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Abstract— As the population aged 65 and above
increases, falls among these older adults emerge as a
significant public health concern, leading to disabil-
ities and economic burdens. Preventative strategies
and personalized fall risk assessments are essential for
mitigating fall risks. Human Activity Recognition in
early fall risk detection by monitoring everyday ac-
tivities in older adults could assess patients fall risks.
However, current literature has overlooked the older
adult demographic by only measuring adults younger
than 65, under representing the older population.
This research specifically focuses on identifying key
features from head-mounted Inertial Measurement
Unit (IMU) data using machine learning to classify
Sit-to-Walk (STW) and Walk-to-Sit (WTS) move-
ments, which are commonly associated with high risk
of fall. In addition these movements can be essential
in monitoring changes in performance to asses fall
risk. We analyzed five activities STW, WTS, Sitting,
Swing phase, and Others. Using three feature selec-
tion methods (Mutual Information Gain, ANOVA,
Recursive Feature Elimination) on 116 extracted fea-
tures we were able to rank the features and select
the top ten. The study then evaluated the accuracy
of three classifiers (Logistic Regression, Random For-
est, and K-Nearest Neighbor or Support Vector Ma-
chine) with these features. Results indicated that the
ANOVA and Random Forest classifier combination
achieved the highest total accuracy of 95%, with Ran-
dom Forest performing exceptionally well in STW
and WTS classifications, reaching up to 81% accu-
racy. Commonly selected features across all methods
included the accelerometer’s maximum x-axis mea-
sured and its energy in both time and frequency do-
mains. This model’s performance is comparable with
existing literature and validates its effectiveness in
fall risk detection.

1 Introduction

In Europe, the adult population over 65 years old is
growing, as evidenced by the CDC’s Morbidity and

Mortality Weekly Report, which shows a doubling
of this age group within three decades. Specifically,
from 2000 to 2030, the percentage of the older adult
population will increase from 12.6% to 20.3% [12, 16].
This demographic shift highlights a significant pub-
lic health challenge: falls among older adults. Glob-
ally, falls are a major public issue, resulting in numer-
ous fatal and non-fatal injuries, disability, and med-
ical expenditure, particularly among the older pop-
ulation. In fact, every year, a third of the world’s
population over 65 experiences a fall [1, 26]. With
the older demographic increasing , both the number
of fall injuries and the resulting expenditures are ex-
pected to increase substantially.

With advancing age the possibility of falling in-
creases. Intrinsic factors that play a role in older
adult’s risk of falling are the deterioration in function
of their sensory, neuromuscular, and musculoskele-
tal system. There are fall prevention programs at
patient level that can reduce the risk of falling by
tackling these intrinsic factors. Interventions such as
muscle strengthening, gait training, evaluation for as-
sistive devices, medication modification, seated exer-
cises and balance training are some methods that may
help prevent falling [24]. These intervention meth-
ods are most effective with a personalized program
by early detection using personalized fall risk assess-
ments [5, 10].

For older adults, certain daily life activities are as-
sociated with an increased risk of falling, including
walking, climbing stairs, pushing/pulling objects, Sit-
to-Walk (STW), and bending over [3, 20]. Notably,
STW is an activity often associated with many falls
in adults during the standing up movement and di-
rectly shifting into walking. Similarly, the Walk-to-
Sit (WTS) movement, which requires bending over,
is also associated with a increased number of falls
in older adults [28, 7, 23, 25]. In older adults, the
adoption of compensatory methods, such as using
their arms for assistance during activities like Sit-to-
Walk (STW), can serve as early indicators of progres-
sive physical decline. Identifying these compensatory



strategies at an early stage can help assess the risk
of falls. Therefore, by detecting activities like STW
and Walking Task Speed (WTS) where compensatory
strategies are commonly employed, we can direct ar-
eas where personalized fall risk assessments should
be applied. This enables us to identify older adults
at high risk of falling who may benefit from targeted
prevention programs.

The use of IMU sensors in assessing fall risk has
demonstrated promising predictive value. It has also
been a preferred choice for data acquisition in Sensor-
based monitoring of activities also known as Human
Activity Recognition (HAR). HAR, has been a grow-
ing field within biomedical engineering that can rec-
ognize when activities are performed using sensors
and employing machine-learning algorithms [9]. Cur-
rently, there is an ongoing project in Technische Uni-
versiteit Delft (TUDelft) that is building a fall pre-
vention system. Using an Inertial Measurement Unit
(IMU) sensor housed in glasses and a ML algorithm
the project aims to detect the activities and moni-
tor changes overtime to help assess the risk of fall for
older adults. The use of only one sensor has shown
to be sufficient for recognition [6]. Because there is
a high prevalence of glasses worn in the older popu-
lation [22], devices such as glasses with IMU sensors
can reduce the sense of obstruction and improve us-
ability when collecting HAR data [19]. In addition,
sensors worn on the head compared to the wrist or
legs can be less susceptible to noise [17].

Thus, the chosen method of data collection for both
activity recognition and fall risk assessment is an IMU
housed in glasses.

There have been three studies that utilized head-
worn IMU sensor to recognize daily life activities.
Amongst these studies a diverse range of activi-
ties were classified. In a study by Novac Pierre-
Emmanuel, et al. (2022) the authors aimed to build
a dataset that collected IMU data from smart glasses
[21]. 20 participants were measured, 8 women and
12 men with an average age of 36. 8 activities were
identified including standing, sitting, walking, lying,
climbing up/down stairs, running, and drinking. For
Al Huda, et al. (2017) they also used an IMU sensor
placed on the head to recognize activities [2]. In-
formation about the participants used in this study
were not provided, however five activities were mea-
sured: Standing, Walking, Moving up/down stairs,
Running, and Jumping. Finally, in another study
that used head worn IMU sensor, Wolff, et al. (2018)
collected data in completely natural environments
and with a diverse participant group [29]. Activi-
ties measured were running, walking, inline-skating,
cycling, standing, sitting, reading, and lying. 11 year

old children were measured for all these activities,
athletes were used for inline-skating and cycling, and
an older adult for sitting, walking and reading. How-
ever, these studies and many more similar ones did
not measure data from older adults and hence possi-
bly creating a bias dataset if it were ever used in fall
prevention for older adults. In addition, no studies
have looked into classifying Sit-to-Walk and Walk-to-
Sit in participants.

