreerde VE­VP mo­
del is vergeleken met het RVE model voor verschillende belastingscenario’s. Het
is aangetoond dat: (1) het gehomogeniseerde model kan viskeuze deformatie,
snelheid­afhankelijk vloeien, spannings vermindering en belasting verminderings­
gedrag van polymeer composieten goed simuleren, hoewel, de aannames van een
enkele plastische Poisson ratio en pure isotropische verharding een over simplificatie
zijn van het composieten gedrag; (2) de nieuw geïntroduceerde numerieke homo­
genisatie procedure geeft een efficiënte en nauwkeurige methode om de materiaal
parameters voor het VE­VP model te verkrijgen.

Ten derde, een ingebed cel model van een single­edge­notched­tension (SENT)
is gebruikt voor het bestuderen van de mode­I dynamische scheur energie en faal
mechanismes van vezel versterkte polymeer composieten. In de nabijheid van
de initiële inkepingspunt, een composieten microstructuur van herhalende RVEs
is ingebed in een gehomogeniseerd medium. Een serie van SENT testen is gesi­
muleerd voor verschillende belastingsnelheden en proefstuk afmetingen terwijl de
dynamische ERR is geëvalueerd gebruikmakende van de dynamische J­integraal.
De invloed en interactie van de belastingsnelheid, tijds­afhankelijke materiaal non­
lineariteit, structurele inertie en matrix vezel overbrugging op de faal mechanismes
en de scheur taaiheid is geëvalueerd. Het is gevonden dat met de gegeven ma­
teriaal parameters en bestuurde belastingsnelheid bereik, resulteert in een bros
faalmechanisme met veel microscheuren, hoewel beperkte plasticiteit in het scheur
proces gebied en een trend van toenemende brosheid voor hogere rek snelheid is
geobserveerd. De inertie effect is zichtbaar voor hogere rek snelheden, maar is niet
reactie dominerend. Uit de studie volgt dat een algemene R­curve is rek snelheid
onafhankelijk voordat het scheur proces gebied volledig ontwikkeld is waarna een
snelheid­taaiheid mechanisme de scheurgroei controleert.



1
Introduction

1.1. Background
Fiber reinforced polymer composites are increasingly used in impact­resistant de­
vices, automotives, aircraft structures due to their potential for high strength­to­
weight ratios and impact energy absorption. The multiscale structure of a com­
posite laminate is shown in Fig. 1.1. At the macroscale, the composite laminate is
observed as a homogeneous structure while at the mesoscale it can be seen that
the laminate consists of a number of unidirectional plies. At the microscale, a typical
microstructure is found with fibers embedded in a polymer resin.

Impact (dynamic) loadings can result in complex deformation and failure be­
havior in composite laminates. For instance, the impact response of laminated
composites can exhibit complex failure mechanisms with various forms of damage
such as matrix cracks, delaminations and fiber breakages at various locations in the
laminate (see Figure 1.2). Importantly, a high loading rate generated by impact
loading can cause a significant change of mechanical properties (e.g. elastic mod­
ulus, strength, fracture energy) and failure mechanisms for both thermoset and
thermoplastic fiber reinforced polymer composites [2, 3].

The underlying mechanisms of the observed rate­dependent deformation and
failure of composite laminates take place among multiple length and time scales.
The contributing mechanisms can be roughly classified as:

• Viscosity of composite constituents (polymer, fiber and interfaces) [5, 6].

• Rate­ dependency of the fracture mechanism as it is constituted by the differ­
ent failure processes (e.g. fiber failure with fiber pull out, matrix damage,
fiber /matrix interface failure) occurring at micro scale level under different
loading rates [3, 7, 8].

• inertia effects characterized as inertia resistance against rapid deformation,
damage formation and crack propagation. Due to material heterogeneity,

1



1

2 1. Introduction

Fiber

Matrix

Unidirectional ply

Laminate

Macroscale Mesoscale Microscale

Figure 1.1: Three levels of observation for a composite laminate [1]

Figure 1.2: Different types of impact induced damage in a [(0/90)4]s Carbon/Epoxy laminate [4]
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micro­inertia effects also arise as a result of wave reflection and transmis­
sion occurring at the interfaces between the constituents, which can result in
complex spatiotemporal scenarios of damage and failure evolution, initiated
at multiple spots [9–12].

• thermo mechanical dissipation as a transition from isothermal to adiabatic de­
formation and failure process is expected for increasing loading rate [13, 14].

1.2. Aim of the thesis
In experiments it is hard to isolate single mechanisms contributing to the rate ­
dependency. The aim of this thesis is to establish a multiscale numerical frame­
work where three of the contributing mechanisms, i.e. inertia effects, the viscous
material behavior, and microscale failure pattern, can be investigated at different
length scales. This multiscale numerical framework should be capable of including
components used for describing each mechanism with enough detail while have
lower computational cost than direct numerical simulation models. With this multi­
scale framework we should be able to quantify the contribution of each mechanism
independently and to study the interaction between these mechanisms. In the re­
mainder of this chapter an overview of the state of the art is presented. It is noted
that special attention is put on the establishment of the numerical framework rather
than cali bration of material parameters for a specific type of polymer composites.

1.3. Experimental characterization
Various experimental setups have been employed for investigating the dynamic
response of composites, such as the Charpy pendulum, the drop weight, and the
split Hopkinson bar. These setups are designed to generate impact loads fo cusing
on different test rates. A variety of contradictory observations and conclusions
have resulted from these experimental studies [15]. It has been found that the
dynamic defor mation properties (e.g. stiffness modulus, strength, ultimate strain)
of composites can show evident positive rate­ dependency, rate­ insensitive behavior
or negative rate ­dependency, de pending on the composite system (the type of fiber
and matrix), the test rate range, loading type (tensile, compressive, shear, flexural
etc.) and load direction (longitudinal, transverse or off ­axis) [16–19].

One way to define loading rate is to use the time rate of stress intensity factor
�̇�𝐼 and it can be computed by using the equation �̇�𝐼 = 𝐾𝐼𝑑/𝑡𝑓, where 𝐾𝐼𝑑 is the
dynamic initiation toughness and 𝑡𝑓 is the time spent before crack initiation. Table
1.1 shows a summary of commonly used experimental techniques and the corre­
sponding range of loading rate. Most of the experimental studies on interlaminar
cracking are focused on the determination of rate­dependent mode­I interlaminar
fracture energy (or toughness), as it is the most basic fracture mode [7, 20–22].
No universal trend in the effect of increased loading rate on the toughness is found
[23].
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Loading method Loading rate �̇�𝐼 Experimental technique
Quasistatic loading < 104 MPa √m/s Servohydraulic testing machine
Dynamic loading 105 MPa √m/s Charpy impact and drop­weight impact

Stress­wave loading 106 − 107 MPa √m/s Hopkinson bar apparatus
Shock­wave loading > 108 MPa √m/s Plane impact test

Table 1.1: Experimental techniques for dynamic fracture tests and their loading rate ranges [24]

1.4. Rate­dependent deformation and failure
Experimental tests of polymer composites under different loading types, such as
fatigue, impact etc., reveal that polymer composites can show evident viscoelas­
tic deformation and viscoplastic flow before damage and failure emerge [5]. The
underlying mechanism of the viscoelastic and viscoplastic behavior of polymer com­
posites is dominated by the viscosity of the polymeric matrix [5, 25]. The polymeric
matrix typically develops pressure­dependent plastic yielding with the motion of
segments of chain molecules, which are strain­rate and temperature dependent
as well. According to Eyring [26], the deformation of a polymer is a thermally
activated rate process involving the motion of segments of chain molecules over
potential barriers. The macroscopic deformation results from basic processes that
are either intermolecular (e.g. chain­sliding) or intramolecular (e.g. a change in
the conformation of the chain), whose frequency depends on the ease with which
a chain segment can surmount a potential energy barrier. Applying a stress effec­
tively lowers the activation barrier for these jumps which leads to a coordinated
motion known as yielding. The rate of change of plastic flow is therefore related
to the applied stress. Therefore, viscoelastic and viscoplastic constitutive models
have been developed to describe the constitutive behavior of polymers [27–29].
For instance, in Rocha et al. [27], a viscoelastic­viscoplastic constitutive model is
developed for an epoxy resin (see Fig. 1.3). In this model, the elastic behavior is
represented by a generalized Maxwell model consisting of 𝑛 parallel Maxwell ele­
ments connected along with an extra isolated long­term spring. In each Maxwell
element, a spring with modulus 𝐸𝑖 and a dashpot with viscosity parameter 𝜂𝑖 are
connected in series. The plastic behavior is represented by a sliding element with
yield stress 𝜎𝑦 and a dashpot with viscosity parameter 𝜂𝑝. Overstress is allowed
to develop due to the dashpot component that is placed in parallel to the sliding
element. The reinforcement inclusions, e.g. tough particles or carbon fiber, are
usually much stiffer and more brittle than the surrounding matrix and the mechan­
ical properties of the inclusions are barely rate­sensitive. The interface between
inclusion and matrix is usually very complex which may involve both physical and
chemical bonding [30, 31].

Failure in composites is also a rate­dependent process occurring across mul­
tiple length scales and time scales. For instance, for quasi­static tests delamina­
tion is often dominated by fiber/matrix interface failure while resin rich brittle frac­
ture zones have been found more dominant in dynamic tests [32]. The extent of
plastic deformation may decrease with increased loading rate, which represents a
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Figure 1.3: Schematic representation of the viscoelastic­viscoplastic polymer model in one­dimension.

ductile­to­brittle transition in the fracture process zone. These observations have
motivated the development of rate­dependent cohesive zone models in which rate­
dependency of the cohesive strength and the fracture energy are introduced, e.g.
see May [33]. Alternatively, a phenomenological relation between the dynamic frac­
ture energy 𝐺𝑐 and the crack speed 𝑉 has been proposed and implemented in nu­
merical models [34, 35]. Experimental studies show that for pure polymeric matrix,
corresponding to different levels of propagation velocity, the crack surface rough­
ness is observed to demonstrate different features since materials in the fracture
process zone might experience high strain­rate plasticity, microcrack nucleation,
thermomechanical interaction and other complex deformation/failure mechanisms
[35, 36]. Besides, in laminated composites due to fiber bridging behind the crack
tip, the fracture toughness can increase for a certain distance of crack growth (see
Fig. 1.4). As shown in Fig. 1.5, with the increase of crack speed, the crack surface
appears first to be almost flat (mirror regime), after which a rougher surface with
conic marks appears (mist regime), and finally (micro)branching takes place (hackle
regime). The increase of the apparent fracture toughness with crack extension is
usually described by a function of crack growth resistance vs. crack extension, i.e.
the so­called 𝑅 ­curve [37].

1.5. Homogeneous model and multiscale model
To quantify the rate­dependency of composites, using numerical models based on
the finite element method (FEM) is a good approach. An implicit dynamic analysis
with a fine FEM mesh of the details of a composite microstructure with well cali­
brated rate­dependent constitutive laws is potentially very accurate in capturing the
mechanical response of composite laminates. However, considering that the diam­
eter of a fiber is usually around 5­50 𝜇m, the computational cost of an FEM model
with the complete microstructure of a composite laminate is prohibitively high. A
homogeneous model or a multiscale model using a homogenization technique im­
proves the feasibility of the computational approach by reducing the computational
cost while maintaining an adequate level of accuracy (see Fig. 1.6).



1

6 1. Introduction

Figure 1.4: Enlarged bridging zone in unidirectional double cantilever beam (DCB) specimen [37]
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Figure 1.5: Fracture energy 𝐺𝑐 and the fracture characteristics corresponding to different crack speed
regions for a Polymethyl Methacrylate (PMMA) plate [35]
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The rigorous way to consider a complex random microstructure or material
nonlinearity is through representative volume element (RVE) based multiscale ap­
proaches. Initiated by Hill [38], an RVE can be defined as a characteristic sample
of heterogeneous material. It should be large enough to contain sufficient com­
posite micro­heterogeneities in order to be representative but it should be much
smaller than the size of the macroscopic structure. RVE based homogenization
methods can be divided roughly into: mathematical (asymptotic) homogenization,
computational homogenization and numerical homogenization.

The mathematical homogenization method represents the physical fields by
asymptotic expansion in powers of a small parameter, which is the ratio of a char­
acteristic size of the heterogeneities and a measure of the macrostructure. By using
asymptotic expansions, it allows a decomposition of the final solution into a series
of governing equations, which can be evaluated successively from a sequence of
(initial) boundary­value problems within an RVE domain. Afterwards, the effective
properties are obtained through volume averaging operations [39–41].

In the computational homogenization method, the local macroscopic constitutive
response is derived from the solution of a microstructural boundary value problem
in an RVE and information of the microscale is passed to the macroscale by bridging
laws. There is no need to define any explicit format of the macroscopic constitu­
tive equations in this method since the macroscopic stress is determined from the
mechanical deformation state of the associated RVE [42–44].

For the numerical homogenization method, a macroscopic canonical constitutive
law is assumed a priori for the macroscale model. The material parameters are then
determined from the averaged microscopic stress­strain fields calculated from the
computational analysis of an RVE model subjected to fundamental load cases [45–
47]. This method greatly reduces the computational cost as the calibrated macro­
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scopic constitutive model can be used for modeling composite structures without
explicitly representing the microstructure.

Finally, it is possible to abandon the RVE concept and use a detailed micro­
model embedded in a homogenized model in concurrent multiscale analysis. This
approach is particularly interesting for crack growth problems, where the region of
interest is relatively small, while localization of deformations breaks the concept of
separation of scales.

1.6. Outline of the thesis
In this thesis, various numerical methods are proposed and tested for describing
the rate­dependent deformation and failure of composite laminates under dynamic
(impact) loading. There is no single numerical framework found that can completely
describe dynamic crack growth in composites for all relevant loading rates. Instead,
the mechanisms of strain­rate dependent of composites across different scales are
studied by a number of numerical techniques at different scales of observation.
Starting from Chapter 2, the strain­rate effect of delamination crack growth is in­
vestigated at macroscale. In this chapter, a rate­dependent cohesive zone model
(CZM) and an interfacial thick level set (ITLS) model are used to capture the rate­
dependency of the fracture energy and stable/unstable dynamic crack propagations
observed in dynamic double cantilever beam (DCB) tests of a carbon/PEEK compos­
ite laminate. This study uses a homogeneous model without taking the composite
microstructure explicitly into account and the introduced rate­dependency laws are
phenomenological.

Considering the multiscale nature of underlying phenomena for the strain­rate
mechanism studied in Chapter 2, it has been found that microscale mechanisms
need to be better understood. In this thesis, special attention is put on inertia ef­
fects, viscous material behavior and dynamic fracture energy. Chapter 3 discusses
micro­inertia effects of composites with a dispersive homogenization model em­
ploying mathematical homogenization concepts. The applicability of the introduced
multiscale model is examined by studying the existence of an RVE with a statistical
analysis. The aim is to introduce a numerical model which can capture the influence
of the microstructure on stress wave propagation phenomenon. In Chapter 4, a nu­
merical homogenization model is developed to derive a homogenized viscoelastic­
viscoplastic model for the transverse response of a fiber reinforced composite ma­
terial. This model allows for quantification of the rate­dependent deformation of
polymer composites. In Chapter 5, the mode­I dynamic fracture energy and fail­
ure mechanisms of fiber­reinforced polymer composites are investigated with an
embedded cell model of the single­edge­notched­tension (SENT) geometry. The
thesis ends with concluding remarks on the research as well as recommendations
for future research.
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2
Cohesive zone and interfacial
thick level set modeling of the

dynamic double cantilever
beam test of composite

laminate

2.1. Introduction
Delamination is one of the crucial degradation mechanisms of composite laminates
[2]. Engineering composite laminates can be subjected to complex working load
conditions including quasi­static and dynamic loading (e.g. low velocity impact).
In order to predict the extent of delamination under given load conditions, it is
important to quantify the interlaminar fracture toughness of composite laminates
for both quasi­static and dynamic loading.

The double cantilever beam (DCB) test is one of the most commonly used exper­
imental methods for determining the mode­I interlaminar fracture toughness [3].
Studies on measurement of the mode­II, mode­III interlaminar fracture toughness
can be found in [4–9]. Based on published results on the DCB test with a smallest
test rate of 1.67×10−7 m/s in [10] and a largest test rate of 15 m/s in [11, 12],
the following observations can be made. Firstly, depending on the investigated test
rate and composite system, the crack propagation in the DCB test could be either
stable or unstable (“stick/slip”) [4, 10, 11, 13–15]. In [10], where a carbon/epoxy
composite material, T300/2500, was tested within the crosshead speed range of
1.67×10−7 to 8.33×10−3 m/s, the delamination crack growth was unstable for test
This chapter is based on [1]
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rates lower than 8.33 ×10−6 m/s and became stable for higher test rates. In [13],
a unidirectional and a woven carbon/epoxy composite laminate with 19% inclusion
of transversal E­glass fibres was tested with different crosshead velocities ranging
from 8.3×10−5 m/s to 0.19 m/s. For both materials and all loading rates, the crack
propagated in an unstable fashion. Secondly, the loading rate may influence the
fracture toughness although there is no universal trend in increased loading rate
effects on the toughness. Aliyu and Daniel [16] investigated an AS­4/3501­6 car­
bon/epoxy system with DCB tests at a crosshead displacement rate up to 8.5×10−3
m/s. It was found that the mode­I interlaminar fracture toughness increased 28%
over three orders of magnitude of loading rate. Smiley and Pipes [14] found that
the mode­I interlaminar fracture toughness for APC­2 carbon/PEEK composite re­
mains constant over four decades of low loading rates while further increase in
loading rate caused a decrease up to 70% over the next decade of loading rate.
This inconsistency in the trends might be attributed to differences in material con­
stituent, specimen geometry, data­reduction scheme, measurement technique and
definition of the rate parameter [17, 18].

In terms of numerical modeling, the cohesive zone model (CZM) is widely used
for modeling delamination. Motivated by the possible rate­sensitivity of composite
laminates or polymeric adhesives, rate­dependent cohesive laws have been pro­
posed. They can be roughly divided into four categories, namely, the dynamic
increase factor (DIF) models, the damage­delay models, the viscoplasticity models
and the viscoelasticity models. The first category of models assumes that some
characteristic parameters (e.g. the fracture energy) of a chosen cohesive law are
functions of the separation rate of the cohesive surface [19–25]. The second cat­
egory modifies the classical damage evolution formulation into a rate form, thus
limiting the damage rate to a certain maximum [8, 26, 27]. The third category
introduces an overstress function to the rate­independent softening plasticity law
[28–30]. The fourth category combines viscoelastic components (e.g. Maxwell el­
ement) with a damage­type of rate­independent cohesive law [31–33].

Rather than treating damage along the interface as a result of a local displace­
ment jump as it is done for the CZM model, the damage can be driven by a non­local
energy release rate. This approach is possible with the interfacial thick level set
(ITLS) model. The thick level set (TLS) model was first introduced by Möes et al.
[34] for the modeling of damage growth in a continuum under quasi­static loading
conditions. Contrary to conventional continuum damage mechanics, the damage 𝑑
in the TLS is not a direct function of the local strain but rather a function of a level
set field 𝜙, whose definition is the signed distance to a moving damage front. This
damage band has a predefined fixed length acting as an intrinsic length scale to
avoid spurious localization and the associated pathological mesh­dependency ob­
served in local damage models. Recent developments and applications of the TLS
method include an improved numerical implementation scheme [35], 3D crack sim­
ulation for quasi­brittle materials [36], shear failure simulation of sandwich struc­
tures [37] and simulation of fragmentation under impact [38, 39]. The TLS model
was translated to interface element by Latifi et al. [40] to provide an alternative to
the CZM for interfacial cracking. The damage in this interfacial thick level set (ITLS)
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model is a function of a level set field defined on the interface. The ITLS allows for
non­local evaluation of the energy release rate. Consequently, the damage growth
criterion can be related to a fracture mechanics based crack growth criterion. The
ITLS model, in this sense, is advantageous since it provides a robust numerical tool
for straightforward implementation of energy release rate based crack growth rela­
tions. The application of the ITLS model for simulating fatigue crack growth, where
the Paris relation gives such a relation, was reported in [41, 42].

This paper is organized as follows: in Section 2.2, a rate­independent and a rate­
dependent cohesive law are introduced and their ability to reproduce experimental
observations is evaluated. The formulation, solution scheme and relevant details
of the ITLS model are presented in Section 2.3. The capability of this method is
demonstrated by modeling the dynamic DCB test with a parametric study in Section
2.4. The final section gives a short comparison and summary about the CZM model
and the ITLS model.

2.2. Cohesive zone modeling
In this section, both rate­independent and rate­dependent cohesive modeling are
used to simulate the DCB tests on unidirectional PEEK/carbon composite laminate
reported by Blackman et al. [11, 12]. Starting point is the cohesive law by Turon
et al. [43]. Rate­dependency is introduced for the cohesive strength and fracture
energy following May [22, 23]. By setting the rate sensitivity parameters in the
rate­dependent cohesive law to be zero, the cohesive law introduced by Turon et
al. [43] is recovered.

2.2.1. Rate­independent cohesive law
For the sake of completeness, the rate­independent cohesive law is first reviewed.
The studied DCB test is assumed to be a plane strain problem, so only a two­
dimensional formulation is introduced below. The following relation between trac­
tion 𝑡𝑖 and displacement jump J𝑢K𝑖 is used:

𝑡𝑖 = (1 − 𝑑)𝐾𝛿𝑖𝑗J𝑢K𝑗 − 𝑑𝐾⟨−J𝑢K1⟩𝛿1𝑖 , 𝑖 = 1, 2; 𝑗 = 1, 2 (2.1)

where index 1 represents the normal direction, 2 is the shear direction, 𝑑 is a
scalar damage variable, 𝐾 is a penalty stiffness, 𝛿𝑖𝑗 is the Kronecker delta and the
MacAuley bracket is defined as ⟨𝑥⟩ = 1

2(𝑥 + |𝑥|).
The displacement jump when damage initiates, J𝑢K0𝑖 , is given as,

J𝑢K0𝑖 = 𝜎𝑖
𝐾 , 𝑖 = 1, 2 (2.2)

in which 𝜎𝑖 is the cohesive strength. The displacement jump when full decohesion
occurs, J𝑢K𝑓𝑖 , reads

J𝑢K𝑓𝑖 = {
2𝐺𝐼𝑐
𝜎𝑖
, 𝑖 = 1

2𝐺𝐼𝐼𝑐
𝜎𝑖
, 𝑖 = 2 (2.3)
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Mode­II

Mode­I

Figure 2.1: Mixed­mode cohesive law.

where 𝐺𝐼𝑐 is the mode­I fracture energy and 𝐺𝐼𝐼𝑐 is the mode­II fracture energy.
The coupling between independent modes is demonstrated in Fig. 2.1. For a

given mixed­mode ratio defined as

𝛽 = |J𝑢K2|
⟨J𝑢K1⟩ + |J𝑢K2| (2.4)

The mixed­mode crack initiation criterion is introduced as Δ = Δ0, in which the
equivalent displacement jump Δ is

Δ = √(⟨J𝑢K1⟩)2 + (|J𝑢K2|)2 (2.5)

and,

Δ0 = √(J𝑢K01)2 + ((J𝑢K02)2 − (J𝑢K01)2)𝐵𝜂 (2.6)

where 𝜂 is a mode interaction coefficient and

𝐵 = 𝛽2
1 + 2𝛽2 − 2𝛽 (2.7)

The crack propagation criterion is imposed by Δ = Δ𝑓 where

Δ𝑓 =
J𝑢K01J𝑢K𝑓1 + (J𝑢K02J𝑢K𝑓2 − J𝑢K01J𝑢K𝑓1)𝐵𝜂

Δ0
(2.8)

and the mixed­mode fracture energy 𝐺𝑐 is calculated as
𝐺𝑐 = 𝐺𝐼𝑐 + (𝐺𝐼𝐼𝑐 − 𝐺𝐼𝑐)𝐵𝜂 (2.9)
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The damage at time 𝑇 is defined as,

𝑑(𝑇) =max
𝜏≤𝑇

⎧

⎨
⎩

0, Δ ≤ Δ0
Δ𝑓(Δ−Δ0)
Δ(Δ𝑓−Δ0)

, Δ0 < Δ < Δ𝑓
1, Δ ≥ Δ𝑓

(2.10)

Detailed derivations on the above relations can be found in [43].

2.2.2. Rate­dependency relation
Rate dependency is introduced for both the cohesive strength and the fracture
energy of independent modes with a Johnson­Cook law similar to May [22, 23].
For pure mode­I or mode­II, the following relation is introduced,

𝜎𝑖(Δ̇) = {
𝜎0𝑖 (1 + 𝑐𝑖 ln (

Δ̇𝑖
Δ̇ref𝑖
)) , Δ̇𝑖 ≥ Δ̇ref𝑖

𝜎0𝑖 , Δ̇𝑖 < Δ̇ref𝑖
, 𝑖 = 1, 2 (2.11)

where 𝜎𝑖 is the rate­dependent cohesive strength, 𝜎0𝑖 is the quasi­static cohesive
strength, 𝑐𝑖 is a rate­sensitivity constant, Δ̇𝑖 is the displacement jump rate defined
as Δ̇1 = 𝜕⟨J𝑢K1⟩/𝜕𝑇 and Δ̇2 = 𝜕|[𝑢]2|/𝜕𝑇, and Δ̇ref𝑖 is a reference displacement jump
rate.

The rate dependency of the fracture toughness is assumed to be,

𝐺𝐼𝑐(Δ̇) =
⎧

⎨
⎩

𝐺0𝐼𝑐 , Δ̇1 < Δ̇ref1
𝐺0𝐼𝑐 (1 + 𝑚1 ln (

Δ̇1
Δ̇ref1
)) , Δ̇ref1 ≤ Δ̇1 ≤ Δ̇inf1

𝐺inf𝐼𝑐 , Δ̇1 > Δ̇inf1

(2.12)

𝐺𝐼𝐼𝑐(Δ̇) =
⎧

⎨
⎩

𝐺0𝐼𝐼𝑐 , Δ̇2 < Δ̇ref2
𝐺0𝐼𝐼𝑐 (1 + 𝑚2 ln (

Δ̇2
Δ̇ref2
)) , Δ̇ref2 ≤ Δ̇2 ≤ Δ̇inf2

𝐺inf𝐼𝐼𝑐 , Δ̇2 > Δ̇inf2

(2.13)

where 𝐺0𝐼𝑐 and 𝐺0𝐼𝐼𝑐 are the mode­I and mode­II fracture energy under quasi­static
loading, 𝑚1 and 𝑚2 are rate­sensitivity constants, Δ̇inf1 and Δ̇inf2 are the reference
displacement rates for defining constants 𝐺inf𝐼𝑐 and 𝐺inf𝐼𝐼𝑐 that are introduced to bound
the fracture energy when negative rate­dependency parameters are used such that

𝐺inf𝐼𝑐 = 𝐺0𝐼𝑐 (1 + 𝑚1 ln (
Δ̇inf1
Δ̇ref1
)) and 𝐺inf𝐼𝐼𝑐 = 𝐺0𝐼𝐼𝑐 (1 + 𝑚2 ln (

Δ̇inf2
Δ̇ref2
)). It is further as­

sumed that when rate dependency is activated, the coupling between independent
modes introduced in the previous section is still valid. An advantage of the phe­
nomenological DIF formulation in Eq. (2.12) and (2.13) is that it can accommodate
both a positive and negative influence of displacement jump rate on either cohe­
sive strength or fracture energy while the existing rate­dependent CZMs developed
with damage­delay [8, 26, 27] or viscosity formulation [28–33] can only capture a
positive influence. This versatility provides more possibilities in describing different
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�̇�

𝐿

ℎ

𝑎0 𝑏

Figure 2.2: Geometry and boundary conditions of the double cantilever beam test under dynamic load­
ing.

failure mechanisms in different composite material system and loading conditions.
The measurements by Blackman et al. [11, 12] which show a decrease in fracture
energy for increasing loading rate are exemplary of this advantage of the chosen
cohesive formulation.

2.2.3. Model description
Numerical models have been created to simulate both dynamic and quasi­static DCB
tests. Depending on the type of loading, i.e. dynamic or quasi­static, the numerical
model set­ups have differences.

The geometry and boundary conditions of the numerical model used for simulat­
ing dynamic DCB tests are depicted in Fig. 2.2. Load is applied at a point on the top
surface, the velocity of which is raised to a constant test rate �̇� within a short time
and maintained until the end of the simulation. The vertical degree­of­freedom of
the node symmetric to the loading point with the crack plane is constrained. The
bulk material of the beam is represented by plane strain triangular elements with
an orthotropic linear elastic constitutive model. The initially intact section of the
middle surface between the two arms is modeled by zero­thickness cohesive zone
elements with the cohesive law introduced in the previous section. The precracked
section of middle surface is considered by zero­thickness interface elements with
penalty stiffness in case of a negative J𝑢K1 to enforce the contact condition. Implicit
dynamic analysis is performed with a Newmark time integration scheme. When the
rate­dependent cohesive law is used, the displacement jump rate in Eqs. (2.11),
(2.12) and (2.13) is calculated with the Euler­backward scheme, which means that
the displacement jump rate is implicitly updated at the end of each load step. The
derivation of the consistent tangent is given in Appendix A.

For quasi­static DCB tests, the numerical model differs from the model used
for dynamic loading at three points. Firstly, the horizontal degree­of­freedom of
the loading point and supported point is constrained to eliminate the rigid body
motion of the system. Secondly, the loading velocity is instantly set to the constant
test speed �̇� at the start of the simulation. Thirdly, no time integration scheme is
needed as inertia is not considered.
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2.2.4. Material parameters
The experiments from [11, 12] were preformed on a unidirectional PEEK/carbon
composite laminate (APC­2) with a nominal fiber volume fraction of 65%. The bulk
material is assumed to be orthotropic linear elastic with parameters as defined in
Table 2.1. Of these, the longitudinal Young’s modulus 𝐸1, density 𝜌 and a major
Poisson’s ratio 𝜈12 are taken from the measured value in [11] while the other values
which are taken from typical values in [44] have limited influence on the response.

The parameters needed to be determined for the rate­dependent cohesive law
can be divided into: parameters related to the rate­independent cohesive law and
parameters related to the rate­dependency. Considering that the simulated DCB test
is mode­I dominated, the material properties for mode­I and mode­II are assumed
to be the same. The quasi­static fracture energies, 𝐺0𝐼𝑐 and 𝐺0𝐼𝐼𝑐, are determined
to be 1.5 N/mm from the range of measurement values shown in Fig. 12 in [11].
Typical values are used for 𝜎01 , 𝜎02 and 𝜂. A high value is prescribed for the penalty
stiffness 𝐾.

Concerning rate­dependency, the quasi­static reference displacement jump rates,
Δ̇ref1 and Δ̇ref2 , determine the threshold value for the rate effect comes into play. Sev­
eral trial simulations of a quasi­static DCB test, with a loading rate of 3.3 × 10−5
m/s, using different reference displacement jump rates are performed and the re­
sults are compared with the rate­independent cohesive model. The smallest value
adopted in the rate­dependent CZM model that results in the same response as
the rate­independent CZM model is determined to be the quasi­static reference dis­
placement jump rates. Finally, the limit jump rate Δ̇inf1 and Δ̇inf2 are set sufficiently
high not to be reached in the presented simulations. They are included in the for­
mulation only to exclude the possibility of negative fracture energy from the model.
The calibrations of 𝑐1, 𝑐2, 𝑚1 and 𝑚2 are done by trial simulations to find the best
match with the time vs. crack length of the studied four DCB tests. A summary
of CZM related parameters is shown in Table 2.2. The rate­dependency parame­
ters for cohesive strength are found to be positive. This means that the cohesive
strength increases with the displacement jump rate, which could be due to the vis­
cosity of the PEEK polymer matrix [14, 45, 46]. The rate­dependency parameters
for fracture energy are negative, meaning that a decrease of fracture energy with
increasing displacement jump rate is found. This increased brittleness is possibly
due to lack of time for plasticity to develop. The strain rate dependency of a brittle
crack results in a smaller dissipated energy with larger strain rate [46].

Table 2.1: Bulk material parameters: 𝐸1, 𝜌 and 𝜈12 from [11], 𝐺12, 𝐸2 and 𝜈23 from [44].

elastic modulus 𝐸1 = 115000 N/mm2 𝐸2 = 8000 N/mm2
Poission’s ratio 𝜈12 = 0.28 𝜈23 = 0.43
shear modulus 𝐺12 = 5000 N/mm2

density 𝜌 = 1540 Kg/m3
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Table 2.2: CZM related properties.

Quasi­static cohesive strength (mode­I/II) 𝜎01 = 𝜎02 = 60 N/mm2
Quasi­static fracture energy (mode­I/II) 𝐺0𝐼𝑐 = 𝐺0𝐼𝐼𝑐 = 1.5 N/mm

Interface penalty stiffness 𝐾 = 100000 N/mm3
Mode interaction coefficient 𝜂 = 2.284

Quasi­static reference displacement jump rate (mode­I/II) Δ̇ref1 = Δ̇ref2 = 0.02 m/s
Strength coefficient (mode­I/II) 𝑐1 = 𝑐2 = 0.22

Fracture energy coefficient (mode­I/II) 𝑚1 = 𝑚2 = −0.0783
Maximum reference displacement jump rate (mode­I/II) Δ̇inf1 = Δ̇inf2 = 100.0 m/s

Limit fracture energy (mode­I/II) 𝐺inf𝐼𝑐 = 𝐺inf𝐼𝐼𝑐 = 0.5 N/mm

2.2.5. Simulation results
The numerical models are used to simulate four DCB tests of a unidirectional PEEK/carbon
composite laminate with different test rates reported in [11, 12]: 3.3 × 10−5, 1.0,
6.5 and 10.0 m/s. Both the rate­independent and rate­dependent cohesive law are
considered for each analysis. The dimensions for the first three test cases are the
same, i.e. 𝐿 = 200.0 mm, ℎ = 1.5 mm, 𝑎0 = 35.0 mm, 𝑏 = 7.1 mm (Fig. 2.2),
while the dimensions for the last test case only differ in its initial crack length, i.e.
𝑎0 = 30 mm. The time vs. crack length curve for the four simulated cases are plot­
ted in Fig. 2.3a­2.3d. It can be observed that both the rate­independent (denoted
in the figure with 𝑐 = 𝑚 = 0) and rate­dependent cohesive model predict a con­
tinuous crack propagation process for all the analysis. The model fails to capture
the crack arrest phenomenon that was observed experimentally at the test rates of
1.0 and 6.5 m/s. It can be seen from Fig. 2.3a that the rate­independent model
and rate­dependent model produce almost the same time vs. crack length curve
for the lowest loading rate. They both match reasonably well with the measured
curve. For the 1.0 m/s case (see Fig. 2.3b), the rate­dependent model produces
a time vs. crack length curve which is almost coincident with the left boundary
of the test curve. The average crack speed from the calibrated rate­dependent
model matches with the measurement and the only difference is that in the test
the crack does not propagate continuously. The rate­independent cohesive model
matches the right boundary of the test curve and the overall crack propagation is
slower than the measurement. For the 6.5 m/s case (see Fig. 2.3c), the time vs.
crack length curve obtained with the rate­dependent cohesive model follows the
measurement well except that it can not capture the crack arrest event for a crack
length of around 81 mm. For this loading rate, the time vs. crack length curve pro­
duced by the rate­independent cohesive model has a relatively large deviation from
the experimental curve. The model predicts a later crack initiation and the crack
speed is slower. For the test rate of 10.0 m/s (Fig. 2.3d), the time vs. crack length
curve obtained with the rate­dependent model still matches reasonably well with
the measurement in terms of crack speed, while the rate­independent model sig­
nificantly underpredicts the crack speed. In conclusion, the rate­dependent model
can reproduce the measurements except for the crack arrests which are not cap­
tured. The mismatch between measurements and rate­independent model result
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Figure 2.3: Comparison between experimental and cohesive zone modeling result for test rate of (a)
�̇� = 3.3 × 10−5 m/s; (b) �̇� = 1.0 m/s; (c) �̇� = 6.5 m/s; (d) �̇� = 10.0 m/s.

indicates the significance of rate dependency for this series of experiments.

