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Abstract
Wireless sensor networks are commonly used to remotely and automatically monitor environments.
One of the main challenges in wireless sensor networks is to use the limited available energy as ef-
ficiently as possible, to ensure longevity of the network. For such networks to survive their intended
deployment period no energy may be wasted on inconsequential actions. As communication is one
of the most energy-consuming tasks a sensor mote can perform, we propose a set of techniques that
allow a base station to form an accurate environmental state estimation from a selected subset of mea-
surements. In this thesis we present a novel methodology that combines three forms of intelligence.
The sensor mote and base station both maintain a neural network-based predictor of the environmen-
tal state, which the sensor mote uses as input for different controllers (both handmade and based on
Partially Observable Markov Decision Processes) that determine the actions performed by the sen-
sor mote. Armed with the prediction mechanism, a model of the environment, the controller executed
by the sensor mote, and the reported measurements, the base station performs computations akin to
those commonly used with Hidden Markov Models to form an accurate environmental state estimation.
We apply our techniques to real world data sets and reduce the required number of report operations
by over 90% whilst incurring only minimal accuracy penalties.
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Preface
Well here we are, it’s done. Having spent one and a half year working on this thesis it feels great to
finally be able to write that. As I know I can be quite verbose in writing, I hope you will forgive me for
a rather lengthy preface. Through some reflection and meandering, we’ll get to some words of thanks.
Many prefaces I have read before are often in a similar formal style to the rest of the thesis. Although
certainly possible, I wanted this preface to be a bit more personal and as a result slightly less formal.

Knowing that my master thesis took about 18 months is something that I still regret, but when placed
in context I do not mind so much. Even though I could probably have finished my thesis much sooner,
the time spent on other tasks is what has ultimately resulted in a job I am very much looking forward
to. Student assistant jobs and a variety of other activities have given me the opportunity to work as a
teacher at TU Delft for the next two years.

Unsurprisingly perhaps, there are many people that have helped me to get to the thesis you are
now reading. Some have contributed in terms of content, some in terms of form, others by simply
providing great topics for lunch-break discussions. Hopefully I have made the following list complete.
Unfortunately a result of 18 months of thesis work means that I might be forgetting some people. Most
importantly in terms of content, I would of course like to thank my “official” daily supervisors Mathijs
and Matthijs. Another name that “unofficially” is a part of that list is that of Frits. Notwithstanding the
fact that this thesis work has turned out unrelated to his PhD work, he still invested time and effort in
providing clear and constructive feedback, for which I am very grateful. I would also like to thank the
rest of the algorithmics department for their warm welcome into the group. Some of your comments
and constructive feedback have helped shape the thesis you now have in front of you.

The second group of people that deserve some words of gratitude has played a role not only in
my thesis, but also throughout the rest of my education. Having known Pim Otte for about 11 years
now, I am still surprised at the ease with which we can work together on solving problems and studying
new things. Although I have collected a new group of friends at TU Delft, I am very glad that he is
even now a part of that group. Together with Jesse, Tim, Otto, Pim Veldhuisen, and Elvan, the many
distractions in the form of movie nights, game sessions, and “interesting” news articles have helped
to get me through my studies. Whereas I might now have given the impression that this group has
provided mostly stress relief, I should stress that they have also provided very useful and constructive
feedback on ideas and thesis drafts. Either way, this thesis would not have been the same without
them.

For advice and moral support, there are two other groups of people I should thank. In the first place
my family for their support throughout not just my thesis, but also the rest of my education. Gratitude
seems too weak a word to express my feelings for all they have done, including the many occasions on
which they provided the moral support I needed. Hobbies are also great stress-relievers of course and
it is in that context that I would also like to mention the great people that I have met through judo. These
few hours a week during which I could fully forget about study-related worries were very precious to
me.

Finally then this preface can come to an end. Often times in the past, I have ended pieces of text or
speech I deem important with a quote. Rarely have there been situations for which I did not feel some
sort of quote could be appropriate. Old habits die hard it seems. There is the one quote that I normally
used for the really important pieces of text and the careful reader will find it is also partially included in
this preface. However to end with it seems another quote might be more appropriate:
“Ends are not bad things, they just mean that something else is about to begin.” (by C. JoybBell C.)

Regards,
Stefan Hugtenburg
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1
Introduction

Although mankind has come a long way in improving our living conditions and environments, it can not
be denied that we have also negatively influenced many ecosystems. Through our own expansion and
search for knowledge we have disrupted many preciously balanced systems with disastrous results.
Even now our academic pursuits often require us to observe wildlife in its natural environment, which
introduces huge risks through disruption of the local ecosystem. Not only does this result in measure-
ments that can be considered dubious as the habitat and behaviour of the wildlife is disturbed, it can
even lead to the death of the wildlife we wish to study. As research in Maine [7] suggests, a 15 minute
visit to bird colonies can result in up to 20% mortality among eggs and chicks. Sending humans to
observe an ecosystem carries risk and results in many negative side-effects.

With computational units rapidly becoming smaller and more intelligent, digital devices can be ap-
plied in a non-intrusive manner in many new situations. Small devices placed in or around nesting
locations allow us to remotely monitor wildlife without disrupting the ecosystem. In other domains such
small and portable devices are also gaining popularity. Whether it is home-automation in which small
devices can be used to automate household-appliances like the coffee machine, or in military applica-
tions in which sensor nodes can be used to monitor an area for enemy activity, they all share common
goals. With the ability to obtain and send sensor readings, they are well equipped to monitor environ-
ments and wildlife. As Mainwaring et al. [57] described in 2002, a wireless sensor network can perform
the necessary measurements in the ecosystem of the Great Duck Island, whilst minimising the impact
and invasiveness on the ecosystem. The network observes the behaviour of birds during the breeding
season, studying bird presence patterns in the nesting burrows. By connecting the “sensor patches”
to base stations through gateways the information can logged for future, remote study by for instance
biologists.

As these sensor nodes (or “motes”) can be placed before the breeding season starts, human in-
volvement can be limited to times outside of the critical seasons. However, these critical seasons can
span multiple months or even years depending on the environment. Many other use cases like temper-
ature and humidity monitoring in green houses or crop fields also demand long life cycles. To ensure
the entirety of the critical season can be monitored, it is important that the mote uses its limited energy
supply effectively.

Depending on the use case it is also important that the data is available in the base station during
the monitoring, rather than only after the period of interest has passed. In the case of green houses
for instance, the temperature is monitored so that heat lamps can be turned on if it drops beneath the
acceptable level. In other applications, such as sensor networks that monitor forest fires, overflowing
rivers, or illegal trappers hunting wildlife, the need for immediate action is obvious. For such use cases
we want to ensure that the base station has an accurate estimation of the environmental state at all
times, so that we can immediately take action to prevent the situation from escalating (e.g., by calling
the fire brigade in case of a forest fire).

1



2 1. Introduction

Limited Sensor Mote Base station
Power Yes No

Available memory Yes No
Processing power Yes No
Processing time Yes Yes

Table 1.1: The limitations imposed on the base station and sensor motes.

1.1. Problem statement
In wireless sensor networks there are two types of components. The first is a sensor mote (or “source”),
which can perform and report measurements. Second is the base station (or “sink”), which aggregates
the data reported by the sensor motes. Through cooperation of these components we aim to obtain
an accurate state estimation in the base station and a long battery life in the sensor motes. There are
several different limitations in the base station and sensor motes that result in conflicts for fulfilling the
goal.

The difference in hardware between the base station and sensor mote is the most important reason
for their different limitations. The sensor motes operate wirelessly and have a limited power supply
in the form of batteries. One of the most expensive operations a sensor mote can perform in terms
of battery life, is reporting its measurement to the base station. Much research has already been
done to reduce the required power for communication. With new routing techniques [1, 40, 93] and
adaptations of network protocols [25] battery life can be extended by large amounts of time already.
Far less research has been done to investigate what changes can be made in the application layer
of the network. In monitoring applications sensor motes often do only little to no local computation,
but instead send all their data to a central base station where it is recorded for offline processing [43,
86]. As discussed by Anastasi et al. [6] in their survey of energy conservation in Wireless Sensor
Networks (WSNs) communication is more expensive than computation in terms of power used. These
computations should not take very long to complete, as the base stationmay require reports of important
measurements in a timely fashion. Due to the limited and cheap hardware the motes consist of, the
computations that they can perform are limited. They should not be overly complex, they should be
quick, and with only several KB of memory, they should not depend on the availability of large data
structures.

The base station often has fewer limitations. As the base station has a constant power supply and
is often connected to the outside world via the Internet, it has much more processing power available.
With the Internet connection it can off-load work to a processing cluster or cloud, if it can not process
the information itself. The main limitation for the base station is a time-constraint. If it has to take
actions based on reports by the sensor motes, it should be able to quickly process these reports. The
limitations of the base station and sensor mote are summarised in Table 1.1.

These limitations also influence the goals of the individual components. Sensor motes want to
ensure their power lasts as long as possible, that is they aim to “survive” the intended time period.
As communication consumes a lot of power, one way to achieve this is to minimise the number of
measurements they report. The base station on the other hand is tasked with maintaining an accurate
estimate of the environmental state and producing a log containing an entry of the environmental state
at every time step. To create an accurate log it requires information about the environmental state from
the sensor motes, in other words it requires reports from the sensor motes. It can produce the most
accurate log when the sensor motes send it all of the measurements. These conflicting goals form a
trade-off between accuracy and battery life that we explore in this thesis.

1.2. Research questions
This trade-off between accuracy and battery life has been explored before. In their survey of energy
conservation techniques, Anastasi et al. [6] formulate a taxonomy of such techniques. For this thesis
work we focus on a data-driven approach, further specified as data reduction using data prediction.

Similar to other data prediction techniques described by Anastasi et al., our approach also assumes
a model of the environmental state is shared between the sensor motes and the base station. Sensor
motes compare their measurements to this model and report them if the measurement falls outside



1.2. Research questions 3

of the allowed tolerance. This model is the predictor in the “data prediction” classifier. By updating
the model in the sensor mote and base station at the same time, such shared knowledge can provide
valuable information about the environment even when no measurements are actually reported by the
sensor motes.

Previous work in this category is best represented by what Chu et al. [22] call the Ken solution. This
solution substitutes the prediction for the state estimation if no measurements are received. By defining
a maximum tolerated error, there are clear bounds on the accuracy, and up to 80% of the reports can
be saved. There are two extensions on this work that we handle in this thesis. First, as the authors of
the Ken solution point out, stochastic actions in the sensor motes can further help reduce the required
number of report operations. Second, more advanced prediction mechanisms can help also reduce the
number of report operations. It is these two extensions, or forms of “increased intelligence” that form
the inspiration of this thesis work. Through them we set out to answer the following research question:

Research question. What is the effect of adding more intelligence to sensor motes on the accuracy
of the state estimation by the base station and the battery life of the sensor motes?

We focus solely on adding more intelligence to the application layer of the sensor network. For the
purposes of this thesis therefore we assume that the routing layer of the network handles issues such
packets that are dropped and never make it to the base station. Similarly we do not consider in-depth
other energy conservation techniques which involve sending more data after short delay as opposed
to sending every measurement immediately. We discuss several of these techniques in Chapter 2, in
which we discuss related work.

To answer the main research question, we define three sub research questions that focus on different
parts of the intelligence that we add to the sensor motes and how we can reason about that intelligence.

To implement stochastic action selection in the sensor motes, we have them execute stochastic
finite state controllers that operate on themeasurements taken and predictionsmade. These controllers
determine the behaviour of the sensor mote, in other words: do we report a measurement or not? To
allow the base station to reason about why the sensor mote has taken a certain action, every report
operation not only includes the measurement taken by the sensor mote, but also includes the current
state in this finite state controller. Using the design of the controller and a model of the environment,
the base station then has to produce an accurate environmental state estimation. The question we
pose is:

Sub research question 1. How can the base station use information about the state of the controller
to estimate the environmental state, whilst it has access to only a subset of the measurements?

As an improved prediction model we consider neural networks, which have been applied to predict
time-based data before [28, 68]. In previous work the networks are usually very complex which makes
them unfeasible to be applied in sensor motes directly. Additionally we consider updating the network
as predictions differ too much. The variety of parameters (network training, update rate, maximum
allowed error) allows for much freedom in its configuration. The question we ask is:

Sub research question 2. By how much can the communication of sensor motes be reduced through
the introduction of prediction mechanisms before the loss of accuracy in the base station is considered
unacceptable?

Finally we combine these two extensions in an experimental evaluation. In an attempt to find the optimal
controllers for a given use case, we provide a systematic approach that can be applied for any use case
in the domain of environment monitoring using wireless sensor motes. This approach models the use
case as a Partially Observable Markov Decision Process (POMDP) which can be solved to a stochastic
finite state controller. The question we pose is:

Sub research question 3. Compared to handmade controllers based on rules of thumb, by how much
can POMDP-based controllers decrease the report rate without affecting the accuracy?
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1.3. Contributions
Through the investigations of these research questions, this thesis puts forth three major contributions.
The first is the base station logic that allows us to reason about the state of the environment using
the state of the controller in the sensor mote as well as a subset of reported observations. The state
estimation obtained by this logic is efficiently computable and the logic is sufficiently abstract to work
with many different configurations of finite state controllers. As a result we can have fine-grained control
over the trade-off between accuracy and report rate. Furthermore the inclusion of the controller allows
us to obtain more accurate logs with the same number of reports.

Secondly we offer an analysis of different prediction mechanisms to predict the daily temperature
trend inside an office building. Comparing them to two baseline (untrained) predictors that assume
the temperature to be constant or linear, we analyse different neural network predictors. We analyse
the different parameters that can be configured in these neural network configurations with respect to
the trade-off between report rate and accuracy. Although the neural network predictors obtain similar
performance to the baseline predictors, they are unable to consistently outperform them. This is likely
due to differences between the training and evaluation data sets used in the evaluation which impact the
neural network predictors, but do not influence the performance of the baseline (untrained) predictors.

Finally we perform an experimental evaluation of the systemic approach to finding the optimal con-
troller for a given use case. We evaluate a variety of controllers that all balance the trade-off in slightly
different ways. We also evaluate the POMDP-based controllers and compare their performance to
handmade controllers based on rules of thumb. This evaluation provides great insight into what makes
certain types of controllers work well for a given use case.

1.4. Structure of this thesis
Figure 1.1 presents a visual overview of the methodology developed in this thesis. The green items
represent components that are present in “traditional” wireless sensor network deployments. There is
an environment monitored by a sensor network, this network reports to a base station which logs the
measurements for analysis. The blue components represent that additions we make to this “traditional”
set-up. Each of these components also contains a link to the chapter in which we develop this addition.
As input for these additions, we require the yellow components, which are (derivations from) data sets
that are used to model the environment and the trade-off between accuracy and report rate. Finally the
red components are methods we use in this thesis that have been previously explored in literature, but
are not improved upon in this thesis.

First we investigate related work in Chapter 2 to determine what has been done before in the context
of wireless sensor networks and what optimisation techniques we could apply to balance our trade-
off. In Chapter 3 we design a mathematically grounded policy for the base station to reason about the
environmental state given a subset of the measurements and a stochastic controller in the sensor mote.
Chapter 4 continues with the notion of controllers, by considering the design of the controllers for the
sensor motes that allow the base station to execute our policy. Chapters 5 and 6 focus on designing and
evaluating prediction mechanisms based on neural networks. These chapters can be read separately
from Chapters 3 and 4 as these focus on an exploration of different prediction mechanisms and do not
consider the notion of a controller. Finally we combine the two forms of intelligence in an evaluation of
different controllers that use different prediction mechanisms. This evaluation is described in Chapter 7,
in which we evaluate a large variety of controllers that the sensor mote can execute in conjunction with
the predictor to report only those measurements that inform the base station most.
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Figure 1.1: A visual overview of the different models and processes that this thesis combines. Green components are part
of “traditional” WSNs, blue components are added by us and explored in this thesis. red and yellow components are existing
techniques and data sets respectively that are needed for our additions.





2
Related Work

For our data-prediction energy conservation technique, we combine research from the field of wireless
sensor networks and the theory of sequential decision making problems. In this chapter we present an
overview of the state-of-the-art techniques, frameworks, and algorithms deployed in these fields. First
we examine the contexts of wireless sensor networks in Section 2.1. We then look at the techniques
for solving decision making problems in Section 2.2. In Section 2.3 we examine work that already
combines these two fields in the form of Hidden Markov Models (HMMs).

2.1. Application domain: wireless sensor networks
Over the last decades advances in electrical engineering have led to computational units becoming
increasingly cheaper and smaller. Whereas initially this led to computers becoming available to con-
sumers, we have long surpassed that state and are now able to mass produce computational units
that are no larger than a coin [67]. Although such tiny computational units have very limited processing
capabilities, they can monitor and act within environments by equipping them with sensors and wire-
less communication to off-load the collected data. These “wireless sensor motes” can be deployed in
a variety of circumstances leading to all kinds of new applications. Due to their small physical dimen-
sions and low manufacturing costs, large networks of these sensors can be rapidly deployed to monitor
environments in an unobtrusive manner.

We describe the requirements imposed on these sensor motes and networks in Section 2.1.1. With
these requirements in mind we look at some application domains found in literature in Section 2.1.2.
Finally in Section 2.1.3 we discuss the state-of-the-art routing protocols and algorithms that consider
these requirements and are used in the identified application domains.

2.1.1. Requirements of WSNs
As with any technology, wireless sensor networks bring many challenges of their own. As weight, phys-
ical dimensions and cost are minimised they need to use whatever little energy they have efficiently
and they lack the processing power and resources to perform extensive computations. As WSNs share
many of their properties with ad-hoc networks [69], some of the challenges have already been exten-
sively investigated. However, wireless sensor networks offer some new challenges as well. Akyildiz et
al. [2] identify several such challenges in their survey on wireless sensor networks. We highlight the
six relevant challenges here:

• WSNs can contain many nodes, orders of magnitude more nodes than an ad-hoc network, thus
scalability takes a very prominent role. Communication protocols need to work well even with
thousands of nodes.

• Sensor motes are densely deployed, thus there can be overlap in their measurements or inter-
ference from their communication. This allows communication protocols to consider aggregating
data within the network, to avoid sending redundant messages or needlessly blocking the com-
munication channel.

7
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Sensor Mote Processor RAM (KB) Program Memory (KB) Battery TinyOS Contiki-OS
BTnode3 ATMega128 64 128 2xAA �
Cricket ATMega128 4 128 2xAA �
micaz ATMega128 4 128 2xAA � �
Tmote Sky TI MSP430 10 48 2xAA � �
wismote TI MSP430 128 256 1xAAA �

Table 2.1: An updated overview of several types of sensor motes, their capabilities, and operating system support, based on
Winkler et al. [92].

• Sensor motes are prone to failure. Due to the usage of cheap hardware to ensure low prices,
the quality of individual motes is often fairly low. Thus communication protocols should be able
to handle node failures.

• The topology of the network is likely to change. Although not applicable for all use-cases, mobility
of the motes should be taken into account. Combined with the common failure of motes, changes
in routing strategies are needed as the network remains deployed for longer periods of time.

• Sensor motes typically use broadcast mechanisms for communication as opposed to the point-
to-point communication commonly found in ad-hoc networks. The reason for this difference is
easily explained when we consider the cost. Having a simple transfer medium that simply sends
data hoping that some other mote or base station receives it, is much cheaper to produce than
specialised directed communication hardware.

• Sensor motes feature limited processing capabilities, hardware and battery power. This effec-
tively ensures that sensor motes can only execute rather low-complexity policies. As these sensor
motes are deployed in an environment that can require real-time operation, lack of memory and
lower CPU speed forces us to keep the processing algorithms simple. Table 2.1 shows the limited
memory available on these motes.

As operating systems created for normal machines do not take into account the specific require-
ments (most importantly energy efficiency), special custom operating systems have been developed for
these wireless sensor motes. Two examples of these operating systems are TinyOS1 and Contiki-OS2,
both featuring an active open-source development. To give an impression of the kind of hardware and
software used, Table 2.1 lists several of the most-commonly used sensor mote types, their hardware
specifications, and operating system support.

2.1.2. Applications of WSNs
Due to their small size and low production costs, sensor networks can be deployed in many different
situations. Both Alyildiz et al. [2] and Garcia-Hernández et al. [27] identify several different application
domains, of which we now describe four: environmental applications, security/military applications,
health applications, and home applications.

Environment Applications
To help prevent an endangered species going extinct, it is important we learn about its behaviour
so that we can protect their environment. By planting sensor motes in burrows before the breeding
season [57, 85] or by putting collars on zebras once (a one time interference) [43, 94], the animals
can be studied remotely without further interference in their environment. The alternative in the form
of sending humans to check up on these endangered species in the wild might be counterproductive
as it could at best throw off the readings as the animal changes its behaviour or at worst cause large
amounts of distress due to the presence of the human being. The small size of wireless sensor motes
can help to prevent such issues. Using a variety of sensors we can learn about movement patterns,
feeding times, group behaviour, and many other so-far unstudied properties of wildlife.

Mainwaring et al. [57] have successfully studies bird presence patterns during the nesting period on
Great Duck Island using a wireless sensor network. By measuring the temperature using the so-called
1https://github.com/tinyos/tinyos-main
2http://www.contiki-os.org/

https://github.com/tinyos/tinyos-main
http://www.contiki-os.org/
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MicaWeatherboard, they can infer the presence of a bird inside a burrow. In the ZebraNetWSN [43, 94]
the sensor motes regularly record the positions of the zebras outfitted with special collars and report
this data back to the base station. This has lead to the first record of zebra movement at night, leading
to new insights in the way zebras live.

Other applications in the environmental domain focus on flora rather than fauna and include the
tracking of pollution in water and air flows. Khedo et al. [47] describe a deployment on the island of
Mauritius that monitors air pollution on the island now that the industry is picking up on the island. Not
only do Khedo et al. propose a novel strategy that helps reduce the amount of data a cluster head
needs to communicate, the authors also provide an intuitive interface that the Mauritian government
can use to determine if the population needs to be evacuated because of excessive air pollution levels.

Security/Military Applications
Due to their ability to monitor their environment and rapidly aggregate data in a centralised command
post, wireless sensor networks offer many advantages to the military. From monitoring the vitals of
soldiers, their ammunition and location [83] to classifying and tracking potential enemy aircraft [8]. Ding
et al. [24] describe WSNs for the purpose of uncovering radioactive materials intended for terrorist
attacks. The ease of a (temporary) cheap deployment of such a WSN before a meeting of political
leaders makes this an attractive choice in terms of security. With their deployment the network remains
operational for up to 20 hours, which may not be sufficient for all use cases.

In their survey of military applications of wireless sensor networks, Winkler et al. focus on the use
case of surveillance around a command post in an area of active engagement [92]. In such cases data
security and encryption are additional requirements. If hostile forces can hide themselves by misin-
forming the network, then the deployment of the network is meaningless. Additionally even the notion
of communication can already be a risk. Hostile forces could intercept the communication and even
without understanding the contents, become aware of your presence. Another requirement mentioned
by Winkler et al. is that sensors might occasionally be airdropped or launched by a rocket launcher.
This introduces requirements on the physical structure of the sensor that you will not see in other ap-
plication domains. Lee et al. [54] describe how such an airdropped or artillery-delivered network can
form a network structure that can reliably send information back to a base station.

Healthcare Applications
Although many different kind of measuring devices are already employed in hospitals around the world,
wireless sensor networks allow for new types of information to reach the system. For instance in elderly
homes a simple wristwatch can help to detect inhabitants suffering from dementia wandering off or
inhabitants that have fallen [4]. Some systems, such as that described by Suryadevera et al. [84], even
monitor electrical appliance usage and sleeping habits inside the home, leading to new information that
can be used to give health advice to the elderly. An obvious concern for privacy and general acceptance
seems not be an overly large concern. As an exploratory survey by Steele et al. [82] reveals, the elderly
seem generally positive towards using WSN to improve their healthcare provided that the benefit of the
WSN is made clear to them.

Home and Office Applications
Finally we look at the home and office applications for wireless sensor networks, which are closely
related to some of the healthcare applications we have already seen. Smart homes which have sensor
motes embedded in many household appliances can allow remote operation of household appliances
(thermostats, television recorders etc.). By recognising activities performed by residents [46], such
appliances can automatically be operated at the right time. In the Intel research lab [15] several aspects
of an office environment have been measured, such as the temperature and the amount of light. We
describe the resulting data set in more detail in later chapters of this thesis as we use it for experimental
validation.

2.1.3. Routing protocols & algorithms in WSNs
In all applications discussed in the previous section, energy constraints help to shape the role and
behaviour of the wireless sensor motes. Much research has already been done in policies for the net-
work and transport-layers of the network [1, 21, 40]. Traditional techniques such as the TCP or UDP
protocol on top of the IP protocol can be applied, but require a lot of modification to be feasible in this



10 2. Related Work

environment [25]. As a result, many custom routing mechanisms have been devised for communi-
cation in wireless sensor networks, exploiting characteristics such as geographical closeness or data
redundancy. These techniques are often unaware of the application running on top of the network and
focus only on reducing the battery cost of communication which means they can be combined with the
new application-layer technique for saving battery life outlined in this thesis. In this section we describe
several of these mechanisms outlining their potential benefits and differences. These routing protocols
are based on the classification and explanations presented by Al-Karaki et al. in their survey on routing
techniques in WSNs [3].

