
Master of Science Thesis
Q­Learning­Based Allocation of Operators to
Security Teams at an Airport Security Checkpoint

Klemens Koestler

Te
ch
ni
sc
he

U
ni
ve
rs
ite
it
D
el
ft

Delft University of Technology

Master Thesis

Q-Learning-Based Allocation of Operators to
Security Teams at an Airport Security

Checkpoint.

Author:
Klemens Koestler

Thesis Comittee:
Chairman Dr. D. Ragni TU Delft
Supervisor Dr. O.A. Sharpans’kykh TU Delft
Supervisor J. Mutsaers Schiphol
Supervisor J. Veenema Schiphol
Examiner Dr. A. Bombelli TU Delft

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science in the

Air Transport Operations Group
Aerospace Faculty

November 5, 2021

An electronic version of this thesis is available at http://repository.tudelft.nl/.

https://www.linkedin.com/in/kk%C3%B6stler/
http://homepage.tudelft.nl/j11q3/
http://repository.tudelft.nl/

Acknowledgements
This thesis marks the final step in my journey to obtain a Master of Science degree in Aerospace Engineering
at Delft University of Technology. It is unclear when this journey began, since, after all, there are many
starting points to choose from. The reality is that this journey, regardless of starting point, has been filled
with lots of laughter, some sorrow, plenty of excitement, occasional confusion and fulfillment. To all of the
amazing people that have guided, accompanied and motivated me along the way: thank you!

Thank you to my supervisor, Dr. Alexei Sharpanskykh. Not only did you guide and support me during
my thesis, but also for my bachelor group project and honors research project. Through your supervision,
you taught me how to be a better researcher. Through your expertise and enthusiasm, you inspired me to
learn about programming, data science and artificial intelligence. Your influence has opened many opportu-
nities for me, which I am very grateful for.

Thank you to my team at Amsterdam Airport, Jasper Mutsaers and Jornt Venema, for an unforgettable
work experience that I will never forget. Your technical insight into the simulator have pushed this research
to the next level.

Thank you to Didier for the thesis collaboration. From the countless hours conducting security measurements
at the airport to all the days spent developing and debugging the security checkpoint simulator, you have
pushed and motivated me to always give it my all. I am glad to have found a new friend.

Thank you to Andrea, Jacopo and Jasper for making the hard times a lot easier and the good times
even better. Our shenanigans and jokes are something I will cherish forever.

Thank you to the Castle, IDEA League, OGs, Wien Überbleibsl for being amazing friends and celebrat-
ing all of the exciting moments of my life with me.

Thank you to Monika for always being there for me and never failing to put a smile on my face.

Last but not least, thank you to my family for the endless love and support. I could not have achieved
this accomplishment without you all.

Klemens Koestler
Vienna, November 2021

iii

Contents
Introduction vii

I Scientific Paper 1

II Literature Study 37

1 Introduction 39

2 Airport Terminal 41
2.1 EU Regulations . 41

2.1.1 Common Rules of Civil Aviation Security . 41
2.1.2 Common Evaluation Process of Security Equipment 42

2.2 Security Configuration . 42
2.3 Security Checkpoint Activities . 43

2.3.1 Queue . 43
2.3.2 Lane and Position Allocation . 43
2.3.3 Baggage Drop . 44
2.3.4 Screening . 44
2.3.5 Additional Screening . 44
2.3.6 Baggage Reclaim . 44

3 Simulation Models 45
3.1 Capacity Models . 45

3.1.1 Queuing Models . 45
3.1.2 Stochastic Models . 46
3.1.3 Statistical Models . 46

3.2 Efficiency . 47
3.2.1 Discrete-Event Based Models . 47
3.2.2 System Dynamic Models. 51
3.2.3 Agent-Based Models. 51

3.3 Security . 52
3.3.1 Security Definitions . 52
3.3.2 TVC Method . 53
3.3.3 Attack Trees . 53
3.3.4 Probabilistic Methods . 53
3.3.5 Fuzzy Model . 54
3.3.6 Game Theory . 54

3.4 Limitations and Conclusions of Simulation Models . 54

4 Simulation Software 57
4.1 Non-Airport Terminal Simulators . 57
4.2 Airport Terminal Simulators . 57

4.2.1 Academia Developed Simulators . 58
4.2.2 Industry-Based Simulators . 59
4.2.3 Government-Based Simulators . 59

4.3 Limitations and Conclusion for Simulation Software. 60

5 Simulation Optimization 63
5.1 Single State Methods . 63

5.1.1 Hill Climbing. 63
5.1.2 Simulated Annealing . 63
5.1.3 Tabu Search . 64

v

vi Part Contents

5.2 Population Methods . 65
5.2.1 Evolutionary Algorithm Terminology. 65
5.2.2 Evolution Strategies . 66
5.2.3 Genetic Algorithm . 66
5.2.4 Particle Swarm Optimization . 67

5.3 Multi-Objective Methods . 70
5.3.1 Multi-Objective Methods Terminology. 70
5.3.2 Naive Methods. 71
5.3.3 Pareto Methods . 72

6 Reinforcement Learning 75
6.1 Markov Decision Processes . 75

6.1.1 Agent-Environment Interface . 75
6.1.2 Returns and Episodes . 76
6.1.3 Policies and Value Functions . 76

6.2 Monte Carlo Method . 78
6.3 Temporal Difference Learning . 79

6.3.1 Temporal Difference Prediction . 79
6.3.2 SARSA. 80
6.3.3 Q-Learning. 80
6.3.4 Double Q-Learning. 81

6.4 Planning . 82
6.4.1 Models and Planning . 82
6.4.2 Dyna-Q . 83
6.4.3 Prioritized Sweeping . 84

6.5 Multi-Agent Learning . 85
6.6 Challenges in Reinforcement Learning . 85

7 Research Proposal 87
7.1 Summary of limitations in literature . 87
7.2 Research Objectives . 88
7.3 Work Packages . 89

7.3.1 Initial Phase (12 Weeks). 89
7.3.2 Final Phase (12 weeks) . 90
7.3.3 Final Thesis and Defence Phase (4 weeks) . 91

III Supporting Work 93

A AATOM Simulator 95
A.1 Assumptions . 95
A.2 Overview. 96
A.3 User Interface . 96
A.4 Simulator . 96
A.5 Environment . 98

A.5.1 Physical Objects . 98
A.5.2 Concepts .100

A.6 Agent .101
A.6.1 Goal Module .103
A.6.2 Planning Module. .103
A.6.3 Activity Module .104

B Case Studies for Amsterdam Airport Schiphol 117
B.1 Sensitivity of conventional checkpoint configuration .117
B.2 Security operator allocation under COVID-19 restrictions .117

B.2.1 Phase I: Performance of the AAS security checkpoint.118
B.2.2 Phase II: Improving the AAS security checkpoint .119

B.3 Future security checkpoints .122
B.4 Application for the checkpoint simulator .124

Introduction
Airports are nodes that connect transportation between the ground and air. They accommodate departure,
arrival and transfer flows of passengers, where each flow consists of several sub-processes and facilities.
Their aim is to offer outstanding quality of service to passengers along each of these processes, focusing
on safe, efficient and memorable travel experiences. An essential airport process is the security checkpoint,
which controls access between public and restricted areas. Every passenger along with their luggage must
be screened to avoid the carrying of banned articles into restricted areas within an airport and on board the
aircraft. During this process, there are many interactions between passengers, operators and technological
assets. Consequently, airport managers are not able to predict the expected performance of a security
checkpoint for different scenarios. Therefore, research has focused on simulating airport security checkpoint
to aid airport managers in planning and decision making [87].

A critical part to the operation of a security checkpoint is the shift scheduling of operators. Most airports
plan shifts based on the number of teams needed to operate a lane such that the demand arising from the
departure profile is accommodated. Research has focused into developing algorithms in combination with
a simulation model of a security checkpoint that are able to optimize the shift schedules [73]; [38]; [68].
However, these studies do not consider adjusting the size of the teams for a security lane in order to improve
its operational efficiency.

The purpose of this investigation is to develop and investigate a q-learning based approach for allocation
of individual operators to security teams in order to improve operational efficiency of a security checkpoint.
The research approach consists of two parts. First, an agent-based model is developed to simulate the
security checkpoint. The model is calibrated and validated in collaboration with Amsterdam Airport Schiphol.
Second, a learning agent is introduced into the model, whose goal is to allocate individual operators to security
teams during the operations.

The thesis is composed of three parts. Part I presents the scientific paper investigating the research
objective. Part II consists of a literature study that supports the purpose of the research. Lastly, Part III
provides supporting work related to the scientific paper, which includes: model elaboration

vii

I
Scientific Paper

1

Q-Learning-based Allocation of Operators to Security Teams At an1

Airport Security Checkpoint2

Klemens Koestler∗
3

Delft University of Technology, Delft, The Netherlands4

Abstract5

In this paper, we propose and analyze a q-learning-based approach for allocation of operators to security6

teams in order to improve operational efficiency of an airport security checkpoint. The research is composed7

of two parts. First, we develop an agent-based model capable of simulating an airport security checkpoint.8

Second, we introduce learning agents into the model, whose goal is to allocate operators to a security9

team during operations, to improve operational efficiency of the security checkpoint. We propose two10

learning activities of these agents. Activity 1 allocates operators to the recheck process, where operators are11

responsible for reexamining luggages that have been rejected and decide if they are safe or not. Activity 212

allocates operators to the CT process, where operators are responsible for examining CT images of luggages13

and decide if a luggage should be rechecked or not. We demonstrate that introducing a learning agent with14

either activity increases the throughput of the security checkpoint. Furthermore, activity 1 and activity 215

decrease the time spent in critical operations for the recheck process and CT process, respectively. The16

behavioural strategies learned by the agents were to add an operator when there is excess luggage waiting17

and remove an operator when there are excess operators available. Policy evolution between two different18

learning agents was compared by determining the similarity in their state transition networks per episode.19

The similarity was computed using the DeltaCon method and proved to be a promising technique for20

identifying differences in agent behaviour. This study appears to be the first to dynamically-schedule security21

operator shifts using a reinforcement learning approach. Insights gained from this study demonstrate that22

dynamically allocating operators to a security lane improves its operational efficiency, which opens the23

possibility of dynamic-scheduling security operators for entire terminals. Furthermore, it may aid airport24

managers in creating more resilient security checkpoints.25

Keywords: Airport, Security Checkpoint, Agent-Based Modelling, Reinforcement Learning, Q-Learning,26

Operator Allocation27

1 Introduction28

Air transportation is one of the backbones to modern society and an important enabler for globalization. In29

2018, the expenditure on air transport alone was 1% of the worlds GDP, equivalent to $845 billion [1]. In this30

critical infrastructure, airports make up central nodes, where the circulation of people, resources and capital31

are managed. Airports are constantly evaluating their terminal procedures to ensure safety at the airport and32

on-board the aircraft, while maintaining a high level of efficiency. A high level of efficiency implies minimal33

waiting times for each airport terminal process, thereby creating constant flow of passengers/luggage from34

terminal entrance to gates. Since the processes are affected by human behaviour, an airport is considered to be35

a complex system. Consequently, one of the greatest challenges for airport managers is predicting the expected36

performance of each airport terminal process for future scenarios. Predicting performance of a process for37

different scenarios is important for planning capacity and infrastructure demands. To address this challenge,38

simulation has emerged as powerful tool to aid airport managers in planning and decision making [2]. Hence,39

the last decades have seen a growing trend in literature towards airport modelling and simulation.40

Existing landside airport models have focused on three aspects of the airport terminal: capacity, efficiency41

and security [2]. Capacity models are used in strategic planning to answer whether airport infrastructure42

satisfies future demand [3, 4]. Efficiency models are used in operational planning to develop optimal solutions to43

operational problems [5, 6]. Lastly, security models are used in investigations of security effectiveness, where the44

capability to identify and mitigate threats of an activity or subprocess is determined [2, 7]. Early research into45

landside airport models has focused on entire airport terminals. However, recent advancements in computational46

power has seen the rapid development of more detailed models that simulate micro interactions in individual47

airport processes (e.g., check-in, security checkpoint, etc.). The modelling paradigm used for simulating airports48

∗Msc Student, Air Transport and Operations, Faculty of Aerospace Engineering, Delft University of Technology

3

4 Chapter 2. Related Work

varies between research since the choice depends on the research question [8]. Common modelling paradigms1

for capacity and efficiency models are discrete-event simulation and agent-based simulation [9, 10]. On the2

contrary, probabilistic methods and fuzzy logic are common modelling paradigms for security models [11, 12].3

To date, most research on security checkpoints has neglected the efficiency aspect and instead focused on4

safety and security. Therefore, very little is currently known about factors influencing the efficiency of a security5

checkpoint. The few studies that have developed efficiency models of the security checkpoint focus on strategies6

for the management of security checkpoint operations, such as operator scheduling [13–15]. Research on operator7

scheduling develops optimization algorithms in combination with an efficiency model of a security checkpoint8

that establish shift schedules for operators. Shift schedules are based on the number of teams needed to operate9

a lane such that the demand arising from the departure profile is accommodated. Current research on operator10

scheduling has focused on static-scheduling, where schedules are made before simulation [14, 15]. Therefore,11

they require complete prior knowledge about the checkpoint characteristics, which is difficult to obtain in an12

uncertain environment. By contrast, the use of dynamic-scheduling for operator shift schedules has not been13

investigated. Dynamic-scheduling focuses on adapting schedules to an evolving task scenario [16]. For example,14

adjusting the size of the operators teams in a security lane during operations to improve the lanes operational15

efficiency. Reinforcement Learning has emerged as a suitable paradigm to solve dynamic-scheduling problems16

due to its ability to learn and cope with uncertain, dynamic environments [17].17

This research aims to address the issues in operator scheduling by developing and investigating a q-learning-18

based approach for the allocation of operators to security teams at an airport security checkpoint in order to19

improve the operational efficiency. In order to accomplish our objective, the following methodological steps are20

taken. We develop an efficiency model for the security checkpoint using agent-based simulation. The reasons21

for selecting an agent-based simulation approach were that models can be developed without having knowledge22

about system interdependencies and that agents with learning capability can be added. Next, we introduce a23

learning agent into the model, whose goal is to allocate operators to a security team during operations. Data24

collected from Amsterdam Airport Schiphol is used to calibrate the model. Model validation is performed using25

a two-step approach. First, security experts from Amsterdam Airport Schiphol evaluate the realism of the agent26

interactions and emerging phenomenon, such as the pattern of bottleneck transitions during operations. Second,27

simulated performance of the security checkpoint is compared to day-to-day operations at Amsterdam Airport28

Schiphol. The contributions of our research are as follows: introduction of an agent-based efficiency model29

that is capable of simulating different airport security checkpoint configurations; advancement of knowledge on30

factors affecting the efficiency of a security checkpoint; and introduction of dynamic-scheduling approach for31

security operators using reinforcement learning.32

The paper is structured as follows. Section 2 discusses the related work on landside airport terminal mod-33

elling. Section 3 describes the agent-based efficiency model of the security checkpoint. Section 4 introduces34

learning agents into the model, whose goals are to allocate operators to a security team in order to improve op-35

erational efficiency of a security checkpoint. Section 5 presents the experiments and results. Section 6 discusses36

the results and limitations of the research. Lastly, Section 7 summarizes key findings and suggests possible37

future work.38

2 Related Work39

Airports are nodes that connect transportation between the ground and air. They accommodate departure,40

arrival and transfer flows of passengers, where each flow consists of several processes and facilities. Their aim is41

to offer excellent quality of service to passengers for each of these processes, focusing on safe and efficient travel42

experiences. Since these facilities and processes are affected by human behaviour, an airport is considered to43

be a socio-technical complex system. Therefore, airport terminals are inherently difficult to model, which has44

led to a plethora of airport terminal research.45

Section 2.1, Section 2.2 and Section 2.3 review capacity, efficiency and security airport terminal models46

respectively. Section 2.4 summarizes the research gap in airport terminal literature.47

2.1 Capacity Models48

Early examples of research into airport terminals include capacity models, which determine whether planned49

infrastructure satisfies future demand [3]. Newell (1982) [18] was the first to develop a range of capacity-driven50

airport terminal models based on the deterministic queue model. These models track key performance indicators51

such as passenger waiting and service times, and the number of passengers in queue per queuing area within52

the airport. The simple queue model is extended by Tosic et al. (1983) [4], who investigates a stochastic queue53

model where arrival profiles are already developed. Monte Carlo methods are used to calculate the total service54

and wait times and the length of the queue. [19] expands on a single queuing system by adopting a multi-channel55

queuing approach for a departing passenger at an airport terminal.56

5

By using the process rates from the queue models and combining them with collected data at airports,1

probabilistic models can be developed that estimate capacity related performance indicators. Kim et al. (2004)2

[20] defines a mathematical model focused on the probability density functions of dwelling time to estimate3

passenger volumes for departing passengers over the span of a day. Solak et al. (2009) [21] specifies delay4

functions that estimate the maximum passenger delay for airport activities and processing infrastructure. These5

functions are then incorporated in a stochastic programming model based on a multi commodity flow network6

to simulate an entire airport terminal. However, this approach can not be applied across airports because delay7

functions are unique to each airport.8

2.2 Efficiency Models9

Supplementary to capacity models, early research also explored efficiency models, which focused on operational10

planning and design [2]. These models simulate passenger flow through the airport terminal and require greater11

level of detail than capacity models. Initial studies focused on discrete-event approaches to simulate an entire12

airport terminal, by representing airport activities as individual event nodes [5, 6, 22, 23]. Model outputs13

constituted of queue lengths, process times, passenger delays and congestion of airport facilities. The above-14

mentioned models designate each passenger to a facilitation area, thereby disregarding the spatial-temporal15

aspect of passenger flow. Later models would address this issue by assigning pre-determined paths to passengers16

via a spatial node [24, 25].17

As computational resources became more readily available, research on efficiency models gained traction due18

to their ability to not just aid capacity problems, but also management of daily operations and airport design19

[2]. Further advancement of these discrete-event models were made by incorporating new airport terminal20

processes or increasing the level of detail. Gatersleben and Weij (1999) [26] along with Fayez et al. (2008)21

[27] included arriving/transferring passenger flows, while Zografos and Madas (2006) [9] incorporated airside22

arrivals/departures. Meanwhile, Joustra and Dijk (2001) [28] along with Appelt et al. (2007) [29] simulated23

solely the check-in process of an airport terminal. Due to the continuous improvements in computational power,24

the trend of increasing the complexity of discrete-event models remains to date. This can be seen in the studies25

of [30–32].26

However, the last two decades has also seen the introduction of a new modelling approach for efficiency27

models of airport terminals, known as agent-based modelling [2]. This approach focuses on the interactions and28

operations of multiple agents (i.e., passengers or security operators) with each other and the environment (i.e.,29

the airport terminal). The agent interactions lead to the emergence of higher-level system properties. The first30

to present a simplistic agent-based model for an airport terminal facility was Wilson et al. (2006) [33], focusing31

on the security checkpoint. Agents follow a fixed activity-oriented schedule and have perception/reasoning32

capabilities that prevent collisions and allow them to decide what route to take. Schultz and Fricke (2011) [10]33

describe the first agent-based model that is associated with artificial intelligence. Each agent has an operational,34

tactical and emergency planning level that dictate its decision making. Their work demonstrates that human35

behaviour is an important factor when considering the operations of airport facilities. Thereafter, several36

studies adopted an agent-based approach to simulate airport terminals. Cheng et al. (2014) [34] explored how37

group behaviour affects passenger flows. Janssen et al. (2019) [35] assessed security, efficiency and the relation38

between them at airport terminals under different operating conditions. Verma et al. (2020) [36] analyzed39

passenger service times under various proposed policies aimed at improving throughput of the airport terminal.40

Despite the benefits agent-based approaches had to offer, a search of the literature revealed that discrete-41

event models were more common. A possible explanation for this are the limited number of agent-based airport42

simulation software that exist [37]. In general, the choice of modelling paradigm depends on the research43

question [8].44

2.3 Security Models45

Lastly, another aspect of airport terminals that has gained significant attention are security models. These46

models simulate airport procedures, technologies and the operators ability to identify threats [2]. The two main47

approaches to security models are probabilistic methods and fuzzy methods. To date, several studies focusing48

on probabilistic methods have investigated the likelihood of a prohibited item or malicious person reaching an49

aircraft for the departure process, commonly known as missed detection [11, 38, 39]. However, probabilities are50

difficult to assess due to the inherent nature of the problem, namely that missed detection or terrorist threats51

do not occur often [12, 40]. Instead of determining probabilities to define the safety of security processes,52

fuzzy methods can be used to evaluate the effectiveness by expressing input values as linguistic variables [41].53

Fuzzy approaches have analyzed cabin baggage screening [12, 42], passenger screening [41] and airport security54

operators [7].55

Recently, research on airport security models has started to focus on the efficiency of security processes.56

Most of these studies focus on strategies for the management of security checkpoint operations. The standard57

6 Chapter 3. Modelling and Simulation of an Airport Security Checkpoint

methodology is to create an efficiency model for the security checkpoint and then develop algorithms for ma-1

nagement of the operations [14]. Soukour et al. (2012) [13] presented a staff scheduling problem at the security2

checkpoint and solved it using a three-step algorithm focusing on scheduling day offs, shift scheduling and3

assigning staff. Kierzkowski and Kisiel (2017) [14] tackled the same problem but used an algorithm that estab-4

lishes a capacity lack margin at the security checkpoint. This lowered the operational cost of the checkpoint5

while maintaining an acceptable quality of service for the passengers.Ruiz and Cheu (2020) [15] evaluated the6

performance of the security checkpoint under two operational policies: increase number of security operators or7

reducing the number of screening lanes.8

2.4 Research Gap9

Overall, a number of limitations and opportunities of airport terminal literature have been identified. To date,10

research has focused on higher-level system properties (e.g., process and wait times) of airport facilities using11

discrete-event modelling paradigm. By contrast, few studies investigate lower-level system properties (e.g., asset12

utilisation) of airport facilities. Previous studies on airport terminal capacity/efficiency models lack standardized13

key performance indicators. Efficiency models have not treated the security checkpoint in much detail. Most14

studies on security checkpoints have neglected the efficiency aspect and focused on security. Therefore, very15

little is currently known about factors influencing the efficiency of a security checkpoint. The few studies that16

have developed efficiency models for security checkpoints use it as a tool to optimize operational costs for17

resource allocation problems, such as the staff scheduling problem. However, such approaches have failed to18

address how to dynamically allocate operators during day-to-day operations of the security checkpoint in order19

to improve operational efficiency. In general, dynamic-scheduling approaches have not been investigated in20

operator scheduling.21

Therefore, an efficiency model is necessary to simulate new security checkpoint configurations that can22

evaluate their performance through standardized key performance indicators. Furthermore, this model needs to23

have the capability of allocating new security operators during operations. In our work, we expand on an existing24

agent-based airport terminal simulator (AATOM [37]) to simulate various security checkpoint configurations25

and investigate a reinforcement learning technique that can dynamically allocate security operators optimally26

during operations. The reason behind choosing an agent-based simulation approach was threefold. First, an27

agent-based approach captures detailed complex structures and dynamics, which is beneficial when modelling a28

socio-technical complex system, such as an airport. Second, an agent-based approach allows to construct models29

by specifying individual behaviour and interactions. Therefore, it does not require knowledge of the system (i.e.,30

security checkpoint) interdependencies. Lastly, an agent-based approach allows the implementation of agents31

with learning capability. Furthermore, a reinforcement learning approach was chosen because it has emerged as32

a suitable paradigm to solve dynamic-scheduling problems because they are able to learn and cope in uncertain33

environment, they are computationally efficient and they are adaptive [17].34

3 Modelling and Simulation of an Airport Security Checkpoint35

All civil airports in the European Union must adhere to the common rules of civil aviation security in order36

to prevent acts of unlawful interference [43]. These rules require each airport to establish areas (e.g., landside,37

airside and restricted), to which access must be controlled such that no unauthorised people and vehicles enter38

these areas. Therefore, every passenger along with their luggage must be screened to avoid the carrying of39

banned articles into restricted areas within an airport and on board the aircraft. Airports implement this by40

having a security checkpoint that controls access between public and restricted areas. The processes within a41

security checkpoint and factors affecting the efficiency are explained in Section 3.1. Then, an efficiency model42

for the security checkpoint is developed in Section 3.2.43

3.1 Security Checkpoint Operations44

Before a passenger can enter the checkpoint, they are required to scan their boarding pass. Once scanned, the45

passenger enters the banklining, where they will queue until they reach its endpoint. Next, a security operator46

assigns the passenger to a security lane. When the passenger arrives at the lane, a divest positions is allocated47

to them for dropping their cabin luggage. At this point, the passenger is separated from their cabin luggage48

and they follow separate procedures. The cabin luggage gets scanned by a CT machine, which produces images49

via tomography. These images are analyzed by algorithms and security operators for forbidden objects. If50

something suspicious was found by either the algorithms or the security operator, then the luggage is rejected51

and otherwise it is not. Meanwhile, the passenger gets scanned by a body scanner, which detects metallic and52

non-metallic objects. If the body scanner detects the presence of a suspicious object on the passenger, an extra53

inspection of the passenger is conducted in the form of a pat-down by a security operator. Once the pat-down54

7

is completed, the passenger continues provided that the object was deemed unsuspicious. The passenger is1

now available to retrieve their luggage. If the luggage is cleared, then it can be reclaimed by the passenger.2

However, if the luggage is rejected, then an additional check must be performed by a security operator at the3

recheck position, before the passenger can pick up their luggage. Once all cabin luggage has been retrieved, the4

passenger has completed the security checkpoint process. A visualization of the passenger and luggage flows is5

shown in Figure 1.6

Figure 1: Passenger (blue) and luggage (yellow) flow at a security checkpoint.

Together with security experts from Amsterdam Airport Schiphol, the most important factors affecting the7

efficiency of a security checkpoint process were determined by observing the day-to-day operations. Efficiency is8

primarily determined by the throughput. Other aspects affecting the efficiency are the utilisation of operators9

and frequency of bottlenecks. These factors can be divided into human characteristics (e.g., passenger and10

security operator) and technical attributes. Each factor and its corresponding value are listed in Table 1. Values11

were determined by analyzing timestamps of passengers and luggages at Amsterdam Airport Schiphol’s security12

checkpoints. If it was not possible to determine through the airport database, then physical measurements were13

performed at the security checkpoint and an expert was consulted. Due to confidentiality, logged and measured14

data could not be published.15

Table 1: Collected data on various security checkpoint processes and assets.

