
Channel Selection for Faster Deep Learning-based Gaze Estimation in the
Frequency Domain

A frequency domain approach to reducing latency in deep learning gaze estimation

Thijs Penning1

Supervisors: Dr. G. (Guohao) Lan1, Lingyu Du1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Thijs Penning
Final project course: CSE3000 Research Project
Thesis committee: Dr. G. (Guohao) Lan, Dr. Xucong Zhang, Lingyu Du

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
Gaze estimation is an important area of research
used in a wide range of applications. However,
existing models trained for gaze estimation of-
ten suffer from high computational costs. In this
study, frequency domain channel selection tech-
niques were explored to decrease these costs by re-
ducing the size of the input data. The main research
objective was to investigate the impact of channel
selection on the latency and accuracy of frequency
domain gaze estimation. Channel selection meth-
ods used in related research were adapted and ap-
plied to the domain of gaze estimation. The eval-
uation was conducted on two popular network ar-
chitectures used in this field, namely the AlexNet
and ResNet-18. Multiple channel selection models
were designed for each architecture and compared
to a traditional RGB approach with the same net-
work structure. Experimental results showed sig-
nificant speedups during training, calibration, and
inference with marginal accuracy loss. The spe-
cific speedups that the top-performing models of
both the architectures achieves were 3.3, 4.0, and
1.35 for the AlexNet, and 1.5, 1.7, and 1.35 for
the ResNet-18. Accompanying these speedups the
AlexNet model error only increased by 0.08 de-
grees compared to a traditional RGB approach,
while the ResNet-18 model lost around 0.44 de-
grees. All the code used in this research is publicly
available on GitHub1.

1 Introduction
Background There have been numerous studies in the field
of computer vision focused on estimating and applying hu-
man gaze. Human gaze is an important non-verbal cue that
communicates valuable information about someone’s desires
and emotions [1]. This information has applications in vari-
ous fields of study within and beyond the scope of computer
science. In cognitive science, for example, gaze estimation
is applied to better understand visual perception [2], while in
human-robot interaction, gaze information can be provided
to the robots to improve interactions [3]. Additionally, hu-
man gaze is utilized in everyday technologies such as smart-
phones, tablets and webcams to gain useful insights and en-
hance user experiences [4–6]. As indicated by these exam-
ples, human gaze estimation has a wide range of applications
across various disciplines.

The field of gaze estimation has changed over the years
with the introduction of new technologies and methods. Pre-
viously, gaze estimation was performed using machine learn-
ing algorithms. Over the last decade, developments in the
field of deep learning have paved the way for deep learn-
ing gaze estimation. The deep learning techniques allowed
for different approaches, resulting in better feature extraction
and higher accuracies [7, 8]. Today, gaze estimation is still
centered around deep learning convolutional neural networks

1https://github.com/tpenning/DLFDFaceGazeEstimation

(CNN). These complex networks can derive the information
required to accurately estimate gaze from a subject’s eyes or
their full face [9].

Related work While significant progress has been made in
gaze estimation, challenges remain due to the latency caused
by the high computational costs of the complex CNN needed
to complete the task. Most popular network architectures uti-
lized in gaze estimation consist of a few million to over a
hundred million parameters [10–15]. Additionally, these net-
works typically require input images of size 224×224, which
is relatively small for images, but they still contain over 150
thousand data points each. Combining the computational
complexity of these networks with the relatively ”large” im-
age sizes results in high computational costs, leading to la-
tency in calibration and interference when used in real-world
applications. This latency will, in most cases, decrease user
experience [16], and in fields where fast responsiveness is re-
quired [17] it could render the model completely useless.

An obvious solution to decrease computational costs is to
reduce the input data. The typical approach already applies
this approach by cropping and resizing larger images to the
previously mentioned 224×224 size. While this is effective
for reducing the input size, valuable information can be lost.
This trade-off is acceptable for the 224×224 size images,
but becomes problematic when attempting to go smaller. As
a result, the images in the current RGB format can not be
reduced further without substantial data loss. Therefore, a
different data representation is required. By converting the
RGB images to the frequency domain and applying channel
selection, less crucial and noisy information can be removed,
while retaining the important data and effectively reducing
the overall data size. In their work, Xu et al. [18] showed that
CNN taking RGB input can easily be modified to utilize the
frequency domain, after which up to 87.5% of the frequency
channels could be removed with marginal compromise to
accuracy. Other studies applying this technique for various
tasks and methods have shown similar results: a speedup
of the model with marginal loss of accuracy, or even a gain
with certain setups [19, 20]. These previous studies focused
on various aspects, image classification, detection and seg-
mentation tasks using a complex channel selection method
[18], unsupervised gaze estimation [19], and ImageNet2
trained models with JPEG frequency domain conversion
[20]. However, the impact of using channel selection in
the frequency domain for supervised deep learning gaze
estimation remains largely unexplored.

Research question and main contributions This research
addressed the information gap by investigating the impact of
channel selection on the latency and accuracy of frequency
domain gaze estimation. Specifically, the focus was on
finding channel selections that provide an optimal trade-off
for maximal speedup with minimal accuracy loss. In short,
this research converted the conventional RGB images to
the frequency domain, studied multiple ways to apply
channels selection of the frequency domain converted data,
and analyzed their impact on both latency and accuracy on

2https://www.image-net.org/



various model architectures.