Flat Routing
Without any type of hierarchy within the network, flat routing essentially focuses on flooding messages
in a smart manner. All motes carry the same responsibilities and communicate in the same way. A pop-
ular routing protocol in this category is directed diffusion as introduced by Intonanagowiwat et al. [40].
Focusing on scalability and robustness, directed diffusion works in three phases. First, a so-called
“sink” can signal that it has interest in certain types of events. This interest is forwarded throughout the
network and every mote will remember through what mote the interest reached it. Second, if an event
that matches the interest is observed, it will be sent to the mote through which the interest reached
it. Finally when this event data reaches the sink, the sink will reinforce the link by requesting more
frequent updates. After the event period is over, or if a better route is found to the event location, the
requested frequency can be lowered again, thus downgrading the link. Although good for on-demand
data delivery, it is not well-suited for continuous delivery of data, which is an essential requirement for
the monitoring applications described in Section 2.1.2.

Hierarchical Routing
Unlike flat routing, hierarchical routing assumes or places an explicit hierarchy in the sensor network.
Using clustering and appointing cluster-heads, a hierarchy can easily be established within the network.
As pointed out by Al-Karaki et al. [3], many of the techniques in this category answer the question of who
should send the information and at what time, rather than focusing solely on routing. A fundamental
example from this category that forms the basis of many of the hierarchical routing strategies can be
found in LEACH the Low-Energy Adaptive Clustering Hierarchy [38]. This protocol architecture, as
Heinzelman et al. call it, is evaluated in terms of ease of deployment, system lifetime, latency, and
quality. The algorithm consists of rounds of two phases. During the first phase the 𝑘 cluster heads
for this round are randomly selected. The optimal value for 𝑘 can be analytically determined based
on several factors including the number of motes and the available energy. Having determined the
cluster heads, motes decide what cluster head they join for this round, resulting in 𝑘 clusters. During
the second phase every cluster head creates a schedule for its cluster, outlining when what mote is
allowed to communicate its information. This should avoid collisions and maximise sleep time for the
motes. The idea is to spend most time in the second phase, as this minimises the overhead of the
protocol. At the same time, it is also important for the role of cluster head to rotate often. As being
the cluster head will require more energy, shifting the role around will result in more uniform battery
lifetimes. Although these techniques can help with continuous data delivery, it does not help to answer
the question of what data is worth reporting.

Location-based Routing
As wireless sensor networks are often spread throughout a large geographical area, using the physical
location of a mote in a routing protocol could also lead to new insights. One such insight is found in
Staffetta [21]. Staffetta uses the distance from a mote to the base station to determine how often it
should wake up and listen or transmit data. The rule of thumb is that motes closer to the base station
wake up more often. As a result when a random mote wakes up, the probability that it finds an awake
mote closer to the base station is larger than finding one in the wrong direction. Thus for data collection,
data is naturally inclined to move towards the base station. Whereas the performance of this strategy
is very promising, it can quickly lead to nonuniform battery levels. After all motes that are closer wake
up more often and thus use more power.
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2.2. Solution space: decision-making problems
All of the techniques discussed in Section 2.1.3 aim to save battery in the communication layer of
the network. However these techniques do not use the contents of the messages in this process.
They are not aware of the application that the network is running, they only handle the routing layer
of the network. On top of them an intelligent policy in the application layer of the network can be
deployed that answers the questions of what data is important enough to be communicated and when
it should be communicated. These questions can be modelled well by techniques found in the field of
decision-making problems. In fact many problems in all kinds of different contexts can be boiled down
to decision-making problems. When there is a traffic jam, should we stay on the highway or travel over
smaller country roads to bypass it? Given a limited budget what gifts should we buy for what person?
As human beings it is tough to decide what answer to these questions are optimal. Unfortunately many
of these problems are often equally hard for machines to decide. Nevertheless, there are several
problem models and techniques that can help to find (approximate) solutions to these decision-making
problems.

Based on the categorisation by Kochenderfer et al. [48] we examine five different methods for mod-
elling decision problems. Each of these methods makes different assumptions about the problem that
is being modelled, for instance about the amount of data available before modelling and whether or not
some modelling can be done online, i.e. during the decision-making process.

Explicit Programming
Although arguably the most naïve method, explicit programming is the most direct method of solving
a problem. It essentially considers all the different scenarios that could present itself to the agent and
instructs the agent on what to do in these scenarios. The general idea of an agent-oriented program-
ming approach was first described by Shoham et al. in 1993 [76]. They put forward many notions
often found in agent-based frameworks, such as belief states, message based communication, and
taking actions based on observations. These general notions are also found in the other methods for
modelling decision-making problems described below.

Supervised Learning
If you show a child several examples of fishes, mammals, lizards, and insects, the child is likely to
automatically look for a pattern or set of characteristics that defines each of these groups. If you then
show them a new picture of an animal they have not seen before, but one that clearly exhibits insect-like
characteristics, a child can probably identify it as an insect. Humans in general are rather good at such
methods of pattern recognition [87]. If you show us several examples of how to solve a problem (be it
a classification problem or something else) then soon we are able to apply a similar solution strategy to
new problems. This is exactly what supervised learning also aims to do in decision-making problems.

Supervised learning features an offline learning phase during which we show an agent what to
do in certain scenarios. From this, the agent can then derive a common strategy that it can apply to
new scenarios. Of course the efficiency of such techniques is largely dependent on the correctness of
the learning problems and solutions. Even with perfect solutions to these training problems however,
it is unlikely that such techniques will outperform human designers that specialise in solving these
problems [48]. As this machine learning technique specialises in pattern detection, applications can be
found in many different areas. In biology, or more specifically genetics, it can be used to find certain
genetic characteristics [75], and in wireless sensor networks, it can be used to estimate link quality [88].
In Chapter 5 we propose neural networks as a prediction mechanism in the sensor motes. These neural
networks are also a supervised learning technique.

Optimisation
Unlike supervised learning, optimisation approaches do not rely on a training set, but rather a math-
ematical definition of the design space. By expressing constraints and performance measures in a
mathematical framework, algorithms that traverse this solution space looking for optima can be de-
signed. As the solution space increases in size, the algorithms have to becomemore intelligent. Simply
trying all solutions will quickly become unfeasible. Several well-known optimisation strategies are evo-
lutionary and genetic algorithms [9, 31], tabu search [29, 30, 39], and the mathematical mixed-integer
programming model which was already used in the 1960s [55] for which different frameworks are still
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Dec-POMDP

POMDP     Dec-MDPMDPMDP

P-complete     PSPACE-complete     NEXP-complete

Figure 2.1: Superclasses of MDPs, based on [13, 48, 56], indicating the complexity class of solving the finite-horizon version of
the problem class.

improving in efficiency. Gurobi3and CPLEX4 are two such examples. The policy outlined in Chapter 3
is best qualified as an optimisation technique.

Planning
Whilst knowledge of the dynamics of the problem model might be known in general optimisation prob-
lems, planning problems are a form of optimisation in which this model is explicitly used in finding the
right decision. These models do not necessarily have to be deterministic, which leads to planning un-
der uncertainty. A commonly used model in this field is the Markov-Decision Process (MDP) model,
which assumes that the next state of an agent depends only on its current state and its current ac-
tion [10]. In other words, if we assume Markovian behaviour in the state transitions, the states form a
Markov chain. This has many advantages as it means we do not have to keep track of a long history of
states and actions, but can reason only about our current knowledge. Many variations of this problem
model exist, including Partially-Observable MDPs (POMDPs) in which uncertainty over observations
or local state can be introduced [77], and Decentralised (PO)MDPs in which we reason about multiple
agents that either can or can not communicate, but lack a central command node that determines the
actions for all agents [14, 73]. Figure 2.1 presents an overview of several of the different superclasses
of MDPs. The systematic approach to create a controller for the sensor mote uses a POMDP model of
the environment, as explained in Chapter 4.

Reinforcement Learning
Sometimes a problem domain is sufficiently complex so that no structured model of the interactions,
possibilities and rewards within it exists (yet), rendering the approaches listed above unfeasible. For
these situations reinforcement learning can help to find the right decision to make. The most famous
example of reinforcement learning are the dogs of Pavlov that were trained to expect food when a bell
rang. These dogs, who were unaware of the system before, learned in an online fashion, of the model
in which bell ringing is followed by eating. Fortunately for these dogs, learning this model required little
effort on their part, something that is not necessarily true for all situations. In general, agents will have
to strike a balance between working towards their goal and exploring the domain. Consider for instance
a transport problem, in which goods need to be transported from A to B. Once you have found a route
from A to B, do you continually take that route, or do you try variations in hopes of improving on the
route?

An example of a strategy in this area is Q-learning, which relates back to MDPs [90]. Q-learning
focuses on learning the reward function based on the current state and the action it takes, which uses a
learning rate parameter to balance the importance of new information with existing old information. For
finite MDPs it has been proven that Q-learning can find the optimal solution [89], though for real-world
problems it is often unknown whether or not the system can be modelled by a finite MDP.

3http://www.gurobi.com/
4http://www.ibm.com/software/commerce/optimization/cplex-optimizer/

http://www.gurobi.com/
http://www.ibm.com/software/commerce/optimization/cplex-optimizer/
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Figure 2.2: A visual representation of a Hidden Markov Model, where the known observations (depicted in green) and an a priori
guess for the initial state ( in yellow) help us to determine the a posteriori probability distribution over the states (in red).

2.3. Decision-making problem models in WSNs: Hidden Markov
Models

In the past some planning techniques have been applied in the application layer of the wireless sensor
networks to reason about the environment under observation. One such set of techniques often found in
relation to the state uncertainty described by POMDP models, consists of techniques related to Hidden
Markov Models (HMMs) [18, 37]. In the rest of this section we discuss the techniques commonly
associated with HMMs, their applications in wireless sensor networks, and what potential drawbacks
there are in these techniques.

A Hidden Markov Model is essentially a Markov chain of discrete states extended with observations
at every time step. In this model the observations at every time step are known, but the states emitting
these observations are not. Based on these observations we then aim to learn something about the
states. Figure 2.2 shows a simple Hidden Markov Model, where green nodes indicate nodes whose
values are known and red nodes indicate nodes whose values are not known. The representation used
here is similar to that of Dynamic Bayesian Networks (DBNs) which is intentional as HMMs can easily
be expressed as DBNs [48, 59].

Murphy et al. [59] list a number of variants of this HMM model, describing how they can expressed
as DBNs. For instance HMMs in which the observation at time 𝑡 + 1 directly depends on the observa-
tion at time 𝑡 known as correlation or switching HMMs [32, 36], as well as Input-Output HMMs which
take a known input that affects the unknown state that emits the known output (observation) [11]. In
the context of wireless sensor networks, the HMM configurations Murphy et al. refer to as “coupled
HMMs” are worth mentioning. These HMMs combine two or more HMMs to model a system (or state)
that influences both of these HMMs independently [16, 41, 53]. In an application with many sensors
monitoring the same system indirectly (e.g. many sensors measuring the water level of a river) all of
the individual states can tell us something about the water level and whether or not action is required
(e.g. to open the water locks).

Often the HMM techniques that are applied are applied not on the sensor node themselves, but
rather on an external computer (or the base station). Sensor nodes simply forward all of their observa-
tions and the base station computes the probability distribution over the accompanying states [20, 72].
In other cases there is some preprocessing of the data on the sensor nodes themselves (e.g. [37]), but
ultimately these systems rely on either total or at least regular communication to form their beliefs on
the state.

The reason HMM techniques are often not applied directly on the sensor nodes is that the memory
required for the computations can be an issue. In order to perform the techniques from HMMs on
the wireless sensor node themselves is unfeasible. It requires the transition function and observation
function, which, for a discretised state space, feature a quadratic space-complexity in terms of the
number of observations. Depending on the discretisation used, this can lead to an unsatisfiablememory
requirement.

An alternative approach featuring a continuous state space requires the usage of an extended or un-
scented Kalman Filter [19]. Such a filter keeps track of the probability density function for the states
based on the observations. Julier et al. [44] suggest however that the extended version is often “hard to
implement” and their description of the unscented version also seems too taxing for a wireless sensor
node. For distributed systems, such as our sensor network, a distributed Kalman Filter exists. However
the initial version requires𝑂(𝑛 ) communication, with 𝑛 being the number of sensors in the network [62].
An improvement manages to reduce this to only ”local” communication (with neighbours) [61, 63], but
this method is then still non-trivial to operate.
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As far as we can tell previous research has focused so far on using Hidden Markov Models or
DBNs in combination with wireless sensor nodes only when all observations are reported. In this work
however, we focus on strategies that rely on communicating only a subset of the observations, such
that the base station can still formulate an accurate environmental state estimation.



3
Designing the base station logic:
reasoning with limited information

In this chapter we answer the first research question (Sub research question 1) by designing logic for the
base station logic that produces an environmental state estimation. This logic uses only the reported
measurements and the reported state of the controller executed by the sensor mote in forming this
estimation. Before we can formally introduce this logic however, we first introduce notation to describe
our environmental monitoring use case in Section 3.1. Then we introduce a small toy example in
Section 3.2 that allows us to demonstrate how the techniques we describe in this chapter work.

Inspired by Hidden Markov Models, we start with logic that uses only a transition model of the envi-
ronmental state to estimate the current environmental state in Section 3.3. This logic applies Bayesian
probability methods to calculate a posterior probability distribution given a prior (the transition model)
and evidence (a new observation). Since the base station does not have information about uncom-
municated observations, we enhance the reported observation with the state of a finite state controller
executed by the sensor mote in Section 3.4. This controller can, if properly designed, provide insight
into the uncommunicated measurements through reporting its current state.

Next we improve the sensor mote by allowing it to reason about if something is or is not worth
reporting. Using a prediction model of some kind, we can give the FSC control over what actions the
sensor mote performs. In Section 3.5 we explore the resulting logic. Finally we discuss the feasibility
of this logic as well as alternative manners of evaluating it in Section 3.6.

3.1. Problem description
Based on the description given by Chu et al. [22], we formalise our problem as follows.

Problem statement. We are given a WSN tasked with monitoring the environmental state 𝑠 through
indirect (potentially incorrect) measurements 𝑜. For a deployment period during which ℎmeasurements
are recorded, find the smallest set of measurements 𝑀 ⊆ {𝑜 , 𝑜 , … , 𝑜 } that should be reported to
the base station such that it has the most accurate state estimation 𝑧 at all times 0 ≤ 𝑡 < ℎ.
A solution 𝑋 to this problem is a function that prescribes what measurements should be reported by the
sensor mote and what state estimations should be formulated made by the base station as a result. To
this end we have the sensor mote select an action 𝑎 after every measurement, which is either wait or
report.

A solution 𝑋 thus takes themeasurements {𝑜 , … , 𝑜 } and produces the set of actions {𝑎 , … , 𝑎 }
and environmental state estimations {𝑧 , … , 𝑧 }. In choosing action 𝑎 for a time 𝑡, the solution 𝑋 can
only consider observations 𝑜 with 𝑡 ≤ 𝑡 as well as the time 𝑡 itself. Similarly for selecting 𝑧 at a
time 𝑡, the solution 𝑋 can only consider the actions 𝑎 for 𝑡 ≤ 𝑡, the subset of reported observations
{𝑜 |𝑎 = report, 0 ≤ 𝑡 ≤ 𝑡}, and the time 𝑡 itself.

We elaborate on two aspects introduced in this formalisation.

First we consider the measure of success of a potential solution 𝑋. The problem statements refers to

15
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two goals that should be optimised for, a “smallest set of measurements” and a “most accurate state
estimation”. These two goals represent the trade-off described in the introduction, the trade-off between
battery life and estimation accuracy. To quantify these goals, we introduce two metrics to express the
performance of a solution in terms of these goals.

With regards to the report rate, 𝑚sent considers the number of messages sent. For 𝑚sent we take
the fraction of actions that are report actions. The resulting score is between zero and one, with a lower
score indicating better performance:

𝑚sent(𝑋) =
|{𝑎 = report|0 ≤ 𝑡 < ℎ}|

ℎ

The accuracy of the environmental state estimations, requires us to compare the estimation 𝑧
made by the base station at time 𝑡 with the real state 𝑠. Depending on the type of environment we
monitor, such a comparison could be expressed on a numerical scale (for instance when monitoring
temperature, a deviation in degrees Celsius can be used). For the 𝑚acc metric we do not assume the
environmental state to be comparable in such manner however. Our toy example introduced in the
next section does not feature such a numeric state for instance. Instead we count the number of times
the base station is expected to predict the correct environmental state. Any relaxations by allowing
small deviations can be encoded in this metric by changing the comparison:

𝑚acc(𝑋, {𝑠 , … , 𝑠 }) = 𝐸 [|{𝑠 = 𝑧 |0 ≤ 𝑡 < ℎ}|]
ℎ

In multi-objective problems such as this, we are likely to find a set of Pareto-optimal solutions.
These solutions all outscore each other in one, but not both of these metrics. Depending on the use
case different weights can be attributed to the different metrics and a solution can be selected based
on those weights.

Second we consider the sets of environmental states and their associated observations. Similar to
other work [18, 41, 46, 72], we model this environment as a Markov chain to allow for analysis of
the system, which is very difficult without Markov assumptions [45]. For this model, we introduce a
transition function 𝑇 and an observation function 𝑂.

The transition function 𝑇 describes how the environment is likely to change over time. In the dis-
cretised setting, we define 𝑆 as the set of all possible environmental states. The stochastic transition
function then assigns a probability to every state transition. Meaning we can denote 𝑇 as:

𝑇 ∶ 𝑆 × 𝑆 → [0, 1]

Additionally there is the observation function 𝑂 that describe how likely we are to make an obser-
vation 𝑜 ∈ Ω given that we are in state 𝑠 ∈ 𝑆. This function can be denoted as:

𝑂 ∶ Ω × 𝑆 → [0, 1]

3.2. Toy example: a simplified duck monitoring system
Throughout this chapter we introduce several different policies that the base station can execute based
on the subset of measurements that the sensor mote reports. To illustrate the way each of these policies
work, we apply each of them to a small toy example. This toy example is inspired by the bird monitoring
scenario we refer to in the introduction of this thesis.

Consider a simplified version of the bird monitoring scenario in which we have only two possible
states 𝑠 ∈ 𝑆 describing the state of the nest: 𝑑 and 𝑒 for “duck” and “empty”. Additionally we have two
possible observations 𝑜 ∈ Ω of the temperature: ℎ and 𝑙 for “high” and “low” temperature respectively.
Finally we have two actions 𝑎 ∈ 𝐴 that we can perform: 𝑟 and 𝑤 for “report” and “wait”. In short:

𝑆 = {𝑑, 𝑒}, Ω = {ℎ, 𝑙}, 𝐴 = {𝑟, 𝑤}
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Transitions Observations
𝑇(𝑑|𝑑) = 0.9 𝑂(𝑙|𝑑) = 0.09
𝑇(𝑒|𝑑) = 0.1 𝑂(ℎ|𝑑) = 0.91
𝑇(𝑑|𝑒) = 0.2 𝑂(𝑙|𝑒) = 0.8
𝑇(𝑒|𝑒) = 0.8 𝑂(ℎ|𝑒) = 0.2

Table 3.1: The transition probabilities ( | ) and the observation probabilities ( | ) for the toy example.

From previous studies we know that temperature can be a good indicator of bird presence in our
conditions (see for example [57]). For this example, assume that previous studies provide us with a
trace ofmeasurements, indicating both duck presence and temperature for consecutivemeasurements.

[(𝑑, ℎ), (𝑑, ℎ), (𝑑, ℎ), (𝑒, ℎ), (𝑒, 𝑙), (𝑒, 𝑙), (𝑒, 𝑙), (𝑒, 𝑙), (𝑑, 𝑙), (𝑑, ℎ), (𝑑, ℎ), (𝑑, ℎ), (𝑑, ℎ), (𝑑, ℎ), (𝑑, ℎ), (𝑑, ℎ)]

Given no other information, we can infer from these measurements that when the duck is present
it is very likely to remain in the nest and we are likely to measure a high temperature. When the duck
is absent it is likely to remain absent and we are likely to measure a low temperature. Based on this
“training data”, we define these probabilities as a state transition function 𝑇(𝑠 |𝑠) and an observation
function 𝑂(𝑜|𝑠) as described in Table 3.1.

Unfortunately we do not know what state the nest is in when we start measuring. It seems likely
that the nest was empty, as we would have seen the bird when placing the sensor, but perhaps it has
returned since we have started measuring. This uncertainty over the initial state (at time 𝑡 = 0) is
described with the following “belief” 𝑏 :

𝑏 (𝑑) = 0.1, 𝑏 (𝑒) = 0.9

The policies in the remainder of this chapter all aim to answer a generalised form of the following
question. If the sensor mote reports an observation of 𝑙 at time 𝑡 = 2, does this mean the duck is
present at 𝑡 = 2? And what about the states during which no measurements were reported, was the
duck present at 𝑡 = 0 and 𝑡 = 1?

3.3. Base station knowledge: a transition model.
Consider the knowledge that we have in our toy example, that is we have an (uncertain) initial state of
the environment and (stochastic) functions describing how the state changes over time and what we are
likely to observe given a certain state. For a policy based on this information, we use the observation
sent along by the sensor node at some point in time to more accurately determine what the state must
have been during the periods when no communication happened. In essence this is a HMM with only
one known observation, namely the most recent. By applying Bayesian probability methods we use
the new observation (“evidence”) to update the initial belief over the state to a so-called posterior (or
“a posteriori”) probability. In this section we describe the policy that the sensor node and base station
execute, and we apply the policy to the toy example.

3.3.1. A high level description of the policy
In order for the base station to have “evidence” to reason about, we first consider the operation of the
sensor mote. Although we can use any policy there that “occasionally” sends data to the base station,
for the purpose of explanation we take a policy that sends its last observation regularly, at every 𝑋’th
time step. This simple policy for the sensor mote is described in Algorithm 1.

At the receiving end, in the base station, we then use the information on this observation at the 𝑡’th
time step to get a more accurate belief of what the state has been in the period from 𝑡 −𝑋 to 𝑡. In order
to do so we use the transition and observation function from the model, and the new knowledge of the
observation reported at time step 𝑡. To express the probabilities of interest, we define the following
variables. Let 𝑠 ∈ 𝑆 and 𝑜 ∈ Ω be the state and observation at time 𝑡 respectively. The probabilities
we are after are now defined as:

𝑃(𝑠 |𝑜 ) ∀𝑡 − 𝑋 ≤ 𝑗 ≤ 𝑡
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Algorithm 1 An agnostic policy for the sensor node that simply sends the last observation every 𝑋’th
time step.
1: function onMeasurement(measurement)
2: if time mod 𝑋 == 0 then
3: Report(measurement)
4: else
5: Wait()
6: end if
7: end function

..𝑠. 𝑠. 𝑠. 𝑠. 𝑠.

𝑜

.

𝑜

.

𝑜

.

𝑜

Figure 3.1: The dependencies of the variables and . Square variables are those we are interested in, whereas circu-
lar variables are potentially useful for computation but ultimately irrelevant. Green variables have a known realisation, yellow
variables have a known prior distribution, whereas red variables only have a prior distribution that can be computed from their
dependencies.

To clarify how these random variables depend on one another, we consider the transition and ob-
servation function. Figure 3.1 visualises the dependencies. Every directed edge from 𝐴 to 𝐵 indicates
that 𝐵 depends on 𝐴. As can be seen the states form a simple Markov chain, which generates obser-
vations at every time step. Thus the situation is very similar to the HMMs as introduced in Section 2.3.
The main difference is that for our system we only know 𝑜 instead of al all observations 𝑜 through
𝑜 . What we now want to do is use this “evidence” introduced by 𝑜 to learn more about the states 𝑠
through 𝑠 .

In Appendix A.1 we give a mathematical derivation that allows us to compute 𝑃(𝑠 |𝑜 ) for all 𝑡−𝑋 ≤
𝑗 ≤ 𝑡 given an initial belief 𝑏 and an observation 𝑜 . We describe how this can be implemented in
Algorithm 8. We explicitly note which parts of the code can be parallelised, which we return to in the
discussion section at the end of this chapter.

3.3.2. Applying the policy to our toy example
To further clarify the mechanics of this policy, let us turn to our toy example. Remember that at time
𝑡 = 0 and 𝑡 = 1 the sensor node had not sent, but at 𝑡 = 2 it had notified the base station that its last
observation was 𝑙. To visualise the procedure that is performed to compute 𝑠 , consider Figure 3.2.
This tree shows all possible paths from an initial state, with edges showing the probability of taking that
path. The “impossible paths”, that is those ending with an observation of ℎ, are left out of the image.

To find the probability of 𝑃(𝑠 = 𝑑|𝑜 = 𝑙) all we have to do is consider all paths that have 𝑑 as
the final state, the paths that are highlighted in orange in the figure. For each path we can compute
the probability by simply multiplying the probabilities along the path and dividing this by the sum of all
paths, i.e. normalise it. As an example consider the bold branch from the root through 𝑑, 𝑒, 𝑑, and 𝑙.

𝑃(bold branch) = 𝑏 (𝑑) ⋅ 𝑇(𝑒|𝑑) ⋅ 𝑇(𝑑|𝑒) ⋅ 𝑂(𝑙|𝑑)
∑ all paths

= 0.1 ⋅ 0.1 ⋅ 0.2 ⋅ 0.09
∑ all paths

= 1.8 ⋅ 10
∑ all paths

For 𝑠 and 𝑠 we can apply the same logic based on this visualisation. We simply sum the proba-
bilities of all paths through the required state at the required time. For instance for 𝑃(𝑠 = 𝑒|𝑜 = 𝑙) we
take all paths for which 𝑠 = 𝑒 holds.
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Figure 3.2: All possible ways in which the state can change over the three time steps, with their probabilities, including a final
layer with the reported observation. Green nodes denote variables we know for certain, whereas blue nodes denote variables
that are still uncertain.