Passenger Characteristics
Parameter Unit Value Source
Divest time [s/lug] LogN(3.375, 0.669) Database
Scan time [s/pax] LogN(2.076, 0.885) Measurements
Reclaim time [s/lug] LogN(3.3, 0.3) Measurements + Expert
Image factor [lug/pax] 1.6 Database

Operator Characteristics
Parameter Unit Value Source
Decision time [s/lug] LogN(2.450, 0.49) Database + Expert
Frisk time [s/pax] N(22.5, 18.2) Measurements [44]
Recheck time [s/lug] LogN(4.325, 0.777) Database

Checkpoint Characteristics
Parameter Unit Value Source
Reject rate CT [−] 12.25% Database
Reject rate SSc [−] 20.96% Database
Timeout time [s] 30 Database

The normal distribution and lognormal distribution are used to describe the human characteristics in Table 1.16

Both distributions are common in real-world situations. Furthermore, the lognormal distribution is skewed,17

which allows it model decision-making processes. Their probability density functions are given in Equation (1)18

and Equation (2).19

8 Chapter 3. Modelling and Simulation of an Airport Security Checkpoint

N(µ, σ) : pdf(x, µ, σ) =
1√
2πσ

e−
1
2 (

x−µ
σ)

2

(1)

LogN(µ, σ) : pdf(x, µ, σ) =
1√
2πσx

e−
1
2 (

ln x−µ
σ)

2

(2)

The observations and collected data from daily operations identified which sub-processes and factors need to1

be considered when developing an agent-based efficiency model of the security checkpoint. The corresponding2

model is described in Section 3.2.3

3.2 Agent-Based Model4

We decided to use an agent-based modelling technique for the development of a security checkpoint efficiency5

model because human behaviour is pivotal to how airport terminal processes function. The proposed agent-6

based model is an extension of the AATOM simulation model [37] because the original version can not simulate7

different security checkpoint configurations nor does it contain detailed passenger or operator activities at the8

checkpoint. Therefore, new environment elements and new checkpoint activities were added into the original9

model. Consequently, goal and planning modules of agents were also altered in order to execute these new10

activities. These changes capture the microscopic interactions between humans and include a high level of11

detail regarding the sub-processes within a security checkpoint. Figure 2 demonstrates the modified architec-12

ture of AATOM. Due to the modular architecture, it is possible design and simulate any security checkpoint13

configuration.14

9

Figure 2: Overview of extended AATOM simulation model, focusing on agent architecture and environment
abstraction. The extended modules are highlighted in blue.

The model description is arranged as follows: Section 3.2.1 and Section 3.2.2 describe the environment and1

agent specifications, respectively. Section 3.2.3 expresses the interaction of an agent with the environment,2

while Section 3.2.4 outlines the interaction of an agent with other agents. Section 3.2.5 defines the performance3

indicators used to evaluate the model. Section 3.2.6 determines how many episodes are needed for statistically4

significant results. Lastly, Section 3.2.7 validates the models performance by comparing it to daily operations5

of different security configurations at Amsterdam Airport Schiphol.6

3.2.1 Environment Specification7

The environment is modelled as an abstraction of an airport security checkpoint. It consists of elements that8

form the static components of the map. Each element is characterized by an environment object type, which9

can either be a physical object, an area or a concept.10

Physical objects represent a list of corner points that agents are not able to enter or pass through. We use11

four types of physical objects, namely: queues, walls, belts and sensors. Queues and walls separate public from12

restricted areas. Belts have a start position and end position, along which luggage is transported. Luggage13

10 Chapter 3. Modelling and Simulation of an Airport Security Checkpoint

cannot overtake on the belt and will stop if it reaches the end position or the luggage in front has stopped.1

Furthermore, belts can have divest or reclaim positions to allow interaction with passengers, such as dropping2

or picking up luggage. Sensors can observe threat levels of objects when their positions overlap and have a3

threshold for when to raise an alarm. If the objects threat level is greater than the sensors threshold, then an4

alarm is raised. Otherwise, no alarm is raised. This threshold represents the reject rate of the security assets5

(see Table 1).6

Areas define a list of corner points and symbolize an airport facility where agents agents can perform certain7

activities in. The types of areas used in the model are as follows: entrance areas, queuing areas and waiting8

areas. Entrance areas denote the space where agents are generated on the map. Queuing areas designate a9

zone where agents line up and their the walking mechanism is turned off. Waiting areas define the space where10

agents can stop and wait until a condition has been met.11

Lastly, physical objects and areas can be combined to create a system. For example, a security lane contains12

multiple belts, sensors and waiting areas. The environment dynamics establishes how luggage flows through a13

security lane. Luggage transfers between belts follow a strict order, namely: divest belt −→ CT belt −→ decision14

belt −→ reclaim belt or reject belt. It is important to note that a luggage can only be transferred once it reaches15

the end position of the current belt and if the start position of the target belt is free.16

3.2.2 Agent Specification17

Our agents use the original AATOM agent architecture with slight adjustments to the goal, planning and ac-18

tivity modules (see Figure 2). When an agent is generated at the airport terminal or security checkpoint, it19

initializes with goals that it wants to accomplish (Goal Module). Through reasoning, an agent generates a plan20

(i.e., a list of activities) to achieve these goals (Planning Module). Based on the strategy, an agent will navigate21

(Navigation Module) through the environment and execute activities (Activity Module). Agents perform activ-22

ities by observing (Perception Module) and executing actions (Actuation Module). It is important to note that23

agents continuously maintain their beliefs and goals, thereby potentially resulting in new plans. Furthermore,24

agents are only able to perform one activity at a time. The main sequence of operations followed by an agent25

is: observation −→ perception −→ interpretation −→ reasoning −→ activity control −→ actuation −→ action. There26

are two agent types in the simulation: passenger agents and security operator agents.27

28

Passenger Agent29

We initialize the passenger agents with the goal to complete the security check. Each passenger will create a30

plan of activities in order to achieve this goal. Since the security checkpoint has strict procedures, the activities31

to be completed are the same for all passengers. Activities are performed in chronological order and can start32

when an initial condition has been satisfied. Activity performance depends on passenger attributes. A list33

of passenger attributes (PAtt) and mandatory airport security terminal activities for passengers (PAct) can be34

found below.35

During the simulation, passengers are spawned continuously in the entrance area such that the banklining36

of the security checkpoint is always full. This allows us to determine the performance of the security checkpoint37

under continuous demand. Passengers are destroyed when they exit the security checkpoint.38

39

Passenger Attributes40

PAtt 01 CheckedIn41

Description: If checked-in, then true. Otherwise, false.42

Initialization: True.43

PAtt 02 Gender44

Description: Male or female.45

Initialization: Either with 50% probability.46

PAtt 03 Threat Level47

Description: A value that influences whether or not a passenger will be frisked.48

Initialization: Random sample from uniform distribution ranging between 0 and 1.49

PAtt 04 Luggage50

Description: A collection of luggages, each with its own attributes (LAtt.).51

Initialization: Number of luggages depend on the image factor (see Table 1).52

53

LAtt. 01 Type54

Description: Checked luggage or cabin luggage.55

Initialization: Cabin.56

LAtt. 02 Threat Level57

Description: A value that influences whether or not a luggage will be rejected.58

Initialization: Random sample from uniform distribution ranging between 0 and 1.59

11

1

PAtt 05 Divest Time2

Description: The time it takes to divest.3

Initialization: Random sample from the divest distribution.4

PAtt 06 Scan Time5

Description: The time it takes for a passenger to be scanned.6

Initialization: Random sample from the scan distribution.7

PAtt 07 Reclaim Time8

Description: The time it takes to reclaim.9

Initialization: Random sample from the reclaim distribution.10

11

Passenger Activities12

PAct 01 Lane Assignment Activity13

Starts when a passenger reaches the end position of the banklining. A passenger observes the occu-14

pancy of the security lanes, decides which lane to go to based on the minimum number of passengers,15

and then goes to the entry position of that security lane.16

PAct 02 Divest Activity17

Starts when a passenger reaches the entry position of the security lane. A passengers waits until a18

divest position is assigned to them, then goes to the divest position and drops their luggage onto the19

belt. The total time to drop a luggage is equal to PAtt 05. Once all luggage has been divested, the20

passenger continues to the entry position of the security scanner.21

PAct 03 Screen Activity22

Starts when a passenger reaches the entry position of the security scanner. A passenger observes if23

they can go into the security scanner and then proceeds to go to the scan point if it is unoccupied.24

When passenger reaches the scan point, an operator performs the passenger screen activity (see OAct25

02). A passenger completes their activity when they have been scanned and are not suspicious.26

PAct 04 Reclaim Activity27

Starts when a passenger is not suspicious. A passenger goes to the reclaim area and waits for their28

luggage to be scanned. Next, the passenger observes whether or not their luggage is rejected. If all of29

their luggage has been rejected, then the activity ends immediately. On the contrary, if a luggage has30

not been rejected, then the passenger will observe whether a reclaim position is unoccupied. When a31

reclaim position is unoccupied, they proceed to go to that reclaim position and collect that luggage.32

If a passenger has another piece of luggage, the process restarts with the passenger observing whether33

their luggage has been rejected or not. The total time to collect a luggage is equal to PAtt 07. Once34

all luggage has been collected, the activity is completed.35

PAct 05 Reject Activity36

Starts when a passenger has rejected luggage. A passenger goes to the recheck area and observes if37

their luggage has been selected for examination by a security operator. Once selected, the passenger38

goes to the recheck position and waits for the security operator to perform the luggage recheck39

activity (see OAct 03). When the recheck is finished, the passenger observes if they collected all of40

their luggage. If all luggage has been collected, the activity is completed. Otherwise, the passenger41

goes back to the recheck area and the process restarts.42

PAct 06 Exit Activity43

Starts when all luggage has been collected. A passenger goes to the exit position of the security44

checkpoint. Once the position is reached, the passenger is removed from the simulation.45

46

Operator Agent47

We initialize operator agents with a specific security assignment and location. From the security assignment,48

the operator gets a goal and an activity that they must perform. It is important to note that an operator49

agent continuously performs the same activity. Activity performance depends on operator attributes. A list of50

operator attributes (OAtt) and potential activities (OAct) can be found below. Operators are destroyed when51

the simulation ends. A list of operator attributes (OAtt) and activities (OAct) can be found below.52

53

Operator Attributes54

OAtt 01 Gender55

Description: Male or female.56

Initialization: Depends on the security checkpoint configuration.57

OAtt 02 Assignment58

Description: The security task that an operator is assigned to. There are three possible types:59

OAss 01 CT Check60

OAss 02 Passenger Check61

12 Chapter 3. Modelling and Simulation of an Airport Security Checkpoint

OAss 03 Luggage Recheck1

Initialization: Depends on the security checkpoint configuration.2

OAtt 03 Performance Distribution3

Description: The performance distribution of the operator for that assignment.4

Initialization: Depends on the assignment.5

OAss 01 −→ corresponds to the decision time distribution.6

OAss 02 −→ corresponds to the frisk time distribution.7

OAss 03 −→ corresponds to the recheck time distribution.8

9

Operator Activities10

OAct 01 CT Singleplex Activity ←− corresponds to OAss 0111

Starts when there is cabin luggage to be checked. An operator selects the first luggage waiting to12

be checked. Then, they proceed to analyze whether or not the luggage should be rejected. The13

time to make a decision is determined by taking a random sample from the operator performance14

distribution. Decisions are based on the information obtained from the CT sensor. If the CT sensor15

raises an alarm, then the luggage is rejected and otherwise it is cleared. Once a decision has been16

made, the luggage is able to divert and the activity ends.17

OAct 02 Passenger Screen Activity ←− corresponds to OAss 0218

Starts either when there is a passenger to scan or to frisk. If there is a passenger to scan, the19

operator begins the security scanner. The time of the scan is equal to PAtt 06. Once scanned, the20

operator checks whether or not the security scanner raise an alarm. If no alarm was raised, then21

the passenger is considered as unsuspicious and is cleared. On the contrary, if an alarm was raised,22

the passenger is considered suspicious and must be frisked. If there is a passenger to be frisked,23

then the operator commands the passenger to move to the frisk position. It is important to note24

that an operator can only frisk a passenger if they have the same gender. Once the position has25

been reached, the passenger is searched for forbidden items. The time of the search is determined26

by taking a random sample from the operator performance distribution. When the search is done,27

the passenger is marked as not suspicious and the activity is completed.28

OAct 03 Luggage Recheck Activity ←− corresponds to OAss 0329

Starts when there is a luggage on the end position of the reject belt. An operator picks up the30

luggage and motions for the owner to move to the recheck position. Once the owner has arrived31

at the position, the operator begins the search. The time of the recheck is determined by taking32

a random sample from the operator performance distribution. When the search is complete, the33

luggage is handed over to the passenger and the activity is completed.34

3.2.3 Agent Interaction With Environment35

Agents can make observations of the environment and execute actions within the environment through the36

perception and actuation module. There are four types of interactions occurring in the model between agents37

and the environment: passenger interaction with belts, operator interaction with belts, operator interaction38

with sensors and operator interaction with concepts.39

40

Passenger Interaction With Belts41

Passengers can observe belts that are within their vicinity. Depending on what positions the belt has, a pas-42

senger is either able to drop or pick up their luggage. These interactions occur in PAct 02 and PAct 04.43

44

Operator Interaction With Belts45

Operators can observe belts that are part of their activity and add or remove luggages to these belts. Further-46

more, an operator can observe which luggage needs a recheck, then perform a recheck and update the record.47

These interactions occur in OAct 03.48

49

Operator Interaction With Sensors50

Operators can a observe if a sensor has raised an alarm or not. Subsequently, they process the new information51

received of the environment and make decisions based on it. In addition, operators can observe and update52

system records of sensor. For example, a CT sensor keeps track of which luggages have not been checked. An53

operator can observe which luggage has not been checked, then check the luggage and update the CT sensor54

record. Similarly, a SSc sensor keeps track of which passengers still need to be scanned. An operator can observe55

which passenger still needs to be scanned, then scan the passenger and update the SSc sensor record. These56

interaction occur in OAct 01 and OAct 02.57

13

3.2.4 Agent Interaction with Agents1

Agents can communicate with each other through the communication module. In order to communicate, a com-2

munication type and message is required. We assume that only operators perform these requests to passengers.3

Therefore, the only agent to agent interaction in the model is from an operator to a passenger.4

5

Operator Interaction With Passengers6

An operator can interact with a passenger by communicating with them. There are two communication types7

that a passenger can receive from an operator. The first communication type is a go to request which requires a8

destination position as a message. A passenger interprets the message and assigns the destination position as its9

new navigation goal. The second communication type is a wait request which requires a wait time as a message.10

A passenger interprets the message and proceeds to wait for that duration. There is only one collaboration11

These interactions occur in OAct 02 and OAct 03.12

3.2.5 Performance Indicators13

In order to validate the efficiency model of a security checkpoint against real-life operations, the simulated14

performance of the model must be evaluated. We determine the performance based on the following key per-15

formance indicators (KPIs). These indicators are useful for assessing the efficiency of a security checkpoint.16

17

KPI. 01 Security Checkpoint Throughput [pax]18

The total number of passengers that have completed PAct 06.19

KPI. 02 Operator Utilisation [%]20

The percentage of total time an operator spent performing their activity versus the total simulation21

time. This indicator can be separated into each operator assignment.22

KPI. 03 Passenger Time in Area [s]23

The total time a passenger has spent in a specific waiting area of the security checkpoint.24

KPI. 04 Percentage of Time in Critical Operations [%]25

The percentage of total time a security sub-process is in critical operations versus the total simulation26

time. There are four security sub-processes: CT, security scan, reclaim and recheck. With security27

experts from Amsterdam Airport Schiphol, we define thresholds for each process that represent28

critical operating conditions. If the number of passengers in an area exceed that threshold, then29

a process is considered to be in critical operations. For the security scan process, the threshold is30

when 3 passengers are waiting in the security scan area. For the CT process, the threshold is when31

3 passengers are waiting on their luggage in the reclaim area. For the reclaim process, the threshold32

is when 3 passengers are waiting for a position to free up. For the recheck process, the threshold is33

when 3 passengers are waiting to get their luggage rechecked.34

3.2.6 Calibration35

In order to obtain results that are statistically significant, the agent-based model must be run for multiple36

episodes due to the stochastic nature of the the security checkpoint. The number of episodes required is deter-37

mined by the coefficient of variation [45].38

39

Coefficient of Variation40

The coefficient of variation represents the relative dispersion of a parameter. It is defined as: CV = σ/µ where41

σ is the standard deviation and µ is the mean of the dataset. After each episode of the simulation, the coefficient42

of variation for various key performance indicators is determined (see Figure 3). If the coefficient of variation43

converges, then a sufficient number of episodes have been run. It can be concluded that 50 episodes are sufficient44

for the simulation.45

14 Chapter 3. Modelling and Simulation of an Airport Security Checkpoint

Figure 3: Coefficient of Variation of various KPIs.

3.2.7 Validation1

In order to validate the model, several security checkpoint configurations were tested both in the simulator and2

real-life at Amsterdam Airport Schiphol. Figure 4 shows the different configurations of the security checkpoints3

that were tested. Figure 4a and Figure 4b represents different configurations tested during the covid pandemic.4

They satisfy the social distancing measures of 1.5m by using 2 divest positions per lane and no door-scanning5
1 at the security scanner. Figure 4c represents the standard security configuration with 3 divest positions per6

lane and 4 security operators with 2 security scanners per bay using door-scanning.7

(a) Covid (1SSc) Configuration (b) Covid Configuration. (c) Standard Configuration

Figure 4: Tested security checkpoint configurations for validation. Configurations vary depending on open
divest positions (green), security operators (red) and security scanners.

.

For each configuration, the simulator was run for 100 episodes using the input data of Table 1. Results of8

the simulations are shown in Table 2. In order to validate these numbers, each configuration was measured for9

a minimum of 6 hours over the span of multiple days. A measurement team consisted of three people, namely:10

one person ensuring for continuous passenger demand to the checkpoint and two people for measuring the11

corresponding throughput. Furthermore, each team was instructed to observe the operations of the checkpoint.12

The throughput was measured by counting the number of passengers passing through the security scanner. The13

observations focused on noticing/evaluating which security sub-processes are bottlenecks and how busy security14

operators were. Results of the measurements are shown in Table 2.15

As can be seen from Table 2, there was no significant difference in the throughput of the simulator versus16

the measurements. Furthermore, the sub-process having the maximum percentage of time in critical operations17

aligned well to the observed bottleneck in the operations. In the Covid (1SSc) Configuration, it was evident,18

both through simulation and observation, that the security scan was limiting the throughput of the checkpoint.19

Similarly, in the Standard Configuration, it was apparent that the CT and recheck were the bottlenecks. By20

contrast, in the Covid Configuration, there was no observed bottleneck although simulations anticipated the21

recheck to be in critical operations for 7% of the time. This inconsistency is due to the distribution of critical22

operations for recheck being positively skewed (i.e. many episodes with low times in critical operations and a23

1Door-scanning is when one security operator is performing a frisk while another is operating the security scanner.

15

few with very high times in critical operations). Hence, it was unlikely to see events in real-life where recheck1

would become a bottleneck. Lastly, security experts from Amsterdam Airport Schiphol were asked to assess2

the simulators results on the utilisation of operators performing different assignments. They concluded that all3

utilisations seemed realistic.4

Table 2: Results of the simulator (Sim.) and measurements (Msr.) for tested security configurations. All values
are averages of the total episodes and total measurements.

KPI Unit Configurations
Covid (1SSc) Covid Standard
Sim. Msr. Sim. Msr. Sim. Msr.

Throughput [pax/min/lane] 1.36 1.35 1.77 1.80 2.44 2.4
Throughput [pax/min/ops] 0.272 0.27 0.354 0.36 0.488 0.48
Utilisation OAss 01 [%] 45.1 - 57.6 - 80.7 -
Utilisation OAss 02 [%] 46.6 - 30.6 - 43.3 -
Utilisation OAss 03 [%] 71.5 - 70.2 - 85.1 -
Critical Ops CT [%] 0.5 - 1.5 - 25.2 Btl.
Critical Ops SSc [%] 80.4 Btl. 2.8 - 6.9 -
Critical Ops Reclaim [%] 0 - 0.7 - 10.0 -
Critical Ops Recheck [%] 2.2 - 7.4 - 27.8 Btl.

It is important to note that in the Covid (1SSc) Configuration, operators assigned to OAss 02 were busy5

46.6% of the time but the security scan was in critical operations for 80.4% of the time. This is because for each6

security scan there are two operators, where one operator has high utilisation (85.0%) and the other operator7

has a low utilisation (8.3%). Differences in utilisation occur because operating the security scanner only required8

one operator and frisks do not occur often.9

4 Learning Agent10

In this section, a learning agent is introduced into the agent-based model (see Section 3.2) for allocating reserve11

operators to improve security checkpoint efficiencies. We used a learning agent because they are able to converge12

to an optimal policy assuming that all states have sufficiently been explored. Section 4.1 describes the learning13

algorithm of the agent. Section 4.2 defines the attributes of the learning agent. Section 4.3 outlines the14

activities that a learning agent can perform. Section 4.4 explains how the learning behaviour between agents15

are compared. Lastly, Section 4.5 presents the performance indicators used to analyze the policy of an agent16

and the operational efficiency of the security checkpoint.17

4.1 Basic Q-Learning Algorithm18

We decided to implement the Q-Learning (QL) algorithm [46] because it is a model-free algorithm (i.e. does19

not require an internal model) and it converges to the optimal policy provided that state-action pairs are20

continuously visited and updated [47]. Before a QL agent can be deployed in an environment, its states, actions21

and rewards must be established. Once deployed, the interaction between the agent and environment occur22

at discrete time steps, t = 0, 1, 2, 3, ..., n. During each time step t, the agent observes a representation of the23

environment’s states St ∈ S, and takes an action At ∈ A(St). One time step later, the agent is situated in a new24

state St+1 and receives a reward Rt+1 ∈ R to evaluate its transition. Since this process can continue indefinitely,25

an agents goal is to select actions such that sum of its discounted rewards it will receive in the future, known26

as expected discounted return, is maximized. The expected discounted return (Gt) is shown in Equation (3),27

where γk is the discount factor and represents the relative importance of the current reward versus rewards in28

the distant future (0 ≤ γ ≤ 1).29

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =
∞∑
k=0

γkRt+k+1 (3)

A QL agent manages to achieve their goal by estimating and updating an action-value function Q(S,A),30

which evaluates the added benefit of performing a given action in a given state. This function is estimated using31

the action-value of the current state, the observed reward and the best action-value of the successor state. The32

update of action-value function Q(S,A) occurs every discrete time step according to Equation (4). This learned33

function directly approximates the optimal action-value function, regardless of the policy an agent follows.34

16 Chapter 4. Learning Agent

Q(St, At)← Q(St, At) + α[Rt+1 + γmax
a

Q(St+1, a)−Q(St, At)] (4)

A policy π(s) is a probabilistic mapping of performing an action in a given state for all possible state-action1

pairs. Hence, it governs which action an agent will take for every possible state. We use an ϵ-greedy policy2

for our QL agent such that it does not stuck get stuck in a local optimum. The policy does this by ensuring3

that there is a balance between exploration and exploitation for when an agent selects an action. Exploration4

is when an agent performs a random action, thereby encouraging it to experience new states, which might lead5

to beneficial rewards in the future. However, exploitation is when an agent performs the action that maximizes6

its value function, thereby allowing it to re-experience previous states considered to be good, which leads to7

convergence. The ϵ-greedy policy has a probability of ϵ of exploration and a probability of 1-ϵ of exploitation.8

Algorithm 1 Q-Learning with ϵ-greedy
1: Input α, ϵ, dϵ, γ
2: Sim← Simulator() ▷ Contains observation space S, set of actions A and reward function R
3: Q(s, a)← ValueFunction(S,A)
4:
5: for episode in episodes do
6: Sim← Sim.reset()
7: Sim.setSeed(episode) ▷ Ensures that each episode has a unique seed.
8: while Sim not terminated do
9: St ← observe(Sim)

10: At ← selectAction(St) ▷ Selection is performed based on ϵ-greedy policy.
11: performAction(At)
12: Sim.update() ▷ The timestep t increased by 1.
13: St+1 ← observe(Sim)
14: Rt+1 ← observeReward()
15: Q(St, At)← Q(St, At) + α[Rt+1 + γmax

a
Q(St+1, a)−Q(St, At)]

16: end while
17: end for

4.2 Attributes9

Learning agents are initialized with parameters required for Q-Learning (mentioned in Section 4.1) and a specific10

assignment, which determines the activity that an agent will perform. A list of learning agent attributes (QAtt)11

are listed below.12

13

Q-Agent Attributes14

QAtt 01 Learning Rate (α)15

Description: It determines how much an agent learns from new information gained.16

Initialization: Depends on the experiment.17

QAtt 02 Exploration Probability (ϵ)18

Description: It introduces randomness into the action selection of the QL algorithm through the19

ϵ-greedy policy.20

Initialization: Depends on the experiment.21

QAtt 03 Epsilon Decay (dϵ)22

Description: It determines how much the exploration factor decreases after each episode.23

Initialization: Depends on the experiment.24

QAtt 04 Discount factor (γ)25

Description: It influences the importance of the future rewards.26

Initialization: Depends on the experiment.27

QAtt 05 Value Function (Q(s, a))28

Description: It represents the knowledge an agent has learned by indicating the benefit of per-29

forming an action in a given state.30

Initialization: We use a Q-Matrix initialized with 0 for all actions possible in each state. It was de-31

cided to use a Q-Matrix because the state-space is small and allows us to better analyze the learning32

behaviour.33

QAtt 06 Assignment34

Description: The learning task that an agent is assigned to. There are two possible types:35

QAss 01 Recheck Operator Allocation36

17

QAss 02 CT Operator Allocation1

Initialization: Depends on the experiment.2

3

It is important to note that the states, actions and rewards an agent experiences depend on the activity the4

agent performs in Section 4.3.5

4.3 Activities6

From the assignment, the learning agent gets an activity that they must perform. The activity defines the7

states, the actions possible in each state and the reward function an agent can experience. Learning agents8

perform the same activity each timestep until the simulation is terminated. It is important to note that only9

two learning activities (1. recheck operator allocation and 2. CT operator allocation) were explored because10

those were the main bottlenecks in the standard lane configuration (see Table 2) and have the most potential11

of increasing the efficiency of a checkpoint. The description of the learning agent activities (QAct) can be found12

below.13

14

Q-Agent Activities15

QAct 01 Allocating Recheck Operators Activity ←− corresponds to QAss 0116

A q-agent learns when to allocate security operators to the luggage recheck assignment for a single17

security checkpoint lane. Starts each timestep of the simulation. An agent observes its old state,18

selects an action, performs that action, observes the new state, receives a reward and update its19

value function. Then, the activity is completed.20

21

States:22

In collaboration with Amsterdam Airport Schiphol, three variables were selected that could describe23

the operations of the recheck process. These variables could be easily monitored either through their24

in-house systems or by a security team leader2. They are as follows:25

S. 01 Number of operators assigned to luggage recheck that are available.26

S. 02 Number of operators assigned to luggage recheck that are busy.27

S. 03 Number of luggages waiting on the recheck belt.28

It is important to note that the total number of operators assigned to a luggage recheck can not29

exceed 3 operators due to spacial constraints of the security lane. Similarly, the number of luggages30

on the recheck belt can not exceed 5.31

32

Actions:33

An agent can control the performance of the recheck process by adjusting the number of operators34

working at a security lane. Thus, there are three actions considered:35

A. 01 Remain the same.36

A. 02 Add an operator assigned to luggage recheck.37

A. 03 Remove an operator assigned to luggage recheck.38

If there are already 3 operators assigned to luggage recheck, then adding another is illegal and a39

different action must be selected. Similarly, if there are zero operators assigned to luggage recheck,40

then removing an operator is not possible and a different action must be selected. Lastly, it is not41

possible to remove an operator whose activity is in progress.42

43

Rewards:44

The purpose of allocating operators to the luggage recheck assignment was to improve the opera-45

tional efficiency of the security lane. In order to accomplish this, rewards were given to the learning46

agent for luggage and operators. The formulation for each reward can be found below.47

R. 01 Luggage
If there are more pieces of luggage on the recheck belt (nL) than there are available recheck
operators (nOpsAvailable), then a negative reward (-rL) is received for each additional luggage.
Otherwise, the reward is 0.