This research aims to determine the most con-
tributing features of head-mounted IMU data for
a ML model to classify Sit-to-Walk and Walk-to-
Sit in older adults. Establishing these features will
contribute in the fall prevention project in TUDelft
where daily life activities need to be recognized and
monitored for changes to help assess an older adults
fall risk.

2 Methods

This section describes the methods for data acqui-
sition, organization, preprocessing, and processing.
Data labeling, organization, and feature extraction
were completed using MATLAB R2022a with 'Im-
age processing and Computer vision’ and ’Signal
Processing Toolbox’ installed. For feature selection
and training/testing different classification models,
Python programming language v3.9 with an Scikit-
Learn package was used.

2.1 Data Acquisition

In Netherlands, this study conducted measurements
in the homes of 19 healthy participants over 65 years
old with no current muscular, skeletal, neurological
or psychiatric disorders, alcoholism, balance issues,
or recent surgeries in the past year. Participants were
recruited through personal channels and informed
with the risks of participating. An example of a
consent form can be found in the Appendix.

Participants were instructed to perform three
tasks three times each. Each task began and ended
in a seated position. Participants, for their tasks,
washed their hands in a kitchen sink, retrieved a
book from a table, and walked around the room.
The chair participants started in was in one room
where they would have space to walk around and
retrieve a book. The seat was also placed as close
to the kitchen sink to limit the time needed for the
participant to return to their seated position.

For this study an Inertial Measurement Unit
(IMU, 120Hz, Movella Dot) and a Gopro 7 Black



(120fps) were used to record the activity of the
participants. While video and IMU recording, A
hammer test was conducted on the sensor; The
sensor was placed on a flat surface and struck with
a rubber hammer to generate an isolated peak in
the raw data as depicted in Appendix B. After the
hammer test, the IMU was placed above the right
ear of each participant using a headband (Figure 1)
and participants were instructed to perform their
task. Finally, another hammer test was conducted
after the completion of the activity. The IMU had
six degrees of freedom for its accelerometer and
gyroscope. the x-axis of the IMU measured the
vertical displacement and yaw, the y-axis measured
the horizontal displacement and roll, and the z-axis
measured the lateral displacement and pitch.
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Figure 1: IMU placement and
axis direction

The GoPro used to video record the hammer tests
and tasks of the participants was held at a distance
from the participant where their seated position and
the room was in frame. Position of the camera was
dependant on the homes of the participants. Once
the sensor was secured on the heads of participants,
they would begin preforming the task at their own
tempo. Each recording was the span of one task
and the duration of each task was dependant on
the participant and their prefered tempo. For each
participant a total of 9 video were recorded.

2.2 Data Extraction

From data acquisition all the participants performed
the same movements to complete their task. Partici-
pants performed quiet sitting in the chairs while they
waited for instructions. They also performed STW
to execute their task and WTS after completing their
task and returning to their seat. Data corresponding
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Figure 2: Phases for Sit-to-Walk
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Figure 3: Phases for Walk-to-Sit

to Sitting, STW, and WTS were isolated for prepro-
cessing. In addition, the first swing phase (SP) and
Other movements after were isolated. IMU data was
manually labeled with these five movement classes
based on video recording. Each movement was pre-
defined to precisely label the beginning and ending of
each.

Video Labeling and Synchronization

Using Video Labeler Application on MATLAB,
frames of the video were labeled with 11 possible
movements: 1) The first hammer test before the task,
2) Sitting, 3) Flexion Momentum (FM), 4) Extension,
5) Gait initiation, 6) Swing Phase (SP), 7) Other, 8)
Sitting initiation, 9) Descending 10) Seat Loading,
and finally 11) the last hammer test after task com-
pletion. For each label, key characteristics were used
to determine the beginning and end of each phase.
For example, (1) was defined by the frame that cap-
tured the sensor and hammer’s first moment of con-
tact. The movements are defined with these labels.

Sitting When the sensor was placed on the heads
of the participants and they waited for instructions
to begin the execution of their task, they were sitting
still on the chairs. Their torsos were leaning back,
and their feet were parallel to each other. Their hands
were either at their sides or resting on their legs. This
marked the beginning of label (2).

Sit-to-Walk When the participants were in-
structed to execute their task, they transitioned from
a seated position immediately into a walking move-
ment. This movement was divided into three phases
[13, 8, 4]. The first phase, flexion momentum (3),
The participant swayed their torso forward and down



while their feet would slightly adjust back until their
bottom was lifted slightly above the seat. The mo-
ment the bottom was seen hovering above the chair
marked the end of (3). The second phase, Extension
(4), the participants extended their knees and moved
their hips forward lifting the torso back. In addi-
tion, the participant shifted their weight to one leg
and lifted their heel on the other leg. The frame that
showed the heel lift marked the end of (4). The final
phase, Gait Initiation (5), was when the participant
fully lifted their foot off the ground and moved it for-
ward until its heel came into contact with the floor
initiating the gait phases for walking. The contact of
the foot with the floor marked the end of (5). Fig-
ure 2 illustrates the three phases of STW after quiet
sitting.

Swing Phase
After Sit-to-Walk the participant initiated the first
swing phase (6) of the gait, fully transitioning them
into walking. Gait initiation from STW differs from
the first swing phase of the gait due to the transition
from a stationary phase; The body needs to make a
series of adjustments to initiate the first step of gait.
Thus, the swing phase after gait initiation in STW is
defined separately. Swing phase was described as the
moment the participant lifted their foot off the floor
and swung it forward until their heel made contact
with the floor; This marked the end of (6).