For the toy example this results in the probabilities shown in Table 3.4 on page 25. As can be ob-
served this changes the probabilities drastically for the second and especially the third time step. From
not being sure which state we are in after two time steps (as we approach a 50/50 probability), we now
know that state 𝑒 is far more likely than state 𝑑. To test these probabilities, we have implemented a
simple simulation that randomly transitions according to the model of the toy problem and also gener-
ates observations according to this model. After running this simulation selecting only the simulations
results in which we observe 𝑒 at 𝑡 = 2, we get to the same distribution over the states at each time step
as was computed here.

3.3.3. Discussion
Whereas this approach allows us to use the evidence introduced by the final observation to refine the
probabilities (the effect of which is clearly observed for our toy example), this approach also features a
very big downside. All unreported observations can only be reasoned about. This means that any low-
probability fluctuations in observations are considered improbable by the base station, whether they
occurred or not. Even with a fairly accurate model, low-probability events are not likely to be picked up
unless they happen to be the 𝑋’th observation. In other words, whereas the addition of the transition
model gives us some ground for analysis in the base station, we hypothesise that for increasing 𝑋 the
accuracy very quickly dwindles. We formulate this hypothesis as follows:

Hypothesis 1 (Transition-based policies require frequent communication). An increasing 𝑋 quickly
decreases the accuracy of a policy that sends observations every 𝑋’th time step, irregardless of the
contents of the observation.

To combat this pitfall of the policy, we need to provide more insight into what the observations could
have been during the period of radio silence. In the next section we introduce a small controller that the
sensor mote executes based on the observations. By examining the resulting state of this controller
we can infer information about the uncommunicated observations.
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Figure 3.3: The dependencies of the variables , , and . Square variables are those we are interested in, whereas circular
variables are of little interest to us. Green variables have a known realisation, yellow variables have a simple known a priori
distribution, whereas red variables only have an a priori distribution that can be computed from their dependencies.

3.4. Smarter sensor motes: adding FSC behaviour to the sensor
mote

By taking only the transition data into account, we are wasting computational effort that could be done
on the wireless sensor node. As the cost of computation is insignificant compared to communication,
it can be worthwhile for the sensor node to do some computation if that reduces the need for (fre-
quent) communication. The idea is that the result of the computations provides information about the
uncommunicated observations. Thus this provides us more “evidence ” for the base station to base its
posterior probability on. The computations done by the sensor node can only be based on a limited
amount of information, namely the performed measurements and potentially some data pre-loaded into
the sensor node. A possible solution would be keeping track of a belief using the same belief updates
commonly found in belief MDPs or POMDPs. This requires the sensor mote to have the full transition
and observation models in memory however, but with a state space that can potentially grow arbitrarily
large, there is simply not enough memory to keep track of the entire state space. So we turn to an
alternative solution that we can scale more naturally.

The option that we explore in this thesis is the use of a finite state controller (FSC) in the sensor
mote. This controller has transitions based on the observations made by the sensor mote. The sensor
mote still reports at every 𝑋th time step, but instead of only reporting the last observation, it also sends
the current node1 in the FSC.

These nodes in the FSC can serve several purposes that can provide the base station with more
information. For instance the FSC can count the number of observations that are higher than some
threshold and have the current node reflect the current count. When the base station is informed that
the current count is 4, it knows that 4 out of the 𝑋 observations were above this threshold, thus indirectly
providing more information about the uncommunicated observations.

In the rest of this section we describe the properties of the FSC and how these can be used, how the
probabilities over the states are now computed, and finally how this can be applied to our toy example.

3.4.1. Components of the FSC
As stated above, only the observations can influence the behaviour of the FSC, as that is all the informa-
tion the wireless sensor mote has. Thus we define the FSC as the following 3-tuple: 𝐹 =< 𝑁, 𝑇fsc, 𝑚 >,
wherein 𝑁 is the collection of nodes in the controller. The function 𝑇fsc has the subscript “fsc” to differ-
entiate it from the transition function 𝑇 for the state of the environment. 𝑚 denotes the initial node of
the FSC.

The transition function 𝑇fsc describes how we transition from one node in the finite state controller
to another. This transition can be stochastic, but should only be based on values that are available
in the wireless sensor mote. For instance the observation made by the sensor mote and the current
node in the FSC, but not the state of the environment (duck or empty in the toy example). Thus we
need a function 𝑇fsc(𝑛 |𝑛, 𝑜) to describe what the probability is of getting to node 𝑛 from node 𝑛, after
observing 𝑜. More formally:

𝑇fsc ∶ 𝑁 × 𝑁 × Ω → [0, 1]
1To avoid confusion with the states of the environment, we will call states in the finite state controller “nodes” instead and also
refer to them as ∈ , leaving states and ∈ for the states of the environment.
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Transitions to 𝑥 Transitions to 𝑦
𝑇fsc(𝑥|𝑙, 𝑥) = 0.80 𝑇fsc(𝑦|𝑙, 𝑥) = 0.20
𝑇fsc(𝑥|𝑙, 𝑦) = 0.01 𝑇fsc(𝑦|𝑙, 𝑦) = 0.99
𝑇fsc(𝑥|ℎ, 𝑥) = 0.30 𝑇fsc(𝑦|ℎ, 𝑥) = 0.70
𝑇fsc(𝑥|ℎ, 𝑦) = 0.99 𝑇fsc(𝑦|ℎ, 𝑦) = 0.01

Table 3.2: The transition function for the FSC used in the toy example.

Now that the base station receives not only the last observation, but also the current node in the FSC,
we have more evidence for the posterior probability distribution of the states. To this end we introduce
a third variable 𝑛 that denotes the node in the FSC we are in at time 𝑡. This additional dependency
changes the way our dependency figure looks. Figure 3.3 shows this updated dependency figure.
Notice how this is subtly different from a switching HMM [32] as we have indirect information on all
observations at times before 𝑡 through 𝑛 , whereas switching HMMs assume either all observations or
all nodes to be known. Given the extra information provided by 𝑛 , we can indirectly gain more insight
into the distributions of states 𝑠 through 𝑠 .

3.4.2. Using the information provided by the FSC
Let us first consider the policy executed by the wireless sensor node. This policy evaluates the FSC,
that is based on the node 𝑛, after observing 𝑜, it will move on to node 𝑛 with probability 𝑇fsc(𝑛 |𝑛, 𝑜).
Algorithm 2 implements that policy.

Algorithm 2 The FSC behaviour in the sensor node. After every measurement (observation) a new
node is selected and depending on the time this node and the observation are communicated.
1: function onMeasurement(measurement)
2: 𝑛 ← sample a node 𝑛 from 𝑁 with probability 𝑇fsc(𝑛 |𝑛,measurement)
3: if time mod 𝑋 == 0 then
4: Report(measurement, 𝑛)
5: else
6: Wait()
7: end if
8: end function

On the other side of the network, in the base station, we again have to determine the probability 𝑠
given the latest observation 𝑜 and node 𝑛 in the FSC. This extra information changes the required
probability slightly, we can now describe this as:

𝑃(𝑠 |𝑜 , 𝑛 ) ∀𝑡 − 𝑋 ≤ 𝑗 ≤ 𝑡

In Appendix A.2 we provide a mathematical derivation of this probability in terms of known priors. We
describe a parallelised implementation of this derivation in Algorithm 9.

3.4.3. Applying the policy to our toy example
Before we can apply this policy to the toy example, we need to extend it by introducing a FSC. To
this end we introduce a small FSC with two states 𝑥 and 𝑦. Additionally we introduce the transition
function 𝑇fsc as described in Table 3.2. Finally we have to introduce an initial node for the FSC as well
as the node that is communicated alongside the observation 𝑙 at time step 2. For the initial node we
choose node 𝑥 and for the final node that is communicated we choose 𝑦. This means that there is only
uncertainty over what node the sensor was in at time 𝑡 = 1.

To visualise the procedure that is performed to compute 𝑠 , consider Figure 3.4. This tree shows
some possible paths from an initial state/node combination, with edges showing the probability of taking
that path. The “impossible paths”, that is those ending with an observation of ℎ or in a node 𝑥, are left
out of the image. Furthermore we have drawn only 2 possible (state, observation, node)-combinations
for each initial state out of the 8 an initial state can transition to. The probability on an edge are now
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Figure 3.4: Possible ways in which the state and node can change over the three time steps, with their probabilities, including
a final layer with the reported observation and node. For sake of the drawing only two out of eight possible transitions between

and are left out. Green nodes denote variables we know for certain, whereas blue nodes denote variables that are still
uncertain.

slightly more complex than before. As an example consider the edge between (e,h,y) and (e,l,y). This
probability is now computed as:

Probability = 𝑇(𝑒|𝑒) ⋅ 𝑂(𝑙|𝑒) ⋅ 𝑇fsc(𝑦|𝑙, 𝑦)
= 0.8 ⋅ 0.8 ⋅ 0.99
= 0.6636

To find the probability of 𝑃(𝑠 = 𝑑|𝑜 = 𝑙, 𝑛 = 𝑦) all we have to do is consider all paths that have
𝑑 as the final state, the paths that are highlighted in orange in the figure. Again for each path we can
compute the probability by simply multiplying the probabilities and normalising it.

By performing these operations we find the probabilities reported in Table 3.4 on page 25 in the col-
umn: “Observation + Node”. Again we have confirmed these probabilities through extensive simulation
of the prescribed environment and the FSC, by selecting only the paths that end with an observation 𝑙
in node 𝑦.

3.4.4. Discussion
Through the introduction of the controller, we can indirectly inform the base station about the effect of
unreported observations. This alleviates the downside identified in the previous section. Unfortunately
it is not fully resolved yet, as there is still no method to immediately react to changes in the environment.
We are still bound by the “report at every 𝑋’th time step”-rule. This means that whereas we expect the
FSC-based approach to offer improvements over the approach based only on the transition-function, it
is still likely to lose accuracy as 𝑋 increases. We formulate the following two hypotheses to summarise
these expectations:

Hypothesis 2 (FSC-based dominates transition-based). The FSC-based approach outperforms the
transition-based approach for an equal report interval 𝑋.
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Figure 3.5: The dependencies of the random variables , , , and . Square variables are those we are interested in,
whereas circular variables are of little interest to us. Green variables have a known realisation, yellow variables have a simple
known a priori distribution, whereas red variables only have an a priori distribution that can be computed from their dependencies.

Hypothesis 3 (FSC-based still requires frequent communication). An increasing 𝑋 decreases the ac-
curacy of a controller-based policy that sends observations and nodes every 𝑋’th time step.

As we still expect the accuracy to decrease for increasing 𝑋, we turn to an alternative approach.
Rather than reporting every 𝑋’th time step, we instead report only when we deem an observation to
be worth reporting. This allows us to potentially reduce the report rate further without decreasing the
accuracy.

3.5. Informative reports: actions determined by the FSC
In the final extension of our model we let the sensor mote choose the action it performs based on the
node in the FSC. This has two main advantages: it allows the sensor mote to react immediately to
strange observations (rather than waiting till the interval 𝑋 is over), and it can provide the base station
information about why the sensor mote has (not) chosen to report a measurement. In this section we
describe how the FSC is extended, what this extra information can do for us, and how this changes
the outcome for our toy example. Additionally we describe how this policy can be used to model the
previous policies from this chapter.

3.5.1. An extension of FSC functionality
To incorporate the notation of a node-dependent action into our FSC, we introduce a new function 𝐴fsc.
This 𝐴fsc describes what action we should take in a certain node. To allow as much freedom in this
model as possible, this 𝐴fsc is also stochastic, meaning in every node we have a chance of taking either
the report or the wait action available to the sensor mote. Thus we need a function 𝐴fsc(𝑎|𝑛), or more
formally:

𝐴fsc ∶ 𝐴 × 𝑁 → [0, 1]
Additionally we also change 𝑇fsc slightly, by including the chosen action in this transition function.

Doing so again opens up several more possibilities in the things we can model using this policy. For
instance, this allows a counting FSC as mentioned before to be reset every time a “report” action is
chosen. Thus 𝑇fsc is now written as: 𝑇fsc(𝑛 |𝑛, 𝑎, 𝑜) or rather:

𝑇fsc ∶ 𝑁 × 𝑁 × 𝐴 × Ω → [0, 1]

This introduction of 𝐴fsc requires another variable to be introduced: 𝑎 that denotes the chosen ac-
tion at time 𝑡. As 𝑎 depends only on 𝑛 , and 𝑛 only requires one extra dependency, our dependency
figure changes little as is depicted in Figure 3.5. For consistency we again denote the time an obser-
vation is received as time 𝑡, though it should be noted that 𝑡 is no longer necessarily a multiple of some
regular interval 𝑋. Now we have fully deviated from the HMM models as the time at which we received
the limited data is now also determined by the state, that is the state indirectly determines when a
“report” action is chosen and thus when limited information to reason about it becomes available.
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3.5.2. More information in the base station
The operations of the sensor node change slightly based on this extended FSC model, as an action
now needs to be chosen and executed based on the FSC. Algorithm 3 demonstrates this.

Algorithm 3 The extended FSC behaviour in the sensor node. After every measurement (observation)
a new node is selected and based on this new node an action is selected that determines whether or
not we should report.
Require: 𝑛 is the current node in the FSC.
Require: 𝑎 is the previous action chosen by the FSC.
1: function onMeasurement(measurement)
2: 𝑛 ← sample a node from 𝑁 with probability 𝑇fsc(𝑛 |𝑛,measurement, 𝑎 )
3: 𝑎 ← sample an action from 𝐴 with probability 𝐴fsc(𝑎|𝑛)
4: if 𝑎 == report then
5: Report(measurement, 𝑛)
6: else
7: Wait()
8: end if
9: 𝑎 ← 𝑎
10: end function

Unlike the addition of nodes to the dependency model, adding actions does not require many
changes in the computation procedure. Although 𝑇fsc depends on the action, we can also describe
this as having two transition functions for the FSC, one that is used when we “report” and one that we
use when we “wait”. Call these 𝑇report and 𝑇wait respectively. By considering them as these two distinct
function, we only need to slightly modify equations A.12, A.16 and A.18 to get to a correct expression
for this new situation in which we also consider actions.

In each of these equations we find a usage of 𝑇fsc(𝑛 |𝑛 , 𝑜 ), which now has to be updated as it
should also take the action into account. We do so by replacing it:

𝑇fsc(𝑛 |𝑛 , 𝑜 ) → {𝑇report(𝑛 |𝑛 , 𝑜 )𝐴fsc(report|𝑛 ) if 𝑎 = report
𝑇wait(𝑛 |𝑛 , 𝑜 )𝐴fsc(wait|𝑛 ) if 𝑎 = wait

(3.1)

This modification encapsulate the two extra dependencies introduced by the extra action variable,
namely the dependency of 𝑛 on the action as well as the dependency of the action on the node.
Since all actions chosen are known by the base station, this introduces no extra complexity compared
to Algorithm 9.

3.5.3. Applying the policy to our toy example
We extend our toy example by also introducing an action function 𝐴fsc. This function is shown in
Table 3.3. As can be observed, the “wait” action is more likely in node 𝑥 and the “report” action is more
likely in node 𝑦. As we have full knowledge of the chosen actions, namely that they were “wait” at time
𝑡 = 0, “wait” at time 𝑡 = 1, and “report” at time 𝑡 = 2, this makes it more likely that we were at node
𝑥 at time 𝑡 = 1. Additionally we change the 𝑇fsc function slightly, by introducing a dependency on the
action. For this toy example we use:

𝑇wait(𝑛 |𝑛, 𝑜) = 𝑇fsc(𝑛 |𝑛, 𝑜)
𝑇report(𝑛 |𝑛, 𝑜) = 1 − 𝑇fsc(𝑛 |𝑛, 𝑜)

For the purposes of this example we do not include the notion of a predictor in our system. By ap-
plying equations A.9 with the modifications of equation 3.1 to our toy example, we find the probabilities
reported in the final column of Table 3.4. Again simulation confirms these results, this time selecting
all simulations in which the actions also match the actions described above.
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Wait actions Report actions
𝐴fsc(𝑤|𝑥) = 0.8 𝐴fsc(𝑟|𝑥) = 0.2
𝐴fsc(𝑤|𝑦) = 0.1 𝐴fsc(𝑟|𝑦) = 0.9

Table 3.3: The action function for our toy example.

Probability A Priori Observation Observation + Node Observation + Node + Actions
𝑃(𝑑) at 𝑡 = 0 0.10 0.04 0.03 0.04
𝑃(𝑒) at 𝑡 = 0 0.90 0.96 0.97 0.96
𝑃(𝑑) at 𝑡 = 1 0.27 0.08 0.06 0.07
𝑃(𝑒) at 𝑡 = 1 0.73 0.92 0.94 0.93
𝑃(𝑑) at 𝑡 = 2 0.39 0.07 0.06 0.06
𝑃(𝑒) at 𝑡 = 2 0.61 0.93 0.94 0.94

Table 3.4: The probabilities of being in state or at times , , and , depending on what information we take into
account.

3.5.4. Modelling the other approach using this policy
As indicated before, this policy is sufficiently generic to simulate the other policies described in this
chapter. We briefly describe how we can model each of the other policies:

Report only the observation every 𝑋’th time step
Consider a finite state controller with exactly 𝑋 nodes, such that in all nodes we always chose the “wait”
action except in node 𝑛 , in which we always select the “report” action. Now the transition function of
the FSC simply has the FSC transition from node 𝑛 to node 𝑛 , ensuring that after 𝑋 time steps it
ends up in node 𝑛 . This FSC implements exactly the policy that reports every 𝑋’th time step described
in Section 3.3 as the node that the FSC is currently in provides no extra information about the state
of the environment. After all the node transition is independent of the observations and the node will
always be 𝑛 at the time of sending.

Report observation and node every 𝑋’th time step
Consider a finite state controller with 𝑁 ⋅𝑋 nodes. That is, we can have any FSC, but we replace every
node from this FSC by 𝑋 nodes in our updated FSC. Every node from this new collection of nodes
encodes a specific time 𝑡. We change our transition function so that for every original transition from
a node a time 𝑡, we transition to the corresponding node in the set of nodes for time 𝑡 + 1. As for the
actions, all nodes that correspond to time 𝑋 will always chose the “report” action, all other nodes always
select the “wait” action. This FSC implements exactly the policy described in Section 3.4, including the
notion that the chosen actions do not provide any extra information about the state of the environment,
but the nodes do.

3.5.5. Discussion
By combining the shared knowledge of the prediction mechanism with the ability of the FSC to react to
any deviations between prediction and measurement, we gain fine-grained control over the report rate
versus accuracy trade-off. Furthermore since we can now report based on the node (and by extension
the observation), the received reports can focus on the significant deviations from the predictor. Thus
we formulate the following hypothesis:

Hypothesis 4 (FSC with varying report rates). Controllers that base their actions on the node in the
FSC outperform controllers with fixed reported intervals in terms of report rate for a similar accuracy.

Now that we offloaded much of the optimisation process to the finite state controller, a new question
arises. What should such a controller look like for optimal performance? In other words how do we find
the optimal controller for a use case? In the next chapter we introduce an optimisation framework that
can help us find such an optimal controller.
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Function space-complexity time-complexity
computeStateNodeProbabilities 𝑂(𝑋 ⋅ |𝑆| ⋅ |𝑁|) 𝑂(𝑋 ⋅ |𝑆| ⋅ |𝑁| ⋅ |𝑂|)

computeObsNodeGivenNodeStateProbabilities 𝑂(𝑋 ⋅ |𝑆| ⋅ |𝑁|) 𝑂(𝑋 ⋅ |𝑆| ⋅ |𝑁| ⋅ |𝑂|)
onReceivedMessage 𝑂(1) 𝑂(𝑋 ⋅ |𝑆| ⋅ |𝑁|)

Table 3.5: The time and space complexity for computing and storing the required values for the base station logic.

3.6. Discussion
Now that we have introduced a model that can react to observations in a meaningful way, such that
is the result of these reactions can provide extra information to the base station, we explore some of
the benefits, drawbacks, and open issues with this model. As the model described in Section 3.5 can
emulate all other policies outlined in this chapter we focus our discussion on that model. We group our
items of discussion by two main topics: feasibility and evaluation.

3.6.1. Feasibility
In order for the technique to be feasible for our use case, there are two things we should consider. First
the space and time complexity of the algorithm run on the sensor node, and second the space and time
complexity of the computations done by the base station. For the sensor node it is important that the
required amount of memory is relatively small to ensure a wide variety of sensor nodes can be used,
but it is also important that computations are manageable as sensor nodes feature cheap (and slow)
hardware that take (highly) frequent measurements. For the base station these constraints are slightly
more relaxed, as we can potentially off-load work to a distributed setting here. However an exponential
time or space complexity would still not be desirable, especially if a live analysis based on the received
observations is required for the base station to act on.

The algorithm in the wireless sensor node features efficient time and memory complexity. Consider
Algorithm 3. Assuming that the sampling can be implemented in 𝑂(|𝑁|) time, line 2 takes 𝑂(|𝑁|) time,
but all other lines take constant time (remember that we already know that |𝐴| = 2). Thus in terms of
time complexity, we achieve 𝑂(|𝑁|) complexity.

As for the space complexity, the sensor node requires two matrices in memory: One for 𝑇fsc and one
for 𝐴fsc. Thus the total memory required is 𝑂(|𝑁| ⋅ |𝐴| ⋅ |Ω| + |𝑁||𝐴|) = 𝑂(|𝑁| |Ω|). As |𝐴| is constant
(and small) for our use cases, and |𝑁| is a parameter we can tweak ourselves, that leaves just |Ω| as
the main concern.

In Section 2.3 we reject a belief-based update on the sensor node as that would require 𝑂(|𝑆| +|𝑆|⋅
|Ω|) memory. At first glance the policy outlined in this chapter has a similar memory requirement, but
there are two big differences. First of all we can freely control |𝑁| as we decide how the FSC is built, thus
we can make it sufficiently small to still fit in the wireless sensor node. Secondly for many use cases
|𝑆| = |Ω|, as every state has one observation associated with it (see for example the office temperature
use case introduced in Chapter 5), meaning the belief-based system would impose quadratic memory
requirements as opposed to the linear requirement imposed by the controller-based policy.

The complexity of the computations in the base station are somewhat higher. Using dynamic pro-
gramming techniques, we can fill up a number of caches corresponding to the different equations, as
Algorithm 9 shows. Despite the fact that Figure 3.4 initially seems to show exponential growth of the
possible options, the dynamic programming techniques can help ensure that we can still efficiently
compute the probabilities. Table 3.5 gives the space and time complexities corresponding to the dif-
ferent functions. In the complexity analysis we use 𝑋 to denote the time between two measurements
and for the time-complexity analysis we assume that any other cached values can be retrieved in 𝑂(1),
that is we build the caches in such a way that all required cache values are already computed. The
total complexity is then simply the sum of the listings in the table. This results in a time-complexity of
𝑂(𝑋 ⋅ |𝑆| ⋅ |𝑁| ⋅ |𝑂|) and a space-complexity of 𝑂(𝑋 ⋅ |𝑆| ⋅ |𝑁|).

Note that this is only for situations in which we compute the probabilities at the moment of a report
operation. If we compute the output after a wait action, it is worthwhile to cache more values and the
space- and time-complexity are increased by a factor 𝑂(|𝑂||𝑁|). Either way the algorithm performed
by the base station is also computationally efficient.
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3.6.2. Evaluation
Although the report rate is clearly represented by 𝑚sent, our solution method results in a probability
distribution over the possible environmental states rather than a single state estimation 𝑧 required for
the 𝑚acc metric. To resolve this we adapt the metric to instead evaluate these probability distributions.

There are many different methods with which we could measure the accuracy of our solution. For
instance for some use cases we might prefer a normal distribution with the mean at the real environ-
mental state over a Pareto distribution which is maximal for the real environmental state. This is very
dependent on the use case. In this thesis we instead consider only the probability associated with the
real environmental state and we ignore the rest of the probability distribution. The metric𝑚acc can then
be written as:

𝑚acc(𝑋, {𝑠 , … , 𝑠 }) =
𝐸 [ ∑ 𝑃(𝑠 = 𝑧 )]

ℎ
For the purposes of evaluation in this thesis this metric is sufficient as it allows us to compare

different solutions. When designing controllers for real world deployments it is important to reconsider
this metric and adapt it to represent the accuracy measure needed for that specific deployment.
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For the evaluation of the hypotheses formulated in the previous chapter, we require a number of finite
state controllers. In Section 4.1 we describe how we built the finite state controllers required for these
hypotheses. Next we consider a systematic approach to finding the optimal controller for a use case.
To this end we formulate the optimisation problem as a Partially Observable Markov Decision Process
(POMDP), which we then solve to a finite state controller. In Section 4.2 we offer some background in-
formation on POMDPs, existing methods to solve them, as well as existing implementations of solvers.
We go on to describe how we can model our optimisation problem as a POMDP in Section 4.3 and
formulate hypotheses about the performance of the POMDP-based controllers in Section 4.4.

4.1. Handmade controllers
In order to evaluate the hypotheses introduced in Chapter 3 we design several controllers by hand
that embody the aspects we want to test for in the hypotheses. In this section we describe how these
controllers are designed. We focus on two types of controllers. Counting controllers that keep track of
how many measurements of a certain kind have occurred, and deviation-based controllers that react
strongly to the deviation between the last measurement and the last prediction.