Paper Outline The methodology of the research is discussed
in Chapter 2. The experimental setup exploring various ideas,
along with the achieved results are presented in Chapter 3.
The responsible research practices with regards to scientific
integrity and AI usage are further elaborated in Chapter 4. Fi-
nally, Chapter 5 concludes this paper with a final overview of
the work and mentions the shortcomings and possible future
extensions.

2 Methodology
Various deep learning gaze estimation models based on dif-
ferent data formats focused on the frequency domain were
tested. These different formats were achieved through a lin-
ear, multi-step data preparation process, where each step built
upon the previous one resulting in additional data formats.
The images were first preprocessed by cropping and resizing
them to the commonly used 224×224 size. After that, the im-
ages were transformed into the YCbCr color space (Section
2.1). Once in the YCbCr color space, the images could be
converted into the frequency domain (Section 2.2). Finally,
channel selection techniques were applied to the frequency
domain data (Section 2.3).

2.1 Transforming into the YCbCr Color Space
The images were transformed to the YCbCr color space, as
this color representation is commonly used in popular com-
pression standards such as JPEG. The YCbCr color space
consists of three information channels like RGB, but these
channels store the luminance and chrominance information
of an image instead of the regular colors. The Y channel
is the luma component, and contains the information about
brightness and color intensities. The Cb and Cr channels are
the chroma components, and store the color variation in the
image, indicating how the actual color displayed should dif-
fer from the luminance color of the Y channel. The channels
are illustrated in Figure 1 showing the information stored in
each channel and highlighting their focuses.

Figure 1: YCbCr color space components shown individually.
The luma component (Y) showing brightness is displayed in
grayscale. The chroma components (Cb and Cr) are displayed in
a color mapping to highlight the focus of both channels for color
variation.

2.2 Converting to the Frequency Domain
To convert the data from YCbCr to the frequency domain, the
discrete cosine transform (DCT) was applied to the images.

The following steps were applied separately to the Y, Cb, and
Cr channels, resulting in three channels of frequency domain
information for each image. First, the channels (each with a
size of 224×224) were divided into non-overlapping blocks
of 8×8 resulting in 28×28 blocks per channel per image. Af-
ter this, the DCT was applied to each block, generating 64 fre-
quency channels that store the frequency information. These
channels contain all the necessary information to reconstruct
the original block they originated from. The distribution of
this information across the channels varies per image, though
generally the distribution is similarly skewed due to the na-
ture of the DCT [21]. Only a (small) subset of the channels
contain the majority of the information, allowing the other
channels to be removed without substantial data loss. By ap-
plying channel selection techniques, this effect could be ex-
ploited, potentially allowing significant data size reductions
while retaining the important information.

2.3 Channel Selection
Performing channel selection optimally is a critical step when
working with the frequency domain. The goal is to take ad-
vantage of the significant data reduction possible while keep-
ing enough information to provide accurate results. There-
fore, selecting the channels to keep must be done carefully.
In this section, the distribution of the information contained
in the frequency channel is thoroughly analyzed, and the ap-
plied channel selection methods are discussed.

2.3.1 Channel information analysis
To analyze the information stored in the frequency channels,
the effects of individual channels were examined using image
reconstruction. An image can be converted to the frequency
domain using the steps explained in Section 2.2. Following
these steps in reverse, and with the inverse discrete cosine
transform (IDCT), the original image can be reconstructed
from frequency domain channels.

To analyze the value of certain frequency channels, images
were transformed to the frequency domain and reconstructed
with the respective channels information set to zero. Simi-
larly, the information from individual channels could be iso-
lated by setting all other channels to zero. A side effect of
this approach is that the ”blank” reconstructed image is green
due to the zero values. However, while other ”blank” im-
age colors such as black or white can be reached by using
non-zero values as the ”removed” values in the lowest fre-
quency, these could potentially have more unintended side
effects that could affect the data shown and were therefore
not used. Additionally, the green background provided better
contrast with the information displayed improving the visibil-
ity during analysis. To visualize the information in the chan-
nels, all 64 frequencies channels were isolated for each of the
YCbCr components and an extra insight was made by show-
ing each frequency channel together for all the components.
These visualizations are shown in Figure 2.

Upon analyzing Figure 2, several interesting observations
can be made, with three main observations that will be fo-
cused on. Firstly, the lower frequency channels (located in
the top left of the images) appeared to contain the critical in-
formation of the image. This was expected due to the work-



ings of DCT [21]. In comparison, the high frequency chan-
nels (situated in the bottom right of the images), contained
minimal information and are generally considered as noise
[22]. Secondly, in addition to the lower frequencies being
more vital, the lowest frequency showed to contain the most
information. Already shown from their impact on the back-
ground color, these channels also provided a relatively ac-
curate reconstruction of the original image far clearer to the
human eye than the results from other channels. Thirdly, the
luma component (Y channel) seemed to contain more infor-
mation than the chroma components (Cb and Cr channels).
These findings align with established knowledge about DCT
[21, 22], and are consistent with similar research conducted
by Xu et al. [18].

2.3.2 Static channel selection
The channel selection has an important influence on the
model design. To keep the design simple, an approach that
would keep the channel selection consistent throughout all
images was preferred. Static channel selection fits this de-
scription well, as with this method the channel selection is
made manually and does not change depending on the im-
age. Since this selection had to be applied to all images
it was important that it fitted to all the subjects. To deter-
mine which channels generally contained the most informa-
tion, images from all training subjects were analyzed using
the approach illustrated in Figure 2. The results obtained
from these analyses generally aligned with the findings from
Figure 2, highlighting the importance of the low frequency
channels even further. The range of important channels did
vary across subjects though, indicating that to ensure a good
general model performance a broader selection would proba-
bly be better. Utilizing this information, multiple models with
different channel selections were designed and experimented
with, as detailed in Section 3.2.2.