RL =

{
-rL · (nL − nOpsAvailable), if nL − nOpsAvailable > 0

0, otherwise
(5)

R. 02 Operator
If there are more recheck operators available (nOpsAvailable) than there are luggages on the
recheck belt (nL), then a negative reward (−rOps) is received for each additional operator.

2A team leader is responsible for the security operator assignments and functioning of a checkpoint.

18 Chapter 4. Learning Agent

This represents the operating cost of an operator. Otherwise, a positive reward (rOps)
is received for each recheck operators in progress (nOpsInProgress), which represents the
throughput.

ROps =

{
-rOps · (nOpsAvailable − nL), if nOpsAvailable − nL > 0

rOps · nOpsInProgress, otherwise
(6)

The total reward at each timestep is the sum of the luggage and operator reward Rtotal = RL+ROps.1

2

QAct 02 Allocating CT Operators Activity ←− corresponds to QAss 023

A q-agent learns when to allocate security operators to the CT check assignment for a single security4

checkpoint lane. Starts each timestep of the simulation. An agent observes its old state, selects an5

action, performs that action, observes the new state, receives a reward and update its value function.6

The activity is completed in the same timestep.7

8

States:9

In collaboration with Amsterdam Airport Schiphol, three variables were selected that could describe10

the operations of the CT process. These variables should be easily monitored either through their11

in-house systems or by a security team leader. They are as follows:12

S. 01 Number of operators assigned to luggage check that are available.13

S. 02 Number of operators assigned to luggage check that are busy.14

S. 03 Number of luggages that have not been checked.15

It is important to note that the total number of operators assigned to a CT check can not exceed 316

operators due to spacial constraints of the security lane. Similarly, the number of luggages that have17

not been checked can not exceed 5.18

19

Actions:20

An agent can control the performance of the CT process by adjusting the number of operators21

working at a security lane. Thus, there are three actions considered:22

A. 01 Remain the same.23

A. 02 Add an operator assigned to CT check.24

A. 03 Remove an operator assigned to CT check.25

If there are already 3 operators assigned to CT check, then adding another is illegal and a different26

action must be selected. Similarly, if there are zero operators assigned to CT check, then removing27

an operator is not possible and a different action must be selected. Lastly, it not possible to remove28

an operator whose activity is in progress.29

30

Rewards:31

The purpose of allocating operators to the CT check assignment was to improve the operational32

efficiency of the security lane. In order to accomplish this, rewards were given to the learning agent33

for luggage and operators. The formulation for each reward can be found below.34

R. 01 Luggage
If there are more luggages waiting to be checked (nL) than there are available CT opera-
tors (nOpsAvailable), then a negative reward (−rL) is received for each additional luggage.
Otherwise, the reward is 0.

RL =

{
-rL · (nL − nOpsAvailable), if nL − nOpsAvailable > 0

0, otherwise
(7)

R. 02 Operator
If there are more CT operators available (nOpsAvailable) than there are luggages waiting to be
checked (nL), then a negative reward (−rOps) is received for each additional operator. This
represents the operating cost of an operator. Otherwise, a positive reward (rOps) is received
for each CT operator in progress (nOpsInProgress), which symbolizes the throughput.

ROps =

{
-rOps · (nOpsAvailable − nL), if nOpsAvailable − nL > 0

rOps · nOpsInProgress, otherwise
(8)

The total reward at each timestep is the sum of the luggage and operator reward Rtotal = RL+ROps.35

19

4.4 Learning Behaviour Analysis1

In order to analyze the learning behaviour of an agent, we constructed a network per episode based on the2

state transitions (St −→ St+1) because it illustrates the actions an agent takes and the system mechanics. Each3

network is directed where the nodes correspond to all possible states an agent can be in and the weight of each4

link between node i and j equals w∗
ij = nij the total number of transitions nij from i to j within an episode.5

To compare different learning agents, we computed the similarity of their state transition networks per6

episode. Since the state transition networks have the same node set, it is possible to use known-node corre-7

spondence techniques when comparing networks. Among these techniques, the DeltaCon method has emerged8

as a powerful tool that satisfies axioms for network comparison [48]. As such, we decided to use the DeltaCon9

method to compare the learned behaviour per episode between agents.10

4.4.1 DeltaCon Method11

Assume that two graphs G1 and G2 are being compared. The first step was to compute the pairwise node12

affinities of each graph. Results are stored in an n×n matrix (S), where each entry (sij) indicates the influence13

of node i on node j. We used belief propagation to compute node affinities (see Equation (9)) because it is14

based on maximum likelihood estimation on marginals and it takes into account k-step away neighbours with15

decreasing weight on the influence.16

S = [sij] =
[
I + ω2D− ωA

]−1 (9)

Next, the distance between each respective node from the pairwise node affinity scores S1 and S2 was17

computed. These distances indicate the difference in influence node i has on node j between the two scores.18

We used a rooted euclidean distance because it enables detection of small changes in graphs by boosting the19

node affinities. The distance matrix (D) is calculated according Equation (10).20

D = [dij] =
[(√

s1,ij −
√
s2,ij

)2] (10)

Finally, the similarity between the graphs can be computed from the distance matrix according to Equa-21

tion (11). This conversion bounds the result to the interval between [0, 1], where 1 means the networks are22

identical and 0 means the networks are completely different.23

similarity =
1

1 +

√
n∑

i=1

n∑
j=1

dij

(11)

4.5 Performance Analysis24

Since learning agents were introduced to allocate reserve operators for improving the security checkpoint oper-25

ational efficiency, it is important to analyze their final policy and its effect on the operational efficiency once26

learning has finished. Therefore, we run an additional 200 test episodes once learning has completed where the27

learning agent is able interact with the environment but its value function Q(s, a) does not update anymore.28

An agent’s final policy is analyzed by determining the action with the maximum q-value for each state,29

where the value function Q(s, a) corresponds to the one used for the test episodes. Operational efficiency is30

evaluated using the previously defined performance indicators (see Section 3.2.5) with one new indicator on the31

test episodes.32

33

KPI. 05 Number Of Operators [−]34

The average number of operators during the total simulation. This indicator can be separated into35

each operator assignment.36

5 Experiments and Results37

This section presents the experiments and corresponding results. An overview of each experiment can be found38

below. For each experiment, a set of hypothesis is established, a simulation setup is outlined and then the39

results are evaluated.40

20 Chapter 5. Experiments and Results

Table 3: Overview of the experiments

Experiment Topic Discussed in
1 The sensitivity of the learning agent’s behaviour when varying the

learning rate
Section 5.1

2 The sensitivity of the learning agent’s behaviour when varying the
exploration probability

Section 5.2

3 The effect of the reward function on the learning agent’s perfor-
mance.

Section 5.3

5.1 Experiment 1: Sensitivity on the Learning Agent’s Behaviour when Varying1

the Learning Rate2

The rate at which an agent learns from new information is an important aspect of Q-Learning. Therefore, its3

sensitivity is analyzed in this section. This experiment focuses on varying the learning rate and analyzing how4

the learning behaviour of an agent changes. The goal of this experiment is to determine an optimal value for5

the learning rate.6

7

Hypotheses8

H. 01 An increase in learning rate leads to an increase in slope of the total reward received during the9

exploration phase.10

H. 02 A decrease in learning rate leads to a higher reward when an agent’s policy has converged.11

12

Simulation Setup13

Table 4 presents the parameters chosen for experiment 1. It was decided to test how both learning activities14

(QAct.) respond to a change in learning rate (α) under two different spans of exploration phase. The span of15

the exploration phase (PExplore) encompasses the episodes where the learning agent is still performing random16

actions. It was controlled through the exploration decay (dϵ) and can be determined by dividing the exploration17

probability by the decay (ϵ/dϵ). By contrast, the exploitation phase (PExploit) encompasses all episodes after18

the exploration phase. Control variables are the individual rewards (rL and rOps), the exploration probability19

(ϵ) and the discount factor (γ).20

Table 4: Input parameters for experiment 1.

Parameter Value
QAct. [QAct 01, QAct 02]
rL -1
rOps 10
α [0.05, 0.1, 0.2]
ϵ 0.9
dϵ [0.01, 0.001]
γ 0.1

Results21

An increase in learning rate has no effect on the slope of the total reward received during the exploration phase22

for both learning activities. Figure 5 and Figure 6 demonstrate that the total reward received for different23

simulation is equivalent during the exploration phase. This occurs because a learning agent is experiencing24

the exact same state transition networks for the majority of the exploration phase, as indicated by Figure 725

and Figure 8, thus receiving the same rewards. The identical state transition networks during the exploration26

phase is somewhat surprising since varying the learning rate changes how much an agent learns from new27

information, thereby potentially changing an agent’s policy. A possible explanation for the identical networks28

is the inherent dynamics of the simulation. Although the simulation is stochastic, there is a greater probability29

of certain states occurring than others. This has led to a subset of states that are visited more frequently for30

both learning activities. For example, in QAct 01 states where the number of luggages waiting on the recheck31

belt is low (i.e. QAct 01 S. 03 < 1) are visited more often. Similarly, in QAct 02, states where the number of32

luggages waiting to be checked are low (i.e. QAct 02 S. 03 < 2) are visited more often. The frequent visits to33

each of these states drives the agent to learn the same policy. Since few simulations occur where other states are34

experienced, the majority of the simulations are identical due to agents having the same policy for frequently35

visited states.36

21

(a) dϵ = 0.01
PExplore = [0, 90) and PExploit = [90, 2000)

(b) dϵ = 0.001
PExplore = [0, 90) and PExploit = [90, 2000)

Figure 5: Total reward received per episode from the allocating recheck operator activity (QAct 01) with varying
α and constant rL = −1, rOps = 10, ϵ = 0.9, γ = 0.1.

(a) dϵ = 0.01
PExplore = [0, 90) and PExploit = [90, 2000)

(b) dϵ = 0.001
PExplore = [0, 900) and PExploit = [900, 2000)

Figure 6: Total reward received per episode from the allocating CT operator activity (QAct 02) with varying
α and constant rL = −1, rOps = 10, ϵ = 0.9, γ = 0.1.

A decrease in learning rate does not lead to a higher reward when an agent’s policy has converged for both1

learning activities. Figure 5 illustrates that the total reward received upon convergence changes for various2

learning rates in learning activity QAct 01. However, the ranking of best to worst changes between the different3

spans of the exploration phase (dϵ). Figure 5a, where dϵ = 0.01, shows that increasing learning rate leads to4

a higher reward once an agent’s policy has converged. By contrast, Figure 5b, where dϵ = 0.001, shows that5

decreasing the learning rate leads to a higher reward once an agent’s policy has converged. This discrepancy6

may be explained by the fact that agents with lower spans of exploration are less likely to try different actions7

for a specific state. Therefore, an agent experiences less state-action pairs. In order to prevent an agent from8

overfitting on these limited state-action pairs, a higher learning rate can be used which regularizes the training.9

By contrast, agents with high spans of exploration phase experience a plethora of states-action pairs. Hence, a10

lower learning rate is better because the smaller step size offers a more exact solution.11

Despite the trend shown in learning activity QAct 01, the total reward received upon convergence increases12

for increasing learning rates with respect to both spans of the exploration phase in learning activity QAct 02, as13

shown in Figure 6. This outcome is contrary to earlier findings which have suggested that total reward received14

upon convergence increases with decreasing the learning rate for higher spans of exploration phases. A possible15

explanation for this might be that lower learning rate has caused to agent to overfit in QAct 02. This is further16

supported by Figure 8, which shows that the state-transition networks are identical until episode 1564, where17

the higher learning rate (α = 0.2) manages to escape a local optimum.18

22 Chapter 5. Experiments and Results

(a) dϵ = 0.01
Compares the simulations in Figure 5a.

(b) dϵ = 0.001
Compares the simulations in Figure 5b.

Figure 7: Similarity in the state transition network per episode between different simulations. Both sub-figures
compare simulations from the allocating recheck operator activity (QAct 01) with varying α and constant
rL = −1, rOps = 10, ϵ = 0.9, γ = 0.1.

(a) dϵ = 0.01
Compares the simulations in Figure 6a.

(b) dϵ = 0.001
Compares the simulations in Figure 6b.

Figure 8: Similarity in the state transition network per episode between different simulations. Both sub-figures
compare the allocating CT operator activity (QAct 02) with varying α and constant rL = −1, rOps = 10,
ϵ = 0.9, γ = 0.1.

Figure 9 shows that the agent assigned to learning activity QAct 02 with a learning rate of α = 0.2 changes1

its policy at episode 1564. Specifically, when an agent is in state (0, 2, 1)3, the best action changes from adding2

an operator to remaining the same. While the exact reason behind the policy change stems from mathematical3

context of the update function (see Equation (4)), the difference in state transition networks can help explain4

the intention behind the change. Figure 9c demonstrates the impact of the policy change on the state transition5

network, namely: the agent with α = 0.2 increases its number of visits to states with a higher luggage waiting6

value than agents with α = 0.05, 0.1. By contrast, agents with α = 0.05, 0.1 increase their number of visits to7

states with a higher number of operators available than agents with α = 0.2. In general, states with higher8

luggage waiting value are punished less than states with higher number of operators available. Therefore, the9

agent with α = 0.2 manages to achieve a higher reward than agents with α = 0.05, 0.1, as shown in Figure 6. A10

possible explanation as to why other agents did not manage to learn this new decision is that it comes with an11

immediate punishment. By choosing to remain the same in state (0, 2, 1), an immediate punishment is received12

for the luggage waiting, whereas by adding an operator no punishments are received since the new operator can13

check the luggage.14

In general, the policy learned by all agents for either activity can be summarized as follows: add an operator15

if the number of luggages waiting is greater than the number of operators available; remove an operator if the16

number of operators available is greater than the number of luggages waiting; remain the same if the number17

of operators available is equal to the number of luggages waiting. Furthermore, states that are rarely visited18

usually prefer to remain the same since that is the default option. Therefore, the change in policy of learning19

agent QAct 02 α = 0.2 at episode 1564 is significant because the number of operators and luggages waiting are20

valued differently.21

3A state (x, y, z) corresponds to x operators available, y operators in progress and z luggages waiting.

23

(a) Best action of
value function (Q(s, a))
for simulation α = 0.2

at episode 1563.

(b) Best action of
value function (Q(s, a))
for simulation α = 0.2

at episode 1564.

(c) Average difference in the
state transition networks between

simulation α = 0.05, 0.1 and
simulation α = 0.2 for
episodes 1564 to 1574.

Figure 9: Explanation of the similarity transition from identical to dissimilar at episode 1564 for Figure 8b,
which compares the allocating CT operator activity (QAct 02) with varying α and constant rL = −1, rOps = 10,
ϵ = 0.9, dϵ=0.001, γ = 0.1.

5.2 Experiment 2: Sensitivity of Varying Exploration Probability on Learning1

Agent’s Behaviour.2

The probability of exploration an agent has when interacting with the environment is crucial to converging to3

an optimal policy. Therefore, its sensitivity is investigated in this section. This experiment focuses on varying4

the exploration probability and analyzing how the learning behaviour of an agent changes. The goal of this5

experiment is to determine an optimal value for the exploration probability.6

7

Hypotheses8

H. 01 An increase in exploration probability leads to a higher reward when an agent’s policy has converged.9

10

Simulation Setup11

Table 5 presents the parameters chosen for experiment 2. It was decided to test how both learning activities12

(QAct.) respond to a change in exploration probability (ϵ) under two different spans of exploration phase. Again,13

24 Chapter 5. Experiments and Results

the span of the exploration phase was controlled through the exploration decay (dϵ). Control variables are the1

individual rewards (rL and rOps), the learning rate (α) and the discount factor (γ).2

Table 5: Input parameters for experiment 2.

Parameter Value
QAct. [QAct 01, QAct 02]
rL -1
rOps 10
α 0.1
ϵ [0.1, 0.5, 0.9]
dϵ [0.01, 0.001]
γ 0.1

Results3

An increase in exploration probability does not result in a higher reward when an agent’s policy has converged.4

Figure 10 illustrates that the total reward received upon convergence increases for decreasing exploration prob-5

ability with respect to both spans of the exploration phase in learning activity QAct 01. By contrast, Figure 116

demonstrates that the total reward received upon convergence remains the same for varying exploration proba-7

bility with respect to both spans of the exploration phase in learning activity QAct 02. A possible explanation8

for these contradictory results is that the agent gets stuck in different local optimums due to the exploration9

probability. Typically, higher exploration probability helps an agent escape a local optimum. However, in10

learning activity QAct 01, a higher exploration is detrimental because the agent is not able to put together a11

good sequence of actions. An agent takes an action every timestep, yet the operator activity OAct 03 that is12

being allocated takes on average 102 seconds to complete. Therefore, when a new luggage arrives on the recheck13

belt, it is inevitable that the agent will add a new operator before the existing operator finishes their activity.14

This reduces the punishment for waiting luggage and increases the reward for having an operator in progress.15

Furthermore, the cost of operators also increase, especially when an operator finishes their activity (i.e. not16

in progress anymore). By contrast, in learning activity QAct 02, the operator activity OAct 01 that is being17

allocated takes on average 13 seconds to complete. Therefore, when a new luggage arrives and is waiting to be18

checked, it is less likely that an agent will add a new operator before the existing operator finishes their activity.19

Hence, an increase in exploration probability does not result to a decrease in total reward received.20

(a) dϵ = 0.01 (b) dϵ = 0.001

Figure 10: Total reward received per episode from the allocating recheck operator activity (QAct 01) with
varying ϵ and constant rL = −1, rOps = 10, α = 0.1, γ = 0.1.

25

(a) dϵ = 0.01 (b) dϵ = 0.001

Figure 11: Total reward received per episode from the allocating CT operator activity (QAct 02) with varying
ϵ and constant rL = −1, rOps = 10, α = 0.1, γ = 0.1.

5.3 Experiment 3: Effect of the Reward Function on the Learning Agent’s Per-1

formance2

An agent’s policy impacts the operational efficiency of the security checkpoint. By changing inputs of the re-3

ward function, an agent learns to prioritize other factors which can lead to a different converged policy, thereby4

affecting the operation of the security checkpoint. Therefore, the effect of the reward function is examined5

in this section. This experiment focuses on varying the individual rewards (rL and rOps), thereby affecting6

the converged policy, and analyzing how the performance of the security checkpoint changes. The goal of this7

experiment is to determine which reward structures lead to beneficial policies at the security checkpoint.8

9

Hypotheses10

H. 01 An increase in the reward ratio rL/rOps leads to an increase in average number of operator over the11

duration of the simulation.12

H. 02 An increase in the reward ratio rL/rOps leads to an increase in throughput over the duration of the13

simulation.14

15

Simulation Setup16

Table 6 presents the parameters chosen for experiment 3. It was decided to test how the performance of the17

security checkpoint changes under both learning activities (QAct.) and varying individual rewards (rL and rOps).18

Control variables are the learning rate (α), the exploration probability along with its decay (ϵ and dϵ) and the19

discount factor (γ).20

Table 6: Input parameters for experiment 3.

Parameter Value
QAct. [QAct 01, QAct 02]
rL [-1,-2,-3,-5,-10]
rOps [2,5,10]
α 0.1
ϵ 0.9
dϵ 0.001
γ 0.1

Results21

The implementation of the learning agent increases the throughput of the security checkpoint and decreases22

the percentage of time spent in critical operations for the corresponding subprocess, as shown in Table 7 and23

Table 8. It is important to note that the throughput increase is greater for learning activity QAct 01 than24

learning activity QAct 02. This is because the recheck process often goes into a dieback4 during normal25

operations, which significantly reduces the throughput. By contrast, a backlog of luggage does not occur as26

4A dieback occurs when the recheck belt is full, thereby blocking the diverter from transferring luggages to the reclaim and
recheck belt.

26 Chapter 5. Experiments and Results

often in the CT process during normal operation since the operator performance of OAct 01 is sufficient to keep1

up with the demand.2

An increase to the reward ratio rL/rOps does increase the average number of operators for both learning3

activities. This result may be explained by the fact that operators are less valued in comparison to the luggage4

when the reward ratio increases. Therefore, an agent may learn that to maintain the same number of operators5

in specific states is beneficial because the punishment of having an operator available is less severe than the6

punishment for having a luggage waiting. Furthermore, it is important to note that increase in average number7

of operators is only apparent for when the reward ratio rL/rOps is greater than a threshold, 10 for QAct 018

and 5 for QAct 02. Below this threshold, the average number of operators remains the same for varying reward9

ratios. This is because the value function Q(s, a) is the same for frequently visited states.10

An increase to the reward ratio rL/rOps does not increase the throughput. This can be explained by the11

oversupply of operators. Although the average number of operators increases with increasing the reward ratio,12

the amount of work that needs to be done remains the same. Therefore, the throughput remains the same once13

a sufficient number of operator has been reached, since there is no extra work to be done. This can be seen in14

Table 7 and Table 8, where the operator utilisation decreases as the reward ratio increases.15

Table 7: Performance indicators of the security checkpoint with a learning agent performing the allocating
recheck operator activity (QAct 01) under varying reward magnitudes rL, rOps and constant α = 0.1, ϵ = 0.9,
dϵ=0.001, γ = 0.1. All values are averages of the 200 test episodes.

Learning Agent Security Performance Indicators
rL rOps rL/rOps Throughput Avg. Number Utilisation Critical Ops Time in Area

[pax/min] [−] [%] [%] [s]
OAss.03 OAss.03 Recheck Recheck

1 10 0.1 2.64 1.45 86.32 0.1 12
1 5 0.2 2.65 1.57 81.17 0.13 9
1 2 0.5 2.65 1.57 81.17 0.13 9
2 10 0.2 2.65 1.57 81.17 0.13 9
2 5 0.4 2.65 1.57 81.17 0.13 9
2 2 1.0 2.65 1.57 81.17 0.13 9
3 10 0.3 2.65 1.57 81.17 0.13 9
3 5 0.6 2.65 1.57 81.17 0.13 9
3 2 1.5 2.65 1.57 81.17 0.13 9
5 10 0.5 2.65 1.57 81.17 0.13 9
5 5 1.0 2.65 1.57 81.17 0.13 9
5 2 2.5 2.65 1.57 81.17 0.13 9
10 10 1.0 2.65 1.57 81.17 0.13 9
10 5 2.0 2.65 1.57 81.17 0.13 9
10 2 5.0 2.65 1.57 81.17 0.13 9
10 1 10.0 2.63 1.89 51.74 0.14 9
10 0.5 20.0 2.63 2.37 26.29 0.2 10
10 0.2 50.0 2.63 2.83 26.35 0.22 10
Current Ops 2.4 1.0 86.0 31.85 301

27

Table 8: Performance indicators of the security checkpoint with a learning agent performing the allocating CT
operator activity (QAct 02) under varying reward magnitudes rL, rOps and constant α = 0.1, ϵ = 0.9, dϵ=0.001,
γ = 0.1. All values are averages of the 200 test episodes.

Learning Agent Security Performance Indicators
rL rOps rL/rOps Throughput Avg. Number Utilisation Critical Ops Time in Area

[pax/min] [−] [%] [%] [s]
OAss.03 OAss.03 Recheck Recheck

1 10 0.1 2.43 1.15 70.26 11.75 25
1 5 0.2 2.43 1.15 70.26 11.75 25
1 2 0.5 2.43 1.15 70.26 11.75 25
2 10 0.2 2.43 1.15 70.26 11.75 25
2 5 0.4 2.43 1.15 70.26 11.75 25
2 2 1.0 2.43 1.15 70.28 11.84 25
3 10 0.3 2.43 1.15 70.26 11.75 25
3 5 0.6 2.43 1.15 70.26 11.75 25
3 2 1.5 2.43 1.15 70.28 11.84 25
5 10 0.5 2.43 1.15 70.26 11.75 25
5 5 1.0 2.43 1.15 70.28 11.84 25
5 2 2.5 2.43 1.15 70.28 11.84 25
10 10 1.0 2.43 1.15 70.28 11.84 25
10 5 2.0 2.43 1.15 70.28 11.84 25
10 2 5.0 2.45 1.32 61.87 11.39 24
10 1 10.0 2.45 1.61 38.49 10.39 22
10 0.5 20.0 2.42 2.09 31.18 12.82 27
10 0.2 50.0 2.43 2.92 14.48 12.05 24
Current Ops 2.4 1.0 79.57 26.55 43

6 Discussion1

This section reflects on our research objective by evaluating strengths and limitations of the study. The aim of2

the research was to develop and investigate a reinforcement learning technique for allocation of reserve airport3

security operators to improve operational efficiency of a security checkpoint. In order to achieve the research4

objective, a security checkpoint model was developed that enables the implementation of learning agents. The5

discussion begins by considering various model components and their implication on the research objective.6

Next, the learning technique components are discussed. Finally, the significance of our research in the field of7

airport security is addressed.8

6.1 Model Discussion9

Modelling Technique10

Agent-based modelling is successfully able to predict the performance of the security checkpoint by simulating11

agent and asset behaviour. The decentralized behaviour allows for easy implementation of new elements that12

follow their own set of rules, such as single or multiple learning agents. Although individual mechanisms are13

known, it is difficult to understand how an agents evolution, interaction and decision making influence the un-14

derlying processes of the model. Furthermore, these individual mechanisms are stochastic (i.e. the probabilistic15

decision making of agents and assets), which generates variability in the results. Hence, multiple simulations16

must be performed to quantify the variability of the model. Not only does this make this technique com-17

putationally demanding, but it also makes it difficult to analyze. Macroscopic behaviour of the model (i.e.18

performance indicators) can be described well using distributions because the data structures do not contain19

many dimensions. However, microscopic behaviour (i.e. decision making of each learning agent) is difficult to20

analyze because of the large data structures arising from the combination of input parameters and stochasticity21

of the model.22

23

Validation24

Validation of the model was twofold. First, expert opinion judged the realism of microscopic reactions and rela-25

tional details of the model. Then, macroscopic performance indicators of the model were compared to aggregated26

empirical output data. The main limitation is that it is unknown if alternative microscopic specifications are27

28 Chapter 6. Discussion

able to generate similar or better model dynamics. In addition, several challenges occurred when measuring and1

aggregating data. Agents complete certain activities by multi-tasking (i.e. simultaneously divesting objects into2

multiple trays), thereby making it difficult to measure. Passenger or asset performance for specific subprocesses3

are indirectly linked with the operator’s ability to provide instructions, thereby influencing the measurement.4

Lastly, activity performance distributions are aggregated from all empirical samples, whereas underlying distri-5

butions may exist depending on attributes of certain objects (i.e., passenger type or tray complexity). Further6

research should be undertaken to investigate the relation between agent/tray attributes to input parameters for7

the model (i.e., divest time or decision time) and their effects on the inner workings of the model. Lastly, it is8

important to note that the empirical data is subjected to change in the future due to modifying processes.9

10

Environment11

The model environment represents the standard security configuration of the Amsterdam Airport. Operators12

are assigned to only one activity, as opposed to rotating through multiple activities and working as a team.13