Other
For this project, the focus in movements was more on
STW and WTS. However, other activities were iso-
lated to see if STW and WTS could be distinguished
from the rest such as Sitting and Swing Phase. How-
ever, a third movement defined as ’Other’ (7) was
considered. ’Other’ refers to any movement that oc-
curred within a few seconds after swing phase. This
could possibly be walking or standing. The number
of frames labeled as Other was equal to the amount
of frames found in Sit-to-Walk.

Walk-to-Sit
There were a few articles that investigated the
Stand-to-Sit (STS) movement [18, 14]. The phases
identified in STS were used to separate WTS into
three phases (Figure 3); Sitting Initiation (8),
Descending (9), and Seat Loading (10). Sitting
Initiation was when the person performed torso
and knee flexion. The frame that first showed the
participant bend their knees and move their torso
forward until the frame right before the waist begins
to descend marked the frames for (8). Then, in
descending phase (9), the person continued knee
flexion and vertically descended their bottom onto
the seat. The frame that showed the bottom of the
participant come into contact with the seat marked

Feature Abbreviation
Mean M
. Standard Deviation STD
Time Mean Absolute Deviation MAD
Root Mean Square RMS
Maximum Max
Minimum Min
Energy E
Inter-quartile Range IQR
Entropy EN
Zero Crossing Rate ZCR
Cross-Correlation CcC
Signal Magnitude Area SMA
Mean M
Standard Deviation STD
Mean Absolute Deviation MAD
Frequency Root Mean Square RMS
Maximum Max
Minimum Min
Energy E
Inter-quartile Range IQR
Entropy EN
Table 1: Features Extracted in Time Domain and

Frequency Domain

the end of (9). Finally, in seat loading the torso was
moved back and the feet would adjust forward. The
frame that showed the torso lean completely back
marked the end of (10).

The last hammer test (11) was then then defined
by the frame that captured the sensor and hammer
first come into contact after the task was completed.

The Video Labeler Application exported the labels
as a ground truth table where it was then converted
into array structures using a MATLAB script. The
array structures were then used to locate the data
points in the IMU raw data that corresponded to each
label. The labeled data for each movement was then
grouped; Sitting (2), STW (3,4,5), Swing Phase (6),
Other (7), and WTS (8, 9, 10). A detailed guide to
produce these array structures are in Appendix C,
the activities isolated from the raw data are shown
in Appendix D, and the organization of the datasets
before feature extraction are illustrated in figure 4.
There are six separate datasets for each activity, one
for each signal of the IMU. The datasets hold multiple
cell arrays. Each cell array is associated with a trial
of a participant.

2.3 Feature Extraction

Before features were extracted a Buttersworth filter
was used to exclude gravitational acceleration from
the accelerometer data. The filter was first order and
low passing with a cut off frequency of 18Hz [11]. The
signal that remained was considered the acceleration
measured from the body. Each cell array in each sig-
nal dataset was segmented using a sliding window of



Sit-to-Walk

Activities

Swing Phase

Walk-to-Sit

Signals

G ey

] e [eety  [celly)
e oz

Datasets

Figure 4: array structure of organized dataset for each activity’s signals

50 data points and an overlap of 20%. For each seg-
mentation a list of features were extracted (table 1
lists these features) and labeled with the activity it
is associated with. A total of 116 features were ex-
tracted and a one hot key code of the activity were
arranged into a matrix. Moving forward the activ-
ities were referred to as classes and table 2 defines
each class. For a short description of each feature
extracted refer to Appendix E

Class Activity

0 Sitting
1 Sit-to-Walk
2 Swing Phase
3 Walk-to-Sit
4 Other

Table 2: Activities associated with each class

2.4 Train-Test Split

The data set that included all the features extracted
was then split into training set (80%) and testing set
(20%). The data split was at participant level, mean-
ing, 80% of all participants were used to train and
20% were used to test.

2.5 SMOTE Class Balancing

In the five classes, Class 0 showed a larger sample
size compared to the other classes, as shown in fig-
ure 5. This imbalance in samples created an unequal
representation between classes. Synthetic Minority-
Oversampling Technique (SMOTE) was a method to
generate extra samples to the classes with fewer sam-
ples. SMOTE selects a minority class instance and
identifies its k nearest neighbors within the minority
class. It then randomly selects one of these neigh-
bors and generates a synthetic example by choosing
a random point along the line connecting the selected

instance and its neighbor. This process is repeated
until the number of samples matches with the ma-
jority class, effectively creating synthetic instances
to balance class distribution. SMOTE was thus em-
ployed on the training data set to balance the minor-
ity classes with Class 0.

2.6 Scaling Data

Scaling was applied to the balanced data to help mit-
igate some features from dominating others due to
having larger magnitudes. This ensured all features
were contributing equally to the machine learning
model. Scaling can improve performance, making it
more robust and accurate across various features with
different scales. Scaling was done by subtracting the
mean and dividing by the standard deviation for each
feature.

2.7 Feature Selection Methods

To further improve the performance of the classifying
models by reducing the dimensionality of the data
and to determine the most contributing features in
the set, feature selection methods were employed. For
this research we looked into two Filter techniques
and one Wrapper technique [27]. The benefits of
the filter methods ranked the features independently
from the chosen model to classify based on a prede-
termined criterion, such as statistical significance or
information gain. This independence allowed for a
quick and computationally efficient feature selection
process and was applicable to any classifier. With a
wrapper technique, such as Recursive Feature Elimi-
nation (RFE) it was dependant on the classifier and
thus the chosen features were only effective with that
chosen model, however the benefit to this technique
is it finds features that interact with each other and
improves the models performance.