2.3.3 Dynamic channel selection
Models using a more complex dynamic channel selection
allow data distribution differences to be handled more effi-
ciently. The frequency channel analysis described in Sec-
tion 2.3.2 revealed variations in the data distributions among
the subjects, with specific channels being more or less uti-
lized. While static channel selection can include all relevant
channels in its selection, dynamic channel selection varies its
channel usage based on each image. In dynamic channel se-
lection, all channels are used as input. Based on the infor-
mation in the channels, individual channel are then ”turned
off” by setting their values to zero. These zeros are compu-
tationally faster which results in the speedup for this type of
channel selection.

The idea behind the dynamic channel selection implemen-
tation was inspired by Xu et al. [18], where they applied it to
image classification, detection and segmentation tasks. This
paper did not provide any source code of their implemen-
tation, therefore it was coded from scratch. Following the
description of their approach, together with various testing,
a model was designed that had a similar yet slightly mod-
ified structure. The dynamic model required an additional
mini model in front of the network that decided the selec-
tions based on the image, which were then multiplied with

this same image to create the input for the rest of the network.
The selection process involved multiple steps that facili-

tate channel learning and exploration. First an average pool
was applied to the original image. This averaged information
was input into two different 1×1 convolutional layers, gen-
erating two values for each channel. These values were then
normalized together to the range [0, 5], representing proba-
bilities of selecting the channel or not. To generate selec-
tion values based on these probabilities, the Gumbel Softmax
reparameterization trick was used, as sampling a Bernoulli
distribution is not differentiable. This trick added noise fol-
lowing a Gumbel distribution to the values and then applied
Softmax to them resulting in values in the range [0, 1]. Then,
to remove and reduce the floating point operations (FLOPS)
the lowest values were set to zero. By applying mathematical
operations ([0, 1] ∗ 1.1 − 0.1) to the range and using a ReLu
activation function, all values smaller than 0.09 were effec-
tively removed. Finally, the original image was multiplied
with this resulting tensor of selections and input in the rest of
the model.

To allow the model to decide on a good trade-off between
the amount of channels to use and the accuracy achievable,
the loss function had to be adjusted. For the dynamic model,
the average amount of channels selected per batch was added
from the mini model directly to the full model output. When
learning, the loss was then based on two parts: first, the L1
loss on the first two values in the output representing the gaze
direction was calculated. Second, the last output value, the
number of channels, was averaged over all the batches and
multiplied with a regularization parameter. The full loss con-
sisted of these two losses added together.

3 Experiments
This chapter describes the dataset used during the experi-
ments (Section 3.1), and, the experimental setup detailing
model design and training is discussed (Section 3.2). Finally,
the obtained results are visualized and elaborated upon (Sec-
tion 3.3).

3.1 Dataset
The experiments were performed using the publicly available
MPIIFaceGaze dataset3. The MPIIFaceGaze dataset has been
designed for gaze estimation tasks and consists of 45,000 full-
face images of subjects looking in varying directions. The
dataset contains information from 15 distinct subjects, allow-
ing the trained models to be more robust and generalize better
across different individuals and environments. The images
themselves are of size 448×448, suitable for larger models,
but also easily resizable to 224×224 as used in this research.
Additionally, labels in pitch and yaw describing the 3D gaze
direction of the images are provided as part of the dataset.

3.2 Experimental Setup
The experiments performed involved testing various model
setups using frequency domain information and comparing

3https://perceptualui.org/research/datasets/MPIIFaceGaze/



(a) Y channels (b) Cb channels (c) Cr channels (d) Combined channels
Figure 2: Information stored in the individual frequency channels.

Low frequency channels are in the top left and the high frequencies in the bottom right. (a) is the Y channel displayed in grayscale and (b)
and (c) are the Cb and Cr channels displayed with a color mapping. (d) is the combination of the same frequency channel for Y, Cb, and Cr
displayed in RGB.

these to models based on RGB images. The following sec-
tions explain the models and procedures used in the experi-
ment, including the key components, i.e., network architec-
tures, model design and phases and procedures.

3.2.1 Network architectures
The goal of this research was to develop faster models
with comparable accuracy by utilizing the frequency domain.
However, the effects of the frequency domain data vary de-
pending on the network structure. Therefore, two popular
architectures with distinct structures were used to show more
relevant and diverse results. Ordered by citation count, the
following popular gaze estimation architectures were consid-
ered: ResNet [10], AlexNet [11], VGGNet [12], GoogLeNet
[13], MobileNet [14], and SqueezeNet [15]. Ultimately, the
AlexNet and ResNet variant ResNet-18 were selected. De-
spite both options being among the larger candidates, their
significant relevance and clear structural differences guided
the selection. The AlexNet consists of only 8 complex layers,
totaling around 60 million parameters. On the other hand,
ResNet-18 contains 18 ”simpler” layers containing around 11
million parameters in total. These architectures allowed us to
examine the effects on shorter, more complex networks and
longer, less complex ones.