2.3. Interfacial thick level set modeling
As an alternative to the CZM, the ITLS model proposed by Latifi et al. [40] is in­
troduced here to simulate the dynamic DCB tests. Similar to the CZM, a traction­
separation relation with damage is assumed as the constitutive model of the in­
terface. However, unlike the CZM, damage in the ITLS is not a function of the
displacement jump across the surface but a function of a level set field 𝜙 on the
interface. The level set function is defined as a signed distance function from a
damage front. In 2D the damage front collapses into a point and 𝜙 gives the
signed distance along the line of the interface to this point. The damage band has
a fixed length 𝑙𝑐 over which damage 𝑑 increases from 0 to 1 as the distance to the
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front grows from 0 to 𝑙𝑐. This band separates uncracked material with 𝑑 = 0 from
cracked material with 𝑑 = 1. Because the damage distribution is fixed, the energy
release rate for crack growth can be computed. Moreover, a crack growth rate
can be imposed as the front velocity. This makes the method suitable for imple­
mentation of crack growth relations that relate crack growth rate to energy release
rate, such as the Paris law for fatigue crack growth [41, 42]. In this section, the
formulation and solution scheme for the ITLS method are described.

2.3.1. Local governing equation
Following Latifi et al. [40], the free energy per unit surface of interface is defined
as:

𝜓(J𝐮K, 𝑑) = (1 − 𝑑)𝜓0(J𝐮K) + 12𝑑𝐾⟨−J𝑢K1⟩2 (2.14)

where J𝐮K = (J𝑢K1, J𝑢K2)𝑇 is the displacement jump vector between the two facets
of the interface, J𝑢K1 is the normal displacement jump, J𝑢K2 is the shear displace­
ment jump and 𝑑 is a scalar damage variable. The variable 𝜓0 is defined as:

𝜓0(J𝐮K) = 1
2J𝑢K𝑖𝐾𝛿𝑖𝑗J𝑢K𝑗 (2.15)

where 𝐾 is a penalty stiffness and 𝛿𝑖𝑗 is the Kronecker delta.
The relation between the traction 𝐭 and the displacement jump J𝐮K across the

surface is obtained by:

𝑡𝑖 =
𝜕𝜓
𝜕J𝑢K𝑖 = (1 − 𝑑)𝐾J𝑢K𝑖 − 𝑑𝐾⟨−J𝑢K1⟩𝛿1𝑖 , 𝑖 = 1, 2 (2.16)

The local driving force for damage growth is obtained by differentiating the free
energy function with respect to the damage variable:

𝑌 = −𝜕𝜓𝜕𝑑 = 𝜓0(J𝐮K) − 12𝐾⟨−J𝑢K1⟩2 (2.17)

2.3.2. Damage definition
Fig. 2.4 shows the damage band, the level set field 𝜙 defined on the interface and
its associated damage distribution. The damage function proposed by Voormeeren
et al. [42] is adopted.

𝑑(𝜙) = {
0, 𝜙 < 0
arctan (𝛾 𝜙𝑙𝑐 ) arctan

−1(𝛾), 0 < 𝜙 < 𝑙𝑐
1, 𝜙 > 𝑙𝑐

(2.18)

where 𝛾 is a shape constant. For the current study a value of 𝛾 = 15 is used
following Voormeeren et al. [42]. The adopted damage function is plotted in Fig.
2.5.
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Figure 2.6: Subdivision of zero­thickness ITLS element.

2.3.3. Energy release rate
Because the damage distribution inside the band is given, the energy release rate
for crack growth or movement of the band can be calculated by integrating the local
driving force over the damage band. In 2D, the integration takes place along a line:

𝐺 = −∫
𝑙𝑐

0

𝜕𝜓
𝜕𝜙𝑑𝜙 = −∫

𝑙𝑐

0

𝜕𝜓
𝜕𝑑

𝜕𝑑
𝜕𝜙𝑑𝜙 = ∫

𝑙𝑐

0
𝑌 𝜕𝑑𝜕𝜙𝑑𝜙 (2.19)

A two­point Gauss integration scheme is used for elementwise numerical inte­
gration of Eq. (2.19). However, during the movement of the damage band, its front
(𝜙 = 0) and wake (𝜙 = 𝑙𝑐) can intersect the interface element causing an unsmooth
damage distribution inside the element. In order to improve the accuracy of nu­
merical integration for Eq. (2.19) with discontinuous 𝜕𝑑

𝜕𝜙 , the ITLS element crossed
by the damage band front or wake is subdivided into two sub­elements. In each of
the two elements, two­point Gauss integration is applied (Fig. 2.6).

2.3.4. Crack speed
Completing the ITLS formulation requires a relation between the crack speed 𝑉 and
the energy release rate 𝐺. This can be an advantage. For instance, for fatigue crack
growth experimental observations can be described well with the Paris law, which
gives such a relation. In [41, 42], the ITLS method has been validated for the
calculation of energy release rate and prediction of fatigue crack growth. In this
paper, a function between energy release rate 𝐺 and crack speed 𝑉 for dynamic
crack growth with possible stick/slip behavior is introduced (see Fig. 2.7). This
function is inspired by the relation between the dynamic stress intensity factor 𝐾
and crack speed 𝑉 proposed by Ravi­Chandar [47] for describing dynamic crack
growth. Similar to Ravi­Chandar [47], we explicitly differentiate three states for
dynamic crack growth, namely, crack initiation, propagation and arrest. The crack
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Figure 2.7: Relation between crack velocity 𝑉 and energy release rate 𝐺 (the dashed line schematically
represents the shape for larger crack speed range [19, 51]).

starts to grow when the energy release rate 𝐺 reaches the crack initiation toughness
𝐺𝑖. Crack growth starts at a nonzero crack speed 𝑉𝑖. During crack growth, the crack
speed 𝑉 is related to the energy release rate 𝐺 according to a phenomenological
relation which possesses three features: (1) the crack speed has an asympototic
maximum value 𝑉𝑚 [47, 48]; (2) the 𝑉(𝐺) curve has a positive slope, representing
the influence of increased microcracking on the fracture toughness [8, 47, 49]; (3)
the crack speed jumps from a finite value 𝑉𝑎 to zero when the energy release rate
drops below the crack arrest toughness 𝐺𝑎 [50]. The crack initiation point is not
on the curve characterizing the dynamic crack growth criterion is possibly due to
bluntness of the initial crack, intrinsic rate dependence of the material, or inertia
effects [47]. This difference between crack initiation and growth toughness causes
the crack growth rate to jump to a finite speed immediately upon initiation. This
behaviour has been observed experimentally for crack growth in polymers [50].

For the studied DCB tests, the Rayleigh wave speed 𝑐𝑅 is the theoretical crack
speed limit 𝑉𝑚 [48]. In the experiments the crack speed is smaller than 85.0 m/s
which is far from the theoretic limit (𝑐𝑅 = 2523 m/s). Therefore, we introduce a
simple linear relation for the studied range of tests as (see Fig. 2.7)

𝑉 = 𝑉𝑖 +
𝑉𝑖 − 𝑉𝑎
𝐺𝑖 − 𝐺𝑎

(𝐺 − 𝐺𝑖) (2.20)

2.3.5. Solution scheme
The numerical model is created to simulate the delamination crack in dynamic DCB
tests. The model is the same as mentioned in Section 2.2 except that the consti­
tutive behavior of the cohesive elements inserted along the middle surface of the
beam is now described with the ITLS.
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Figure 2.8: Movement of damage band within the 𝑛th time step (from time 𝑇𝑛−1 to 𝑇𝑛): triangular
meshes are used for discretization.

The program flow is illustrated in Box 1. There are a few items to be noted: (1)
a damage band of length 𝑙𝑐 is predefined ahead of the initial crack tip before the
first load increment is applied; (2) the Newmark time integration scheme is used for
computing displacements for a given damage distribution; (3) a staggered solution
scheme is used for the damage update and the displacement field because of its
robustness and simplicity. The translational distance of the damage band at the end
of time step 𝑛 is determined by the speed at the time step 𝑛 − 1. Therefore, when
solving the dynamic equilibrium equation with the Newton­Raphson scheme, the
damage is only updated when global convergence is achieved through the update
of the level set field.

2.4. Simulation of dynamic DCB tests
The ITLS model is used to simulate the same series of DCB tests discussed in Section
2.2.4 except the quasi­static case with a test rate of 3.3×10−5 m/s, since the 𝑉(𝐺)
relation introduced in Section 2.3.4 is a dynamic crack growth criterion assumed
for delamination crack growth in the context of dynamic loading. A 𝑉(𝐺) relation
with artificial viscoscity for simulating delamination crack generated by quasi­static
loading with the ITLS has been introduced in [40].

In this section, the accuracy of the ITLS model for calculating the energy release
rate is first validated. Afterwards, the influence of parameters used for the dynamic
crack growth criterion is discussed and then the ITLS model is used to calibrate the
material parameters for the dynamic DCB tests.

2.4.1. Verification of energy release rate computation
The accuracy of the energy release rate calculation in the ITLS model is demon­
strated by modeling a quasi­static DCB specimen in which the deflection of the
beam 𝑤 is fixed while the crack length is gradually increased. Bulk material pa­
rameters listed in Table 2.1 are used. The value of 15.0 is adopted for the shape
constant 𝛾 of the damage function. The damage band width 𝑙𝑐 is chosen as 0.9
mm in the current study, which is a typical cohesive zone length found in the co­
hesive modeling study shown in Section 2.2. The interface element size is around
0.125 mm, which ensures 8 elements inside the damage band and a high accuracy
in calculating the energy release rate. The interface penalty stiffness 𝐾 = 100000
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Figure 2.9: Evolution of energy release rate with crack length for ITLS_A (ITLS model without ele­
ment subdivision used), ITLS_B (ITLS model with subdivision applied) and MBT (modified beam theory
solution).

N/mm3. The energy release rate from Eq. (2.19) is compared with the value from
modified beam theory (MBT) introduced in [52]. According to the MBT, the energy
release rate for the quasi­static DCB test can be calculated by

𝐺 = 3
4
𝐸1ℎ3𝑤2
(𝑎 + 𝜒ℎ)4 (2.21)

where the correction factor 𝜒 is estimated by

𝜒 = {( 𝐸1
11𝐺12

) [3 − 2( Γ
1 + Γ)

2
]}
1/2

(2.22)

in which Γ = 1.18 (𝐸1𝐸2𝐺12
)
1/2
. Fig. 2.9 shows the crack length vs. energy release rate

𝐺 calculated by the ITLS model with element subdivision and without element sub­
division technique introduced in Section 2.3.3 along with the solution given by the
MBT. It is shown that the ITLS model with element subdivision removes, to a large
extent, the oscillations that are present for the model without element subdivision.
The result by the ITLS model with element subdivision has a good match with the
MBT solution, which demonstrates that the ITLS model is capable of calculating the
energy release rate accurately.

In order to investigate the influence of the integration scheme on the accuracy
of calculating 𝐺, a relative error 𝜖 is introduced as

𝜖 = ∫
55

35

|𝐺(𝑎) − 𝐺(𝑎)|
𝐺(𝑎)

𝑑𝑎 (2.23)
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Figure 2.10: Error estimation of the integration scheme

in which 𝐺(𝑎) is the calculated energy release rate 𝐺 at corresponding crack length
𝑎 and 𝐺(𝑎) is a reference exact solution. Three different mesh sizes are used for
the ITLS model, changing from the coarsest mesh with ITLS interface element size
of 0.125 mm, to medium mesh with a size of 0.0625 mm, and to the finest mesh
with a size of 0.03125 mm. For each mesh size, four simulations, i.e., ITLS_A
with 2­point Gauss, ITLS_A with 3­point Gauss, ITLS_B with 2­point Gauss and
ITLS_B with 3­point Gauss, are performed and for each simulation we can calculate
the relative error 𝜖. In this case, the numerical solution obtained from the ITLS
model with interface element size of 0.03125 mm and with 3­point Gauss integration
scheme and element­subdivision (ITLS_B) is chosen as the reference exact solution
𝐺(𝑎) used in Eq. (2.23). This result is plotted in Fig. 2.10 with the horizontal axis
showing the number of the elements and the vertical axis showing the relative error
𝜖. It can be found that for each mesh size, the ITLS_B model with 3­point Gauss
integration scheme has the smallest error while the ITLS_A with 2­point Gauss
integration scheme has the biggest error. The use of a 3­point Gauss integration
slightly reduces the error for ITLS_A compared with 2­point integration. However,
with ITLS_B the influence of higher order integration is limited. The difference of
ITLS_B with 2­point and 3­point Gauss integration scheme is minor. It is concluded
that 2­point Gauss integration with element subdivision (ITLS_B) is optimal.

2.4.2. Parameter sensitivity study
The influence of the parameters in the dynamic crack growth criterion introduced in
Section 2.3.4 on crack growth is clarified by simulating a dynamic DCB test with a
loading velocity of 6.5 m/s. An appropriate parameter set is found by trial and error
and used as baseline for this parameter study. The baseline values are 𝐺𝑖 = 1.4
N/mm, 𝐺𝑎 = 0.67 N/mm, 𝑉𝑖 = 40.0 m/s and 𝑉𝑎 = 14.5 m/s. The bulk material
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Figure 2.11: (a) Comparison of the time vs. crack length for simulation and experimental test and (b)
the evolution of energy release with time for simulation with different 𝐺𝑖.

parameters, mesh discretization, interface parameters, damage function shape pa­
rameters 𝛾 and damage band length 𝑙𝑐 are the same as used in the previous section.
The boundary conditions are the same as described in Section 2.2.

Influence of 𝐺𝑖
Five numerical simulations are performed with the initiation toughness 𝐺𝑖 increasing
from 1.0 to 1.8 N/mm while keeping the other three input parameters (𝐺𝑎, 𝑉𝑖, 𝑉𝑎)
the same as the baseline values. Fig. 2.11a shows the evolution of crack length with
time for all the simulations along with the experimental test result. The enclosed
subplot illustrates how the 𝑉(𝐺) relation changes by varying 𝐺𝑖. Fig. 2.11b depicts
the development of the energy release for each simulation. The time needed for
crack initiation to occur is the longest for the case of 𝐺𝑖 = 1.8. The accumulation of
energy release rate with time before crack initiation is independent of 𝐺𝑖 (see Fig.
2.11b). Therefore it needs more time to reach a larger initiation toughness. This
means that 𝐺𝑖 can be calibrated from the initiation time in experimental measure­
ments.

Crack arrest is observed for all five simulations. The energy release rate tends
to decrease during crack growth and when it reaches 𝐺𝑎 crack growth is halted.
For the two smallest 𝐺𝑖 cases, more than one crack arrest occurred while the other
three cases only show one crack arrest event. The first crack arrest happens later
for larger 𝐺𝑖. Since the crack speed for the five cases is in the same range [𝑉𝑎 , 𝑉𝑖],
the time needed for the energy release rate to drop from 𝐺𝑖 to 𝐺𝑎 is longer for larger
𝐺𝑖.

Influence of 𝐺𝑎
Next, five numerical simulations in which 𝐺𝑎 is varied from 0.47 to 0.87 N/mm are
performed. Results are plotted in Fig. 2.12. It is observed from Fig. 2.12a that
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Figure 2.12: (a) Comparison of the time vs. crack length for simulation and experimental test and (b)
the evolution of energy release with time for simulation with different 𝐺𝑎.

for all five cases the crack initiation time is the same. More than one crack arrest
event appears for the two cases with highest arrest toughness 𝐺𝑎 while the first
three cases only have one crack arrest. The time at which crack arrest first occurs
decreases for increasing 𝐺𝑎. This is a natural outcome of the dynamic crack growth
criterion. Since the crack speed range is unchanged, a smaller arrest toughness
takes longer to be reached. Another influence of the arrest toughness is that smaller
𝐺𝑎 with all other parameters constant leads to lower curvature time vs. crack length
curve. This observation helps in calibration of the parameters, as a comparison of
the average crack speed between simulation and experimental curve can determine
the way of adjusting the value for 𝐺𝑎. The case with 𝐺𝑎 = 0.67 N/mm gives the
best match with the experimental result.

Influence of 𝑉𝑖
The influence of initiation velocity 𝑉𝑖 is studied by changing the value from 30 to
50 m/s in five numerical simulations. Fig. 2.13 shows the results. Again, the crack
initiation time is the same for the five cases. For smaller initiation velocity 𝑉𝑖, the
average crack velocity is also smaller as it is shown in the subplot. The shape of
the time vs. crack length curve of the five cases is similar. This means that 𝑉𝑖 does
not have a big influence on the evolution of the energy release rate after crack
initiation. The most notable influence is that increasing 𝑉𝑖 decreases the time it
takes before the first arrest occurs. This is due to the fact that smaller initiation
velocity means smaller averaged crack growth velocity which in turn implies that
the energy release rate 𝐺 decreases slower. The case with 𝑉𝑖 = 40 m/s shows the
best match with the experimental curve.
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Figure 2.13: (a) Comparison of the time vs. crack length for simulation and experimental test and (b)
the evolution of energy release with time for simulation with different 𝑉𝑖.

Influence of 𝑉𝑎
Five simulations with different 𝑉𝑎, ranging from 9.5 m/s to 19.5 m/s, are carried
out to study the influence of 𝑉𝑎. Results are displayed in Fig. 2.14. The case with
𝑉𝑎 = 9.5 m/s shows no crack arrest which can be attributed to the fact that the
averaged crack speed is the smallest. For the other four cases, crack arrest is
observed to occur earlier with larger 𝑉𝑎. This is because the energy release rate 𝐺
decreases faster for higher 𝑉𝑎. When compared with the influence of 𝑉𝑖 shown in
previous section, the time at which crack arrest occurs is more sensitive to 𝑉𝑎. It is
shown that the case with 𝑉𝑎 = 14.5 m/s gives the best match with the experimental
test curve.

2.4.3. Calibration results
Based on the parametric sensitivity study, the ITLS model is independently cali­
brated on the dynamic DCB tests for each of the test rates of 1.0, 6.5 and 10.0
m/s. For each case, the initiation toughness 𝐺𝑖, the arrest toughness 𝐺𝑎, the initi­
ation velocity 𝑉𝑖 and the arrest velocity 𝑉𝑎, are determined by comparison with the
test curve. All other simulation inputs are the same as those used for the previous
section.

Case I: �̇� = 1 m/s
For the DCB test at �̇� = 1.0m/s, the calibrated parameters are 𝐺𝑖 = 1.7 N/mm, 𝐺𝑎 =
0.7 N/mm, 𝑉𝑖 = 20 m/s and 𝑉𝑎 = 4.0 m/s. The time vs. crack length curve for the
experiment and the ITLS simulation are displayed in Fig. 2.15a. The experimental
test result shows three major crack arrests events, which are well reproduced by
the numerical simulation. The crack length at arrest is also very close to that in
the test data. It is also observed that the crack speed, i.e. the slope of the time
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Figure 2.14: (a) Comparison of the time vs. crack length for simulation and experimental test and (b)
the evolution of energy release with time for simulation with different 𝑉𝑎.

vs. crack length curve, has a good match between experimental test and numerical
simulation.

The numerical model can also show the evolution of energy release rate during
the loading process (see Fig. 2.15b). Based on data of the crack length at each
time from the ITLS model, the evolution of the energy release rate with time can
be calculated by invoking the dynamic version of the MBT [12, 52], i.e. when the
crack speed �̇� is zero,

𝐺 = 3
4
𝐸1ℎ3(�̇�𝑇)2
(𝑎 + 𝜒ℎ)4 − 33

140
𝐸1ℎ(�̇�)2
𝜂2 (2.24)

and when the crack speed �̇� is larger than zero,

𝐺 = 3
4
𝐸1ℎ3(�̇�𝑇)2
(𝑎 + 𝜒ℎ)4 − 111280

𝐸1ℎ(�̇�)2
𝜂2 (2.25)

where 𝜂 = √𝐸1/𝜌 and 𝑇 is the physical time. A comparison between the energy
release rate evaluated in the ITLS model with Eq. (2.19) and the MBT as plotted
in Fig. 2.15b reveals that the MBT is still a reasonable approximation for this low
loading rate. Hence, the MBT can be a useful tool to gain insight into the energy
release rate evolution of the ITLS model. Before crack initiation, the energy release
rate keeps increasing until the initiation toughness 𝐺𝑖 is reached. The crack initiates
with a speed of 𝑉𝑖 = 20 m/s and the energy release rate 𝐺 starts to decrease after
initiation. This effect can be understood by Eq. (2.25), from which two observa­
tions can be made. Firstly, an increase of the crack length 𝑎 by crack growth has
an effect of reducing the energy release rate 𝐺. Secondly, the external loading pre­
scribed by the loading velocity �̇� causes 𝐺 to increase with time. Considering that
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Figure 2.15: (a) Comparison of the time vs. crack length curve for simulation and experimental test at
1.0 m/s and (b) evolution of energy release rate with time for the simulation (solid line) and comparison
with the MBT (dash dot line).

�̇� for this case is relatively small, the increase of 𝐺 caused by external loading can
not compensate for the loss of 𝐺 triggered by a fast growing crack. Therefore, 𝐺
gradually decreases after crack initiation, although a certain amount of fluctuation
is present due to dynamic vibration of the structure. When the arrest toughness 𝐺𝑎
is reached, the crack is arrested and the crack speed drops to zero from a speed
of 𝑉𝑎 = 4 m/s instantly. It is also observed in Fig. 2.15 that the duration time for
the third plateau is the longest while the duration for the first plateau is the short­
est. This means that the time needed for the arrested crack to re­initiate becomes
longer, which is also in agreement with Eq. (2.25). The crack length at arrest for
a later event is longer, hence, it takes more time to increase the energy release
rate from 𝐺𝑎 to 𝐺𝑖 to trigger crack initiation. This feature is visible in experimental
measurements as well as in the numerical results. However, it is observed that the
reinitiation occurs earlier in the test than in the numerical simulation. This might
be due to more complex physics at crack initiation and initial crack tip bluntness.

Case II: �̇� = 6.5 m/s
The numerical results for the test at �̇� = 6.5 m/s have been discussed already in
detail in Section 2.4.2. The results obtained with calibrated parameters 𝐺𝑖 = 1.4
N/mm, 𝐺𝑎 = 0.67 N/mm, 𝑉𝑖 = 40 m/s and 𝑉𝑎 = 14.5 m/s are shown in Fig. 2.16.
The experimental curve shows one crack arrest at a crack length of 84 mm, which
is very close to what is obtained in the numerical simulation. The crack velocity is
well captured by the numerical model as the simulation curve follows the path of
the test curve. It should be noted that the calibrated arrest toughness 𝐺𝑎 = 0.67
N/mm differs from the arrest value of around 1.0 N/mm that was extracted from
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Figure 2.16: (a) Comparison of the time vs. crack length curve for simulation and experimental test at
6.5 m/s and (b) evolution of energy release rate with time for the simulation.

these experimental measurements [11, 12]. The reason for the difference is that
in [12] a different definition of the arrest toughness was used for this loading rate,
where 𝐺𝑎 was determined as a fit through the complete curve, and therefore rather
the averaged 𝐺 during propagation.

The evolution of the energy release rate 𝐺 during the whole loading process
is shown in Fig. 2.16b. Similar to the previous case, the energy release rate 𝐺
tends to increase when the crack is stationary and to decrease when the crack
is growing. However, compared to case I the energy release rate curve has more
oscillations especially after the crack is arrested. This oscillation is due to an evident
effect of system inertia activated by a larger test rate. When the crack is arrested
from a finite crack speed, the system inertia has the tendency to resist the sudden
change from a propagation crack state to a stationary crack state. Afterwards, the
external loading also has to overcome system inertia to cause the stress at the
crack tip to build up and to propagate the arrested crack again. For a larger test
rate, the interaction between external loading (which promotes crack propagation)
and system inertia (which resists the change of system state) leads to more evident
oscillating energy release rate evolution.

Case III: �̇� = 10.0 m/s
The calibrated material parameters for the test rate of 10.0 m/s are 𝐺𝑖 = 1.3 N/mm,
𝐺𝑎 = 0.3 N/mm, 𝑉𝑖 = 85 m/s and 𝑉𝑎 = 20 m/s. Fig. 2.17a shows the evolution
of crack length with time for experiment and simulation. No clear crack arrest
is observed in the experiment, which means that the crack propagation pattern
transitions from unstable to stable crack growth as the test rate increases from 1.0
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Figure 2.17: (a) Comparison of the time vs. crack length curve for simulation and experimental test at
10.0 m/s and (b) evolution of energy release rate with time for the simulation.

m/s to 10.0 m/s. The numerical simulation also shows no crack arrest. The crack
propagation speed is also reasonably well captured. In absence of arrest events in
the test data, calibration does not lead a unique set of values for 𝐺𝑎 and 𝑉𝑎.

The evolution of energy release rate 𝐺 with time is shown in Fig. 2.17b. Before
crack initiation, the energy release rate already shows visible oscillations compared
to case I and II because higher frequency components are activated for higher
loading speed. With the high loading rate, 𝐺 drops more slowly during crack growth
than in the previous cases. This offers a possible explanation for the transition from
stick/slip to stable crack growth for increasing loading rate.

2.4.4. Discussion
Fig. 2.18 shows the calibrated relation between crack speed 𝑉 and energy release
rate 𝐺 for the three dynamic DCB tests we have studied. It is shown that the
calibrated relation differs significantly for the different test rates. Within the studied
test rate range, the initiation toughness 𝐺𝑖 for test rate of 1.0, 6.5 and 10.0 m/s is
1.7, 1.4 and 1.3 N/mm respectively. The arrest toughness 𝐺𝑎 for the three cases
is 0.7, 0.67 and 0.3 N/mm correspondingly although the arrest toughness 𝐺𝑎 and
arrest velocity 𝑉𝑎 for 10.0 m/s case are postulated as the crack propagates in a
stable manner. It appears that both 𝐺𝑖 and 𝐺𝑎 decrease with the test rate where
𝐺𝑖 is more sensitive to the loading rate than 𝐺𝑎. The initiation velocity 𝑉𝑖 for the
three cases is 20, 40 and 85 m/s. The arrest velocity 𝑉𝑎 for the three cases is
4, 14.5 and 20 m/s. This shows that both 𝑉𝑖 and 𝑉𝑎 increase with the test rate
and therefore the average crack velocity is also increasing. Although the proposed
model performs well in reproducing crack arrest, a single set of parameters does
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Figure 2.18: Calibrated relation of crack speed 𝑉 and energy release rate 𝐺 at �̇� = 1.0, 6.5 and 10.0
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not exist to describe the studied dynamic DCB tests at different rates. It can be
concluded that in this series of tests, the crack speed is not only a function of the
energy release rate at the crack tip. As suggested by Ravi­Chandar [47], strain rate
and temperature may influence this relation.

2.5. Conclusion
In this paper, a rate­dependent cohesive zone model (CZM) and the interfacial thick
level set (ITLS) model are used to simulate a series of DCB tests carried out over
a test rate range of 3.3 × 10−5 to 10.0 m/s on an unidirectional PEEK/carbon com­
posite laminate reported in [11, 12]. Within the studied test rate range and for this
composite material, the following conclusions are drawn.

The rate­independent cohesive zone model fails to capture the inherent load­
ing rate dependency of this composite material and therefore cannot capture the
crack propagation process well. Unlike other available rate­dependent cohesive
laws which can not capture a decrease in fracture energy for increasing loading
rate, the presented rate­dependent cohesive zone model is capable of capturing
the average crack growth speed. However, it fails to reproduce crack arrests that
do occur in some of the experiments.

Using the interfacial thick level set method, an explicit relation between the crack
growth speed 𝑉 and energy release rate 𝐺 can be implemented to capture both sta­
ble crack propagation and unstable crack propagation in DCB tests. With carefully
calibrated parameters for this relation, the ITLS model could well reproduce the
crack growth process for the different rates. In case of unstable crack growth, the
ITLS approach can capture the number of crack arrest events as well as the timing
and duration of these events. This indicates that the adopted dynamic fracture cri­
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terion with 𝑉(𝐺) relation, initiation toughness and arrest toughness is related to the
physics of the problem. However, no single 𝑉(𝐺) relation could be identified that
works for all rates, which means that some physics is still missing in the formulation.

A comparison between the presented rate­dependent CZM and ITLS model
shows that: (1) The ITLS method can readily implement a relation of the type
𝑉(𝐺), which makes it a good tool for implementing a dynamic crack growth cri­
terion in fracture mechanics. (2) The ITLS model is more advantageous than the
rate­dependent cohesive zone model in terms of the capability of capturing unstable
crack growth. (3) Instead of adjusting the parameters for the 𝑉(𝐺) relation used in
ITLS model, the rate­dependent cohesive zone model requires only a single set of
parameters to capture the average response of the DCB at different loading rates.
Research is thus needed to establish a more general dynamic crack growth criterion
that could give the ITLS approach the ability to be more predictive.

The ITLS is for the first time embedded in a dynamics solution scheme which
extends the application of this method from quasi­static and cyclic loading to dy­
namic loading. It is shown that the 𝑉(𝐺) relation, inspired by Ravi­Chandar’s 𝑉(𝐾)
relation [47], can provide a very good match with experimentally observed arrests
and reinitiation phenomena. The good match that has been observed for individual
loading rates points out that the 𝑉(𝐺) relation is a useful ingredient for describing
dynamic crack growth.
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1. Set the time step number 𝑛 = 1;

2. Define a initial damage band with length 𝑙𝑐 ahead of the crack tip and calculate
the level set field 𝜙(𝑥);

3. Initialize damage distribution based on the level set field 𝜙(𝑥) using Eq.
(2.18);

4. Set the initial time step 𝛿𝑇1;

5. Apply the 𝑛th load/displacement increment;

6. Solve dynamic equilibrium with the Newton­Raphson scheme;

7. Calculate the energy release rate of the 𝑛th time step, 𝐺𝑛, using Eq. (2.19);

8. Check the crack state at (𝑛 − 1)th time step, stationary or propagating?

• Stationary—The crack speed at the end of the 𝑛th time step, 𝑉𝑛, is cal­
culated with Eq. (2.20) if the energy release rate 𝐺𝑛 is larger than the
initiation toughness 𝐺𝑖, otherwise it is zero.

• Propagating—The 𝑉𝑛 is calculated with Eq. (2.20) if 𝐺𝑛 is larger than the
arrest toughness 𝐺𝑎, otherwise it is zero.

9. Set time step size for the (𝑛 + 1)th time step: 𝛿𝑇𝑛 = min(𝛿𝑇1, 0.6𝑙𝑖𝑒/𝑉𝑛),
where 𝑙𝑖𝑒 is the minimum interface element size;

10. Move the level set field in the crack growth direction by a distance of 𝛿𝑠𝑛 with
𝛿𝑠𝑛 = 𝑉𝑛−1 ⋅ 𝛿𝑇𝑛 (see Fig. 2.8);

11. Update the damage distribution with the updated level set field using Eq.
(2.18);

12. 𝑛 = 𝑛 + 1, go to step 5;

Box 1: Staggered solution algorithm for the ITLS model.



3
A dispersive homogenization
model for composites and its

RVE existence

3.1. Introduction
The heterogeneity of the microstructure of composite materials causes dispersion in
wave propagation associated with dynamic loading. This dispersion phenomenon,
also referred to as micro­inertia, is a result of local motion of the microstructure
driven by multiple wave reflections and transmissions occurring at the interfaces
between the constituents. Correct evaluation or tuning of the dispersion properties
of composites can be important for engineering applications, for instance impact­
resistant components or devices where composites are subject to high­rate loading
[2–6] or metamaterials with microstructures designed to show particular effective
behavior [7–9].

Computational modelling of composites subjected to stress­wave loading typ­
ically involves three length scales, i.e. the size of the macroscopic structure, the
characteristic stress wave length and the length scale of the microstructure (in
fiber­reinforced composites related to the fiber diameter) [9, 10]. The macroscopic
length scale can be much larger than the microstructural length scale. In the case
where the stress wave length is also much larger than the typical microstructural
size, there is no significant transient effect within the microstructure and micro­
inertia is negligible [9]. Therefore, the overall dynamic response can be solely de­
scribed by averaging density and moduli. However, for a stress wave which is only
few times larger than the microstructural length scale, the dispersion becomes ev­
ident and averaging properties are not sufficient to describe the dynamic response
[9]. In order to account for the dispersion phenomenon, multiple models have

This chapter is based on [1]
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been introduced. One type of model is the gradient elasticity model with high­
order spatial derivatives of strains, stresses and/or accelerations as reviewed by
Askes and Aifantis [11]. However, identification of the length­scale parameters of
this method, especially in a multi­dimensional context, is not totally clear. Besides,
Willis’ elastodynamics homogenization model derives an effective constitutive rela­
tion which introduces non­classical coupling between effective stress and effective
velocity and coupling between effective momentum and effective strain [12–15].
Recent development of generalized homogenization models enrich the macroscale
displacement with additional generalized degrees of freedom of Bloch modes fol­
lowing the lines of Willis’ model, see Sridhar et al. [16]. These methods are suitable
for linear elastic (layered) periodic materials while an extension to materials with
random microstructure is not always straightforward.

An alternative type of method which provides a more flexible framework (e.g.
consideration of complex random microstructure or material nonlinearity) is rep­
resentative volume element (RVE) based multiscale approaches. Initiated by Hill
[17], the RVE can be defined as a characteristic sample of heterogeneous material
that should be large enough to contain sufficient composite micro­heterogeneities
in order to be representative, however it should be much smaller than the macro­
scopic structure size. Several definitions of an RVE are introduced in literature, as
reviewed by Gitman et al. [18]. Generally, a micromodel can be considered rep­
resentative if further increase of its size of RVE does not lead to changes in the
homogenized properties. Typically, statistics studies using numerical computations
are used to evaluate the homogenized physical properties (e.g. elastic properties,
thermo­conductivity) or effective response (e.g. the effective stress) of a range of
micromodels with increasing size, for instance in [18–25]. It should be noted that
the size of an RVE depends on the specific investigated morphological (e.g. volume
fraction) or physical properties (e.g. thermal or elastic) [19, 21].