2.7.1 Mutual Information Gain

Mutual Information Gain is a filter technique that
was employed onto three classifiers. It measured the
dependants between individual features and the tar-
geted class. Mathematically it is defined as:

p(z,y)
2 plwy)los <p( )p(y)>

reX,yeyY

I(X;Y) =

8

Here, p(x,y) is the joint probability distribution of
X and Y, and p(x) and p(y) are the marginal proba-
bility distributions of X and Y, respectively. It mea-
sures how much knowing one of these variables re-
duces uncertainty about the other; it’s zero if the
variables are independent and increases as the de-
pendence between them grows. By measuring these
dependencies, features were ranked based on the rel-
evance to classify all the classes. With this technique
a chosen number of top features were used to train
the classifier and evaluate their performance.

2.7.2 ANOVA

Using Analysis of Variance (ANOVA), we iden-
tify features with significantly varying means across
classes. Features are ranked by their p-values, with
lower values indicating greater importance in class
differentiation. The top-ranked features are then
used to train the classifier. the p-value threshold was
0.5, meaning anything lower was considered signifi-
cant.

2.7.3 Recursive Feature Elimination

RFE determines the importance of features based on
the performance of a machine learning model. It
passes through the entire feature set and eliminates
a feature with the least importance every iteration
until a predetermined amount are left. RFE is model
dependant because it utilizes the model to rank the
features importance. With this technique three clas-
sification models were used to train and test a chosen
number of top features. Each model defines impor-
tance differently. In the case of Logistic Regression
and Support Vector Machin (SVM) feature impor-
tance is determined by coefficient magnitude. For
Random Forest its based on the reduction of a cri-
terion like Gini impurity or mean squared error each
feature provides when used in trees. Features that
lead to larger average reductions are considered more
important.

2.8 Classification Model

The classification task for this project is multi-class
with five different movements. A one-vs-rest ap-
proach of classification is used. With the selected
features from the three techniques three different
models are used. The models chosen are commonly
used in HAR research. Mutual Information Gain
and ANOVA use Logistic Regression, Random Forest,
and K-Nearest neighbor. For RFE, Logistic Regres-
sion, Random Forest Classification, and Support Vec-
tor Classification were used. RFE typically requires
a model that can provide some form of ranking of
feature importance and K-nearest neighbor does not
have this built in, therefore SVM is used as the third
classifier for RFE. For each model the number of top
features used to train and test were evaluated, start-
ing at one and increasing by ten until all the features
are used. Table 3 details the hyper parameters used
for each classifier.

2.9 Metric for Evaluation

Evaluating the performance of a classification model
is essential to determine its effectiveness in recog-
nizing and the targeted movement and comparing it
with other models in the project and in other litera-
ture. Accuracy is a widely used metric in classifica-
tion tasks, it provides a straightforward measure of
the model’s ability to correctly classify instances into
their respective activity categories. Accuracy is de-
fined as the ratio of correctly classified activities to
the total number of activities in the dataset.

CorrectlyClasst fied
Total Activities

Accuracy =

3 Results

3.1 Data Description

A total of 19 participants had their movements mea-
sured in this study. However, due to inconsisten-
cies in sampling rates 16 participants were sampled
at 120Hz and 3 at 60Hz—the latter group was ex-
cluded from the analysis. Among the remaining par-
ticipants, the average age was 76 years, with a stan-
dard deviation of 7 years. The gender distribution
included 11 females and 5 males.

From the sliding window, we obtained 1285 Sitting
samples, 604 STW samples, 144 SP samples, 544
WTS samples, and 604 Other samples. After split-
ting the data and employing SMOTE each movement
had 1010 samples for training. Figure 5 shows the
number of samples in the training set before and af-
ter SMOTE was employed.



Model

Hyper-parameters

Random Forest

number of decision trees = 100, importance criterion = Gini impurity

Logistic Regression

number of iteration for solver to converge = 10000, solver = ’liblinear’

K-Nearest Neighbor

K=5

Support Vector Machine

kernel = linear

Table 3: Hyper-parameters used for each classifier

Class Distribution Before and After SMOTE

Before SMOTE
I I I |_ After SMOTE

Class 0 Class 1 Class 2 Class 3 Class 4
Classes

1000

800 +

600 -

Sample Count

400 4

200 4

o

Figure 5: Sample count in the training set before and
after SMOTE

3.2 Mutual Information Gain

Confusion Matrix - Random Forest
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Figure 7: Confusion Matrix of Random Forest

The first 10 features ranked in Mutual Information
Gain showed the greatest increase of accuracy for

each classifier with shorter increases as the number
of top features increased (figure 6). The first 10
features ranked are listed in table 4. For Random
Forest Classification the number of features becomes
less significant after the model was trained with 60
features as accuracy showed little change. After 90
features the model decreased in accuracy. For Logis-
tic Regression, after 60 features the models accuracy
started to plateau in accuracy however it would never
drop. Similarly can be seen with K-Nearest neigh-
bor, where after 60 features the increase in accuracy
slowly diminishes until it begins to slightly drop af-
ter 100 features are used. Logistic Regression showed
the poorest performance between the three models
with a maximum of 83% accuracy achieved. Within
each class Sitting was predicted with the most accu-
racy, followed by Other, STW, WTS, and lastly SP.
Finally, the confusion matrix (Figure 7) showed how
the models predicted each class with in its best per-
formance with True Positives, True Negatives, False
Positives and False Negatives displayed. STW was
predicted as WTS more than any other class as well
as WTS was predicted most as STW. The accuracy
for STW was 77% and 75% for WTS.
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Figure 6: Top features performance from each selection method

3.3 ANOVA
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Figure 8: Confusion Matrix for Random Forest

In ANOVA (Figure 6) the top ten features showed
the greatest increase of accuracy for each classifier
with the accuracy plateauing after 60 features, previ-
ously seen in Information Gain. The first 10 features
ranked are listed in table 4. Random Forest Clas-
sification showed the best performance amongst the
three, followed by KNN and then Logistic Regres-
sion. . Within each class Sitting was predicted with
the most accuracy, followed by Other, STW or WTS,
and lastly SP. Finally, the confusion matrix (Figure
8) showed how the models predicted each class with
the number of True Positives, True Negatives, False
Positive, and False Negative displayed. STW was
predicted as WTS more than any other class as well
as WTS was predicted most as STW. The accuracy

measured for STW was 71% and 81% for WTS.