Furthermore, the checkpoint consists of only a single lane and was simulated for only a peak hour. These14

decisions were deliberate in order to simplify the allocation of operators and solely focusing on improving the15

maximum efficiency of the checkpoint. This approach has yielded initial policies for how to utilize reserve oper-16

ators, but fails to take into account the entire checkpoint. A further study with more focus on allocating reserve17

operators to the entire checkpoint is therefore suggested. In addition, further research should be undertaken to18

investigate the allocation of operators over a longer period, such as days or weeks, which would also require the19

implementation of operator teams.20

Another important aspect of the environment is its effect on the learning agent. For example, the frequency21

of states visited is strongly influenced by the dynamics of the model. Therefore, the training samples given to22

the learning agent are very skewed and prevent them from converging to good policies for states with low visits.23

It may be beneficial for the learning agent to experience more extreme scenarios in the model, however these24

are difficult to generate artificially without changing the underlying mechanisms of the model. Furthermore,25

the stochastic environment makes it difficult for an agent to differentiate between the effects of its action and26

inherent dynamics of the model. This is an important issue for future research and may be addressed by27

changing the learning technique.28

6.2 Agent Learning Discussion29

States30

For both learning activities, the states had to be directly observable by a security team leader in order for them31

to implement the policies. Therefore, questions remain whether temporal aspects (i.e. time of a luggage waiting)32

or rates (i.e. number of passenger completing previous activity over the last minute) would be beneficial for33

the learning agent to allocate operators. However, our results have demonstrated that an agent is able to learn34

realistic policies that improve operational efficiency without these more complex aspects.35

36

Actions37

For both learning activities, an agent is able to add an operator, remove an operator or choose to remain the38

same, provided that the action performed does not violate any constraints. Constraints were introduced to39

prevent a large state space (i.e. not possible to have more than 3 operators performing a certain activity)40

and prevent the model from malfunctioning (i.e. not possible to remove an operator that is performing an41

activity). Overall, the results demonstrate that these actions improve the throughput of the security checkpoint42

and decrease the average time spent in critical operations for their corresponding subprocess. However, the43

constraints force the agent to explore a specific part of the state-space, which might be undesired. Therefore, a44

further study with less constraints on the actions is suggested.45

46

Rewards47

For both learning activities, the total reward at each timestep consisted of a luggage reward, where wait-48

ing luggage was punished, and an operator reward, where operators available were punished and operators in49

progress were rewarded. This reward structure enabled the agents to learn to add an operators when there is50

excess luggage waiting and remove operators when there are excess operators available. Although the agents51

knowledge resulted in a decrease in average time in critical operations for the corresponding subprocess in both52

learning activities, it did not lead to a direct improvement in some of the security performance indicators (i.e.53

throughput). In order to prevent policies being learned that are not beneficial to the performance of the security54

checkpoint, it would be beneficial to assign rewards directly based on the performance indicators. However,55

performance indicators must be computed over a duration of time, which would require the reward received by56

an agent to be delayed by several timesteps after an action has been performed. Furthermore, it would require57

a utility function that maps all performance indicators into a scalar reward. It was decided not to implement58

performance rewards because of the credit assignment problem.59

29

1

Exploration2

The exploration strategy used for both learning activities is the ϵ-greedy policy, which has a probability of ϵ for3

taking a random action and a probability of 1-ϵ for taking the current optimal action. Our results demonstrate4

that increasing the exploration probability leads to a less skewed distribution of the frequency of visits to a5

state. Nonetheless, the model dynamics prevent the agent from reaching states with high number of luggages6

waiting because these do not occur often during operations. Furthermore, increasing exploration did not result7

in an increase in total reward received due to the interference between the dynamics of the model and random8

exploration. This interference prevented the agent from learning a good sequence of actions for states that were9

visited less frequently. Future research could use different exploration strategies, such as count-based explo-10

ration, to tackle the problem.11

12

Policies13

The policies learned by the agents for the various simulations were thematically the same. In general, agents14

learned to increase the number of operators when there were more luggages waiting than operators available15

and decreased the number of operators when there were more operators available than luggages waiting. Some16

agents showed indications of evaluating the ratio between luggages waiting and operators available differently17

in other states. This often led to an increase in total reward received since the expected return exceeded the18

immediate reward. However, these tradeoffs rarely occurred across all simulations. A possible explanation is19

that the reward function used is too restrictive, thereby forcing the agent to learn the same policy. Future20

studies should focus on developing a reward function that enables agents to evaluate the ratio between luggages21

waiting and operators available differently in other states since it is expected that these tradeoffs will improve22

the security checkpoint performance.23

6.3 Outlook on individual operator allocation at the security checkpoint using24

q-learning25

Airports managers have several strategic objectives when it comes to airport operations, as identified by the26

International Civil Aviation Organization [49]. This study has demonstrated the ability of reinforcement learning27

techniques to suggest policies that improve one of the strategic objectives, namely operational efficiency, for28

security checkpoint. It is reasonable to expect that reinforcement learning can also improve other strategic29

objectives. As such, it is an interesting topic for future research.30

The current policies are easily understandable and actionable for airport managers, such that a trial could be31

done in real-life. However, in order to fully implement these policies at a security checkpoint, there are several32

things that this study needs to improve upon. The scope of the reinforcement learning problem could be more33

realistic. For example, reserve operators should be allocated for an entire security terminal instead of a single34

security lane. Furthermore, future studies should focus on achieving better training samples for the learning35

agent, which would result in better performance of the test set. This could be achieved by including tailored36

scenarios during training. Next, the agents exploration strategies should be improved to prevent getting stuck37

in a local optimum. Lastly, financial aspects need to be considered when allocating reserve operators. A tradeoff38

should be established between cost of maintaining an average number of operators and the percentage increase39

in the throughput of the security checkpoint. This would allow airport managers to determine the amount of40

operators required to achieve a specific throughput.41

7 Conclusions42

This study set out to develop and investigate a q-learning based approach for allocation of individual operators43

to security teams in order to improve operational efficiency of a security checkpoint. The research approach44

consists of two parts. First, we modelled the security checkpoint using an agent-based approach, Second, we45

introduced a learning agent, whose goal was to allocate operators to a security team during the simulation. The46

model was calibrated and validated in collaboration with data and experts from Amsterdam Airport Schiphol.47

We demonstrated that model accurately predicts security checkpoint performance for different configuration48

scenarios. Furthermore, we identified that the CT and recheck process are the bottlenecks in the standard49

security checkpoint configuration at Amsterdam Airport Schiphol. We proposed two learning activities for50

the learning agent in order to improve the operational efficiency of a security checkpoint. Activity 1 allocates51

individual recheck operators to the recheck process. Activity 2 allocates individual CT operators to the CT52

process.53

Our results show that introducing a learning agent with Activity 1 or Activity 2 decreases the average time54

spent in critical operations for the recheck process or CT process, respectively. Furthermore, both activities55

lead to an increase in throughput of the security checkpoint. The strategies learned by the agents were to56

30 Chapter 7. Conclusions

add an operator when there is excess luggage waiting and remove an operator when there are excess operators1

available. A limitation of this study is that it failed to establish a relation between average number of operators2

and throughput of a security checkpoint lane. Consequently, it was not possible to determine the amount of3

individual operators needed for an entire security terminal.4

Based on the findings, there are several directions for further research. First, the modelling of security5

operators can be more realistic. Currently, operators work as individuals with their only goal to perform their6

respective assignment. Future studies should focus on incorporating a a hierarchy into the security team,7

consisting of a team leader and regular operators. This gives the opportunity to create team goals and develop8

coordination strategies. Second, the learning activity can be more realistic. Individual operators should be9

allocated for an entire security terminal instead of a single security lane. Furthermore, there should be a10

fixed number of reserve operators to be used. Third, multiple learning agents should be deployed during11

the simulation. Learning agents should coordinate during their learning activities when allocating individual12

operators. Lastly, financial aspects need to be considered because operational costs increase if a fixed number13

of reserve operators are maintained.14

References15

[1] Economic performance of the airline industry. End-Year Report. International Air Transport Association,16

Dec. 2019. url: https://www.iata.org/en/iata-repository/publications/economic-reports/17

airline-industry-economic-performance---december-2019---report/. [Accessed 08-10-20].18

[2] P.P.Y. Wu and K. Mengersen. “A review of models and model usage scenarios for an airport complex19

system”. In: Transportation Research Part A: Policy and Practice 47 (2013), pp. 124–140. doi: 10.1016/20

j.tra.2012.10.015.21

[3] A.R. Odoni and R. de Neufville. “Passenger terminal design”. In: Transportation Research Part A: Policy22

and Practice 26.1 (Jan. 1992), pp. 27–35. doi: 10.1016/0965-8564(92)90042-6.23

[4] V. Tosic, O. Babic, and M. Janic. “Airport passenger terminal simulation”. In: Annals of Operations24

Research in Air Transportation, Faculty of Transport and Traffic Engineering. University of Belgrade25

(1983), pp. 83–103.26

[5] S. Eilon and S. Mathewson. “A simulation study for the design of an air terminal building”. In: IEEE27

Transactions on Systems, Man, and Cybernetics 4 (July 1973), pp. 308–317. doi: 10.1109/TSMC.1973.28

4309241.29

[6] L. McCabe and M. Gorstein. “Airport Landside”. In: 1 (June 1982).30

[7] J. Skorupski and P. Uchroski. “A fuzzy model for evaluating airport security screeners work”. In: Journal31

of Air Transport Management 48 (2015), pp. 42–51. doi: 10.1016/j.jairtraman.2015.06.011.32

[8] N. Metzner. “A comparison of agent-based and discrete event simulation for assessing airport terminal33

resilience”. In: Transportation Research Procedia 43 (2019). INAIR 2019 - Global Trends in Aviation,34

pp. 209–218. issn: 2352-1465. doi: 10.1016/j.trpro.2019.12.035. url: https://www.sciencedirect.35

com/science/article/pii/S2352146519306027.36

[9] K.G. Zografos and M.A. Madas. “Development and demonstration of an integrated decision support37

system for airport performance analysis”. In: Transportation Research Part C: Emerging Technologies38

14.1 (Feb. 2006), pp. 1–17. doi: 10.1016/j.trc.2006.04.001.39

[10] M. Schultz and H. Fricke. “Managing passenger handling at airport terminals”. In: 9th Air Traffic Mana-40

gement Research and Development Seminars. 2011.41

[11] P.K. Chawdhry. “Risk modeling and simulation of airport passenger departures process”. In: Proceedings42

of the 2009 Winter Simulation Conference (WSC). Austin, TX, USA: IEEE, Dec. 2009, pp. 2820–2831.43

doi: 10.1109/WSC.2009.5429244.44

[12] J. Skorupski and P. Uchroski. “A fuzzy system to support the configuration of baggage screening devices45

at an airport”. In: Expert Systems with Applications 44 (2016), pp. 114–125. doi: 10.1016/j.eswa.2015.46

08.032.47

[13] A.A. Soukour et al. “Staff scheduling in airport security service”. In: IFAC Proceedings Volumes 45.648

(2012). 14th IFAC Symposium on Information Control Problems in Manufacturing, pp. 1413–1418. issn:49

1474-6670. doi: 10.3182/20120523- 3- RO- 2023.00169. url: https://www.sciencedirect.com/50

science/article/pii/S1474667016333493.51

[14] A. Kierzkowski and T. Kisiel. “Simulation model of security control system functioning: A case study of52

the Wroclaw Airport terminal”. In: Journal of Air Transport Management 64 (Sept. 2017), pp. 173–185.53

doi: 10.1016/j.jairtraman.2016.09.008.54

31

[15] E. Ruiz and R.L. Cheu. “Simulation model to support security screening checkpoint operations in airport1

terminals”. In: Transportation research record 2674.2 (2020), pp. 45–56. doi: 10.1177/0361198120903242.2

[16] T. Hagras and J. Janeek. “Static vs. dynamic list-scheduling performance comparison”. In: Acta Polytech-3

nica 43.6 (2003).4

[17] C. Shyalika, T. Silva, and A. Karunananda. “Reinforcement Learning in Dynamic Task Scheduling: A5

Review”. In: SN Computer Science 1.6 (2020), pp. 1–17. doi: 10.1007/s42979-020-00326-5.6

[18] G.F. Newell. Applications of queueing theory. Chapman and Hall, 1982.7

[19] F.X. McKelvey. “Use of an analytical queuing model for airport terminal design”. In: Transportation8

Research Record (1988), pp. 4–11.9

[20] W. Kim, Y. Park, and B.J. Kim. “Estimating hourly variations in passenger volume at airports using10

dwelling time distributions”. In: Journal of Air Transport Management 10.6 (Nov. 2004), pp. 395–400.11

doi: 10.1016/j.jairtraman.2004.06.009.12

[21] S. Solak, J.P.B Clarke, and E.L. Johnson. “Airport terminal capacity planning”. In: Transportation Re-13

search Part B: Methodological 43.6 (July 2009), pp. 659–676. doi: 10.1016/j.trb.2009.01.002.14

[22] R. Lui, R. Nanda, and J.J. Browne. “International passenger and baggage processing at john f. kennedy15

international airport”. In: IEEE Transactions on Systems, Man, and Cybernetics 2 (Apr. 1972), pp. 221–16

225. doi: 10.1109/TSMC.1972.4309096.17

[23] J.P. Braaksma and W.J. Cook. “Human orientation in transportation terminals”. In: Transportation en-18

gineering journal of the American Society of Civil Engineers 106.2 (1980), pp. 189–203.19

[24] K.J. Hee and Y.C. Zeph. “An airport passenger terminal simulator: A planning and design tool”. In:20

Simulation Practice and Theory 6.4 (1998), pp. 387–396. issn: 09284869. doi: 10.1016/S0928-4869(97)21

00018-9.22

[25] H.K. Jim and Z.Y. Chang. “An airport passenger terminal simulator: A planning and design tool”. In:23

Simulation Practice and Theory 6.4 (May 1998), pp. 387–396. doi: 10.1016/S0928-4869(97)00018-9.24

[26] M.R. Gatersleben and S.W. van der Weij. “Analysis and Simulation of Passenger Flows in an Airport25

Terminal”. In: Proceedings of the 31st Conference on Winter Simulation: A Bridge to the Future. Vol. 2.26

Phoenix, Arizona, USA: Association for Computing Machinery, Dec. 1999, pp. 1226–1231. doi: 10.1145/27

324898.325045.28

[27] M.S. Fayez et al. “Managing airport operations using simulation”. In: Journal of Simulation 2.1 (Dec.29

2008), pp. 41–52. doi: 10.1057/palgrave.jos.4250030.30

[28] P.E. Joustra and N.M. Van Dijk. “Simulation of check-in at airports”. In: Proceeding of the 2001 Winter31

Simulation Conference. Vol. 2. Arlington, VA, USA: IEEE, Dec. 2001, pp. 1023–1028. doi: 10.1109/WSC.32

2001.977409.33

[29] S. Appelt et al. “Simulation of passenger check-in at a medium-sized US airport”. In: 2007 Winter Simu-34

lation Conference. IEEE. Dec. 2007, pp. 1252–1260. doi: 10.1109/WSC.2007.4419729.35

[30] I.E. Manataki and K.G. Zografos. “A generic system dynamics based tool for airport terminal performance36

analysis”. In: Transportation Research Part C: Emerging Technologies 17.4 (Aug. 2009), pp. 428–443. doi:37

10.1016/j.trc.2009.02.001.38

[31] I.E. Manataki and K.G. Zografos. “Assessing airport terminal performance using a system dynamics39

model”. In: Journal of Air Transport Management 16.2 (Mar. 2010), pp. 86–93. doi: 10 . 1016 / j .40

jairtraman.2009.10.007.41

[32] M. Bevilacqua and F.E. Ciarapica. “Analysis of check-in procedure using simulation: a case study”. In:42

2010 IEEE International Conference on Industrial Engineering and Engineering Management. IEEE.43

Macao, China, Dec. 2010, pp. 1621–1625. doi: 10.1109/IEEM.2010.5674286.44

[33] D. Wilson, E.K. Roe, and S.A. So. “Security checkpoint optimizer (SCO): An application for simulating45

the operations of airport security checkpoints”. In: Proceedings of the 2006 Winter Simulation Conference.46

Monterey, CA, USA: IEEE, Dec. 2006, pp. 529–535. doi: 10.1109/WSC.2006.323126.47

[34] L. Cheng et al. “Analysis of passenger group behaviour and its impact on passenger flow using an agent-48

based model”. In: 2014 4th International Conference On Simulation And Modeling Methodologies, Tech-49

nologies And Applications. IEEE. Vienna, Austria, 2014, pp. 733–738. doi: 10.5220/0005086807330738.50

[35] S. Janssen, A. Sharpanskykh, and R. Curran. “Agent-based modelling and analysis of security and effi-51

ciency in airport terminals”. In: Transportation research part C: emerging technologies 100 (2019), pp. 142–52

160. doi: 10.1016/j.trc.2019.01.012.53

32 Chapter 7. Conclusions

[36] A. Verma, D. Tahlyan, and S. Bhusari. “Agent based simulation model for improving passenger service1

time at Bangalore airport”. In: Case Studies on Transport Policy 8.1 (2020), pp. 85–93. doi: 10.1016/j.2

cstp.2018.03.001.3

[37] S. Janssen et al. “AATOM: An Agent-Based Airport Terminal Operations Model Simulator”. In: Sum-4

merSim ’19. Berlin, Germany: Society for Computer Simulation International, July 2019, p. 12. doi:5

10.5555/3374138.3374158.6

[38] V.L.L. Babu, R. Batta, and L. Lin. “Passenger grouping under constant threat probability in an airport7

security system”. In: European Journal of Operational Research 168.2 (Jan. 2006), pp. 633–644. doi:8

10.1016/j.ejor.2004.06.007.9

[39] X. Nie et al. “Passenger grouping with risk levels in an airport security system”. In: European Journal of10

Operational Research 194.2 (Apr. 2009), pp. 574–584. doi: 10.1016/j.ejor.2007.12.027.11

[40] E. Miller, G. LaFree, and L. Dugan. Global Terrorism Database. National Consortium for the Study of12

Terrorism and Responses to Terrorism. May 2018. url: https://start.umd.edu/data-tools/global-13

terrorism-database-gtdg. [Online; Accessed 08-10-20].14

[41] J. Skorupski and P. Uchroski. “A fuzzy model for evaluating metal detection equipment at airport security15

screening checkpoints”. In: International Journal of Critical Infrastructure Protection 16 (2017), pp. 39–16

48. doi: 10.1016/j.ijcip.2016.11.001.17

[42] J. Skorupski and P. Uchroski. “A fuzzy reasoning system for evaluating the efficiency of cabin baggage18

screening at airports”. In: Transportation Research Part C: Emerging Technologies 54 (2015), pp. 157–175.19

doi: 10.1016/j.trc.2015.03.017.20

[43] Regulation (EC) No 300/2008. Legislation Report L 97/72. European Comission, Mar. 2008. url: https:21

//eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008R0300&from=EN. [Accessed22

08-10-20].23

[44] S. Janssen et al. “Data-Driven Analysis of Airport Security Checkpoint Operations”. In: Aerospace 7.624

(May 2020), p. 69. doi: 10.3390/aerospace7060069.25

[45] C.E. Brown. “Coefficient of variation”. In: Applied multivariate statistics in geohydrology and related26

sciences. Springer, 1998, pp. 155–157. doi: 10.1007/978-3-642-80328-4_13.27

[46] C. Watkins and P. Dayan. “Q-learning”. In: Machine learning 8.3-4 (1992), pp. 279–292. doi: 10.1007/28

BF00992698.29

[47] R.S. Sutton and A.G. Barto. Reinforcement learning: An introduction. MIT press, 2018.30

[48] D. Koutra, J.T. Vogelstein, and C. Faloutsos. “Deltacon: A principled massive-graph similarity function”.31

In: Proceedings of the 2013 SIAM International Conference on Data Mining. SIAM. 2013, pp. 162–170.32

[49] Strategic objectives of ICAO for 2005-2010. Strategic Report. International Civil Aviation Organization,33

Dec. 2004. url: https://www.icao.int/Documents/strategic-objectives/strategic_objectives_34

2005_2010_en.pdf. [Accessed 08-10-20].35

33

Appendices1

34 Chapter B. Performance Indicators for the Security Checkpoint with QAct. 02

A Performance Indicators for the Security Checkpoint with QAct. 011

Ta
bl

e
9:

Pe
rf

or
m

an
ce

in
di

ca
to

rs
of

th
e

se
cu

rit
y

ch
ec

kp
oi

nt
w

ith
a

le
ar

ni
ng

ag
en

t
pe

rf
or

m
in

g
th

e
al

lo
ca

tin
g

re
ch

ec
k

op
er

at
or

ac
tiv

ity
(Q

A
c
t

02
)

un
de

r
va

ry
in

g
co

nfi
gu

ra
tio

ns
.

Si
m

ul
at

or
R

es
ul

ts
r L

r O
p
s

α
ϵ

d
ϵ

γ
T

hr
ou

gh
pu

t
A

vg
.

N
um

be
r

U
til

is
at

io
n

C
ri

tic
al

O
ps

T
im

e
in

A
re

a
[p
a
x
/
m
in

]
[−

]
[%

]
[%

]
[s

]
O

A
s
s
.0
1

O
A
s
s
.0
2

O
A
s
s
.0
3

O
A
s
s
.0
1

O
A
s
s
.0
2

O
A
s
s
.0
3

C
T

SS
c

R
ec

la
im

R
ec

he
ck

D
iv

es
t

SS
c

R
ec

la
im

R
ec

he
ck

1
10

0.
05

0.
9

0.
00

1
0.

1
2.

64
1.

0
2.

0
1.

45
84

.9
6

45
.2

5
86

.3
2

17
.0

6
8.

16
0.

02
0.

1
84

22
29

12
1

10
0.

05
0.

9
0.

01
0.

1
2.

63
1.

0
2.

0
1.

37
85

.0
45

.3
4

88
.8

16
.4

8.
0

0.
21

2.
29

85
22

28
37

1
10

0.
1

0.
1

0.
00

1
0.

1
2.

63
1.

0
2.

0
1.

36
84

.9
3

45
.1

4
88

.5
9

16
.7

7
7.

64
0.

03
0.

53
85

22
28

24
1

10
0.

1
0.

1
0.

01
0.

1
2.

63
1.

0
2.

0
1.

36
84

.9
2

45
.1

1
88

.5
9

16
.6

8
7.

63
0.

03
0.

53
85

22
28

24
1

10
0.

1
0.

5
0.

00
1

0.
1

2.
63

1.
0

2.
0

1.
59

84
.4

8
45

.0
3

82
.3

3
15

.6
5

7.
82

0.
01

0.
16

85
22

27
9

1
10

0.
1

0.
5

0.
01

0.
1

2.
63

1.
0

2.
0

1.
59

84
.4

8
45

.0
3

82
.3

3
15

.6
5

7.
82

0.
01

0.
16

85
22

27
9

1
10

0.
1

0.
9

0.
00

1
0.

1
2.

64
1.

0
2.

0
1.

45
84

.9
6

45
.2

5
86

.3
2

17
.0

6
8.

16
0.

02
0.

1
84

22
29

12
1

10
0.

1
0.

9
0.

01
0.

1
2.

62
1.

0
2.

0
1.

59
84

.2
6

44
.9

1
82

.3
4

15
.7

9
7.

75
0.

02
0.

41
85

22
27

9
1

10
0.

2
0.

9
0.

00
1

0.
1

2.
63

1.
0

2.
0

1.
32

84
.8

45
.4

5
90

.6
1

16
.7

9
8.

35
0.

03
0.

12
84

23
28

19
1

10
0.

2
0.

9
0.

01
0.

1
2.

63
1.

0
2.

0
1.

32
84

.7
6

45
.4

2
90

.6
16

.7
2

8.
3

0.
04

0.
18

84
22

28
20

1
2

0.
1

0.
9

0.
00

1
0.

1
2.

65
1.

0
2.

0
1.

57
85

.0
7

45
.7

9
81

.1
7

16
.4

4
8.

34
0.

03
0.

13
84

23
28

9
1

5
0.

1
0.

9
0.

00
1

0.
1

2.
65

1.
0

2.
0

1.
57

85
.0

7
45

.7
9

81
.1

7
16

.4
4

8.
34

0.
03

0.
13

84
23

28
9

10
0.

2
0.

1
0.

9
0.

00
1

0.
1

2.
63

1.
0

2.
0

2.
83

84
.7

2
45

.1
2

26
.3

5
15

.8
1

8.
09

0.
01

0.
22

84
22

27
10

10
0.

5
0.

1
0.

9
0.

00
1

0.
1

2.
63

1.
0

2.
0

2.
37

84
.7

9
44

.9
8

26
.2

9
15

.9
3

8.
07

0.
02

0.
2

85
22

28
10

10
1

0.
1

0.
9

0.
00

1
0.

1
2.

63
1.

0
2.

0
1.

89
84

.6
4

45
.0

6
51

.7
4

15
.2

7
7.

96
0.

01
0.

14
85

22
27

9
10

10
0.

1
0.

9
0.

00
1

0.
1

2.
65

1.
0

2.
0

1.
57

85
.0

7
45

.7
9

81
.1

7
16

.4
4

8.
34

0.
03

0.
13

84
23

28
9

10
2

0.
1

0.
9

0.
00

1
0.

1
2.

65
1.

0
2.

0
1.

57
85

.0
7

45
.7

9
81

.1
7

16
.4

4
8.

34
0.

03
0.

13
84

23
28

9
10

5
0.

1
0.

9
0.

00
1

0.
1

2.
65

1.
0

2.
0

1.
57

85
.0

7
45

.7
9

81
.1

7
16

.4
4

8.
34

0.
03

0.
13

84
23

28
9

2
10

0.
1

0.
9

0.
00

1
0.

1
2.

65
1.

0
2.

0
1.

57
85

.0
7

45
.7

9
81

.1
7

16
.4

4
8.

34
0.

03
0.

13
84

23
28

9
2

2
0.

1
0.

9
0.

00
1

0.
1

2.
65

1.
0

2.
0

1.
57

85
.0

7
45

.7
9

81
.1

7
16

.4
4

8.
34

0.
03

0.
13

84
23

28
9

2
5

0.
1

0.
9

0.
00

1
0.

1
2.

65
1.

0
2.

0
1.

57
85

.0
7

45
.7

9
81

.1
7

16
.4

4
8.

34
0.

03
0.

13
84

23
28

9
3

10
0.

1
0.

9
0.

00
1

0.
1

2.
65

1.
0

2.
0

1.
57

85
.0

7
45

.7
9

81
.1

7
16

.4
4

8.
34

0.
03

0.
13

84
23

28
9

3
2

0.
1

0.
9

0.
00

1
0.

1
2.

65
1.

0
2.

0
1.

57
85

.0
7

45
.7

9
81

.1
7

16
.4

4
8.

34
0.

03
0.

13
84

23
28

9
3

5
0.

1
0.

9
0.

00
1

0.
1

2.
65

1.
0

2.
0

1.
57

85
.0

7
45

.7
9

81
.1

7
16

.4
4

8.
34

0.
03

0.
13

84
23

28
9

5
10

0.
1

0.
9

0.
00

1
0.

1
2.

65
1.

0
2.

0
1.

57
85

.0
7

45
.7

9
81

.1
7

16
.4

4
8.