Multiscale methods assume multiple (at least two) spatial and (or) temporal
scales [26, 27]. In multiscale models finer­scale problems are considered in a (sta­
tistically equivalent) representative volume element (RVE) and information of the
finer­scale is hierarchically passed into a coarser scale by bridging laws. Based on
a multiscale virtual power principle [26] as a notion of a generalized Hill­Mandel
lemma, Pham et al. [9] and Roca et al. [28] developed computational homoge­
nization schemes in which the transient dynamics equations are resolved at macro­
scopic and microscopic scale. Asymptotic homogenization with higher­order (or
first­order) expansions was proposed in [29–31] to capture wave dispersion and
attenuation within viscoelastic composites. Fish et al. [32] introduced a general
purpose asymptotic homogenization scheme in which the micro­inertia is resolved
by introducing a eigenstrain term and is valid for nonlinear heterogeneous material.
This method was further investigated by Karamnejad and Sluys [33] for impact­
induced crack propagation within a heterogeneous medium. The aforementioned
methods have shown certain capabilities in capturing wave dispersion for strictly
periodic heterogeneous structures with simple microstructures where the RVE can
be clearly defined as a unit cell. However, in a realistic composite material, the mi­
crostructure has a random nature. Therefore, the question of RVE existence needs
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to be answered before multiscale methods can be employed.
In this paper, a dispersive multiscale model based on asymptotic homogeniza­

tion is reviewed and the existence of an RVE for this method for unidirectional
fiber­reinforced composites is investigated. This paper is organized as follows: in
Section 3.2, the dispersive model based on asymptotic homogenization technique
is introduced. The accuracy of this numerical method for 1D and 2D elastic wave
propagation is demonstrated in Section 3.3. In Section 3.4, a statistics study is
performed to investigate if an RVE exists for this homogenization approach for real­
istic fiber reinforce composite microstructures. In Section 3.5, a batch of calibrated
numerical samples based on experimentally determined spatial distribution pattern
is tested for the convergence of homogenized properties.

3.2. Dispersive homogenization model
In this section, the asymptotic homogenization model originated from Fish et al.
[32] and later explored by Karamnejad and Sluys [33] is described. This method
allows for a decoupling of the equation of motion into a two­scale formulation.
The effect of microscopic dispersion is quantified by a so­called “dispersion tensor”,
which is related to the acceleration influence function of the microstructure. The
acceleration influence functions for microstructures with one and multiple inclusions
are demonstrated as examples.

3.2.1. Two­scale formulation
Considering a composite structure that is in dynamic equilibrium with prescribed
displacements and stress boundary conditions and given the initial conditions for
displacement and velocity (see Fig. 3.1a), the linear momentum equation reads

𝜕𝜎𝜁𝑖𝑗
𝜕𝑥𝜁𝑗

= 𝜌𝜁�̈�𝜁𝑖 , in Ω𝜁 (3.1)

with boundary conditions

𝑢𝜁𝑖 (𝐱, 𝑡) = 𝑢
𝜁
𝑖 (𝐱, 𝑡) on 𝜕Ω𝑢𝜁 (3.2)

𝜎𝜁𝑖𝑗(𝐱, 𝑡)𝑛
𝜁
𝑗 (𝐱) = 𝑡

𝜁
𝑖 (𝐱, 𝑡) on 𝜕Ω𝑡𝜁 (3.3)

at the boundary surface 𝜕Ω𝜁 = 𝜕Ω𝑢𝜁 ∪ 𝜕Ω𝑡𝜁 and initial displacement and velocity
conditions

𝑢𝜁𝑖 (𝐱, 0) = 𝑢0𝑖 (𝐱) (3.4)

�̇�𝜁𝑖 (𝐱, 0) = 𝑣0𝑖 (𝐱) (3.5)

where 𝝈𝜁, 𝜌𝜁, 𝐮𝜁, �̈�𝜁 and 𝐧𝜁 are stress, density, displacement, acceleration and
surface outward normal, respectively. The superscript 𝜁 denotes that quantities are
defined within the composite domain. For simplicity, a linear elastic material law is
considered herein, namely

𝜎𝜁𝑖𝑗(𝐱, 𝑡) = 𝑆
𝜁
𝑖𝑗𝑘𝑙(𝐱)𝜀

𝜁
𝑘𝑙(𝐱, 𝑡) (3.6)
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where 𝜺𝜁 is strain and 𝐒𝜁 is the elastic stiffness tensor which is for two­phase (i.e.
inclusion and matrix) composites a piece­wise constant function of spatial coordi­
nates. Extension to nonlinear material behavior can be done by using the instan­
taneous stiffness tensor as elaborated in Fish et al. [32]. Perfect bonding between
inclusion and matrix is considered here while decohesion can be possibly included
through the eigendeformation concept [34] or a cohesive crack formulation [35].
A relevant study on dispersive multiscale formulation with consideration of material
damage is introduced by Karamnejad and Sluys [33].

Asymptotic expansions
In the asymptotic expansion approach, two spatial coordinate systems are intro­
duced, macro­scale coordinates 𝐱 defined in the macroscopic homogeneous do­
main Ω and micro­scale coordinates 𝐲 in an RVE domain Θ with heterogeneous
microstructures, see Fig. 3.1b. The 𝐲 coordinate is related to the 𝐱 coordinate by
𝐲 = 𝐱/𝜁 with 0 < 𝜁 ≪ 1. Any physical field variable, for example, the displace­
ment field 𝐮, is a function of spatial coordinate 𝐱, 𝐲 and also the physical time
𝑡. These physical fields are assumed to be 𝐲­periodic in RVE domain Θ, namely
𝑓(𝐱, 𝐲) = 𝑓(𝐱, 𝐲 + 𝐤𝐥𝑅) in which vector 𝐥𝑅 = [𝑙1, 𝑙2]𝑇 represents the basic period of
the microstructure (in 2D), 𝑙1 and 𝑙2 are the lengths of RVE along the two directions
and 𝐤 is a 2 × 2 diagonal matrix with integer components. The choice for periodic
boundary conditions for the microscopic field is motivated by superior convergence
properties that have been demonstrated by Kanit et al. [19] and Fish [36] among
others. Following Fish et al. [32], we can represent this function by an asymptotic
expansion around a point 𝐱 in powers of 𝜁, namely,

𝐮𝜁(𝐱, 𝑡) = 𝐮(0)(𝐱, 𝑡) + 𝜁𝐮(1)(𝐱, 𝐲, 𝑡) + 𝑂(𝜁2) (3.7)

in which the first term on the right hand side represents a macro­scale component
while the second term represents a micro­scale component. By applying the two­

scale spatial derivative rule 𝜕(⋅)𝜁

𝜕𝑥𝜁𝑖
= 𝜕(⋅)

𝜕𝑥𝑖
+ 1

𝜁
𝜕(⋅)
𝜕𝑦𝑖
, the strain can be expressed as

𝜀𝜁𝑖𝑗(𝐱, 𝑡) ≡ 𝑢
𝜁
(𝑖,𝑥𝜁𝑗 )

(𝐱, 𝑡) = 𝜀𝑚𝑖𝑗 (𝐱, 𝐲, 𝑡)+𝑂(𝜁) = 𝑢
(0)
(𝑖,𝑥𝑗)(𝐱, 𝑡)+𝑢

(1)
(𝑖,𝑦𝑗)(𝐱, 𝐲, 𝑡)+𝑂(𝜁) (3.8)

where 𝜀𝑚𝑖𝑗 is the micro­scale strain and (⋅)(𝑖,𝑥𝑗) =
1
2 (

𝜕(⋅)𝑖
𝜕𝑥𝑗

+ 𝜕(⋅)𝑗
𝜕𝑥𝑖
) means the sym­

metric gradient of a function with respect to coordinate 𝐱. The stress is expanded
as

𝜎𝜁𝑖𝑗(𝐱, 𝑡) = 𝜎𝑚𝑖𝑗 (𝐱, 𝐲, 𝑡) + 𝑂(𝜁) = 𝜎
(0)
𝑖𝑗 (𝐱, 𝑡) + 𝜎

(1)
𝑖𝑗 (𝐱, 𝐲, 𝑡) + 𝑂(𝜁) (3.9)

where 𝜎𝑚𝑖𝑗 is the micro­scale stress and the micro­scale perturbation stress 𝜎
(1)
𝑖𝑗

satisfies
⟨𝜎(1)𝑖𝑗 (𝐱, 𝐲, 𝑡)⟩ = 0 (3.10)

where ⟨(⋅)⟩ = 1
|Θ| ∫Θ(⋅)𝑑Θ is the volumetric average of (⋅) within the domain Θ.



3.2. Dispersive homogenization model

3

47

Ω𝜁

(a) (b)

𝑥𝜁1

𝑥𝜁2
𝑛𝜁

𝑥1

𝑥2

Ω

𝑡𝑡𝜁

𝑛

×1𝜁

𝑦1

𝑦2

Θ

𝑦𝑖 = 𝑥𝑖/𝜁

Figure 3.1: Problem statement. (a) original composite problem; (b) equivalent two­scale problem state­
ment.

The inertia is given as the following expansion

𝜌𝜁�̈�𝜁𝑖 (𝐱, 𝐲, 𝑡) = 𝜌(0)�̈�(0)𝑖 (𝐱, 𝑡) + 𝜁𝜌(1)�̈�(1)𝑖 (𝐱, 𝐲, 𝑡) + 𝑂(𝜁2)

= 𝜌(0)�̈�(0)𝑖 (𝐱, 𝑡) + 𝜁𝜌(0)ℎ𝑠𝑡𝑖 (𝐱, 𝐲, 𝑡) ̈𝜀
(0)
𝑠𝑡 (𝐱, 𝑡) + 𝑂(𝜁2)

(3.11)

where ℎ𝑠𝑡𝑖 (𝐱, 𝐲, 𝑡) is the so­called acceleration influence function which satisfies
𝜌(1)�̈�(1)𝑖 = 𝜌(0)ℎ𝑠𝑡𝑖 ̈𝜀(0)𝑠𝑡 and ℎ𝑠𝑡𝑖 (𝐱, 𝐲, 𝑡) is a 𝐲­periodic function satisfying the nor­
malization condition

⟨ℎ𝑠𝑡𝑖 (𝐱, 𝐲, 𝑡)⟩ = 0 (3.12)

Weak form
The weak form of Eq. (3.1) reads

∫
Ω𝜁
𝜔𝜁𝑖,𝑗𝜎

𝜁
𝑖𝑗𝑑Ω𝜁 +∫

Ω𝜁
𝜔𝜁𝑖 𝜌𝜁�̈�

𝜁
𝑖 𝑑Ω𝜁 = ∫

𝜕Ω𝑡𝜁
𝜔𝜁𝑖 𝑡

𝜁
𝑖 𝑑Γ𝜁 (3.13)

in which the test function 𝜔𝜁𝑖 ∈ 𝑊𝜁 = {𝜔𝜁𝑖 ∈ 𝐶0(Ω𝜁), 𝜔
𝜁
𝑖 = 0 on 𝜕Ω𝑢𝜁}. Integration

of the two­scale functions over the composite domain and its boundary is carried
out as

∫
Ω𝜁
(⋅)𝑑Ω𝜁 = lim

𝜁→0
∫
Ω
⟨⋅⟩Θ𝑑Ω and ∫

𝜕Ω𝜁
(⋅)𝑑Γ𝜁 = ∫

𝜕Ω
(⋅)𝑑Γ (3.14)

The test function is expanded as

𝜔𝜁𝑖 (𝐱, 𝑡) = 𝜔(0)𝑖 (𝐱, 𝑡) + 𝜁𝜔(1)𝑖 (𝐱, 𝐲, 𝑡) + 𝑂(𝜁2)

= 𝜔(0)𝑖 (𝐱, 𝑡) + 𝜁ℎ𝑘𝑙𝑖 (𝐱, 𝐲, 𝑡)𝜔
(0)
(𝑘,𝑥𝑙)(𝐱, 𝑡) + 𝑂(𝜁

2)
(3.15)
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where the relation 𝜔(1)𝑖 (𝐱, 𝐲, 𝑡) = ℎ𝑘𝑙𝑖 (𝐱, 𝐲, 𝑡)𝜔
(0)
(𝑘,𝑥𝑙)(𝐱, 𝑡) is introduced.

By applying the two­scale integration scheme Eq. (3.14) to Eq. (3.13) and using
Eq. (3.9), (3.10), (3.11), (3.12) and (3.15) and neglecting higher­order terms, it
can be found that

∫
Ω
𝜔(0)(𝑖,𝑥𝑗) [𝜎

(0)
𝑖𝑗 + 𝜁2𝐷𝑖𝑗𝑠𝑡 ̈𝜀(0)𝑠𝑡 ] 𝑑Ω+∫

Ω
𝜔(0)𝑖 𝜌(0)�̈�(0)𝑖 𝑑Ω+∫

Ω
⟨𝜔(1)(𝑖,𝑦𝑗)𝜎

𝑚
𝑖𝑗 ⟩Θ𝑑Ω = ∫

𝜕Ω𝑡
𝜔(0)𝑖 𝑡𝑖𝑑Γ
(3.16)

where 𝜔(0)𝑖 ∈ 𝑊(0) = {𝜔(0)𝑖 ∈ 𝐶0(Ω), 𝜔(0)𝑖 = 0 on 𝜕Ω𝑢} and 𝜔(1)𝑖 ∈ 𝑊Θ = {𝜔(1)𝑖 ∈
𝐶0(Θ), ⟨𝜔(1)𝑖 ⟩Θ = 0,𝜔(1)𝑖 = 0 on 𝜕Θ𝑢} and the dispersion tensor 𝐃𝑀 is introduced as

𝐷𝑀𝑖𝑗𝑠𝑡 = 𝜁2𝐷𝑖𝑗𝑠𝑡(𝐱, 𝑡) = 𝜌(0)⟨ ℎ
𝑖𝑗
𝑝 (𝐲, 𝑡)ℎ𝑠𝑡𝑝 (𝐲, 𝑡) ⟩Θ (3.17)

where (⋅)𝑀 denotes the macro­scale quantity. Therefore, the weak form for the two
scales can be derived as

∫
Ω
𝜔(0)(𝑖,𝑥𝑗) [𝜎

(0)
𝑖𝑗 + 𝜁2𝐷𝑖𝑗𝑠𝑡 ̈𝜀(0)𝑠𝑡 ] 𝑑Ω+∫

Ω
𝜔(0)𝑖 𝜌(0)�̈�(0)𝑖 𝑑Ω = ∫

𝜕Ω𝑡
𝜔(0)𝑖 𝑡𝑖𝑑Γ (macro­scale)

(3.18)
1
|Θ| ∫Θ

𝜔(1)(𝑖,𝑦𝑗)𝜎
𝑚
𝑖𝑗 𝑑Θ = 0 (micro­scale) (3.19)

The solution of these weak forms is found with separate finite element schemes for
the two scales. Details about the extraction of the macro­scale stiffness 𝑆𝑀𝑖𝑗𝑘𝑙 are
explained in Appendix B and the solution of the micro­scale problem is illustrated
in the next section.

Micro­scale problem
It can be observed from Eq. (3.19) that the micro­scale problem is treated as a
“quasi­dynamic” formulation following Fish et al. [32]. Considering that 𝑆𝜁𝑖𝑗𝑘𝑙(𝐱) =
𝑆𝑚𝑖𝑗𝑘𝑙(𝐲) and leaving out the first order remnants in Eq. (3.8) and Eq. (3.9), the
constitutive relation Eq. (3.6) can be rewritten as

𝜎𝑚𝑖𝑗 (𝐱, 𝐲, 𝑡) = 𝑆𝑚𝑖𝑗𝑘𝑙(𝐲)𝜀𝑚𝑘𝑙(𝐱, 𝐲, 𝑡) (3.20)

The micro­scale strain 𝜀𝑚𝑘𝑙(𝐱, 𝐲, 𝑡) is divided into two parts: one is caused by the
macro­scale strain 𝑢(0)(𝑖,𝑥𝑗)(𝐱, 𝑡); the other one is driven by the macro­scale accelera­
tion gradient. The micro­scale strain, from Eq. (3.8), is expressed as

𝜀𝑚𝑘𝑙(𝐱, 𝐲, 𝑡) = 𝑢(0)(𝑘,𝑥𝑙)(𝐱, 𝑡) + 𝑢
(1)
(𝑘,𝑦𝑙)(𝐱, 𝐲, 𝑡)

= 𝑢(0)(𝑘,𝑥𝑙)(𝐱, 𝑡) + 𝐻
𝑠𝑡
(𝑘,𝑦𝑙)(𝐱, 𝐲, 𝑡)𝑢

(0)
(𝑠,𝑥𝑡)(𝐱, 𝑡)⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝

macro­scale strain related terms

+ 𝜌(𝐲)
𝜌(0) 𝑓

(0)
𝑘𝑙 (𝐱, 𝑡) + ℎ𝑠𝑡(𝑘,𝑦𝑙)(𝐱, 𝐲, 𝑡)𝑓

(0)
𝑠𝑡 (𝐱, 𝑡)⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝

macro­scale acceleration gradient related terms

(3.21)
where 𝐻𝑠𝑡𝑘 is a displacement influence function satisfying 𝐲−periodicity and ⟨𝐻𝑠𝑡𝑘 ⟩Θ =
0, and 𝑓(0)𝑘𝑙 (𝐱, 𝑡) is a macroscopic quantity proportional to the macro­scale acceler­
ation gradient so that 𝑓(0)𝑘𝑙 ≡ 0 in the absence of macro­scale acceleration gradient.
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It is to be noted that in Eq. (3.21) the first of the macro­scale strain related terms
corresponds to a uniform strain on the microstructure while the second term is a
fluctuation contribution to keep the microstructure to be in self­balanced state. Sim­
ilarly, the first term of macro­scale acceleration gradient related parts in Eq. (3.21)
represents a uniform acceleration gradient over the microstructure while the second
terms refers to a fluctuation contribution to keep the microstructure in equilibrium
under the excitation of a macroscopic acceleration gradient.

Substituting Eq. (3.20) and Eq. (3.21) into Eq. (3.19) leads to

∫
Θ
𝜔(1)(𝑖,𝑦𝑗) [𝑆

𝑚
𝑖𝑗𝑘𝑙(𝐲) (𝐼𝑘𝑙𝑠𝑡 + 𝐻𝑠𝑡(𝑘,𝐲𝑙)(𝐲, 𝑡)) 𝑢

(0)
(𝑠,𝑥𝑡)(𝐱, 𝑡)] 𝑑Θ

+ ∫
Θ
𝜔(1)(𝑖,𝑦𝑗) [𝑆

𝑚
𝑖𝑗𝑘𝑙(𝐲) (

𝜌(𝐲)
𝜌(0) 𝐼𝑘𝑙𝑠𝑡 + ℎ

𝑠𝑡
(𝑘,𝐲𝑙)(𝐲, 𝑡)) 𝑓

(0)
𝑠𝑡 (𝐱, 𝑡)] 𝑑Θ = 0

(3.22)

where 𝐼𝑘𝑙𝑠𝑡 = 𝛿𝑘𝑠𝛿𝑙𝑡 and 𝛿𝑘𝑠 is the Kronecker delta tensor. Considering the arbi­
trariness of 𝑢(0)(𝑠,𝑥𝑡) and 𝑓

(0)
𝑠𝑡 , Eq. (3.22) can be split into two separate equations

∫
Θ
𝜔(1)(𝑖,𝑦𝑗) [𝑆

𝑚
𝑖𝑗𝑘𝑙(𝐲) (𝐼𝑘𝑙𝑠𝑡 + 𝐻𝑠𝑡(𝑘,𝐲𝑙)(𝐲, 𝑡))] 𝑑Θ = 0 (3.23)

and

∫
Θ
𝜔(1)(𝑖,𝑦𝑗) [𝑆

𝑚
𝑖𝑗𝑘𝑙(𝐲) (

𝜌(𝐲)
𝜌(0) 𝐼𝑘𝑙𝑠𝑡 + ℎ

𝑠𝑡
(𝑘,𝐲𝑙)(𝐲, 𝑡))] 𝑑Θ = 0 (3.24)

Of these, the second one is solved for the acceleration influence function ℎ𝑠𝑡𝑘 with
finite elements over the micro­scale domain. Details about the solution procedures
of Eq. (3.24) are given in Appendix C. By use of Eq. (3.17), ℎ𝑠𝑡𝑘 gives the dispersion
tensor which is used in the macro­scale weak form, i.e. Eq. (3.18).

3.2.2. Acceleration influence functions
The effect of inertia in the micro­scale is considered by an eigenstrain [37] and
therefore only the solution of a typical quasi­static balance problem is needed. As
it is pointed out in Fish et al. [32], it is possible to get a closed form solution of the
micro­scale balance Eq. (3.19) in the case of a 1D composite bar with two different
phases of material with elastic material constants of 𝐸1, 𝜌1 and 𝐸2, 𝜌2.

For a microstructure with one circular inclusion, the six acceleration influence
functions are plotted in figure 3.2. The elastic modulus, Poisson’s ratio, mass density
of the inclusion and matrix are 𝐸𝑖 = 200 GPa, 𝜇𝑖 = 0.2, 𝜌𝑖 = 10000 Kg/m3 and 𝐸𝑚 =
2 GPa, 𝜇𝑚 = 0.2, 𝜌𝑚 = 4000 Kg/m3. The volume fraction of the inclusion is 60%
and its diameter is 5 𝜇m. From Eq. (3.21), it is known that the acceleration influence
functions ℎ𝑚𝑛𝑘 can be interpreted as the first­order microstructural correction to the
eigendeformation field as triggered by the macro­scale acceleration gradient. For
instance, the negative gradient of ℎ111 along 𝑦1­direction in the domain occupied by
the stiff inclusion implies that the true acceleration induced strain in the inclusion is
smaller than that in the matrix domain. For a microstructure with 25×25 randomly
positioned inclusions while keeping the other properties unchanged, the influence
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Figure 3.2: Acceleration influence function ℎ𝑚𝑛𝑘 for a one inclusion microstructure (the enclosed subfig­
ure shows the studied microstructure).
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function ℎ11𝑘 (𝑘 = 1, 2) is plotted in Fig. 3.3. Some observations can be made: (1)
the gradient ℎ11(1,𝑦1) in the inclusions phase is still negative and has similar magnitude
among all the inclusions, and (2) both ℎ111 and ℎ112 show regions where peaks are
higher and regions where peaks are lower as a consequence of the mesostructure.

3.2.3. Properties of dispersion tensor
The magnitude of the dispersion tensor depends on several characteristics of the
microstructure. (i) The contrast of material properties between the constituents.
In terms of a one­dimensional two­phase composite bar, if the wave impedance is
the same for the two phases, the dispersion tensor is null [32]. This is consistent
with the fact that when the wave impedance is the same, wave dispersion due
to material heterogeneity is not present. To investigate the influence of material
contrast on the dispersion tensor, the dispersion tensor is computed for a single
microstructure with 15×15 fibers and a fiber volume fraction of 60%. The Young’s
modulus and density of the inclusion are varied proportionally as 𝐸𝑖 = 𝑐𝐸𝑚 and
𝜌𝑖 = 𝑐𝜌𝑚 for 𝑐 ∈ [2, 4, 9, 16, 30], respectively, with the Poisson’s ratio unchanged.
The six independent components of the dispersion tensor 𝐷𝑀𝑖𝑗𝑘𝑙, normalized with
respect to the values of the sample with the lowest property contrast, 𝐷𝑀𝑖𝑗𝑘𝑙(𝑐 = 2),
for the five cases are shown in Fig. 3.4a. It can be seen that the magnitude of all
six components are increasing with larger properties contrast, which means that
the expected dispersion effect should be larger for a higher contrast composite.
(ii) The diameter of inclusions. Similarly, the dispersion tensor is computed for five
cases with the same material properties and microstructure with 15×15 inclusions
but with different inclusion diameter, 𝑑𝑖 ∈ [0.005, 0.025, 0.1, 0.25, 0.5] mm. The
variation of 𝐷𝑀1111 as function of 𝑑𝑖 is plotted in Fig. 3.4b along with a quadratic fit.
It can be observed that the relation between 𝐷𝑀1111 and 𝑑𝑖 can be described very
well as a quadratic relation and the same was found for the other components of
the dispersion tensor. This quadratic relation can also be found in the closed­form
solution of the dispersion tensor for a one­dimensional two­phase composite bar
given in [32]. This means that for larger inclusions, the influence of dispersion is
larger. To ensure a mesh­independent solution of 𝐷𝑀1111, five different mesh sizes
of the case with the fiber diameter 𝑑𝑖 = 0.25 mm are solved, with the number of
elements ranging from 22624 to 288800. It is shown in Fig. 3.4c that after the
mesh size has reached the medium size, the dispersion tensor component 𝐷𝑀1111
has reached converged values. Therefore, this mesh size is adopted for the study
described in Section 3.4 and Section 3.5.

3.3. Comparison with direct numerical simulation
In this section, elastic wave propagation in a periodic composite medium is simu­
lated to investigate the performance of the introduced dispersive homogenization
model in comparison with direct numerical simulation (DNS). Two cases are consid­
ered, one with a one­dimensional microstructure and one with a two­dimensional
microstructure.
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Figure 3.3: Influence function ℎ111 and ℎ112 for a 25×25 inclusions microstructure (the enclosed subfigure
shows the studied microstructure).
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Figure 3.4: Properties of dispersion tensor. (a) Normalized dispersion tensor components; (b) dispersion
tensor component 𝐷𝑀1111 vs. diameter of inclusion; (c) mesh density influence of 𝐷𝑀1111 (the dashed line
shows the converged mesh size).
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3.3.1. 1D elastic wave propagation
Elastic wave propagation in a periodic two­phase composite bar is studied simi­
lar to Karamnejad and Sluys [33]. Geometry and properties are such that wave
propagation is purely one­dimensional. The material properties of the two phases
are 𝐸1 = 200 GPa, 𝜌1 = 10000 kg/m3, 𝜈1 = 0 and 𝐸2 = 2 GPa, 𝜌1 = 4000 kg/m3,
𝜈2 = 0. The wave impedance contrast between the two phases is 𝐸1𝜌1/𝐸2𝜌2 = 250.
The left end of the bar is fixed. Two types of loading are considered. Firstly, a in­
coming harmonic wave is imposed on the right end of the bar so that the horizontal
displacement 𝑢(𝑡) on the right edge satisfies 𝑢(𝑡) = 𝐴0 sin(2𝜋𝑓𝑡)𝐻(

1
2𝑓−𝑡) in which

𝐴0 = 0.025 mm represents the magnitude, 𝑓 = 50000 Hz is the wave frequency
and 𝐻(⋅) is the Heaviside step function. The bar consists of 100 repeating unit
cells for a total length of 500 mm as shown in Fig. 3.5. Four numerical models
are considered: two single­scale models, namely the fine heterogeneous model
(DNS) and the fine model with homogenized properties, and two multiscale mod­
els, namely the coarse non­dispersive model and the coarse dispersive model. The
two fine models consist of 4500 quadrilateral elements. For the one with homoge­
nized properties, the elastic modulus and density of the two phases are prescribed
to be the homogenized values, i.e. 𝐸𝑀 = 4.926 GPa and 𝜌𝑀 = 7600 Kg/m3, respec­
tively. This model therefore neglects wave reflection and transmission at material
interfaces. By contrast, the heterogeneous DNS model considers the heterogeneity
of the composite bar and is therefore considered as the reference exact solution
of this problem. The two coarse multiscale models use 500 quadrilateral elements
with one Gauss­integration point corresponding to a unit cell domain. Homoge­
nized elastic properties are used and the analysis is performed with and without
dispersion tensor. The main dispersion tensor component 𝐷𝑀1111 for this simple mi­
crostructure can be obtained by a closed­form solution following Fish et al. [32].
The dispersion tensor is evaluated numerically as

𝐃𝑀 = [
0.0095 0 0
0 0 0
0 0 0.0095

] MPa ⋅ms2 (3.25)

It is shown in Karamnejad and Sluys [33] and Fish et al. [32] that the ratio be­
tween macroscopic wave length 𝑙𝑀 and the unit cell size 𝑙𝑚 determines the extent
of dispersion. If 𝑙𝑀 is more than five times larger than 𝑙𝑚, the dispersive effect
can be neglected. The dispersive model shows considerably better accuracy than
the non­dispersive model within the first pass frequency band1. In this case, the
wave length is calculated by 𝑙𝑀 = √𝐸𝑀(𝜌𝑀)−1/𝑓 = 16.1 mm, while the unit cell size
𝑙𝑚 = 5 mm. Therefore, the ratio 𝑙𝑚/𝑙𝑀 = 0.3106 in this case, which corresponds
to a shorter wave length than Karamanejad and Sluys [33]. The displacement field
along the bar is plotted for four typical time instants in Fig. 3.6. It can be seen in
1According to Andrianov et al. [38], a periodic elastic composite behaves like a discrete wave filter.
A discrete pass frequency band and stop frequency band structure is formed. Whenever the wave
frequency is within the stop frequency band, its magnitude is exponentially attenuated such that the
wave is not able to propagate. Only when the wave frequency is within the pass frequency bands,
propagation is admissible.
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Figure 3.5: Harmonic wave propagating in a periodic bar consisted of 100 unit cells. The microstructure
of the unit cell is demonstrated.

the DNS reference solution that the input sinusoidal pulse is not maintained dur­
ing the propagation and there exists significant amplitude decay. The resultant
displacement field shows sharp kinks representing high velocity gradients. This
flutter characteristic is mainly due to the high wave impedance contrast between
the two phases of the structure, which causes wave reflection. The result of the
fine homogenized model shows a well maintained profile although with a small
amount of leading oscillation related to the discretization. A comparison between
the DNS model and fine homogenized model shows that dispersion is indeed sig­
nificant for the studied wave length. The solution from the coarse non­dispersive
model shows very strong oscillations due to numerical dispersion effects caused by
a coarse mesh and the match with the DNS model solution is poor. The coarse
dispersive model shows a relatively smooth response. This is because for the dis­
persive model there is no physical interface in the macro­scale model, so the wave
can not “feel” the interface. Nevertheless, there exists reasonably good agreement
between the dispersive solution and the DNS model solution before wave reflec­
tion at the left edge (a­c) and after reflection (d) although the dispersive model
predicts a stronger decay of magnitude for the oscillation at the rear of the wave.
A higher order homogenization scheme could result in a higher accuracy but with
more computational costs, see for instance [39].

Secondly, loading which mimics an impact­induced loading pulse is considered,
to demonstrate the capability of the introduced dispersive numerical model for im­
pact problems. The problem setting is the same as described in Fig. 3.5 except that
the horizontal displacement on the right edge is prescribed as

𝑢(𝑡) =
⎧⎪
⎨⎪
⎩

𝑉
2𝑇 𝑡

2 , 𝑡 ≤ 𝑇
𝑉𝑇
2 + 𝐴 ⋅ (𝑡 − 𝑇) , 𝑇 < 𝑡 ≤ 2𝑇

2𝑉𝑇 − 𝐴
2𝑇 (3𝑇 − 𝑡)

2 , 2𝑇 < 𝑡 ≤ 3𝑇
2𝑉𝑇 , 𝑡 > 3𝑇

(3.26)

in which 𝑉 and 𝑇 are constants. This corresponds to a trapezoidal velocity pulse
shown in Fig. 3.7. Two load periods are considered for this type of loading: (1)
𝑇 = 0.01 ms and (2) 𝑇 = 0.001 ms with the same 𝑉 = 5.0 m/s. The displacement
field for two typical time instants along the bar for four models, i.e. the fine het­
erogeneous model (DNS), the fine homogenized model, the coarse non­dispersive
multiscale model and the coarse dispersive multiscale model, is plotted in Fig. 3.8
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Figure 3.6: plots of displacement field at different time for DNS­heterogeneous, DNS­homogeneous,
dispersive multiscale and non­dispersive multiscale model.
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Figure 3.7: Loading pulse of velocity �̇�(𝑡) applied at the right edge of the bar.
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Figure 3.8: plots of displacement field at different time instants for loading pulse with 𝑇 = 0.01 ms.

and Fig. 3.9 for the two loading periods. It can be found that dispersion is sig­
nificant in both cases as the DNS solution is different from the fine homogenized
model solution. The second case with shorter time duration shows more evident
dispersion. For both cases, the coarse dispersive model shows a better agree­
ment with the DNS model than the non­dispersive model. From the examples of
a harmonic loading and a trapezoidal loading, it is concluded that the dispersive
multiscale model offers considerable improvements over the non­dispersive model
for 1D elastic wave propagation problems. The dispersive multiscale model allows
for capturing dispersion with a discretization at macroscale that is coarser than the
microstructural resolution.

3.3.2. Two­dimensional wave propagation
Next, elastic wave propagation in a material with a two dimensional microstructure
subjected to an incoming sinusoidal wave is considered. The geometry consists
of 100 repeating microstructures with a total length of 57.04 mm. There are two
phases of materials, circular inclusions with a diameter of 0.5 mm and a surround­
ing matrix. The top edge and bottom edge of the structure are fixed in vertical
direction, which together with plane­strain conditions mimics the state for materi­
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Figure 3.9: plots of displacement field at different time instants for loading pulse with 𝑇 = 0.001 ms.

als in the middle region along the thickness direction for a plate impact test [40].
The horizontal displacement 𝑢1 of the incoming wave at the right edge satisfies
𝑢1 = 𝐴0 sin(2𝜋𝑓𝑡)𝐻(

1
2𝑓−𝑡) with 𝐴0 = 0.025mm and 𝑓 = 400 KHz with constrained

vertical displacement 𝑢2 = 0. The elastic properties of inclusion and matrix are the
Young’s modulus 𝐸𝑖 = 200 GPa, 𝐸𝑚 = 2 GPa, density 𝜌𝑖 = 10000 Kg/m3, 𝜌𝑚 = 4000
Kg/m3, and the Poisson’s ratio 𝜈𝑖 = 0.2, 𝜈𝑚 = 0.33. The volume fraction of inclu­
sions 𝑉𝑖 is 60%. Similar to Section 3.3.1, four numerical models are considered:
the fine heterogeneous model (DNS), the fine model with homogenized properties,
the coarse non­dispersive multiscale model and the coarse dispersive multiscale
model. The fine models are discretized with 501170 linear triangular elements (see
Fig. 3.10). For the homogenized one, the material properties of the complete do­
main are prescribed to be the homogenized values of each phase. By contrast,
the DNS model keeps the different properties of each phase and therefore the dis­
persion caused by material heterogeneity is naturally included. The coarse models
are discretized with 500 linear quadrilateral elements at the macro­scale while each
Gauss integration point corresponding to a micro­scale problem solved within a unit
cell domain as shown in Fig. 3.11. The coarse non­dispersive model neglects the
contribution of dispersion at the macro­scale while the dispersive model adds the
dispersion tensor contribution to capture the dispersion effect. The RVE for this
structure is clearly identified as the unit cell. The dispersion tensor is found using
the procedures illustrated in Appendix C as:

𝐃𝑀 = [
1.529𝑒 − 4 1.770𝑒 − 5 −2.762𝑒 − 8
1.770𝑒 − 5 1.529𝑒 − 4 −1.499𝑒 − 8
−2.762𝑒 − 8 −1.499𝑒 − 8 9.953𝑒 − 5

] MPa ⋅ms2 (3.27)

The averaged horizontal displacement 𝑢(𝑥), i.e. the volumetric average of hori­
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Figure 3.10: The DNS model mesh (501170 linear triangular elements).
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Figure 3.11: The multiscale model (500 linear quadrilateral elements).

zontal displacement within a constant distance 𝑙𝑠, along the bar for two time instants
is plotted in Fig. 3.12. In this study, 𝑙𝑠 is equal to 1/500 of the total length of the
bar. According to the reference DNS solution, the input sinusoidal wave does not
maintain its profile during the propagation and it breaks into several pulses with
obvious magnitude decay. The profile also shows significant oscillations caused by
reflections at material interfaces. The magnitude decay of the DNS model exhibits a
more gradual process than the 1D wave propagation problem considered in Section
3.3.1. This is due to the two­dimensional nature of the microstructure. The coarse
dispersive model captures the magnitude of the wave well although it predicts a
more smooth wave profile. The computational time per time step for the disper­
sive multiscale model is around 0.04 seconds while for the DNS model around 2.5
seconds is needed on the same system (a PC with a 16 GB of memory and 3.5 GHz
Intel Xeon CPU).