3.4 Recursive Feature Elimination

Confusion Matrix - Random Forest
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Figure 9: Plot of data extracted from the IMU ac-
celerometer corresponding to each activity.

Similar to the previous methods RFE showed the
greatest increase of accuracy for each classifier when
using the first top 10 features with shorter increases
as the number of top features increased (Figure 6.
The first 10 features ranked are listed in table 4. Ran-
dom Forest Classifier, the best performing model, be-
gins to show little to no change in accruacy after 30
features are chosen. In Logistic Regression the model
shows a similar effect after 80 features and for SVM,
after 60 features. Within each class Sitting was pre-
dicted with the most accuracy, followed by Other,
STW or WTS, and lastly SP. Finally, the confusion



Top 10 Features
IG ANOVA RFE-RF RFE-LR RFE-SVM
SMA _Acc SMA _Gyro AccX _Max AccX _Max AccX_Mean
AccXf Energy | AccYfMean | AccX_Energy | AccX_Energy AccX_STD
AccX_Energy AccYf STD AccXf_Mean AccXf_Mean AccX_RMS
AccXf Max AccYf MAD AccXf_MAD AccXf Max AccX_Max
AccX_RMS AccYf Max AccXf Energy | AccXf Energy | AccX_Energy
AccXf.STD AccYf_Min AccY_MAD AccXfIQR AccXf_Mean
AccXf MAD | AccYf Energy AccY_IQR AccY _Energy | AccYf Energy
AccY_RMS AccZ STD AccYf Mean AccYf Max GyroX_RMS
AccXf Mean AccZ_MAD GyroX_RMS GyroZ Mean | GyroXf MAD
AccY _Energy AccZ_RMS GyroXf_Max CCAccXY GyroZ_Energy

Table 4: ten features that were ranked as the best for each method of feature selection

matrix showing how the models predicted each class
(Figure 9) showed STW was predicted as WT'S more
than any other class and vise versa. The accuracy of
STW was 76% and 79% for WT'S

3.5 Top 10 Features Used

From Table 4 we are able to see the top ten cho-
sen features. These ten features are considered the
most contributing features of the 116 features ex-
tracted and based on the performance showed the
most impact in accuracy for each model. Comparing
the 5 lists, we can see that the most frequently ap-
pearing features are AccX_Max, AccXf Energy, and
AccX Energy, ranked in the top 10 by IG, RFE-
RF, and RFE-LR. These three features appear in
three different methods. Features that appeard
in two methods are AccXf_Max, AccX_RMS, Ac-
cXf STD, AccXf MAD, AccY_RMS. These features
were ranked in the top 10 by IG and RFE-RF. No fea-
tures appeared in the top rankings for all five meth-
ods. In Appendix E the three most common features
are explained.

4 Discussion

This study’s objective was to determine the best fea-
tures to recognize the transfer movement sit-to-walk
and walk-to-sit in a population age 65 years and
older head mounted IMU. The selected features were
then classified by three different models to evaluate
their performance in accuracy. The top ten features
selected were listed and a relationship between the
amount of selected features and accuracy of the model
was graphed.
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4.1 Findings

The analysis showed that the top ten features
selected by three methods—Mutual Information
Gain, ANOVA, and Recursive Feature Elimina-
tion—significantly improved the most in classi-
fication accuracy, especially using the Random
Forest Classifier. In Mutual Information Gain, the
model achieved a 75% accuracy with 10 features
and its best at 93% accuracy with 90 features.
With ANOVA, the top 10 features achieved 70%
accuracy, increasing to 95% with 90 features. For
Recursive Feature Elimination, the model reached
88% accuracy with 10 features and 93% with 40
features. Notably, using the full feature set didn’t
significantly impact accuracy, suggesting immunity
to the curse of dimensionality. The Random Forest
Classifier was consistently the most effective across
all methods, especially in classifying specific cate-
gories like STW and WTS. When looking into other
HAR literature that utilized head mounted IMU
sensor to recognize activities such as [21] we can
compare how some activities performed in accuracy
with this study. Sitting in our study had a higher
accuracy of 95% in recognition compared to Novac,
et al. who achieved 77%. However, their study
looked into classifying more than five activities
including other static movements which may have
compromised their accuracy, while in this study
sitting was the only static movement measured.
Notable is the overall accuracy in Novac’s research.
They had total accuracy ranging from 75% to 81%
while in our study the range of total accuracy at
its best performance was above 90%. Similarly, in
Wolff, et al.’s study they were able to achieve a total
accuracy of 86.79% with eight activities measured
[29].This indicates that the method used in our
study to recognize the measured activities is on par
with established approaches in the field, however the



difference in activities measured could contribute to
the difference in accuracy and why our study was
able to perform with higher accuracy than other
literature.

Observing the top ten features from each method
an interesting pattern emerged. First, the majority
of features chosen by all methods, except ANOVA,
were from the x-axis of the Accelerometer, while
ANOVA predominantly selected features from the
y-axis of the accelerometer. And very few mo-
ments were features chosen from the z-axis of the
accelerometer. The limited displacement in the
lateral direction of the body when performing any
of the activities compared to vertical or horizontal
displacement could contribute as to why features in
the z-axis of the accelerometer were rarely selected
as a top feature.