3.2.2 Model design
To find good channel selections and measure their perfor-
mance, multiple baseline and experimental models were de-
signed for both of the selected architectures. Four base-
line models were designed as reference points to compare
the experimental models to. The first baseline model was
trained on 224×224 RGB images following traditional mod-
els, and acted as the main baseline. The second baseline used
224×224 YCbCr images to show any change in accuracy of
the different color representation utilized by the frequency
domain models. The third baseline utilized the frequency do-
main without channel selection. This model should, in theory,
contain the same information and therefore produce similar
results as the previous baselines. The fourth and final base-
line again used the frequency domain, this time with channel
selection, selecting only the lowest frequency of each YCbCr
component acting as a minimal result baseline.

The effects of channel selection were tested in a step-wise
manner with six experimental channel selection models, each
expanding the range of selected channels. The channel se-
lections made are displayed in Table 1. As indicated by the
analysis performed in Section 2.3, all the channel selections
focused around the lower frequency channels. Each next
model ”grew” its selection from the previous one by selecting
the next lowest frequencies of Y and/or Cb and Cr channels.
There is one exception that does not follow this pattern, selec-
tion FD4 is a mutation of selection FD5 based on the dynamic
channel selection preferences of [18] testing if the same chan-
nel preference would provide good results in gaze estimation.
Furthermore, the dynamic channel selection FDD7 stands on
its own and is not related to the static channel selections.

Table 1: Channel selections for the experimental models.
The channel selections made shown by their ID, FD0 and FD1 are
two of the baseline models, FD2 - FD6 are the static channel selec-
tions, and FDD7 is the dynamic model. The Y channel denotes the Y
channel selections, while the Cb and Cr components share the same
selections displayed under the Cb/Cr channel column. The channel
indices layout has zero in the top left and sixty-three in the bottom
right. The channels in between are numbered row-wise, for exam-
ple, the top right channel has index seven.

Selection ID’s Y Channel Cb/Cr Channel
FD0 all all
FD1 [0] [0]
FD2 [0, 1, 8] [0, 1, 8]
FD3 [0, 1, 2, 8, 9, 16] [0, 1, 8]
FD4 [0, 1, 2, 3, 8, 9, 10,

16, 17, 24]
[0, 1, 3, 8, 24]

FD5 [0, 1, 2, 3, 8, 9, 10,
16, 17, 24]

[0, 1, 2, 8, 9, 16]

FD6 [0, 1, 2, 3, 4, 8, 9,
10, 11, 16, 17, 18,
24, 25, 32]

[0, 1, 2, 3, 8, 9, 10,
16, 17, 24]

FDD7 dynamic dynamic

The network architectures required slight modifications to
fit the various data formats. All models were changed to
produce only two output values (the pitch and yaw), and all



AlexNet models had one fully connected layer removed as it
did not improve the accuracy. For the RGB and YCbCr mod-
els, no further changes were required as these models used
standard 224×224 size images for which these architectures
were designed.

Looking at the frequency domain models, changes were
necessary due to the input data being too small in size com-
bined with the high channel count. Furthermore, the fre-
quency domain conversion already applied a kernel operation
similar to what the neural network would start with, which
meant that less kernel operation in the network should not
pose an immediate problem. As a result, the models were
changed to preserve more channel information and reduce the
data size less to keep the parameter count similar to the other
models for a fair comparison. Additionally, to fit the high
channel count better two versions were made of each model.
One model would use the regular architecture, with the other
changes made to it. The other model would follow the same
structure, but the channels of the data in all the layers was
doubled. This double channel model approach was also ran
for the non-frequency domain models to provide a fair com-
parison.

3.2.3 Phases and procedures
The experiment consisted of training, calibrating, and running
inference on each of the models. In each phase, the time spent
and final error were measured. In the full experiment, each
model went through all the phases from scratch ten times.
After, the mean and standard deviation of the measurements
from all the runs were recorded. As the relative time mea-
surements slightly differ depending on the computing device,
it is important to note that this experiment was conducted on
the TU Delft DefltBlue supercomputer4 as of June 2023.

The training process used the data of the first 14 subjects,
which was divided into a training and validation set using
90% and 10% of the data respectively. The model was trained
for 20 epochs on this data, where in each epoch, first the train-
ing data was run and then the error on the validation set was
measured. This approach provided a clear overview of the
learning curve, and using the validation set the model with
the lowest validation error was saved for the next phase. Fol-
lowing this setup, it was opted to measure the entire training
time including running the validation set, as it was part of the
process, and instead of the final error, the error of the saved
model was used. Furthermore, during the training process,
the following parameters were used: batch size 32, training
epochs 20, and learning rate 0.0001.

The calibration is in practice basically a second training.
For this reason a similar setup as the training phase was uti-
lized. This time the data was different as the 15th and last
subject was used, and the data was split into 100 images for
calibration and 2900 images for the validation set. The pro-
cess and parameters used were the same as the training phase,
with the only differences being that 100 epochs were used for
calibration, and the batch normalization layers were frozen.

The last phase, running inference, tests the most important
part of the system, simulating real world use. In this phase,
the model was run on all images of the last subject including

4https://www.tudelft.nl/dhpc/system

the 100 images used during calibration. This phase did not
use multiple epochs and ran the images one at a time. The
measurements consisted of the total time spent and average
error over the 3000 images.

3.3 Results
All the designed models went through all three phases: train-
ing, calibration, and inference ten times, as described in Sec-
tion 3.2. The mean and standard deviation of the measure-
ments over these ten runs are displayed in Table 2. Section
3.3.1 analyzes the effects of the different models and selec-
tions on the training and calibration phases. The inference
results are further examined in Section 3.3.2. Finally, Sec-
tion 3.3.3 presents the optimal selections based on the results,
along with their corresponding speedup and error changes
over the baseline.