3.4. RVE existence study
In the previous section, the accuracy of the introduced dispersive model has been
validated for periodic composite structures in which an RVE can be clearly defined
as the building unit cell. However, for engineering materials such as fiber rein­
forced composites, the assumption of a periodic microstructure is not representa­
tive. Spatial variations in the fiber distribution can affect the material response.
The existence of an RVE for this multiscale approach needs to be assured before
the dispersive multiscale model can be applied to simulate realistic composites with
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Figure 3.12: plots of displacement field at different time.

random microstructure. The definition of an RVE prescribes that the size should be
sufficiently large such that further increase of the size does not lead to change in
the homogenized properties (or effective response). Therefore, the homogenized
quantities, i.e. the dispersion tensor and the stiffness tensor, of random microstruc­
tures with different sizes are calculated in this study. It is noted that with reference
to undirectional fiber­reinforced composites circular inclusions are considered here
while non­circular inclusions, for instance, ellipses with different aspect ratio, can be
considered for other materials, following Li et al. [41]. In this section, the numeri­
cal tool used to generate random microstructures is firstly described, followed by a
study of the spatial distribution features of generated numerical samples. Finally,
convergence of the dispersion tensor and stiffness tensor for realistic composite
microstructure with respect to micromodel dimensions are presented.

3.4.1. Generation of random microstructure with DEM
Following van der Meer [42], a Discrete Element Method (DEM) solver called HADES,
developed by Stroeven [43], is used to generate numerical samples of random
microstructures. DEM allows for generation of high packing density of granular
samples, as the final configuration is a result of stochastic initial conditions and
particle­to­particle collisions under external environment force and boundary con­
ditions.

The process for generating a two­dimensional numerical sample with desired
packing density 𝑉𝑖 is described as follows (see Fig. 3.13): A large box­shaped ref­
erence body is created initially, which contains a predefined number of 𝐍𝐢 circular
particles with either a given constant diameter 𝐷𝑖 or a given diameter distribu­
tion curve 𝑓(𝐷𝑖). The initial positions of the particles are random perturbations of
horizontally and vertically aligned locations. The initial velocity of any particle is pre­
scribed to be the same in the horizontal and vertical direction but with a randomly
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(a) (b) (c)

Figure 3.13: Processes for generation of numerical samples with periodic boundary condition. (a) Initial
configuration of a particle system (red arrows show a typical initial velocity field of particles and black
arrows shows the diminishing motion); (b) intermediate configuration (dashed box shows the undimin­
ished reference body, red particles with arrows denoting the moving direction demonstrate the effect of
periodic boundary condition); (c) final configuration: a numerical sample of composite microstructure.

assigned magnitude and sign for each particle. The reference body is gradually
diminishing with the same velocity in the horizontal and vertical direction (see Fig.
3.13 (a)). Periodic boundary conditions are applied to the reference body to avoid
any wall effect [18]. This means that during the simulation whenever a moving
particle is crossing the edge (or corner) of the diminishing reference body, it reap­
pears in the corresponding edge (or corner) during the DEM simulation (see Fig.
3.13 (b)). The collision between particles are treated with the Hertz contact law
[43]. The inter­particle contact can introduce energy dissipation characterized by
contact damping. In the case that damping coefficients are non­zero, continuous
energy loss due to contact results in a clustering effect on the resulting particle
system. It will be demonstrated in Section 3.4.2 that this phenomenon can be
clearly demonstrated with the spatial distribution pattern of the particle system. A
minimum contact distance parameter 𝑑min is enforced so that any two particles can
not be closer than this value, following the same hard­core model concept as in
[44–47]. It can be expected that decreasing the size of the reference body has the
effect of increasing the volume fraction of particles. The simulation stops when the
reference body has decreased such that the desired packing density, i.e. volume
fraction, is reached (see Fig. 3.13 (c)). After this, a mesh is generated with GMSH
[48] for the inclusions and the matrix.

3.4.2. Spatial point distribution analysis
For the random microstructure of composites reinforced with long fibers, the in­
clusions can be considered as discrete circular objects dispersed into a continuum
matrix in a two­dimensional domain. The spatial positioning of these inclusions is
stochastic for realistic composites due to the manufacturing processes and condi­
tions. By treating the center of each inclusion as one point, statistical spatial point
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Figure 3.14: A representative sample of (a) batch A and (b) batch B.

pattern analysis can be applied to characterize the microstructure. As it is com­
mented in Bailey and Gatrell [49], the basic interest in analysing the spatial point
process is in whether the observed events exhibit any systematic pattern, as op­
posed to being distributed randomly in space. Possibilities for these patterns are
classified as first order or second order effects. First order effects relate to varia­
tion in the mean value of the process in space representing a global trend in the
distribution of inclusions. Second order effects result from the spatial dependence
in the process, representing a local effect. This can be described by the probability
density function of the nearest neighbour distances and Ripley’s 𝐾 function [49].

In this study, numerical samples of composite microstructures generated by
HADES are first evaluated for their spatial distribution pattern. By introducing the
contact damping within the DEM solver, the inter­particle (inclusion) distances be­
come smaller, representing local effects. To demonstrate the influence of contact
damping, two batches of numerical samples are considered, one with nonzero con­
tact damping (batch A) and the other with zero contact damping (batch B). The
probability density function of the nearest neighbour distances and Ripley’s K func­
tion are evaluated for these two batches of samples.

Nearest neighbour distances
The nearest neighbour distance (NND) measures the shortest inter­inclusion inter­
action. The 𝑁th (𝑁 = 1, 2, ...) nearest neighbour distance is the distance between a
randomly chosen inclusion and its 𝑁th closest neighbour in the studied domain [49].
It is assumed that the studied numerical sample is in some sense representative of
any region from a realistic composite microstructures. Therefore, it is needed to
determine at which size the NND distribution function has converged. Eight differ­
ent sizes are considered, by varying the number of inclusions per sample 𝑁𝑖 with
values among [5×5, 10×10, 15×15, 20×20, 25×25, 30×30, 35×35, 40×40]. By
increasing the number of inclusions while keeping the volume fraction unchanged,
the total volume of the micromodel is also changed. For a given size, 100 random
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numerical samples are generated to ensure the representativeness of possible spa­
tial distributions. Representative numerical samples of batch A and B are shown in
Fig. 3.14. The diameter of the inclusions 𝐷𝑖 is kept as a fixed value of 5 𝜇m and
their volume fraction 𝑉𝑖 is 60%. The minimum contact distance 𝑑min is set to be
0.18 𝜇m.

In Fig. 3.15a, the probability density of the 1st NND at different distances corre­
sponding to different sample sizes for batch A is shown. The value of the probability
density at a distance ℎ represents the “chance” of the 1st NND for an inclusion to
be ℎ. A detailed view of the probability density of the 1st NND at two typical dis­
tances for different sample sizes is plotted in Fig. 3.15b. It is noted that in order to
eliminate the influence of the sample boundary on the probability density function
of the 1st NND for a given numerical sample (e.g. Fig. 3.13c), a toroidal correction
is applied. It assumes that the top and left of the sample domain is connected to
the bottom and right, respectively, as if the sample domain is a torus [50, 51]. It
can be found from Fig. 3.15 that as the size of sample increases, the mean value
of the 1st NND density function gradually converges and the standard deviation
decreases. When the sample has 35 × 35 inclusions, the 1st NND function repre­
sents a size­independent function for this batch of samples. The same holds for
the numerical samples of batch B. With this converged size, the probability density
function of the 1st and 2nd NND for batch A and batch B are evaluated, with the
mean value and standard deviation shown in Fig. 3.16. It can be found that the
largest probability of 1st NND occurs around 5.21 𝜇m for both batch A and batch
B, however, batch A has a larger peak value than batch B. The 2nd NND shows
the largest probability around 5.24 𝜇m for batch A while the largest probability for
batch B occurs at around 5.38 𝜇m. Again, the peak value of batch A is larger than
batch B. These observations show that the spatial distribution of inclusions of batch
A is more clustered than that of batch B, which is a result of the contact damping
included for batch A.

Ripley’s K function
The nearest neighbour distance considers the point pattern on the smallest scale.
Information on larger scales is considered by Ripley’s 𝐾 function [49]. The 𝐾 func­
tion is the ratio between the expected number of inclusions within a circle of radius
ℎ of an arbitrary inclusion and the mean number of inclusions per unit area. A direct
estimate of 𝐾(ℎ) from a numerical sample is given by [49]

𝐾(ℎ) = 𝐴
𝑁2𝑖

∑
𝑖
∑
𝑗≠𝑖

𝐼ℎ(𝑑𝑖𝑗 ≤ ℎ)
𝑤𝑖𝑗

(3.28)

in which 𝐴 is the area of the sample, 𝑁𝑖 is the total number of inclusions, 𝑑𝑖𝑗 is
the distance between inclusion 𝑖 and 𝑗, 𝐼ℎ(𝑥) is an indicator function which has a
value of 1 if the condition 𝑥 is true otherwise 0, and 𝑤𝑖𝑗 is a weighting function
for edge correction following Zangenberg and Brøndsted [51]. A homogeneous
point process with no spatial dependence is the Poisson process with 𝐾 = 𝜋ℎ2 [49].
The mean value and standard deviation of the 𝐾 function for batch A and B are
plotted in Fig. 3.17 along with the Poisson solution. The standard deviations for the
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Figure 3.15: (a) The 1st NND for different sample sizes; (b) 1st NND at two distances for different
sample sizes.
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Figure 3.16: The probability density function of the 1st and 2nd NND for sample batch A and sample
batch B (35 × 35 inclusions).
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Figure 3.17: The calculated 𝐾 function at different distances ℎ.

two batches are both very small. The mean value of the 𝐾 functions for the two
batches are very close to each other and both approach the Poisson distribution
for larger length scales. It is concluded that the first and second NND provides a
good indicator to distinguish between different fiber distributions, while Ripley’s K
function is less informative.

3.4.3. Convergence of dispersion tensor
The influence of micromodel size on the dispersion tensor for the two batches is in­
vestigated to examine the convergence of the dispersion tensor. With the method­
ology mentioned in Section 3.2, the dispersion tensor can be solved using finite el­
ement models. The material properties for inclusions are prescribed as the Young’s
modulus 𝐸𝑖 = 74 GPa, Poisson’s ratio 𝜇𝑖 = 0.2, density 𝜌𝑖 = 2500 Kg/m3 and the
matrix properties are Young’s modulus 𝐸𝑚 = 3.76 GPa, Poisson’s ratio 𝜇𝑚 = 0.3,
density 𝜌𝑚 = 1200 Kg/m3. There are six independent components for the dis­
persion tensor due to symmetry. Fig. 3.18 shows the mean value and standard
deviation of the individual components of the dispersion tensor for the numerical
samples of batch A and batch B. Again, 100 realizations of the fiber distribution are
solved for each batch and each 𝑁𝑖.

There are several similar observations for the two batches. The mean and stan­
dard deviation of 𝐷

𝑀
1111 and 𝐷

𝑀
2222 are very close to each other, which means that

no directional bias is created with either the numerical samples or the dispersive

multiscale formulation. The mean values of the cross terms of 𝐷
𝑀
1112 and 𝐷

𝑀
2212 are

calculated to be very close to zero, as expected for a transversely isotropic mate­
rial. However, certain different findings can be made for the two batches. It is
seen that the mean value of the six independent components of the dispersion ten­
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Figure 3.18: The dispersion tensor for sample (a) batch A and (b) batch B.

sor for batch A is gradually approaching a constant value after 𝑁𝑖 becomes larger
than 202 with decreasing standard deviations. For batch B, the mean value of the
dispersion tensor components shows the trend of converging to a constant value
after 𝑁𝑖 becomes larger than 302 with the standard deviations tend to decrease as
well. The converged values of the dispersion tensor for these two batches seem
to be different, which can be possibly due to different spatial distribution patterns.
The dispersion tensor converges with a very large size for both these two batches,
although for batch A the convergence rate is slightly faster.

3.4.4. Convergence of stiffness tensor
The influence of the numerical micromodel size on the stiffness tensor for the two
batches is investigated to also examine convergence of the homogenized stiffness
tensor. The stiffness matrix is obtained by using the numerical scheme explained in
Appendix B. Plane­strain conditions are assumed herein. The calculated mean and
standard deviation of the stiffness tensor is shown in Fig. 3.19. It can be found that
for both these two batches, the standard deviation values for the stiffness tensor
are small compared with the mean values. The mean values already converge for
relatively small micromodel size. The calculated mean values of the stiffness tensor
for batch A and batch B in matrix notation are:

𝐒
𝑀(𝐴)

= [
15548.2 5302.1 −3.99049
5302.1 15573.9 −0.949295
−3.99049 −0.949295 5125.54

] , 𝐒
𝑀(𝐵)

= [
15221.1 5184.62 −4.87758
5184.62 15214.1 2.89584
−4.87758 2.89584 5015.75

]

(3.29)
To verify the results, the isotropy of 𝐒𝑀 is checked. It is known that for isotropic
material under plane strain condition, the stiffness matrix 𝐒 is

𝐒𝑀 = [
𝑆𝑀1111 𝑆𝑀1122 𝑆𝑀1112
𝑆𝑀2211 𝑆𝑀2222 𝑆𝑀2212
𝑆𝑀1211 𝑆𝑀1222 𝑆𝑀1212

] = 𝐸
(1 + 𝜈)(1 − 2𝜈) [

1 − 𝜈 𝜈 0
𝜈 1 − 𝜈 0
0 0 1−2𝜈

2

] (3.30)
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Figure 3.19: Stiffness tensor for (a) batch A and (b) batch B. Enclosed subplots show the zoomed­in
view of stiffness component 𝑆𝑀1111.

where 𝐸 is the Young’s modulus and 𝜈 is the Poisson’s ratio. Therefore, an isotropic
law should satisfy that 2𝑆𝑀1212/(𝑆𝑀1111−𝑆𝑀1122) is equal to one. An error measurement
𝜖𝑆 is introduced as

𝜖𝑆 = |
2𝑆𝑀1212

(𝑆𝑀1111 − 𝑆𝑀1122)
− 1| × 100% (3.31)

According to Eq. (3.29) and Eq. (3.31), the errors for batch A and batch B are
calculated to be 0.0486% and 0.0496%, respectively. This shows that the calcu­
lated stiffness is very close to theoretical values. As it is seen in Eq. (3.29), the
difference between any component of the calculated stiffness tensor for these two
batches is less than 2%, which means that the stiffness tensor is not sensitive to
the considered differences in spatial distribution of the microstructure.

3.5. Experimental calibration
It is demonstrated in Section 3.4 that the convergence performance of the disper­
sion tensor depends on the spatial distribution pattern of the inclusions. Therefore,
realistic microstructures should be studied to evaluate the appropriateness of this
method to be applied in real composite structures. With image­analysis techniques,
spatial distribution patterns can be extracted from snapshots of real composites (see
e.g. Czabaj et al. [52]). Computational approaches can thereafter be used to gener­
ate random numerical samples according to the experimentally determined spatial
patterns.

In this study, numerical samples are generated with the DEM solver HADES for
the microstructure of a CFRP composite, HTA/6376, with a fiber volume fraction
of 59.2% [53, 54]. First, the DEM settings are calibrated to match experimentally
observed NNDs. Then, the RVE existence study from the previous section is re­
peated with these settings. For the calibration the number of fibers is fixed at 1296
(=362) in line with the experimental observations on 1300 fibers. The adopted RVE
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Figure 3.20: Size distribution of fiber diameter.

size is large enough to consider the spatial distribution in the numerical samples as
representative based on the observation in Fig. 3.15. A fiber diameter distribution
function is predefined according to the experimentally determined size distribu­
tion (see Fig. 3.20). The contact parameters, i.e. damping and minimum distance
𝑑min of the DEM simulation are tuned such that the spatial distribution pattern of
generated numerical samples can match the experimentally­determined patterns.
Herein, 100 numerical samples are generated with the DEM solver. The mean value
and standard deviation of the actual fiber diameter distributions used in the DEM
simulations are shown in Fig. 3.20 along with the experimental quantification to
verify that the input distribution is recovered. The calculated mean and standard
deviation of the probability density function of the 1st NND for the calibrated nu­
merical samples are demonstrated in Fig. 3.21 along with the experimental result
and two reference solutions from other numerically generated fiber distributions
by Yang et al. [44] and Ismail et al. [55]. It is seen that the probability density
function of the 1st NND for the generated numerical samples has a good match
with the experimental measurements. A considerably better agreement is found
for the current study than for the two reference solutions. The mean and standard
deviation of the probability density function of the 2nd NND for the numerical sam­
ples and the reference solutions are shown in Fig. 3.22. Again, the result for the
generated numerical samples matches well with the experiment measurements. A
higher agreement is found for this study than Yang et al. [44] while the solution
from Ismail et al. [55] also shows a good match. It is therefore validated that the
generated numerical samples are sufficiently representative for the real microstruc­
ture of the CFRP composite, following the criterion proposed by Liu and Ghoshal
[56].

A convergence study on the dispersion tensor is performed next by increasing
the size of samples with the same DEM solver settings as the calibrated numerical
samples. Again, eight different sizes are considered, and for every size 100 random
numerical samples are generated and solved for the dispersion tensor with the FEM
model. The influence of the micromodel size on the six independent components of
the dispersion tensor is plotted in Fig. 3.23. The standard deviation of all six com­
ponents shows a decreasing trend as the number of fibers 𝑁𝑓 is larger than 400
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Figure 3.21: The probability density function of 1st NND.
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Figure 3.22: The probability density function of 2nd NND.
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and the mean values converge to representative values. This means that for this
specific composite material the dispersion tensor components converge although
convergence is still relatively slow when compared with the stiffness tensor compo­
nents as shown in Fig. 3.19 or the elasto/plastic response of composites as reported
in [42].

3.6. Conclusion
In this paper, a multiscale model is introduced to capture wave dispersion in com­
posites. By using asymptotic homogenization, it is found that the dispersion effect
can be characterized by a dispersion tensor, the magnitude of which is dependent
on the material property contrast of inclusion/matrix and the size of the inclusion.
The dispersive multiscale model is applied to simulate elastic wave propagation
problems in a bar with one­dimensional and two­dimension microstructures. Com­
parison with a DNS model shows that the dispersive multiscale model has a sig­
nificantly improved accuracy, compared with non­dispersive homogenized models.
To test if an RVE can be defined for realistic composites with random microstruc­
tures, the dispersion tensor and stiffness tensor are computed for random numerical
samples at different sizes. It is found that the convergence performance of the dis­
persion tensor is considerably slower than that of the stiffness tensor and that the
convergence depends on the spatial distribution pattern. Finally, a batch of cali­
brated numerical samples of CFRP composites is tested for the convergence of the
dispersion tensor. It is argued that careful definition of microstructure geometries
is required to achieve representativeness.
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4
A numerical homogenization
scheme used for derivation of

a homogenized
viscoelastic­viscoplastic
model for the transverse

response of fiber­reinforced
polymer composites

4.1. Introduction
Fiber­reinforced polymer composites exhibit a complex nonlinear mechanical re­
sponse in the transverse plane, due to the composition of different types of ma­
terials and interfaces between the constituents. By modeling the composite mi­
crostructure with a fine numerical model, a virtual testing tool can be established
to evaluate the damage and failure of composites in the transverse plane for given
constituents and material interfaces instead of performing expensive experiment
campaigns. For detailed analysis of crack growth, a direct numerical simulation
(DNS) model with a notched configuration is useful as it mimics a typical material
characterization experiment. To reduce the computational cost, the composite ma­
terial away from the notch can be represented by a homogenized model without
damage and failure but with possibly rate­dependent nonlinearity. Experimental

This chapter is based on [1]
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tests of polymer composites under different loading types, such as fatigue, impact,
etc., reveal that polymer composites can show evident viscoelastic deformation and
viscoplastic flow before damage and failure emerge [2–4]. The underlying mecha­
nism of the viscoelastic and viscoplastic behavior of polymer composites is related
to the nonlinear and time­dependent mechanical properties of the microstructure
[5]. Various homogenization strategies exist to calculate the effective properties
of polymer composites based on the mechanical properties of the microstructural
constituents [6]. The homogenization methods can be divided roughly into: mean­
field homogenization, mathematical (asymptotic) homogenization, computational
homogenization and numerical homogenization [7, 8].

The mean field homogenization method was first proposed for composites hav­
ing linear elastic constituents. It is based on assumed relations between volume
averages of strain fields in each phase. This relation is typically derived from the ex­
act solution of Eshelby [9] for an ellipsoidal inclusion embedded in an infinite matrix
or its extensions with consideration of multiple inclusions by Mori and Tanaka [10],
self­consistent scheme by Kröner [11] and Hill [12], and double inclusion schemes
[6]. Extension of these schemes to the nonlinear (time­dependent) regime usually
requires the linearization of the local constitutive equations and the definition of uni­
form reference properties for each phase. Popular linearization strategies include
secant [13], incremental [14], tangent [15] and affine [16–18] approaches. Exam­
ples of the application of mean field homogenization for nonlinear (elasto­plastic,
viscoelastic, elasto­visco­plastic) mechanical problems can be found in [16, 19–22].
This semi­analytical method can be very accurate in linear (thermo)elasticity and
it is computationally efficient. However, there is no detailed stress/strain field for
each phase and accurate extension to nonlinear cases is still challenging.

The mathematical homogenization method represents the physical fields in a
composite by asymptotic expansion in powers of a small parameter 𝜁, which is the
ratio of a characteristic size of the heterogeneities and a measure of the macrostruc­
ture. The asymptotic expansion allows a decomposition of the final solution into
a series of governing equations, which can be evaluated successively from a se­
quence of (initial) boundary­value problems within a unit cell (or representative
volume element) domain. The effective properties are obtained through volume
averaging operations [23]. This method is mathematically elegant and rigorous for
a periodic microstructure with linear elastic mechanical properties. However, ex­
tension to a nonlinear material response is not straightforward although possible
with the transformation field analysis [24]. In this method, the inelastic strain field
is considered as given eigenstrains, which can be determined from solving linear
problems with eigenstrains. Examples can be found for viscoelasticity [25–27] and
for viscoplasticity [28–31]

In the computational homogenization method, also referred to as micro­macro
analysis or FE2 [32], the local macroscopic constitutive response is derived from
the solution of a microstructural boundary value problem in a (statistically equiv­
alent) representative volume element (RVE) and information of the microscale is
hierarchically passed to the macroscale by bridging laws. The RVE is a character­
istic sample of heterogeneous material that should be sufficiently large to involve
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enough composite micro­heterogeneities in order to be representative, however it
should be much smaller than the macroscopic dimensions [33]. This method does
not introduce any explicit format of the macroscopic constitutive equations as the
macroscopic stress is determined from the mechanical deformation state of the
associated RVE. However, the implementation of this method is not readily avail­
able in a general­purpose finite element code and the computational cost of this
method can be prohibitively high. Computational homogenization has been applied
to model amongst others viscoelasticity [34–36] and viscoplasticity [37–40].

For the numerical homogenization method, also called unit cell method [32], a
macroscopic canonical constitutive law, e.g. viscoplasticity, is assumed a priori for
the macroscale model. The material parameters are then determined from the av­
eraged microscopic stress­strain fields calculated from the computational analysis of
a microstructural model (a unit cell or an RVE) subjected to fundamental load cases.
The calibrated macroscopic constitutive model is then used for modeling composite
structures without explicitly representing the microstructure, which greatly reduces
the computational cost. When compared with the computational homogenization
method, the numerical homogenization does not need to keep solving boundary
value problems of RVEs during a macroscale analysis. This approach has been
used for development of the so­called homogenization­based or micromechanically
derived classical constitutive models, e.g. plasticity and damage [41–43], as well
as for viscoleasticity [44, 45] and viscoplasticity [45–47].

In this paper, a viscoelastic­viscoplastic (VE­VP) model for polymer composites
is derived using a numerical homogenization scheme. This paper is organized as
follows: in Section 4.2, the basic formulation of the VE­VP model proposed by Rocha
et al. [48] is illustrated and the stress update scheme used for implementation
of the VE­VP model is introduced. In Section 4.3, novel step­by­step calibration
procedures are introduced to calibrate the material parameters of a homogenized
VE­VP model based on the response of a representative volume element (RVE)
under typical loading conditions. In Section 4.4, the performance of the introduced
numerical scheme is demonstrated.

4.2. A viscoelastic­viscoplastic polymer model
Following Rocha et al. [48], a viscoelastic­viscoplastic (VE­VP) model as schemati­
cally represented in Fig. 4.1 is used to model the constitutive behavior of an epoxy
resin. In this model, the total strain 𝜀𝑖𝑗 is decomposed into an elastic part 𝜀𝑒𝑖𝑗 and
a plastic part 𝜀𝑝𝑖𝑗:

𝜀𝑖𝑗 = 𝜀𝑒𝑖𝑗 + 𝜀
𝑝
𝑖𝑗 (4.1)

The elastic behavior is represented by a generalized Maxwell model consisting of 𝑛
parallel Maxwell elements connected along with an extra isolated long­term spring.
In each Maxwell element, a spring with modulus 𝐸𝑖 and a dashpot with viscosity
parameter 𝜂𝑖 are connected in series. The plastic behavior is represented by a
sliding element with yield stress 𝜎𝑦 and a dashpot with viscosity parameter 𝜂𝑝.
Overstress is allowed to be developed due to the dashpot component that is placed
in parallel to the sliding element. In this section, the mathematical formulation
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Figure 4.1: Schematic representation of the viscoelastic­viscoplastic polymer model in one­dimension.
The coefficients of the elastic and plastic components do not represent the same coefficients used in
Section 4.2.1.

for the viscoelasticity and viscoplasticity model is described first, followed by the
stress update scheme used for numerical simulation with the finite element method
(FEM).

4.2.1. Formulation for the VE­VP model
Following the conceptual representation of the VE­VP model, the mathematical for­
mulations for the VE­VP constitutive model in a three­dimensional setting is detailed
in this section. The contribution of the viscoelastic components is described with a
linear viscoelastic model. Afterwards, the viscoplastic components are represented
by a Perzyna­type overstress formulation with a backbone of a pressure­dependent
plasticity model.

Viscoelasticity
Assuming a linear viscoelastic model, the stress is computed with Boltzmann’s
hereditary integral related to the elastic strain by [49]:

𝜎𝑖𝑗(𝑡) = ∫
𝑡

−∞
𝐷𝑖𝑗𝑘𝑙(𝑡 − �̃�)

𝜕𝜀𝑒𝑘𝑙(�̃�)
𝜕�̃� 𝑑�̃� (4.2)

in which 𝐷𝑖𝑗𝑘𝑙(𝑡) is the time­dependent stiffness that can be expressed with the
time­dependent shear stiffness 𝐺(𝑡) and bulk stiffness 𝐾(𝑡):

𝐷𝑖𝑗𝑘𝑙(𝑡) = 2𝐺(𝑡)𝐼𝑑𝑒𝑣𝑖𝑗𝑘𝑙 + 3𝐾(𝑡)𝐼𝑣𝑜𝑙𝑖𝑗𝑘𝑙 (4.3)

where 𝐺(𝑡) and 𝐾(𝑡) can be further expanded as an addition of a long­term contri­
bution and a Prony series of 𝑛𝑠 shear elements and 𝑛𝑟 bulk elements:

𝐺(𝑡) = 𝐺∞ +
𝑛𝑠
∑
𝑠=1
𝐺𝑠 exp(−

𝑡
𝑔𝑠
) 𝐾(𝑡) = 𝐾∞ +

𝑛𝑟
∑
𝑟=1

𝐾𝑟 exp(−
𝑡
𝑘𝑟
) (4.4)

in which 𝐺∞ and 𝐾∞ represent the long­term shear and bulk stiffness, and 𝐺𝑠 ,
𝐾𝑟, 𝑔𝑠 and 𝑘𝑟 are shear and bulk stiffness and relaxation time of the Maxwell el­
ements, respectively. The fourth­order deviatoric and volumetric operator tensors
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introduced in Eq. (4.3) are defined as:

𝐼𝑑𝑒𝑣𝑖𝑗𝑘𝑙 = 𝛿𝑖𝑘𝛿𝑗𝑙 −
1
3𝛿𝑖𝑗𝛿𝑘𝑙 𝐼𝑣𝑜𝑙𝑖𝑗𝑘𝑙 =

1
3𝛿𝑖𝑗𝛿𝑘𝑙 (4.5)

where 𝛿𝑖𝑗 is the Kronecker delta. These operator tensors can also be used to
decompose the elastic strain 𝜀𝑒𝑖𝑗 into a deviatoric part 𝜀𝑒,𝑑𝑒𝑣𝑖𝑗 and a hydrostatic part
𝜀𝑒,𝑣𝑜𝑙𝑖𝑗 :

𝜀𝑒𝑖𝑗 = 𝜀𝑒,𝑑𝑒𝑣𝑖𝑗 + 𝜀𝑒,𝑣𝑜𝑙𝑖𝑗 = 𝐼𝑑𝑒𝑣𝑖𝑗𝑘𝑙𝜀𝑒𝑘𝑙 + 𝐼𝑣𝑜𝑙𝑖𝑗𝑘𝑙𝜀𝑒𝑘𝑙 (4.6)

By substituting Eqs. (4.4) into Eq. (4.3), the time­dependent stiffness 𝐷𝑖𝑗𝑘𝑙(𝑡)
can be expressed as:

𝐷𝑖𝑗𝑘𝑙(𝑡) = (2𝐺∞𝐼𝑑𝑒𝑣𝑖𝑗𝑘𝑙 + 3𝐾∞𝐼𝑣𝑜𝑙𝑖𝑗𝑘𝑙) + (
𝑛𝑠
∑
𝑠=1
2𝐺𝑠 exp(−

𝑡
𝑔𝑠
) 𝐼𝑑𝑒𝑣𝑖𝑗𝑘𝑙 +

𝑛𝑟
∑
𝑟=1

3𝐾𝑟 exp(−
𝑡
𝑘𝑟
) 𝐼𝑣𝑜𝑙𝑖𝑗𝑘𝑙)

= 𝐷∞𝑖𝑗𝑘𝑙 + 𝐷𝑚𝑖𝑗𝑘𝑙(𝑡)
(4.7)

where 𝐷∞𝑖𝑗𝑘𝑙 is the long­term stiffness and 𝐷𝑚𝑖𝑗𝑘𝑙(𝑡) is the overall stiffness of the
Maxwell elements.

Viscoplasticity
The viscoplasticity model is a Perzyna­type model with a backbone of a harden­
ing plasticity model. Following Rocha et al. [48], the yield function is pressure­
dependent and is defined as:

𝑓𝑝(𝝈, 𝜀𝑝𝑒𝑞) = 6𝐽2 + 2𝐼1(𝜎𝑐 − 𝜎𝑡) − 2𝜎𝑐𝜎𝑡 (4.8)

where 𝐼1 = 𝜎𝑘𝑘 is the first stress invariant, 𝐽2 =
1
2𝑆𝑖𝑗𝑆𝑖𝑗 is the second invariant of the

deviatoric stress 𝑆𝑖𝑗, and 𝜎𝑡 and 𝜎𝑐 are the yield stress in tension and compression,
respectively. The yield stress values 𝜎𝑡 and 𝜎𝑐 are a function of the accumulated
equivalent plastic strain 𝜀𝑝𝑒𝑞, which is in turn related to the plastic strain in an in­
cremental form as:

Δ𝜀𝑝𝑒𝑞 = √
1

1 + 2𝜈2𝑝
Δ𝜀𝑝𝑖𝑗Δ𝜀

𝑝
𝑖𝑗 (4.9)

in which 𝜈𝑝 is the plastic Poisson’s ratio. In case of an applied uniaxial loading along
direction­1, the incremental plastic strain in the other two perpendicular directions,
i.e. Δ𝜀𝑝22 and Δ𝜀𝑝33, is related to the incremental plastic strain in the loading direction
Δ𝜀𝑝11:

Δ𝜀𝑝22 = Δ𝜀𝑝33 = −𝜈𝑝Δ𝜀𝑝11 (4.10)

The desired contraction behavior is implemented through a non­associative flow
rule which is written in an incremental form as:

Δ𝜀𝑝𝑖𝑗 = Δ𝛾 (3𝑆𝑖𝑗 +
2
9𝛼𝐼1𝛿𝑖𝑗) (4.11)
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where Δ𝛾 is the incremental plastic multiplier and the parameter 𝛼 is:

𝛼 = 9
2
1 − 2𝜈𝑝
1 + 𝜈𝑝

(4.12)

A viscous time scale is introduced in the model by allowing the overstress to develop
beyond the yield surface. The overstress formulation is of Perzyna­type and the
evolution of the plastic multiplier Δ𝛾 can therefore be described by:

Δ𝛾 = {
Δ𝑡
𝜂𝑝
( 𝑓𝑝
𝜎0𝑡 𝜎0𝑐

)
𝑚𝑝

if 𝑓𝑝 > 0
0 if 𝑓𝑝 ≤ 0

(4.13)

in which 𝜎0𝑡 and 𝜎0𝑐 are the yield stress values when 𝜀𝑝𝑒𝑞 = 0, Δ𝑡 is the time incre­
ment, and 𝑚𝑝 and 𝜂𝑝 are viscoplastic coefficients.

4.2.2. Stress update scheme
To facilitate the implementation of the introduced VE­VP model in a FEM frame­
work, an incremental stress update scheme and the consistent tangent used for
the Newton­Raphson method are derived. The stress update scheme defines how
the stress increment Δ𝜎𝑖𝑗 for a material point is related to a strain increment Δ𝜀𝑖𝑗,
given that all the state variables from the previous time step are known. For each
time step a viscoelastic trial stress is always first computed, assuming that the
stress development within this step is not beyond the yield surface. Whenever this
assumption is violated, a viscoplastic returning­mapping scheme is used to correct
the trial stress.