Furthermore, the appearance of gyroscope features
appeared to be lesser compared to accelerometer fea-
tures. For instance, in the top 10 features of the In-
formation Gain method, no gyroscope features were
used. ANOVA incorporated one gyroscope feature,
RFE-RF two, RFE-LR one, and RFE-SVM three.
The contribution of pitch, roll, or yaw in each move-
ment was not as crucial to distinguish movements
such as STW and WTS. For example in both of
these movements there is few instance where the body
needs to rotate around the x-axis (yaw). This ro-
tation is also not seen in quiet sitting or walking.
The only case where rotation does occur is if the
person was looking around during their movement.
This could provide an explanation as to why the x-
axis gyroscope of all the axis was selected in the top
features. The same explanation can be used for ro-
tation around the y-axis (roll) and z-axis (pitch) of
the gyroscope. This observation suggests that while
gyroscope features contribute to classification accu-
racy, most models could potentially be equally ef-
fective without them, similarly stated in Wolff et al.
(2018) [29].

Within the top 10 features, three features appeared
across three different methods of feature selection:
The maximum value of a window in the x-axis of
the accelerometer, the energy measured in the fre-
quency domain of the x-axis of the accelerometer,
and the energy in the time domain of the x-axis of
the accelerometer. There appearance across multi-
ple methods suggests these features are robustly rel-
evant to the dataset, likely capturing a fundamental
aspect of the data. We can also assume that these
features are less likely the result of method-specific
bias. These features contribute greatly in distinguish-
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ing the measured activities, a bio mechanical inter-
pretation of these features in STW and WTS can be
found in the intensity of these movements. Typically,
in human activity recognition there are static and
dynamic activities. Sitting and standing are consid-
ered static due to the lack of movement and STW
and WTS can be considered dynamic due to the con-
stant movement. Differentiation static and dynamic
movements using an IMU can be done in multiple
ways. For example, Kong, et al. (2021) looked at the
mean absolute deviation for each activity and found
a clear distinction in the deviation from the mean for
each activity; Static activities had less deviation from
the mean and dynamic activities had more deviation
[15]. The same can be applied for STW, WTS and
Sitting. We can distinguish STW and WTS from sit-
ting using the feature Energy in both the time and
frequency domain because of the intensity found in
these movements. The flexion of the trunk and ex-
tension of the knees to lift the body vertically cre-
ates high amounts of energy for the x-axis of the ac-
celerometer in STW, comparatively the flexion of the
trunk and knees in WTS. For sitting, the body does
not move as much and therefore the energy measured
from the accelerometer is relatively low. Similarly the
selection of maximum values in the x-axis of the ac-
celerometer can be explained with the sudden vertical
displacement of the body in STW that occurs in a few
milliseconds. This quick acceleration would produce
a larger value in the x-axis accelerometer compared
to sitting or other activities. If you were to look at
WTS, it also would have a vertical displacement of
the body that occurs in a few milliseconds, however
it is a downward acceleration that may help distin-
guish it from STW. If these features are present in
the subset selected for the classification model they
are likely to improve the performance. However, we
cannot be certain that these features are not also cor-
related with other features in the set and are therefore
dependant to another to fully utilize its effectiveness.

4.2 Limitation

In the process of annotating video data for identifying
specific transfer movements, there existed potential
biases in labeling. Despite the researcher’s efforts to-
wards precision, certain indicators marking the start
or end of a movement occasionally fell outside the
camera’s view. This limitation could introduce inac-
curacies in defining the exact moments of each move-
ment.

The alignment method used to annotate and ex-
tract data relevant to these movements was subject
to a potential error margin of 10 samples based on the



length of the signal associated with the hammer test.
Such a deviation in sample alignment might have in-
fluenced the characteristics of the features extracted
later in the analysis. This aspect of data handling
is necessary to be cautious when interpreting the re-
sults, minor misalignment’s could have a larger effect
on the data further down the process. When the data
for each signal was segmented a window of 50 sam-
ples iwth 20% overlap was chosen. This choice was
arbitrary, and could have had a significant impact on
the performance of the classification model, further
investigation on what is the optimal window size and
overlap needs to be conducted to see if it has any
effect.

Furthermore, the dataset showed an imbalance,
with a significantly higher number of samples rep-
resenting sitting as compared to transfer movements.
To address this, an up-sampling technique was em-
ployed to balance the data for transfer movements.
However, this introduction of synthetic data poses
its own challenges, as it could potentially affect the
feature selection process. The synthetic nature of
the up-sampled data might not perfectly replicate the
real-world scenarios it is meant to represent, thus im-
pacting the study’s conclusions. Down-scaling could
be an alternative technique to balance the classes
however this would dispose valuable information from
the Sitting activity, in addition the use of up scaling
can help generate more data for minority classes to
determine the most important features.

Additionally, the hyperparameters used in the
analysis were not at their optimal setting. Opti-
mized hyperparameter is an important step in ma-
chine learning models, as it significantly affects the
model’s ability to accurately make predictions. This
could have an impact on the interpretation of the re-
sults for the features.

4.3 Future Work

For future research, there are several ways our meth-
ods for recognizing transfer movements in the elderly
can be improved and expanded. Enhancements in
data acquisition are crucial; gathering more samples
of each transfer movement will provide a richer and
more balanced dataset. This broader data collection
will enable more robust and comprehensive analysis,
leading to more accurate and reliable models.
Developing a more precise method for extracting
relevant data is another key area needed for improve-
ment. This involves improving techniques to isolate
the exact moments and characteristics of each trans-
fer movement, thereby reducing noise and improving
the quality of the dataset. With this improvement

12

we can train a model to more accurately identify in-
dividual activities or transfer movements. A possible
solution to this is applying a method similarly found
in a study conducted by Raman et al. (2020). In
their research, they utilized a Network Time Proto-
col (NTP) as a reference source to achieve synchro-
nization among multiple sensors. In our own study,
we can employ the NTP method to synchronize both
the camera and the head-mounted sensor. This would
provide a synchronization with a latency as small as
414 microseconds.

Increasing the amount of features extracted from
the data. By analyzing a larger feature set, we can
potentially find more effective features. Introducing
more activities in the dataset is another important
step. If we we want to monitor more activities in
elderly this will allow us to test the robustness of
the selected features, ensuring that they can continue
to effectively distinguish Sit-to-Walk movements from
other activities.