4.1.1. A counting controller
To test Hypothesis 2 about the benefits of using a controller, we use a counting controller. We refer
to this type of controller as CC for Counting Controller. The controller simply counts the number of
observations that lower or higher than the “average” observation, where the average is simply taken
as the average of the minimum and maximum temperatures. Say that we are measuring temperatures
between zero and twenty degrees Celsius for instance. We lower the counter by one if we measure
a temperature below ten degrees, keep it constant if we measure a temperature of ten degrees and
increase the counter by one for higher temperature measurements. This controller reports the current
counter every 𝐶’th time step. Let 𝑛 denote the node that represents a count of 𝑦, then we can describe
the behaviour as:

𝑇fsc(𝑛 , 𝑜, report) = 𝑛

𝑇fsc(𝑛 , 𝑜,wait) = {
𝑛 if 𝑜 > average
𝑛 if 𝑜 = average
𝑛 else

𝐴fsc(𝑛 , report) = {
1 if time mod 𝐶 == 0
0 else

𝐴fsc(𝑛 , sleep) = 1 − 𝐴fsc(𝑛 , report)

There are many improvements that can be made to this controller. For instance we could count both
the number of observations above and below this average independently, we could explicitly count

29
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every observation independently, etc. Unfortunately all of these methods would drastically increase
the size of the controller. To implement this controller successfully, we already require 𝐶 ⋅ (2𝐶 + 1)
nodes in the controller (the first dimension to capture time, and the second to capture the count). For
a relatively small 𝐶 = 5, this already requires 55 nodes in the controller. With proper optimisations this
type of controller can still be fit into a sensor mote, but due to the way we construct controllers for our
generic framework, evaluation takes a very long time for 𝐶 >= 10 (one hour for 𝐶 = 10, on a multi-core
high-end desktop computer).

Alternatively we could use the median temperature as the temperature that we compare the obser-
vations to. Depending on the use case this could divide the data in a more insightful manner. For the
purposes of evaluating Hypothesis 2, these “optimisations” or alternatives are not required. We only
aim to show that adding a controller can improve the accuracy of the base station environmental state
estimates. If we can obtain an improvement even with such a simple, generic, controller, then it follows
that better comparisons or more counters can potentially increase performance even more. Instead of
exploring these alternative implementations of the same idea in-depth, we instead change the notion
of a fixed comparison point for the next type of controller.

The predictor-based counting controller (PCC) uses the prediction mechanism that the sensor mote
and base station share as the reference point for the comparison. Since the predictor should often
match the measurement, counting deviations from the predictor is potentially much more insightful
than comparing to a fixed point. This changes the transition function of the controller to be:

𝑇fsc(𝑛 , 𝑜, report) = 𝑛

𝑇fsc(𝑛 , 𝑜,wait) = {
𝑛 if 𝑜 > prediction
𝑛 if 𝑜 = prediction
𝑛 else

To allow us to test Hypothesis 4, we create a third third, and final, form of the counting controller,
which chooses the action based on the current count. This stochastic prediction-based counting counter
(SPCC) uses its current count to determine if it should or should not perform a report action. Given a
higher count, the probability of reporting it becomes higher. This provides two main advantages. First,
fewer reports are necessary, as counts of zero (i.e. data that matches the predictor) are reported less
frequently. Second, given fluctuations in the measurements surrounding a predictor, we are increas-
ingly more likely to report them if several fall on the same side of the predictor.

This controller is designed as follows, with 𝑛 again denoting a count of 𝑦 in one direction.

𝑇fsc(𝑛 , 𝑜, report) = 𝑛

𝑇fsc(𝑛 , 𝑜,wait) = {
𝑛 if 𝑜 > prediction
𝑛 if 𝑜 = prediction
𝑛 else

𝐴fsc(𝑛 , report) = {
(1/2𝑀) if 𝑦 = 0
(𝑦/𝑀) else

𝐴fsc(𝑛 , sleep) = 1 − 𝐴fsc(𝑛 , report)

There are of course many ways in which the probability function for 𝐴fsc could be encoded. We have
chosen a quadratic function here, but depending on the use case other functions may work better. For
the purposes of evaluating Hypothesis 4, this quadratic function suffices.

4.1.2. A deviation-based controller
As a variation on the stochastic prediction-based counting controller, consider instead a controller with
a maximum count of one. Essentially this controller would report any deviation from the predictor
immediately. We refer to this type of controller as the deviation-based controller (DC). As the last
observation already holds the required information about the deviation, we can encode the deterministic
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version of such a controller in only two nodes. This deviation-based controller can be denoted as:

𝑇fsc(𝑛, 𝑜, 𝑎) = {
𝑛report if |𝑜 − predictor| > 𝑋
𝑛wait else

𝐴fsc(𝑛report, report) = 1
𝐴fsc(𝑛wait, report) = 0

𝐴fsc(𝑛 ,wait) = 1 − 𝐴fsc(𝑛 , report)
Notice how this controller does not encode the information about unreported observations. It does

not necessarily have to as the base station can already infer from the lack of report operations that the
observations where less than 𝑋 removed from the predictor.

We can also make a stochastic variation of this controller (SDC) in a similar way to the counting
controllers. This time let 𝑛 denote the node that represents a deviation of 𝑦 from the predictor.

𝑇fsc(𝑛 , 𝑜, 𝑎) = 𝑛 with 𝑧 = min(|𝑜 − predictor|, 𝐷)
𝐴fsc(𝑛 , report) = (𝑦/𝐷)
𝐴fsc(𝑛 , sleep) = 1 − 𝐴fsc(𝑛 , report)

The comparison between the DC and SDC variants provide us with another set of controllers for
which Hypothesis 4 can be evaluated.

4.2. Theoretical background: the POMDP model
To find the optimal controller wemodel our problem using a well-known optimisation framework, namely
the Partially Observable Markov Decision Process (POMDP). A POMDP is defined as a tuple of six
elements (based on [48]), that together describe a situation in which an agent reasons about their
environment and actions to work towards a goal. We use the following nomenclature, which matches
the previously introduced names in relation to the FSC model.

𝑆 the possible states for the agent to be in.

𝐴 the possible actions for the agent. This describes what an agent can do at every time step.

𝑇 ∶ 𝑆 × 𝑆 × 𝐴 → [0, 1] the transition function for the system that specifies the probability of transitioning
from state 𝑠 to 𝑠 when choosing action 𝑎.

𝑅 ∶ 𝑆 × 𝐴 → ℝ the reward function for the system that specifies the reward for being in state 𝑠 and
choosing an action 𝑎.

Ω the possible observations for an agent after performing an action.

𝑂 ∶ Ω × 𝑆 × 𝐴 → [0, 1] the observation function for the system that specifies the probability of observing
𝑜 from state 𝑠 when choosing action 𝑎.

ℎ the horizon or time window for which we need a policy that the agents execute.

With the nomenclature established, we can define our problem as the tuple of seven elements for
the POMDP model.

𝑃 =< 𝑆, 𝐴, 𝑇, 𝑅, Ω, 𝑂, ℎ >
We plan for a horizon of ℎ time steps during which the rewards are obtained. The total system-wide

reward is defined as: ∑ 𝐸[𝑅(𝑠 , 𝑎 )], where 𝑠 and 𝑎 represent the state and action that the agent is

in/chooses to take at time 𝑡.
If ℎ = ∞ then we call the problem an “infinite horizon” POMDP.In the case of an infinite horizon

POMDP we use a decaying reward function that gives future rewards an increasingly smaller impact
on the total rewards. To this end a discount factor 𝛾 < 1 is often used, which exponentially decreases
future rewards.
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4.2.1. Algorithms for solving POMDP problems
Although a variety of methods to solve POMDP problems exist, we focus on two in this section. The
first method obtains a policy in the form of a set of 𝛼-vectors that describe what action should be taken
for a certain belief state 𝑏. The second method takes a different route and tries instead to formulate
the policy as a finite state controller that encapsulates the actions that should be taken when in a given
state.

Point-based methods
There are many different methods that sample beliefs from the belief space reachable from the initial
belief under certain actions and observations, for instance [79, 80]. These methods then compute what
actions should be performed for these samples and during execution they map beliefs to these sampled
points to determine the optimal action. As they only sample a subset of the (often infinitely large) belief
space, this method results in an approximation of the optimal policy. Another method by the name of
Sarsop [52] tries to reduce the belief space from which it samples by only considering the belief space
reachable from the initial belief under an optimal policy. As the optimal policy is unknown it iteratively
restricts this reachable space using an upper and lower bound on the optimal policy. The resulting
reachable space is much smaller and thus the computation is more tractable whilst returning similar or
better policies as a result.

Solving to a Finite State Controller
Another way to represent the policy produced by a POMDP is not by formulating it as a set of 𝛼-vectors,
but rather as a Finite State Controller (FSC) [5, 33, 71]. Such a controller is a compact stochastic
machine that prescribes what actions should be taken to maximise the expected reward. The main
advantage of this representation of the policy is that we can scale the size solution very naturally. We
can limit the number of nodes in the FSC to the desired size [5]. Such an FSC can be described by the
tuple < 𝑁, 𝑉, 𝐴FSC, 𝑇FSC >, where:

𝑁: is the set of nodes in the FSC.

𝑉 ∶ 𝑁 × 𝑆 → ℝ is the valuation function that represents the expected reward when executing the policy.
This links back to the POMDP model that the FSC is based on. For the execution of the FSC
however, this function is not required, it is only during the creation that we need it.

𝐴fsc ∶ 𝐴 × 𝑁 → [0, 1] is the stochastic function describing what action 𝑎 ∈ 𝐴 should be taken when we
are in node 𝑛 ∈ 𝑁.

𝑇fsc ∶ 𝑁 × 𝑁 × 𝐴 × Ω → [0, 1] is the stochastic transition function describing what the probability is of
transitioning to node 𝑛 ∈ 𝑁, after starting in node 𝑛 ∈ 𝑁, performing action 𝑎 ∈ 𝐴 and observing
observation 𝑜 ∈ Ω.

One way to get to such an FSC is to use Bounded Policy Iteration (BPI) [5, 71]. This method
focuses on iteratively solving an LP and a set of linear equations of the form 𝐴𝑥 = 𝑏 to converge to an
approximation of the 𝐴fsc and 𝑇fsc function listed above after updating the valuation function 𝑉 based
on the current state of the others. Given a random initialisation of these functions, the pseudocode for
BPI is shown in Algorithm 4

4.2.2. Existing solvers for POMDP problems
Using such a well-known and studied framework also allows us to use existing solvers to obtain a policy
that can be run in the individual nodes. Several solvers have been created over the last years, in this
section we briefly describe several of them.

MADP-toolbox
Developed and maintained by Frans Oliehoek, Matthijs Spaan, and others, the MADP-toolbox offers
a variety of algorithms to solve a variety of Multi-Agent Decision Problems (MADP) [78]. As an open-
source project hosted on GitHub1, extensions and modifications to this toolbox can be made if required.
Among the planning problems that this solver can handle is also the (Dec-)POMDP framework, for
1https://github.com/MADPToolbox/MADP

https://github.com/MADPToolbox/MADP
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Algorithm 4 The BPI algorithm that solves a partially observable Markov decision process to a finite
state controller using iterations of a set of linear equations and an LP.
Require: n is the maximum number of nodes we are allowed to have in the FSC.
Require: FSC is an FSC with |𝑁| ≤ 𝑛.
1: function BPI(n, FSC)
2: while not satisfied do
3: Create system of lin. eq. using 𝐴fsc and 𝑇fsc �The Bellman equation from 2.1 of [5]
4: Solve the system and update 𝑉.
5: for every node 𝑛 ∈ 𝑁 do
6: Formulate LP, using 𝑉 �Table 1 of [5]
7: Solve LP to update 𝐴fsc and 𝑇fsc
8: end for
9: if Not enough improvement was made then �Corollary 1 of [71]
10: success ← false
11: if |𝑁| < 𝑛 then
12: success ← addNode() �See below, based on section 5.2 of [71]
13: end if
14: if not success then
15: return FSC
16: end if
17: end if
18: end while
19: return FSC
20: end function
21:
22: function addNode()
23: get tangent beliefs from dual LPs.
24: 𝐵 ← one-step look-ahead on all tangent beliefs.
25: for all beliefs 𝑏 ∈ 𝐵 do
26: create node 𝑛 with value max

∀ ∈
(𝑉(𝑛, 𝑏)).

27: formulate LP using 𝑉 and weighted using 𝑏 �Weighted version of Table 1 of [5]
28: solve LP and store improvement with 𝑛 .
29: end for
30: add node 𝑛 with the largest positive improvement to the FSC
31: end function
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which it can use a number of exact algorithms. From a brute-force search to more advanced techniques
such as the GMAA* algorithm [64], they cover a variety of exact solution methods. Unfortunately for
instances with large horizons, these exact methods are often too slow or too tasking on the system’s
memory to be be used in this thesis.

APPL Software
In contrast to theMADP-toolbox, the Approximate POMDPPlanning Software (APPL Software) focuses
on finding an approximate solution to POMDP problems. Based on the SARSOP algorithm [52] with
improvements based on the work on Mixed Observability MDPs (MOMDPs) by Ong et al. [65], its
offline planner can generate policies for problems modelled in the POMDP framework. With an open-
source solver and evaluator2, custom evaluation of the generated policies is also possible. As instances
with large state spaces and infinite horizon can be approximated by this solver it is a more promising
candidate for this work.

Both solvers output 𝛼-vectors, whereas we require a finite state controller for our base station logic.
There are methods to solve a set of 𝛼-vectors to a finite state controller [34, 50], but in this thesis we
focus on solving directly to a controller using the BPI-algorithm. Possible improvements on this process
by using other algorithms are left to future work.

4.3. Formulating the optimisation problem as a POMDP
The model we have used thus far of the environment under study, which includes the transition function
𝑇 and the observation function 𝑂, can easily be extended to the POMDP model. The only property that
is missing is the reward function 𝑅 that maps being in a certain state and performing an action to a
reward. The choice of this reward function is going to determine the behaviour of the FSC and thus the
behaviour of our wireless sensor mote. In this section we give an overview of how we can translate our
existing functions to functions compatible with a POMDP model, saving specific implementation details
for the next section.

𝑆 the set of states is a 3D vector value, expressing three different sub states of the sensor node. The
first is the current time of the phenomenon being studied. The second is the current prediction
from the predictor we have of the phenomenon being studied. Finally the third is the state of the
phenomenon being studied. This is the only value which is uncertain, as it can only be observed
through imperfect observations. In other words:

𝑆 = {(𝑠 , 𝑠 , 𝑠 ) ∣ 𝑠 ∈ 𝑆time; 𝑠 ∈ 𝑆prediction; 𝑠 ∈ 𝑆phenomenon}

In many cases there will be one state in 𝑆prediction for every state in 𝑆phenomenon, meaning we can
write it as:

𝑆 = {(𝑠 , 𝑠 , 𝑠 ) ∣ 𝑠 ∈ 𝑆time; 𝑠 , 𝑠 ∈ 𝑆phenomenon}

The resulting size of 𝑆, denoted as |𝑆|, is given by:

|𝑆| = |𝑆time| ⋅ |𝑆phenomenon|

However as only 𝑆phenomenon is uncertain and the rest are assumed to be fully observable (“known”),
the algorithms described in Chapter 3 are bound by |𝑆phenomenon|.

𝐴 the agent can take two actions regarding on what to do with the last observation, it can either report
its last observation or it can wait until the next observation. Thus:

𝐴 = {report,wait}

𝑇 the transition probability function that specifies the probability of going from state 𝑠 to 𝑠 when tak-
ing action 𝑎. This function is composed of three factorised transition probability functions that
determine how each of the sub states of the sensor node change.

2http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/

http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/
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𝑇phenomenon describes how the phenomenon changes. Since we assume the phenomenon to
exhibit periodic behaviour this will at the very least depend on the current 𝑠 ∈ 𝑆time. Furthermore it
seems likely that the new state also depends on its current state 𝑠 ∈ 𝑆phenomenon. Thus 𝑇phenomenon
can be described as:

𝑇phenomenon ∶ 𝑆phenomenon × 𝑆phenomenon × 𝑆time → [0, 1]

𝑇time describes how the time changes. Assuming we discretise time in such a manner that there is
one time state for every moment that the sensor node has to choose an action, the time transition
function is non-stochastic. In addition it only depends on the current time. Thus in general the
function can be described as:

𝑇time ∶ 𝑆time → [0, 1]
As this function is the same for all models in which we have one time state for every action
moment, we can define the function as:

𝑇time(𝑠 ∣ 𝑠 ) = {
1 𝑠 follows 𝑠
0 else

(4.1)

This leads to an explosion of states however. If we need one time state for every moment we
can take an action, then for half-minute report intervals, we would need 2880 states to represent
a single day. This is clearly unfeasible. What we can do instead is divide time into 48 different
segments (half an hour each). Every time segment has its own temperature transition function. To
ensure we get rid of the 2880 states and truly have only 48, we make the time transition function
stochastic. We advance time by one with a probability of 1/60, which means that in expectation
we advance every 60th time step, so 48 times in a day. We add an observation for the time to
see what time period we are in. So although the time transition has become stochastic, it is still
fully observable. Yet even a factor of forty-eight might be too large for a suitable state space. We
return to this in the next section.
𝑇prediction largely depends on the prediction model used for the POMDP. However it is clear
that one thing is very likely to influence the prediction, that is the current phenomenon state
𝑠 ∈ 𝑆phenomenon as we want our prediction to change in accordance with the current situation.
Additionally the time can potentially be of influence here, depending on the sophistication of the
prediction model used. We assume at least that our prediction model is deterministic. As a result
this 𝑇prediction assigns all transitions either a probability of one or of zero. Furthermore a report
action might allow us to update the predictor used (see Chapter 5), thus the action chosen also
influences this transition. Thus one form of 𝑇prediction might be:

𝑇prediction ∶ 𝑆prediction × 𝑆phenomenon × 𝑆time × 𝐴 → {0, 1}

Ω the observations that the sensor node can take are strongly correlated to the state space. In fact
we assume time and the predictions to be fully observable, meaning that their transitions, whilst
stochastic, are observable during policy execution. You can think of them as having observations
with probability 1 for the current state. The result is that 𝑂 only has one non-trivial factorised sub-
space, which is 𝑂phenomenon. The observation space Ωphenomenon is still straightforward however,
it contains one observation for every possible phenomenon state, thus we get:

Ωphenomenon = {𝑜 ∣ 𝑠 ∈ 𝑆}

𝑂 the observation probability function is also composed of several factorised functions. As explained
above, the only function that warrants explanation is 𝑂phenomenon.
𝑂phenomenon depends only on the current state of the phenomenon 𝑠 ∈ 𝑆phenomenon. Depending
on the quality of the sensor that the sensor node is equipped with, we expect the observations to
match the current phenomenon state. We can define the observation function as:

𝑂phenomenon ∶ Ωphenomenon × 𝑆phenomenon → [0, 1]
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𝑅 the reward function is based on the action taken and the deviation between the actual phenomenon
value and the predicted value. If the sensor node chooses to wait when there is a large deviation
between the actual phenomenon and the predicted value, it should not be rewarded. Similarly it
should be penalised for reporting. The first case would hurt the accuracy of the measurements
recorded in a base station, whereas the second case would waste energy and thus shorten the
lifetime of the sensor node. This means that 𝑅 can be denoted as:

𝑅 ∶ 𝑆prediction × 𝑆phenomenon × 𝐴 → ℝ

We can also say something about the shape of this function, based on what we know about when
we do or do not want the sensor node to report.

𝑅(𝑠 , 𝑠 , report) ≤ 𝑅(𝑠 , 𝑠 ,wait) ∀𝑖, 𝑗
𝑅(𝑠 , 𝑠 , 𝑎) ≤ 𝑅(𝑠 , 𝑠 , 𝑎) ∀𝑖 ≠ 𝑗, 𝑎

Whereas there are infinite options to encode these criteria, we focus on one that clearly embodies
the trade-off between accuracy and report rate:

𝑅(𝑠 , 𝑠 ,wait) = {0 if 𝑠 ≠ 𝑠
1 else

𝑅(𝑠 , 𝑠 , report) = {−𝛼 if 𝑠 ≠ 𝑠
1 − 𝛼 else

The idea behind this reward function is simple. We want to maximise the number of times during
which we have correctly predicted the behaviour of the environment. Therefore we get a reward
of one for being in such state where the environment and predictor states match. On the other
hand sending messages is expensive, so we always incur a penalty of 0 ≤ 𝛼 for reporting a
measurement. This means that the incentive for reporting is rather low, and thus reporting mea-
surements is only really worth it when we expect an updated predictor to work better in the future.
A future extension of this work could investigate the use of the POMDP-IRmodel [81] that rewards
“low-uncertainty beliefs” rather than solely looking at states.

4.4. Discussion
By using a thoroughly studied optimisation model in the form of a POMDP-model, which can be solved
to a finite state controller matching our requirements, we aim to find the optimal controller that balances
the trade-off between accuracy and report rate to match our use case. The 𝛼-parameter in the reward
function is likely to be the main factor influencing this trade-off, which means that for a set of 𝛼-values
we expect to get a set of Pareto-optimal controllers. We summarise this in the form of the following
hypothesis:

Hypothesis 5 (Pareto optimal POMDP-based controllers). The POMDP-based controllers form a set
of Pareto-optimal controllers for a set of different 𝛼 values.

Additionally we expect these POMDP-based controllers to outperform handmade controllers, as
they are the result of solving the optimisation problem instead of handmade solutions based on simple
rules not tailored for one specific use case. Since they use all information available, in terms of transition
and observation model, as well as knowledge about what actions are worth doing, they should be able
to find the optimal balance in our trade-off. Thus we formulate our final hypothesis as:

Hypothesis 6 (POMDP-based controllers dominate). The POMDP-based controllers dominate the
handmade controllers in terms of both report rate and accuracy.



5
The design of predictors for
environmental monitoring

Having qualified our approach as a data-driven prediction-based energy conservation technique, we
require a prediction mechanism. Because accurate predictions allow us to reduce the number of sent
messages required in a sensor network, we want to accurately predict complex real-world phenomena.
To what extent these predictors can reduce the need for communication, is the core of sub research
question 2. As we expect these environmental properties to exhibit behaviour that is not easily captured
by a piece-wise linear function (let alone a piece-wise-constant one), a more complex and trained
prediction model may well be needed. To this end we design several neural network configurations
that can be trained for environmental monitoring. The question we set out to answer is: can a simple
neural network outperform some untrained baseline predictors?

In this chapter we describe several prediction mechanisms. First in Section 5.1 we discuss two
simplistic prediction mechanisms that serve as a baseline in our experimental evaluation. Next we
focus on using neural networks (NNs) as a predictor. As described in Section 5.2 neural networks can
be very powerful in approximating a variety of functions. We look at the features of the data that seem
relevant in making predictions about the data, based on an established technique for predicting the
behaviour of time-series data in Section 5.3. Unfortunately due to the limited capabilities of the sensor
nodes that will have to use the model, this technique can not be applied to our use case. As a result we
propose several simplified neural network configurations in Section 5.4. Despite the expectation of very
good performance, the data that these networks base their predictions on is not available on the base
station side of the network. This means that for the purpose of forming an accurate environmental state
estimation at the base station we can not use these networks. Thus we end up with a neural network
that is aware of the notion of what data is communicated, which is described in Section 5.5.

5.1. Baseline prediction mechanisms
Two of the most basic methods that can “predict” the phenomenon under study are what we refer to
as the “constant predictor” and the “linear predictor”. These predictors use no knowledge of the phe-
nomenon under study, but are based on simple assumptions. The constant predictor simply assumes
the phenomenon under study to not change at all. It will take an initial value or state for the phenomenon
under study and use that as its prediction for all time steps that follow. Only when the prediction differs
sufficiently from the observation, the predictor is updated and the observation is communicated. When
the predictor is updated, the last last communicated observation is taken as the new prediction. This
predictor is described in Algorithm 5.

The second naive prediction mechanism is the linear predictor, which is a generalisation of the
constant predictor. Instead of assuming that the phenomenon remains constant, we instead assume
that it exhibits perfectly linear behaviour. We again assume an initial slope for the behaviour and are
only updating it when a sufficiently large difference with the observation followed by a send action has
occurred. For this we need the last two values to be remembered, so that we can compute a new slope
from them. Optimisations that determine from what two points in recent history a new slope needs to

37



38 5. The design of predictors for environmental monitoring

Algorithm 5 The behaviour of the constant predictor.
1: function getConstantPrediction()
2: return pred
3: end function
4:
5: function updateConstantPrediction(lastObservation)
6: pred ← lastObservation
7: end function
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Figure 5.1: A concrete example of a neural network is shown on the left, with an abstract formulation of neural networks shown
on the right.

be computed could be considered, but we do not do so in this work, as this predictor simply serves as
a baseline. The resulting predictor is described in Algorithm 6.

Algorithm 6 The behaviour of the linear predictor.
1: function getLinearPrediction()
2: last ← last + Δ
3: return last
4: end function
5:
6: function updateLinearPrediction(lastObservation, secondLastObservation)
7: Δ ← lastObservation - secondLastObservation
8: last ← lastObservation
9: end function

We use these two predictors as a baseline when studying the performance of the neural network
predictors discussed in the rest of this chapter.

5.2. Theoretical background: artificial neural networks
One of the models used in the field of supervised learning is the artificial neural network. Given the
right conditions, a simple neural network is able to approximate any function [23]. In this section we
describe how a neural network is constructed, how it performs its computations, and how it can be
trained.