Viscoelastic stress update
Supposing that all the state variables of a material point at time 𝑡 = 𝑡𝑛 are known
and applying a strain increment Δ𝜀𝑖𝑗 = 𝜀𝑖𝑗(𝑡𝑛+1) − 𝜀𝑖𝑗(𝑡𝑛), the viscoelastic trial
stress is derived as follows: a decomposition of the stress into deviatoric part and
hydrostatic part gives:

𝜎𝑖𝑗(𝑡𝑛+1) = 𝑆𝑖𝑗(𝑡𝑛+1) + 3𝑝(𝑡𝑛+1)𝛿𝑖𝑗 (4.14)

in which 𝑆𝑖𝑗 is the deviatoric stress, 𝑝 is the hydrostatic stress. By substituting Eqs.
(4.3) and (4.4) into Eq. (4.2), the deviatoric and hydrostatic part of the stress at
time 𝑡 = 𝑡𝑛+1 can be expressed as:

𝑆𝑖𝑗(𝑡𝑛+1) = 2𝐺∞𝜀𝑒,𝑑𝑒𝑣𝑖𝑗 (𝑡𝑛+1) +
𝑛𝑠
∑
𝑠=1
∫
𝑡𝑛+1

0
2𝐺𝑠 exp(−

𝑡𝑛+1 − �̃�
𝑔𝑠

)
𝜕𝜀𝑒,𝑑𝑒𝑣𝑖𝑗 (�̃�)

𝜕�̃� 𝑑�̃�

= 2𝐺∞𝜀𝑒,𝑑𝑒𝑣𝑖𝑗 (𝑡𝑛+1) +
𝑛𝑠
∑
𝑠=1
𝜏𝑠𝑖𝑗(𝑡𝑛+1)

(4.15)
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𝑝(𝑡𝑛+1) = 𝐾∞𝜀𝑒𝑣(𝑡𝑛+1) +
𝑛𝑟
∑
𝑟=1

∫
𝑡𝑛+1

0
𝐾𝑟 exp(−

𝑡𝑛+1 − �̃�
𝑘𝑟

) 𝜕𝜀
𝑒
𝑣(�̃�)
𝜕�̃� 𝑑�̃�

= 𝐾∞𝜀𝑒𝑣(𝑡𝑛+1) +
𝑛𝑟
∑
𝑟=1

ℎ𝑝(𝑡𝑛+1)

(4.16)

in which 𝜀𝑒𝑣 = 𝜀𝑒𝑘𝑘 is the volumetric part of the elastic strain, 𝜀𝑒,𝑑𝑒𝑣𝑖𝑗 = 𝜀𝑒𝑖𝑗 −
1
3𝜀
𝑒
𝑣𝛿𝑖𝑗 is

the deviatoric part and the viscous components can be described as:

𝜏𝑠𝑖𝑗(𝑡𝑛+1) = ∫𝑡𝑛+10 2𝐺𝑠 exp (−
𝑡𝑛+1−�̃�
𝑔𝑠

) 𝜕𝜀
𝑒,𝑑𝑒𝑣
𝑖𝑗 (�̃�)
𝜕�̃� 𝑑�̃�

= exp (−Δ𝑡𝑔𝑠 ) 𝜏
𝑠
𝑖𝑗(𝑡𝑛) + 2𝐺𝑠 [1 − exp (−Δ𝑡𝑔𝑠 )]

𝑔𝑠
Δ𝑡Δ𝜀

𝑒,𝑑𝑒𝑣
𝑖𝑗

= exp (−Δ𝑡𝑔𝑠 ) 𝜏
𝑠
𝑖𝑗(𝑡𝑛) + 2𝐺𝑣𝑒(Δ𝑡)Δ𝜀𝑒,𝑑𝑒𝑣𝑖𝑗

(4.17)

ℎ𝑝(𝑡𝑛+1) = ∫𝑡𝑛+10 𝐾𝑟 exp (−
𝑡𝑛+1−�̃�
𝑘𝑟

) 𝜕𝜀
𝑒𝑣(�̃�)
𝜕�̃� 𝑑�̃�

= exp (−Δ𝑡𝑘𝑟 ) ℎ
𝑝(𝑡𝑛) + 𝐾𝑟 [1 − exp (−Δ𝑡𝑘𝑟 )]

𝑘𝑟
Δ𝑡Δ𝜀

𝑒
𝑣

= exp (−Δ𝑡𝑘𝑟 ) ℎ
𝑝(𝑡𝑛) + 𝐾𝑣𝑒(Δ𝑡)Δ𝜀𝑒𝑣

(4.18)

with

𝐺𝑣𝑒(Δ𝑡) = 𝐺𝑠 [1 − exp(−Δ𝑡𝑔𝑠
)] 𝑔𝑠Δ𝑡 𝐾𝑣𝑒(Δ𝑡) = 𝐾𝑟 [1 − exp(−Δ𝑡𝑘𝑟

)] 𝑘𝑟Δ𝑡 (4.19)

By using Eqs. (4.15)­(4.19), the stress 𝜎𝑖𝑗(𝑡𝑛+1) can be expressed as:

𝜎𝑖𝑗(𝑡𝑛+1) = 𝑆𝑖𝑗(𝑡𝑛+1) + 3𝑝(𝑡𝑛+1)𝛿𝑖𝑗

= 𝐷∞𝑖𝑗𝑘𝑙 ∶ 𝜀𝑒𝑘𝑙(𝑡𝑛+1) + 𝐷𝑣𝑒𝑖𝑗𝑘𝑙(Δ𝑡) ∶ Δ𝜀𝑒𝑘𝑙 + 𝜎ℎ𝑖𝑠𝑡𝑖𝑗 (𝑡𝑛)
(4.20)

with
𝐷𝑣𝑒𝑖𝑗𝑘𝑙(Δ𝑡) = 2𝐺𝑣𝑒(Δ𝑡)𝐼𝑑𝑒𝑣𝑖𝑗𝑘𝑙 + 3𝐾𝑣𝑒(Δ𝑡)𝐼𝑣𝑜𝑙𝑖𝑗𝑘𝑙 (4.21)

𝜎ℎ𝑖𝑠𝑡𝑖𝑗 (𝑡𝑛) =
𝑛𝑠
∑
𝑠=1

exp(−Δ𝑡𝑔𝑠
) 𝜏𝑠𝑖𝑗(𝑡𝑛) + 3

𝑛𝑟
∑
𝑟=1

exp(−Δ𝑡𝑘𝑟
)ℎ𝑝(𝑡𝑛)𝛿𝑖𝑗 (4.22)

For the trial stress it is assumed that there is no plastic strain increment, i.e.
Δ𝜀𝑝𝑖𝑗 = 0 and Δ𝜀𝑒𝑖𝑗 = Δ𝜀𝑖𝑗. Therefore, by using Eq. (4.20) the viscoelastic trial stress
reads:

𝜎𝑡𝑟𝑖𝑗 = 𝐷∞𝑖𝑗𝑘𝑙 ∶ 𝜀𝑒𝑘𝑙(𝑡𝑛+1) + 𝐷𝑣𝑒𝑖𝑗𝑘𝑙 ∶ Δ𝜀𝑘𝑙 + 𝜎ℎ𝑖𝑠𝑡𝑖𝑗 (𝑡𝑛)
= 𝐷∞𝑖𝑗𝑘𝑙 ∶ (𝜀𝑘𝑙(𝑡𝑛+1) − 𝜀

𝑝
𝑘𝑙(𝑡𝑛)) + 𝐷𝑣𝑒𝑖𝑗𝑘𝑙(Δ𝑡) ∶ Δ𝜀𝑘𝑙 + 𝜎ℎ𝑖𝑠𝑡𝑖𝑗 (𝑡𝑛)

(4.23)
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The viscoelastic stress is then substituted into the yield function in Eq. (4.8) to
check if the yield condition is satisfied. If the yield function is not larger than zero,
the stress is equal to the trial stress,

𝜎𝑖𝑗(𝑡𝑛+1) = 𝜎𝑡𝑟𝑖𝑗 (4.24)

Otherwise, the stress has to be corrected with the viscoplastic return­mapping
scheme outlined in the next section. The consistent tangent operator needed for
iterative solving of the global system of equations is given in Appendix D.

Viscoelastic­viscoplastic stress update
If the yield function for a viscoelastic trial stress in Eq. (4.8) is larger than zero, a
return­mapping scheme is needed. In this case, plastic flow should occur so that
Δ𝜀𝑝𝑖𝑗 ≠ 0 and Δ𝜀𝑒𝑖𝑗 = Δ𝜀𝑖𝑗 − Δ𝜀

𝑝
𝑖𝑗. According to Eq. (4.20) and Eq. (4.23), the stress

can be expressed as:

𝜎𝑖𝑗 = 𝜎𝑡𝑟𝑖𝑗 − (𝐷∞𝑖𝑗𝑘𝑙 + 𝐷𝑣𝑒𝑖𝑗𝑘𝑙(Δ𝑡)) Δ𝜀
𝑝
𝑘𝑙 = 𝜎𝑡𝑟𝑖𝑗 − �̂�𝑖𝑗𝑘𝑙Δ𝜀

𝑝
𝑘𝑙 (4.25)

in which
�̂�𝑖𝑗𝑘𝑙 = 𝐷∞𝑖𝑗𝑘𝑙 + 𝐷𝑣𝑒𝑖𝑗𝑘𝑙(Δ𝑡) (4.26)

Substitution of Eq. (4.26) and replacing the increment of plastic strain defined
in Eq. (4.11) in Eq. (4.25) gives:

𝜎𝑖𝑗(𝑡𝑛+1) = 𝜎𝑡𝑟𝑖𝑗 − 6�̂�Δ𝛾𝑆𝑖𝑗(𝑡𝑛+1) −
2
9�̂�𝛼Δ𝛾 (𝐼1)𝑛+1 𝛿𝑖𝑗 (4.27)

where
�̂� = 𝐺∞ + 𝐺𝑣𝑒(Δ𝑡) �̂� = 𝐾∞ + 𝐾𝑣𝑒(Δ𝑡) (4.28)

Splitting Eq. (4.27) into its deviatoric and volumetric components gives:

𝑆𝑖𝑗(𝑡𝑛+1) = 𝑆𝑡𝑟𝑖𝑗 − 6�̂�Δ𝛾𝑆𝑖𝑗(𝑡𝑛+1) ⟺ 𝑆𝑖𝑗(𝑡𝑛+1) =
𝑆𝑡𝑟𝑖𝑗

1 + 6�̂�Δ𝛾 =
𝑆𝑡𝑟𝑖𝑗
𝜁𝑠

(4.29)

𝑝(𝑡𝑛+1) = 𝑝𝑡𝑟 −
2
3Δ𝛾�̂�𝛼𝐼1 ⟺ 𝑝(𝑡𝑛+1) =

𝑝𝑡𝑟
1 + 2�̂�𝛼Δ𝛾 =

𝑝𝑡𝑟
𝜁𝑝

(4.30)

in which
𝜁𝑠 = 1 + 6�̂�Δ𝛾, 𝜁𝑝 = 1 + 2�̂�𝛼Δ𝛾 (4.31)

Considering Eqs. (4.8), (4.9), (4.11), (4.29) and (4.30), the overstress function
in Eq. (4.13) is only a function of Δ𝛾:

Φ(Δ𝛾) = Δ𝑡
𝜂𝑝
(
𝑓𝑝
𝜎0𝑡 𝜎0𝑐

)
𝑚𝑝
− Δ𝛾 = 0 (4.32)

This equation can be solved by a local Newton­Raphson scheme outlined in Ap­
pendix E. After the incremental plastic multiplier Δ𝛾 is obtained, the stress can be
computed by a back substitution of its value into Eq. (4.27). The consistent tan­
gent needed for iterative solution of the system of equations in an implicit FEM
framework is given in Appendix E.
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4.3. Numerical homogenization scheme
In this section, a numerical homogenization scheme for deriving a viscoelastic­
viscoplastic model for two­phase polymeric composites is introduced. In this method,
the mechanical response of the composites is assumed to be an average response
of the two different phases of the material. Therefore, by selecting a characteristic
sample of the heterogeneous composite microstructure, i.e. the so­called represen­
tative volume element (RVE), the overall response of composites can be extracted
from homogenization of the response of the RVE (see Fig. 4.2). In this work, a
three­dimensional orthotropic periodic RVE of 5×5 fibers with a volume fraction of
60% is created 1. The polymer phase of the RVE is assumed to be epoxy and the VE­
VP model introduced in Section 4.2 is adopted with given material parameter values.
The fiber, which is usually much stiffer and stronger, is assumed to be linear elas­
tic. Perfect bonding is assumed for the interface between the polymer matrix and
fibers. This three­dimensional orthotropic RVE is adopted with only the response of
the fiber/matrix microstructure in the transverse plane investigated. For that rea­
son we can use an isotropic material for the homogenized response. This isotropic
model will only be valid for the 2D response. We choose to do the calibration in
plane stress, because this allows for straightforward identification of parameters
of the homogenized VE­VP model. For the 3D RVE simulations, global plane stress
conditions are applied with periodic boundary conditions with free contraction in the
fiber direction, which means that the average stress in fiber direction is equal to
zero. Because the nonlinear response of the composite material can be expected to
inherit characteristics of the underlying nonlinear model for the polymer matrix, it is
assumed that the overall transverse mechanical response of the composite material
can be described with the same VE­VP model as the polymer phase alone. Numer­
ical homogenization requires the parameters of the homogenized VE­VP model to
be determined from a calibration process. According to the VE­VP model introduced
in Section 4.2.1, the following set of material parameters needs to be determined
through numerical homogenization schemes: (1) elasticity­related: Young’s modu­
lus 𝐸∞ and Poisson’s ratio 𝜈; (2) viscoelasticity­related: relaxation modulus (i.e. 𝐾𝑟
and 𝐺𝑠) and relaxation times (i.e. 𝑘𝑟 and 𝑔𝑠); (3) plasticity­related: plastic Poisson’s
ratio 𝜈𝑝 and hardening curves; (4) viscoplasticity­related: 𝑚𝑝 and 𝜂𝑝.

The adopted strategy is a step­by­step calibration process based on different
components of the homogenized VE­VP material model: (a) elasticity; (b) vis­
coelasticity; (c) plasticity; (d) viscoplasticity. The central premise of this paper
is that if we have a micromodel with representative geometry and rich constitu­
tive relations for the constituents, we can calibrate an equally rich constitutive law
for an equivalent homogeneous material by separately accounting for the influence
of the different constitutive ingredients. The calibration procedure is performed
for two­dimensional plane stress simulations. A three­dimensional orthotropic RVE
with free contraction in fiber direction is adopted to ensure a consistent macroscopic

1A discrete element method generator called HADES is used to generate a stochastic distribution of the
fibers with the diameter 𝐷𝑓 = 5 𝜇m and a minimum distance between fibers 𝑑𝑚𝑖𝑛 = 0.2 𝜇m, following
the procedures in Liu et al. [50]. After this, a mesh is generated with GMSH [51] for the fibers and the
matrix.
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(a) Finite element mesh of the RVE microstructure (the dimensions of the numerical sample are [𝑙1 , 𝑙2 , 𝑙3] =
[28.6, 28.6, 0.5] 𝜇m) and its constitutive models.

E∞

E1 η1

En ηn

E2 η2

ηp

σy

Composite

(b) Homogenized VE­VP material model

Figure 4.2: The equivalent homogeneous model with a VE­VP model (b) is assumed to have the same
mechanical behavior as the RVE model with heterogeneous material in (a). The parameters in (b) have
to be determined by homogenization of the RVE model.

plane stress response.
For each calibration step, only one component of the constitutive model is con­

sidered while the others are turned off. In this way, the complexity of coupling
different mechanisms is reduced and the material parameters for each component
of the homogenized VE­VP model can be calibrated through the corresponding ho­
mogenization techniques. Typically, the mechanical response of the RVE model
under representative loading conditions is investigated with FEM simulations and
the average response of the RVE is considered as the reference exact solution
of the homogenized VE­VP model. The value of the material parameters of the
homogenized VE­VP model can be determined by matching the averaged RVE re­
sponse with optimization algorithms. Building upon the parameters calibrated from
the previous step, each time a certain number of extra parameters is calibrated by
extracting the necessary information from the RVE model during a new calibration
step. Finally, the whole set of calibrated parameters of the homogenized VE­VP
model is obtained.

4.3.1. Step 1: calibration of elastic component parameters
To calibrate elasticity parameters of the homogenized VE­VP model, only the elas­
ticity components of the RVE model is considered on while the other components
are turned off (see Fig. 4.3). The Young’s modulus of the fiber 𝐸𝑓 and matrix 𝐸∞
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RVE simulation

⇐⇒

Polymer matrix

Fiber

Composite

Figure 4.3: Schematic representation of step 1: the calibration of elasticity parameters of the homoge­
nized VE­VP model. The cross sign represents the components that are turned off.

RVE simulation

⇐⇒

Polymer matrix

Fiber

Composite

Figure 4.4: Schematic representation of step 2: the calibration of viscoelasticity parameters of the
homogenized VE­VP model. The cross sign represents the components that are turned off.

are 74000 MPa and 2500 MPa, respectively. The Poisson’s ratio for fiber 𝜈𝑓 and
matrix 𝜈𝑚 are 0.2 and 0.37, respectively. The Young’s modulus and Poisson’s ra­
tio of the homogenized VE­VP model can be extracted by subjecting the RVE to a
uniaxial stress state. The boundary conditions illustrated in Appendix F are applied
on the RVE shown in Fig. 4.3 with a prescribed unit displacement along direction­1.
The Poisson’s ratio can therefore be calculated as:

𝜈 = −𝜀22/𝜀11 = 0.42 (4.33)

where 𝜀22 and 𝜀11 are the normal strains along direction­1 and the direction­2,
respectively. Similarly, the Young’s modulus 𝐸∞ is calculated by:

𝐸∞ =
𝑓1/(𝑙2𝑙3)
𝜀11

= 10394 MPa (4.34)

where 𝑓1 is the total nodal force of the right surface of the RVE model, 𝑙2 and 𝑙3
are the length of the RVE along direction­2 and direction­3, respectively.

4.3.2. Step 2: calibration of viscoelastic parameters
To calibrate the viscoelastic parameters of the homogenized VE­VP model, only the
viscoelastic components of the RVE model are turned on (see Fig. 4.4). Following
[48, 52], a dynamic mechanical analysis (DMA) on the RVE is performed. The
basic theory and procedures can be illustrated as follows: it is known that for a
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𝜏𝑖 (ms) 52.7704 2938.8889 5.4080e4 3.9612e7
𝐸𝑖 (MPa) 98.5401 142.4348 487.7009 112.2702

Table 4.1: Prony series parameter values for the polymer model

viscoelastic material subjected to a sinusoidal strain 𝜀𝑒 = 𝜀0 sin(𝜔𝑡), the resultant
stress is also sinusoidal but with a phase shift and can be expressed as:

𝜎(𝑡) = 𝜎0 sin(𝜔𝑡 + 𝛿) = 𝐸′𝜀0 sin(𝜔𝑡) + 𝐸′′𝜀0 cos(𝜔𝑡) (4.35)

where 𝐸′ is called the storage modulus and 𝐸′′ is called the loss modulus. Under
uniaxial loading, the stress is independent of the Poisson’s ratio, and the viscoelastic
Young’s modulus may be described by a Prony series similar to Eq. (4.4):

𝐸(𝑡) = 𝐸∞ +
𝑛

∑
𝑖=1
𝐸𝑖 exp(−

𝑡
𝜏𝑖
) (4.36)

where 𝐸∞ = 10394 MPa is the long­term Young’s modulus which is already cali­
brated in Section 4.3.1, 𝐸𝑖 and 𝜏𝑖 are the relaxation Young’s modulus and the re­
laxation time for each Maxwell chain, respectively, and 𝑛 is the number of Maxwell
chains. Following Rocha et al. [48], four Prony series are used for the polymer
model and the corresponding parameter values are listed in Table 4.1. For given
parameters 𝐸𝑖 and 𝜏𝑖, the stress signal is given as:

𝜎(𝑡) = ∫
𝑡

−∞
𝐸(𝑡−�̃�)𝜕𝜀

𝑒(�̃�)
𝜕�̃� 𝑑�̃� = (𝐸∞ +

4

∑
𝑖=1

𝐸𝑖𝜔2

𝜔2 + 1
𝜏2𝑖

)𝜀0 sin(𝜔𝑡)+(
4

∑
𝑖=1

𝐸𝑖
𝜔
𝜏𝑖

𝜔2 + 1
𝜏2𝑖

)𝜀0 cos(𝜔𝑡)

(4.37)
from which the storage modulus and loss modulus can be identified as:

𝐸′(𝜔) = 𝐸∞ +
4

∑
𝑖=1

𝐸𝑖𝜔2

𝜔2 + 1
𝜏2𝑖

(4.38)

𝐸′′(𝜔) =
4

∑
𝑖=1

𝐸𝑖
𝜔
𝜏𝑖

𝜔2 + 1
𝜏2𝑖

(4.39)

The closed­form formulations given in Eq. (4.38) and Eq. (4.39) show that both the
storage modulus 𝐸′ and the loss modulus 𝐸′′ are a function of the applied angular
frequency 𝜔.

To calibrate the viscoelastic parameters of the homogenized VE­VP model, 10
DMA simulations with uniaxial tension on the RVE with 10 different angular fre­
quencies 𝜔𝑖 ∈ 2𝜋 × [0.05, 0.1, 0.5, 1.0, 2.0, 5.0, 10.0, 15.0, 20.0, 25.0] Hz and the same
magnitude 𝜀0 = 0.0001 mm are performed and the overall stress of the RVE is
recorded. The boundary conditions illustrated in Appendix F are applied on the RVE
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shown in Fig. 4.4 and the overall stress is calculated according to Eq. (45) in the
appendix. For each case, the values of 𝐸′ and 𝐸′′ can be calculated from the stress
of the simulation, considering the closed­form expression Eq. (4.35). These values
for the storage modulus and loss modulus are plotted in Fig. 4.5. Meanwhile, a non­
linear least­square optimization algorithm implemented in the LSQNONLIN function
in MATLAB is used to match the numerical results with the closed­form formula­
tion of 𝐸′ and 𝐸′′. The two objective functions that are minimized by running the
LSQNONLIN are:

𝑦(𝑥) =
⎡
⎢
⎢
⎢
⎣

√∑10𝑖=1 (𝐸′𝑖(𝜔𝑖 , 𝑥) − 𝐸
′
𝑖(𝜔𝑖))

2

∑10𝑖=1 (𝐸′′𝑖 (𝜔𝑖 , 𝑥) − 𝐸
′′
𝑖 (𝜔𝑖))

2

⎤
⎥
⎥
⎥
⎦

(4.40)

where 𝑥 = (𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝜏1, 𝜏2, 𝜏3, 𝜏4) are the unknown viscoelastic relaxation mod­
ulus and relaxation times needed to be calibrated, 𝐸′𝑖(𝜔𝑖 , 𝑥) and 𝐸′′𝑖 (𝜔𝑖 , 𝑥) are the
relaxation modulus and relaxation time calculated from Eq. (4.38) and Eq. (4.39),
and 𝐸

′
𝑖(𝜔𝑖) and 𝐸

′′
𝑖 (𝜔𝑖) are the storage modulus and loss modulus obtained from

each RVE simulation. Finally, the calibrated VE parameters are:

[𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝜏1, 𝜏2, 𝜏3, 𝜏4]𝑇 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

256.4811
188.1201
2232.8425
302.9434
61.1900
553.0494
40905.3228

30015955.2538

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.41)

By substituting the calibrated values in Eq. (4.41) into Eq. (4.38) and Eq. (4.39), the
calibrated loss modulus and storage modulus functions are obtained. The compari­
son between this calibrated solution and the RVE solution shown in Fig. 4.5 verifies
the accuracy of the calibration procedure.

Next, the relaxation bulk modulus 𝐾𝑖 and shear modulus 𝐺𝑖 can be obtained by:

𝐺𝑖 =
𝐸𝑖

2(1 + 𝜈) , 𝐾𝑖 =
𝐸𝑖

3(1 − 2𝜈) , 𝑖 = 1, 2, 3, 4 (4.42)

where 𝜈 = 0.42 is the elastic Poisson’s ratio calibrated in Section 4.3.1. The relax­
ation times for bulk modulus and shear modulus are obtained by [53]:

𝑔𝑖 =
𝐸𝑖𝜏𝑖
𝐺𝑖
, 𝑘𝑖 =

𝐸𝑖𝜏𝑖
𝐾𝑖
, 𝑖 = 1, 2, 3, 4 (4.43)

All these data are listed in Table 4.2.

4.3.3. Step 3: homogenized plasticity model
To calibrate the plasticity properties of the homogenized VE­VP model, i.e. the plas­
tic Poisson’s ration 𝜈𝑝 and the hardening curves, only the plasticity components
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Figure 4.5: Comparison of storage modulus and loss modulus results between RVE model and the
homogenized model with calibrated parameters.

𝐺𝑖 (MPa) 90.3102 66.2395 786.2121 106.6702
𝑔𝑖 (ms) 173.7796 1570.6603 116171.1168 85245312.9208
𝐾𝑖 (MPa) 534.3356 391.9169 4651.7552 631.1321
𝑘𝑖 (ms) 29.3712 265.4637 19634.5549 14407658.5218

Table 4.2: Bulk and shear relaxation modulus and relaxation times of four Prony series.

RVE simulation

⇐⇒

Polymer matrix

Fiber

Composite

Figure 4.6: Schematic representation of step 3: the calibration of plasticity parameters of the homoge­
nized VE­VP model. The cross sign represents the components that are turned off.
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Figure 4.7: Stress vs. strain curve for tension (left) and compression (right). The enclosed subfigures
show the distribution of the equivalent plastic strain 𝜀𝑝𝑒𝑞 for typical time instants.

of the RVE model are turned on (see Fig. 4.6) with the homogenized elasticity
properties from Section 4.3.1. The plastic Poisson’s ratio is 0.32 and the hard­
ening curves of the matrix for tension and compression are 𝜎𝑡 (𝜀𝑝𝑒𝑞) = 64.80 −
33.6 exp (−𝜀𝑝𝑒𝑞/0.003407) − 10.21 exp (−𝜀𝑝𝑒𝑞/0.06493) and 𝜎𝑐 = 1.25𝜎𝑡 (see Fig.
4.8b). Two types of stress states are applied on the RVE: a uniaxial tensile stress
and a uniaxial compressive stress, to account for the hardening plasticity behavior
under both tension and compression loading. The boundary conditions illustrated
in Appendix C are applied on the RVE shown in Fig. 4.6 with a tensile (and com­
pressive) loading rate �̇� of 0.003 m/s.

During the RVE simulation, the average stress 𝜎11 and strains 𝜀11, 𝜀22 are
recorded. The stress vs. strain curve and the distribution of the equivalent plastic
strain at several representative time instants of the two cases are shown in Fig.
4.7. There is an initial linear region where the material is deforming elastically (see
point A in Fig. 4.7). Afterwards, a hardening­type of stress­strain curve is observed
while plastic flow occurs and plastic bands start to form (see points B, C, D in Fig.
4.7). The stress increase in compression is faster than that in tension. From the
enclosed subfigures, it can be found that the deformation pattern of the RVE with
plastic shear bands is similar to what is expected for a isotropic material under a
unidirectional stress state. This verifies the effectiveness of the applied boundary
conditions. It should also be noted that the detailed strain and stress field are
obtained as well, which is one of the advantages over mean­field homogenization
approaches.

The plastic Poisson’s ratio 𝜈𝑝 for each case can be calculated according to:

𝜈𝑝 = −
𝜀𝑝22
𝜀𝑝11

= −(𝑢2𝑙2
+ 𝜈 ⋅ 𝜎11𝐸∞

) / (𝑢1𝑙1
− 𝜎11𝐸∞

) (4.44)

where 𝑢1 and 𝑢2 are the displacement along direction­1 and direction­2, respec­
tively, 𝑙1 and 𝑙2 are the length of RVE along direction­1 and direction­2, respectively,
and 𝜈 = 0.42 is the elastic Poisson’s ratio.
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Figure 4.8: (a) Plastic Poisson’s ratio under tension and compression (for the matrix, the plastic Poisson’s
ratio is 0.32); (b) calibrated hardening curves.

The evolution of the plastic Poisson’s ratio 𝜈𝑝 with the strain 𝜀11 is visualized in
Fig. 4.8. The plastic Poisson’s ratio for tension and compression gradually stabilizes
to a certain value. For tension that is around 0.34 while for compression it is
around 0.5. A similar observation was made in micromechanical simulations by van
der Meer [54], showing that the assumption of a single plastic Poisson’s ratio is an
oversimplification for the composite material response.

In this work, the plastic Poisson’s ratio extracted from tensile loading is adopted
(i.e. 𝜈𝑝 = 0.34) for simplicity. Therefore, the coefficient 𝛼 in the flow rule, i.e. Eq.
(4.11), is found to be 1.075. For this transversely isotropic RVE, the definition of
the equivalent plastic strain from Eq. (4.9) is adapted to:

Δ𝜀𝑝𝑒𝑞 = √
1

1 + 𝜈2𝑝
Δ𝜀𝑝𝑖𝑗Δ𝜀

𝑝
𝑖𝑗 in which 𝑖, 𝑗 = 1, 2 (4.45)

so that the same in­plane response is found with an isotropic RVE with the equiv­
alent plastic strain defined in Eq. (4.9). From the unidirectional tension and com­
pression RVE simulations, the hardening curves, i.e. 𝜎𝑐(𝜀𝑝𝑒𝑞) and 𝜎𝑡(𝜀𝑝𝑒𝑞), can be
extracted by taking the stress and equivalent plastic strain data pair (𝜎𝑖11, 𝜀𝑝𝑒𝑞) for
each time step with:

𝜎𝑖11 =
𝑓1
𝑙2𝑙3

, 𝑖 = 𝑐, 𝑡 (4.46)

The calibrated hardening curves for tension and compression are plotted in Fig.
4.8(b) along with the hardening curves of the matrix. It is observed that by adding
the fibers, the yield stresses increase.
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RVE simulation

⇐⇒

Polymer matrix

Fiber

Composite

Figure 4.9: Schematic representation of step 4: the calibration of viscoplasticity parameters of the
homogenized VE­VP model. The cross sign represents the components that are turned off.

4.3.4. Step 4: homogenized viscoplastic properties
To obtain the viscoplasticity parameters of the homogenized VE­VP model, i.e. 𝑚𝑝
and 𝜂𝑝, part of the polymer and the homogenized model are turned off. The RVE is
loaded in unidirectional tension and different loadings are considered. The bound­
ary conditions illustrated in Appendix F are applied on the RVE shown in Fig. 4.9.
The elasticity and plasticity properties of the polymer in the RVE model have already
been introduced in Section 4.3.1 and Section 4.3.3, respectively. The viscoplastic
coefficients for the polymer are𝑚𝑝 = 7.305 and 𝜂𝑝 = 3.49⋅1012 MPa⋅s. Six different
cases with the loading rates ̇𝜀11 ∈ [0.00035, 0.00175, 0.0035, 0.0175, 0.035, 0.175]
s−1 are applied on the RVE. The stress­strain relations of the six cases are plotted
in Fig. 4.10. Single element tests with the homogenized VE­VP model are performed
to match the six RVE simulation results with given viscoplastic coefficients 𝑚𝑝 and
𝜂𝑝. The elasticity and plasticity properties of the homogenized VE­VP model are
already calibrated in Section 4.3.1 and Section 4.3.3. Therefore, only the homog­
enized viscoplastic parameters 𝑚𝑝 and 𝜂𝑝 need to be calibrated. In order to find
an optimal combination of these parameters, 7×5 simulations of the homogenized
VE­VP model with a combination of one of the seven 𝑚𝑝 values and one of the five
𝜂𝑝 values listed in Table 4.3 are performed. Six objective functions are introduced
as:

𝑦(𝑚𝑝, 𝜂𝑝) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑𝑛1𝑖=1 (Ξ
(1)
𝑖 (𝑚𝑝, 𝜂𝑝) − Ξ

(1)
𝑖 )

2

∑𝑛2𝑖=1 (Ξ
(2)
𝑖 (𝑚𝑝, 𝜂𝑝) − Ξ

(2)
𝑖 )

2

∑𝑛3𝑖=1 (Ξ
(3)
𝑖 (𝑚𝑝, 𝜂𝑝) − Ξ

(3)
𝑖 )

2

∑𝑛4𝑖=1 (Ξ
(4)
𝑖 (𝑚𝑝, 𝜂𝑝) − Ξ

(4)
𝑖 )

2

∑𝑛5𝑖=1 (Ξ
(5)
𝑖 (𝑚𝑝, 𝜂𝑝) − Ξ

(5)
𝑖 )

2

∑𝑛6𝑖=1 (Ξ
(6)
𝑖 (𝑚𝑝, 𝜂𝑝) − Ξ

(6)
𝑖 )

2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.47)

where Ξ
(𝑘)
𝑖 is the stress of each time increment in each loading rate case 𝑘 =

1, 2, ..., 6 obtained from the RVE simulation, Ξ(𝑘)𝑖 (𝑚𝑝, 𝜂𝑝) denotes the stress of the
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ℳ 6.5 6.6 6.7 6.8 6.9 7.0 7.1
𝒬 (MPa⋅s) 5.e12 7.e12 1.e13 2.e13 5.e13

Table 4.3: A list of all the 𝑚𝑝 and 𝜂𝑝 values used in homogenized model.
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Figure 4.10: Comparison of Stress­strain relation of monotonic loading for six different strain rates
between RVE simulation and the homogenized numerical model.

homogenized numerical model for the same time increment as the RVE simulation
with the value of 𝑚𝑝 and 𝜂𝑝, and 𝑛𝑘 is the number of time increments for each
loading rate case. Afterwards, the function Ξ(𝑘)𝑖 (𝑚𝑝, 𝜂𝑝) is defined by the following
interpolation/extrapolation scheme:

Ξ(𝑘)𝑖 (𝑚𝑝, 𝜂𝑝) =
2

∑
𝑠=1

2

∑
𝑡=1
𝑁𝑠(𝑚𝑝)𝑁𝑡(𝜂𝑝)Ξ(𝑘)𝑖 (𝑚𝑠𝑝, 𝜂𝑡𝑝) , 𝑚𝑠𝑝 ∈ ℳ, 𝜂𝑡𝑝 ∈ 𝒬 (4.48)

where 𝑁𝑠(𝑚𝑝) and 𝑁𝑡(𝜂𝑝) are 1st­order Lagrange interpolation functions of 𝑚𝑝 and
𝜂𝑝, respectively, and Ξ(𝑘)𝑖 (𝑚𝑠𝑝, 𝜂𝑡𝑝) is the stress of the homogenized numerical model
for each loading rate case at the same time increment as the RVE simulation for
𝑚𝑠𝑝 ∈ ℳ and 𝜂𝑡𝑝 ∈ 𝒬. By running the LSQNONLIN function in MATLAB, the optimal
values of 𝑚𝑝 and 𝜂𝑝 are found to be 𝑚𝑝 = 6.66, 𝜂𝑝 = 1.2 ⋅ 1013 MPa⋅s. The stress­
strain curves for the homogenized numerical model using the calibrated values are
plotted in Fig. 4.10. It is shown that the homogenized model solution matches very
well with the RVE simulation results for the studied strain rate ranges.

4.4. Comparison with RVE model
To validate the step­by­step calibration scheme introduced in the previous section,
the performance of the homogenized VE­VP model is compared with the RVE model
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Figure 4.11: Comparison of the RVE model and the homogenized model for the stress­strain relation
under monotonic loadings. (a) strain rate is 0.175 /s and (b) strain rate is 0.00035/s.

under a number of characteristic loading conditions.