3.3.1 Training and calibration
All the frequency domain models were faster during train-
ing and calibration than the color (RGB and YCbCr) models
(Table 2). The exact speedups achieved varied depending on
the architecture and whether the regular or modified version
was used. The fastest frequency domain models achieved
speedups of around 3.3, 3.3, 1.5, and 1.2 during training
and 4.0, 3.2, 1.8, and 1.2 during calibration. Comparing the
individual frequency domain models, the differences were
marginal. The baseline using all channels and the dynamic
channel selection model were slightly slower than the others,
although still faster than the color models. The other models
(FD1 - FD6), which were the static channel selection mod-
els, showed marginal differences. Only the largest selections
were slightly slower, and some outliers caused slightly higher
means, as indicated by the larger standard deviations.

While the frequency domain models were consistently
faster than the color models, the color models performed bet-
ter, having a lower error in nearly all comparisons. The exact
increase in error varied again per architecture and phase, and
it even differed between the color baselines. For the four ar-
chitectures, in general, the error increase in degrees during
training were around 0.4, 0.3, 0.6, and 0.5, and during cali-
bration, these were 0.1, 0.05, 0.5, and 0.4. Interestingly, the
all channel baseline (FD0) did not match the color baselines.
Instead, it was more equal to the other frequency models and
was even bested by these during calibration. Additionally, the
YCbCr baseline showed slightly worse results in the AlexNet
training phases but was equal or better than the RGB model
in other areas. These findings indicate that the different color
representation and data format used impacted the accuracy of
the model besides just the channel selection. Furthermore,
the performance of the dynamic model (FDD7) during train-
ing was the best among the frequency models for the AlexNet
and good with the ResNet-18. However, its performance after
calibration was worse than that of the static selection models.
This suggests that the dynamic model has the potential to out-
perform the static selection models, but it requires more data
to achieve these results, as the 100 images provided were not
sufficient for calibration.

Lastly, the modified double channel models which were de-
signed to better fit the frequency domain data, did result in ac-



Table 2: Experiment results for the various models tested.

Model Training Calibration Inference
Architecture* Data Time Error Time Error Images Error

(seconds) (degrees) (seconds) (degrees) (per second) (degrees)

AlexNet LC

RGB 434.1±17.3 2.396±0.033 98.0±4.7 3.361±0.108 771.9±1.8 3.291±0.104
YCbCr 435.8±11.9 2.580±0.045 104.1±4.4 3.389±0.119 664.7±1.0 3.316±0.115

FD0 229.2±7.9 2.601±0.043 67.4±6.9 3.585±0.138 772.7±2.6 3.500±0.134
FD1 133.4±14.8 3.277±0.179 25.1±7.3 3.777±0.224 1078.6±35.9 3.686±0.220
FD2 134.9±8.2 2.828±0.085 24.4±2.9 3.490±0.110 1050.7±8.8 3.408±0.107
FD3 130.0±4.4 2.793±0.073 24.3±3.8 3.448±0.153 1037.2±76.8 3.367±0.150
FD4 142.4±11.6 2.676±0.054 26.8±3.7 3.505±0.136 1090.3±1.5 3.423±0.130
FD5 145.4±10.1 2.732±0.116 28.9±2.4 3.469±0.102 1035.0±26.6 3.389±0.099
FD6 155.4±16.1 2.657±0.051 38.7±10.7 3.464±0.129 972.9±5.6 3.384±0.128

FDD7 279.2±14.4 2.594±0.072 75.9±3.8 3.723±0.089 567.2±0.6 3.634±0.084

AlexNet HC

RGB 910.1±9.9 2.334±0.037 157.1±7.3 3.378±0.086 541.3±0.8 3.304±0.081
YCbCr 915.9±17.4 2.533±0.046 163.4±12.5 3.332±0.132 491.5±0.7 3.260±0.126

FD0 382.5±17.2 2.575±0.059 98.3±16.8 3.502±0.080 773.0±1.4 3.422±0.077
FD1 276.1±6.7 3.280±0.094 50.0±13.6 3.661±0.109 970.6±2.3 3.575±0.105
FD2 280.5±10.1 2.817±0.068 52.5±11.5 3.508±0.130 960.0±7.3 3.426±0.126
FD3 281.7±11.2 2.789±0.073 52.5±7.8 3.391±0.102 960.0±1.0 3.311±0.099
FD4 281.8±4.2 2.668±0.068 49.7±3.6 3.437±0.100 963.7±2.1 3.358±0.098
FD5 306.1±5.7 2.642±0.057 54.0±5.1 3.452±0.099 930.2±15.6 3.372±0.095
FD6 294.6±7.5 2.625±0.068 47.1±3.7 3.442±0.112 734.1±2.9 3.364±0.106

FDD7 425.3±10.5 2.510±0.098 98.8±5.1 3.560±0.162 481.5±1.2 3.477±0.157

ResNet-18 LC

RGB 774.7±3.7 1.998±0.103 131.7±1.3 2.879±0.137 366.1±1.2 2.820±0.134
YCbCr 776.8±5.2 2.023±0.110 137.7±3.0 2.817±0.065 341.2±1.8 2.757±0.062