5.2.1. The construction of an artificial neural network
Similar to how the brain consists of neurons linked by synapses, artificial neural networks also feature
two main components: neurons and the links between them. The architecture and functions described
in this thesis are based on the book “Artificial Intelligence: A Guide to Intelligent Systems” by Negnevit-
sky [60].

In a typical artificial neural network, we can see three types of layers (composed of neurons) in the
network: the input layer, one or more middle layers, and the output layer. A node in one layer of the
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Figure 5.2: The sigmoid activation function that can be used in neurons, where is the output and is the weighted sum of the
inputs.

network is connected to all nodes in the previous and to all nodes in the next layer by links. Each of
these links has a weight that determines the strength of the link, thus the impact of one node on the
other. Figure 5.1a shows an example of a very simple neural network with two input neurons (𝑥 and
𝑥 ), one hidden neuron (ℎ ) and one output neuron (𝑦 ). The numbers next to the edges denote the
weight of that edge, used in the computations of the network.

Such a neural network can be used as a simple computing element producing an output based on
the inputs of the node. The function used to compute the output is often kept simple. As McCulloch et
al. proposed in 1943 [58], simply taking the sum of the weighted inputs as the input of an “activation
function” works properly for many (current) use-cases. Different version of these activation functions
exist, of which Negnevitsky lists four. For our purposes we only require the sigmoid activation function
which is shown in Figure 5.2. This function computes an output 𝑌 for a neuron with threshold 𝜃, based
on inputs 𝑥 over links with weights 𝑤 as follows:

𝑌sigmoid = 1
1 + 𝑒 (5.1)

𝑋 =∑𝑥 𝑤 − 𝜃

For our example depicted in Figure 5.1a, the computation results in the following (assuming the
threshold 𝜃 of both ℎ and 𝑦 to be zero):

𝑥 = 0.9
𝑥 = 0.4

ℎ = 1
1 + 𝑒 . ⋅ . . ⋅ .

= 1
1 + 𝑒 .

≈ 0.43

𝑦 = 1
1 + 𝑒 . ⋅ .

≈ 0.74

In order to use these networks for the purposes of prediction, we require a method that allows the
networks to learn. To describe how this learning method works, we first introduce some mathematical
notation for the different neurons and weights found in the network. These definitions are also included
in an abstract visualisation of a neural network in Figure 5.1b.
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• 𝑛 input signals labelled 𝑥 through 𝑥 .

• 𝑚 neurons labelled ℎ through ℎ in the middle layer.

• 𝑙 output signals labelled 𝑦 through 𝑦 .

• 𝑛⋅𝑚 links between the input signals and themiddle layer, with weights𝑤 , for 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚.

• 𝑚 ⋅ 𝑙 links between the middle layer and the output signals, with weights 𝑧 , for 1 ≤ 𝑗 ≤ 𝑚, 1 ≤
𝑘 ≤ 𝑙.

• 𝜃 the threshold of the different neurons. This threshold is included as an extra node in the preced-
ing layer that has no inputs, but always carries output 1. By learning the appropriate weight for
the link connecting the 𝜃-node of the previous layer to a neuron, we essentially simulate such a
threshold of value 𝜃. Note that figure 5.1b does not show this 𝜃-node so as to not over complicate
the figure.

• 𝛼 the so-called learning rate of the network. It determines how quickly the network can adapt to
new input/output pairs and is used in the training algorithm below. It is not used during computa-
tions made by the neural network, in contrast to the other values in this list.

5.2.2. Training the network using the back-propagation algorithm
Themethod we use for training a neural network is called the back-propagation algorithmwhich involves
repeatedly feeding the inputs to the network and changing the link weights until the outputs match our
expected outputs to acceptable levels. One such iteration involves feeding a set of input values to the
network, computing the output, comparing these outputs to the expected output and then back-feeding
the errors to the network. We will examine each of these steps in turn:

1. Initialise network
Before we can train the network, we need to initialise the weights and thresholds. We do so ran-
domly by taking the required amount of random numbers from a uniform distributions 𝑈(− . , . )
as prescribed by Kubat et al. [49], where 𝐹 is the number of inputs of the neuron for which we
are settings the weights.

2. Provide inputs and compute output
With a network in place we can apply a training input. Using the sigmoid activation function in
both the middle and output layers, and following the procedure outlined in the previous section,
we then compute the output of the network for the given training input.

3. Update the weights
To improve the accuracy of the network, we need to change the weights in the network so that the
inputs are mapped to their desired outputs. To this end we compute the current error for every
output using Equation 5.2. These errors are the basis of how we compute the weight differences
(Equation 5.3, where 𝑚 is the output of middle node 𝑗) that should be added to the weights
between the middle neurons and the output neurons. In this step the learning rate parameter 𝛼
plays a role.

𝑒 = 𝑦desired, − 𝑦 (5.2)
𝛿 = 𝑦 × (1 − 𝑦 ) × 𝑒

Δ𝑧 , = 𝛼 ×𝑚 × 𝛿 (5.3)

The computation for the links between the input signals and the middle neurons follows a similar
pattern, the only difference being the computation of the 𝛿 value. This takes into account all of
the outputs the neuron is connected to as illustrated by Equations 5.4 and 5.5.

𝛿 = 𝑚 × (1 −𝑚 ) ×∑𝛿 × 𝑧 , (5.4)

Δ𝑤 , = 𝛼 × 𝑥 × 𝛿 (5.5)
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Having computed these Δ-values they are added to the current weights of the network to create
a modified network that returns a more accurate result.

4. Repeat
During every iteration we compute the sum of squared errors over all outputs computed for all
training inputs and use that as our stopping criterion. When we consider it to be sufficiently small
we stop the repetition process and assume the network has learned the observations sufficiently
well.

Several optimisations in this training process exist. In our implementation we use both an adaptive
learning rate [42, 91] as well as a momentum constant [35] to accelerate the training of the neural
networks.

5.3. Modelling periodic behaviour with neural networks
Our main interest in neural networks stems from the need to model the phenomena that the wireless
sensor networks monitor. In our use case we are monitoring environmental properties (e.g. tempera-
ture) inside bird nests, offices and other environments, for an extended period of time. In this section
we describe how neural networks have been used to model time-series data in the past, why this does
not work for our application, and what environmental properties are relevant for a neural network-based
predictor.

5.3.1. Neural networks for modelling time-series data
The main feature of the environmental trends that we want to exploit is the fact that we expect these
properties to exhibit periodic behaviour influenced by the day-night cycle. This information can not eas-
ily be captured by our base-line predictors, but the periodicity can help to predict how the environment
changes over time. Such structured, periodic behaviour is also referred to as time-series data. Gashler
et al. [28] describe a method for constructing neural networks that deal specifically with predictions for
periodic time-series data.

Rather than having only one hidden layer and using the Sigmoid activation function as described
in Section 5.2, this approach features three hidden layers and uses three different activation functions.
The first two hidden layers each consist of 24 nodes, 12 nodes using a simple linear activation function
(𝑌 = 𝑋) and 12 nodes using a “softplus” activation function (𝑌 = ln(1 + 𝑒 )). The main function of
these two layers is to “warp time” as Gashler et al. call it. Essentially this should allow the network
to realise it when the data has a slight offset in time compared to the training set, a technique similar
to Dynamic Time Warping [12]. In the third and final hidden layer, we again require 12 linear and
12 softplus nodes, but we also add 𝑘 sinusoid nodes. These nodes use the sine function as their
activation function (𝑌 = sin(𝑋)). They are able to encapsulate the periodic behaviour of the time-based
data. Gashler et al. recommend to take 𝑘 as a power of two for optimal performance.

Despite the good results that Gashler et al. obtain for these networks, these techniques can not be
used for our use case. The reasoning for this is twofold, the first being a very practical argument and
the second a more conceptual one.

1. A preliminary calculation tells us that this neural network will simply not fit in the memory of most
sensor nodes. Excluding any operational logic or other models that need to be stored in the
memory, we will at least have to store the weights for all interconnections between neurons in the
memory of the node. With only one input (the time) and one output (the prediction), we come to
the following number of weights required:

number of weights = 1 ⋅ 24 + 24 ⋅ 24 + 24 ⋅ (24 + 𝑘) + (24 + 𝑘) ⋅ 1
= 1200 + 25𝑘

Depending on how we store these numbers, this is unfeasible for even a small 𝑘. Assume for
instance that each weight is stored as a two-byte value, we require over 2.5KB even when 𝑘 = 1.
As many models feature little RAM where 2.5KB would take up half the memory, or at least be a
significant portion, fitting in such a neural network as well as the finite state controller introduced in
the previous chapters is unfeasible. Additionally the amount of processing power and complexity
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Figure 5.3: The temperature trace from sensor mote one of the Intel Lab data set [15].

associated with updating the network to recalibrate with the phenomenon is likely to be too tasking
for the hardware found on these sensor nodes.

2. Whereas this more complex model can work well with time-series based data, Gashler et al.
already observe that despite their attempts to prevent this, this network can still get out of phase
with the actual data, something that happened for one of their presented experiments. Whereas
this still gives a very good impression of the trend that the data is following, this information is
meaningless when trying to construct an actual measurement log based solely on the model,
as every individual measurement will be off by varying amounts. The dynamic time warping
implemented in the first two layers has ensured the trend be continued, but it is still out of sync
with the actual data.

Another proposed technique which focuses on applying neural network specifically in wireless sen-
sor networks was introduced by Park et al. back in 2007 [68]. Park et al. describe how a certain neural
network architecture could be applied, but conclude with: “The total amount of energy consumption ...
will be compared through extensive simulations in further research.” Unfortunately to the best of our
knowledge such further research has not been conducted. Perhaps because the hardware require-
ments of their proposed technique could not be fulfilled by the sensor motes. Similarly work by Shen et
al. [74] also features only simulation. It seems that for a feasible real-world implementation we require
a much simpler neural network.

5.3.2. Relevant input parameters for the neural network
As a result we explore simpler network configurations that take several inputs to help with the prediction,
as opposed to doing very complex computations on just the single input representing time. We identify
several such inputs that are relevant to make a good prediction. We have taken a temperature trace for
office buildings based on the Intel labs [15] and plotted the temperature as measured by sensor mote
one in Figure 5.3. As can be observed the temperature exhibits clear but imperfect periodic behaviour.
Additionally a large peak to 100 degrees Celsius can be observed. Although no explanation is given by
the authors of the temperature trace, we suspect the sensor was simply malfunctioning for an extended
period of time. We do not consider this erroneous data for our training or evaluation of the neural
networks.

Based on this temperature trace we believe that the following three input parameters are funda-
mental parts of a neural network configuration:

Time
To encapsulate the notion of periodic behaviour in the neural network, it is necessary to include
the current time of day in the network. This way the network can exploit the periodic behaviour
that is directly caused by the time of day.
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The previous temperature
As the periodic behaviour does not exhibit a perfectly repeating form, the previous temperature
should be able to help with detecting and reacting to oddities in the behaviour. It serves as an
offset, as opposed to the time that serves as an indicator for the slope.

A time difference
One additional input parameter should be mentioned here, which is specific to our use case
of wireless sensor networks. When working with unreliable hardware as well as with potential
for communication failure, it is entirely possible that some measurements are not recorded or
communicated properly. To keep the base station and wireless sensor node synchronised, it is
important to know how much time has passed since this “previous temperature” input. So this
third parameter that could be relevant is exactly that: the time since the previous temperature
used as an input.

These three inputs can be combined and interpreted in a variety of ways, which we discuss in the
next sections.

5.3.3. Training and evaluating neural network predictors
To evaluate and compare different neural network predictors, we require a training set and a metric for
the performance of a prediction mechanism.

For this purpose we again refer to Figure 5.3, which shows the full data trace used for evaluation.
The vertical bar separates the training data from the evaluation data. Left of the vertical bar is training
data and right of the bar is the evaluation data from which we only use the data points between 15
and 35 degrees Celsius (as indicated by the horizontal bars). The training set comprises the first 3109
data points. Since data for several time steps is missing, these data points end at time stamp 5763
and thus correspond to two days worth of data (measurements are approximately half a minute apart).
For training we use the following metric to determine when to stop the training procedure (a metric
commonly used in neural network training). The metric is chosen as the sum of the squared error at
every time step, as is often done when training neural networks:

errortraining =∑(output − actual )

It should be noted that the output and actual value have both been normalised to be in a range of 0
to 1 to be used in the neural network. The value of 0 is associated with 15 degrees Celsius, whereas
1 corresponds to 35 degrees. Any values that are outside of this range, are simply stripped from the
data set and dismissed as the sensor malfunctioning. Thus an error of 1 corresponds to a 20 degree
Celsius error. During the training phase 𝑛 = 3109. We stop training the network when the training error
is smaller than 0.01. The reason this threshold is chosen is that initial experiments show that training
the network more either degrades performance or takes a very long time. Larger training errors also
show worse performance, meaning there is room for improvement.

In order to evaluate and compare the configurations, we require a score or metric to base the
comparison on. For evaluation we simply use the average error in degrees Celsius:

erroreval =
∑ |output − actual |

𝑛

5.4. Neural networks that predict based on past measurements
Based on the input parameters identified in the previous section, we formulate several different neural
network configurations that combine these inputs in different ways. All of these networks use the
previous temperature as one of the inputs. In this section we give a description of their input/output
configuration, as well as make predictions about their performance.
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Name Time Temperature Time difference
Absolute3 System up-time Previous Measurement Time since previous measurement
Relative2 Time of Day Previous Measurement -
Relative3 Time of Day Previous Measurement Time since previous measurement
LastX-1 - Previous X Measurements -
LastX-2 Time of Day Previous X Measurements -
LastX-3 Time of Day Previous X Measurements Time since previous measurement

Table 5.1: The configurations of input parameters for neural networks we investigate for modelling temperature. The final number
of the name indicates the number of inputs that are used in the network.

5.4.1. Network design
Initially we investigated using neural networks that only use the previous temperature, but as was to be
expected, this network is very difficult to train. After all, with only the previous temperature, the network
does not know if the temperature should increase or decrease next, thus two training points can easily
contradict each other. Similarly a network that only takes the time of day as the input, is also unable
to learn the behaviour properly, as a slight shift in temperature exactly 24 hours later again results in
contradictory training data. It seems that a just a time or temperature is not sufficient to train these
types of network, as even with a moderate amount of middle layer nodes, it was impossible to reduce
the error in the training phase sufficiently to have the network output useful predictions.

It should also be noted that there are two different ways in which we could include the time param-
eter, either as an absolute value since the start of our analysis or as a periodic value in the form of
the time of day. The rationale behind these choices is that in the first case the network should learn
about the periodicity by itself, we do not prescribe that the period of our data is 24 hours. If a slightly
different period works better, the network can potentially discover that by itself. In the second case we
do already provide that domain knowledge, as we know that for these office buildings specifically this
periodicity holds. We expect that the second case allows for much easier training and better results,
but we still investigate the system up-time as a parameter for use cases in which information about the
periodicity might not be available.

Considering these initial results and alternatives, we set out to investigate several configurations
that combine the time and previous temperature in different ways. Table 5.1 offers an overview of the
different configurations we investigate.

5.4.2. Predictions on performance
We now formulate a hypothesis about the performance of the network configurations described above,
using the evaluation error metric as a performance measure.

Hypothesis 7 (More information makes a better predictor). Network configurations that consider more
information are able to make better predictions.

To test this hypothesis, we break it down into two follow-ups:

Sub hypothesis 7.1 (Relative). Relative-3 performs at least as good as Relative-2.

Relative-3 introduces the notion of the time between the last measurement and the current mea-
surement. Whereas this seems irrelevant in simulations as we an assume the last measurement was
one time step ago, in real wireless sensor networks, all kinds of failures can lead to gaps in measure-
ments. Figure 5.3 clearly shows such a gap around the 50.000 mark where no data was recorded
for a certain period. Relative-3 can compensate for these blackout periods by weighing the previous
temperature less as the time since that measurement becomes larger. Depending on the amount of
gaps in your data however, this parameter could be of very little influence.

As Relative-3 only contains little more information than Relative-2, in the form of a parameter that
will very often be set to the normalised equivalent of a “1” to indicate that the previous measurement
was one time step ago, we expect it to perform on an equal level or better than Relative-2. To ensure
enough training data is available, we also offer the data as if there was a gap of lengths up to 10 time
steps (using the data from 𝑡 − 10 to train for time 𝑡).

We expect that, if nothing else, adding this extra information should not be able to significantly
decrease performance. This has resulted in the weak formulation of the hypothesis.
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Sub hypothesis 7.2 (LastX). LastX-3 performs best.

The culmination of all the relevant information is found in the LastX-3 category. It contains the time
in the cycle to give us an indication of whether temperature should be going up or down, it contains the
previous 𝑋 measurements that can inform us of the speed with which the temperature is changing and
finally the time since previous measurements that can tell us to what extent the previous measurements
are relevant. However it does not know about the time period that was between these Xmeasurements,
only how long ago the most recent of these X measurement was recorded. Thus for data that contains
many gaps, for instance when the last measurement was a single time step ago, but the other (X-
1) were over one hundred time steps ago, LastX-3 may unjustly give these measurements too much
weight in the next prediction. Even so, we expect it to win out over the others on average.

Similarly to our note for the previous hypothesis however, we should note that the difference be-
tween LastX-3 and LastX-2 is likely to be relatively small if there are few gaps in the data collection
process.

5.5. Neural networks that predict based on the last communication
As the temperature changes gradually, the neural networks shown in the previous section are likely to
be very accurate in terms of prediction. This is very useful if they are only used on the sensor nodes
themselves. However they are not usable when the base station has to have an accurate environmental
state estimation at all times. After all the base station does not have access to the inputs that the neural
network uses for its predictions, namely the last observation. In this section we discuss a modification
of the inputs, that allows the base station to produce the same predictions and thus produce such an
environmental state estimation.

5.5.1. The network configuration
Rather than keeping track of the last time wemeasured in the neural network inputs, we instead provide
the last time we communicated data as that input. The “last temperature” input parameter is then also
changed to the last temperature that was communicated. During training we use data for up to one
hundred points in the past as the “last communicated measurement” and we also discount training
errors for larger time gaps. In other words we focus on predicting very well for short time periods and
accept losing some accuracy as time goes on. The main reason for this is that it allows us to train the
network more easily and keep the size of the network relatively small. The new training metric thus
becomes:

errortraining =∑∑(
output , − actual ,

𝑡 ) (5.6)

Now that we have created a neural network configuration that the base station can execute indepen-
dently, we can go one step further and allow the neural network to update itself every time the sensor
node performs a “report” action. This update action allows it to adapt to changes in the environment
that were not present in the training data, thus potentially enabling the neural network to become a
more accurate predictor as time goes on. For this update we use only the last data that is communi-
cated to the base station, that is the current observation that differs from the prediction and the time
since the last measurement. To update we use a single round of the training algorithm, outlined in
Section 5.2. The 𝛼 factor used in this update, the learning rate, should be chosen in such a way that
the new update changes the network for the variations observed, but not so much that the old training
data is completely ignored.

5.5.2. Predictions on performance
As these network configurations no longer have access to the previous measurement, we expect their
performance in terms of average error to drop compared to the networks introduced in the previous
section. To combat this problem we allow the neural network to update itself after reporting a mea-
surement. This introduces the trade-off that is central to this thesis for the predictors. Minimising the
number of reported measurements, whilst also obtaining the minimum average error.
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As we expect our trained neural network predictors to outperform the baseline predictors, we for-
mulate the following hypothesis:

Hypothesis 8 (Trained predictors dominate generic predictors). A prediction mechanism designed and
trained for our use case outperforms generic prediction mechanisms that do not consider environmental
behaviour.

Since our variant of the trained predictor has several parameters that influence its performance, we
first investigate the influence of these different parameters (the learning rate 𝛼, the maximum allowed
error 𝑥, the effect of different data sets). To this end we formulate several sub hypotheses that illustrate
how the parameters influence the performance of the network. These parameters when set correctly
should then allow us to test Hypothesis 8. Although the influence of the parameters is predictable, we
formulate claims about their influence as sub hypotheses to structure our analysis of them:

Sub hypothesis 8.1 (Maximum allowed error). As we increase the maximum allowed error 𝑥, fewer
messages will be sent, at the cost of a higher average error.

As 𝑥 is the parameter that solely determines when data should be communicated, increasing 𝑥
means we allow a higher error before reporting a measurement. This means that we expect fewer
messages to be communicated as 𝑥 increases, but as 𝑥 also forms the upper bound on the average
error we expect the average error to increase with it. Different values of 𝑥 are likely to form a set of
Pareto-optimal solutions, with none outperforming the others in both the number of reports and the
average error.

Sub hypothesis 8.2 (Learning rate). An 𝛼 of either 0 or 1 will not perform well.

Although formulated as a weak hypothesis, it seems likely that both the training data and the live-
updates can help to improve the quality of the predictions made by the neural network. By either
ignoring the live-updates (𝛼 = 0) or by quickly overwriting the training data (𝛼 = 1), we lose part
of the information that form these predictions and thus both of these 𝛼 values are likely to decrease
performance. We expect an 𝛼 that balances the use of old and new information to perform best.

Sub hypothesis 8.3 (Data). The networks perform better on the data akin to the training data, than to
dissimilar data.

It seems likely that the networks will perform better when confronted with data that matches their
training data well. However for 𝛼 values that allow the network to adapt to changes in the data trace,
these differences in performance may be overcome through the adaptation.

Sub hypothesis 8.4 (NN outperforms naive). The neural network predictors outperform the linear and
constant predictors.

As the embodiment of a trained prediction mechanism, we expect the neural network predictors
to outperform the untrained naive baseline predictors. Through their training they should be able to
foresee periodic changes in the data set, whereas a constant predictor can not. We expect this foresight
to help the neural network predictors obtain both a smaller report rate, as well as a smaller average
error when compared to the constant or linear predictors.
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Evaluation of different prediction

mechanisms
The design of the neural network predictors in Chapter 5 has put forth several hypotheses about the
performance of these predictors. In this chapter we perform an experimental evaluation of the network
designs to test these hypotheses.

In Section 6.1 we focus on the networks that use the last measurement to predict the next. These
networks are designed to show that neural networks can indeed predict environmental states. Using
these networks we test Hypothesis 7 (More information makes a better predictor). In Section 6.2 we
turn to the networks that incorporate the notion of communication in their prediction mechanism. These
networks can actually be used in our application of wireless sensor networks and we perform the multi-
objective evaluation associated with our use case. Using these networks we test Hypothesis 8 (Trained
predictors dominate generic predictors).

6.1. Past-based neural networks
To show that neural networks can accurately predict an environmental state change, we have trained
networks according to the specifications outlined in Table 5.1. With these networks we aim to test
Hypothesis 7. In this section we describe how the networks are trained and evaluated, what the results
of the evaluation are and what this means for the hypothesis, and why these networks can not be used
in the use case of wireless sensor networks.

6.1.1. Experimental setup
To show that the neural networks can predict environment state change, we have taken the temperature
trace as report by sensor mote one from the Intel research labs data set [15] as it is one of the most
complete traces with only one clear error-prone period. This data is plotted in Figure 5.3. As described
in Section 5.3.3, we have selected the first 3109 data points (two days worth of data) for training the
networks. For the evaluation we use the full data trace (including the training data, but excluding data
points outside of the 15 to 35 degrees Celsius range).

As the final neural network depends on the random weights chosen before training, we have gener-
ated one hundred random instances of each configuration, which are then trained until the normalised
error was smaller than than the threshold of 0.01. Each training was stopped as the target error was
achieved, but there is no lower bound on the training error. As a result not all networks are trained to
the exact same degree. Furthermore for some networks it was exceedingly hard to train them to the
required training level, for which training was stopped after 10 minutes. These networks are left out of
the analysis. All results given below are averages over at least 70 and at most 100 networks.