34
0.

03
0.

13
84

23
28

9
5

2
0.

1
0.

9
0.

00
1

0.
1

2.
65

1.
0

2.
0

1.
57

85
.0

7
45

.7
9

81
.1

7
16

.4
4

8.
34

0.
03

0.
13

84
23

28
9

5
5

0.
1

0.
9

0.
00

1
0.

1
2.

65
1.

0
2.

0
1.

57
85

.0
7

45
.7

9
81

.1
7

16
.4

4
8.

34
0.

03
0.

13
84

23
28

9
C

ur
re

nt
O

ps
2.

4
1.

0
2.

0
1.

0
79

.5
7

42
.4

4
86

.0
26

.5
5

6.
45

1.
96

31
.8

5
90

21
43

30
1

2

35

B Performance Indicators for the Security Checkpoint with QAct. 021

Ta
bl

e
10

:
Pe

rf
or

m
an

ce
in

di
ca

to
rs

of
th

e
se

cu
rit

y
ch

ec
kp

oi
nt

w
ith

a
le

ar
ni

ng
ag

en
t

pe
rf

or
m

in
g

th
e

al
lo

ca
tin

g
C

T
op

er
at

or
ac

tiv
ity

(Q
A
c
t

02
)

un
de

r
va

ry
in

g
co

nfi
gu

ra
tio

ns
.

Si
m

ul
at

or
R

es
ul

ts
r L

r O
p
s

α
ϵ

d
ϵ

γ
T

hr
ou

gh
pu

t
A

vg
.

N
um

be
r

U
til

is
at

io
n

C
ri

tic
al

O
ps

T
im

e
in

A
re

a
[p
a
x
/
m
in

]
[−

]
[%

]
[%

]
[s

]
O

A
s
s
.0
1

O
A
s
s
.0
2

O
A
s
s
.0
3

O
A
s
s
.0
1

O
A
s
s
.0
2

O
A
s
s
.0
3

C
T

SS
c

R
ec

la
im

R
ec

he
ck

D
iv

es
t

SS
c

R
ec

la
im

R
ec

he
ck

1
10

0.
05

0.
9

0.
00

1
0.

1
2.

43
1.

15
2.

0
1.

0
70

.2
6

43
.4

6
86

.9
11

.7
5

7.
59

2.
86

30
.1

6
90

22
25

30
4

1
10

0.
05

0.
9

0.
01

0.
1

2.
43

1.
15

2.
0

1.
0

70
.2

8
43

.4
7

86
.8

9
11

.8
7.

56
2.

8
30

.1
7

90
22

25
30

4
1

10
0.

1
0.

1
0.

00
1

0.
1

2.
42

1.
15

2.
0

1.
0

70
.3

1
43

.3
4

86
.9

7
12

.1
1

7.
53

3.
02

31
.0

3
90

22
25

30
8

1
10

0.
1

0.
1

0.
01

0.
1

2.
44

1.
16

2.
0

1.
0

70
.5

7
43

.6
2

86
.6

8
11

.4
6

6.
89

2.
99

30
.7

8
89

22
24

30
6

1
10

0.
1

0.
5

0.
00

1
0.

1
2.

42
1.

15
2.

0
1.

0
70

.3
1

43
.3

4
86

.9
7

12
.1

1
7.

53
3.

02
31

.0
3

90
22

25
30

8
1

10
0.

1
0.

5
0.

01
0.

1
2.

42
1.

15
2.

0
1.

0
70

.3
2

43
.3

6
86

.9
9

12
.1

1
7.

54
3.

02
31

.0
5

90
22

25
30

8
1

10
0.

1
0.

9
0.

00
1

0.
1

2.
43

1.
15

2.
0

1.
0

70
.2

6
43

.4
6

86
.9

11
.7

5
7.

59
2.

86
30

.1
6

90
22

25
30

4
1

10
0.

1
0.

9
0.

01
0.

1
2.

43
1.

15
2.

0
1.

0
70

.2
8

43
.4

7
86

.8
9

11
.8

7.
56

2.
8

30
.1

7
90

22
25

30
4

1
10

0.
2

0.
9

0.
00

1
0.

1
2.

44
1.

08
2.

0
1.

0
75

.2
3

43
.2

5
87

.0
6

11
.3

8
6.

49
3.

04
31

.4
9

89
21

24
31

5
1

10
0.

2
0.

9
0.

01
0.

1
2.

44
1.

08
2.

0
1.

0
75

.2
6

43
.1

2
87

.0
4

11
.5

6.
43

2.
94

31
.6

8
89

21
24

31
6

1
2

0.
1

0.
9

0.
00

1
0.

1
2.

43
1.

15
2.

0
1.

0
70

.2
6

43
.4

6
86

.9
11

.7
5

7.
59

2.
86

30
.1

6
90

22
25

30
4

1
5

0.
1

0.
9

0.
00

1
0.

1
2.

43
1.

15
2.

0
1.

0
70

.2
6

43
.4

6
86

.9
11

.7
5

7.
59

2.
86

30
.1

6
90

22
25

30
4

10
0.

2
0.

1
0.

9
0.

00
1

0.
1

2.
43

2.
92

2.
0

1.
0

14
.4

8
43

.2
6

86
.6

7
12

.0
5

7.
67

3.
37

33
.0

7
89

23
24

32
2

10
0.

5
0.

1
0.

9
0.

00
1

0.
1

2.
42

2.
09

2.
0

1.
0

31
.1

8
42

.6
87

.4
1

12
.8

2
7.

28
3.

5
32

.6
4

90
22

27
33

2
10

1
0.

1
0.

9
0.

00
1

0.
1

2.
45

1.
61

2.
0

1.
0

38
.4

9
43

.1
8

87
.3

4
10

.3
9

7.
17

2.
74

31
.8

1
89

22
22

30
6

10
10

0.
1

0.
9

0.
00

1
0.

1
2.

43
1.

15
2.

0
1.

0
70

.2
8

43
.4

7
86

.9
11

.8
4

7.
6

2.
86

30
.1

8
90

22
25

30
5

10
2

0.
1

0.
9

0.
00

1
0.

1
2.

45
1.

32
2.

0
1.

0
61

.8
7

43
.2

5
87

.3
5

11
.3

9
7.

77
2.

76
32

.9
89

23
24

31
5

10
5

0.
1

0.
9

0.
00

1
0.

1
2.

43
1.

15
2.

0
1.

0
70

.2
8

43
.4

7
86

.9
11

.8
4

7.
6

2.
86

30
.1

8
90

22
25

30
5

2
10

0.
1

0.
9

0.
00

1
0.

1
2.

43
1.

15
2.

0
1.

0
70

.2
6

43
.4

6
86

.9
11

.7
5

7.
59

2.
86

30
.1

6
90

22
25

30
4

2
2

0.
1

0.
9

0.
00

1
0.

1
2.

43
1.

15
2.

0
1.

0
70

.2
8

43
.4

7
86

.9
11

.8
4

7.
6

2.
86

30
.1

8
90

22
25

30
5

2
5

0.
1

0.
9

0.
00

1
0.

1
2.

43
1.

15
2.

0
1.

0
70

.2
6

43
.4

6
86

.9
11

.7
5

7.
59

2.
86

30
.1

6
90

22
25

30
4

3
10

0.
1

0.
9

0.
00

1
0.

1
2.

43
1.

15
2.

0
1.

0
70

.2
6

43
.4

6
86

.9
11

.7
5

7.
59

2.
86

30
.1

6
90

22
25

30
4

3
2

0.
1

0.
9

0.
00

1
0.

1
2.

43
1.

15
2.

0
1.

0
70

.2
8

43
.4

7
86

.9
11

.8
4

7.
6

2.
86

30
.1

8
90

22
25

30
5

3
5

0.
1

0.
9

0.
00

1
0.

1
2.

43
1.

15
2.

0
1.

0
70

.2
6

43
.4

6
86

.9
11

.7
5

7.
59

2.
86

30
.1

6
90

22
25

30
4

5
10

0.
1

0.
9

0.
00

1
0.

1
2.

43
1.

15
2.

0
1.

0
70

.2
6

43
.4

6
86

.9
11

.7
5

7.
59

2.
86

30
.1

6
90

22
25

30
4

5
2

0.
1

0.
9

0.
00

1
0.

1
2.

43
1.

15
2.

0
1.

0
70

.2
8

43
.4

7
86

.9
11

.8
4

7.
6

2.
86

30
.1

8
90

22
25

30
5

5
5

0.
1

0.
9

0.
00

1
0.

1
2.

43
1.

15
2.

0
1.

0
70

.2
8

43
.4

7
86

.9
11

.8
4

7.
6

2.
86

30
.1

8
90

22
25

30
5

C
ur

re
nt

O
ps

2.
4

1.
0

2.
0

1.
0

79
.5

7
42

.4
4

86
.0

26
.5

5
6.

45
1.

96
31

.8
5

90
21

43
30

1

2

II
Literature Study

Previously graded under AE4020.

37

Chapter 1

Introduction
Air transportation is one of the backbones to modern society and a driving force behind globalization. In
2018, the expenditure on air transport alone was 1% of the worlds GDP, equivalent to $845 billion Economic
performance of the airline industry . In this critical infrastructure, airports make up central nodes, where the
circulation of people, resources and capital are managed. Airports are constantly evaluating their terminal
procedures to ensure safety at the airport and on-board the aircraft, while maintaining an efficient level of
service. Efficient airport security implies minimal waiting times for each activity, thereby creating constant
flow of passengers/luggage from terminal entrance to gate. However, minimal waiting times contradict
effective security procedures. The juxtaposition between efficiency and security is evident and outlined as
two of the six strategic objectives by the International Civil Aviation Organization Strategic objectives of
ICAO for 2005-2010 .

Since 9/11, terrorism has transformed airport security into a global dilemma Schouten (2014). The
Transportation Security Administration (TSA) was established by the Aviation and Transportation Security
Act to provide security for the transportation system of the nation following the incident. Their budget
for 2019 totalled at $7.8billion dollars according to FY 2020 Budget in Brief . In contrast, European total
expenditure (18 states) totalled $2.7billion in 2002 and was estimated to be $7.6billion dollars in 2013 by
Study on civil aviation security financing . Despite these investments, terrorists are able to exploit vulner-
abilities at airport terminals, leading to continuous attempts of attacks Miller et al. (2018). Aviation has
been a continuous target for terrorist attacks following 9/11 with several bombing attempts, such as the
Brussels airport attack or the underwear bomber on flight 253 from Amsterdam to Detroit Miller et al.
(2018). Therefore, there is a continuous need for improvement in security operations and infrastructure.

Amsterdam Schiphol Airport is developing a new concept for aviation security operations, which should
be implemented on both departure and transfer filters by 2024. The new concept should provide a solution
to the security and efficiency challenges that the air transport industry is facing today. To create this new
concept, modelling and simulation is necessary to track security and efficiency.

This report examines existing literature on the aforementioned challenges. Chapter 2 begins by introduc-
ing regulations for airport terminals before examining each specific security checkpoint activity. Furthermore,
it introduces Schiphol Airport current security concept, which will be used as a baseline model to evaluate
other concepts. In order to be able to simulate security concepts, it is necessary to know how these operations
can be modelled. Hence, Chapter 3 presents existing simulation models of airport terminals, focusing on the
three key themes: capacity, efficiency and security. Often these models are expanded into airport terminal
simulation software. Therefore, Chapter 4 describes existing software developed by the government, industry
and academia. Simulation software is of paramount importance as it allows airport designers to test their
concepts before evaluating them in real life. Since, airport terminal simulation models have widely been
explored, techniques for optimizing and determining optimal policies are analyzed in the following chapters.
These techniques are interesting to analyze because they allow researchers to gain new insights in their sim-
ulation models or develop new operational concepts from their simulation models. Chapter 5 deep dives into
the field of simulation optimization, a term for techniques used to optimize stochastic simulations. Chap-
ter 6 begins by laying out the fundamentals of reinforcement learning (learning through interaction with the
environment), then describes the challenges experienced with learning systems (sparse rewards and reward
shaping) and continues to express other types of learning systems (automated planning and multi-agent
learning).

39

Chapter 2

Airport Terminal
In this chapter, the Schiphol Airport terminal is introduced. Section 2.1 presents regulations imposed on
the civil aviation security within the EU. They represent guidelines that must be followed by Schiphol. Next,
the security checkpoint of Schiphol Airport is introduced in Section 2.2. Finally, the passenger activities and
steps at a security checkpoint are outline in Section 2.3. It is important to note that this focuses on the
security Terminal 3 at Schiphol Airport.

2.1. EU Regulations
2.1.1. Common Rules of Civil Aviation Security
Regulation (EC) No 300/2008 govern aviation safety by defining general rules and minimum requirements
applicable to all civil airports in the EU (i.e. including Schiphol Airport) as well as to air carriers and businesses
delivering services/goods through or to these airports. It replaces Regulation (EC) No 2320/2002 , which
established common rules of civil aviation security in the aftermath of the September 11, 2001 attacks.
Common basic standards for protecting civil aviation are summarized in the list below.

Reg. 01 Screening of Passenger and Cabin Baggage
To avoid the carrying of banned articles on board the aircraft, such as guns and explosives.

Reg. 02 Screen Hold (Check-In) Luggage
To stop prohibited luggage to be loaded onto the aircraft.

Reg. 03 Airport Security
To control access to different areas of aiports (i.e. staff screening, vehicle checks, surveillance
and patrols). To prohibit the entrance of unauthorised people into these areas. To ensure that
there are no prohibited articles on board.

Reg. 04 Security Controls of Cargo
To stop prohibited articles being loaded on to the aircraft.

Reg. 05 Security Controls for Airport Supplies
To control supplies intended for shops/restaurant or in-flight. To ensure that no prohibited articles
enter the airport.

Reg. 06 Staff Recruitment and Training
To ensure that staff is not suspicious.

Reg. 07 Security Equipment Performance
To ensure that equipment is capable of performing the security controls concerned.

In November 2015, the European Commission adopted Implementing Regulation (EU) 2015/1998 , which
presents procedures on how to monitor airports implementation of these regulations. This regulation repealed
Regulation (EC) No 185/2010 , as it was amended more than 20times.

The amendments recognize a list of non-EU countries that apply equivalent standards to those of the
EU on civil aviation security Furthermore, it introduces new rules regarding civil aviation security. New
obligations on EU counties and airports/airlines are as follows.

Each EU country must:

• Designate a single authority responsible for the protection of aviation.
• Establish a national programme for civil aviation security to define responsibilities for the implementa-

tion of the common basic standards.
• Establish a national programme for quality management to verify the quality of civil aviation security.

Each airport or air carrier:

41

42 Part II Chapter 2. Airport Terminal

• Define and implement a security programme.
• Ensure internal quality control.

The Commission performs inspections on airports, airport carriers and other companies in collaboration
with national authorities. Any shortcoming must be corrected by the national authority, which are responsible
for quality control and enforcement of aviation security. Hence, they must carry out audits and inspections
of relevant businesses.

2.1.2. Common Evaluation Process of Security Equipment
The ECAC Common Evaluation Process of Security Equipment is a security equipment testing program
against the performance requirements of the European Civil Aviation Conference (ECAC), developed by
ECAC member states. These requirements provide the national administration with a common reference for
the certification of security equipment installed at airports.

In addition, the ECAC publishes tested configurations that have met the Common Evaluation Process
(CEP) standard to their website. These configurations can be used by industry stakeholders (i.e. airports).
Non-ECAC nations, such as Australia, Canada, Israel or the United States, have their own security equipment
testing programmes. However, they understand the importance of the CEP and engage in ECAC professional
meetings to share knowledge and work toward harmonization of performance requirements and testing pro-
cedures.

The aims of the CEP are:

• To assess the technical efficiency of the security equipment in an impartial and systematic way through
the various Participating Test Centers involved in the process.

• To provide ECAC Member States with accurate reports on equipment performance against the technical
standards adopted.

The CEP currently applies to the following categories of security equipment:

• Explosive Detection Systems (EDS)
• Liquid Explosive Detection Systems (LEDS)
• Security Scanners (SSc)
• Explosive Trace Detection (ETD) equipment
• Metal Detection Equipment (MDE)
• Explosive Detection Systems for Cabin Baggage (EDSCB)
• Walk Through Metal Detectors (WTMD)

2.2. Security Configuration
The current security configuration at terminal 3 of Schiphol Airport is depicted in Figure 2.1. As can be
seen in the figure, there is a divest belt with 3 divest positions, where passengers are able to drop off their
luggage. The average divest time is approximately 40 seconds. Each passenger has a unique divest time
that depends on how fast they are able to drop off their luggage.

The divest belt flows into the infeed belt which flows into the x-ray belt. Airport operators are able to
control the speed of the infeed belt and x-ray belt. A CT scanner is located on the x-ray belt and is operated
by a single operator (or sometimes multiple). Operators determine with the help of reject rate algorithms
whether or not a luggage is suspicious. The average decision time for rejecting a luggage is 12 to 15 seconds.
It is important to note that the decision time varies per tray/luggage.

Once through the x-ray belt, the luggage flows onto the decision belt. In an ideal situation, the operator
makes a decision of whether or not to reject the luggage before it arrives at the end of the belt. Once a
decision has been made, the luggage moves to reclaim belt or reject belt if marked unsuspicious or suspicious
respectively. However, if the operator has not made a decision, then the luggage waits at the end of the
decision belt until one has been made (or after 30seconds it automatically gets rejected).

When the luggage is on the reclaim belt, the passenger is free to pack his belongings and pick up his
luggage. By contrast, when the luggage is on the reject belt, then the passenger must wait for an airport
operator to check their luggage before they can collect their belongings.

2.3. Security Checkpoint Activities Part II 43

Figure 2.1: Current security checkpoint concept at terminal 3 of Schiphol Airport

2.3. Security Checkpoint Activities
In this section, the airport security checkpoint activities are described. A passenger first enters a queue
(Section 2.3.1), then he is directed to a security lane station where a baggage drop position is allocated
(Section 2.3.2). Once the passenger has a drop position, he proceeds to unload his luggage onto the xray
belt (Section 2.3.3). Next, the passenger and the luggage are screened for forbidden items (Section 2.3.4).
If the alarm of one of the systems is triggered during screening, then an additional screening is done (Sec-
tion 2.3.5). Once screening (or additional screening) are finished, the passenger proceeds to reclaim their
luggage (Section 2.3.6).

2.3.1. Queue
The first process encountered by a passenger entering the security checkpoint is the queue. The queue is a
one-way directional system, therefore once a passenger enters it, they will follow the queue until they reach
its endpoint. Furthermore, passengers are not able to overtake other passenger in-line while in the queue.
Passengers accumulate in the queue as a result of the arrival rate of passengers to the security checkpoint
and the throughput of the security checkpoint system. This phenomenon is known as queue forming. It is
important to note that this phenomenon cannot be influenced by passengers or operators.

2.3.2. Lane and Position Allocation
After queueing has finished, the passengers reach the lane and position allocation. At Schiphol Airport it was
initially believed that the passengers intuitively find their way through the security filter and automatically
move from the waiting area to an available drop-off position in an open lane. In practice, it has been found
that a number of the passengers have difficulty making the choice themselves. In order to achieve the highest
possible traffic flow, Schiphol has decided to hire assigners (this is not qualified security personnel) for these
two different positions, see the figure below.

Figure 2.2: Position assigners at security checkpoint
red = channel assignment, yellow = position assignment

At the front of a security filter, after the queue barriers, one lane assigner indicates to the passenger
which side (left / right) the passenger may take to go through security. If several lanes are open, extra lane
assigners will guide the passenger further along the queue area and send them to the exact lane where they
have to join a mini queue.

As soon as the passenger is in the bay, they are, again, received by a position assigner and as soon as
a position is available, they are transferred to 1 of 6 drop-off positions (each lane has 3 drop-off positions)

44 Part II Chapter 2. Airport Terminal

where the passenger can prepare before everything is checked.
These assigner roles will soon become automated at Schiphol Airport, allowing passengers to move

independently first the correct lane and then to the assigned drop-off position.

2.3.3. Baggage Drop
Once a passenger has received a drop-off position, the passenger is able to enter the security lane. They then
proceed to put all their relevant baggage and belongings into trays onto the conveyor belt, as directed by
one of the airport operators. This includes all carry-on baggage, electronics, liquids and other items. Both
passenger and luggage then proceed onto the screening process.

2.3.4. Screening
Passenger and luggage are subjected to screening via a body scanner and x-ray (CT) scanner system respec-
tively. The body scanner searches for any metallic objects on the passenger and triggers an alarm if one is
detected. Similarly, the xray scanner produces three types of images that are shown to an operator, who is
then able to trigger an alarm should there be something suspicious.

2.3.5. Additional Screening
If the body scanner detects the presence of a suspicious object on the passenger, an extra inspection of the
passenger is conducted in the form of a pat-down. A security employee gets indicated where the suspicious
object is located on the body via the body scanner. They then proceed to follow the the contours of the
passengers in the vicinity of the objects location in order to identify the object. Once the pat-down is
completed, the passenger is let through provided that the object was deemed unsuspicious.

When an x-ray scanner detects the presence of items that do not comply with security regulations,
a security employee searches through the belongings until the object is identified. Similarly to the body
scanner, the x-ray scanner presents the type of objects that the security employee is searching for. Once
found, another inspection, usually visual but in some scenarios another x-ray, is undertaken to assess whether
or not the item should be allowed on board. If not, the item is disposed of at the airport.

2.3.6. Baggage Reclaim
Once screening has been finished, the passenger is ready to start reclaiming their luggage. They proceed to
their respective tray that is located on the reclaim belt and start packing their belongings back together.
Once everything is packed up, the passenger is able to move to their gate or perform discretionary activities.
Should the luggage require additional screening, then the passenger must go to an additional luggage check.
The additional luggage screening is performed there after which the passenger can take his luggage and go
to their gate.

Chapter 3

Simulation Models
Complex phenomena are typically modeled on advanced simulators that,depending on their precision, can be
very demanding in terms of simulation time and computational resources. In their review of simulating airport
terminal literature, Wu and Mengersen (2013) identified four types of models, each simulating different
aspects of airport terminals: capacity, efficiency, security and airport performance. For the purpose of this
literature review, only the first three model types are reviewed because airport performance is not relevant
as it determines passenger satisfaction levels. Section 3.1, Section 3.2 and Section 3.3 review capacity,
efficiency and security airport terminal models respectively.

3.1. Capacity Models
Capacity models are used to determine if the planned infrastructure satisfies future demand A.R. Odoni and
R. d. Neufville (1992). In these scenarios, the model is a guide to enable architects, consultants and decision
makers in making decisions regarding future facilities. It tracks key performance indicators such as average
wait time, queue length and service time at a facility within an airport. These indicators help inform airport
planners/designers in deciding on prospective infrastructure. Section 3.1.1, Section 3.1.2 and Section 3.1.3
discuss capacity models simulated via queuing theory, stochastic queue models and statistical distributions
respectively.

3.1.1. Queuing Models
Capacity planning proved an important literary genre in the early airport terminal modelling community,
as mentioned by Tosic (1992). Typically, the model is used to help address the question of whether the
proposed infrastructure will satisfy the projected future demand A.R. Odoni and R. d. Neufville (1992).

Newell (1982) was the first to develop a range of capacity-driven airport terminal models based on the
deterministic queue model. These models track key performance indicators such as passenger waiting and
service times, and the number of passengers in queue per queuing area within the airport. A graphical
representation is adopted by using the cumulative arrival profile and departure profiles for each infrastructure
facility. By integrating arrival and departure diagram, as shown in Figure 3.1, researchers can measure the
average queue length and the waiting time on the basis of on the vertical or horizontal size respectively per
facility. However, this method does not consider the ambiguity of the arrival and departure profiles nor is it
possible to determine the maximum wait time for each passenger. Furthermore, it assumes that passenger
arrival in the queue dictate the order at which they are served.

(a) Not adjusted (b) Adjusted

Figure 3.1: Cumulative arrival and departure profiles from R. D. Neufville and A. Odoni (2003)

45

46 Part II Chapter 3. Simulation Models

These models include the arrival and departure profiles as main inputs, which are usually determined from
approximated profiles or from data measurements collected data collected at an airport as shown by Newell
(1982). Analyses using cumulative arrival and departure diagrams offer a clear way to successfully define and
overcome signifcant difficulties. They are a valuable tool that every skilled designed should be able to use.
However, these analyses have limitations: They are deterministic in that they do not explain the differences
that exist in reality. Furthermore, they are only applicable for one airport activity at a time. Hence, there is
no hint of the relationship between system processes, such as when disruptions in one process influence the
patterns of arrival in subsequent processes.

The simple queue model is extended by Tosic et al. (1983), who investigates a stochastic queue model
where arrival profiles are already developed. Monte Carlo methods are used to calculate the total service and
wait times and the length of the queue. Horonjeff et al. (2010) further extend the approach by determin-
ing mathematical formulations which adequately represent the processing system. One such mathematical
expression is that of a multi-station queuing system as shown in Equation (3.1), with a Poisson arrival distri-
bution characterized by its demand rate λ. Additionally, the formulation utilizes a service time distribution,
which is characterized by the average service time, t, and the variance of the average service time σ2.

Ws =
(

σ2 + t2

2t2

)
λktk+1

(k − 1)!(k − λ)
2

k−1∑
n=0

[(λt)n/n!]+(λt)k/[(k−1)!(k−λt)]

(3.1)

Equation (3.1) determines the average delay per person and is valid when the average demand rate λ is less
than total the service rate kµ, where k is the number of processors and µ = 1/t.

McKelvey (1988) expands on a single queuing system by adopting a multi-channel queuing approach (as
shown in Figure 3.2) for a passenger enplaning network at an airport terminal. The passenger enters the
terminal building D. He then has the possibility of going to the check-in activity for tickets only T or for
tickets and luggage B. After check-in, the passenger proceeds to being checked at the security checkpoint
X. Once through security, he continues to the gate area S where he waits for boarding G.

Figure 3.2: Typical Passenger Enplaning Network from McKelvey (1988).

Models such as those suggested by W.J. Dunlay Jr and Park (1978) consider a variety of connected
facilities where the arrival profile of a facility is modelled as the departure profile of the previous activity,
with some offset. Recent developments in the field of surveillance technologies, such as (i.e. Gongora and
Ashfaq (2006) and B.-s. Kim et al. (2008), have led real-time data collection of arrival and departure profile,
which can be used to simulate a deterministic queue model.

3.1.2. Stochastic Models
Bevilacqua and Ciarapica (2010) provides a stochastic queue model for assessing passenger processing and
utilization of service (i.e. number of counters) for airport check-in. In order to find the steady state
system performance, a monte carlo simulation is used unlike in deterministic queue models. The findings are
then used to determine a common check-in configuration versus a dedicated carrier check-in configuration.
However, Bevilacqua and Ciarapica (2010) and queue-based research of section 3.1.1 have failed to resolve
the dynamic aspects of the airport environment Eilon and Mathewson (1973); Joustra and Dijk (2001)

3.1.3. Statistical Models
W. Kim et al. (2004) defines a mathematical model focused on the distribution of dwelling time to estimate
passenger volumes for departing passengers over the span of a day. Passenger volume is influenced by the
flight schedule, but it is not the only determinant. Longer stay or dwell times are also influenced by departing
passengers arriving much earlier at the airport than their boarding time. Similarly, by designing time functions,

3.2. Efficiency Part II 47

Solak et al. (2009) suggests an analytical estimate of maximum passenger delay for airport activities and
processing infrastructure. Time functions can be derived from the relationship between flow rates and width of
passageway, along with collected data measuring processing time fluctuations and measured walking speeds.
Not only is Solak et al. (2009) the first to consider a holistic model of airport capacity by considering linked
facilities, however, they go further and proposes an algorithm for the Airport Terminal Capacity Planning
(ATCAP) Problem using multi-stage stochastic programming. The ATCAP deals with "determining the
optimal design and expansion capacities for different areas of the terminal in the presence of uncertainty
with regards to future demand levels and expansion costs" (Solak et al. 2009). During the initial development
process of an airport terminal, the solution algorithm can be run to provide optimal capacity requirements
for each area along with expansion strategies under stochastic future demand.