4.4.1. Rate dependence
The complete homogenized VE­VP model with calibrated parameters from Section
4.3 is now compared against the RVE simulation for a monotonic loading at different
rates. All viscoelasticity and viscoplasticity components are turned on for both the
homogenized model and the polymer model in the RVE. Both the homogenized
model and the RVE model are loaded in unidirectional tension and two different
strain rates are considered: 0.00035/s and 0.175/s. The boundary conditions and
the calculation of the overall stress illustrated in Appendix F are applied on both
models. The comparison in stress vs. strain relation between the RVE model and
the homogenized model for these two strain rates is shown in Fig. 4.11. For both
cases, an extra computation with the homogenized numerical model but with only
the viscoplasticity components turned on is performed and its result is also plotted.
For both cases, the response of the composite microstructure is captured very well.
This is seen from the good match between the RVE model and the homogenized
model with all components turned on. The enclosed subfigure also shows that by
turning off the viscoelasticity components, the rate­dependent initial stiffness is not
captured correctly in the homogenized model, while the yield stress is still captured
well. This verifies that the proposed step­by­step calibration scheme does not lack
accuracy due to interaction between the different processes.

4.4.2. Loading/unloading/relaxation behavior
To further validate the calibrated parameters 𝑚𝑝 and 𝜂𝑝, the cyclic loading cases
shown in Fig. 4.12 are studied. The scenario with loading/unloading (LU) is in­
vestigated for two different strain rates: 0.00035/s and 0.175/s. The comparison
between the RVE simulation result and the homogenized numerical model is demon­
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Figure 4.12: Two types of periodic­type of loading with constant loading (unloading) rates. (a) Load­
ing/unloading (“LU”) test; (b) Loading/relaxation/unloading/relaxation (“LRUR”) test. The strain rate for
the unloading part is the same as the loading part and the unloading stops when the strain is unloaded
to 2/3 of the strain when the unloading process starts.

strated in Fig. 4.13. It is shown that the stress­strain curve for these two cases has
a similar pattern, for the first loading/unloading cycle, the stress is first elastic and
after the strain is relatively large, viscoplastic flow starts, followed by elastic un­
loading. Afterwards, in the next loading/unloading cycle, the material is elastically
loaded initially and viscoplastic flow continues to develop followed by elastic un­
loading again. When strain after unloading is relatively large in the last few cycles,
plastic flow also starts in compression as observed from the nonlinear part of the
unloading branch of the curve. In both cases, the homogenized model matches
very well with the RVE model under tension but if compression also happens, there
is some deviation where the model would perform better if (part of) the hardening
in the homogenized model would be described as kinematic hardening instead of
the same isotropic hardening that is present in the matrix model.

Finally, with the loading/relaxation/unloading/relaxation (LRUR) test, the capa­
bility of the homogenized model to capture relaxation is investigated. Both the RVE
model and homogenized model are loaded in uniaxial tension under a strain rate
of 0.0035/s. As shown in Fig. 4.14, the homogenized numerical model matches
very well for both loading and relaxation phases, although again a small deviation
is observed for reverse loading when plastic flow in compression starts.

4.5. Conclusion
In this paper, a numerical homogenization scheme is introduced to derive a viscoelastic­
viscoplastic material model for polymer composites. It is assumed that the homog­
enized VE­VP model has the same formulation as the VE­VP model for the polymeric
matrix. The material parameters of different components of the homogenized VE­
VP model are calibrated by a novel step­by­step numerical homogenization proce­
dure.
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Figure 4.13: Comparison of the RVE model and the homogenized model for the stress­strain relation
under “LU” loadings. (a) strain rate 0.00035/s; (b) strain rate 0.175/s.
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Figure 4.14: Comparison of the RVE model and the homogenized model for the stress­strain relation
under a “LRUR” loading. Strain rate 0.0035/s.
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The elasticity properties of the homogenized VE­VP model, including the Young’s
modulus 𝐸∞ and the elastic Poisson’s ration 𝜈, are extracted from the stress and
strain in the loading direction and strain in the lateral direction when the RVE model
with only the elasticity components turned on is subjected to uniaxial loading. Next,
the relaxation modulus and relaxation time of the viscoelastic components of the
homogenized VE­VP model are calibrated by performing a series of DMA tests on
the RVE model with only viscoelasticity components turned on. A good match of
the storage modulus and loss modulus at different loading frequencies between the
RVE model and the closed­form solutions in Eq. (4.38) and Eq. (4.39) shows that
the viscosity of the polymer composites within elastic range is quantified by the
calibrated homogenized model accurately. Afterwards, the plastic Poisson’s ratio
and hardening curves (for both tension and compression) are calibrated by unidi­
rectional load cases with only plasticity components turned on for the RVE model.
It is found that the yield stress of the composite is higher than the yield stress of the
polymer matrix alone and a single plastic Poisson’s ratio is an oversimplification of
the polymer composites behavior. The homogenized model with the same isotropic
hardening as the matrix model matches very well with the RVE model under mono­
tonic loading. However, if plasticity also happens under reverse loading, there is
some deviation where the homogenized model would perform better if (part of)
the hardening would be described as kinematic hardening. Next, by turning on the
viscoplasticity components of the RVE model, the viscoplasticity related parameters
𝑚𝑝 and 𝜂𝑝 of the homogenized VE­VP model are calibrated by a series of monotonic
tensile tests at different loading rates.

With the calibrated material parameters from the step­by­step numerical ho­
mogenization scheme, the homogenized numerical model is compared with the RVE
model under characteristic load cases. The capabilities of the homogenized VE­VP
model in capturing rate­dependence, loading/unloading and stress relaxation are
examined. A good match between these two models demonstrates that the intro­
duced step­by­step numerical homogenization procedure with turning on/off cer­
tain components of the material models provides an efficient and accurate way for
obtaining material parameters of a VE­VP model. The procedure has been demon­
strated for the transverse response of fiber­reinforced composites but can also be
used for particle reinforced composites with an appropriate geometry for the RVE.
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5
Modeling of dynamic mode I

crack growth in glass
fiber­reinforced polymer

composites: fracture energy
and failure mechanism

5.1. Introduction
Fiber reinforced polymer composites have been used in impact­resistant devices,
automotives, aircraft structures due to their potential for high strength­to­weight
ratios and impact energy absorption. To be able to fully exploit the potential of
impact behavior of composites it is necessary to investigate dynamic crack prop­
agation, in particular the underlying mechanisms, microstructural effects and the
fracture energy.

Starting from Griffith’s ideas postulated for equilibrium cracks [2] and its exten­
sion by Mott for dynamic fracture [3], dynamic fracture can be investigated on an
energetic basis. The dynamic energy release rate 𝐺𝑑 is the energy released into the
crack tip process zone per unit crack extension and must be equal to the energy
required per unit extension 𝐺𝑐 [4]. Generally, both 𝐺𝑑 and 𝐺𝑐 are functions of crack
propagation history, in particular, the crack speed 𝑉. Freund [5] showed that for
mode­I crack propagation in homogeneous materials under elastodynamic condi­
tions and in plane strain state the dynamic energy release rate 𝐺𝑑 can be expressed
in the following form: 𝐺𝑑 = 𝐴𝐼(𝑉)

(1−𝜈2)𝐾2𝐼
𝐸 , where 𝐸 is the Young’s modulus, 𝜈 is the

Poisson’s ratio, 𝐾𝐼 is the mode­I dynamic stress intensity factor and 𝐴𝐼 is a universal
This chapter is based on [1]
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function of crack speed 𝑉. The dynamic stress intensity factor 𝐾𝐼 tends to zero as 𝑉
approaches the Rayleigh wave speed 𝑐𝑟, which implies a limiting crack speed of 𝑐𝑟
in mode­I. Corresponding to different levels of propagation velocity, the crack sur­
face roughness is observed to show different features since material in the fracture
process zone might experience high strain­rate plasticity, microcracks nucleation,
thermomechanical interaction and other complex deformation/failure mechanisms.
Upon an increase of crack speed, the crack surface first appears to be almost flat
(mirror regime), next a rougher surface with conic marks forms (mist regime), and
finally (micro)branching takes place (hackle regime). Phenomenologically, a rela­
tionship between fracture energy 𝐺𝑐 and crack speed 𝑉 therefore exists.

The relation between the dynamic fracture energy 𝐺𝑐 and the crack speed 𝑉
for composites is determined by the rate­dependent deformation and failure pro­
cess occurring across multiple length scales and time scales. More specifically,
the contributing mechanisms can be roughly classified as viscous material behav­
ior, changes in fracture mechanism, inertia effects and thermomechanical effects.
Firstly, there is the role of viscosity of composite constituents (polymer, fiber and
interfaces) and its interaction [6, 7]. Shirinbayan et al. [6] postulated that a spe­
cific characteristic time for a local damage to occur might exist and this time scale
is related to the viscoelastic behavior of the matrix or fiber/matrix interface. Fi­
toussi et al. [7] argued that for high rate a local strained zone around a debonded
interface dissipates the strain energy and accordingly hinders the interfacial crack
propagation through the matrix, which causes a delay of the damage at macro­
scopic scale. Secondly, there can be rate­dependency of the fracture mechanism
induced by different failure processes (e.g. fiber failure with fiber pull­out, matrix
damage, fiber­matrix interface failure) occuring at microscale level under different
loading rates. For instance, for quasi­static tests delamination is often dominated
by fiber/matrix interface failure while resin rich brittle fracture zones have been
found more dominant in dynamic tests [8–12]. The extent of plastic deforma­
tion may decrease with increased loading rate, which represents a ductile­to­brittle
transition in the process zone. Thirdly, there are inertia effects characterized as
inertia resistance for rapid deformation, damage formation and crack propagation
[13, 14]. Due to material heterogeneity, micro­inertia effects also arise as a result
of multiple wave reflection and transmission occurring at the interfaces between
the constituents, which can result in complex spatiotemporal scenarios of damage
and failure evolution, initiated at multiple spots [15, 16]. Finally, there can be ther­
momechanical dissipation as a transition from isothermal to adiabatic deformation
and failure process for composites is expected for increasing loading rate [17–19].

Computational models have been developed on the mesoscale to capture defor­
mation and failure in composites. For such models, the composite ply is considered
as a homogenized material where damage and failure can be described by con­
tinuum damage models [20, 21] or extended FEM models [22] with failure­mode­
based criteria and different stiffness degradation laws for the different failure pro­
cesses. However, such models inevitably lead to complex constitutive and damage
laws that require extensive experimental calibration and the observations obtained
at these scales do not provide enough detail about the mechanical processes that
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explain the inelastic behavior of the material. Hence, computational micromechan­
ical models are an appealing option for investigating the dynamic fracture energy
and the interplay of different mechanisms of dynamic crack growth in compos­
ites. Microscale­based approaches can be roughly classified as: the representative
volume element (RVE) based multiscale approach, the (modified) boundary layer
approach and the embedded cell approach. An RVE is a characteristic sample of
heterogeneous material that should be large enough to contain sufficient compos­
ite micro­heterogeneities in order to be representative, however it should also be
much smaller than the macroscopic structure size [23]. The RVE­based multiscale
approach assumes multiple spatial and (or) temporal scales. Solution of finer­scale
problems is analyzed in an RVE and information of the finer­scale is hierarchically
passed into a coarser scale by bridging laws. For a two­scale scheme, at the macro­
scopic level the strain localization can be represented by cohesive cracks with strong
discontinuity kinematics and a proper kinematical information transfer from the
macro­to­micro scales [24–27]. However, the implementation of this method is not
readily available in a general­purpose finite element code and the computational
cost of this method can be prohibitively high. The (modified) boundary layer for­
mulation considers a small layer of material near the crack tip with well­defined
singularity displacement fields applied at the edges of the layer. Numerical solu­
tion of this problem allows a quantification of the energy dissipation under such
singularity field with energy integrals. This approach has been applied to study
elastic–plastic ductile cracking in a homogeneous material [28, 29] and the effec­
tive fracture toughness of a heterogeneous material [30–32]. However, it is not
clear how to apply the boundary conditions if a singularity field cannot clearly be
defined. For the embedded cell approach, full details of the heterogeneous com­
posite microstructure (including the random spatial distribution of the fibers) are
explicitly resolved in the fracture region with a finer discretization. Meanwhile, the
rest of the model is considered to be a homogeneous medium with simple constitu­
tive equations (obtained a priori with any appropriate homogenization technique)
and coarser discretization. The region in which the microstructure is resolved should
be small so that the computational cost is affordable. However, it should be suffi­
ciently large to include all the area in which damage occurs during the propagation
of the crack, thus energy spent by the different failure micromechanisms (interface
debonding, matrix cracking, matrix plastic deformation, etc.) is properly taken into
account. This approach has been used in analysis of quasi­static crack propaga­
tion of in composite material and to compute the fracture toughness associated to
different failure modes [33, 34].

In this paper, a multiscale numerical model using the embedded cell approach is
developed to evaluate the mode­I fracture energy of dynamic crack propagation in
fiber­reinforced composites and to investigate the associated failure mechanisms.
Specifically, the single edge notched tension (SENT) specimen is analyzed. The
paper is organized as follows: in Section 5.2, details of the embedded cell model
of the SENT specimen are given. Section 5.3 presents the typical deformation
and failure phenomena in a series of tests on SENT specimen and the obtained
relations between the dynamic fracture energy 𝐺𝑐 and crack speed 𝑉. The failure
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mechanisms in the fracture process zone of the composites are discussed in Section
5.4.

5.2. Numerical model
To compute the mode­I fracture energy of dynamic crack growth in fiber­reinforced
polymeric composites, a embedded cell model of an SENT specimen with a width
of 𝑊 and a length of 𝐿 is developed. It is noted that the crack develops in the
transverse plane rather than the fiber direction. The SENT specimen is favored
over other Mode­I tests, such as the double cantilever beam test, because the
absence of bending deformations (with both tension and compression) in the SENT
is beneficial for numerical robustness under dynamic loading condition. As it is
shown in Fig. 5.1, an initial notch of length 𝑎0 along 𝑥­direction is created on one
edge of the specimen and a symmetric displacement loading is applied on the top
and bottom edge of the specimen with a prescribed velocity of �̇�. In the vicinity
of the initial notch tip, a composite microstructure of 𝑀 rows and 𝑁 columns of
repeating RVEs is embedded in a homogenized medium of the composites. The
RVE has a stochastic distribution of 5 × 5 fibers with a fiber diameter 𝐷𝑓 = 5 𝜇𝑚
and a fiber volume fraction of 60%. It is generated by a discrete element method
generator called HADES, following the procedures in Liu et al. [35].

The matrix material of the microstructure is assumed to be epoxy modeled as
viscoelastic­viscoplastic model as detailed in Section 5.2.1 while the fiber is assumed
to be linear elastic. The material around the embedded microstructure is treated
as a homogeneous isotropic elastic solid whose behavior is obtained by a standard
computational homogenization scheme (see Appendix A in [35]) from elastic con­
stants of the fibers and matrix in an RVE. Cracking is allowed to develop only inside
the matrix and on the fiber/matrix interfaces in the embedded cell. Following Cama­
cho and Ortiz [36], a dynamic insertion technique of cohesive elements, introduced
in Section 5.2.2, is used to capture cracking. The whole numerical model is solved
with an implicit dynamics scheme. A plane strain condition is assumed and the
two­dimensional plane is considered as the transverse plane of a fiber­reinforced
composite ply. The algorithm is described in detail in Section 5.2.3. The dynamic
energy release rate for the composites is computed by utilizing the dynamic version
of the 𝐽­integral with its formulation shown in Section 5.2.4.

5.2.1. Polymer model
The polymer matrix of the embedded microstructure is assumed to have a constitu­
tive behavior according to a viscoelastic­viscoplastic (VE­VP) model following Rocha
et al. [37]. Following the conceptual representation of the VE­VP model in Fig. 5.2,
two contributing constitutive models are involved: a linear viscoelastic model and a
viscoplastic component represented by a Perzyna­type overstress formulation with
a rate­independent backbone of a pressure­dependent plasticity model.
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Figure 5.1: Finite element model of the SENT specimen. An initial notch is located on the left side of the
specimen with an embedded microstructure represented by a number of repeating RVEs with stochastic
fiber distributions. The mesh is discretized with six­node triangular elements. The dotted box on the top
right shows the mesh of a RVE. Finer mesh is used for the embedded microstructure zone and coarser
mesh is used for the surrounding homogeneous medium.
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Figure 5.2: Schematic representation of the VE­VP polymer model in one­dimension. It is noted that
the coefficients of the elastic and plastic components (⋅) do not represent the same coefficients as used
in Section 5.2.1.
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Viscoelasticity
By assuming a linear viscoelastic model the stress 𝜎𝑖𝑗 for time 𝑡 is expressed with
Boltzmann’s hereditary integral of the elastic strain 𝜀𝑒𝑘𝑙:

𝜎𝑖𝑗(𝑡) = ∫
𝑡

−∞
𝐷𝑖𝑗𝑘𝑙(𝑡 − �̃�)

𝜕𝜀𝑒𝑘𝑙(�̃�)
𝜕�̃� 𝑑�̃� (5.1)

in which 𝐷𝑖𝑗𝑘𝑙(𝑡) is a time­dependent stiffness which can be expressed with a time­
dependent shear stiffness 𝐺(𝑡) and bulk stiffness 𝐾(𝑡):

𝐷𝑖𝑗𝑘𝑙(𝑡) = 2𝐺(𝑡)𝐼𝑑𝑒𝑣𝑖𝑗𝑘𝑙 + 3𝐾(𝑡)𝐼𝑣𝑜𝑙𝑖𝑗𝑘𝑙 (5.2)

where 𝐺(𝑡) and 𝐾(𝑡) can be further expanded as a combination of a Prony series
of 𝑛𝑠 shear elements and 𝑛𝑟 bulk elements and a long­term contribution:

𝐺(𝑡) = 𝐺∞ +
𝑛𝑠
∑
𝑠=1
𝐺𝑠 exp(−

𝑡
𝑔𝑠
) 𝐾(𝑡) = 𝐾∞ +

𝑛𝑟
∑
𝑟=1

𝐾𝑟 exp(−
𝑡
𝑘𝑟
) (5.3)

in which 𝐺∞ and 𝐾∞ represent the long­term shear and bulk stiffness, and 𝐺𝑠 ,
𝐾𝑟, 𝑔𝑠 and 𝑘𝑟 are shear and bulk stiffness and relaxation time of the Maxwell el­
ements, respectively. The fourth­order deviatoric and volumetric operator tensors
introduced in Eq. (5.2) are defined as:

𝐼𝑑𝑒𝑣𝑖𝑗𝑘𝑙 = 𝛿𝑖𝑘𝛿𝑗𝑙 −
1
3𝛿𝑖𝑗𝛿𝑘𝑙 𝐼𝑣𝑜𝑙𝑖𝑗𝑘𝑙 =

1
3𝛿𝑖𝑗𝛿𝑘𝑙 (5.4)

where 𝛿𝑖𝑗 is the Kronecker delta. These operator tensors can also be used to
decompose the elastic strain 𝜀𝑒𝑖𝑗 into a deviatoric part 𝜀𝑒,𝑑𝑒𝑣𝑖𝑗 and a hydrostatic part
𝜀𝑒,𝑣𝑜𝑙𝑖𝑗 :

𝜀𝑒𝑖𝑗 = 𝜀𝑒,𝑑𝑒𝑣𝑖𝑗 + 𝜀𝑒,𝑣𝑜𝑙𝑖𝑗 = 𝐼𝑑𝑒𝑣𝑖𝑗𝑘𝑙𝜀𝑒𝑘𝑙 + 𝐼𝑣𝑜𝑙𝑖𝑗𝑘𝑙𝜀𝑒𝑘𝑙 (5.5)

By substituting Eqs. (5.2) and (5.3) into Eq. (5.1), the stress can be expressed
as:

𝜎𝑖𝑗(𝑡) = 𝐷∞𝑖𝑗𝑘𝑙𝜀𝑒𝑘𝑙(𝑡) +
𝑛𝑟
∑
𝑟=1

𝑝𝑣𝑒𝑟 (𝑡)𝛿𝑖𝑗 +
𝑛𝑠
∑
𝑠=1
𝑆𝑣𝑒𝑖𝑗,𝑠(𝑡) (5.6)

in which the deviatoric viscoelastic stress contribution:

𝑆𝑣𝑒𝑖𝑗,𝑠(𝑡) = 2𝐺𝑠∫
𝑡

−∞
exp(−𝑡 − �̃�𝑔𝑠

)
𝜕𝜀𝑒,𝑑𝑒𝑣𝑖𝑗 (�̃�)

𝜕�̃� 𝑑�̃� (5.7)

and the hydrostatic viscoelastic stress contribution:

𝑝𝑣𝑒𝑟 (𝑡) = 𝐾𝑟∫
𝑡

−∞
exp(−𝑡 − �̃�𝑘𝑟

) 𝜕𝜀
𝑒
𝑣(�̃�)
𝜕�̃� 𝑑�̃� (5.8)
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Viscoplasticity
The viscoplasticity model is assumed to be a Perzyna­type model with a backbone of
a pressure­dependent hardening plasticity model. The yield function of the plasticity
model is defined as:

𝑓𝑝(𝝈, 𝜀𝑝𝑒𝑞) = 6𝐽2 + 2𝐼1(𝜎𝑐 − 𝜎𝑡) − 2𝜎𝑐𝜎𝑡 (5.9)

in which 𝐼1 = 𝜎𝑘𝑘 is the first stress invariant, 𝐽2 =
1
2𝑆𝑖𝑗𝑆𝑖𝑗 is the second invariant

of the deviatoric stress 𝑆𝑖𝑗, and 𝜎𝑡 and 𝜎𝑐 are the yield stress in tension and com­
pression, respectively. The yield stress, 𝜎𝑡 or 𝜎𝑐, is a function of the accumulated
equivalent plastic strain 𝜀𝑝𝑒𝑞. In an incremental form, the accumulated equivalent
plastic strain is defined as:

Δ𝜀𝑝𝑒𝑞 = √
1

1 + 2𝜈2𝑝
Δ𝜀𝑝𝑖𝑗Δ𝜀

𝑝
𝑖𝑗 (5.10)

in which 𝜈𝑝 is the plastic Poisson’s ratio. The desired contraction behavior is imple­
mented through a non­associative flow rule which is expressed in an incremental
form as:

Δ𝜀𝑝𝑖𝑗 = Δ𝛾 (3𝑆𝑖𝑗 +
2
9𝛼𝐼1𝛿𝑖𝑗) (5.11)

where Δ𝛾 is the incremental plastic multiplier and the parameter 𝛼 is:

𝛼 = 9
2
1 − 2𝜈𝑝
1 + 𝜈𝑝

(5.12)

By allowing the overstress to develop beyond the yield surface, a viscous time
scale is introduced in the model. A Perzyna­type of overstress formulation is adopted,
which gives the evolution of the plastic multiplier Δ𝛾:

Δ𝛾 = {
Δ𝑡
𝜂𝑝
( 𝑓𝑝
𝜎0𝑡 𝜎0𝑐

)
𝑚𝑝

if 𝑓𝑝 > 0
0 if 𝑓𝑝 ≤ 0

(5.13)

in which 𝜎0𝑡 and 𝜎0𝑐 are the yield stress values when 𝜀𝑝𝑒𝑞 = 0, 𝑚𝑝 and 𝜂𝑝 are
viscoplastic coefficients and Δ𝑡 is the time increment.

Energy dissipation
The free energy Ψ of the VE­VP model can be expressed as:

Ψ = 1
2 ∫

𝑡

0
∫
𝑡

0

𝜕𝜀𝑒𝑖𝑗(�̃�)
𝜕�̃� 𝐷𝑒𝑖𝑗𝑘𝑙(2𝑡 − 𝑡 − �̃�)

𝜕𝜀𝑒𝑘𝑙(�̃�)
𝜕�̃� 𝑑𝑡𝑑�̃� + 𝜓ℎ (5.14)

in which 𝜓ℎ is the plastic hardening energy. According to the second law of ther­
modynamics, the Clausius–Duhem inequality for the isothermal case is imposed:
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Ξ = 𝜎𝑖𝑗 ̇𝜀𝑖𝑗 − Ψ̇ ≥ 0 (5.15)

Following the derivation in Rocha et al. [37], the work of energy dissipation per
unit volume for viscoelasticity and viscoplasticity can be expressed as:

Ξ𝑣𝑒(𝑡) =
𝑛𝑠
∑
𝑠=1

𝑆𝑣𝑒𝑖𝑗,𝑠𝑆𝑣𝑒𝑖𝑗,𝑠
2𝐺𝑠𝑔𝑠

+
𝑛𝑟
∑
𝑟=1

(𝑝𝑣𝑒𝑟 )2
𝐾𝑟𝑘𝑟

(5.16)

Ξ𝑝 = 𝜎𝑖𝑗 ̇𝜀𝑝𝑖𝑗 − �̇�h (5.17)

Summing up Eqs. (5.16) and (5.17) and integration over time give the accumulated
dissipation per unit volume 𝑤𝑝 as:

𝑤𝑝(𝑡) = ∫
𝑡

0
[Ξ𝑣𝑒(�̃�) + 𝜎𝑖𝑗(�̃�) ̇𝜀𝑝𝑖𝑗(�̃�)] 𝑑�̃� (5.18)

To derive Eq. (5.18) the term �̇�h is neglected because the plastic hardening in
the polymer also contributes to the energy for growing a macroscopic crack. In the
numerical model, the total dissipated energy of the polymer matrix can be computed
as the volume integral over the embedded microstructure:

𝑊𝑝
𝑑𝑖𝑠𝑠 = ∫

Ω𝑒
𝑤𝑝𝑑Ω (5.19)

in which Ω𝑒 is the volume of the embedded microstructure zone.

5.2.2. Cohesive crack with Ortiz model
The microcracks in the embedded zone, representing fiber/matrix debonding and
matrix cracking, are modeled with the cohesive zone model. Instead of inserting
cohesive elements between element boundaries before the simulation starts, in this
study the cohesive elements are placed on the fly following the shifted cohesive law
technique described in Camacho and Ortiz [36]. A stress­based failure criterion is
introduced to determine when and where the cohesive element should be inserted.
The crack always starts at the middle node of edges of six­node triangle elements
by splitting the nodes (see Fig. 5.3). Because cohesive elements are inserted on the
fly, continuity of the response requires that the adopted cohesive law is an initially
rigid linear softening law. As a consequence there is no initial stiffness present, of
which the value could otherwise affect the overall compliance of the material or the
stress development under dynamic loading conditions.

Cohesive element insertion criterion
Considering mixed­mode fracture, the adopted stress­based failure criterion reads
[36]:

𝜎eff ≥ 𝑓t (5.20)
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Figure 5.3: Sketch of the dynamic insertion technique of cohesive elements.
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Figure 5.4: Pure mode I representation of shift in cohesive law to mimic initially rigid behavior.

where 𝑓𝑡 is the cohesive strength and the effective stress 𝜎eff is defined as:

𝜎eff =
⎧

⎨
⎩

√(𝑡𝑛)
2 + 𝜃 (|𝑡𝑠|)

2, J𝐮K𝑛 ≥ 0
√𝜃 (|𝑡𝑠| − 𝜇|𝑡𝑛|) , J𝐮K𝑛 < 0

(5.21)

in which 𝐭 = (𝑡𝑛 , 𝑡𝑠) is the traction of cohesive surface along the normal direction
and shear direction in the local {n,s} frame, J𝐮K = (J𝑢K𝑛 , J𝑢K𝑠) is the displacement
jump along normal and shear direction, 𝜃 is a shear stress factor, and 𝜇 is the
friction coefficient.

Shifted cohesive law
To construct an initially rigid law without singularity, a shifted cohesive law is
adopted [38]. As seen in Fig. 5.4, starting from a traction separation relation with a
finite initial stiffness, a shift of this relation is applied such that the traction for zero
crack opening is equal to the traction at crack initiation. This leads to the desired
initially rigid behavior.

For the shifted cohesive law, the traction is computed not from the actual dis­
placement jump, but from a translated displacement jump J𝐯K:

J𝐯K = J𝐮K+ J𝐮K0 (5.22)
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The shift J𝐮K0 is computed from the bulk stress at the moment of crack initiation
and can be expressed as:

J𝐮K0 = 𝝈0𝐧
𝐾𝑚

(5.23)

in which 𝝈0 is the stress at crack initiation and 𝐾𝑚 is a dummy stiffness.
The traction is updated in the local {n, s} frame as:

𝐭 = [𝐈 − 𝛀]𝐭eff = [𝐈 − 𝛀]𝐾𝑚J𝐯K (5.24)

with the effective traction defined as 𝐭eff = 𝐾𝑚J𝐯K and a damage tensor 𝛀 is defined
as:

Ω𝑖𝑗 = 𝜔m𝛿𝑖𝑗 (1 − 𝛿𝑖1
⟨−𝑡eff𝑛 ⟩
𝑡eff𝑛

) (5.25)

in which 𝜔𝑚 is a damage variable, 𝑡eff𝑛 = 𝐾𝑚J𝑣K𝑛 is the normal component of the
effective traction 𝐭eff, 𝛿𝑖𝑗 is the Kronecker delta and the MacAuley bracket is define
as ⟨𝑥⟩ = 1

2(𝑥 + |𝑥|). The damage evolution is introduced according to the mixed­
mode cohesive law introduced in Turon et al. [39].

𝜔𝑚 =max
𝜏≤𝑡

⎧

⎨
⎩

0, Δ ≤ Δ0
Δ𝑓(Δ−Δ0)
Δ(Δ𝑓−Δ0)

, Δ0 < Δ < Δ𝑓
1, Δ ≥ Δ𝑓

(5.26)

where the equivalent displacement jump Δ is:

Δ = √(⟨J𝑢K𝑛⟩)2 + (|J𝑢K𝑠|)2 (5.27)

and the equivalent displacement representing onset of failure Δ0 reads:

Δ0 = 𝑡0𝑒𝑞/𝐾𝑚 (5.28)

and the equivalent displacement representing complete damage Δ𝑓 is:

Δ𝑓 = 2𝐺𝑐/𝑡0𝑒𝑞 (5.29)

where 𝐺𝑐 is the fracture energy. The equivalent traction corresponding to onset of
damage 𝑡0𝑒𝑞 is introduced in Eq. (5.28) and Eq. (5.29) with its definition as the norm
of the traction at damage initiation 𝝉0,

𝑡0𝑒𝑞 = √(𝜏0𝑛)2 + (𝜏0𝑠 )2 (5.30)

Energy dissipation in fiber/matrix interfaces
The total dissipated energy of the cohesive interfaces reads:

𝑊𝑐
𝑑𝑖𝑠𝑠 = ∫

Γ𝑐
Ξ𝑑𝑆 (5.31)
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in which Γ𝑐 is the area of the cohesive elements and the incremental dissipation
density 𝑑Ξ can be computed by:

𝑑Ξ = 1
2Δ𝑓𝐾𝑚Δ0𝑑𝐷𝑚 (5.32)

with the incremental of a variable 𝐷𝑚

𝐷𝑚 =
Δ − Δ0
Δ𝑓 − Δ0

(5.33)

5.2.3. Solution scheme
Implicit dynamics analysis is carried out. The adopted semi­discretization scheme
includes an implicit time integration of the Newmark­𝛽 type and a spatial discretiza­
tion with six­node triangular elements. The solution program flow is illustrated in
Box 2. There are a few items to be noted: (1) in step 5 of the algorithm, the
dynamic system of equations is solved with a Newton­Raphson scheme. In certain
circumstances, convergence can not obtained by a large time step size. Then, an
adaptive stepping algorithm is used such that the time step size is reduced and the
system equation is solved with smaller time steps until convergence is reached. (2)
when new cohesive elements are inserted, the mesh is updated and the same step
is solved again to ensure that the final converged solution for the time step does
not violate the failure criterion.

5.2.4. J­integral calculation
Following Anderson [40], for a fast moving crack the amount of energy flowing into
the crack tip region through the contour Γ can be calculated by the crack tip energy
flux integral (see Fig. 5.5):

𝐽𝑑𝑦𝑛 = ∫
Γ
𝑄1𝑗𝑛𝑗𝑑𝑠 = ∫

Γ
[(𝑤 + 𝑒)𝛿1𝑗 − 𝜎𝑖𝑗

𝜕𝑢𝑖
𝜕𝑥1

] 𝑛𝑗𝑑𝑠 (5.34)

with

𝑄1𝑗 = [(𝑤 + 𝑒)𝛿1𝑗 − 𝜎𝑖𝑗
𝜕𝑢𝑖
𝜕𝑥1

] (5.35)

and 𝑑𝑠 is a line segment of path Γ, 𝑤 = ∫𝑡0 𝜎𝑖𝑗 ̇𝜀𝑖𝑗𝑑𝑡 is the stress work density,
𝑒 = 1

2𝜌�̇�𝑖�̇�𝑖 is kinetic energy density, 𝑛𝑗 is the outward unit normal to the contour
Γ, 𝜎𝑖𝑗 is the stress, 𝑢𝑖 is the displacement.

This 𝐽­integral formulation is valid for time­dependent as well as history­dependent
material behavior because it was derived from a generalized energy balance. In the
special case of a constant crack propagation speed and steady­state crack propa­
gation in homogeneous hyperelastic material the dynamic 𝐽­integral becomes path­
independent [41]. In this study, the integral contour is defined outside of the
embedded microstructure similar to what was done in the embedded cell model by
Herráez et al. [31].
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1. Set the time step number 𝑛 = 1;

2. Set the maximum allowed number of inserted cohesive element per time step
𝑁𝑐 and initiate the state variables to be zero;

3. Apply the 𝑛th load/displacement increment;

4. Set the 𝑛th time step size Δ𝑡𝑛;

5. Solve dynamic equilibrium using a Newton­Raphson scheme and adaptive
time stepping;

6. Loop over the edges of elements representing the polymer matrix material in
the embedded zone and check if the failure criterion, i.e. Eq. (5.20), evaluated
at the middle nodes of edges is satisfied or not?

• Yes—insert at most 𝑁𝑐 cohesive elements at edges starting from the
element edge with highest 𝜎eff. Go to step 5;

• No—go to step 7;

7. Update the state variables;

8. 𝑛 = 𝑛 + 1, go to step 4;

Box 2: Solution algorithm for the embedded cell model.