To ensure that such a neural network is of a size that can be used in an actual wireless sensor mote
(which has very little memory), we have limited the number of neurons in the middle layer to the number
of input nodes + 8. In this way the total number of cross-connections is limited to 128 between input
and middle nodes. This should only take only half a KB of RAM to store in memory (again assuming
2-byte weights), ensuring it would fit in the memory of the sensor motes.
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Configuration Average Training Error Average Evaluation Error
absolute-3 𝟢.𝟢𝟦𝟨 ± 𝟢.𝟢𝟢𝟪 𝟢.𝟤𝟦 ± 𝟢.𝟢𝟧
relative-2 𝟢.𝟢𝟥𝟦 ± 𝟢.𝟢𝟢𝟩 𝟢.𝟣𝟢 ± 𝟢.𝟢𝟦
relative-2 𝟢.𝟢𝟫𝟩 ± 𝟢.𝟢𝟣𝟧 𝟢.𝟣𝟥 ± 𝟢.𝟢𝟤
relative-3 𝟢.𝟢𝟥𝟪 ± 𝟢.𝟢𝟢𝟩 𝟢.𝟣𝟣 ± 𝟢.𝟢𝟧
relative-3 𝟢.𝟢𝟫𝟩 ± 𝟢.𝟢𝟣𝟧 𝟢.𝟣𝟤 ± 𝟢.𝟢𝟤
last2-1 𝟢.𝟢𝟦𝟢 ± 𝟢.𝟢𝟢𝟪 𝟢.𝟢𝟫 ± 𝟢.𝟢𝟦
last2-2 𝟢.𝟢𝟥𝟨 ± 𝟢.𝟢𝟢𝟪 𝟢.𝟣𝟢 ± 𝟢.𝟢𝟦
last2-3 𝟢.𝟢𝟥𝟪 ± 𝟢.𝟢𝟢𝟪 𝟢.𝟣𝟢 ± 𝟢.𝟢𝟦
last3-1 𝟢.𝟢𝟦𝟤 ± 𝟢.𝟢𝟢𝟫 𝟢.𝟣𝟢 ± 𝟢.𝟢𝟦
last3-2 𝟢.𝟢𝟦𝟣 ± 𝟢.𝟢𝟢𝟪 𝟢.𝟣𝟣 ± 𝟢.𝟢𝟦
last3-3 𝟢.𝟢𝟦𝟣 ± 𝟢.𝟢𝟢𝟪 𝟢.𝟣𝟣 ± 𝟢.𝟢𝟦
last4-1 𝟢.𝟢𝟦𝟤 ± 𝟢.𝟢𝟢𝟫 𝟢.𝟣𝟢 ± 𝟢.𝟢𝟦
last4-2 𝟢.𝟢𝟦𝟤 ± 𝟢.𝟢𝟢𝟫 𝟢.𝟣𝟣 ± 𝟢.𝟢𝟦
last4-3 𝟢.𝟢𝟦𝟥 ± 𝟢.𝟢𝟢𝟫 𝟢.𝟣𝟣 ± 𝟢.𝟢𝟦
last5-1 𝟢.𝟢𝟦𝟥 ± 𝟢.𝟢𝟢𝟫 𝟢.𝟢𝟫 ± 𝟢.𝟢𝟦
last5-2 𝟢.𝟢𝟦𝟣 ± 𝟢.𝟢𝟢𝟫 𝟢.𝟣𝟣 ± 𝟢.𝟢𝟦
last5-3 𝟢.𝟢𝟦𝟥 ± 𝟢.𝟢𝟢𝟫 𝟢.𝟣𝟣 ± 𝟢.𝟢𝟦

Table 6.1: The average performance and standard deviation of the different configurations on the full data set for sensor 1 after
training on the first two days of data points (3109 points). The errors shown here are the average deviation in degrees Celsius
between the prediction (the output of the neural network) and the measurement. Note that the more untrained configuration
results are not shown.

6.1.2. Evaluation of the configurations
The average error per measurement for the training set, as well as for the full evaluation set after vali-
dation over the one hundred networks for the different configurations are shown in Table 6.1. To give
some indication as to what the values in this table represent, Figure 6.1 plots the error in predictions for
two networks with the relative2 and last3-1 configurations. As can be observed the errors for measure-
ments with index 19000 to 23000 are not shown. These errors are quite a lot larger and are left out of
the analysis. This interval corresponds to a period of time where the measurements are inconsistent
before the data this is removed due to it being larger than 35 degrees Celsius. To remove any faults
these faulty measurements might introduce, these predictions and measurements are left out of the
averages presented in this section.

With these results we can now revisit the hypotheses formulated in the previous chapter and see to
what extend they hold.

Sub hypothesis 7.1 (Relative). Relative-3 performs at least as good as Relative-2.
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Figure 6.1: The errors of the predictions made by a well-trained Relative3 and Last3-1 network compared to the real data.
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Figure 6.2: The average errors of the Relative2 and Relative3 configurations for different time deltas, as well as the number of
times a time delta occurs (indicated in black).

Indeed, Relative3 seems to outperform Relative2 when we train for an average error of 0.1 degree
Celsius in the training phase, but it does not outperform it when we train to an average error below 0.04
degrees Celsius. So it this possible improvement, or slight degradation really due to the extra input
parameter (the time since the last measurement) or could it be that this network just happened to be
configured slightly differently and thus perform better by chance? In other words are these “improve-
ments” significant?

To determine this we focus on the better trained network and plot the average error vs the time delta.
In other words we want to determine if the third parameter of the Relative-3 network has a (positive)
impact on the average error. We would expect that the third parameter can help decrease the error
when two measurements are separated by a longer period of time. We formulate this as a follow-up:

Follow-up hypothesis 6.1.1. Relative3 performs better than Relative2 when a larger period of time
separates two measurements.

Figure 6.2 shows a plot of the average error for increasing time deltas for both the Relative-2 and
Relative-3 configurations. Additionally the black points indicate the number of occurrences of the dif-
ferent time deltas. Based on this figure we draw two conclusions. First over 90% of the data features a
time delta of less than 5 time steps. In other words impact of this parameter is very likely to be minimal,
if there is to be any impact at all. Secondly, for a large time delta the average error is not necessarily
smaller for the Relevant-3 configuration than it is for the Relevant-2 configuration. The difference in
error is often insignificant (especially with the small sample sizes for large time deltas). Thus we have
to reject the follow-up. As for Hypothesis 7.1, this can be considered valid. Although Relative-3 is not
better than Relative-2, it certainly is not significantly worse than Relative-2 either.

Sub hypothesis 7.2 (LastX). LastX-3 performs best.

With the knowledge of our observations about Relative2 and Relative3 we would expect the dif-
ferences between LastX-2 and LastX-3 to be very small as well, which is indeed the case. What is
perhaps more surprising is that LastX-1 seemingly outperforms both LastX-2 and LastX-3. The inclu-
sion of previous measurements therefore seems to outweigh the impact of the current time of day.

In LastX-3, as noted before, the final parameter indicates the time since the last measurement, it
says nothing about how far apart the other 𝑋 measurements were. As a result when the last measure-
ment was a single time step ago, but the other 𝑋 − 1 were a hundred time steps ago, then this is not
known to the network and they might be given undeserved weight. This will quickly repair itself after 𝑋
time steps, but for these 𝑋 time steps the predictions are potentially off by a large amount.

So it seems that there is little difference between LastX-3 and other network configurations. LastX-1
seems to be on par with Relative2 and so do others. When plotting the errors in the predictions for a
Relative2 and a Last3-1 network, we see that these show very similar trends (see Figure 6.1). This
means that we have to reject Hypothesis 7.2 as the LastX-3 configuration is not necessarily best. As
a result we also reject Hypothesis 7. Adding more information does not necessarily result in a better
predictor.
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6.1.3. Applying these networks in wireless sensor networks
Whereas the LastX-2 and Relative2 configurations have shown promising results in terms of being able
to predict the temperature based on the data available in the sensor mote, this configuration can not be
used in the wireless sensor network applications we work on in this thesis. In these real-world settings
the base station is tasked with producing an environmental state estimate at every time step. To this
end, we need to simulate this neural network in both components, the wireless sensor mote and the
base station. But if the past measurements are an input to the neural network, then the base station can
only get a prediction if they also have the last few measurements. This in turn means that the sensor
mote has to report every measurement, thus nullifying the effect of the prediction based sending.

There are two potential methods to resolve this issue. One option is that rather than taking the
actual last measurement, we use the last prediction as an input. After all both the sensor mote and the
base station have access to the prediction data. As you can imagine however, an erroneous prediction
will only ensure the next prediction is even worse if it is used as the input. Thus using the previous
prediction to make new predictions is likely to lead to very bad prediction models.

The second option is to use the data that Relative3 already uses, but in a slightly different way.
Rather than describing when the last measurement was taken and what this measurement was, we
instead describe when the last measurement was communicated and what this measurement was.
We make the neural networks “communication aware”, as described in Section 5.5. We evaluate these
networks in the next section.

6.2. Communication-aware neural networks
Having established that, despite their good performance, past-based neural networks can not be ap-
plied in wireless sensor networks, we now turn to the communication-aware networks designed in
Section 5.5. These networks are aware of the last communicated measurement and base their pre-
diction on that. In this way both the base station and the sensor mote can reliably produce the same
prediction. During the design we formulated a hypothesis about the performance of the communication-
aware neural network compared to that of the naive predictors in Hypothesis 8. In this section we test
this hypothesis.

6.2.1. Experimental setup
Since these neural networks are aware of the communication that is required in our application, we
have them execute a generic policy that tells them whether or not they should report their data. If their
prediction deviates more than 𝑥 degrees from their measurement, they report the measurement and
update the prediction model. This policy is described in Algorithm 7.

Algorithm 7 A simple policy that communicates every deviation from the prediction of more than 𝑥
degrees.
Require: some prediction model that produces a prediction for every measurement.
Require: a threshold value 𝑥 that determines whether or not the measurement should be reported.
1: function onMeasurement(measurement)
2: 𝑝 ← getPrediction(...) �Arguments depend on predictor used
3: if |𝑝 −measurement| > 𝑥 then
4: Report(measurement)
5: else
6: Sleep
7: end if
8: end function

For our experimental validation we also require data sets to evaluate the networks against. As
before, our networks are trained using data from sensor mote one of the Intel lab data. For evaluation
we have selected four days worth of data, instead of the full data trace. Two of the evaluation data sets
that we use are day one of the sensor mote one, which is part of the training data, as well as day three
of sensor mote one, which is not part of the training data. Additionally an analysis of how much the
different data sets for different sensors are correlated to one another, shows us that the data of sensor
mote two is very similar to that of sensor mote one, but the data from sensor mote 51 (which is in a
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Figure 6.3: Lay-out of the Intel Labs [15], with the sensor mote placements indicated.

different part of the lab, see Figure 6.3) shows a number of deviations from sensors one and two. Thus
we use day one from sensor mote two and day five from sensor mote 51 as well, as data that is very
similar and very dissimilar respectively. In Figure 6.4 the temperature traces for the different sensors
are shown.

For our experiments we vary a total of four parameters:

The predictor used
Depending on what neural network we use the results might differ. Thus the choice of neural
network is the focus of a preliminary experiment described in the next section. Additionally we
consider the two naive predictors, the linear and the constant predictor, to see if our neural net-
works can still outperform them with other configurations of the other parameters.

The data set used
As is already addressed above, we select four data sets for the evaluation. For these experiments,
we again use only the data that is between 15 and 35 degrees Celsius and furthermore we use
linear interpolation to substitute any missing data. This is done to ensure a continuous data trace,
so that our policy can simply be executed at every time step in our data. The fact that we use a
linear interpolation is an important detail, as this might give an advantage to the linear predictor.
We come back to this in the next section when we discuss the results.

The learning rate used 𝛼
This parameter determines to what extent the neural network can adapt its behaviour when a
wrong prediction is made. We test the values of 0, 0.05, 0.5, 0.95, and 1 in our our experiment.
We include the values 0 and 1 to see how well the networks do without the ability to adapt and
with an adaptation so strong that the training information is essentially lost.

The maximum allowed error 𝑥
With a larger allowed error, we expect fewer observations to be reported, accompanied with a
larger error. The interplay between the learning rate and the maximum error is also important
however, as with a small error, but without an opportunity to learn from the reported mistakes, we
will repeatedly keep sending messages. We use the values 0.05, 0.1, 0.5, and 1 degrees Celsius
in our evaluation.

The sub hypotheses 8.1 to 8.3 focus on the effects of these parameters and are tested below.



52 6. Evaluation of different prediction mechanisms

20

24

28

0 720 1440 2160 2880
Time (30 second intervals)

Te
m

pe
ra

tu
re

 (
°C

)

Sensor 1 2 51

Set 1 2

Temperature measurements

Figure 6.4: The chosen days of data for the communication-aware neural network evaluation. The time scale is in measurement
numbers, with measurements taken at 30 second intervals. In other words 2880 measurements corresponds to one day worth
of data. The data of sensor two matches the training data of the first day of sensor mote one very well, whereas both the second
set of mote one and especially the set of data from sensor mote 51 show different behaviour.

2.5

5.0

7.5

0.20 0.24 0.28 0.32
Average Error (deg Celsius)

P
er

ce
nt

ag
e 

of
 r

ep
or

t a
ct

io
ns

Predictor type ● Constant Linear NN

Training error ● ● ● ● ● 0.1  0.25  0.5  1  random

Preliminary evaluation of neural networks as predictors

Figure 6.5: The average error and number of reported observations for one hundred randomly initialised neural networks trained
to several different levels. The training error is still normalised, similar to the previous section, but the average error is given in
degrees Celsius. These results are obtained from an evaluation on the third day of sensor mote one, after training the networks
on the first two days of sensor mote one. The black symbols indicate the performance of the naive predictors on this data.



6.2. Communication-aware neural networks 53

6.2.2. Preliminary experiment: neural network selection
Since we aim to vary four parameters, each taking at least four values, the number of experiments to
run grows very quickly. If we were to again evaluate all combinations for one hundred trained neural
networks this would result in 8000 evaluations. To make the number of evaluations more manageable
we perform a small preliminary experiment to select the neural networks for the full evaluation.

We start with one hundred randomly initialised neural networks, that take the three inputs, have
fifteen nodes in the hidden layer, and have one output node. Such a network can be saved in less
than one KB of memory, so it can be saved and updated in a wireless sensor mote. These networks
have been trained on the first 3109 data points (two days of data) to several different training errors,
and were then evaluated against the third day of data, where all points originate from sensor one of the
Intel lab data. For the maximum error 𝑥 a value of 0.5 degrees Celsius is chosen, and a learning rate
of 0.05 allows for small adaptations to the neural network if deviations were found. We have selected
these two parameters in such a fashion that they allow for small changes, hopefully without obfuscating
the effect of the initial configuration of the neural network.

The results of this initial analysis are depicted in Figure 6.5. In this figure the number of “report”
actions performed (expressed as a percentage of the 2880 possible messages) is shown against the
average error (in degrees Celsius). For the computation of the average error we have only included the
errors during the “wait” actions, as no error is incurred from a wrong prediction when the measurement
is reported. The colours represent different errors during the training phase (all using the error metric
given by Equation 5.6). There are fewer networks with a training error of 0.1 and 0.25 as many networks
did not manage to reach these thresholds within the time limit set for training the networks.

Based on this graph we draw two conclusions. First, perhaps unsurprisingly, the random networks
perform very badly. They still manage to do relatively well, likely due to the fact that they can adapt
themselves every time they deviate too much. However with an error that is 50% larger and approxi-
mately twice asmany reported observations they performmuch worse than the trained neural networks.
Secondly, we have quite a number of networks that can accomplish an error that is smaller than the
constant and linear predictors, without requiring extra report actions. For our more complete experi-
mental validation, we use the seven neural networks that form the Pareto front found in this evaluation
of the third day of sensor mote one.

6.2.3. Experimental validation: results
With the seven neural networks we obtain a total of 560 data points for different combinations of the
parameters. Armed with these data points we set out to test Hypothesis 8:

Hypothesis 8 (Trained predictors dominate generic predictors). A prediction mechanism designed and
trained for our use case outperforms generic prediction mechanisms that do not consider environmental
behaviour.

To do so we first explore the impact of the different parameters on the performance to find the
optimal neural network predictor, which we then compare to the linear and constant predictors.

Sub hypothesis 8.1 (Maximum allowed error). As we increase the maximum allowed error 𝑥, fewer
messages will be sent, at the cost of a higher average error.

Figure 6.6 shows the average number of report actions and the average error over the different NNs
we have used. The error bars indicate the minimal and maximal values observed. Without exception
in all cases the number of messages sent goes down as 𝑥 increases, whereas the average error in-
creases. In the most extreme case tested here, a maximum error of one degree Celsius, the average
number of reports required is only 29 (slightly more than 1%) and in two thirds of the configurations with
𝑥 = 1 it requires even less than 29 reports. The 𝑥 that is chosen will have to depend on the specific use
case as it is clearly a large influence in the trade-off between the report rate and the accuracy. This
hypothesis is thus confirmed.

Sub hypothesis 8.2 (Learning rate). An 𝛼 of either 0 or 1 will not perform well.

To investigate this hypothesis we have visualised the data in a different manner. Figure 6.7 denotes
the results for different learning rates. Similar to Figure 6.6 for the maximum error comparison, we
have averaged the results of the seven neural networks, with the black bars indicating the minimum
and maximum scores of the seven networks.
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The first thing that is immediately clear is that not allowing the network to adapt, i.e., having a
learning rate of zero, always leads to the worst performance in terms of the report rate. Since many
of the observations are reported, the average error is often slightly lower, or at least on par with other
learning rates. Allowing for small adaptions, with an 𝛼 of 0.05, already drastically reduces the number
of messages required. In all cases by more than 50%. Thus allowing the neural network to update
itself leads to huge improvements in performance. There is only one exception to this, which is for the
data of sensor mote two with a maximum error of one degree Celsius. The reason for this exception is
likely found in the very small amount of report actions performed for this set with this maximum error.
All networks feature ten or less report actions, furthermore as this data closely resembles that of sensor
mote 1, any changes made here are more likely to correct for a small deviation from the pattern and
thus make the network “overreact”. The fact that a learning rate of zero outperforms the others here is
thus best classified as an exception rather than rule.

However we also hypothesised that an 𝛼 of 1 results in bad performance. This is not immediately
clear and at first glance performance seems similar for an 𝛼 of 0.5, 0.95, and 1. For three of our
data sets indeed the learning rate does not change the performance significantly irregardless of the
maximum error used. It is again sensor mote 2 that differs slightly in this regard. For all maximum
error values used in these experiments the best performance is achieved when 𝛼 = 0.5. The reason
is probably similar to that given before. The network is already trained well for the start and the end
of the day (which are most similar to the training data), but will produce slightly wrong predictions for
the middle of the day. If the network is trained too much to compensate for this, that also undoes the
training for the later half of the day. Since performance is thus comparable for learning rates of 0.5 and
up, but there are some cases for which 0.5 does outperform higher learning rates, it seems that 0.5
works well for this use case. This hypothesis is thus partially confirmed, as it is clear that an 𝛼 of 0 will
not perform well, but an 𝛼 of 1 does not perform as bad as we had initially hypothesised.

Sub hypothesis 8.3 (Data). The networks perform better on the data akin to the training data, than to
dissimilar data.

Figure 6.8 shows the impact of using a different data set. Again scores have been averaged over
the seven neural networks with the black bars indicating minimal and maximal scores. Since we have
already established that a learning rate of 0.5 works best or at worst similar to other learning rates we
have only plotted the results that use a learning rate of 0.5 for our analysis of this hypothesis.

Two main conclusions can be drawn from this figure. First it is clear that for small error tolerance
(a low 𝑥 value) the training data and the data most similar to the training data easily outperform the
others. For larger error tolerance this distinction is less clear, for reasons already mentioned before.
Thus having a well-trained predictor trained on data that matches your observations well, unsurpris-
ingly results in less deviations that cross the threshold. The second main conclusion is slightly more
surprising, namely the average error is relatively constant regardless of the data set used. This is the
second time we have found a parameter that seems largely irrelevant for the average error incurred
by our predictors (the first being the learning rate). Thus the hypothesis is confirmed, the networks do
much better on data that matches the training set well.

Sub hypothesis 8.4 (NN outperforms naive). The neural network predictors outperform the linear and
constant predictors.

Once again we plot the data in a different form to more easily distinguish between the different
types of predictors. This time we again freeze the learning rate to 0.5 and average the neural network
scores, whilst also showing the lowest and highest scores of the neural networks. Figure 6.9 shows
the comparison of the different predictor types.

There are two main conclusions to draw from these results. First we notice that for small maximum
errors the choice of predictor has surprisingly little influence on the average error. Any differences are
likely compensated by the number of report actions performed. This brings us to our second conclusion,
which is that the linear predictor often outperforms the neural network predictor in terms of report rate.
Overall it seems that the neural network predictor is often the worst predictor for small maximum errors.
There are several factors that likely influence this worse performance.

First notice that the linear predictor very often also outperforms the constant predictor. Remember
that we have used linear interpolation of the data to fill in any missing data points, which is likely the
reason for the improved performance of the linear predictor. As the linear predictor can find and use
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Mote 1 (1) Mote 1 (2) Mote 2 Mote 51

0.05 0.1 0.5 1 0.05 0.1 0.5 1 0.05 0.1 0.5 1 0.05 0.1 0.5 1
0

5

10

15

20

25

Max error (°C)

R
ep

or
t a

ct
io

ns
 (

%
)

Number of report actions for different predictors

Mote 1 (1) Mote 1 (2) Mote 2 Mote 51

0.05 0.1 0.5 1 0.05 0.1 0.5 1 0.05 0.1 0.5 1 0.05 0.1 0.5 1
0.0

0.2

0.4

Max error (°C)

A
ve

ra
ge

 e
rr

or
 (

°C
)

Average error for different predictors

Predictor constant linear neural network

Figure 6.9: Predictor results highlighting the impact of the predictor type used. Every bar represents the average score of the
seven neural networks used, with the error bars indicating the minimal and maximal scores of these seven networks.



6.2. Communication-aware neural networks 57

the same slope that was used in the interpolation after one report operation, it will incur zero error for
a few time steps and thus also have no reason to report. The neural networks on the other hand will
incur small errors and especially for the small maximum error of 0.05 degrees this may be sufficient to
warrant a report operation. Secondly the neural networks have been trained on the incomplete data
set that does not feature this interpolation. This was done on purpose as for real-world deployments,
data to train the networks on may also be incomplete. After all the data used here is from a real-world
data set and data collection rates vary from 10% per day to over 90%. This also means however that
it was not possible to train all the neural networks to a sufficiently small error in an acceptable amount
of time. In our preliminary experiments we have selected seven neural networks with different training
errors1. Suffice to say that better trained networks might outperform a linear/constant predictor, though
the time-intensive nature of training as well as the limited data set used for training make it difficult to
verify this.

As a result we can only reject Hypothesis 8.4 in part and thus not confirm Hypothesis 8. For large
error margins, the neural networks clearly can outperform the linear and constant predictors. But for
small error margins, the linear predictor works better for the evaluation circumstances used here. De-
pending on whether or not a perfect linear interpolation of the data is realistic, and how much data is
available to sufficiently train the neural networks, this may also be true for real-world use cases. How-
ever as we expect the data to exhibit non-linear patterns and that more time and data can be used
in training the neural networks, perhaps even with more advanced techniques than those deployed in
this thesis, the neural network predictor certainly has the potential to outperform the linear predictor for
small error margins as well.

One unexpected conclusion that we take away from the evaluation is that out of the four parameters
that we have varied here (predictor type, data set, learning rate, and maximum error) only one seems
to have a significant impact on the average error incurred by the predictor. Only the maximum allowed
error 𝑥 has a significant influence. The fact that this parameter influences the average error is not
surprising, after all it serves as an upper bound on the average error, but the fact that none of the other
parameters significantly influence the average error is remarkable. To work around this dependency on
the maximum allowed error and allow for more flexibility in balancing the trade-off we consider the base
station logic in the next chapter. This allows us to reason about the reported predictions, potentially
gaining more insight into the environmental state.

1Due to the inclusion of the drop-off for larger time periods this is impossible to convert to an average error in degrees Celsius.
Additionally the requirement of sending messages every so often to update the “last communication” inputs of the network make
it hard to determine an average error during for the training data set.





7
The evaluation of the base station logic:

different controllers

During the design of the base station logic and the controllers in Chapters 3 and 4 we formulated
several hypotheses about the relative performance of the different policies. In this chapter we test these
hypotheses through experimental evaluation. The main goal of the evaluation is not to experimentally
determine the optimal controller for our use case, but rather show the potential of the base station logic
and the potential effectiveness of the systematically created controllers.

To this end we evaluate the controllers both on samples from a transition model based on a real
world data trace, as well as on instances from this data trace. The exact set-up of the experiments,
including how the data sets are chosen and sampled, is described in Section 7.1. The rest of the chapter
considers each of the hypotheses in turn. In Section 7.2 we evaluate Hypothesis 1, setting a baseline
using only transition data and no controller. Next we evaluate Hypotheses 2 and 3 in Section 7.3, using
the periodic controllers CC and PCC. Hypothesis 4 is tested in Section 7.4 using the SPCC and SDC
controllers. The last two hypotheses, Hypothesis 5 and 6 are tested in Section 7.5 using the POMDP-
based controllers. Finally we discuss some weaknesses of our methodology discovered during the
evaluation in Section 7.6.

7.1. Experimental setup
There are several factors that influence the performance of the base station logic. We can control most
of them throughout the experiments with the different FSCs. In this section we list these factors, how
they can influence the performance, and how we vary them throughout the experiments.

Data sets
To evaluate the different FSCs presented in this chapter we again use the data from the Intel labs. In
fact we use the same data sets as used in the Neural Network evaluation. The used data is shown in
Figure 6.4 on page 52. Remember that the first data set of sensor mote one is part of the training data
(for our predictor, as well as for the environmental model below) and that the first data set of sensor
mote two is very similar to this. The second data set of sensor mote one, featuring the third day of
data, and the first data set of sensor mote fifty-one are both chosen as they differ significantly from the
training set.

Additionally we also evaluate the policies against data sets sampled from the environmental model
described below. The reasoning for this is two-fold. First we want to ensure that the four days of data
we have chosen do not (by chance) represent very unlikely scenarios in the environmental model we
construct. If this is the case then results from these data sets are likely to misrepresent the effect of our
policy. Secondly, it allows us to discuss the average performance of the policies over a wide variety of
data traces adhering to the same transition model.
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Environment model
We require a transition and observation model for the experiments, the 𝑇 and 𝑂 functions of our model.
We create these based on the first two days of the measurement of sensor mote one. We discretise
the twenty-four hour period into 48 periods of half an hour. For every half hour we examine all the
consecutive measurements made by the sensor and based on these transitions we get 𝑇 (𝑡 |𝑡, 𝑥) that
prescribes the probability of moving from temperature state 𝑡 to temperature state 𝑡 in time state 𝑥.
However we should be aware that these first days only give a course approximation, meaning other
transitions within such a period may also exist even though they are not included in these first two days.
To that end we create the final transition function 𝑇 as such:

𝑇(𝑡 |𝑡, 𝑥) =
⎧⎪
⎨⎪⎩

0.95 ⋅ 𝑇 (𝑡 |𝑡, 𝑥) if 𝑇 (𝑡 |𝑡, 𝑥) > 0
0.99 else if 𝑡 = 𝑡 and 𝑇 (𝑡 |𝑡, 𝑥) = 0∀𝑡
0.01/(𝑍 − 1) else if 𝑡 ≠ 𝑡 and 𝑇 (𝑡 |𝑡, 𝑥) = 0∀𝑡
0.05/𝑍 else

Where 𝑍 is the number of instances where 𝑇 (𝑡 |𝑡, 𝑥) = 0. This allows for deviations from the training
data to occur without system failures due to being in impossible states. We do something similar for
the observation function 𝑂, which we simply assume to report the correct observation at every time
step with a probability of 0.95.