When viewing previous capacity studies already discussed in this section, they fail to suggest an optimal
solution to the capacity planning. Instead, they provide architects, consultants or decision makers with a
simulation model that identifies potential bottlenecks in the operations. Since Solak et al. (2009) present
both a solution and model to simulate, it is viewed as an improvement on the existing literature. The study
would have been more useful if they had focused on generalizing their approach such that it can be used
across airports. For example, Solak et al. (2009) could have generated a delay approximation function that
considers factors influencing processing times.

Lastly, Solak et al. (2009) gives an account of existing research that address similar airport capacity
optimisation problems. For instance, Saffarzadeh and Braaksma (2000) describe a planning model similar to
Solak et al. (2009) without considering a holistic airport system.

The models previously discussed neglect a number of important performance metrics such as space. Brunetta
et al. (1999) address this issue by combining space with the deterministic queue model in an integrated time
and space Level Of Service (LOS) performance indicator. This indicator is based on the arrival profile,
average dwell time and the spatial area. Brunetta et al. (1999) argue that this indicator is more useful for
decision making than previous indicators based solely on time.

3.2. Efficiency
This section reviews several models, all described to be suitable for operational planning and design. Efficiency
and capacity models of Section 3.1 share a number of key features such as evaluating the same performance
indicators. However, these models focus specifically on day-to-day airport operations and require a higher
level of detail. Typically, they require passenger arrival/departure schedules, processing rate of each airport
activity and the geometric layout of the airport. Their goal is to simulate passenger flow through the airport
terminal and produce key performance indicators (KPIs), which can be used to evaluate the utilization of
airport facilities along with resource scheduling. The main techniques used to simulate efficiency models are:
Discrete event-event based simulation, discussed in Section 3.2.1, which model processes as queuing/activity
networks where state changes in the system occur at discrete points of time. System dynamics models,
presented in Section 3.2.2, simulate a system as a series of stocks and flows in which the state changes are
continuous. Lastly, agent based modelling, discussed in Section 3.2.3, which simulate complex systems as a
collection of agents who generate beliefs that allow them to make decisions and plan activities.

3.2.1. Discrete-Event Based Models
Eilon and Mathewson (1973) studied the effects of airport terminal processes, flight schedules, passenger
characteristics (e.g. nationality) and service rates on the processing time and congestion of facilities within
the terminal. Their model collects statistics for the aggregate population of passengers, by simulating
individual passengers going through their airport activities.

One of the distinguished features of using simulation is the ability to represent results in a graphical
context. Simulations can output airport specific performance metrics during the course of the run time,
allowing to plot the evolution of KPIs over a specific period of time. For instance, the throughput rate of
the security checkpoint for each 15 minute interval. From these plots, architects, consultants and managers
are easily able to evaluate airport performance and alternative solutions. However, Eilon and Mathewson
(1973) states that it is important to note that these graphs also have their limitations, namely: the inability
to identify causal factors influencing airport performance.

To address this issue, Eilon and Mathewson (1973) start to analyze causal relations by looking into the
correlation between system performance level and multiple explanatory variables. For their system perfor-

48 Part II Chapter 3. Simulation Models

mance KPI, a congestion metric of airport facilities is used, which was found to be linearly correlated with
passenger delays and staffing levels. As mentioned previously, multiple parameters were tested, but only two
correlations are presented in the study.

In discrete-event simulation models, the order of process activities and their spatial location dictate all
passenger flow through airport facilities. Instead of knowing the spatial location of individual passengers,
these models designate each passenger to a facilitation area (e.g. check-in area). Based on the number of
passengers in a facilitation area and the area’s spatial footprint, metrics such as congestion can be calculated.

Furthermore, to better understand the simulation of airport terminal, Eilon and Mathewson (1973)
compared simulation models and their corresponding queueing network (see Figure 3.3 for an example). They
state that computing requirements have decreased significantly, specifically 17.9 minutes for the simulation
and 0.78 minutes for the queuing network, while results have stayed very similar.

Figure 3.3: Comparison between discrete-event based simulation and queuing networks from Eilon and Mathewson (1973).

There are a large number of published studies that expand upon Eilon and Mathewson (1973) work, as
mentioned by Tosic (1992).

For example, Crook (1998) was commissioned by British Airway to visualise passenger flows through the
airport system and individual processes, while retaining the ability to evaluate changes to the internal design
of the airport terminal. The proposed model helps airport operators improve their knowledge between airport
terminal design and passenger service, such as knowing when to open an extra service counter.

The Airport Landside Simulation Model (ALSIM) from McCabe and Gorstein (1982) is a computer
simulation program which models the movement of passengers and vehicles across the landside of the air-
port. From literature, the landside of the airport is defined as a region encompassing everything between a
passenger entering the airport and boarding onto the plane. Model inputs are airport geometry, facility char-
acteristics (e.g. service distributions), flight schedules (determine arrival/departure profiles) and passenger
characteristics. ASLIM outputs a report for each simulated hour and for the total simulation. Hourly reports

3.2. Efficiency Part II 49

include queuing time distribution of each landside facility, from which it is possible to determine the average
queue time often used in airport congestion analysis. The total simulation report allows to deep dive into
each landside facility, by providing outputs of average queue time, average utilization, occupancy, passenger
flow and queue size for each. Overall, ALSIM is a discrete-event, fast-time computer simulation model that
is macroscopic, probabilistic and capable of producing passenger flow and airport congestion parameters.
These scenarios are similar to those discussed by Braaksma and Cook (1980) and Eilon and Mathewson
(1973). These models help airport operators plan landside application such as airport design and master
planning, analysis and cost/benefit analysis of landside investments, management of daily operations and
landside capacity by answering the following questions:

Airport Modelling Questions

• What are the bottlenecks in the operations?
• Are the resources balanced?
• Is the space plan efficient?
• Is the design capable of handling peak hours?
• What are the wait times?
• Are the facilities well located and sized?

Another practical study of airport terminal is that of Lui et al. (1972), in which they present a discrete-event
based model for New York JFK Airport. The inbound-passenger flow was modelled, starting with the arrival
of an airplane (with different passenger sizes) at a gate and terminating after passengers collected their
luggage and exited the terminal. Their model addresses the questions above and helps planners with short-
term expansion plans. According to Lui et al. (1972), the model would be expanded to help with long-term
expansion plans and be used at other airports, however no additional information could be found.

For the purposes of planning, it is of paramount importance to determine peak hours/periods, as ex-
plained by R. D. Neufville and A. Odoni (2003). Literature has surfaced many definitions over the decades,
thus a broad definition is used in this study. Design peak hours and design peak days should not be the hour
or day respectively, with the greatest traffic demand because this would oversize the airport. Instead, days
should be chosen where their corresponding demand is only exceeded by several cases during the year, thereby
ensuring that airport facilities will not be overdesigned, yet still capable of handling capacity requirements.
Estimates of total design peak hours are difficult because of the juxtaposition between peak-hour departing
passengers and peak-hour arriving passenger. In fact, it is unusual for design peak hours (total, arriving and
departure) to occur in the same hour of the day. However, such estimates are necessary for the design of
passenger facilities, where many facilities are scaled according to arrivals, departures or sometimes both.

Zografos and Madas (2006) also apply a practical context to the airport modelling questions, by preparing
Athens International Airport for the 2004 Olympic Games and its possible role as a southeast Mediterranean
hub. Furthermore, senior management of Athens Airport have tasked them with the following modelling
questions:

• Will the airport be able accommodate the expected rise in traffic demand?
• Will the airport be able to sustain the expected rise in traffic demand on a permanent basis?
• What are the consequences on airport operations in both cases?

To answer these question, Zografos and Madas (2006) used both a landside and airside model to simulate
the temporary traffic increase. Although the models established that the runway system (airside) is the
limiting factor for the capacity of Athens Airport, Zografos and Madas (2006) demonstrated this would not
affect the operational performance of the airport because it is still able to sustain the demand projections of
both scenarios.

Jim and Chang (1998) also examined the flow of arrival and departure passengers using a holistic discrete-
event based model. Similarly to Lui et al. (1972) and Eilon and Mathewson (1973), the flow is simulated
from facility to facility. Model inputs are the same as for ALSIM (McCabe and Gorstein 1982) with the
addition of domestic/international passengers and baggage. Interestingly, there were no differences in model
outputs with respect to ALSIM. In a study investigating inbound and outbound capacity bottleneck at

50 Part II Chapter 3. Simulation Models

Schiphol Airport, Gatersleben and Weij (1999) present a similar model. Solutions for bottlenecks can be
judged by simulating airport performance under new scenarios, which provided insight into present and future
situation, allowing for pro-active strategy in preventing future bottlenecks. Likewise, Roanes-Lozano et al.
(2004) examined the outbound process Malaga Airport using an analogous model to aid terminal design.
Lastly, Joustra and Dijk (2001) and Appelt et al. (2007) both apply a similar methodology for simulating
check-in. Furthermore, they consider new check-in scenarious such as online check-in.

Figure 3.4: Process of passenger handling replicated from Gatersleben and Weij (1999).

Additionally, Jim and Chang (1998) propose that airport organization should adopt simulation cycle for ter-
minal design seen in Figure 3.5. It begins by evaluating the relationship between airport system components,
also known as result. These results are then interpreted by airport designers/operators and conclusions can
be drawn. From the conclusions, recommendations can be drawn that improve the airport terminal, which
in turn can be simulated.

Figure 3.5: Simulation cycle adapted from Jim and Chang (1998).

Takakuwa et al. (2003) present a similar model to Roanes-Lozano et al. (2004) for Kansai International
Airport applied to outbound passengers using the Arena modelling package (a discrete-even based simulator).
Although most model characteristics are the same, the does include some additional features, namely: number
of bags and passenger groups. Furthermore, routes are pre-determined to transfer passengers to the specified
airport facility, or the next process, where each facility has a physical location. The most striking result to
emerge from the simulation, whose purpose was to analyse facilitation process capacities, was that the key-
bottleneck for departing passengers is the check-in lane, which accounted for more than 80percent of the
total waiting time of passengers at the airport. Furthermore, it was proven that these waiting times can be
reduced by using business class counters to serve economy class passengers as well.

An analogous simulation model to Takakuwa et al. (2003) is demonstrated by Ju et al. (2007), also
implementing the Arena modelling package. However, the main focus of the model is the waiting area for
large airports. Outputs are similar to those of Takakuwa et al. (2003). Furthermore, this is the first study
reported that uses simulation optimization tools on the airport terminals. Ju et al. (2007) uses combinatorial
optimization techniques to maximize profit and size the number of facilities for the baggage department and
safety inspection department.

Similarly, Fayez et al. (2008) models inbound and outbound processes for passengers using the airport ter-
minal simulation tool called AirSim. Due to the complexity of the airport terminal, an extensive discrete-event
simulation model was developed that was both flexible to simulate different scenarios and configurations. The
model contains information with respect to enplanement and deplanement of passengers, security screening
checkpoints, baggage claim and passenger flow. The following scenarios were considered when determining
the airport Level of Service (LOS):

• The current state.
• The new security scenario.
• Opening one more security lane.

3.2. Efficiency Part II 51

• Opening two more security lanes.

Lastly, Fayez et al. (2008) claim that their simulator is able to evaluate trends such as new passenger ar-
rival/departure patterns, airport capacities, new safety requirements, and public transportation components.

3.2.2. System Dynamic Models
To better understand the airport modelling questions and aid with operational concepts, Manataki and
Zografos (2009) and Manataki and Zografos (2010) propose a system dynamic model. They argue that
complex socio-technical systems such as airports cannot be modelled accurately using macroscopic models
because of their stochastic nature. Therefore, their simulation is composed of two hierarchical levels. Level
1 classifies a set of functional areas of the airport terminal system. Level 2 decomposes the functional areas
into service facilities (i.e. ticketing) of the airport. It is important to note that each airport service facility
is represented by a module. Modules are connected to form airport functional areas (Level 1), which are
further combined to create the airport terminal. This can be observed in Figure 3.6.

Accordingly, a mesoscopic approach is defined that operates on an intermediate level of detail while
focusing on aggregate characteristics. Early examples of discrete-event based simulation discussed in Sec-
tion 3.2.1, such as Eilon and Mathewson (1973), are more macroscopic in nature because they do not include
detailed passenger interactions.

Figure 3.6: Airport terminal structure from Manataki and Zografos (2009).

Recent trends in computational capacity have led to a proliferation of microscopic studies, focusing on
passenger interactions. A plethora of these studies use commercially available airport terminal simulators.
For example, Kiran et al. (2000) uses the ProModel simulation package to represent the Istanbul Ataturk
Airport terminal. The model is able to capture processing time metrics at each facility and resource usage
for departing passengers. In addition, it is possible to also use the model for training and demonstration of
terminal activities.

Virtually all of the above described models can also be used for visualisation purposes. However, two
models specifically address visualisation of airport terminals. Crook (1998) (reviewed above) visualizes cross-
flows of passengers along with processes to help in evaluating various terminal design scenarios as requested
by British Airways. Similarly, Koch (2004) applies a discrete-event based model for visualising airport security
operations, enabling designers to explore new technologies and procedures.

3.2.3. Agent-Based Models
Wilson et al. (2006) are the first to present a simplistic agent based model for an airport terminal, focusing
specifically on the security checkpoint. Agents are generated into the simulation but still follow a fixed
activity-oriented schedule. Routes for agents are determined by traversable elements in the simulation. They
generate instructions for an entity to follow through their respective area. Since it is possible for an agent
to have many valid routes through a region (a collection of multiple traversable elements), the agent must
decide which route to take. Furthermore, a region ensures that agents do not collide and obey constraints
such as spacing and non-accessible areas. This study has led to development of a simulation tool, known
as Security Checkpoint Optimizer (SCO), for the Transportation Security Administration (TSA) to support
planning and analysis activities.

The previously reviewed models in Section 3.2.1 and Section 3.2.2 address the need for using multiple
performance metrics to assess airport facilities. Wilson et al. (2006) goes a step further to evaluate each of
the following separately: operational cost, passenger and bag throughput, resource utilisation and security

52 Part II Chapter 3. Simulation Models

effectiveness. The additional capability of security effectiveness refers to the probability of detecting a pro-
hibited item, which is determined by multiplying the probabilities of detection through the different stages
of the passenger facilitation process, similar to Chawdhry (2009). Like many others, this model is able to
evaluate different scenarios and security configurations (WHAT −IF) scenarios. For example, facilities can
be analyzed on passenger flow and time to process. A study with similar modelling objectives is described
by Pendergraft et al. (2004), however no implementation details are provided.

Schultz and Fricke (2011) describe the first agent-based model that is associated with artificial intelligence.
The model simulates departing passengers by analyzing passenger flow. Each agent has an operational, tac-
tical and emergency planning level that dictate its decision making. Passenger walking speed is dependent
on density and group behaviour. For example, passengers walking in dense crowds move more slowly and
passengers at the front of a group waits for the slowest member to catch up. In addition, an agent is able
to determine its own routes based on sign visibility. Navigation signs are placed at various map components
which indicate direction of facilities. Agents adopt a Sense-Plan-Act approach to route finding, which eval-
uate the utility level of itself. The navigation model is based on both static navigation networks and free
orientation as shown in Figure 3.7. In addition, Schultz and Fricke (2011) present a model that is able to
evaluate aircraft boarding policy. Single door boarding versus two door boarding, random boarding versus
block boarding (i.e. passengers board in groups based on their corresponding seat) are compared based on
their boarding times.

Figure 3.7: Agent (left) uses network (gray box) to navigate heading to an intermediate goal (e.g. sign or information point,
center), orientates freely to gather information and use the network to finally reaches the nearest navigation point regarding to

the destination (right) taken from Schultz and Fricke (2011).

3.3. Security
Security models simulate airport procedures, technologies and the operators ability to filter out threats from
reaching an aircraft (on an airport terminal level). While most capacity or efficiency models follow similar
modelling techniques, security models consist of a broad range of techniques, where the main focus is on
simulating the probabilistic risk of a terrorism attack.

Since 9/11, airport security has been attracting a lot of interest from researchers and a number of mod-
els have been proposed. Existing models simulating airport security focus on the ability or inability of the
"combined procedures and technologies in the process to successfully filter out all threats (harmful sub-
stances/prohibited items and malicious persons) from reaching an aircraft through the passenger facilitation
process" Chawdhry (2009). The majority of the models reviewed in this section are intended to help policy
makers evaluate existing and new security regulations. Section 3.3.1 present security definitions that are
used in this section. Section 3.3.2 describes the Threat Vulnerability Consequence (TVC) method and how
it is applied to security checkpoints. Section 3.3.3 introduce attack trees to calculate the probabilistic risk
of an incident. The following Section 3.3.4, Section 3.3.5 and Section 3.3.6 discuss security models from
literature using probablistic method, fuzzy logic and game theory, respectively.

3.3.1. Security Definitions
The literature on security has generated various definitions related to security risk and its components. Hence,
it is important to formalize the definitions used within this paper. For the purpose of this literature study,
Brashear and Jones (2008) definitions are used for risk, threat, vulnerability, consequence and resilience.

Def. 01 Security Risk

3.3. Security Part II 53

The potential for loss or harm due to the likelihood of an unwanted event and its adverse conse-
quences.

Def. 02 Threat
Any indication, circumstance or event with the potential to cause the loss of, or damage to, an
asset or population.

Def. 03 Vulnerability
Any weakness in an asset or infrastructures design, implementation or operation that can be
exploited by an adversary or contribute to functional failure in a natural disaster.

Def. 04 Consequence
The outcome of an event occurrence, including immediate, short and long-term, direct and indirect
losses and effects.

Def. 05 Resilience
Resilience is broadly defined as the ability to function through an attack or natural event or the
speed by which an asset can return to virtually full function (or a substitute function or asset
provided).

3.3.2. TVC Method
In TVC methodology, security risk consists of three components: threat, vulnerability and consequence. To
evaluate these components, security experts determine the assets in their organization. Once assets have
been specified, a set of possible threats can be identified. Finally, risk is determined by estimating the threat,
the vulnerability to the threat and the consequence of the threat, see Willis et al. (2006).

Risk = P (attack occurs) (3.2)
·P (attack results in damage | attack occurs)
·E(damage | attack occurs and results in damage)

= Threat · V ulnerability · Consequence (3.3)

To assess the threat likelihood, estimations are often based on intelligence data, a cost benefit analysis
or historical data, such as the Global Terrorism Database. However, it is important to note that due to the
random nature of terrorist attacks, historic data is not indication of future events.

For example, safety experts use data generated by security sensor vendors, internal assessments and
employee surveys to estimate vulnerability. In addition, tools like event trees (see Section 3.3.3) can be used
to better estimate vulnerability. Lastly, experts also make use of Red-teaming (real-life simulation of a threat
scenario) to assess vulnerability.

The consequence of a threat can be evaluated using consequence assessment techniques, which are
frequently expressed in financial costs. As an example, "Value of a Single Life" (VSL) is often used to
quantify the loss of a human life. Expert judgement are usually used to estimated the consequences of
a threat. Finally, the current situation is compared with the expected reduced security risks for potential
controls in order to risk mitigate.

3.3.3. Attack Trees
A methodical way of modelling the security of systems under varying threat scenarios is using attack trees.
The system is represented in a tree structure, where the root node (or top-event) reflects a successful attack
within the system on a specific asset. Leaf nodes represent independent events that can occur, while internal
nodes represent events that depend on their corresponding child nodes. Each node is assigned with a value
that reflect their probability of occurring, their execution cost and other parameters. An expert determines
the value of leaf nodes, while the value of other nodes is determined on the basis of their respective child
nodes. It is possible to model transitions between nodes as either deterministic or non-deterministic. In
deterministic transitions, a parent node occurs from a child node or combination of child nodes, while
the opposite is true for non-deterministic transitions. Measures to prohibit an attack can be analyzed by
evaluating the value of the root node of the tree.

3.3.4. Probabilistic Methods
Chawdhry (2009) A significant analysis and discussion on the subject airport security was presented by
Chawdhry (2009), where the likelihood of a prohibited item or malicious person reaching an aircraft is

54 Part II Chapter 3. Simulation Models

modelled for the departure process. In literature, this is commonly known as missed detection. Using
this model, security policies and deployment of new security technologies can be can be quantitatively
assessed. Assuming that individual processes in the security are independent, the probability of permeability
can be multiplied for each process in order to determine the the probability of a missed detection. The
probability of permeability for individual process is determined by security experts. Chawdhry (2009) proposes
a scenario where different levels of screening are performed on passengers according to a passenger risk
evaluation scheme. Hence, passengers receive different types of security screens (with different probabilities
of permeability) based on their attributes in order to reduce the probability of a missed detection. It is
important to note that the model proposed is only for security and does not consider the effect of additional
screening on passenger flow.

The concept from Chawdhry (2009) is expanded by Babu et al. (2006), who uses a bayesian probabilistic
model. The previous assumption of independence is overcome by modelling a missed detection using con-
ditional probabilities. Furthermore, Babu et al. (2006) keeps track of false positives (i.e. detecting a threat
when it does not exist) and false negatives (i.e. not detecting an actual threat). Similarly to Chawdhry
(2009), this model divides passengers into different risk groups and performs different security screens. How-
ever, it goes further in also optimizing the amount of risk groups there should be. Using this model, the
impact of security policies can be assessed and it can recommend an optimal implementation of a policy.

Nie et al. (2009) extends the model by Babu et al. (2006) by not just optimizing the risk group but also
taking into consideration the number of screen operators at a security checkpoint. The main conclusion is
that the screening process can be more effective when considering the passenger attributes. This reduced
the the number of false positives while keeping the number of false negatives the same.

3.3.5. Fuzzy Model
Akgun et al. (2010) present a fuzzy model that incorporates experts opinion and multiple criteria to assess
the security risk of an airport. The criteria are as follows: deterrence, detection, delay, response and recovery.
Previous models analyzed have focused only on the detection criteria (i.e. probabilistic risk). Experts rate
each airport function based on the five criteria using fuzzy linguistic variables. Furthermore, dependencies
between pairs of functions, pairs of components and dependencies of function to airport mission are rated.
It is possible to discover hidden vulnerabilities that arise due to interdependencies by simulating the airport
with a fuzzy cognitive map.

The model created by Akgun et al. (2010) emphasizes the importance of detecting dependencies due to
their influence on vulnerability and risk. Not only is their framework useful for airport operators to aid in
allocation of resources and policy making, but it also targets regulatory authorities and their policy making.
Furthermore, it can be used to identify airport facilities that must be improved regarding security. It is
important to note that this model does not consider spatial layout of the airport nor passenger flow.

3.3.6. Game Theory
Frameworks based on game theory, such as Brown et al. (2016), construct a security game to represent a
threat scenario. A table is created where the rows and columns symbolize the defender and attacker of the
game respectively. Each column is a potential target for the attacker, whereas each row is a possible action
to deter the target. The outcome of the game equals a combination of vulnerabilities and consequences.
By finding the equilibrium of such a game, a defender can obtain their optimal strategy (i.e. preventing
threats). Security games are able to simulate a wide range of airport applications such as airport security
patrols by Pita et al. (2009) to detection of prohibited items.

3.4. Limitations and Conclusions of Simulation Models
Overall, these studies highlight the need for simulation to improve operational planning of airports. The
standard methodology for modelling airport efficiency is as follows: Identify the sequence which activities
are completed or facilities or visited in the passenger facilitation process; Obtain arrival/departure profiles
through prediction or historical data for peak flight schedules; Populate model parameters using collected
data; Verify the model by comparing simulated performance versus actual performance for predetermined
scenarios; Simulate new scenarios and output key performance indicators of interest.

While airport terminal simulation has been done for several airports individually, there are no unified
approaches nor standardized test systems available. The approaches are fragmented and based on individual
airport needs and preferences. This has led to development of several airside and landside models, making

3.4. Limitations and Conclusions of Simulation ModelsPart II 55

comparison between them very difficult. Recently, a considerable literature has emerged around the theme
of causal factors that influence system performance. However, some argue that system performance is
dependent on the stochastic nature of an agent leading to emergent behaviour.

While much research has been carried out on the full airport terminal system, few studies exist on detailed
simulation of airport activities. The check-in has been the most widely studied airport activity focusing on
policies to increase passenger throughput. Surprisingly, so far very little attention has been paid to the role
of security checkpoint when considering the efficiency of the airport. This can also be seen in Figure 3.8
where there are no overlapping studies between security and efficiency. Furthermore, it is apparent from the
figure that there are no overlapping studies at all.

Capacity
Stochastic:
[6]

Queueing:
[24], [51], [57], [59]

Statistics:
[10], [40], [72]

Efficiency

Discrete-Event:
[4], [7], [12], [15],
[16], [18], [31], [32],
[36], [43], [45], [50],
[67], [78], [88]

System Dynamics:
[41], [47], [48]

Agent-Based:
[71], [86]

Security

Probabilistic:
[5], [11], [58]
Fuzzy-Logic:

[2]
Game-theory:

[9], [62]

Figure 3.8: Summary of simulation model literature

In light of recent advancements in computational power, it is becoming extremely difficult to ignore the
existence of small-scale interaction. Therefore, the past decade has seen the rapid development of more
detailed models using discrete-event based simulation. By contrast, a search of the literature revealed few
studies which use an agent-based modelling or multi-agent system approach to model airport terminals. A
possible explanation for this are the limited number of agent-based simulation software that exist.

Furthermore, computational power has also led to a rise simulation optimization of airport terminal
processes. Although few studies exist that use optimization techniques on airport terminal simulations, no
studies have been found that use reinforcement learning to learn optimal policies for airport activities.

Two important themes emerge from the studies discussed so far in Section 3.3: airport security is of
paramount importance to homeland security and modelling airport security typically requires the consul-

56 Part II Chapter 3. Simulation Models

tation of security experts due to the limited number of threat incidents. Although there are various national
and international security regulations, their enforcement varies greatly across airports. Organizations exist
that keep track of which security equipment meet the security requirements by assessing their ability to meet
certain functions. In order to determine the overall security effectiveness, quantitative measures are required,
which typically focus on the probability of a missed detection in literature. This requires experts to elicit
estimates of probabilities and conditional probabilities of various equipment and activities in the process.

Due to the limited number of terrorist incidents at airports, data about the efficiency and safety of
airport security is limited. Thus, making it very challenging to model. As mentioned previously, probabilistic
risk is typically evaluated by an security expert. Performance of security equipment has been measured by
probabilities and up to now, far too little attention has been paid to their function. Furthermore, in contrast
to probabilistic risk at security checkpoints, there is much less information about effects of airport operator
fatigue modelling.