To facilitate the application of the dynamic 𝐽­integral into a FEM framework,
an equivalent domain integral is introduced to replace the line integral introduced
[41]. Fig. 5.5 shows an example of the selected path Γ along boundaries of one
ring of finite elements alongside with an extra remote path Γ𝑜, one segment of
the initial surface Γ+ and one segment of the initial surface Γ−. A closed path
𝐶 = Γ𝑜 + Γ+ + Γ− − Γ is therefore constructed in counter­clockwise direction. In
addition, a weighting function 𝑞(𝐱), which must be continuous and differentiable
and fulfills the requirements,

𝑞 = { 0 on Γ𝑜
1 on Γ (5.36)

is introduced. A linear interpolation is applied for the 𝑞 function for the enclosed
domain 𝐶. The dynamic 𝐽­integral introduced in Eq. (5.34) is reformulated as [41]:

𝐽𝑑𝑦𝑛 = ∫
Γ
𝑄1𝑗𝑛𝑗𝑑𝑠 = −∫

𝐶
𝑄1𝑗𝑞,𝑗𝑑𝑆 − ∫

𝐶
𝑄1𝑗,𝑗𝑞𝑑𝑆 + ∫

Γ++Γ−
𝑄1𝑗𝑛𝑗𝑞𝑑𝑠 (5.37)

Substitution of Eq. (5.35) into Eq. (5.37) gives the final expression for dynamic
𝐽­integral:

𝐽𝑑𝑦𝑛 = ∫
𝐶
{[𝜎𝑖𝑗

𝜕𝑢𝑖
𝜕𝑥1

− (𝑤 + 𝑒)𝛿1𝑗] 𝑞,𝑗 + (𝜌�̈�𝑖𝑢𝑖,1 − 𝜌�̇�𝑖�̇�𝑖,1)𝑞} 𝑑𝑆 (5.38)
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Figure 5.5: Sketch of the equivalent domain integral for the dynamic 𝐽­path integral. The 𝑞 function is
equal to 1.0 for the nodes (indicated by black dots) on the path Γ while it equals to 0.0 for the nodes
(indicated by red dots) on the path Γ𝑜. Linear shape functions are used to ensure a linear field of
function 𝑞 inside the elements in domain C.

The conditions that the surfaces Γ+ and Γ− are traction­free and the crack growth
direction is along the x­direction are used in deriving the above equation.

5.3. Fracture energy and crack speed
In this study, a series of SENT plane strain numerical specimens (see Fig. 5.1) is
tested with different loading velocities and different specimen sizes. The consid­
ered cases of 𝑊 and �̇� are listed in Table 5.1. The maximum nominal strain rate
investigated is 250/s, which is intermediate compared with high strain rate testing,
such as in plate impact tests where the strain rates up 108/s to have been reported
[42]. Dimensions are normalized with respect to the length of a single RVE denoted
𝑙𝑥 = 0.02856 mm. For each case, the geometry of the SENT specimen satisfies that
𝑎0 = 0.05𝑊 and 𝐿 = 4𝑊. The number of RVEs in the microstructure is kept fixed
at 𝑁RVE = 2×20 except where mentioned otherwise (i.e. 2 rows and 20 columns of
RVEs). The initial notch tip has a distance of 1.33𝑙𝑥 from the left edge of the em­
bedded microstructure zone. The fiber is modeled as a linear elastic material with
the elasticity parameters listed in Table 5.2 and the material parameters for the
VE­VP polymeric model are listed in Table 5.3. Considering that there might exist a
characteristic time for a local damage to occur and this time scale is related to the
relaxation times of the matrix as postulated in Shirinbayan et al. [6], it is ensured
that the time steps adopted in the numerical simulations are much smaller than the
relaxation times. The elastic properties corresponding to the homogenized medium
outside of the embedded region determined by a computational homogenization
technique are included in Table 5.2. Matrix cracking and fiber/matrix debonding are
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Table 5.1: A summary of considered test cases with different specimen width 𝑊 and loading velocities
�̇�.

�̇� = 0.01 m/s �̇� = 0.1 m/s �̇� = 1.0 m/s
𝑊 = 70𝑙𝑥
𝑊 = 100𝑙𝑥
𝑊 = 200𝑙𝑥
𝑊 = 500𝑙𝑥
𝑊 = 600𝑙𝑥

Table 5.2: Elastic properties of fiber and matrix taken from [45], and composite obtained from compu­
tational homogenization

Fiber Matrix Composite
Young’s modulus (MPa) 74000 2500 9407

Poisson’s ratio 0.2 0.37 0.31
Mass density (g/mm3) 0.01 0.004 0.0076

considered with the cohesive zone model with the shifted cohesive law described
in Section 5.2.2. Considering that the fiber/matrix interface is generally weaker
than the pure matrix, a smaller cohesive strength and fracture energy are adopted
for the interface (see Table 5.4). The energy release rate is equal to the energy
flux into the crack tip, divided by the crack speed [43, 44]. The mode­I energy
release rate for dynamic crack growth in composites can be computed by the dy­
namic 𝐽­integral formulation introduced in Section 5.2.4 for all the considered SENT
specimens. The crack speed 𝑉 is the time derivative of the crack length which can
be determined from the numerical model. Since the dynamic energy release rate
is equal to the dynamic fracture energy 𝐺𝑐 for a propagating crack, a relationship
between dynamic fracture energy 𝐺𝑐 and crack speed 𝑉 can be established.

In this section, the crack growth process of the SENT specimen under dynamic
loading for a typical case with specimen width 𝑊 = 600𝑙𝑥 and loading velocity
�̇� = 0.1 m/s is first described. Then, the influence of the size of the embedded
microstructure on the crack growth and energy release rate is discussed. Finally,
the energy release rate for different crack speeds extracted from the numerical tests
are presented.

5.3.1. Typical observations
For a typical test case with 𝑊 = 600𝑙𝑥, 𝑎0 = 0.05𝑊 and 𝐿 = 4𝑊, the SENT
specimen is subjected to a loading velocity �̇� = 0.1 m/s. A total number of 113550
six­node triangular elements is used for the discretization of the numerical sample
with a transition from a mesh size of 2 mm to 0.001 mm. Fig. 5.6 shows the
initiation and evolution of cohesive cracks and the distribution of the normal stress
𝜎𝑦𝑦 of the material near the crack tip for five different time steps. It is found that
the applied loading causes the typical plane­strain crack tip stress field with peanut
shaped stress concentration. Inside the microstructure, an inhomogeneous stress
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Table 5.3: Material properties of the polymeric matrix taken from [37].

viscoelasticity
𝐺∞ (MPa) 912.
𝐾∞ (MPa) 3205.
𝐺𝑖 (MPa) 36. 52. 178. 41.
𝑔𝑖 (ms) 146. 8080. 1.48e5 1.09e8
𝐾𝑖 (MPa) 125. 182. 625. 143.
𝑘𝑖 (ms) 41.6 2300. 42200. 3.11e7

viscoplasticity
𝜈𝑝 0.32

𝜎𝑡(𝜀𝑝𝑒𝑞) 64.80 − 33.6 × 𝑒(𝜀
𝑝
𝑒𝑞/−0.003407) − 10.21 × 𝑒(𝜀

𝑝
𝑒𝑞/−0.06493)

𝜎𝑐(𝜀𝑝𝑒𝑞) 81.00 − 42.00 × 𝑒(𝜀
𝑝
𝑒𝑞/−0.003407) − 12.76 × 𝑒(𝜀

𝑝
𝑒𝑞/−0.06493)

𝑚 7.305
𝜂 (MPa⋅s) 3.49e12

Table 5.4: Material properties of cohesive cracks taken from [45] and [31].

Matrix Fiber/Matrix interface
Interface penalty stiffness 𝐾𝑚 (N/mm3) 1.e7 1.e7

Cohesive strength 𝑓𝑡 (MPa) 121. 42.0
Fracture energy 𝐺𝑐 (N/mm) 0.09 0.02
Mode interaction coefficient 𝜃 0.4 0.4

Friction coefficient 𝜇 0.1 0.1
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distribution is found.
Cracks are formed in the fiber/matrix interfaces in a number of spots near the

crack tip rather than the pure matrix (see Fig. 5.6(a)), which is due to lower cohesion
strength at fiber/matrix interfaces. The spots where cracks initiate are sparsely
distributed near the crack tip due to the inhomogeneous stress distribution caused
by the applied dynamic loads and material inhomogeneity of the microstructure.

The material near the crack tip is experiencing complex conditions with inter­
action between dynamic loading, structural inertia, material nonlinearity and mate­
rial failure. Importantly, the applied continuous loading generates a loading wave
propagating into the structure, while the newly created crack surface unloading
waves are generated. The process is also complicated due to structural inertia ef­
fects. Therefore, the material near the crack tip including the cohesive surfaces
can experience several loading/unloading cycles, as visible in the change of load­
ing/unloading state of the cracks shown in Fig. 5.6(a­c). Finally, a fully developed
cohesive zone is formed and a dominant crack close to the mid­plane propagates in
a self­similar manner (see Fig. 5.6(d­e)). Many cracks including both fiber/matrix
debonding and matrix cracking are formed ahead of the crack tip while the cracks
at the wake are unloading. Due to the inhomogeneous distribution of fibers, the
growing crack is not straight but shows a certain tortuosity. The deformation of the
microstructure is relatively small with a large fracture process zone.

5.3.2. Size of the microstructure
The adopted number of embedded RVEs in the embedded zone is 𝑁RVE = 2 × 20.
Justification for this choice was found in a size dependence study which is presented
in this section. A study on the influence of the microstructure size on the dynamic
crack propagation in the SENT specimen is carried out. The size of the embedded
microstructure, represented by the number of embedded RVEs, is changed for a
case with the width of the SENT specimen𝑊 = 600𝑙𝑥 and the same loading velocity
�̇� = 0.1 m/s. Four different sizes of the microstructure are considered, namely,
2×20 RVEs, 2×30 RVEs, 4×16 RVEs and 4×20 RVEs. The response of the SENT
specimen with these four different microstructure sizes under dynamic loading is
investigated with emphasis on the crack growth speed and the energy release rate.

The crack tip is defined as as the appearance of the first fully damaged cohesive
element with stress free surface (𝜔𝑚 = 1), as illustrated in Fig. 5.6e (Left). The
time derivative of the crack length is the crack speed. To obtain the dynamic energy
release rate of the fracture process zone, the path of the 𝐽­integral is defined outside
of the embedded microstructure zone. The path­dependence of the dynamic 𝐽­
integral is first investigated for three different prescribed paths, A, B and C shown
in Fig. 5.7 for the case with 𝑁RVE = 2 × 20. Path A is the outer boundary of
the microstructure while path B is slightly further away from Path A and path C
is even further than path B. Fig. 5.8 shows the dynamic 𝐽­integral value vs. time
for the three paths. It is seen that there are only very minor differences in the
dynamic 𝐽­integral value for the three different paths, which means that the path­
independence is found for paths defined outside the embedded microstructure. It
is noted that in the homogenized region where paths A, B and C are defined, the
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Figure 5.6: Snapshots of the crack distribution and crack state (Left) and 𝜎𝑦𝑦 stress distribution (Right).
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B
C

A

Figure 5.7: 𝐽­integral contours: path A, B and C.

material response is modeled as elastic, which attributes to the path­independence
observed here. Path A is therefore chosen as the 𝐽­integral contour used in this
study.

Fig. 5.9 shows the crack extension Δ𝑎 vs. time and dynamic 𝐽­integral for the
four cases with different microstructure sizes. It can be observed that the crack
extension curve for the four cases are not exactly the same, which is related to the
fact that the location where crack occurs is not the same. However, the differences
between the four cases are limited. The crack speed, i.e. the slope of the time vs.
crack extension curve, seems very close among the four cases. The evolution of the
dynamic 𝐽 for the four cases is also very close. This shows that by either increasing
the number of fibers in x­direction from 80 to 150 or in y­direction from 10 to 20,
the crack growth process is not evidently different. Therefore, the microstructure
with 2×20 RVEs is selected in this study as it is most computationally efficient and
provides size­independent responses.

5.3.3. Dynamic energy release rate
The dynamic energy release rate for the series of SENT tests listed in Table 5.1 is
summarized in this section. By tracking the crack tip location during the 10 SENT
tests, the crack extension 𝑎 is measured and shown in Fig. 5.10. The discrete
time vs. crack extension data obtained in the numerical tests is fitted with smooth
functions (e.g. exponential) using the curve fitting toolbox of MATLAB so that a
smooth time vs. extension curve is obtained to compute the crack speed. It is
observed that all fitted curves for the 10 cases have a 𝑅2 value larger than 0.9928,
indicating that good fits are obtained. The crack speed is defined as the slope of
the fitted curve, i.e. 𝑉 = 𝜕𝑎/𝜕𝑡 (see Fig. 5.10(j)). It is noted that using numerical
differentiation of the discrete time and crack extension points is not a good choice



5.3. Fracture energy and crack speed

5

123

0 0.1 0.2 0.3 0.4 0.5

 

0

0.01

0.02

0.03

0.04

0.05

0.06

 0.28 0.3 0.32

 

0.026

0.027

0.028

0.029

0.03

0.031

 

Path A
B
C

Time (ms)

D
yn

am
ic

J
(N
/m

m
)

Figure 5.8: The time vs. dynamic 𝐽­integral value for three different paths. The maximum time consid­
ered corresponds to a crack extension of 0.1 mm.
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Figure 5.9: Comparison of (a) time vs. crack extension curve and (b) time vs. dynamic 𝐽­integral curve
for four different microstructure sizes.
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for defining the crack speed. Fig. 5.11 shows a comparison of the computed crack
speed history with two numerical differentiation schemes and the chosen approach.
The considered numerical differentiation methods are the mid­point scheme and
the Euler backward scheme. For the mid­point scheme, the crack speed at discrete
time 𝑡𝑖 (𝑖 = 1, 2, ..., 𝑁) is calculated as: 𝑉𝑖 = (Δ𝑎𝑖+1 − Δ𝑎𝑖−1)/(𝑡𝑖+1 − 𝑡𝑖−1) in which
𝑁 is the total number of time instants. For the Euler backward scheme, the crack
speed at discrete time 𝑡𝑖 is calculated as: 𝑉𝑖 = (Δ𝑎𝑖 − Δ𝑎𝑖−1)/(𝑡𝑖 − 𝑡𝑖−1). It is
found that both numerical differentiation schemes give oscillating crack speeds,
while the crack speed computed by the chosen approach shows a smooth crack
speed history. These oscillations are not necessarily physical and may be attributed
to the numerical discretization, numerical time stepping or to the microstructure. In
any case, the homogenized response is of particular interest rather than the exact
crack speed inside the embedded cell. Therefore, with the chosen approach the
crack speed history is smooth and physically regarded as the average crack speed
found in the SENT tests [46].

Fig. 5.12 shows the dynamic 𝐽­integral value for different crack speeds extracted
from the series of numerical tests. A number of observations are made: (1) for the
first six cases of with 𝑊 = 70𝑙𝑥 , 100𝑙𝑥 and �̇� = 0.01, 0.1, 1.0 m/s, there appears to
be a unique relation between the dynamic 𝐽­integral and the crack speed 𝑉, i.e.
𝐽𝑑𝑦𝑛(𝑉) or 𝐺𝑐(𝑉). (2) the dynamic 𝐽­integral value when crack propagation starts,
i.e. when crack speed 𝑉 > 0, among those six cases have small differences and an
average value around 0.045 N/mm is identified. This value is between the fracture
toughness of the matrix, 0.09 N/mm, and that of the fiber/matrix interface, 0.02
N/mm. (3) for the other four cases, the dynamic 𝐽­integral value for the same crack
speed is higher than that of the first six cases. (4) the case with 𝑊 = 600𝑙𝑥 and
�̇� = 0.01 m/s has the largest dynamic 𝐽­integral value. If a strain rate definition of
̇𝜀 = �̇�/2𝑊 is employed, the case with 𝑊 = 600𝑙𝑥 and �̇� = 0.01 m/s also has the
lowest strain rate. (5) the cases with 𝑊 = 70𝑙𝑥 and �̇� = 1.0 m/s and 𝑊 = 100𝑙𝑥
and �̇� = 1.0 m/s, i.e. the cases with the highest strain rate, have shown a more
oscillatory response for the dynamic 𝐽­integral value. (6) The maximum crack speed
is around 265 m/s reached in the case with 𝑊 = 70𝑙𝑥 and �̇� = 1.0 m/s, which is
in the same magnitude as the dynamic crack growth in carbon/epoxy composites
with dynamic double cantilever beam tests in [47, 48].

5.4. Discussions of mechanisms
The underlying mechanisms for the observations of the 𝐺𝑐(𝑉) relation shown in Fig.
5.12 are discussed in this section, including inertia effect, ductile/brittle failure type
and the R­curve effect.

5.4.1. Inertia effect
Fig. 5.13 shows the time evolution of the dynamic 𝐽­integral value before crack
initiation for three cases, namely the loading velocity �̇� = 0.01, 0.1, 1.0 m/s with the
same width𝑊 = 100𝑙𝑥. The dynamic 𝐽­integral is gradually increasing for the three
cases as a result of applied continuous displacement loading. The case with the
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Figure 5.11: Comparison of different approaches for calculating the crack speed.
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Figure 5.12: The dynamic 𝐽­integral for different crack speeds computed from the series of tests. A
zoomed­in view of the lower crack speed range is shown on the left.
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Figure 5.13: Time evolution of the dynamic 𝐽 value (before crack propagation) for three different cases
with �̇� = 0.01, 0.1, 1.0 m/s and the same 𝑊 = 100𝑙𝑥.

lowest loading velocity �̇� shows a very smooth profile and a quadratic relation exists
between the dynamic 𝐽­integral and time. By increasing the loading velocity to 0.1
m/s and 1.0 m/s, the dynamic 𝐽­integral clearly shows high frequency oscillations,
which is due to an evident effect of system inertia activated by a larger test rate.
Similar trends of the dynamic energy release rate for mode­I cracking in composites
have been found in Liu et al. [11] with the interfacial thick level set (ITLS) approach.

The formulation for the dynamic 𝐽­integral 𝐽𝑑𝑦𝑛 in Eq. (5.38) can be rewritten
as:

𝐽𝑑𝑦𝑛 = ∫
𝐴
[𝜎𝑖𝑗𝑢𝑖,1 −𝑤𝛿1𝑗] 𝑞,𝑗𝑑𝐴⏝⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏝

𝐽𝑠𝑡𝑎𝑡𝑖𝑐

− ∫
𝐴
𝑒𝛿1𝑗𝑞,𝑗𝑑𝐴⏝⎵⎵⎵⏟⎵⎵⎵⏝
𝐽𝑘𝑖𝑛𝑒𝑡𝑖𝑐

+ ∫
𝐴
(𝜌�̈�𝑖𝑢𝑖,1 − 𝜌�̇�𝑖�̇�𝑖,1) 𝑞𝑑𝐴⏝⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⏝

𝐽𝑛𝑜𝑛𝑠𝑡𝑒𝑎𝑑𝑦
(5.39)

in which three different contributing components can be identified as 𝐽𝑠𝑡𝑎𝑡𝑖𝑐, 𝐽𝑘𝑖𝑛𝑒𝑡𝑖𝑐
and 𝐽𝑛𝑜𝑛𝑠𝑡𝑒𝑎𝑑𝑦. The 𝐽𝑠𝑡𝑎𝑡𝑖𝑐 is the formulation used for quasi­static loading. The
𝐽𝑘𝑖𝑛𝑒𝑡𝑖𝑐 represents the contribution of kinetic energy flow into the fracture process
zone. The 𝐽𝑛𝑜𝑛𝑠𝑡𝑒𝑎𝑑𝑦 is zero in the special case of a constant crack propagation
speed and steady­state crack propagation [41] and a nonzero value shows the
deviation from that condition. For the case with �̇� = 1.0 m/s, the different com­
ponents of the dynamic 𝐽­integral are shown in Fig. 5.14. The dynamic 𝐽­integral
𝐽𝑑𝑦𝑛 is close to the value of the quasi­static 𝐽­integral 𝐽𝑠𝑡𝑎𝑡𝑖𝑐 although somewhat
oscillatory. Compared with the 𝐽𝑑𝑦𝑛, the 𝐽𝑘𝑖𝑛𝑒𝑡𝑖𝑐 and 𝐽𝑛𝑜𝑛𝑠𝑡𝑒𝑎𝑑𝑦 are much smaller.
Of these two, 𝐽𝑛𝑜𝑛𝑠𝑡𝑒𝑎𝑑𝑦 gives the larger contribution. This shows that the ef­
fect of nonsteady­state crack propagation or non­constant crack speed is causing a
significant inertia effect. However, the inertia effect is not dominant. A similar ob­
servation was made by Nakamura et al. [49] who reported for a three­point­bending
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Figure 5.14: Time evolution of (a) 𝐽𝑑𝑦𝑛, 𝐽𝑠𝑡𝑎𝑡𝑖𝑐; (b) 𝐽𝑘𝑖𝑛𝑒𝑡𝑖𝑐 and 𝐽𝑛𝑜𝑛𝑠𝑡𝑒𝑎𝑑𝑦 for a case of 𝑊 = 100𝑙𝑥
and �̇� = 1.0 m/s.

test that the inertia effect is minor when the kinetic energy is a small fraction of the
strain energy of the system. Therefore, an average fit of the 𝐽(𝑉) data for this case
as included in Fig. 5.12 is a reasonable representation of the material response.
For a lower test rate with �̇� = 0.01 m/s, the 𝐽𝑑𝑦𝑛, 𝐽𝑠𝑡𝑎𝑡𝑖𝑐, 𝐽𝑘𝑖𝑛𝑒𝑡𝑖𝑐 and 𝐽𝑛𝑜𝑛𝑠𝑡𝑒𝑎𝑑𝑦
are shown in Fig. 5.15. The dynamic 𝐽­integral 𝐽𝑑𝑦𝑛 is almost equal to the static
𝐽­integral 𝐽𝑠𝑡𝑎𝑡𝑖𝑐 while the other two components 𝐽𝑘𝑖𝑛𝑒𝑡𝑖𝑐 and 𝐽𝑛𝑜𝑛𝑠𝑡𝑒𝑎𝑑𝑦 are neg­
ligible. This shows that for lower rates, the inertia effect vanishes. It is expected
that for higher strain rate testing, for instance, Hopkinson Bar loaded fracture ex­
periments, inertia effects become evident and need to be filtered out [50].

5.4.2. Failure type
The failure mode in the embedded microstructure zone is found to be brittle failure
with limited plasticity. Fig. 5.16 shows the dissipation for plasticity and cohesive
cracks for three cases with �̇� = 0.01, 0.1, 1.0 m/s and the same 𝑊 = 100𝑙𝑥. They
are calculated by Eq. (5.19) and Eq. (5.31) and normalized with 𝐺𝑖𝑐𝑙𝑥𝑏0, where
𝐺𝑖𝑐 = 0.02 N/mm is the fracture energy of fiber/matrix interface, 𝑙𝑥 is the RVE size
and 𝑏0 = 1.0 mm is a unit thickness. It is observed that the plastic deformation
in the matrix dissipates much less energy than the cohesive cracks. For instance,
at the same amount of crack extension 0.1 mm, the case with loading velocity
�̇� = 0.1 m/s has a plastic dissipation of 4.332×10−4 N⋅mm, while the dissipation
for cohesive crack at that point in time is 5.878×10−4N⋅mm. A comparison of
the three cases shows that the case with �̇� = 1.0 m/s has the largest cohesive
dissipation𝑊𝑐

𝑑𝑖𝑠𝑠 while the case with �̇� = 0.01m/s has the largest plastic dissipation.
This shows that for a lower loading velocity, plasticity is more developed while for
higher loading velocity cohesive cracks dissipate more energy. This phenomenon
represents the commonly referred ductile­to­brittle transition for increasing loading
rate [10, 51, 52]. Nevertheless, failure in the fracture process zone for the case with
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Figure 5.15: Time evolution of (a) 𝐽𝑑𝑦𝑛, 𝐽𝑠𝑡𝑎𝑡𝑖𝑐; (b) 𝐽𝑘𝑖𝑛𝑒𝑡𝑖𝑐 and 𝐽𝑛𝑜𝑛𝑠𝑡𝑒𝑎𝑑𝑦 for a case of 𝑊 = 100𝑙𝑥
and �̇� = 0.01 m/s.

lower loading velocity is still rather brittle. This can be seen from the distribution
of the equivalent plastic strain for the case of �̇� = 0.01 m/s shown in Fig. 5.17.
The plastic strain is limited to the area close to the crack path. The distribution of
normal strain 𝜀𝑦𝑦 shown in Fig. 5.18 for the case with 𝑊 = 70𝑙𝑥 and �̇� = 0.1 m/s
reveals that the strain near the crack tip remains small, which indicates a brittle
failure.

5.4.3. Dynamic 𝑅­curve
It is known that in laminated composites, due to fiber cross­over bridging behind
the crack tip the fracture toughness can increase for a certain distance of crack
growth. The increase of the apparent fracture toughness with crack extension
is usually described by a function of crack growth resistance vs. crack extension,
i.e. the so­called 𝑅­curve [53]. Even though the crack propagation in this study
takes place in the transverse plane, an 𝑅­curve also exists here. This is related to
the development of the fracture process zone, where microcracking at fiber/matrix
interfaces and inside the pure matrix and tearing of matrix ligaments are found. In
Fig. 5.19 the 𝑅­curve is shown by plotting the evolution of the dynamic 𝐽­integral
as a function of crack extension. The 𝑅­curve for all cases shows a rising trend.

Except for the case with 𝑊 = 70𝑙𝑥 and �̇� = 1.0 m/and the case with 𝑊 = 100𝑙𝑥
and �̇� = 1.0m/s, all cases follow approximately the same 𝑅­curve. Considering that
structural inertia, cohesive cracking and rate­dependent plasticity are coexisting
during the development of the fracture process zone, there are minor differences
of the 𝑅­curve of the different cases, although, as mentioned in Section 5.4.2, rate­
dependent plasticity is less pronounced and does not contribute much to these
differences. In the cases with 𝑊 = 70𝑙𝑥 and �̇� = 1.0 m/s and 𝑊 = 100𝑙𝑥 and �̇� =
1.0 m/s, which are the two case with the highest nominal strain rates, oscillations
are present in the 𝑅­curve which are ascribed to inertia effects.



5

130
5. Modeling of dynamic mode I crack growth in glass fiber­reinforced

polymer composites: fracture energy and failure mechanism

0 0.05 0.1 0.15

 

0

2

4

6

8

10

12

14

16

18

 

0 0.05 0.1 0.15

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 

δ̇ = 0.01
0.1
1.0

Crack extension ∆a (mm) Crack extension ∆a (mm)

δ̇ = 0.01
0.1
1.0

C
oh

es
iv

e
di

ss
ip

at
io

n
W

c di
ss
/(

l x
G

i cb
0)

Pl
as

tic
di

ss
ip

at
io

n
W

p di
ss
/(

l x
G

i cb
0)

Figure 5.16: (a) Cohesive dissipation and (b) plastic dissipation for a case of 𝑊 = 100𝑙𝑥 and loading
velocity �̇� = 0.01, 0.1, 1.0 m/s.
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Figure 5.17: Distribution of equivalent plastic strain 𝜀𝑝𝑒𝑞 for a case with 𝑊 = 100𝑙𝑥 and �̇� = 0.01 m/s.
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(a) t = 0.1147 ms, ∆a = 0.05132 mm

(b) t = 0.1148 ms, ∆a = 0.06374 mm

εyy

0.005 mm

Figure 5.18: Distribution of the normal strain 𝜀𝑦𝑦 for a case with 𝑊 = 70𝑙𝑥 and �̇� = 0.1 m/s.



5

132
5. Modeling of dynamic mode I crack growth in glass fiber­reinforced

polymer composites: fracture energy and failure mechanism

0 0.05 0.1 0.15 0.2

 

0.03

0.04

0.05

0.06

0.07

0.08

0.09

 

W = 70lx, δ̇ = 0.01
W = 70lx, δ̇ = 0.1
W = 70lx, δ̇ = 1.0
W = 100lx, δ̇ = 0.01
W = 100lx, δ̇ = 0.1
W = 100lx, δ̇ = 1.0
W = 200lx, δ̇ = 0.1
W = 500lx, δ̇ = 0.01
W = 600lx, δ̇ = 0.01
W = 600lx, δ̇ = 0.1

Crack extension (mm)

D
yn

am
ic

J-
in

te
gr

al
(N
/m

m
)

0.072

Figure 5.19: R­curves for the series of numerical tests.

In Fig. 5.20, the distribution of normal stress in y­direction 𝜎𝑦𝑦 is shown for two
lower rate cases, one with𝑊 = 70𝑙𝑥 and �̇� = 0.1m/s and the other with𝑊 = 600𝑙𝑥
and �̇� = 0.01 m/s. For both cases, two typical time instants are selected. It shows
that the development of the failure zone is a gradual process with the formation of
microcracks (along fiber/matrix interfaces and inside the matrix) and ductile tearing
of matrix ligaments. The two cases form a very similar crack pattern when the
fracture process zone is fully developed and a periodic crack pattern forms as a
result of the periodicity of the embedded microstructure. The damage of cohesive
cracks corresponding to Fig. 5.20(b) and Fig. 5.20(d) is plotted in Fig. 5.21 when the
crack length of both cases is 0.072 mm. The case with higher loading rate only has a
slightly wider spreading of cohesive cracks. The similarity of the 𝑅­curve for lower
rates offers an explanation for the shift observed in the plot of 𝐽­integral versus
crack speed in Fig. 5.12 for the same cases. Since there is a one­to­one relation
between crack length and applied load for these cases, different crack velocities
must be found for different applied loading rates.

For the higher rate cases, there are oscillations in the 𝑅­curve as well as an in­
crease in the overall fracture resistance. The differences in dynamic 𝐽­integral is a
numerical representation of the velocity­toughening effect that has been observed
experimentally for quasi­brittle materials. Zhou et al. [54] found the failure mech­
anism of a PMMA plate was found to display increasingly rough crack surfaces for
increasing crack propagation velocities. As seen in Fig. 5.10 and Fig. 5.12, the crack
speed for the higher nominal strain rate cases is larger than that of lower nominal
strain rate cases. Fig. 5.22 shows a comparison of the dissipation of cohesive cracks
for three cases, representing the lowest loading rate and the two highest loading
rates. It is observed that the higher rate cases have significantly larger cohesive
dissipation, pointing at more damage in secondary microcracks.
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Figure 5.20: Normal stress distribution 𝜎𝑦𝑦 of the deformed configuration of two typical time instants
for two cases: (top) 𝑊 = 70𝑙𝑥 and �̇� = 0.1 m/s; (bottom) 𝑊 = 600𝑙𝑥 and �̇� = 0.01 m/s.
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Figure 5.21: Cohesive damage distribution for two cases: (a) 𝑊 = 70𝑙𝑥 and �̇� = 0.1 m/s and (b)
𝑊 = 600𝑙𝑥 and �̇� = 0.01 m/s.
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�̇� = 1.0 m/s and (c) 𝑊 = 600𝑙𝑥 and �̇� = 0.01 m/s.

5.5. Conclusion
In this paper, a multiscale numerical framework is established to evaluate the frac­
ture energy of dynamic crack propagation in composites. A series of numerical
simulations with different specimen sizes and different loading velocities is per­
formed to simulate the deformation and failure process of the SENT specimen with
embedded composite microstructure when subjected to continuous dynamic load­
ing. Instead of running explicit dynamics analyses with accumulated divergence
from balance of momentum, an implicit dynamics solution scheme is adopted. For
each time step the dynamic version of 𝐽­integral is evaluated as a measure for the
dynamic fracture energy.

The introduced numerical framework allows for a quantitative evaluation of the
dynamic fracture energy of composites and for analysis of how rate­dependent
plasticity, distributed microcracking and inertia effects contribute to the observed
fracture energy.

For all considered cases, microcracks are initially formed in the fiber/matrix in­
terfaces in a number of locations near the crack tip. Materials near the crack tip
including the newly created crack surfaces experience a complicated loading pro­
cess mainly due to interaction of dynamic loading, structural inertia and material
failure.

With the given material parameter set, it is seen that an increase of the applied
strain rate gives rise to a trend of increasing brittleness for the failure of composites
with reduced plastic energy dissipation. However, even for cases with low loading
velocity and large specimen size, failure is relatively brittle with a small amount of
plasticity occurring near the crack tip and in the wake of the fracture process zone.
Therefore, the influence of plasticity on global rate­dependence remains limited.
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The dynamic fracture energy 𝐺𝑐 shows an increasing trend with the crack speed
𝑉 but no unique 𝐺𝑐(𝑉) relation is found [47]. For most investigated loading rates,
the crack growth follows a rate­independent 𝑅­curve, which is related to the fact
that the amount of cohesive energy dissipation is the same for different cases with
lower loading rates.

Cases with high nominal strain rate show visible inertia effects with oscillating
values of 𝐽𝑑𝑦𝑛. These cases also show increased microcracking which leads to a
higher overall energy dissipation pointing at a velocity toughening effect. Con­
sidering that the mode­I fracture toughness is also temperature­dependent [55],
incorporation of the temperature effect into the current numerical framework is
further needed and can be done by following the idea of [17].
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6
Conclusion

6.1. Conclusions and discussions
The main objective of this thesis is to investigate the rate­dependent deformation
and failure of composite laminates under dynamic (impact) loads with multiscale nu­
merical models. More specifically, three contributing mechanisms including inertia
effects, the viscous material behavior and microscale failure pattern are investigated
with multiscale models.

This work started with the investigation of a series of dynamic DCB tests of a
unidirectional PEEK/carbon composite laminate over a test rate range of 3.3×10−5
to 10.0 m/s with a rate­dependent cohesive zone model (CZM) and an interfacial
thick level set (ITLS) model. In the adopted numerical models, the bulk material of
the beam is considered to be homogeneous and orthotropic linear elastic without
taken the microstructure of the unidirectional composite laminate into account. The
rate­dependent failure mechanism and energy dissipation are considered by rate­
dependent cohesive laws used in the CZM and the crack speed versus energy release
rate (𝑉(𝐺)) relation in the ITLS model. It is found that the presented rate­dependent
CZM is capable of capturing the average crack growth speed and it fails to reproduce
crack arrests that do occur in some of the experiments. However, the 𝑉(𝐺) relation
can provide a very good match with experimentally observed arrests and reinitiation
phenomena with carefully calibrated parameters. No single 𝑉(𝐺) relation could be
identified that works for all rates, which means that the physical formulation is
still incomplete. Further research is needed to investigate other factors that might
influence the crack speed, for instance the time rate of the dynamic energy release
rate [1].

To obtain a better understanding of the underlying mechanisms at the mi­
croscale, multiscale models have been developed to incorporate the effect of com­
posite microstructure and quantify the contribution of various microscale events on
macroscopic rate­dependent deformation and failure. Special attention is put on
three contributing mechanisms, namely inertia effects, the viscous material behav­
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ior and microscale fracture mechanism. Firstly, a dispersive homogenization model
which can capture the micro­inertia of composites has been introduced. In this ap­
proach, the homogenized macroscopic linear momentum equation is enriched with
a micro ­inertia term scaled by a so ­called “dispersion tensor”. This dispersion tensor
is computed within a statistically equivalent representative volume element (RVE).
It is found that the dispersive multiscale model gives a considerable improvement
over the non­dispersive model in capturing the dynamic response of heterogeneous
materials. The convergence of the dispersion tensor is found to be sensitive to the
spatial distribution pattern. Convergence is obtained in an RVE­size study but only
with a relatively large micromodel.