A discrete state space
The discretisation of the temperature state space determines the size of 𝑆 and is thus important in the
run-time and space-time complexity of the algorithm, but also affects the accuracy of the method. For
instance a discretisation of states that represent a range of 10 degrees Celsius will be very quick and
space-efficient to work with, but does not allow us to differentiate between an office that is a comfortable
21 degrees or a rather hot 28 degrees. For the experiments in this section we use a discretisation of 1
degrees Celsius, as preliminary experiments indicate this provides good results for comparison, whilst
also providing sufficiently quick run times for the evaluation.

Predictors
For the prediction mechanism used in the experiments we have several options, as explored in Chap-
ter 5. In order to use the linear predictor either the last two observations need to be communicated, or
the last communicated observation and the current observation should be used to create a new delta.
Both methods would mean a deviation from the intention of this predictor or the base station logic. Re-
porting the last two observations deviates from the current policy in the base station, which assumes
only the last observation to be communicated. Using the previously communicated observation as the
second point deviates from the original intention of the predictor, which was to use the most recent data
to predict how the temperature might evolve. Additionally this predictor is likely to be most influenced
by the fact that the data is linearly interpolated, as we have seen in our evaluation in Section 5.5. The
neural network predictor is configured to use an 𝛼 of 0.5 based on the previous evaluation and we use
the neural network that Pareto dominated 4 of the other 6 neural networks in the evaluation. The other
two neural networks are “equally good” as the chosen network, outscoring it either in the average report
rate or the average error in the aggregation of all performed experiments.

Thus in our experiments we use the constant and neural network predictors unless indicated other-
wise. The notable exception to this rule is the evaluation of the sampled data sets. Since we sample
these from a discretised transition model, we can not produce the continuous temperature inputs re-
quired for the NN predictor.

7.2. The transition-based policy
The first policy we investigate is the transition-based policy as described in Section 3.3. Remember
that this policy only reports every 𝑋’th measurement and uses the transition-model known by the base
station to infer information about the unreported observations as well as the state of the environment.
We formulated the following hypothesis:
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Figure 7.1: Performance of the transition-based policy for different data sets, different predictors, and different values of the
parameter. The report rate is expressed as the percentage of actions that are “report” actions. The average error is expressed
as the average probability assigned to incorrect states.

Hypothesis 1 (Transition-based policies require frequent communication). An increasing 𝑋 quickly
decreases the accuracy of a policy that sends observations every 𝑋’th time step, irregardless of the
contents of the observation.

As the communication grows more infrequent we expect a lower accuracy of the system, as well as
fewer messages to be sent. Figure 7.1 shows the results for a variety of 𝑋 parameters. It is clear that
the number of messages sent is directly correlated to the 𝑋 parameter used. Since a choice for 𝑋 = 𝑥
means one message is sent every 𝑥 time steps, thus the fraction of actions that are report actions
is exactly 1/𝑥. This is also clearly visible in the figure, with the report rate ranging from fifty to two
percent for a 𝑋 of two to fifty respectively. We also observe that the error indeed grows quickly as 𝑋
increases. Since we can only base our log on the occasional observation combined with the a priori
transition probabilities, longer periods of time increase uncertainty about the state the environment is
currently in. Thus as 𝑋 increases the periods of uncertainty grow larger and accuracy decreases. This
hypothesis is thus confirmed.

Although it is now clear that the accuracy does indeed suffer, it is perhaps not immediately clear why
this happens. After all the transition model should represent the environment accurately and should
therefore serve as a good baseline. We hypothesise that the main reason for this drop in accuracy is
that state-changes are found too late, or not noticed at all.

Follow-up hypothesis 7.2.1 (The transition-based policy does not notice changes between two re-
ports). Deviations of length 𝑡 < 𝑋, and state changes between two reports are unnoticed by the
transition-based policy.

Figure 7.2 show the probabilities assigned to different states over time. As can be seen the proba-
bilities are very high surrounding the report operations, but at the times between two report operations
the probabilities become much lower. In the lower half of the figure we zoom in on a time period that
shows a clear deviation that is undetected around t=1935. Since the 1900 and 1950 reports both report
the same observation, any deviation between those seem “unlikely” based on the transition function
(especially since for this time and this temperature the probability of changing state is low). Notice also
how the deviations between 2000 and 2050 are not picked up. As there is no evidence for a state
change in that time period at all (in the transition function) the policy has no reason to assume a state
change, other than the new evidence from 2050 which says that at some point the state must have
changed. This too shows that oscillations and changes within the period are not properly recorded by
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Figure 7.2: The “Sleep 50” configuration misses the deviations between 1900 and 1950, as well as the changes between 2000
and 2050.

the transition-based policy. The follow-up is therefore confirmed, we have found a plausible reason for
the inaccuracy of the transition-based method.

7.3. Periodic controllers
We now move on to the policy introduced in Section 3.4 which introduces the notion of a controller
in the sensor mote. This controller reacts to the observations and by also reporting the node of the
controller periodically, the base station has some indirect information about the uncommunicated ob-
servations. We hypothesised that this additional information can lead to a better accuracy in the base
station, provided of course that the FSC is constructed in such a way that its node provides insight
into the observations that were made. To this end we evaluate the counting controllers introduced in
Section 4.1.1.

7.3.1. Benefits of using the controller
To start with, we consider the simple counting controller (CC) which compares the measurements to
the average temperature (25 degrees Celsius for our data). Using this controller, we test Hypothesis 2:

Hypothesis 2 (FSC-based dominates transition-based). The FSC-based approach outperforms the
transition-based approach for an equal report interval 𝑋.

Figure 7.3 compares the performance of the transition-based policies with that of the controller-
based policy that uses the CC configuration. The results are very clear. The added benefit of the
reported count ensures that the accuracy is higher for the same report rate. This effect becomes
stronger as the report interval grows larger. For a report interval of two the differences are negligible.
This is not unexpected as there is little improvement to be offered by the counting controller here.
There is only one observation that is not known for every interval and this observation is likely to be
similar to the reported observation preceding it. Only for cases where this does not hold, and where the
observation falls at the different side of the average, can the counting controller actually offer additional
insights.

For larger intervals, the power of the counting controller increases as it significantly reduces the
observation space from which the unreported observations must have originated. It is also clear that
this impact is much larger for the sampled data sets than for the real world data. The reasoning for this
is twofold. First of all, some of these data sets hardly ever measure temperatures above 25 degrees
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Figure 7.3: Performance of transition-based and controller-based policies for different data sets, different predictors, and different
reporting intervals. The report rate is expressed as the percentage of actions that are “report” actions. The average error is
expressed as the average probability assigned to incorrect states.

(the used average). In fact the first data set of sensor mote two never reaches a temperature above
25 degrees. Whereas the counter still reduces the observation space in those cases, it only strips off
those observations that were unlikely to begin with. Secondly, for the sampled data set we use the
corrected transition model which allows for unexpected changes. This means that the sampled data
traces may feature many more “large” transitions than the real world data.

Nevertheless, the controller-based policy, even with a very simple controller, clearly outperforms
the transition-based policy. Thus Hypothesis 2 is validated.

7.3.2. Potential improvements and shortcomings
Despite the improved performance compared to the transition-based approach, we already described
how 25 degrees is no ideal threshold for the real world data sets. In fact we would rather like to have
a dynamic threshold that changes as the temperature changes. This is where we can use the notion
of the prediction mechanism. The predictors allow us to use a dynamic threshold that the base station
and sensor mote can share without needing to explicitly communicate it. As the predictor is assumed
to be a good indication of what the temperature is going to be, the counts reported by the controller are
more likely to represent small offsets to the predictor. This should increase the accuracy of the log in
the base station, without incurring extra reports (as the report intervals are unchanged). We formulate
this as:

Follow-up hypothesis 7.3.1 (Adding the predictor). Counting deviations to the predictor dominates
counting deviations to the average.

For this follow-up we use the PCC configuration introduced in Section 4.1.1. The resulting report
rate and accuracy are depicted in Figure 7.4. The impact of using the predictor is immediately clear.
Again the difference for a reporting interval of two is minimal, but for larger reporting intervals, the
difference is accuracy is very significant. For the data that is part of the training set this difference can
even be as much as 50%. The follow-up hypothesis is thus confirmed, using the extra information in
the form of the predictor can significantly improve results.

Even with this improved version, which features a dynamic threshold, the accuracy still degrades for
larger reporting intervals. In Section 3.4 we also hypothesised that the controller-based policy still
suffers as the reporting interval grows larger. We formulated this as:
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Hypothesis 3 (FSC-based still requires frequent communication). An increasing 𝑋 decreases the ac-
curacy of a controller-based policy that sends observations and nodes every 𝑋’th time step.

The evaluation for the previous hypothesis and follow-up as depicted in Figure 7.3 and 7.4 already
reveals that this is indeed the case. Whereas the counting controller always wins out over having no
controller for a given reporting interval, larger intervals still result in a lower accuracy. To see why
this happens consider the three functions depicted in Figure 7.5. The figure shows three trends: a
constant trend (depicted in green), a linear trend (depicted in blue), and a sinusoid trend (depicted in
red). All three trends spend an equal number of measurements above and below the threshold (which
is assumed to be zero for this figure), and thus result in the same count if they are reported at time
62. The linear trend offers a slight advantage over the others, as the inclusion of the last observation
means we can at least differentiate it from the constant trend, but differentiating between trends that
result in the same count can not be done by the base station. This means that for larger report intervals,
low counts would actually become less informative. We formulate this belief as follows:
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Figure 7.5: Two different functions (in red and green) that both result in a count of zero for CC configurations, meaning the
configurations can not distinguish between them. The blue trend can not be confused with these however, as the last observation
is also reported.
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Figure 7.6: A counting configuration can not properly represent oscillations, with many probabilities ending up in a 50/50 or 60/40
split.

Follow-up hypothesis 7.3.2 (Low counts are not informative). Counting deviations performs badly
when the observations oscillate around the predictor.

Figure 7.6 shows the probability as logged by a counting controller with a report interval of five,
for the first data set of sensor mote 1. As can be observed there are many measurements surround-
ing a state border here. We use a reporting interval of 5 here, meaning every fifth measurement is
communicated and thus every fifth state can be estimated with better accuracy. However as previous
measurements surround the predictor (which is the constant predictor in this figure), the FSC can not
accurately tell how the temperature must have behaved. From 275 onward, observations are consis-
tently equal to the predictor for some time, thus allowing the FSC to accurately report this period of
time. This hypothesis is also confirmed.

7.4. Using the FSC to determine the action
As we have seen the counting controllers considered so far suffer from at least one clear weakness,
namely their inability to distinguish between different trends that result in the same count. This means
that some of their reports may be mistimed. Had they reported after a quarter of the period of a sinusoid
for instance, this would be much more informative than after a full period. To this end we now turn to
the SPCC configuration outlined in Section 4.1.1, which determines the action based on the current
count. A larger count equals a larger probability of reporting.

Using this controller, we evaluate Hypothesis 4:

Hypothesis 4 (FSC with varying report rates). Controllers that base their actions on the node in the
FSC outperform controllers with fixed reported intervals in terms of report rate for a similar accuracy.

7.4.1. Improvements from the stochastic controller
To test the hypothesis we compare the deterministic and stochastic counting controllers. As these con-
trollers do not directly share a parameter that allows for a simple comparison (𝑀 and 𝐶 perform subtly
different functions), we instead consider a variety of values for their parameters. In the previous sec-
tion the analysis of the deterministic counting controllers features three values for its reporting interval.
These three values result in a set of Pareto optimal solutions. To consider this hypothesis validated,
we are looking for stochastic counting controllers that dominate the deterministic versions.

Figure 7.7 shows the performance of the stochastic and deterministic counting controllers. It is
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Figure 7.7: Performance of counting controllers that have a fixed report interval versus those that use stochastic actions for
different data sets and different predictors. The report rate is expressed as the percentage of actions that are “report” actions.
The average error is expressed as the average probability assigned to incorrect states.

clear that the stochastic controllers also represent a set of Pareto-optimal solutions. As we increase
the𝑀-parameter of the controllers, the report rate decrease and the average error increases. However
for 𝑀 = 2 we have found a dominating solution when compared to the deterministic equivalents.

There is one thing we should not overlook however: 𝑀 = 2 only dominates the controllers tested
here. Using the counting controllers, we can make their report interval as small as we want it to be
(even zero for single-day evaluations). This means that the stochastic controller does not necessarily
dominate all counting controllers. It does however dominate all feasible counting controllers. Recall
that the counting controllers require 𝑂(𝐶 ) nodes where 𝐶 is the report interval. For the evaluation of
the controller with 𝐶 = 10, performing the analysis only at every tenth time step, an evaluation using
four cores on a high-end desktop computer already requires an hour. It seems fair therefore to state
that we have found a stochastic controller that dominates its deterministic equivalent, as it requires less
report actions for a similar (or even significantly better) accuracy. The hypothesis is thus validated.

7.4.2. Stochastic actions in other controllers
As an alternative to the counting-based controllers, consider the deviation-based controllers DC and
SDC introduced in Section 4.1.2. These controllers also feature a difference in when the actions are
taken. In the DC-configuration we only report when a deviation of size 𝐷 is encountered, whereas
the SDC configuration has a probability bigger than zero for all deviations smaller than 𝐷, and is only
guaranteed to send deviations of at least size 𝐷. Intuitively DC will report less for a given 𝐷, but also
be less accurate, whereas SDC will report slightly more, but be more accurate. Although both DC and
SDC are controllers that base their actions on the node in the FSC, and thus are not suitable for testing
Hypothesis 4, they do provide a good contrast to evaluate the impact of stochasticity in the actions, as
described by this follow-up:

Follow-up hypothesis 7.4.1 (Deviation-based controllers). The deviation-based controllers improve
in terms of accuracy for a similar report rate, when we use a probability function based on the deviation
that determines the action, rather than sending only deviations of size 𝐷.

Figure 7.8 shows the performance of these deviation-based controllers. There are two main ob-
servations to be made here. First notice how the report rates are much higher for the configurations
that use the neural network predictors. Especially the configuration that reports any deviation (DC-1,
representing a DC configuration with 𝐷 = 1) shows report rates that are more than five times as large
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Figure 7.8: Performance of the deviation based controllers that for different data sets and different predictors. The report rate
is expressed as the percentage of actions that are “report” actions. The average error is expressed as the average probability
assigned to incorrect states.

for the NN-predictor. We expect this to be the result of the fact that the NN-predictors are trained for
a continuous temperature trace, but those predictions are now discretised. Meaning that arbitrarily
small errors that cross a state are already sufficient ground to report the measurement. In contrast the
constant predictor does not suffer from such problems as it does use the discretised state space for its
predictions.

Second, the configurations shown here contradict the follow-up. Whereas for sampled data the
SDC configuration with 𝐷 = 5 seems to improve over the DC configuration with 𝐷 = 2, this result is not
found in the real-world data sets. The reason is fairly simple. In the real world data set changes are
much more likely to be single-state changes (which are not reported by 𝐷𝐶 configurations with 𝐷 = 2),
whereas the sample data includes the random jumps we allow in our transitions (see Section 7.1). This
results in improvements in both report rate and accuracy in the sampled data, but also explains the far
smaller report rate for real-world data. As a result it is also hard to find a DC and SDC configuration with
similar report rates for the real-world data. Based on the results presented here, we reject the follow-
up. However, the addition of stochastic actions does allow for much more control over the trade-off
between accuracy and report rate (notice the difference between (S)DC-configuration 𝐷 = 1 and the
DC-configuration with 𝐷 = 2 and compare that with the difference between (S)DC-configuration 𝐷 = 1
and the SDC-configuration with 𝐷 = 2).

7.5. Optimised controllers from the POMDP model
The final configuration of controllers that we test are the POMDP-based controllers. Using these con-
trollers we evaluate the last two hypotheses, hypotheses 5 and 6:

Hypothesis 5 (Pareto optimal POMDP-based controllers). The POMDP-based controllers form a set
of Pareto-optimal controllers for a set of different 𝛼 values.

Hypothesis 6 (POMDP-based controllers dominate). The POMDP-based controllers dominate the
handmade controllers in terms of both report rate and accuracy.

We first describe how the POMDP-based controllers are created and then evaluate the hypotheses
using these controllers.
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7.5.1. POMDP-based controllers
In the design as outlined in Section 4.3 we describe the three dimensions of the state and observation
space. Since both |𝑆| and |Ω| determine the run-time of the POMDP-solver that we use, we want to
keep them relatively small. Moreover the size of 𝑁 and Ω are of importance for the time and space-
complexity of the algorithm used in the sensor mote. Assuming a one degree Celsius temperature
discretisation, we already require 441 states for just the temperature and prediction states. Assuming
we have a temperature transition model for every half an hour, that makes another 48 time states,
resulting in |𝑆| = |𝑂| = 21168 states in total.

Since this number of states is far too large to be tractable for the solver, we instead choose to factor
out the time state. As a result we instead create 48 different POMDPs, one for each half hour of the
day. Each POMDP uses a temperature discretisation of one degree Celsius and thus |𝑆| = 441 (21
temperatures states, 21 prediction states and one time state). Each FSC has a limit to the number the
number of nodes that it is allowed to have, namely five, ten, or twenty. To allow the BPI algorithm (see
Algorithm 4) to add nodes for the purpose of escaping, the FSC starts with only half of the maximum
allowed nodes. Thus when we report the results on a controller of five nodes, you should read that to
mean a controller of two to five nodes (depending on how many escapes the BPI algorithm performed).
As solving a POMDP to an FSC starting with twenty nodes (and allowing it to grow to 40) takes over 30
minutes in a parallelised implementation running on a high-end desktop computer, solving 48 of them
takes over one day. As a result we have limited the number of 𝛼-values tested in this thesis. We focus
on providing an impression of what the POMDP-based controllers can achieve, rather than finding the
optimal 𝛼-value for our use case.

For the evaluation presented in this section, we have again presented the same input to the con-
trollers multiple times. For the sampled data we have generated over 100 input traces and evaluated
each of them ten times. For the real-world traces, we have evaluated each trace 40 times.

A final important note is that in contrast to results presented above, we consider only the constant
predictor in the evaluation of the POMDP-based controllers. The reasoning for this is simple, we need
to encode the way the predictor changes in the POMDPmodel. Since the neural network predictors are
essentially a black box that can change in a myriad of ways when updated, it is impossible to accurately
encode the prediction mechanism in a transition function for the prediction state space. The constant
predictor however can easily be encoded in such a a way and is therefore used in this evaluation.

7.5.2. Evaluation: Pareto-optimal solutions
First we compare the POMDP-based controllers with each other to evaluate Hypothesis 5. Since 𝛼
determines the penalty for reporting, we hypothesised that an 𝛼 of zero would lead to a very high
report rate and an 𝛼 of one would lead to a very low accuracy. As Figure 7.9 shows both claims are
indeed accurate. For 𝛼 = 0 almost all observations are reported. In fact most of the FSC with only
two nodes feature fully deterministic action selections which always select the report action. For the
FSC with a maximum of ten nodes, there are several which differ from this choice. Inspection of the
controllers shows that the controllers for time period during which we expect very little fluctuation in
temperature are to blame for this. There are some nodes in those FSC that have a non-zero probability
of waiting, because those nodes are most likely reached when a matching temperature and prediction
are observed.

For 𝛼 = 1 the accuracy is indeed much worse than for 𝛼 = 0. However, varying 𝛼 does not form
the Pareto front we had expected it to form. It seems for instance that 𝛼 = 0.8 is dominated by 𝛼 = 0.2
as it features both a better (average) report rate and a better accuracy. This is unexpected, since we
expect an increasing 𝛼 parameter to lead to a lower report rate rate, and thus also a lower accuracy.
After all, the potential penalty for sending the wrong data becomes increasingly larger. This curious
finding leads us to formulate this follow-up hypothesis:

Follow-up hypothesis 7.5.1 (Optimality of the controllers). The controllers found by the solvingmethod
are sub optimal, even more so for larger 𝛼-values.

To evaluate this follow-up we compare the controllers with the solution found for the POMDPwith the
APPL Sarsop solver. This solver finds approximate solutions to POMDPs, returning a lower and upper
bound of the expected reward. Our value function of a node in the FSC also represents this expected
reward when executing the FSC starting from this node. Thus we have compared the expected reward
from the FSC with the expected reward from Sarsop (computed as the average of the lower and upper
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bound when running Sarsop for a precision of 0.001). The results are shown in Figure 7.10. The
optimality gap depicted here, is the relative gap computed by dividing the score of the FSC by the
optimal score found by Sarsop. The error bars indicate the minimum and maximum score of the 48
FSC in each category.

The conclusion is obvious. The FSC can not accurately represent the optimal solution to our
POMDP in at most 10 nodes. As 𝛼 increases, the optimality gap increases significantly. A larger
number of nodes can help to combat this problem to some extent, but even starting with ten nodes and
allowing ten nodes to be added does insufficient to alleviate this shortcoming, as some FSC still score
below 75% of the optimum.

Regarding the hypothesis we can only conclude that the BPI method we have used to solve the
POMDP to a FSC is not able to sufficiently encode an optimal solution in a small FSC. Other methods,
such as the improved method introduced by Grzes et al. [33] or the alternative by Kumar et al. [51],
might be able to improve on these results, but with this method we have to reject the hypothesis that
varying the 𝛼 parameter leads to Pareto front of scores.

7.5.3. Evaluation: POMDP-based controllers dominate handmade controllers
The final hypothesis remaining for evaluation is Hypothesis 6, in which we speculate that a controller
based on an a commonly usedmodel for this specific optimisation problem can outperform the FSC built
on simple assumptions. Our investigation for the previous hypothesis has already cast a little doubt on
this hypothesis, as results from the POMDP-based FSCs behaved differently than we initially expected.
In Figure 7.11 we compare the most promising of the POMDP-based FSCs with the handmade FSCs.

The results are fairly positive. Even though some of the FSC score fairly badly in terms of optimality,
the worst-case report rates improve significantly over the SPCC configuration with 𝐶 = 2 and the
worst-case accuracy improves significantly over the SCC configuration with 𝐶 = 10. For some data
sets the POMDP-based controllers dominate the handmade variants. Unfortunately the results are not
sufficiently decisive to confirm the hypothesis.

The POMDP-based controllers certainly show potential, however with the current solving method
and the limited controller sizes it is not possible to consistently outperform the handmade controllers.
As a result from a systematic approach to finding controllers for a specific use case, the POMDP-based
controllers do offer good performance that is as least as good as the handmade controllers that feature
some requirements on the environment (such as observations being measurable on an interval scale).
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7.6. Discussion: shortcomings and extensions
The evaluation performed in this chapter clearly shows that the choice of FSC used has a significant
impact on the final output (the probability log) of the base station. Although we have shown that a
POMDP-based FSC can compete with the handmade FSC based on simple principles, there are also
some other (surprising) artefacts of this evaluation worth discussing. In this section we discuss several
of the overarching (unmentioned) results, as well as some shortcomings and possible extensions to
this methodology.

A comparison of different temperature discretisation is non-trivial.
Depending on the use case a different temperature discretisation may be required. Unfortunately
comparing different temperature discretisations is non-trivial. In terms of computational effort and
memory requirements, different discretisations can easily be compared. It changes the size of 𝑆
and 𝑂 and therefore has impact on both the run time and memory required by the methodology.
Due to the nature of the metrics we defined however, it is hard to compare different discretisations
in terms of accuracy. A finer discretisation (with smaller temperature states), is likely to lead to
more reports, but since the accuracy metric compares states, the accuracy may not necessarily
improve. Thus a more coarse discretisation is likely to outscore a finer discretisation when we
apply our metrics.
To determine what discretisation works best, one should use a variation of the accuracy metric
we propose. Say that for our use case we need a precision of 𝛽 degrees Celsius. Then for a
discretisation of 𝛽 degrees, we can just use the metric proposed here. For a discretisation of 𝛽/𝑥
(assuming the same start point of the discretised range), 𝑥 states would qualify as “correct” in
the comparison used in the metric. This would correct the accuracy metric, but is still unlikely for
a finer discretisation to dominate a coarser one. After all although the accuracy is now likely to
improve, the report rate will still suffer. Ultimately the discretisation is just another parameter to
tweak in balancing this trade-off, not only impacting the accuracy and report rate, but also the
computational effort and memory required to create and use the controller.