Overall, a number of limitations and opportunities for further improvements and future modelling research
have been identified: the lack of well standardized key performance metrics of airport effectiveness addressing
the performance of the airport airside and landside; the lack of compatibility between input requirements
such that various scenarios can be tested interchangeably; the lack of modelling airport activities in detail;
and the absence of new modelling techniques (i.e. simulation optimization and reinforcement learning) to
help design new airport terminals.

Chapter 4

Simulation Software
One of the main obstacles in airport terminal planning is being able to test new layouts/concepts and
their effects on performance. Simulation has emerged as a powerful platform to help plan, design and
manage airport terminals. As mentioned previously, initial research focused on creating simulation models
that were able capture operational bottlenecks. The airport industry realized the usefulness of such tools
and simulation software were developed from these initial models. As time progressed, more of academia
presented literature could be found in simulation software because of the convenice, realibility and efficiency
in analysis. Section 4.1 and section 4.2 will present simulation platforms for non-Airport terminals and airport
terminals respectively.

4.1. Non-Airport Terminal Simulators
Agent-Based Simulators
A plethora of simulations exist in literature, but there are few that allow for an intuitive implementation of
airport terminal elements and human behaviour. By definition, agent-based modelling is a natural approach
to modelling human behaviour. While there are several agent-based simulation software, such as Netlogo
(Tisue and Wilensky 2004) and Gama (Taillandier et al. 2010), that allow specification of human models,
they do not contain airport terminal specific elements, such as check-in desks, or passenger interaction with
these elements. Implementing these airport specific elements in an existing simulation will be difficult as
there are many interdependencies that must be considered. Furthermore, elements should resemble plug-
and-play functions which may not be possible in existing literature. One important aspect of agent-based
simulators is that they contain various tools to analyze agent behavior and simulation outcomes. Therefore
any attempt to replicate agent-based simulators should have similar analysing capabilities.

Pedestrian-Oriented Simulators
Another possibility to simulate passengers, as opposed to agent-based simulators, is to use pedestrian-oriented
simulators. These simulators specialize in modelling walking behaviour and contain several algorithms to
specify passenger behaviour. Similarly to agent-based simulators, these simulators do not contain any airport
specific elements. Furthermore, implementing these type of elements will face similar problems as already
discussed in the previous section.

4.2. Airport Terminal Simulators
Simulators need to tradeoff simplicity, speed and accuracy for the consumer. For example, accuracy with
smale-scale interaction comes at the price of complexity, speed, and computational cost. For the purpose of
this section, different levels of functionatility are introduced such that it is possible to tradeoff simulators.
These levels are dependent on what the simulation considers as an input, sophistication of the simulation,
detail of the real-wrld system and precision of the output. The levels are as follows:

Level. 01 A system is simulated by one or more events, where changes can occur at event times according
to pre-specified logic. Furthermore, these events are able to alter the environment of the system.
These types are usually event-oriented simulators and are used for peak-hour analysis.
Considers: arrival/departure profiles to events.

Level. 02 These types are usually process-oriented models which model the flow of passengers through
the system based on the order of defined events. It is important to note that delays not not
only incurred when demand rate exceed service rate as in queueing theory.
Considers: Level. 01 and time variation of the system

Level. 03 These types are similar to those of Level. 02 except that they also include the stochastic nature
and probabilistic aspects of the system services.
Considers: Level. 02 and stochastic and probabilistic nature of the system

57

58 Part II Chapter 4. Simulation Software

Level. 04 These simulators are usually object-oriented models where individual agents are modelled moving
through the system. Agents are represetned by objects with distinct attributes that take shape
in the form of values and properties. It is important to note that these passengers can have
beliefs (see section 3.2.3) but must not have them. Attribute specification of agents is limited.
Considers: Level. 03 and passenger interaction and limited passenger properties

Level. 05 This level is similar to that of Level. 04 except that attributes of passengers are extensive.
Considers: Level. 04 and extensive passenger properties.

4.2.1. Academia Developed Simulators
In the 1960’s, researchers at universities pioneered the scenes of airport terminal congestion by analyzing the
problem using simulation approaches. The first workshops discussing the problems facing air transport oper-
ations was held at the Massachusetss Institute of Technology (MIT), which led to the first analytical queuing
models from A.R. Odoni and R. d. Neufville (1992) and Horonjeff et al. (2010). Although their work did
not culminate into a simulator for the research community, their work would be considered a Level. 01 model.

W.J Dunlay Jr et al. (1975), whose researched was federally sponsored, simulated terminal operations and
performed capacity analysis of the airport. Main research focus was on modelling airport access (W.J. Dun-
lay Jr and Park 1978) and the flow of passengers through the airport (W.J. Dunlay Jr and Park 1978). Their
work resulted in the development of a simulation model ACAP, which is considered a Level. 02 model.
ACAP is a FORTRAN-based model and is comprised of a single main program. Furthermore, it simulates
individual facilities through the use of component modules. These modules are regression models that are
developed from collected data taken at specific airports. It is important to note that these models are only
able to replicate operational conditions when the survey data holds because their predictions are entirely
based on the data collected. In order to overcome this shortcoming, the modules were modified to use
monte carlo methods to predict capacity of individual facilities. These methods sample process times from
their corresponding distribution allowing much better representation of operational conditions (Mumayiz
1985). The modifications transformed ACAP from a Level. 02 into a Level. 03 model. Despite these
improvements, airports did not use ACAP in practical applications.

Not only were airport simulation studies done in the United States, but also in the United Kingdom, Nether-
lands, Japan, Turkey, Greece and more. However, most of these studies did not result into general airport
simulators.

In scotland, a terminal simulation model (AIR-Q) was developed at the University of Strathclyde (Laing
1975). The main purpose of the model is to analyze the efficiciency of different airport terminal config-
urations, therby aiding in the comparison between designs. It is comprised of all possible activities in the
terminal building, where each activity is represented by a queuing model. Furthermore, each activity node
may contains its own queue where its corresponding size is determined by the service time and number of
services available. The simulation outputs the queue sizes of all activites over the simulated time for a unique
throughput of passengers. It is important to node that the model does not consider stochastic variations in
service time and is thus determinstic. This modelis consiered to be a Level. 02.

At the Delft Univeristy of Technology, a terminal simulation model AATOM was developed Janssen et al.
(2019). The model is an agent-based terminal simulator is open-source and programmed in java. Terminal
services are represented as physical objects/areas that an agent can is able to interact within. Human agents
are central in complex socio-technical systems such as aiport terminals. Hence, a specific architecture is
used to mimic human decision making and behaviour. Each human agents has an architecture as presented
in Figure 4.1, which consists of the strategic layer, the tactical layer and the operational layer.
The strategic layer, or top layer, of the agent represents the reasoning a human performs about their
own beliefs and goals. It is therefore composed by a belief module, goal module and reasoning module.
Additionally, the reasoning module consists of analysing and planning of goals/beliefs and decision making.
The tactical layer, or middle layer, resembles the actuation of a human to perform activities based on its
strategy. Additional responsibilities of the tactical layer are interpretation of observations and navigation in
the environment. Lastly, the operational layer, or bottom layer, mimics the senses and stimulus for human
to perform actions. The agent is able to interact with the environment by receiving observations as an input
and can alsoe execute actions. The stimulus for which action to perform comes from the tactial layer.

According to Janssen et al. (2019), the main sequence of oeprations if followed by the AATOM architec-
ture: "observation −→ perception −→ interpretation −→ reasoning −→ activity control −→ actuation −→ action."

4.2. Airport Terminal Simulators Part II 59

Figure 4.1: AATOM Architecture taken from Janssen et al. (2019)

This simulator is a Level. 04 type simulator but through user adjustments can be turned into a Level. 05
type simulator.

4.2.2. Industry-Based Simulators
Another source of airport simulators is industry. Often times, consulting firms are contracted to create
airport simulation models that aid airports in designing and managing their terminals. However, little has
been published on these simulators due to confidentiality.

Metais (1974) created a time-oriented queuing model of type Level. 02, which has the capability of
simulating airport terminals containing 50 gates. The Federal Aviation Administration (FAA) bought the
software and expanded the model. This new software is known as ALSIM (McCabe and Gorstein 1982) and
is described later in section 4.2.3.

Finally, many airport terminal simulators software exist which are in use by airports today. For instance,
the Pedestrian Dynamics simulation software from INCONTROL Airport Simulation Solutions. It is possible
to simulate up to 100,000 individuals. Quick and easy modeling allow for realistic crowd movement and
behavior with unique passenger properties. The output is adjustable for passenger processes and utilization
of infrastructure. Lastly, the simulation can be visualized in a 3D environment. It is not possible to simulate
the baggage/luggage moving through the airport. This is a Level. 04 type simulator.

The Pax2Sim simulator from HUB Performance is a Level. 04 type simulator. It has the ability to
optimize cargo systems, baggage handling systems and passenger terminal operations. Furthermore, the
simulator has previous experience with a lot of airports such as Paris CDG, London Heathrow, Aeroporti di
Roma, etc. The Pax2Sim can be used to size airports or to produce trends on passenger information, which
is why it is used to airport planning and infrastructure projects. Additional services that they offer are flow
capacity planning and peak flow analysis based on a given flight plan. This analysis produces several forecast
such as the waiting time in queue.

The CAST simulator from Airport Research Center is another example of a Level. 04 commercial simu-
lator. They have proven very useful in capacity planning for airports, and provide valuable insights to airport
managers.

4.2.3. Government-Based Simulators
Previous mentioned simulation models such as ACAP (W.J. Dunlay Jr 1978) and the model leading up
to ALSIM were sponsored the FAA. The latter was acquired by the FAA and then upgraded by the U.S.

60 Part II Chapter 4. Simulation Software

Department of Transportation Systems Center (McCabe and Gorstein 1982). ALSIM is a discrete-event
simulation based on probabilities focusing on macroscopic interactions. It is capable of producing key
performance indicators on simulated facilities and can capture congestion/flow parameters. It is a Level.
03 type simulator.

Another model developed by government-based institution is the Calgary Model from the Canadian Air
Transportation Administration. It is a general purpose simulation system that uses time oriented queuing
models. Hamzawi (1986) of Transport Canada further develops the models by incorporating three modules
for passenger and baggage flow, gate assignment and ground transportation. These modules utilize queuing
models with Monte Carlo sampling techniques and are thus a Level. 03 type simulator.

In the passenger flow module, flow is simulated along pre-defined routes through the airport terminal
using an event-oriented stochastic model. In the gate assignment module, the user is able to specify a
strategy according to which gate are assigned. Usually, the flight schedule order determines how the flights
are assigned. Lastly, in the ground transportation module, the flow of vehicles is simulated along the road
infrastructure of the airport.

Furthermore, it is important to note that the British Airport Authority developed an airport terminal
simulation software that is capable analyzing individual facilities. However, there are no publications on the
model and hence little is known about its general properties and features.

4.3. Limitations and Conclusion for Simulation Software
As discussed previously, there are three main sectors that develop simulators: academia, industry and gov-
ernment. All of these simulators have different levels of detail and an overview can be found in table 4.1.
An surprising revelation from literature is that there are no Level. 05 simulators at the moment. This is
because simulators do not capture extensive passenger details/attributes. It is important to note that some
of the Level. 04 simulators (such as Janssen et al. (2019)) can be transformed into Level. 05 simulators by
making adjustments. Another interesting fact is that Janssen et al. (2019) is the only academia developed
simulator of Level. 04, while all others are based on industry.

Table 4.1: Overview of the level of detail for each simulator.

Level 1 A.R. Odoni and R. d. Neufville (1992)
Horonjeff et al. (2010)

Level 2 W.J Dunlay Jr et al. (1975)
Laing (1975)
Metais (1974)

Level 3 Mumayiz (1985)
McCabe and Gorstein (1982)
Hamzawi (1986)

Level 4 Janssen et al. (2019)
McCabe and Gorstein (1982)
INCONTROL Airport Simulation Solutions
HUB Performance
Airport Research Center

Level 5

The main disadvantage of most simulators is that they are commercial, and thus not open source. This
makes it very difficult to try out new modelling techniques because the source code cannot be adjusted.
Hence, the user is always constrained to the framework and input parameters that are given by the simulation
software.

Another disadvantage is that there is only one simulators that is agent-based (Janssen et al. 2019).
Therefore, characterizing human behavior and complex interactions between cognitive agents cannot be
modeled well. This has implications on any process where passenger behaviour differs based on passenger
types, such as at security where businessman/businesswoman would divest their luggage faster compared to
elderly passengers.

4.3. Limitations and Conclusion for Simulation SoftwarePart II 61

In conclusion, it has been decided to use Janssen et al. (2019) simulation software for the following
reasons:

• AATOM has an agent architecture that allows to specify agent behaviour at airports. It is possible to
specify the beliefs and goals of a passenger along with reasoning behind goals which get translated to
activities/actions that an agent performs.

• AATOM is an open source simulator. Therefore, the source code can be adjusted in order to update
modules of the simulator if necessary.

• AATOM has been used in several projects at Delft University of Technology. It is favorable to con-
tinue using it such that previous work can leveraged upon and perhaps incorporated into new re-
search/experiments.

Chapter 5

Simulation Optimization
Simulation optimization (SO) refers to the optimization of an objective function subject to constraints as
shown in Equation (5.1), which can be evaluated through a stochastic simulation. In literature, several
competing algorithms exist to address specific features in a particular simulation such as single or multiple
outputs, discrete or continuous decision variables, short or long computation time.

min Eω[f(x, y, ω)]
s.t. Eω[g(x, y, ω)] ≤ 0

h(x, y) ≤ 0
xl ≤ x ≤ xu

where x ∈ Rn, y ∈ Dm (5.1)

Section 5.1 presents single state methods, which focus optimizing a single candidate solution to reach
an optimum. On the other hand, Section 5.2 keeps a set of candidate solutions also known as population
methods. Lastly, Section 5.3 describe algorithms that optimize multiple objectives at the same time.

5.1. Single State Methods
In mathematics, gradient based optimization is a powerful tool where a candidate solution is optimized by
computing the first derivative from a well-understood mathematical function and tweaking the solution in
the direction of that derivative. However, in most cases, especially simulations, the function that is being
optimized is unknown and therefore the gradient cannot be computed. Simulations are typically a black box
where a candidate solution is given as input and the output is the assessed quality/fitness of that candidate
solution. It is important to note that it is unknown how the assessment function behaves, which is why the
simulation is used to compute an output. A candidate solution can be a range of numbers or structures as
it is dictated by the simulation.

To optimize a candidate solution in this scenario, the first step to accomplish is the initialization procedure,
which is to provide one or more candidate solutions. Next, the assessment procedure is performed, by running
the simulation and assessing the fitness of the candidate solution. Then, the modification procedure is done
which consists of two steps: make a copy of the candidate solution; and tweak the candidate solution, to
produce a slightly modified candidate solution. Finally, a selection procedure is performed which decides
which solution is kept and discarded. By selecting a new candidate solution, the algorithm explores the state
space to the problem to find an optimum.

This section introduced three algorithms: hill climbing in Section 5.1.1, simulated annealing in Sec-
tion 5.1.2 and tabu search in Section 5.1.3.

5.1.1. Hill Climbing
A simple technique of a single-state method is Hill-Climbing, an algorithm related to gradient ascent. How-
ever, it does not require the strength of the gradient, or even its direction to be known. This is a result of
new candidate solutions being iteratively tested in the region of the current candidate, and new ones adopted
if they are better. This enables the hill to be climbed until a local optimum is reached.

5.1.2. Simulated Annealing
Simulated Annealing was developed by Kirkpatrick et al. (1983) in the mid 1980s. In contrast to Hill-
Climbing, this algorithm varies in its decision of when to replace the original candidate solution, S, with its
newly tweaked child, R. Specifically, if R is better than S, S will be replaced with R; but if R is worse than
S, it may still replace S with a certain probability P (t, R, S):

63

64 Part II Chapter 5. Simulation Optimization

Algorithm 1 Hill Climbing from Luke (2013)
1: init S ▷ Initial Candidate Solution
2: repeat
3: R← Tweak(Copy(S))
4: if Quality(R) > Quality(S) then
5: S ← R
6: end if
7: until S is the ideal solution OR we have run out of time
8: return S

P (t, R, S) = e
Quality(R)−Quality(S)

t (5.2)

where t ≥ 0. Hence, the algorithm is able to descend hills when exploring the state space. Equation (5.2)
is interesting in two ways.

First, if the quality of R is very close to the quality of S, then the probability is close to 1, while if the
quality of R is much worse than the quality of S, then the probability is close to 0 because the fraction is
larger. Thus, if the fitness of R is slightly worse than that of S, there is a reasonable probability that it will
be selected. However, if the fitness of R is much worse, then it is very unlikely for it to replace the candidate
solution. Second, a parameter t exists that can be used to tune the probability over time. If t is close to 0,
the fraction is again a large number, and so the probability is close to 0, whilst the probability is close to
1 if t is high. The idea in Simulated Annealing is to initially set a high value for t, causing the algorithm
explore the candidate solutions regardless of their fitness. Then, as time progresses, t should be decreased
slowly, until it reaches 0, at which point a Hill-Climb is being performed.

Algorithm 2 Simulated Annealing from Luke (2013)
1: init t, γ, S ▷ Temperature, Cooling Rate, Initial Candidate Solution
2: S∗ ← S
3: repeat
4: R← Tweak(Copy(S))
5: if Quality(R) > Quality(S) or if a random number chosen from 0 to 1 < P (t, R, S) then
6: S ← R
7: end if
8: t← t− γ
9: if Quality(S) > Quality(S∗) then

10: S∗ ← S
11: end if
12: until S∗ is not optimal, run out of time, or t ≤ 0
13: return S∗

5.1.3. Tabu Search
Tabu Search, by Glover and Laguna (1998), keeps a history of recently considered candidate solutions known
as the tabu list. The algorithm is not able to return to one of the candidate solutions in the tabu list until
they are far enough in the past to have dropped out of the list. Hence, when a hill is being climbed, the
solution is not permitted to stay or return to the local maximum, thereby resulting in the solution moving
down the hill again.

An intuitive approach to Tabu Search is to maintain a Tabu List L, with some maximum size l, of
candidate solutions explored so far. A candidate solution is added to the tabu list each time a new solution is
explored. Once the list reaches the maximum number of solutions, the oldest candidate solution is removed
from L and it becomes possible to consider the solution again. In algorithm 3, n tweaked children are
generated but only the ones that are not presently taboo are considered.

5.2. Population Methods Part II 65

Algorithm 3 Tabu Search from Luke (2013)
1: init l, n, S ▷ Maximum Tabu List, Number of Tweaks, Initial Candidate Solution
2: S∗ ← S
3: L← ▷ A tabu list of maximum length l
4: Enqueue S into L
5: repeat
6: if Length(L) > l then
7: Remove oldest element from L
8: end if
9: R← Tweak(Copy(S))

10: for n-1 times do
11: W ← Tweak(Copy(S))
12: if W /∈ L AND (Quality(W) > Quality(R) OR R ∈ L) then
13: R←W
14: end if
15: if R /∈ L then
16: S ← R
17: Enqueue R into L
18: end if
19: if Quality(S) > Quality(Best) then
20: S∗ ← S
21: end if
22: end for
23: until S∗ is the ideal solution or we have run out of time
24: return S∗

5.2. Population Methods
The term Population Methods will be used to describe algorithms that keep a set of candidate solutions as
opposed to a single candidate solution. While a variety of algorithms exist, it may not be surprising that
they take concepts from biology. The phrase Evolutionary Computation (EC) encompasses a popular set
of techniques that are based on biology, genetics and evolution. An algorithm chosen from this collection
is known as an Evolutionary Algorithm (EA). The basic terminology of EA is described in section 5.2.1.
Common EAs include Evolution Strategies (ES) discussed in section 5.2.2 and the Genetic Algorithm (GA)
discussed in section 5.2.3. Another evolutionary algorithm is Particle Swarm Optimization (PSO) discussed
in section 5.2.4. However, this type of alogirthm is modelled after the swarming and flocking behaviours of
animals instead of being modelled after evolution.

5.2.1. Evolutionary Algorithm Terminology
Since EAs are inspired by biology, they have adopted terms from genetics and evolution to describe their
algorithms. Due to their relevance, this section discusses the meaning of each term as they will be used in
upcoming subsection to explain algorithms. Definitions are taken from Luke (2013).

Def. 06 Individual
A candidate solution.

Def. 07 Child and Parent
A child is the tweaked copy of a candidate solution (its parent).

Def. 08 Population
Set of candidate solutions.

Def. 09 Fitness
Quality.

Def. 10 Fitness Landscape
Quality function.

Def. 11 Fitness Assessment
Computing the fitness of an individual.

Def. 12 Selection
Picking individuals based on their fitness.

66 Part II Chapter 5. Simulation Optimization

Def. 13 Mutation
Plain Tweaking. This is often thought as asexual breeding.

Def. 14 Recombination or crossover
A special Tweak which takes two parents, swaps sections of them, and (usually) produces two
children. This is often thought as sexual breeding.

Def. 15 Breeding
Producing one or more children from a population of parents through an iterated process of
selection and Tweaking (typically mutation or recombination).

Def. 16 Genotype or genome
An individuals data structure, as used during breeding.

Def. 17 Chromosome
A genotype in the form of a fixed-length vector.

Def. 18 Gene
A particular slot position in a chromosome.

Def. 19 Allele
A particular setting of a gene.

Def. 20 Phenotype
How the individual operates during fitness assessment.

Def. 21 Generation
One cycle of fitness assessment, breeding, and population reassembly; or the population produced
each such cycle

Overall, an EA follows the standard generational EC algorithm approach. First, an initial population is
constructed as a set of candidate solutions. the next steps are done in iterative procedure: assess the fitness
of all individual in the population; breed new population of children based on the fitness; select parents and
children to form a next-generation population. This cycle continues until the population converges to an
optimum or a certain number of iterations has been reached.

5.2.2. Evolution Strategies
Rechenberg (1978) developed the family of algorithms known as Evolution Strategies. ES typically mutate
there individuals and use truncation selection as a procedure to select individuals.

One of the simplest ES algorithms is the (µ, λ) algorithm. It begins by generating a random population of
λ individuals. Then, the subsequent iterations is as follows: assess the fitness of all individuals; delete λ−µ
of the unfittest individuals, thereby the fittest µ individuals remain; tweak the remaining individuals using
an ordinary mutation to produce λ/µ children; the children replace the discarded parents and the iterations
starts again.

To summarize, µ is the number of parents which survive, and λ is total the number of kids that the µ
parents produce. It is important to note that µ should be a factor of λ. The algorithm pseudocode is as
follows:

In order to adjust the exploration versus exploitation of the (µ, λ) algorithm, there are three parameters
that can be adjusted.

• The size of λ. By controlling λ, the sample size of the population can be controlled.

• The size of µ. By changing µ, the selection procedure can be influenced with low values pushing the
algorithm toward a greedy search as only the fittest individuals survive each round.

• The degree to which mutation is performed. A mutation can be altered with respect to the amount of
noise that gets incorporated into the offspring. A lot of noise produces children that are very different
from their parents. Hence, the algorithm would resemble a random search regardless of the selectivity
of µ.

5.2.3. Genetic Algorithm
The Genetic Algorithm was invented by Holland (1992). Although a lot of similarities exist to the (µ, λ)
Evolution Strategy such as initialization, quality evaluation and population reassembly, there are primary
differences, namely: selection and breeding. In ES, all parents are selected and then used to create children.
By contrast, the GA selects a few parents gradually over time, generating children until the population is
back to its original sample size.

5.2. Population Methods Part II 67

Algorithm 4 The (µ, λ) Evolution Strategy from Luke (2013)
1: init µ, λ ▷ Number of parents selected, number of children generated by the parents
2: P ← {}
3: for λ times do ▷ Build Initial Population
4: P ← P∪ new random individual
5: end for
6: S∗ ← []
7: repeat
8: for each individual Pi ∈ P do
9: AssessFitness(Pi)

10: if S∗ = [] or Fitness(Pi) > Fitness(S∗) then
11: S∗ ← Pi

12: end if
13: end for
14: Q← the µ individuals in P whose Fitness() are greatest ▷ Truncation Selection
15: P ← {} ▷ Join is done by just replacing P with the children
16: for each individual Qj ∈ Q do
17: for λ/µ times do
18: P ← P ∪Mutate(Copy(Qj))
19: end for
20: end for
21: until S∗ is the is the ideal solution OR we have run out of time.
22: return S∗

An empty population of children is used to begin breeding. Then, two parents are selected from the
original population and used to generate two offspring, which are then added the population. Children are
created by copying the genotype of each parent, crossing it over (see below) with one another and then
mutating the result. This process is repeated until the child population is entirely filled. The algorithm in
pseudocode is given below.

Crossover
Crossover involves mixing and matching parts of the genotype of two parents to form children and is a
paramount feature in the Genetic Algorithm. The genotype structure influences the way mixing and matching
process can occur. If the structgure is in the form of a vector, then there are three typical ways of achieving
crossover: One-Point, Two-Point, and Uniform crossover. For this literature study, only one of the crossover
techniques will be explored, the One-Point crossover. Lets say the vector is of length l. One-Point crossover
selects a number c between 1 and l, inclusive, and swaps all the indexes that are less than c, as shown in
Figure 5.1. The algorithm is given in Algorithm 6:

Figure 5.1: One-point crossover.

5.2.4. Particle Swarm Optimization
As mentioned previously, Particle Swarm Optimization is a stochastic optimization technique that is modelled
after the swarming and flocking behaviour in animals. Whereas evolutionary algorithms resample populations
to produce new ones, PSO is a directed mutation method. Hence, it does not resample but maintains a

68 Part II Chapter 5. Simulation Optimization

Algorithm 5 Genetic Algorithm from Luke (2013)
1: init popsize ▷ Desired population size (make it even).
2: P ← {}
3: for popsize times do
4: P ← P ∪ newrandomindividual
5: end for
6: S∗ ← []
7: repeat
8: for each individual Pi ∈ P do
9: AssessFitness(Pi)

10: if S∗ = [] or Fitness(Pi) > Fitness(S∗) then
11: S∗ ← Pi

12: end if
13: Q← {}
14: for popsize/2times do
15: Parent Pa ← SelectWithReplacement(P)
16: Parent Pb ← SelectWithReplacement(P)
17: Children Ca, Cb← Crossover(Copy(Pa), Copy(Pb))
18: Q← Q ∪ {Mutate(Ca), Mutate(Cb)}
19: end for
20: P ← Q
21: end for
22: until S∗ is the ideal solution or we have run out of time
23: return S∗

Algorithm 6 One-Point Crossover
1: −→v ← first vector < v1, v2, ..., vl > to be cross over
2: −→w ← first vector < v1, v2, ..., vl > to be cross over
3: c← random integer chosen uniformly from 1 to l
4: if cneq1 then
5: for i from c to l do
6: swap the values of vi and wi

7: end for
8: end if

5.2. Population Methods Part II 69

single static populations, whose members are tweaked depending on discoveries of the state space made
from the population. The technique was developed by Kennedy and Eberhart (1995).