A way to expand the research in recognizing trans-
fer movements is looking into classifying the different
phases of the transfer movements. By recognizing
the different phases and complimenting it with a fall
risk assessment tool we can have better insight in the
changes that occur over time.

5 Conclusion

Features extracted from a head-mounted IMU on an
older population were effective in accurately classi-
fying STW and WTS movements. Recognition of
these movement and observing changes in their per-
formance over time would help assess the fall risk in
a patient. Using feature selection methods such as
Mutual Information Gain, ANOVA, and Recursive
Feature Elimination 116 features were ranked. From
the selection, features in the x-axis accelerometer
were the most crucial features to distinguish different
movements, while features extracted from gyroscopes
had less of an impact in the models performance and
can be neglected. Features such as the maximum
values and energy in the x-axis of the accelerome-
ter showed the most robustness for each model, with
Random Forest Classifier as the best amongst them.
The accuracy from these models were comparable to
other literature and therefore our method and feature
choice can be used to recognize daily life activities in
older adults. Furthermore, current datasets lack a
large sampling of older adults above the age of 65
years old. Our datasets collected from this popula-
tion age can fill this gap and be used for future work
in building models to recognize activity in an older



population.
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Confusion Matrix of

Method of Feature Selection
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B Appendix: Matlab Plotting of IMU Raw Data
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Figure 11: Raw data from the IMU plotted in MATLAB
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C Appendix: IMU Data Extraction for each Activity

Video Frame Location
After exporting the ground truth table of the labelled videos a script in MATLAB is used to convert it into
structure arrays that gives the location of the first and last frame of the video for each activity. Below are
examples of the structure array, with the first value indicating the first frame location and the second value
indicating the last frame.

Video.P16.T1_3.Sitting : [2512,2918]

Video.P16.T1_3.5it2Walk : [2919, 3094]

IMU Peak Search
For the IMU data a script, written in MATLAB, is used to find the first peak that would correspond to
the hammer test. A threshold of -8 to -11 is used to find the peak. The outcome of this script is another
structure array that gives the location of the peak for all participants and their trials. Some peak locations
were determined to be an error due to noise surpassing the threshold. Manual changes to any suspecting
peak location errors are then managed. Below is an example of one of the fields in the structure array. The
value indicates the location in the dataset where the first peak appears.

synchframes.P16. 713 : 205

The final peak corresponding to the hammer test after task completion in the IMU data would be located
in the last seconds. This final peak was located with a window that shares similar size to the number of
frames between the contacts of the first and last hammer test. The window starts at the first peak found in
the synchframe structure array and runs through the signal until the end of the window finds the last peak
under a threshold of -8 to -11. The location of the first peak is then adjusted in the synchrame structure
array and later used to extract the relevant data.

synch frames.P16.71_3 : 209

IMU Data Extraction
Using the two structured arrays synchframe and Video we can then extract the IMU data points that
corresponds with the frames of each activity. A new structured array that provides IMU data of each
activity for each participant is then produced. Figure 12 shows a plotting of this data. Activities found are
Sitting, STW, Swing phase, Other, and WTS. SwingPhase and Other will be activities used to see if we can
recognize STW and WTS against other activities present.

IMU.P16.T1.3.5it2Walk : [1000 x 11]

IMU.P16.T1.3.Walk2Sit : [1000 x 11]

Data restructuring
Now that we have an array of each movement per participant the data is then restructured. The data is
then separated for each signal in each movement. This completes the Data extraction and we can now move
on to the pre-processing step.

Data.Sitting. AceX : [[Cell 1], [Cell.2]...[Cell138]]

Data.Sitting. AccY : [[Cell.1], [Cell.2]...[Cell138]]
Data.Sitting. GyroX : [[Cell.1], [Cell.2]...[Cell138]]
Data.Sitting. GyroY : [[Cell.1], [Cell.2]...[Cell138]]
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D Appendix: Data extraction of IMU for Each Activity
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Figure 12: Plot of data extracted from the IMU accelerometer corresponding to each activity.
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E Appendix: Explination of Features Selected

Mean

Calculates the sum of all values in the signals window then
divides it by the total number of data points in the window
in the time or frequency domain

Standard Deviation

quantifies the degree of dispersion or variability within a
signals window. It is calculated by finding the square root
of the average of the squared differences between each data
point and the mean of the window. This can be found in
the time or frequency domain.

Mean Absolute
Deviation

Calculates the average amount by which each data point is
different from the mean value of the window. This can be
found in the time or frequency domain.

Root Mean Square

Another method in finding the ”average” value in a window,
but considers both positive and negative values. Data is
squared, then the mean of these squared values is found,
and finally it takes the square root of that mean. This can
be found in the time or frequency domain

Maximum The maximum value of a signals window in the time or
frequency domain.

Minimum The minimum value of a signals window in the time or
frequency domain

Energy Quantifies the signal’s total power by summing the squared

magnitudes of the frequency or time components in the
signals window.

Inter-quartile
Range

Specifically represents the range between the first quartile
(25th percentile) and the third quartile (75th percentile) of
the signals window in either the time or frequency domain.
It indicates how much the middle 50% of the window’s data
varies.

Entropy

measures the level of disorder or uncertainty in a signals
window.

Zero Crossing Rate

The rate at which a signal transitions from positive to zero
to negative or negative to zero to positive. This can only
be calculated in the time-domain

Cross-Correlation

Measures the similarity between two different signal win-
dows to see how much they match or align in the time
domain.

Signal Magnitude
Area

quantifies the overall magnitude experienced by a body in
the time domain
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Informed Consent

This informed consent form is for individuals who are invited to participate in this TU Delft study about
Feature analyses of inertial data of sit-to-walk movement.