FD0 614.7±5.2 2.677±0.115 122.5±7.9 3.423±0.113 374.2±0.8 3.347±0.109
FD1 513.5±3.0 2.833±0.064 72.1±1.9 3.528±0.076 486.7±7.6 3.455±0.070
FD2 519.7±1.4 2.792±0.164 75.1±2.4 3.408±0.081 482.8±8.1 3.336±0.074
FD3 515.8±3.0 2.634±0.136 75.9±5.6 3.514±0.130 486.9±2.0 3.441±0.129
FD4 517.8±1.9 2.570±0.086 75.7±3.0 3.338±0.128 495.8±0.5 3.264±0.128
FD5 539.4±2.7 2.681±0.185 82.9±6.2 3.445±0.073 448.3±19.2 3.370±0.070
FD6 525.8±1.9 2.606±0.124 79.0±5.5 3.441±0.071 457.9±1.5 3.362±0.066

FDD7 632.7±2.1 2.608±0.092 123.1±2.1 3.454±0.158 318.8±0.3 3.385±0.151

ResNet-18 HC

RGB 1962.0±7.3 2.005±0.147 290.3±6.8 2.768±0.183 307.2±0.6 2.717±0.175
YCbCr 1963.3±7.3 1.947±0.115 291.7±5.4 2.700±0.086 290.9±0.2 2.651±0.089

FD0 1726.9±22.6 2.479±0.051 286.6±19.8 3.203±0.084 322.5±0.3 3.136±0.083
FD1 1629.8±12.3 2.664±0.122 243.3±17.4 3.276±0.119 368.8±0.5 3.209±0.119
FD2 1642.4±14.0 2.504±0.114 231.1±8.6 3.200±0.100 366.4±0.2 3.129±0.100
FD3 1623.0±8.9 2.441±0.143 241.1±14.4 3.212±0.106 367.3±0.2 3.143±0.105
FD4 1638.8±17.2 2.391±0.080 237.3±9.6 3.109±0.140 368.6±0.3 3.044±0.136
FD5 1646.5±7.0 2.440±0.110 244.9±30.0 3.174±0.130 347.4±9.2 3.107±0.128
FD6 1630.9±2.4 2.485±0.124 228.1±2.2 3.137±0.070 330.8±0.1 3.071±0.071

FDD7 1739.2±7.5 2.546±0.110 274.2±4.7 3.334±0.124 257.8±0.1 3.269±0.116
* The regular architecture is indicated by LC, where the double channel modified version is indicated by HC.



curacy improvements. Most models improved with this mod-
ification, except for the color models with the AlexNet archi-
tecture. However, the improvements achieved were small and
would still require a significant speedup over the unmodified
color model to be viable. Due to this, the ResNet-18 mod-
els can be disregarded as these require over three times more
calibration time. In contrast, the modified AlexNet models
allowed the frequency models to perform equally to the reg-
ular AlexNet color models while still being about twice as
fast. However, the improvement of the regular version of this
model is only 0.05 degrees, and this gain in accuracy is not
worth the double training and calibration times required.

3.3.2 Inference
The inference results showed a more relevant statistics for ap-
plying the various techniques tested. In terms of accuracy the
results were rather similar to the calibration as these use the
same model and mostly the same images. In contrast, the
time results, which were also measured in a different format
changed slightly due to the absence of a learning component
in this phase. The speedups were reduced to only 1.4, 1.8,
1.3, and 1.2, as the lack of a learning component favored the
higher input data size models. Furthermore, two models per-
formed worse compared to the training and calibration tim-
ings. The largest static selection (FD6) showed a more sig-
nificant speed gap compared to the other frequency models
due to its notable larger input data size. The dynamic model
(FDD7) was also slower than before, it was able to process
significantly less images per second than all other models.
This is presumably due to the dynamic selection part of the
model being quite computationally expensive relative to the
other models, this effect is also amplified with the batch size
of one used during inference.

The inference results are visualized in Figure 3. This figure
emphasizes how the AlexNet and frequency domain models
are generally faster but less accurate than the ResNet-18 and
color models. In contrast, when comparing the AlexNet mod-
els it shows how the frequency models are at the same accu-
racy height while far further on the right than the color mod-
els as they can process more images per second. Furthermore,
the differences between the static channel selection model are
shown in a clearer way. The simpler selections FD1 and FD2
although fast show a worse angular error. The mid sized se-
lections FD3 and FD4 seem to be fast while remaining accu-
rate, together besting the higher selection models FD5, FD6,
and FD0. This effect is probably due to the model struggling
to handle the high channel data, where less channels can im-
prove the accuracy as shown. Lastly, the dynamic model is
shown to perform the worst across all architectures in this ex-
periment.

3.3.3 Optimal selections
Based on the analysis of Table 2 and Figure 3 described in
Sections 3.3.1 and 3.3.2, optimal selections for the AlexNet
and ResNet-18 architectures were determined. For the
AlexNet, static channel selection model FD3 was identified
as the optimal choice. This model provided the best accu-
racy with an error increase of only 0.08 degrees compared
to the RGB model. It also achieved speedups of 3.3, 4.0,
and 1.35 for training, calibration and inference respectively.

These speedups were equal with the best frequency model re-
sults except inference, although there it showed a higher stan-
dard deviation. Regarding the ResNet-18, the optimal selec-
tion was found to be the static channel selection model FD4.
Similar to FD3 for the AlexNet, this model achieved the best
accuracy which was an error increase of 0.44 over the RGB
model. Additionally, the speedups of this model were 1.5,
1.7, and 1.35.