The worse performance for NN compared to the constant predictor
Whereas the constant predictor also outperforms the neural network predictor in Chapter 6 for
some variations of the relevant parameters, the difference seems to have increased when com-
pared to the experiments shown in Chapter 6. We suspect this is due to the fact that the NN have
not been trained to output a temperature state, but instead to output a real temperature. Whereas
we still feed the actual temperature to the NN and convert its output to a temperature state, many
outputs may be around a state border. Especially for temperature discretisations of 0.25 degrees
Celsius, the error may be small in degrees Celsius, but still cross a temperature state border.
Training the NN to instead output temperature states could help alleviate this problem as this
produces better trained NNs that focus on the finite output range.

Using a more realistic observation function
To perform our evaluations we require an “absolute truth” to compare our produced logs against.
As a result we have assumed the observations made by the sensor node to be (relatively) per-
fect. For the observation function 𝑂 however we can also base the probability distribution on the
specifications of the temperature sensor of the Mica weatherboard which were used to record the
Intel lab data. According to the specifications, these weatherboards use the SHT11 sensor mod-
ule [66]. These sensor modules can accurately measure temperature within a range of 0.5°C (at
25°C). Thus an observation function should reflect this. However as the temperatures we use to
evaluate our methods against are recorded by this same hardware, it is illogical to have an obser-
vation function reflect this (thus claiming that the observations are not perfect) and then penalise
the system if the observations are not believed (thus claiming the observations are perfect). As
a result we have not used a modified observation function in this evaluation (instead we simply
allow for a uniform error with a probability of one percent), but if an “absolute truth” is available
for comparison, the limitations of the sensor should not be overlooked.





8
Conclusion & Future Work

As one of the main challenges in wireless sensor networks, the efficient use of the limited battery
has already sparked many different types of research. The need for an accurate environmental state
estimation at the base station requires the sensor motes to communicate their measurements, but
communicating such a measurement is a very expensive operation in terms of battery. This trade-off
between battery life and accuracy is also the focus of this thesis, in which we describe an application-
level methodology that uses data prediction techniques to reduce the number of measurements that
has to be communicated. It allows the base station and sensor motes to work together in producing an
environmental state estimation that field specialists can use to study the environment.

The sensor mote uses a controller that selects what actions to perform based on the taken mea-
surements of the environmental state. This controller is created through a systematic approach that
takes the behaviour of the environment as well as the requirements of the field specialists into ac-
count. Given the reports of the sensor mote the base station can then apply its logic to find an accurate
environmental state estimation.

In the rest of this chapter we highlight the main contributions of this thesis work and present an
outlook on future directions this research can take.

8.1. Contributions
The main contributions of this work are threefold:

An application of Bayesian probability resulting in base station logic that obtains a much more
accurate log than solely transition-based methods.
Inspired by techniques often associated with Hidden Markov Models, we design base station logic that
uses Bayesian probability operations to obtain an accurate environmental state estimation from the
limited information reported by the sensor motes. This logic requires the sensor motes to execute
simple finite state controllers that react to the observations made to determine what measurements are
worth reporting. Due to the abstract nature of the logic, any controller can be used to determine the
behaviour of the sensormote. The controllers can even take other things than just themeasurements as
input. In this thesis for instance, we explore several controllers that (do not) use prediction mechanisms
during their execution. Even simple controllers that are not specifically made for the use case have
been shown to improve the accuracy of the system by over 30% given the same limited subset of
measurements provided to a transition-only approach. This contribution answers research question 1,
by outlining base station logic that derives an accurate environmental state estimation from a subset
of measurements.

An analysis of existing prediction mechanisms, in the form of neural networks, that provides
shared knowledge between the base station and a sensor mote without requiring communica-
tion.
Based on previous research [26, 28, 68, 74] we investigate neural networks as a potential predictor
of the time-dependent period data traces we are interested in. Their methodology is infeasible in the
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domain of sensor motes however, due to their limited memory and processing capabilities. Our anal-
ysis investigates four other configurations of neural networks, of which one can be directly applied in
the context of sensor networks. Using the notion of a communicated measurement, it can predict how
the environment changes over time. By allowing the neural network to update after deployment, we
drastically reduce the amount of required communication. This answers research question 2 as with
at most 10% of the measurements reported, we can bound the average error to 0.05 degrees Celsius.
This error is sufficiently small to be acceptable, as hardware errors often result in larger deviations.

An evaluation of a systematic approach for obtaining controllers that balance the trade-off,
showing good accuracy even when less than 10% of the measurements are reported.
In addition to an extensive evaluation of handmade POMDPs that aim to balance the trade-off us-
ing intuitive rules of thumb in their design, we also present a systematic approach to find performant
controllers. To this end we first model the environmental monitoring problem as a Partially Observ-
able Markov Decision Process (POMDP), which we then solve to a finite state controller using the
BPI-algorithm [5]. We can indirectly control the trade-off between report rate and accuracy through the
manipulation of the reward function. Our evaluation shows that the controllers from this POMDP-based
approach show great potential in improving over the handmade controllers, allowing good control over
the trade-off and dominating some of the configurations already. Other methods to solve the POMDP to
a controller and more nodes in the controller might help to further boost the performance. This answers
RQ3, as we show that POMDP-based controllers can perform on-par with the handmade controllers,
but in their current state not necessarily outperform them.

Through these contributions we answer the three sub research questions we posed. As for our main
research question, we have shown how intelligent sensor motes can provide a small subset of the
measurements (even smaller than 10%) chosen in such a way that the base station can estimate the
environmental state with an accuracy of over 95%.

8.2. Future Work
The results outlined in this thesis also raises new questions that should be addressed in future re-
search. Section 7.6 already mentions several shortcomings and possible extensions that arise from
the evaluation presented in that chapter. In this section we describe several other extensions to the
methodology outlined in this thesis that could be considered to further improve the performance of this
methodology.

Multiple observations and multiple sensors.
Our current methodology resolves around using only the reports of a single sensor mote to reason
about the environmental state. In some environmental contexts however, such as the study of redwood
trees in California, a strong correlation between measurements of different sensor nodes could be
established [86]. As these sensors were placed at different elevation levels within the tree, it could
be observed that high temperature fronts move downwards in the tree over time. Correlations like this
would allow for sensors to be notified that a front is incoming. Thus allowing us to take a more proactive
approach to changes in the environment, for instance by increasing measurement frequency, rather
than only reacting after the changes have happened. Using this information we can perhaps focus our
battery usage to the time periods that we deem to be “interesting”.

The base station also has access to other information that can be related. For instance the combi-
nation of communication at time 𝑡 with previous communication at time 𝑡 −𝑋 can lead to better insights
about periods further before time 𝑡 −𝑋. Furthermore as many sensor motes report to the base station,
all observing the same or related environmental states, we can also combine their information to get a
more accurate probability distribution as to what the environmental state is like.

Consider for instance a use case wherein we can monitor both the amount of sunlight and the
temperature in a room. Both can tell us something about how the temperature is likely to change over
the next period of time. If it is sunny outside, then the temperature is likely to rise more than when it is
cloudy. Both of the observations relate to the same environmental state in a slightly different way and
can thus be combined in computing an estimate of the environmental state.
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Reacting to observations through actions in the base station.
Depending on the application, the base station may bemore than a passive processor of information. In
this thesis we have not considered any actions that can be taken by the base station, but this is another
expansion that can be considered for many use cases. Consider for instance a simple expansion of
our Intel labs use case, where the base station can control the heating. It may then want to turn on the
heater when the temperature is lower than expected and vice versa.

For these kinds of applications it is important that the environmental state estimation is efficiently
computable. Currently the implementation only performs calculations for every report action or when
the end of the trace is reached. The multi-threaded version of this code that performs many of the
computations in parallel, using a high-end desktop computer with four cores, evaluates 2880 actions
(report or sleep) in approximately one hour of run time (for the smallest temperature discretisation
used in this thesis). If computations are to be done in every time step, the required run time increases
significantly. So if the base station needs to decide on taking an action every thirty seconds, the base
station either needs sufficiently processing power to be able to do this, or offload its work. Further
optimisations in the implementation of the base station logic are required to ensure this can be done in
the thirty second time window.

Adaptive finite state controller.
We have already seen in Section 5.5 that allowing the predictor to update itself during deployment
can result in much better performance. Similar improvements could be obtained by updating the finite
state controller if our model of the environment is updated after receiving several measurements. By
changing the transition/observation functions based on received observations and solving the updated
POMDP model to a controller, we might be able to achieve better performance for data not properly
matching the training data. As such complex computations can not be done on the sensor mote, this
would involve sending a new FSC to the sensor mote. Such an operation is expensive in terms of
communication, which means it is another operation that should be considered in balancing the trade-
off.

Using a continuous temperature space.
The methodology proposed in this thesis requires the state space under observation to be discretised.
There are use cases that naturally consist of such a discretised state space. Take for example the
Great Duck Island use case. In this case it makes sense to describe the nest as “empty” or containing
a “duck”, there is no need for a continuous state space. However for our Intel office labs, it makes
much more sense to model the temperature using a continuous variable. Whereas techniques exist to
solve continuous state space POMDPs [17, 70], the methodology introduced in this thesis will have to
be adapted to handle the use of continuous state spaces and functions.





A
Mathematical derivations of base station

logic

In this Appendix we give mathematical derivations for the posterior probabilities on the environmental
state, given first in terms of the transition function 𝑇, the observation function 𝑂 and the initial belief 𝑏 .
After which we also include 𝑇fsc, and an initial node 𝑚 in the derivations. Both derivations also fea-
ture a parallelised and efficient implementation of the mathematics needed to compute the posterior
probability distribution.

During this analysis we apply several rules from Bayesian probability. First of all, Bayes’ rule which
allows us to invert a dependency shown in equation A.1. Secondly, a derivative of Bayes rule that
allows us to transform a variable into a dependency shown in equation A.2. Thirdly, another derivative
of Bayes rule that allows us to express a conditional probability as a joint probability instead, shown in
equation A.3. Finally we use the law of total probability, which allows us to introduce a dependency as
shown in equation A.4.

𝑃(𝐴|𝐵) = 𝑃(𝐵|𝐴)𝑃(𝐴)
𝑃(𝐵) (A.1)

𝑃(𝐴, 𝐵|𝐶) = 𝑃(𝐴|𝐵, 𝐶)𝑃(𝐵|𝐶) (A.2)

𝑃(𝐴|𝐵) = 𝑃(𝐴, 𝐵)
𝑃(𝐵) (A.3)

𝑃(𝐴) = ∑
∈
𝑃(𝐴|𝐵)𝑃(𝐵) (A.4)

A.1. Transition model only
For our analysis of the desired probability we start by applying Bayes’ rule (equation A.1).

𝑃(𝑠 |𝑜 ) =
𝑃(𝑜 |𝑠 )𝑃(𝑠 )

𝑃(𝑜 ) (A.5)

This rewritten function contains three new probabilities to examine. First we consider the two uncondi-
tional probabilities and apply the law of total probability (equation A.4) to both. For the unconditioned
probability of 𝑠 get the following recursive formulation:

𝑃(𝑠 ) = {
𝑏 (𝑠 ) 𝑗 = 0
∑
∈
𝑃(𝑠 |𝑠 )𝑃(𝑠 ) else (A.6)
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As for 𝑃(𝑜 ), this unconditioned probability can also be expressed in terms of the initial belief, by ap-
plying the law of total probability when conditioning on 𝑠 .

𝑃(𝑜 ) = ∑
∈
𝑃(𝑜 |𝑠 )𝑃(𝑠 ) (A.7)

Notice that 𝑃(𝑜 |𝑠 ) and 𝑃(𝑠 |𝑠 ) are the observation function 𝑂 and the transition function 𝑇 respec-
tively. This leaves just the conditional probability from equation A.5 which is just 𝑂(𝑜 |𝑠 ) when 𝑗 = 𝑡,
so we split it in two cases, applying equation A.4 to the recursive case.

𝑃(𝑜 |𝑠 ) = {
𝑂(𝑜 |𝑠 ) if 𝑡 = 𝑗
∑ 𝑃(𝑜 , 𝑠 |𝑠 ) else (A.8)

We consider this else case in a bit more detail. As 𝑜 depends only on 𝑠 which is dependent only
on 𝑠 , which is dependent only on 𝑠 etc. we can state that 𝑃(𝑜 |𝑠 , 𝑠 ) = 𝑃(𝑜 |𝑠 ), i.e. when
𝑠 is given, 𝑜 is independent of 𝑠 . Thus our first step is to change 𝑠 into a dependency using
equation A.2.

𝑃(𝑜 , 𝑠 |𝑠 ) = 𝑃(𝑜 |𝑠 , 𝑠 )𝑃(𝑠 |𝑠 )
= 𝑃(𝑜 |𝑠 )𝑃(𝑠 |𝑠 )

Now we have once again reached a situation where we can easily compute all remaining terms.
The first conditional probability is a recursive call to equation A.8. The second term is the transition
probability 𝑇(𝑠 |𝑠 ). Putting all of this together, we get to Algorithm 8 to be executed by the base sta-
tion. Once we get a reported observation we apply the equations described above to find the probability
distributions over the state at the times during which we did not receive an observation.

A.2. Including the FSC
Rewriting this into a form using only the prior knowledge is slightly more cumbersome. To illustrate
exactly how the equations can be applied, we again apply them to the toy example in the next section.
We first apply equation A.1 to rewrite the dependency:

𝑃(𝑠 |𝑜 , 𝑛 ) =
𝑃(𝑠 , 𝑜 , 𝑛 )
𝑃(𝑜 , 𝑛 ) (A.9)

The denominator of this equation can quite easily be rewritten to a sum over terms similar to the nu-
merator with the law of total probability:

𝑃(𝑜 , 𝑛 ) = ∑
∈
𝑃(𝑜 , 𝑛 , 𝑠 ) (A.10)

Now we turn to the numerator for which we consider two cases: 𝑗 = 𝑡 and 𝑗 < 𝑡 as they each involve
different manners in which we condition the probability. First let us consider the case 𝑗 = 𝑡. We use the
law of total probability, conditioning on all the direct dependencies of 𝑠 and 𝑛 , namely 𝑠 and 𝑛 :

𝑃(𝑠 , 𝑜 , 𝑛 ) = ∑
∈

∑
∈
𝑃(𝑠 , 𝑜 , 𝑛 |𝑛 , 𝑠 ) ⋅ 𝑃(𝑛 , 𝑠 ) (A.11)

We further split this result and consider each term in turn. For the first term we turn 𝑠 and 𝑜 into
conditions, starting with 𝑠 :

𝑃(𝑠 , 𝑜 , 𝑛 |𝑛 , 𝑠 ) = 𝑃(𝑜 , 𝑛 |𝑛 , 𝑠 , 𝑠 ) ⋅ 𝑃(𝑠 |𝑛 , 𝑠 )

Observe now that 𝑠 does not depend on 𝑛 , when 𝑠 is given. Similarly the given 𝑠 is redundant
in the first term, as 𝑠 encapsulates this dependency:

= 𝑃(𝑜 , 𝑛 |𝑛 , 𝑠 )𝑃(𝑠 |𝑠 )
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Algorithm 8 A policy for the base station that computes the probabilities for all uncommunicated time
steps based on the received observation.
1: function onReceivedMessage(observation)
2: computeStateProbabilities() �Fills memSj
3: normaliser ← ∑

∈
𝑂(observation|𝑠) ⋅memSj[𝑡][𝑠] �Equation A.7

4:
5: mem ← 1D-array of size |𝑆|
6: memNew ← 1D-array of size |𝑆|
7: mem[s] ← 𝑂(observation|𝑠) ∀𝑠 ∈ |𝑆|
8: for 𝑗 = 𝑡 → 𝑡 − 𝑋 do
9: parfor 𝑠 ∈ 𝑆 do
10: prob← mem[ ]⋅memSj[ ][ ]

normaliser �Equation A.5
11: log(𝑗,𝑠,prob)
12: memNew[𝑠] ← ∑

∈
𝑇(𝑠 |𝑠) ⋅mem[𝑠 ] �Equation A.8

13: end parfor
14: mem ← memNew
15: end for
16: end function
17:
18: function computeStateProbabilities()
19: memSj ← 2D-array of size 𝑋 × |𝑆|
20: memSj[0][𝑠] ← 𝑏 (𝑠) ∀𝑠 ∈ |𝑆|
21: for 𝑡 = 1 → 𝑋 do
22: parfor 𝑠 ∈ 𝑆 do
23: memSj[𝑡][𝑠] ← ∑

∈
memSj[𝑡 − 1][𝑠 ] ⋅ 𝑇(𝑠|𝑠 ) �Equation A.6

24: end parfor
25: end for
26: end function
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Now we turn 𝑜 in a dependency as well:

= 𝑃(𝑛 |𝑛 , 𝑜 , 𝑠 )𝑃(𝑜 |𝑠 , 𝑛 )𝑃(𝑠 |𝑠 )

Again we can remove some redundant conditions, which are already redundant due to the other con-
ditions to get:

= 𝑃(𝑛 |𝑛 , 𝑜 )𝑃(𝑜 |𝑠 )𝑃(𝑠 |𝑠 )
= 𝑇fsc(𝑛 |𝑛 , 𝑜 )𝑂(𝑜 |𝑠 )𝑇(𝑠 |𝑠 ) (A.12)

Now that we have completely rewritten the first term of equation A.11 to a function expressed in the
known observation and transition functions, we turn our attention to the second term of equation A.11.
This second term can be expressed as a recursive call with a smaller index:

𝑃(𝑛 , 𝑠 ) =
⎧

⎨
⎩

0 if 𝑡 − 1 = 0 and 𝑛 ≠ 𝑚
𝑏 (𝑠 ) if 𝑡 − 1 = 0 and 𝑛 = 𝑚
∑
∈
𝑃(𝑠 , 𝑛 , 𝑜 ) else

(A.13)

With the case of 𝑗 = 𝑡 done, we now turn our attention to the cases where 𝑗 < 𝑡, in other words were we
want to apply this new knowledge we have to learn more about the past, rather than about the present
moment. We work towards a function that recursively uses 𝑠 and 𝑛 as this becomes 𝑠 and 𝑛 in
the base case which allows for direct computation.

𝑃(𝑠 , 𝑜 , 𝑛 ) = ∑
∈
∑
∈
𝑃(𝑠 , 𝑜 , 𝑛 , 𝑛 , 𝑠 ) (A.14)

Consider now this probability of the five joined variables, where we turn three variables 𝑠 , 𝑠 , and 𝑛
in to conditions:

𝑃(𝑠 , 𝑜 , 𝑛 , 𝑛 , 𝑠 ) = 𝑃(𝑜 , 𝑛 , 𝑛 , 𝑠 |𝑠 )𝑃(𝑠 )
= 𝑃(𝑜 , 𝑛 |𝑛 , 𝑠 , 𝑠 )𝑃(𝑛 , 𝑠 |𝑠 )𝑃(𝑠 )

We trim the condition on 𝑠 in the first term as 𝑠 and 𝑛 capture all dependencies of 𝑜 and 𝑛 imposed
by 𝑠 :

= 𝑃(𝑜 , 𝑛 |𝑛 , 𝑠 )𝑃(𝑛 , 𝑠 |𝑠 )𝑃(𝑠 ) (A.15)

We now have three terms left. The last term 𝑃(𝑠 ) can already be found using equation A.6. The first
and second are described here, starting with the first:

𝑃(𝑜 , 𝑛 |𝑛 , 𝑠 ) = {
𝑇fsc(𝑛 |𝑛 , 𝑜 )𝑂(𝑜 |𝑠 ) if 𝑗 = 𝑡 − 1
∑
∈

∑
∈
𝑃(𝑜 , 𝑛 , 𝑠 , 𝑛 |𝑠 , 𝑛 ) else (A.16)

We consider the else-case of this equation in more detail, turning 𝑛 and 𝑠 into dependencies to
get to a recursive call of this equation.

𝑃(𝑜 , 𝑛 , 𝑠 , 𝑛 |𝑠 , 𝑛 ) = 𝑃(𝑜 , 𝑛 , 𝑠 |𝑛 , 𝑠 , 𝑛 )𝑃(𝑛 |𝑠 , 𝑛 )
= 𝑃(𝑜 , 𝑛 |𝑠 , 𝑛 , 𝑠 , 𝑛 )𝑃(𝑠 |𝑛 , 𝑠 , 𝑛 )𝑃(𝑛 |𝑠 , 𝑛 )

We can again drop a condition on 𝑠 and on 𝑛 that are now obsolete in the first term, as 𝑠 and
𝑛 encapsulate the imposed dependencies. Similarly we can drop 𝑛 and 𝑛 as conditions on 𝑠 :

= 𝑃(𝑜 , 𝑛 |𝑠 , 𝑛 )𝑃(𝑠 |𝑠 )𝑃(𝑛 |𝑠 , 𝑛 )

Now we rewrite to get:

= 𝑃(𝑜 , 𝑛 |𝑛 , 𝑠 )𝑇(𝑠 |𝑠 )𝑃(𝑛 |𝑠 , 𝑛 ) (A.17)
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The first term is the recursive call to equation A.16, the second is the transition function, so that leaves
the third. With the law of total probability we get:

𝑃(𝑛 |𝑠 , 𝑛 ) = ∑
∈
𝑃(𝑛 , 𝑜 |𝑠 , 𝑛 )

= ∑
∈
𝑃(𝑛 |𝑜 , 𝑠 , 𝑛 )𝑃(𝑜 |𝑠 , 𝑛 )

Again we drop redundant dependencies to get:

= ∑
∈
𝑃(𝑛 |𝑜 , 𝑛 )𝑃(𝑜 |𝑠 )

= ∑
∈
𝑇fsc(𝑛 |𝑜 , 𝑛 )𝑂(𝑜 |𝑠 ) (A.18)

And with that we have rewritten the first term of equation A.15, which leaves the second term of that
equation:

𝑃(𝑛 , 𝑠 |𝑠 ) = 𝑃(𝑛 |𝑠 , 𝑠 )𝑃(𝑠 |𝑠 )

Removing the redundant dependencies we get:

= 𝑃(𝑛 |𝑠 )𝑇(𝑠 |𝑠 ) (A.19)

We now look at the first term of that in more detail, applying equation A.3 to get:

𝑃(𝑛 |𝑠 ) =
𝑃(𝑛 , 𝑠 )
𝑃(𝑠 )

Both of these probabilities are already defined, by equations A.6 and A.13. With that we have rewritten
the second term of equation A.15, which means that we have expressions that can compute 𝑃(𝑠 |𝑜 , 𝑛 )
for all 𝑡 − 𝑋 ≤ 𝑗 ≤ 𝑡. Algorithm 9 gives a parallelised and efficient implementation that computes the
posterior probability distribution over the environmental states using these equations.
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Algorithm 9 A policy for the base station that computes the probabilities for all uncommunicated time
steps based on the received observation and node in the controller.
1: function onReceivedMessage(observation, node)
2: computeStateNodeProbabilities()
3: computeObsNodeGivenNodeStateProbabilities(observation, node)
4:
5: normaliser ← ∑

∈
∑
∈

∑
∈
memNS[𝑡 − 1][𝑠 ][𝑛 ] ⋅ 𝑇(𝑠|𝑠 ) ⋅ 𝑂(observation|𝑠) ⋅ 𝑇fsc(node|𝑛 , 𝑜)

6: �Equation A.11
7: for 𝑗 = 𝑡 → 𝑡 − 𝑋 do
8: parfor 𝑠 ∈ 𝑆 do

9: prob←
∑
∈

∑
∈

memON[ ][ ][ ]⋅memNS[ ][ ][ ]⋅ ( | )

normaliser
10: �Equation A.9
11: log(𝑗,𝑠,prob)
12: end parfor
13: end for
14: end function
15:
16: function computeStateNodeProbabilities()
17: memNS ← 3D-array of size 𝑋 × |𝑆| × |𝑁|
18: memNS[0][𝑠][𝑛] ← 0 ∀𝑛 ∈ 𝑁, 𝑛 ≠ 𝑚 �𝑚 denotes the initial node
19: memNS[0][𝑠][𝑚] ← 𝑏 (𝑠) ∀𝑠 ∈ 𝑆
20: for 𝑡 = 1 → 𝑋 do
21: parfor 𝑠 ∈ 𝑆 do
22: parfor 𝑛 ∈ 𝑁 do
23: memNS[𝑡][𝑠][𝑛] ← ∑

∈
∑
∈

∑
∈
memNS[𝑡 − 1][𝑠 ][𝑛 ] ⋅ 𝑇(𝑠|𝑠 ) ⋅ 𝑂(𝑜|𝑠) ⋅ 𝑇fsc(𝑛|𝑛 , 𝑜)

24: �Equations A.11 and A.12
25: end parfor
26: end parfor
27: end for
28: end function
29:
30: function computeObsNodeGivenNodeStateProbabilities(obs, node)
31: memON ← 3D-array of size 𝑋 × |𝑆| × |𝑁|
32: memON[𝑋][𝑠][𝑛] ← 𝑇fsc(node|𝑛,obs) ⋅ 𝑂(obs|𝑠) ∀𝑛 ∈ 𝑁, 𝑠 ∈ 𝑆 �Equation A.16
33: for 𝑡 = 𝑋 − 1 → 0 do
34: parfor 𝑠 ∈ 𝑆 do
35: parfor 𝑛 ∈ 𝑁 do
36: memON[𝑡][𝑠][𝑛] ← ∑

∈
∑
∈

∑
∈
memON[𝑡 + 1][𝑠 ][𝑛 ] ⋅ 𝑇(𝑠 |𝑠) ⋅ 𝑇fsc(𝑛 |𝑛, 𝑜) ⋅ 𝑂(𝑜|𝑠)

37: �Equations A.16, A.17 and A.18
38: end parfor
39: end parfor
40: end for
41: end function
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