Researchers: Omri Raizman

Supervisors: Eline van der Kruk

Organization Name: Delft University of Technology (TUDelft)

Faculty: Mechanical, Materials, and Maritime Engineering (3ME) Faculty, TU Delft

Below is a brief introduction to the study and your role in it. If you agree to participate after reading this
information, please sign the certificate of consent at the end of this form. You will receive a full copy of
your signed Informed Consent Form, upon request.

Information Sheet

Introduction: The risk of falls in elderly is often associated with transfer movements, such as sit-to-walk
and walk-to-sit. These seemingly simple tasks can become challenging as individuals age due to various
factors. Muscle strength and flexibility decline, leading to a decreased stability and balance control.
Diminished physical functions can result in difficulties during transitions from sitting to walking, where
walking occurs directly after standing skipping the stabilization phase. We believe proactively identifying
the risks associated with transition movements could help reduce the incidence of falls. With this study
we can measure inertial data using an inertial measuring unit containing an accelerometer, gyroscope and
magnetometer (These sensors are often found in your mobile devices). With the inertial data we then
look for distinguishable features that can be used to recognize these transfer movements in a machine
learning algorithm.

Who can participate in this study
Healthy subjects ages 65 years and above, who are proficient in english.

Who should not participate in the study
e o prior muscular or skeletal injuries,
no history of neurological or psychiatric disorders,
no alcoholism,
no history of balance problems
no surgeries done in the past year

Incompetence to give informed consent

What does the study involve
I will come to the participant's household in the Netherlands.



What is expected of me

Throughout the experiment I will be recording with a GoPro camera. I will also ask the participants to
wear eSense earbuds as the inertial measure unit sensor. I will ask the participants to perform basic tasks
in the house from a seated position. Activities in this experiment are 1) Wash their hands, 2) Retrieve a
book from a shelf, 3) Stand up and walk within their homes. If the activity is considered difficult the
participant can ask for the experiment to stop, or to take longer breaks. These activities will be asked to be
performed five times. This experiment should take no longer than 1 hour depending on the participants.

Possible harms or side effects of participating: There are no known physical or physiological risks
associated with the non-invasive attachment of the sensor to the head and the performance of the
activities. At your request, the experiment can be stopped immediately if you feel uncomfortable.

Data Policy: Personal information such as your age in years, home address, phone number, gender,
previous falls are asked before the experiments. During the experiments, identifiable (full-body) video
recordings will be made of you performing the tasks. All the recorded data will be anonymized and stored
safely without access to external parties. Personal data, which links your anonymized data to yourself,
will be stored separately and only the researchers may have access to it. The video recordings will not be
kept for longer than 2 months. Any other identifiable data (such as name, email address, telephone
number) are stored separately from the recorded data and will not be kept for longer than 2 months. All
information will be archived so that no one except the researchers and supervisors as listed above will
have access to the data. On request, you will have access to your data. All data is made anonymous for
publication purposes. The anonymized data will be processed and uploaded to an online repository in the
advent of a possible publication. Informed consent forms with data indicating the participant does not fall
under the exclusion criteria will be secured in a locked cabinet and kept for two years before being
discarded.

Participant’s rights: Participation in this research study is completely voluntary. Even after you agree to
participate and begin the study, you are still free to withdraw at any time and for any reason. You have the
right to ask that any data you have supplied to that point be withdrawn/destroyed, without penalty. You
have the right to omit or refuse to answer or respond to any question that is asked, without penalty. You
have the right to have your questions about the procedures answered (unless answering these questions
would interfere with the study’s outcome). If any questions arise as a result of reading this information
sheet, you need to ask the investigators before the start of the experiment

Cost, reimbursement, and compensation: No cost, reimbursement, or compensation are applicable for
this study.

For further information: The investigators and supervisors listed above will gladly answer your
questions about this study at any time. If you are interested in the final results of this study, you can
contact one of the investigators or supervisors. For questions, please contact Omri Raizman at



PLEASE TICK THE APPROPRIATE BOXES es

A: GENERAL AGREEMENT — RESEARCH GOALS, PARTICIPANT TASKS AND VOLUNTARY PARTICIPATION

1. T have read and understood the study information or it has been read to me. I have been able to ask questions about the study and my | H
questions have been answered to my satisfaction.

2. I consent voluntarily to be a participant in this study and understand that I can refuse to answer questions and I can withdraw from u
the study at any time, without having to give a reason.

3. I understand that taking part in the study involves video recordings being made that are identifiable and will be kept for 2 months. I
agree that those video recordings are made during the experiments.

4. I understand that during the experiment, sensor data is recorded by an Inertial Measure Unit sensor (accelerometer, gyroscope, and o
magnetometer) on the head in the form of eSense earbuds.

B: POTENTIAL RISKS OF PARTICIPATING (INCLUDING DATA PROTECTION)

5. T understand that taking part in the study also involves collecting specific personally identifiable information (PII), such as gender, o
email address and phone number, and associated personally identifiable research data (PIRD), such as video recordings, with the
potential risk of my identity being revealed.

6. I understand that personal information and recorded data will be stored separately to minimize the threat of a data breach, and o
protect my identity in the event of such a breach.

7. 1 understand that personal information collected about me that can identify me, such as name, email address and phone number, will | U
not be shared beyond the study team.

8. I understand that the identifiable personal data, such as video recordings, I provide will be destroyed a maximum of 2 months after u

C: RESEARCH PUBLICATION, DISSEMINATION AND APPLICATION

9. I understand that after the research study the de-identified information I provide might be used for future reports and publications o

D: (LONGTERM) DATA STORAGE, ACCESS AND REUSE

10.1 give permission for the de-identified data such as force plate data and motion capture data that I provide to be archived in TU u
Delft repository so it can be used for future research and learning.

Signatures

Name of participant [printed] Signature Date

I, as researcher, have accurately read out the information sheet to the potential participant and, to the best of my ability, ensured that the
participant understands to what they are freely consenting.

Researcher name [printed] Signature Date

Study contact details for further information: Omri Raizman