Secondly, a step­by­step numerical homogenization procedure has been intro­
duced to calibrate a homogenized viscoelastic­viscoplastic (VE­VP) model for the
transverse response of composites. The calibrated VE­VP model is used in a ho­
mogenized FEM model to describe the composite material response and to compare
against the RVE model. With a novel step­by­step numerical homogenization pro­
cedure, the homogenized model captures the viscoelastic deformation, stress re­
laxation, the rate­dependent yielding and unloading behavior of the polymer com­
posite well, although the assumptions of a single plastic Poisson’s ratio and pure
isotropic hardening are over­simplifications of the composite behavior. This model
can be further used to model the far­field mechanical response of composites in the
transverse plane in a notched configuration in order to avoid high computational
costs.

Thirdly, the mode ­I dynamic fracture energy and failure mechanisms of poly­
mer composites are investigated with an embedded cell model of the single ­edge­
 notched­ tension (SENT) geometry. The influence and interaction of loading rate,
time ­dependent material nonlinearity, structural inertia and matrix ligament bridg­
ing on the fracture toughness and failure mechanisms of composites have been
evaluated. It is found that with the given material parameters and studied loading
rate range, the failure type is brittle with many microcracks but lim ited plasticity
in the fracture process zone and a trend of increasing brittleness for larger strain
rates is observed. The dynamic fracture energy 𝐺𝑐 shows an increasing trend with
the crack speed V but no unique 𝐺𝑐(𝑉) relation is found. Cases with high nominal
strain rate show visible but not very strong inertia effects with oscillating val ues
of the crack growth driving force. The introduced nu merical framework allows a
quantitative evaluation of the dynamic fracture energy for composites, including
macroscopically useful information such as 𝑅­curves and velocity­toughening data.
Con sidering that the mode ­I fracture toughness is also temperature­ dependent [2],
incorporation of temperature effects into the current numerical framework is needed
which can be achieved following the idea of [3].

Overall, it is concluded that it is possible to capture several phenomena observed
for the dynamic response of composites with the appropriate tools. However, no
single approach exists that can completely describe dynamic crack growth in com­
posites for all relevant loading rates. Nevertheless, a number of suggestions can
be made to help the analysis/design of impact resistant structures in real life: (1)
the rate­dependency of fracture energy of composites should be considered for
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impact­resistance structures since overlooking such effect could cause an overop­
timistic design. (2) Improvement of fracture energy of fiber/matrix interface and
the pure matrix could be helpful to increase the overall fracture resistance and the
embedded cell model can be used as a numerical tool to evaluate the dynamic
fracture energy. (3) The material properties of polymer matrix and fiber determine
the viscocity of composites, careful selection of the constituents could help improve
the energy dissipation of composite structures. (4) The micro­inertia effect of com­
posites has a remarkable effect on the stress­wave propagation in composites and
therefore quantification of such effect should be properly done for designing wave­
mitigation structures.

6.2. Novelty and contributions of this work
The new developments in computational methods for describing the dynamic re­
sponse of composites in this thesis are:

1. The interfacial thick level set (ITLS) method is for the first time embedded
in a dynamics solution scheme which extends the application of this method
from quasi­ static and cyclic loading to dy namic loading.

2. An explicit relation between the crack growth speed 𝑉 and energy release
rate 𝐺 has been implemented in the ITLS method to capture both sta ble crack
propagation and unstable crack propagation in DCB tests, although a single
𝑉(𝐺) that could describe the response at all loading rates could not be found.

3. It is demonstrated that the dispersive multiscale model shows a consider­
able improvement over the non­dispersive model in capturing the dynamic
response of heterogeneous materials by studying elastic wave propagation
problems.

4. It has been demonstrated that an RVE exists for the presented dispersive
homogenization approach for realistic fiber reinforced composite microstruc­
tures, although it was found that careful definition of microstructural geometry
is required to achieve representativeness.

5. A numerical homogenization scheme is developed to derive a homogenized
viscoelastic­viscoplastic (VE­VP) model for the transverse response of fiber­
reinforced epoxy composites, including a novel identification method for ho­
mogenized material parameters.

6. An embedded cell model with dynamic 𝐽­integral for modeling dynamic crack
growth in heterogeneous materials has been developed.

6.3. Recommendations for future work
To be able to predict failure of composites considering high­rate effects, the intro­
duced numerical framework in this thesis needs to be further developed to achieve
the goal of an efficient and accurate numerical model. Firstly, a more accurate and
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efficient homogenization technique is needed to be used for modeling the consti­
tutive behavior of composites considering high strain rates. The numerical homog­
enization scheme introduced in Chapter 4 must be extended in fiber­direction and
oversimplifications of a single plastic Poisson’s ratio and pure isotropic hardening
should be corrected. Secondly, a rate­dependent crack growth model (e.g. CZM
or ITLS) has to be developed which is capable of capturing the entire physics of
dynamic crack growth, including crack initiation, propagation and arrest. Studies
in Chapter 2 and 5 have provided useful insights with either the rate­dependent
CZM or the ITLS model with a crack speed 𝑉 vs. dynamic energy release rate 𝐺
relation. However, there is no unique model that can be established. Thirdly, a
homogenization technique is needed to capture different inertia effects of fiber and
matrix, especially for high strain rate type of loading cases (e.g. shock wave). The
dispersive homogenization model introduced in Chapter 3 is able to capture this
effect only when the stress wave is not shorter than a few times of the RVE size.
Fourthly, the thermodynamic effect should be considered as it is a critical contri­
bution for cases like impact loading. Therefore, some possible approaches for the
above mentioned goals are discussed in this section.

6.3.1. High­rate constitutive modeling
As mentioned in Chapter 4, the developed homogenized VE­VP model with the
same isotropic hardening as the matrix model matches very well with the RVE
model under monotonic loading. However, if plasticity also happens under reverse
loading, there is some deviation observed. Therefore, a mixed hard ening rule could
be introduced with combined isotropic hardening and kinematic hardening. Mean­
while, to consider the orthotropy of composite laminates, the model needs to be
extended to consider the mechanical response in the fiber direction. Therefore,
the adopted viscoelasticity and viscoplasticity formulation should be adapted. A
possible starting point is to use the transversely­isotropic elastic–plastic constitu­
tive model introduced in Vogler et al. [4] to replace the elastic­plastic components
of the VE­VP model in Chapter 4, but additional attention is required to properly
introduce viscosity in the orthotropic constitutive law.

6.3.2. Numerical techniques for crack growth
Deriving a rate ­dependent cohesive law with cohesive multiscale modeling tech­
niques is also interesting. For instance, with an RVE­ based cohesive multiscale ap­
proach, information of the finer ­scale is hierarchically passed on to a coarser scale
by bridging laws. For a two­scale scheme, at the macroscopic level the strain lo­
calization can be represented by co hesive cracks with strong discontinuity kinemat­
ics and a proper kinematical infor mation transfer from the macro ­to­ micro scales.
Hill–Mandel lemma is extended to relate coarse and fine scale energies with the
assumption of separation of scales. Quasistatic crack growth in composites can be
studied so that inertia is not needed to be taken into account. With this technique,
the material nonlinearity and time­ dependence of polymeric resin, rate­ dependent
fiber/matrix debonding, matrix cracking can be considered and collapsed into a
rate­ dependent cohesive law. The homogenized rate­dependent cohesive law can
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be compared with the DNS model introduced in Chapter 5 to validate the accuracy
of the proposed cohesive law. Experimental work is also necessary to be compared
with. A further extension could be the study of mixed­mode crack propagation with
the above numerical framework.

The ITLS model introduced in Chapter 2 and the embedded cell model intro­
duced in Chapter 5 can be further utilized and developed to study rate­dependent
failure of composite laminates. In this thesis a relation is derived between fracture
energy 𝐺𝑐 and crack speed 𝑉 from SENT tests in Chapter 5. It would be interesting
to see if the ITLS model introduced in Chapter 2 is capable of reproducing the same
dynamic crack propagation behavior. The embedded microstructure then has to be
homogenized to model the environment of the crack and a possible method is to
use the numerical homogenization model introduced in Chapter 4 . In case of short ­
pulse type of loading when the generated stress wave is a few times of the size
of an RVE, the micro­ inertia effect becomes evident and the dispersive formulation
in Chapter 3 can be included to better capture the response of the homogenized
material.

6.3.3. Thermomechanical modeling
As mentioned in Chapter 1, one of the contributing mechanisms of rate­ dependent
deformation and failure is thermomechanical dissipation, i.e. a transition from isother­
mal to adiabatic deformation and failure process is expected for composites at in­
creasing loading rates. To account for this, heat production and conduction in bulk
material and fracture process zone should be included in the model. Mechanical
properties of polymers change dramatically with temperature, going from glass­ like
brittle behaviour at low tem peratures to rubber­ like behaviour at high temperatures.
This is a typical example of a phenomenon for which multiscale approaches are at­
tractive. Temperature dependent behavior of the matrix can be characterized with
tests on pure polymer material, after which RVE simulations can predict how this af­
fects the overall composite material response. Existing thermodynamic constitutive
models can be incorporated in the current framework. Homogenization techniques
are still needed to derive the connection between the various thermomechanical
fields at macroscale and microscale [5].

References
[1] H. Liu, H. Nie, C. Zhang, and Y. Li, Loading rate dependency of Mode I inter­

laminar fracture toughness for unidirectional composite laminates, Composites
Science and Technology 167, 215 (2018).

[2] J. J. M. Machado, A. Hayashi, Y. Sekigushi, R. D. S. G. Campilho, E. A. S. Mar­
ques, C. Sato, and L. F. M. da Silva, Dynamic behaviour in mode I fracture
toughness of CFRP as a function of temperature, Theoretical and Applied Frac­
ture Mechanics 103, 102257 (2019).

[3] A. Ahmed and L. J. Sluys, A phantom node formulation for modeling coupled

http://dx.doi.org/ 10.1016/j.compscitech.2018.07.040
http://dx.doi.org/ 10.1016/j.compscitech.2018.07.040
http://dx.doi.org/ 10.1016/j.tafmec.2019.102257
http://dx.doi.org/ 10.1016/j.tafmec.2019.102257


6

146 References

adiabatic­isothermal cracking in FRP composites, Computer Methods in Applied
Mechanics and Engineering 278, 291 (2014).

[4] M. Vogler, R. Rolfes, and P. P. Camanho, Modeling the inelastic deformation and
fracture of polymer composites­part I: Plasticity model, Mechanics of Materials
59, 50 (2013).

[5] G. Chatzigeorgiou, N. Charalambakis, Y. Chemisky, and F. Meraghni, Peri­
odic homogenization for fully coupled thermomechanical modeling of dissipa­
tive generalized standard materials, International Journal of Plasticity 81, 18
(2016).

http://dx.doi.org/10.1016/j.cma.2014.06.003
http://dx.doi.org/10.1016/j.cma.2014.06.003
http://dx.doi.org/10.1016/j.mechmat.2012.12.002
http://dx.doi.org/10.1016/j.mechmat.2012.12.002
http://dx.doi.org/ 10.1016/j.ijplas.2016.01.013
http://dx.doi.org/ 10.1016/j.ijplas.2016.01.013


Acknowledgements

This PhD journey is finally over. To me, it is certainly an important life journey
which will influence my whole life. It is interesting and unforgettable. Without the
help of many people, I can not imagine that I can achieve this far as being a PhD.
Therefore, I would like share my sincere thanks to those who have supported me
in any manner during my PhD journey.

First of all, I would like to thank my Promoter, Bert Sluys for your enormous
help and the freedom you have given to me. Without you this thesis would simply
not have been possible. I enjoyed making presentations to you and the discussions
about our research. Your comments on my research are definitely illuminating and
your suggestions about my presentation skills lead me in the right path of becoming
a better presenter. You are an easygoing person and I certainly like the right of
“knocking your door and ask you something without reservation”. I would like to
thank you for allowing me to stay in Beijing in the last stage of my PhD while still
maintaining the supervision and help just like I was in Delft.

I would like to thank my daily supervisor, Frans P. van der Meer for your relentless
help. Without the coding environment you provided, I can not even start my PhD
project. I can still recall so many discussions we had in your office and you are
always so nice to accept me to interrupt you with some “strange” questions. Your
suggestions have always helped me to step forward and your comments on the
paper always pose a big challenge on me. When I look back, these moments have
really progressed the quality of my research. I feel lucky that you are such a nice
person to work with and talk with. Your consistent help during my stay in Beijing
made the completion of this thesis possible.

I would like to thank those who have shared important research skills with me.
I would like to thank Erik Jan, who has provided so many help on JEMJIVE coding.
To Martijn, who has shared his knowledge about the DEM solver HADES with me.
I would like to thank Iuri for providing me with the implementation of a VE­VP
material model.

Thanks the sectary team of the 3MD department, including Anneke, Jaap, Jacque­
line, Iris and Sandra. Special thanks go to Anneke who has helped me applying for
Visa and build a nice working environment. Special thank also goes to Jaap for
being my nice office neighbour and always being so nice to solve my problems.

I would like to thank my colleagues of the computational mechanics group for
sharing the PhD journey together. We had nice time having lunch together, talking at
the coffee corner, playing sports, going to conferences, eating outside, etc. Special
thanks go to my former officemate Erik for having so many discussions on our
research, teaching me dutch, coffee breaks, having beer and lunch walks. I would
also like to give special thank to Kai and Jitang for helping me get to know the group
when I just started my PhD. For Jitang, your financial support during my stay in

147



6

148 References

Beijing certainly helped me survive. Special thank also goes to Ali for your kindness
and friendship, you are a person who is more than willing to provide help and share
your skills. You are my gym coach and I hope you enjoy this title. I would like to
extend my special thanks to Parashant, dongyu, Richard, Fariborz, Tiziano and Jian
for enjoying the basketball time with maybe a bit trash talk and we really had fun.
For Richard, you are my gitar teacher, although I am not a good student. I would
like to thank Jafar for having beer together and sharing life stories. I would like to
thank my officemate Suman for being such a nice person to stay with. I would like
to thank Mz and Lu for having nice Chinese food together and the talks we had in
Chinese. For Mingjuan, Hongzhi, Chenjie, Tao, Hongxiao and Bingjing, thanks for
sharing our Chinese culture and supporting each other while we are studying in the
Netherlands. I would like to thank my colleagues: Mohsen, Dragan, Luiz, Bram,
Fanxiang, Davide, Lars, Frank, Zheng, Jaap, Arman, Mehdi, Luis, Osvalds, Rafid,
Noori, Marcello, Liting, Cao, angelo, Behrouz.

Finally, I would like to thank my parents for giving me so much support both
mentally and economically. I have shared so many difficult moments with you. You
are always standing by my side with so much patience and encouragements. I
would also like to thank Ms. Li Deng for her courage to join my life under such a
circumstance. Her love always motivates me to explore my biggest potential.

Yaolu Liu



Appendix A

The cohesive law in this work was implemented in an implicit framework and hence
the constitutive tangent matrix was derived. The traction vs. displacement jump
relation in Eq. (2.1) can be rewritten in matrix notation as

𝐭 = 𝐾(𝐈 − 𝑑𝐏)J𝐮K (1)

in which,

𝐈 = [ 1 0
0 1 ] , 𝐏 = [

⟨J𝑢K1⟩J𝑢K1 0
0 1

] (2)

During damage growth, the consistent tangent 𝐃cons for a fixed time step size of 𝑇𝑐
is defined as

𝐃cons =
𝜕𝐭
𝜕J𝐮K = 𝐾 [𝐈 − 𝑑𝐏 − 𝐏J𝐮K( 𝜕𝑑𝜕J𝐮K)

𝑇
] (3)

with
𝜕𝑑
𝜕J𝐮K = 𝜕𝑑

𝜕Δ
𝜕Δ
𝜕J𝐮K + 𝜕𝑑

𝜕Δ0
𝜕Δ0
𝜕J𝐮K + 𝜕𝑑

𝜕Δ𝑓
𝜕Δ𝑓
𝜕J𝐮K (4)

The Eq. (4) is expanded as
𝜕𝑑
𝜕Δ =

Δ𝑓Δ0
Δ2(Δ𝑓 − Δ0)

(5)

𝜕Δ
𝜕J𝐮K = 1

Δ ( ⟨J𝑢K1⟩ , J𝑢K2 )𝑇 (6)

𝜕𝑑
𝜕Δ0

= −
Δ𝑓(Δ𝑓 − Δ)
Δ(Δ𝑓 − Δ0)2

(7)

𝜕Δ0
𝜕J𝐮K = 𝜕Δ0

𝜕𝐵
𝜕𝐵
𝜕J𝐮K + 𝜕Δ0

𝜕J𝑢K01
𝜕J𝑢K01
𝜕𝜎1

𝜕𝜎1
𝜕J𝐮K + 𝜕Δ0

𝜕J𝑢K02
𝜕J𝑢K02
𝜕𝜎2

𝜕𝜎2
𝜕J𝐮K (8)

𝜕𝑑
𝜕Δ𝑓

= − Δ0(Δ − Δ0)
Δ(Δ𝑓 − Δ0)2

(9)

𝜕Δ𝑓
𝜕J𝐮K = 𝜕Δ𝑓

𝜕𝐵
𝜕𝐵
𝜕J𝐮K+𝜕Δ𝑓𝜕Δ0

𝜕Δ0
𝜕J𝐮K+ 𝜕Δ𝑓

𝜕J𝑢K01
𝜕J𝑢K01
𝜕𝜎1

𝜕𝜎1
𝜕J𝐮K+ 𝜕Δ𝑓

𝜕J𝑢K02
𝜕J𝑢K02
𝜕𝜎2

𝜕𝜎2
𝜕J𝐮K+ 𝜕Δ𝑓

𝜕J𝑢K𝑓1
𝜕J𝑢K𝑓1
𝜕J𝐮K + 𝜕Δ𝑓

𝜕J𝑢K𝑓2
𝜕J𝑢K𝑓2
𝜕J𝐮K

(10)
with

𝜕Δ0
𝜕𝐵 = 𝜂𝐵𝜂−1

2Δ0
((J𝑢K02)2 − (J𝑢K01)2) (11)
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𝜕𝐵
𝜕J𝐮K = ( 𝜕𝐵

𝜕J𝑢K1 , 𝜕𝐵𝜕J𝑢K2)
𝑇
= (−2⟨J𝑢K1⟩(J𝑢K2)2Δ4 , 2(⟨J𝑢K1⟩)2J𝑢K2Δ4 )

𝑇

(12)

𝜕Δ0
𝜕J𝑢K01 =

(1 − 𝐵𝜂)
Δ0

J𝑢K01, 𝜕Δ0
𝜕J𝑢K02 =

𝐵𝜂
Δ0

J𝑢K02 (13)

𝜕J𝑢K01
𝜕𝜎1

=
𝜕J𝑢K02
𝜕𝜎2

= 1
𝐾 (14)

𝜕𝜎1
𝜕J𝐮K = { 𝑐1𝜎

0
1

Δ̇1𝑇𝑐
( ⟨J𝑢K1⟩J𝑢K1 , 0)

𝑇
, Δ̇1 ≥ Δ̇ref1

0, Δ̇1 < Δ̇ref1
, 𝜕𝜎2
𝜕J𝐮K = { 𝑐2𝜎

0
2

Δ̇2𝑇𝑐
(0, |J𝑢K2|J𝑢K2 )

𝑇
, Δ̇2 ≥ Δ̇ref2

0, Δ̇2 < Δ̇ref2
(15)

and
𝜕Δ𝑓
𝜕𝐵 = 𝜂𝐵𝜂−1

Δ0
(J𝑢K02J𝑢K𝑓2 − J𝑢K01J𝑢K𝑓1) (16)

𝜕Δ𝑓
𝜕Δ0

= −
Δ𝑓
Δ0

(17)

𝜕Δ𝑓
𝜕J𝑢K01 =

1 − 𝐵𝜂
Δ0

J𝑢K𝑓1 , 𝜕Δ𝑓
𝜕J𝑢K02 =

𝐵𝜂
Δ0

J𝑢K𝑓2 (18)

𝜕Δ𝑓
𝜕J𝑢K𝑓1 =

(1 − 𝐵𝜂)J𝑢K01
Δ0

,
𝜕Δ𝑓
𝜕J𝑢K𝑓2 =

𝐵𝜂J𝑢K02
Δ0

(19)

𝜕J𝑢K𝑓1
𝜕J𝐮K =

𝜕J𝑢K𝑓1
𝜕𝐺𝐼𝐶

𝜕𝐺𝐼𝐶
𝜕J𝐮K + 𝜕J𝑢K

𝑓
1

𝜕𝜎1
𝜕𝜎1
𝜕J𝐮K (20)

𝜕J𝑢K𝑓2
𝜕J𝐮K =

𝜕J𝑢K𝑓2
𝜕𝐺𝐼𝐼𝐶

𝜕𝐺𝐼𝐼𝐶
𝜕J𝐮K + 𝜕J𝑢K

𝑓
2

𝜕𝜎2
𝜕𝜎2
𝜕J𝐮K (21)

with
𝜕J𝑢K𝑓1
𝜕𝐺𝐼𝐶

= 2
𝜎1
,
𝜕J𝑢K𝑓2
𝜕𝐺𝐼𝐼𝐶

= 2
𝜎2

(22)

𝜕J𝑢K𝑓1
𝜕𝜎1

= − 2𝐺𝐼𝐶(𝜎1)2
,
𝜕J𝑢K𝑓2
𝜕𝜎2

= −2𝐺𝐼𝐼𝐶(𝜎2)2
(23)

𝜕𝐺𝐼𝐶
𝜕J𝐮K = {𝑚1𝐺

0
𝐼𝐶

Δ̇1𝑇𝑐
( ⟨J𝑢K1⟩J𝑢K1 , 0)

𝑇
, Δ̇ref1 ≤ Δ̇1 ≤ Δ̇inf1

0, otherwise
(24)

𝜕𝐺𝐼𝐼𝐶
𝜕J𝐮K = {𝑚2𝐺

0
𝐼𝐼𝐶

Δ̇2𝑇𝑐
(0, |J𝑢K2|J𝑢K2 )

𝑇
, Δ̇ref2 ≤ Δ̇2 ≤ Δ̇inf2

0, otherwise
(25)



Appendix B

The solution of Eq. (3.18) follows a standard FEM formulation with the precompu­
tation of the dispersion tensor via the procedures in Chapter 3.2.1. The stiffness
matrix is needed for the calculation of the macro­scale stress 𝜎(0)𝑖𝑗 . This is obtained
by a standard computational­homogenization scheme. Periodicity is assumed for
the boundary edges and a prescribed displacement is applied to three controlling
nodes (see Fig. 1) according to

𝐮𝑖 = �̃�𝑖𝜺𝑀 , 𝑖 = 1, 2, 4 (26)

where 𝜺𝑀 is the macro­scale strain and

�̃�𝑖 = [
𝑦𝑖1 0
0 𝑦𝑖2
𝑦𝑖2
2

𝑦𝑖1
2

] (27)

After solving the incremental form of system equation 𝐊𝛿𝐮 = 𝛿𝐟, the stiffness matrix
𝐒𝑀 is obtained by

𝐒𝑀 = [ �̃�1 �̃�2 �̃�4 ] (𝐊𝑝𝑝 − 𝐊𝑝𝑓(𝐊𝑓𝑓)−1𝐊𝑓𝑝) [
�̃�1
�̃�2
�̃�4

] (28)

in which subscript 𝑝 denotes the degrees of freedom of the three controlling nodes
and subscript 𝑓 represents the other free nodes.

1 2

4 3

𝚪𝐵

𝚪𝑇

𝚪𝐿 𝚪𝑅

Figure 1: Periodicity of RVE. Two periodicity pairs of edges: Γ𝐿 and Γ𝑅; Γ𝑇 and Γ𝐵.
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Appendix C

To solve Eq. (3.24), the influence function ℎ𝑚𝑛𝑘 (𝑚𝑛 = 11, 22, 12) is treated as nodal
variable. In matrix notation, standard FEM formulation with 𝐡𝑚𝑛 ∶= (ℎ𝑚𝑛1 , ℎ𝑚𝑛2 )𝑇 =
𝐍𝐡

𝑚𝑛
and 𝝎 = 𝐍𝝎 are introduced where 𝐍 is the shape function matrix and 𝐡

𝑚𝑛
,

𝝎 contain the nodal values of the acceleration influence function and test function,
respectively. Eq. (3.24) is further simplified by using the FEM formulation as

∫
Θ
((𝐿𝝎)𝑇𝝈𝑚𝑛 + (𝐿𝝎)𝑇𝐅𝑚𝑛) 𝑑Θ = 𝝎𝑇∫

Θ
(𝐁𝑇𝝈𝑚𝑛 + 𝐁𝑇𝐅𝑚𝑛) 𝑑Θ = 0 (29)

where

𝐋𝝎 =
⎡
⎢
⎢
⎢
⎣

𝜕
𝜕𝑦1

0
0 𝜕

𝜕𝑦2𝜕
𝜕𝑦2

𝜕
𝜕𝑦1

⎤
⎥
⎥
⎥
⎦

[ 𝜔1𝜔2 ] = [
𝜔(1,1)
𝜔(2,2)
2𝜔(1,2)

] 𝝈𝑚𝑛 = [
𝜎𝑚𝑛11
𝜎𝑚𝑛22
𝜎𝑚𝑛12

] = [
𝑆1111 𝑆1122 𝑆1112
𝑆2211 𝑆2222 𝑆2212
𝑆1211 𝑆1222 𝑆1212

] [
ℎ𝑚𝑛(1,1)
ℎ𝑚𝑛(2,2)
2ℎ𝑚𝑛(1,2)

]

𝐅𝑚𝑛 = [
𝐹𝑚𝑛11
𝐹𝑚𝑛22
𝐹𝑚𝑛12

] = 𝜌(𝐲)
𝜌(0) [

𝑆11𝑚𝑛
𝑆22𝑚𝑛
𝑆12𝑚𝑛

]

in which the matrix 𝐁 = 𝐋𝐍.
The constraint equation Eq. (3.12) is rewritten as

⟨ℎ𝑚𝑛𝑘 ⟩Θ = ⟨𝐍𝐡
𝑚𝑛
⟩
Θ
= ⟨𝐍⟩Θ 𝐡

𝑚𝑛
= 𝐜𝐡

𝑚𝑛
= 0 (30)

in which the cofficient matrix 𝐜 = ⟨𝐍⟩Θ. Eq. (30) can then be treated as a constraint
for the linear system of equations given by Eq. (29). The 𝐲−periodicity condition
of ℎ𝑚𝑛𝑘 can be enforced directly by periodicity constraints on corresponding edges
of the RVE (see Fig. 1).
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Appendix D

According to Eq. (4.20),

𝜎𝑖𝑗(𝑡𝑛+1) = 𝐷∞𝑖𝑗𝑘𝑙 ∶ 𝜀𝑒𝑘𝑙(𝑡𝑛+1) + 𝐷𝑣𝑒𝑖𝑗𝑘𝑙(Δ𝑡) ∶ Δ𝜀𝑒𝑘𝑙 + 𝜎ℎ𝑖𝑠𝑡𝑖𝑗 (𝑡𝑛) (31)

By taking the derivative of the stress 𝜎𝑖𝑗(𝑡𝑛+1)with respect to the strain 𝜀𝑒𝑘𝑙(𝑡𝑛+1),
the consistent tangent can be derived as:

𝐷𝑐𝑜𝑛𝑖𝑗𝑘𝑙 =
𝜕𝜎𝑖𝑗(𝑡𝑛+1)
𝜕𝜀𝑘𝑙(𝑡𝑛+1)

=
𝜕𝜎𝑖𝑗(𝑡𝑛+1)
𝜕𝜀𝑒𝑘𝑙(𝑡𝑛+1)

= 𝐷∞𝑖𝑗𝑘𝑙 + 𝐷𝑣𝑒𝑖𝑗𝑘𝑙(Δ𝑡) (32)
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Appendix E

To solve the local return­mapping scheme, a Newton­Raphson scheme is adopted.
Herein, a consistent tangent for the local Newton­Raphson scheme is derived by
using:

𝜕Φ
𝜕Δ𝛾 = �̂�

𝜕𝑓𝑝
𝜕Δ𝛾 − 1 (33)

where

�̂� =
𝑚𝑝Δ𝑡
𝜂𝑝𝜎0𝑡 𝜎0𝑐

(
𝑓𝑝
𝜎0𝑡 𝜎0𝑐

)
𝑚𝑝−1 𝜕𝑓𝑝

𝜕Δ𝛾 = −
72�̂�𝐽tr2
𝜁3𝑠

− 4
(𝜎c − 𝜎t) �̂�𝛼𝐼tr1

𝜁2𝑝
+�̂�𝜕Δ𝜀

p
𝑒𝑞

𝜕Δ𝛾 (34)

with

�̂� =
𝜕𝑓𝑝
𝜕𝜀𝑝𝑒𝑞

= 2𝐼𝑡𝑟1
𝜁𝑝

( 𝜕𝜎𝑐𝜕𝜀𝑝𝑒𝑞
− 𝜕𝜎𝑡
𝜕𝜀𝑝𝑒𝑞

) − 2(𝜎𝑐
𝜕𝜎𝑡
𝜕𝜀𝑝𝑒𝑞

+ 𝜎𝑡
𝜕𝜎𝑐
𝜕𝜀𝑝𝑒𝑞

) (35)

𝜕𝜀peq
𝜕Δ𝛾 = √

1
1 + 2 (𝜈p)

2 (√�̂� −
Δ𝛾
2√�̂�

(216�̂�𝐽
tr
2

𝜁3𝑠
+ 16𝛼

3�̂� (𝐼tr1 )
2

27𝜁3𝑝
)) (36)

�̂� = 18𝐽𝑡𝑟2
𝜁2𝑠

+ 4𝛼2
27𝜁2𝑝

(𝐼𝑡𝑟1 )
2

(37)

Consistent linearization of Eq. (4.25) gives:

𝐷𝑐𝑜𝑛𝑖𝑗𝑘𝑙 =
𝜕𝜎𝑖𝑗
𝜕𝜀𝑘𝑙

= 𝐺
𝜁𝑠
(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘 −

2
3𝛿𝑖𝑗𝛿𝑘𝑙) +

�̂�
𝜁𝑝
𝛿𝑖𝑗𝛿𝑘𝑙 −

72𝑉𝐺2
𝜇𝜁4𝑠

𝑆tr𝑖𝑗𝑆tr𝑘𝑙 −
36 (𝜎𝑐 − 𝜎𝑡) 𝑉�̂�𝐺

𝜇𝜁𝑝𝜁2𝑠
𝑆tr𝑖𝑗𝛿𝑘𝑙

−8𝛼𝐼
tr
1 𝑉�̂�𝐺
𝜇𝜁2𝑝𝜁2𝑠

𝛿𝑖𝑗𝑆tr𝑘𝑙 −
4𝛼𝐼tr1 (𝜎𝑐 − 𝜎𝑡) 𝑉�̂�2

𝜇𝜁3𝑝
𝛿𝑖𝑗𝛿𝑘𝑙 −

6𝑉𝐺�̂�
𝜇𝜁2𝑠

𝑆tr𝑖𝑗𝐸𝑘𝑙 −
2𝛼𝐼tr1 𝑉�̂��̂�
3𝜇𝜁2𝑝

𝛿𝑖𝑗𝐸𝑘𝑙
(38)

where

𝜇 = − 𝜕Φ𝜕Δ𝛾 �̂�𝑖𝑗 =
𝜕𝜀peq
𝜕𝜀𝑖𝑗

= 1
1 + 2𝜈2𝑝

(Δ𝛾)2
Δ𝜀peq

𝑀𝑘𝑙
𝜕𝑀𝑘𝑙
𝜕𝜀𝑖𝑗

(39)

𝑀𝑘𝑙 =
3𝑆tr𝑘𝑙
𝜁𝑆

+ 2𝛼𝐼
tr
1 𝛿𝑘𝑙
9𝜁𝑝

𝜕𝑀𝑖𝑗
𝜕𝜀𝑘𝑙

=
6𝐺 (𝛿𝑠𝑖𝑗𝑘𝑙 −

1
3𝛿𝑖𝑗𝛿𝑘𝑙)

𝜁𝑠
+

2
3𝛼𝐾𝛿𝑖𝑗𝛿𝑘𝑙

𝜁𝑝
(40)

The meaning of other variables can be found in Chapter 4.2.
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Appendix F

Periodic boundary conditions are applied on the RVE. For instance, for a schematic
finite element model with four hexagonal elements as shown in Fig. 2, this implies
that:

𝐮𝑅 − 𝐮𝐿 = 𝐮(2) − 𝐮(0) (41)

𝐮𝑈 − 𝐮𝐷 = 𝐮(3) − 𝐮(0) (42)

𝐮𝐹 − 𝐮𝐵 = 𝐮(1) − 𝐮(0) (43)

where 𝐮𝑅 and 𝐮𝐿 are the displacement of any periodic pair of nodes on the right
surface and left surface of the numerical model, respectively, 𝐮𝑈 and 𝐮𝐷 are the
displacement of any periodic pair of nodes on the top surface and bottom surface,
respectively, 𝐮𝐹 and 𝐮𝐵 are the displacement of any periodic pair of nodes on the
front surface and back surface, respectively, 𝐮(0), 𝐮(1), 𝐮(2), 𝐮(3) are the displace­
ment of master nodes {0,1,2,3}, respectively. To ensure that the RVE deformation
under unidirectional loading is the same as an isotropic structure under the same
loading condition, special care should be taken with respect to the possible shear
deformation. The following constraints are applied to prevent possible shear defor­
mation:

𝑢(0)1 = 𝑢(0)2 = 𝑢(0)3 = 𝑢(2)1 = 𝑢(2)3 = 𝑢(3)1 = 𝑢(3)2 = 𝑢(1)2 = 𝑢(1)3 = 0 (44)

The incremental average stress for each time step can be calculated by:

𝛿𝜎 =

⎡
⎢
⎢
⎢
⎢
⎣

𝛿𝜎11
𝛿𝜎22
𝛿𝜎33
𝛿𝜎23
𝛿𝜎31
𝛿𝜎12

⎤
⎥
⎥
⎥
⎥
⎦

= 1
𝑉0
[ �̃�0 �̃�1 �̃�2 �̃�3 ]

⎡
⎢
⎢
⎣

𝛿𝐟0
𝛿𝐟1
𝛿𝐟2
𝛿𝐟3

⎤
⎥
⎥
⎦

(45)

with

�̃�𝑞 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑥(𝑞)1 0 0
0 𝑥(𝑞)2 0
0 0 𝑥(𝑞)3

0 𝑥(𝑞)3
2

𝑥(𝑞)2
2

𝑥(𝑞)3
2 0 𝑥(𝑞)1

2
𝑥(𝑞)2
2

𝑥(𝑞)1
2 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, 𝑞 = 0, 1, 2, 3 (46)
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in which 𝑉0 is the volume of the RVE, 𝑥(𝑞)𝑖 and 𝛿𝐟𝑖 are the coordinate and incremental
nodal forces of the four control nodes, respectively.

1

0 2

3

𝑢(𝑡)
Γ𝐿 Γ𝑅

Γ𝐷

Γ𝑈

Γ𝐵

Γ𝐹

𝑥2𝑥1

𝑥3

slave nodes
master nodes
Constraints

Figure 2: Schematic representation of the periodic and prescribed boundary conditions of a finite element
model. Three periodic pairs: top surface 𝚪𝐔 and bottom surface 𝚪𝐃, left surface Γ𝐿 and right surface
Γ𝑅, and front surface Γ𝐹 and back surface Γ𝐵.
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