4 Responsible Research
During the course of this research, various responsible re-
search practices were considered. While responsible research
often revolves around the ethical aspects of how the data was
handled, this is not as big a factor in this research. The dataset
contained only facial images of which the information was
analyzed and the gaze direction estimated. Since no sensitive
information could be extracted via this usage there were no
ethical concerns. Other areas of responsible research, such
as reproducibility and the usage of large language models do
require a more detailed explanation, which is provided in the
following sections.

4.1 Reproducibility
Ensuring that the results achieved are reproducible is a critical
part of research as it provides transparency and improves the
reliability of the work. To facilitate this, a GitHub repository
containing the entire codebase used in the research was made
publicly available5. The repository includes all the code for
converting the data, analyzing the data and running models
along with explanations on the functionality and instructions
to use the system. The combination of the provided repository
and this paper should contain sufficient information to repeat
all the experiments performed and reach similar results. The
only unreproducible aspect may reside in the computational
device used. In this research a supercomputer was utilized to
run the experiment. A high RAM GPU machine is required
to run the full experiment, with results only slightly differing
depending on the exact device specifications.

4.2 Usage of Large Language Models (LLMs)
Large language models have recently been on the rise and
are capable of assisting in various tasks. Therefore, a fur-
ther explanation of how they were utilized in this research
is important. During this research, ChatGPT6 was used to
assist in coding and writing tasks. The practices explained
below were carefully applied to improve the overall quality
of the research while keeping the authenticity of human work
in there.

When coding, ChatGPT was utilized to improve the effi-
ciency and assist when fixing bugs. Very basic components,
such as simple plots or filling in values in a long conditional
chain were implemented by the AI following given instruc-
tions. The AI generated code was checked carefully and mod-
ified where necessary to perform the correct task and prevent
errors. This approach saved time and improved work effi-
ciency for simple yet time-consuming tasks. Additionally,

5https://github.com/tpenning/DLFDFaceGazeEstimation
6https://openai.com/blog/chatgpt



Figure 3: Inference results of the data types combined with the architectures.

during more complex tasks which were coded manually, AI
assistance was utilized to analyze error messages and identify
the bug causing them in the code.

In terms of writing, ChatGPT was utilized to help adding
data visualizations in Overleaf7 and polish the writing. Ini-
tially, the AI was asked to help create the Overleaf code for
simple figures and tables. Later figures and tables were made
by copying and changing the existing ones, where ChatGPT
was consulted in case a very different format was needed.
Regarding its help in writing, after sections or chapters were
written first, ChatGPT assisted in correcting spelling and
punctuation errors. Additionally, it provided suggestions to
improve text flow and improve conciseness. The ideas be-
hind these suggestions were selectively applied and modified
to fit the style of the writing.

5 Conclusions and Future Work
This paper utilizes the frequency domain combined with
channel selection to develop faster deep learning-based gaze
estimation models. The primary goal of this research was to
study the impact of channel selection on the latency and accu-
racy of frequency domain gaze estimation. Additionally, the
focus was to determine channel selections that would provide
an optimal trade-off between maximal speedup and minimal
accuracy loss. Various models were created to experiment
with and answer the research question. A model using tradi-
tional RGB images was designed as a baseline for the other
models, while the other models used various channel selec-
tions based on static and dynamic methods to test their impact
on latency and accuracy.

The experimental results achieved different levels of suc-
cess for the two network architectures used. In the case of
AlexNet, the best channel selection resulted in speedups of
3.3, 4.0, and 1.35 during training, calibration, and inference

7https://www.overleaf.com/

respectively, with only a 0.08 degrees increase in angular er-
ror compared to the RGB model. In contrast, the ResNet-18
architecture resulted in more mixed results. The models for
this architecture were still able to achieve speedups of 1.5,
1.7, and 1.35, however, the models also experienced a notable
decrease in accuracy, with a 0.44 degrees increase in angular
error compared to the RGB model. It is important to note that
this accuracy loss was already present before channel selec-
tion was applied indicating it was a result of the frequency do-
main format rather than the channel selection. Therefore, the
accuracy still matched that of the AlexNet, and so it was still
good, but it did not fully utilize the potential of the ResNet-18
architecture.

The findings of this research revealed various interesting
insights. The dynamic channel selection model tested dis-
played promising results during training. Ultimately it failed
during calibration and inference as the amount of data used
for calibration was not sufficient for its complexity. In the
static channel selection the mid sized selection performed
better than the smaller and larger selections. This indicated
that the models struggled to handle many channels and a pre-
cise selection would be important. The main takeaway from
the results is that the frequency domain models clearly re-
sulted in faster networks, but the accuracy accompanying the
speedup differed per network architecture. Regarding the ac-
curacy loss observed in the ResNet-18 models, a potential ex-
planation lies in how the networks adapt to the high channel
input data. The ResNet-18 has fewer channels throughout the
layers than the AlexNet, leading to more data reduction in the
first few layers, which could potentially have caused valuable
information to get lost. Despite the precise cause, this differ-
ence in results demonstrates that, in addition to channel se-
lection, the model structure also plays a crucial role in model
performance.

These findings highlight the need for further research fo-
cusing on how the network structure influences performance.



An important research question would be how popular gaze
estimation networks can be successfully transformed to best
fit the channel-selected frequency information. Addition-
ally, research into models specifically designed for channel-
selected frequency domain information could provide the so-
lution to fully utilizing the potential of this different data for-
mat demonstrated by the findings of this paper.

References
[1] Dan Witzner Hansen and Qiang Ji. In the eye of the be-

holder: A survey of models for eyes and gaze. IEEE
transactions on pattern analysis and machine intelli-
gence, 32(3):478–500, 2009.

[2] Jiri Najemnik and Wilson S Geisler. Optimal
eye movement strategies in visual search. Nature,
434(7031):387–391, 2005.

[3] Bilge Mutlu, Toshiyuki Shiwa, Takayuki Kanda, Hi-
roshi Ishiguro, and Norihiro Hagita. Footing in human-
robot conversations: how robots might shape partici-
pant roles using gaze cues. In Proceedings of the 4th
ACM/IEEE international conference on Human robot
interaction, pages 61–68, 2009.

[4] Nachiappan Valliappan, Na Dai, Ethan Steinberg, Jun-
feng He, Kantwon Rogers, Venky Ramachandran, Ping-
mei Xu, Mina Shojaeizadeh, Li Guo, Kai Kohlhoff,
et al. Accelerating eye movement research via accurate
and affordable smartphone eye tracking. Nature com-
munications, 11(1):4553, 2020.

[5] Erroll Wood and Andreas Bulling. Eyetab: Model-
based gaze estimation on unmodified tablet computers.
In Proceedings of the symposium on eye tracking re-
search and applications, pages 207–210, 2014.

[6] Yusuke Sugano, Xucong Zhang, and Andreas Bulling.
Aggregaze: Collective estimation of audience attention
on public displays. In Proceedings of the 29th Annual
Symposium on User Interface Software and Technology,
pages 821–831, 2016.

[7] Dario Cazzato, Marco Leo, Cosimo Distante, and Hol-
ger Voos. When i look into your eyes: A survey on
computer vision contributions for human gaze estima-
tion and tracking. Sensors, 20(13):3739, 2020.

[8] Yihua Cheng, Haofei Wang, Yiwei Bao, and Feng
Lu. Appearance-based gaze estimation with deep
learning: A review and benchmark. arXiv preprint
arXiv:2104.12668, 2021.

[9] Xucong Zhang, Yusuke Sugano, Mario Fritz, and An-
dreas Bulling. It’s written all over your face: Full-face
appearance-based gaze estimation. In Proceedings of
the IEEE conference on computer vision and pattern
recognition workshops, pages 51–60, 2017.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[11] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E
Hinton. Imagenet classification with deep convolu-
tional neural networks. Communications of the ACM,
60(6):84–90, 2017.

[12] Karen Simonyan and Andrew Zisserman. Very deep
convolutional networks for large-scale image recogni-
tion. arXiv preprint arXiv:1409.1556, 2014.

[13] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Ser-
manet, Scott Reed, Dragomir Anguelov, Dumitru Er-
han, Vincent Vanhoucke, and Andrew Rabinovich. Go-
ing deeper with convolutions. In Proceedings of the
IEEE conference on computer vision and pattern recog-
nition, pages 1–9, 2015.

[14] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam. Mobilenets: Efficient
convolutional neural networks for mobile vision appli-
cations. arXiv preprint arXiv:1704.04861, 2017.

[15] Forrest N Iandola, Song Han, Matthew W Moskewicz,
Khalid Ashraf, William J Dally, and Kurt Keutzer.
Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and¡ 0.5 mb model size. arXiv preprint
arXiv:1602.07360, 2016.

[16] Polona Caserman, Michelle Martinussen, and Stefan
Göbel. Effects of end-to-end latency on user experience
and performance in immersive virtual reality applica-
tions. In Entertainment Computing and Serious Games:
First IFIP TC 14 Joint International Conference, ICEC-
JCSG 2019, Arequipa, Peru, November 11–15, 2019,
Proceedings 1, pages 57–69. Springer, 2019.

[17] Anjul Patney, Marco Salvi, Joohwan Kim, Anton Ka-
planyan, Chris Wyman, Nir Benty, David Luebke, and
Aaron Lefohn. Towards foveated rendering for gaze-
tracked virtual reality. ACM Transactions on Graphics
(TOG), 35(6):1–12, 2016.

[18] Kai Xu, Minghai Qin, Fei Sun, Yuhao Wang, Yen-
Kuang Chen, and Fengbo Ren. Learning in the fre-
quency domain. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 1740–1749, 2020.

[19] Lingyu Du and Guohao Lan. Freegaze: Resource-
efficient gaze estimation via frequency domain con-
trastive learning. arXiv preprint arXiv:2209.06692,
2022.

[20] Lionel Gueguen, Alex Sergeev, Ben Kadlec, Rosanne
Liu, and Jason Yosinski. Faster neural networks straight
from jpeg. Advances in Neural Information Processing
Systems, 31, 2018.

[21] K Ramamohan Rao and Ping Yip. Discrete cosine trans-
form: algorithms, advantages, applications. Academic
press, 2014.

[22] Gregory K Wallace. The jpeg still picture compression
standard. Communications of the ACM, 34(4):30–44,
1991.


	Introduction
	Methodology
	Transforming into the YCbCr Color Space
	Converting to the Frequency Domain
	Channel Selection
	Channel information analysis
	Static channel selection
	Dynamic channel selection


	Experiments
	Dataset
	Experimental Setup
	Network architectures
	Model design
	Phases and procedures

	Results
	Training and calibration
	Inference
	Optimal selections


	Responsible Research
	Reproducibility
	Usage of Large Language Models (LLMs)

	Conclusions and Future Work