PSO typically operates in real-valued state spaces that are exclusively multidimensional metrics. The
reason behind this is that a PSO candidate solution is tweaked towards various best discovered solutions so
far. In literature, researchers use the term swarm of particles to refer to a population of individuals because it
is inspired by flocks and swarms. Since there is no selection, these particle never die but they move through
the state space. A particle consists of two parts:

• The particles location in space, −→x =< x1, x2, ... >.

• The particles velocity, −→v =< v1, v2, ... >, or its speed and direction each timestep. The velocity can
be calculated as follows: −→v = −→x t −−→x t−1.

Upon initialization, each particle is randomly generated with a location and velocity vector. The velocity
vector is typically computed by choosing half the vector between two random points (other options are a
small random vector or a zero vector). Furthermore, in order to adjust a particle positions in the state space,
it is important to pay attention to the following:

• The fittest known location −→x ∗ that −→x has discovered so far.

• The fittest known location −→x + that any of the informants of −→x have discovered so far. The informants
of −→x are commonly a small set of particles chosen randomly each iteration. It is important to note
that −→x is always one of its own informants.

• The fittest known location−→x ! that has been discovered by anyone so far.

The following iterations are performed each timestep. First, the fitness of all particles are assessed and the
best-discovered locations are updated. Secondly, the particles velocity vector is mutated by incorporating a
vector pointing to each of the fittest known locations −→x ∗, −→x + and −→x ! from the particle’s position −→x . This
vector is slightly augmented further with some random noise. Finally, move the particle through space by
using the new adjusted velocity vector.

70 Part II Chapter 5. Simulation Optimization

Algorithm 7 Particle Swarm Optimization from Luke (2013)
1: init swarmsize ▷ Desired swarm size
2: init α ▷ Proportion of velocity to be retained
3: init β ▷ Proportion of personal best to be retained
4: init γ ▷ Proportion of the informants best to be retained
5: init δ ▷ Proportion of global best to be retained
6: init ϵ ▷ Jump size of a particle
7: P ← {}
8: for swarmsize times do
9: P ← P ∪ { new random particle −→x with a random initial velocity −→v }

10: end for
11: S∗ =[]
12: repeat
13: for each particle −→x ∈ P with velocity −→v do
14: AssessF itness(−→x)
15: if S∗ = [] OR Fitness(−→x) > Fitness(S∗) then
16: S∗ ← −→x
17: end if
18: end for
19: for each particle −→x ∈ P with velocity −→v do ▷ Determine how to Mutate
20: −→x ∗ ← previous fittest location of −→x
21: −→x + ← previous fittest location of informants of −→x ▷ Including −→x itself
22: −→x ! ← previous fittest location of any particle
23: for each dimension i do
24: b← Random number from 0 to β inclusive
25: c← Random number from 0 to γ inclusive
26: d← Random number from 0 to δ inclusive
27: vi = αvi + b(x∗i xi) + c(x+

i xi) + d(x!
ixi)

28: end for
29: end for
30: for Each particle −→x ∈ P with velocity −→v do ▷ Mutate
31: −→x ← −→x + ϵ−→x
32: end for
33: until S∗ is the ideal solution or we have run out of time
34: return S∗

5.3. Multi-Objective Methods
Researches are often interested in optimizing multiple fitness functions instead of a single function. Each
fitness function is referred to as an objective that needs to be optimized. Rarely is there a case where an
optimal solution can be found for every objective. Typically, objectives are juxtaposed with one another,
which results in solutions that are a tradeoff of various objective. Section 5.3.1 discusses the terminology of
multi-objective methods and how tradeoffs can be made. Section 5.3.2 and Section 5.3.3 introduce naive
and pareto methods for multi objective optimization respectively.

5.3.1. Multi-Objective Methods Terminology
As mentioned previously, solutions to multi-objective methods are often tradeoffs between various objectives.
Therefore, defining a set of best options is a difficult task. The predominant way of determining the best
solutions is to analyze the pareto front of the space of candidate solutions, which is the the set of solutions
that are not dominated by another other solution.

Consider two candidate solutions M and N , if M is at least as good as N in all objectives and better
than N in at least one objective, then M pareto dominates N . Hence, M is a better solution because it
as least as good as N in all aspects and better in one. Figure 5.2 depicts the space dominated by a given
solution A if there are only two objectives. If M is only better in some objectives than N , then both solutions
are of interest.

Thus, the set of solutions that are non-dominated by other solutions are of great interest when analyzing

5.3. Multi-Objective Methods Part II 71

Figure 5.2: Region of solutions Pareto dominated by solution A.

multiple objectives. This set of solutions is known as the pareto front or pareto non-dominated front.
Figure 5.3 shows the Pareto front of the possible solutions in our two-objective space. As can be seen in the
figure, the pareto front defines the outer border of the solution space. In an optimization with two objectives,
the outer border is curve. In an optimization with three objectives, the outer border becomes a surface. If
one solution is better than all the others, the front collapses to that single individual.

Figure 5.3: The pareto front of non-dominated solutions.

Spread
It is not enough to offer a plethora of solutions that lie on the Pareto front if all are located close to each
other, as that does not give much insight into other options that are available. Instead, a set of solutions
that are evenly spread across the front are preferred. Hence, most algorithms force diversity measures while
optimizing for multiple objectives. Interestingly, the diversity is usually enforced with respect to euclidean
distance in fitness and not genotypical distance.

The Problem of Too Many Objectives
If the number of objectives increases, then the population size required to accurately determine the pareto
front grows exponentially. Therefore, all multi objective methods face computation challenges when a large
number of of objectives are being used (i.e. greater than 3). As stated by Luke (2013), researches have
been investigating hypervolumes covered by the pareto front. However, these techniques are complex and
will not be discussed further in this section. Instead, this literature study focuses on simple multi-objective
methods.

5.3.2. Naive Methods
Before describing Pareto methods, more naive methods used to transform multi-objective problems into
single-objective problems are discussed. This will allow traditional metaheuristic algorithms to be used for
the optimization. The simplest way of combining objectives into a single fitness function is to sum them
up in a linear manner. Thus, the quality of a solution may be defined as a weighted sum of how various
objectives are met:

72 Part II Chapter 5. Simulation Optimization

Fitness(i) = Throughput(i) + 1
2

Cost(i) (5.3)

This theme has been encountered several times in the past so far. However, there are fundamental
problems with this concept. Firstly, the worth of each objective needs to be quantified and compared to
another. This is already a difficult task for linear objectives due to their juxtaposition but impossible for
non-linear objectives due to scaling issues. Secondly, a weighted sum will not lead the solution to the pareto
front. An individual A could be located at the front but still have a lower fitness than individual B that
is not located at the front. Therefore, a less desirable individual B would be selected using this fitness
strategy. Lastly, the pareto front already indicates tradeoffs between objectives. Therefore, an individual can
pick different combinations along the front and still evaluate their combined fitness.

Instead of giving weights to each objective, linear functions could be abandoned and the objectives
are simply treated as uncomparable functions. When comparing two individuals, objectives are simulated
until one is superior to the other in that objective. A tournament selection can be performed if there
is an ObjectiveV alue(objective, individual) function in the simulation that establishes the quality of an
individual with regard to the given objective. The torunament selection process is given in Algorithm 8.

Algorithm 8 Multi-Objective Majority Tournament Selection from Luke (2013)
1: S∗ ← individual picked at random from population with replacement
2: O ← {O1, ..., On} ▷ Objectives to assess with
3: t ▷ Tournament size (t ≥ 1)
4: j ← random number picked uniformly from 1 to n
5: for i from 2 to t do
6: Next← individual picked at random from population with replacement
7: if ObjectiveV alue(Oj , Next) > ObjectiveV alue(Oj , Best) then
8: S∗ ← Next
9: end if

10: end for
11: return S∗

5.3.3. Pareto Methods
The previous algorithm merges multiple objectives into a single fitness value by using tradeoffs. However,
it also possible to use the notion of pareto domination to get more desirable solutions in a multi-objective
sense. This can be achieved by constructing a tournament selection that is based on pareto domination. As
mentioned previously, pareto domination is when an the fitness of individual A is at least as good as B in
every objective and better than B in at least one objective (Luke 2013).

Algorithm 9 Pareto Domination Binary Tournament Selection from Luke (2013)
1: init P ▷ Population
2: Pa ← individual picked at random from P with replacement
3: Pb ← individual picked at random from P with replacement
4: if Pa Pareto Dominates Pb then
5: return Pa

6: else if Pb Pareto Dominates Pa then
7: return Pb

8: else
9: return either Pa or Pb, chosen at random

10: end if

When an individual pareto dominates another, then selecting an individual to keep is trivial. However,
how do we select an individual where neither of them pareto dominate one another? Suppose there are two
individuals A and B, where individual A has many individuals that pareto dominate it and B has none. It
would be preferred to select individual B because the likelihood of selecting an individual better than B in
the next round is lower than for A since it closer to the pareto front.

5.3. Multi-Objective Methods Part II 73

In order to establish how close individuals are to the pareto front, a new concept called pareto front rank
is introduced. An individual is in Rank 1 if it located in the pareto front. If these individual are removed from
the population and a new pareto front is computed, then those individuals in the new front are considered
to be in Rank 2. If these individuals are then removed and another new front is computed, Rank 3 would be
established, and so on. Figure 5.4 shows the notion of ranks.

Figure 5.4: Pareto ranks.

For tournament selection, it is of paramount importance to define how to compute a pareto front. The
best way to do this is keep a list of individuals that are in the pareto front. Each round the algorithm goes
through the population, adds an individual if its not dominated by any of the current individuals in the front
and removes corresponding individual in the front that have been dominated by the new individual. The
pseudocode can be found in Algorithm 10.

Algorithm 10 Computing a Pareto Non-Dominated Front
1: init P ▷ Population
2: G← {G1, ..., Gm} ▷ Group of indivduals to compute the front among
3: O ← {O1, ..., On} ▷ Objectives to assess
4: F ← {}
5: for Gi ∈ G do
6: F ← F ∪ {Gi} ▷ Assume Gi is going to be in the front
7: for Fj ∈ F other than Gi do
8: if Fj pareto dominates Gi given O then
9: F ← F − {Gi} ▷ Remove Gi from front

10: break
11: else if Gi pareto dominates Fj given O then
12: F ← F − {Fj} ▷ Remove Fj from front
13: end if
14: end for
15: end for

Chapter 6

Reinforcement Learning
The idea of learning by interacting with the environment is fundamental in the nature of learning. In
this chapter, computational approach to learning from interaction is explored. Section 6.1 covers Markov
Decision Processes (MDPs), which are a classical formalization of sequential decision making. Section 6.2 and
Section 6.3 discsuses monte carlo methods and temporal difference (TD) methods for learning respectively.
Section 6.4 develops reinforcement methods that require a model of the environment, known as planning.
Section 6.5 proposes methods used for when more than one agent is learning in an environment, also known
as multi-agent systems. Lastly, Section 6.6 talk abouts the challenges faced in reinforcement learning (RL).

6.1. Markov Decision Processes
Finite MDPs, which are a classical formalization of sequential decision making, are introduced in this section.
An agents actions affect not only immediate rewards, but also their subsequent states, thereby affecting
those potential rewards as well. Hence, MDPs have immediate and delayed rewards, which require tradeoffs
between them. In order to accurately assign rewards due to long-term consequences from an action selected
by an individual, it is essential to know state-dependent quantities.

MDPs can be viewed as a mathematically idealized version of reinforcement learning, where precise theo-
retical statements can be made. This section introduces key elements to learning, such as agent-environment
interface in Section 6.1.1, goals and rewards in Section 6.1.1, returns and episodes in Section 6.1.2 and value
functions in Section 6.1.3.

6.1.1. Agent-Environment Interface
MDP are a mathematical realization of learning from interaction to achieve a goal. An agent is defined as
an entity that is able to learn and make decisions. The environment encompasses everything that an agent
can interact with, excluding itself or other agents. Both of them interact continually, where an agents takes
a action and the environment responds to these actions, thereby presenting new situations to the agent.
Furthermore, the environment encourages the agent to complete actions by giving it rewards, which the
agent seeks to maximize over time.

Figure 6.1: The agentenvironment interaction in a Markov decision process replicated from Sutton and Barto (2018).

Note that the interaction between the agent and environment occur at discrete time steps, t = 0, 1, 2, 3, ..., n.
During each time step t, the agent receives a representation of the environment’s states St ∈ S, and takes
an action At ∈ A(s) based on state St. One time step later, the agent receives a reward Rt+1 ∈ R and is
situated in a new state St+1 as a result of its previous action At. The MDP, the environment and the agent
produce a sequence shown in Equation (6.1).

S0, A0, R1, S1, A1, R2, S2, A2, R3, ... (6.1)

A finite MDP has by definition a finite number of states, actions, and rewards. Therefore, the random
variables Rt and St depend only on the preceding state St−1 and action At−1 and thereby have discrete

75

76 Part II Chapter 6. Reinforcement Learning

probability distributions. For example, given particular values of s ∈ S and a ∈ A(s), there is a probability
that the next state and reward will be s′ ∈ S and r ∈ R respectively. This concept is conceptualized in
Equation (6.2)

P (s′, r|s, a) = P (St = s′, Rt = r|St−1 = s, At−1 = a), (6.2)

In a MDP, the environment dynamics are completely characterized by the probabilities given by p, because
the preceding state and action, St−1 and At−1 define the probability of each possible value for St and Rt.
This is also known as the Markov property. Therefore, all aspects of the past agent-environment interaction
that affect the future must be included in the state of the agent.

Goals and Rewards
In RL, the environment passes a special signal to the agent, known as reward, at each time step. The reward
is typically an integer number Rt ∈ R but can also be more complex. The agent’s purpose is to maximize
the total amount of reward it receives, hence the cumulative reward in the long run.

RL is distinguished by the use of a reward signal to formalize a goal. Sutton and Barto (2018) explains
that although "formulating goals in terms of reward signals might at first appear limiting, in practice it has
proved to be flexible and widely applicable."

6.1.2. Returns and Episodes
Until this point, the objective of learning has been conceptualized informally, stating that that an agents
purpose is to maximize the cumulative reward it receives in the long run.

In a mathematical context, "an agent seek to maximize the expected return, where the return, denoted
Gt, is defined as some specific function of the reward sequence" denoted by Sutton and Barto (2018).
Typically, the return is described by the sum of the rewards as shown in Equation (6.3), where T is the
final step. This approach is compatible in simulations in which there is a final timestep, such as computer
games. The agent-environment interaction can be broken into subsequences, known as episodes, and tasks
with episodes are known episodic tasks. In an episodic task, the time of termination, T , varies from episode
to episode.

Gt = Rt+1 + Rt+2 + Rt+3 + ... + RT (6.3)

By contrast, there are many agent-environment interactions that do not break into identifiable episodes,
but go on without a limit, known as continuing tasks. For continuing tasks, the return of Equation (6.3) is
problematic because the return itself could be infinite since the timestep is T =∞.

In order to maximize the return for continuing tasks, an additional concept known as discounting is
introduced. According to this approach, Sutton and Barto (2018) states that "the agent tries to select
actions so that the sum of the discounted rewards it receives over the future is maximized". Specifically,
an agent selects At to maximize the expected discounted return described in Equation (6.4), where γ is
0 ≤ γ ≤ 1 and called the discount rate.

Gt = Rt+1 + γRt+2 + γ2 + Rt+3 + ... =
∞∑

k=0

γkRt+k+1 (6.4)

The discount rate determines the value of future reward experienced in current state St. A future reward
is worth only γk1 times what it would be worth if it were received immediately, where k represents the time
steps in the future. If γ = 0, the agent is myopic and concerned only with maximizing immediate rewards.
If 0 < γ < 1 and the reward sequence Rk is bounded, then Equation (6.4) has a finite value.

6.1.3. Policies and Value Functions
Typical RL algorithms involve estimating value functions, which are functions of states that estimate "how
good it is for the agent to be in a given state" or "how good it is to perform a given action in a given state"
as described by Sutton and Barto (2018). The goodness of a state is defined in terms of the expected return
(i.e. the cumulative future rewards that can be expected). Note that future reward depend on the actions
an agent selects. Hence, value functions are defined by how an agent acts, also known as policies.

Mathematically, a policy π is the probability of an agent selecting action At = a given that the it is in
state St = s. Hence, it is probabilistic mapping π(a|s) from states to each possible action in that state.

6.1. Markov Decision Processes Part II 77

RL methods specify how the agent’s policy changes due to its experiences in the environment. A value
function for state s under a policy π, denoted vπ(s), is "the expected return when starting in s and following
π thereafter" as given by Sutton and Barto (2018). For MDPs, vπ(s) is defined according to Equation (6.5),
where Eπ denotes the expected return value given that the agent follows policy π. The function vπ is called
the state-value function for policy π.

vπ(s) = Eπ [Gt|St = s] = Eπ

[∞∑
k=0

γkRt+k+1 | St = s

]
∀s ∈ S (6.5)

It is important to note that the value of the terminal state, if any, is zero.
Similarly, qπ(s, a) denotes the value of being in state s and taking action a under a policy π and is known

as the action-value function for policy π. It is defined as the expected return taking the action a from state
s, and thereafter following policy π (shown in Equation (6.6)).

qπ(s, a) = Eπ [Gt|St = s, At = a] = Eπ

[∞∑
k=0

γkRt+k+1 | St = s, At = a

]
∀s ∈ S and a ∈ A (6.6)

In RL, a basic feature of value functions is that recursive relationships are fulfilled. The following
consistency condition in Equation (6.7) holds between the value of s and the value of its possible successor
states s′ for any policy π and any state s,

vπ(s) = Eπ [Gt|St = s]
= Eπ [Rt+1 + γGt+1|St = s]
= Eπ [Rt+1 + γvπ(s′)|St = s]

=
∑

a

π(a|s)
∑

s′

p(s′|s, a) [E[r|s, a, s′] + γvπ(s′)]

=
∑

a

π(a|s)
∑
s′,r

p(s′, r|s, a) [r + γvπ(s′)] (6.7)

Equation (6.7) is the Bellman equation for vπ, which expresses a mathematical relationship between the
value of a state and the values of its successor states.

In Figure 6.2, every open circle represents a state, and a state-action pair is represented by a solid circle.
The agent will take a set of potential actions from the root state s (three in Figure 6.2) depending on its π
policy. Based on each of these actions, the environment responds with one of several next states s′ (two in
Figure 6.2) and a reward r that depends on the system dynamics given by p. The Bellman equation states
that the starting state value must be equal to the predicted state’s discounted value plus the reward averaged
over all possibilities along the way. Likewise, there is a bellman equation for qπ(s, a) given in eq. (6.8).

qπ(s, a) =
∑

s′

p(s′|s, a)

[
E[r|s, a, s′] + γ

∑
a′

π(a′|s′)qπ(s′, a′)

]
It is important to note that the state-value function can also be written in terms of the action-value

function as demonstrated in eq. (6.8).

vπ(s) =
∑

a

π(s, a)qπ(s, a) (6.8)

Optimality Conditions
Solving a reinforcement learning problem involves finding an optimal policy that maximizes the long-term
expected return. Policy performance can be described in the following way for finite MDPs: a π policy
performs better than or equal to a π′ policy if its projected return for all states is greater than or equal
to that of π′. In a mathematical context, π ≥ π′ if and only if vπ(s) ≥ vπ′(s) for all s ∈ S. Notice
that at least one policy exists, often referred to as optimal policy, that is greater than or equivalent to all

78 Part II Chapter 6. Reinforcement Learning

Figure 6.2: Backup diagram bellman taken from Sutton and Barto (2018).

other policies. Although there could be more than one, π∗ denotes all of the optimal policies and their
corresponding optimal state-value function is denoted by v∗, as defined in eq. (6.9).

v∗(s) = max
π

vπ(s) ∀s ∈ S (6.9)

Optimal policies also share the same optimal action-value function, denoted Q∗, and defined according
to eq. (6.10).

q∗(s, a) = max
π

qπ(s, a) ∀s ∈ S and a ∈ A (6.10)

Since v∗ is the value function for a policy, the recursive condition given by eq. (6.7) for state values
must be satisfied. However, as it is an optimal value function, a simplified condition can be derived (one
without reference to a specific policy). This is the Bellman Optimality Equation as shown in Equation (6.11).
Intuitively, the Bellman equation for v∗ expresses that the expected return for selecting the best action from
a state is equal to value of a state under an optimal policy.

v∗(s) = max
a∈A(s)

qπ∗(s, a)

= max
a

Eπ∗ [Gt|St = s, At = a]

= max
a

Eπ∗ [Rt+1 + γGt+1|St = s, At = a]

= max
a

Eπ∗ [Rt+1 + γV∗(s′)|St = s, At = a]

= max
a

∑
s′

p(s′|s, a)[E[r|s, a, s′] + γv∗(s′)]

= max
a

∑
s′,r

p(s′, r|s, a)[r + γv∗(s′)] (6.11)

6.2. Monte Carlo Method
To learn the state-value function for a given policy, Monte Carlo (MC) methods are introduced.

Recall that the definition of the value of a state is the expected return starting from that state. One
plausible way to quantify it is to average the returns following a visit to that state. A principle idea of MC
methods is the average will converge to the expected value as the number of returns observed increases.

Given a set of episodes earned by adopting policy π and passing through s, it is possible to estimate
Vπ(s). A repetition of state s during an episode is called a visit to s. It is important to note that s can be
visited multiples times within the same episode.

The every-visit MC method obtains an estimate by averaging the returns following all visits to state s.
On the other hand, The first-visit MC method estimates vπ(s) by averaging the returns following a first visit
to state s. Both of these methods are similar, however their theoretical properties are different. This section
focuses on the latter method as it is more intuitive. The algorithm is presented in Algorithm 11.

As mentioned previously, when the number of first visits to s goes to infinity, then the first-visit MC
converges to vπ(s) . Since each return is an independent, yet equal distributed approximation of vπ(s) with

6.3. Temporal Difference Learning Part II 79

Algorithm 11 First-Visit MC Prediction from Sutton and Barto (2018)
1: init π, V (S) ∈ R ▷ Policy, Value of state s (for all s ∈ S)
2: Return(S)← {} ▷ For all s ∈ S
3: repeat
4: Generate an episode following : S0, A0, R1, S1, A1, R2, ..., St−1, At−1, Rt

5: G← 0
6: for each step of episode do
7: G← γG + Rt+1
8: if St appears in S0, S1, ..., St−1 then
9: Returns(St)← G

10: V (St)← average(Returns(St)
11: end if
12: end for
13: until Run out of time

finite variance, then the average of these estimates converges to their expected value due to the law of
large numbers. It is important to note that each average is an unbiased estimate of Vπ(s). Therefore, the
standard deviation σ decreases by 1/

√
n, where n is the number of returns averaged.

6.3. Temporal Difference Learning
Temporal difference (TD) learning is a fundamental concept to learn by reinforcement. It is a combination
of dynamic programming (DP) and MC ideas. Similar to MC methods, TD methods do not need a model
of environment-dynamic and are able to learn directly from raw experiences. Furthermore, they bootstrap
like TD methods. Bootstrapping is a technique where a model updates estimates based on other estimates,
instead of waiting for the final outcome. It was decided to not talk about dynamic programming in this
literature study because it is more theoretical than applied.

6.3.1. Temporal Difference Prediction
Both MC and TD methods use experience to solve the issue of estimation. Using the experience obtained
by adopting a policy π, their estimate V of vπ for the nonterminal states is updated. Typically, techniques
based on MC wait until a visit reoccurs and use that return to update V (St). In eq. (6.12), an every-visit
Monte Carlo method suitable for non-stationary environments is demonstrated, where Gt is the actual return
following time t, and α is a constant step-size parameter.

V (St)← V (St) + α[Gt − V (St)] (6.12)

As mentioned previously, MC methods have to wait until an episode finishes in order to determine the
target for V (St). By contrast, only the next time step is needed for TD methods. At time t+1, TD methods
obtain a target that is equal to the sum of the observed reward Rt+1 and the estimate V (St+1) multiplied
by a discount factor γ. Equation (6.13) indicates a simple TD method update that occurs on transition to
St+1 and receiving Rt+1. The TD method in Algorithm 12 is called one-step TD method.

V (St)← V (St) + α[Rt+1 + γV (St+1)− V (St)] (6.13)

TD methods offer unique advantages over DP methods and MC methods. First, they do not require
a model of the environment, nor next-state probability distributions as in DP methods. The second most
apparent benefit of TD methods is that they are naturally applied in an incremental, online manner. This
is because they only have to wait one time step to know the expected return whereas MC methods must
wait until the end of an episode. Interestingly, this is a crucial consideration when deciding between MC
and TD methods. While MC methods are ideal mathematical version of learning, they are slow to learn for
various application. Episodes can be very long, which delays learning, or even continuous tasks, making it
impossible to learn as there are no episodes. Lastly, TD methods learn from each transition regardless of the
action taken. Thus, they do not need to discount episodes as in MC methods.

80 Part II Chapter 6. Reinforcement Learning

Algorithm 12 Tabular TD(0) from Sutton and Barto (2018)
1: init V (s)∀s ∈ S ▷ Except that V (terminal) = 0
2: for episode in episodes do
3: init S
4: repeat for each step of episode
5: A← given by π for S
6: Obsverve R, S′ by taking action A
7: V (S)← V (S) + α[R + γV (S′)− V (S)
8: S ← S′

9: until S is terminal
10: end for

6.3.2. SARSA
By following the usual pattern of generalized policy iteration, a new algorithm, also known as SARSA, can
be constructed by using TD methods for estimation. Similarly to MC methods, algorithms can be classified
into on-policy and off-policy approaches. An on-policy learner discovers policy π while the agent carries out
the same policy. An off-policy learner discovers policy π1 while following the return of another policy π2. In
essence, on-policy learns how good it is to do something by doing it and off-policies learns how good it is to
do something while doing another thing.

In this subsection, an on-policy TD control method is presented. The reason SARSA is on-policy is
because it approximates qπ(s, a) by following policy π for all actions a and states s. In other words, it
assumes that the current policy π continues to be followed and then estimates the return for state-action
pairs. This can be accomplished by applying the same described in Algorithm 12 for learning vπ but for qπ.
In order to derive the algorithm, it is important to know that an episode consists of an alternating sequence
of states and stateaction pairs as shown in fig. 6.3.

Figure 6.3: State-action pairs taken from Sutton and Barto (2018).

While transition between states were considered for TD methods, this new on-policy method considers
transition between state-action pairs and learns the values of state-action pairs. Although these sequences
are different, they are both markov chains and obey the same theorems. For example, the law of large
number assures the convergence applies to the corresponding update shown in eq. (6.14), similarly to that
of TD(0).

Q(St, At)← Q(St, At) + α[Rt+1 + γQ(St+1, At+1)−Q(St, At)] (6.14)

The update is done for each non-terminal state St after taking action At, where the estimated return
is dependent on the reward Rt, the next state St+1 and the next action At+1. Putting the terms together
(St, At, Rt+1, St+1, At+1) give the algorithms its name: SARSA. If St+1 is a terminal state, then the expected
return is 0.

Using the SARSA prediction method, it becomes possible to design an on-policy control algorithm. As
mentioned previously, on-policy methods estimate qπ by adopting behavior policy π, while changing their
policy π to increase the expected return with respect to qπ. Algorithm 13 presents the general SARSA
algorithm. The convergence properties of the SARSA algorithm are guaranteed if all state-action pair are
visited an infinite number of times.

6.3.3. Q-Learning
The development of an off-policy TD control algorithm known as Q-learning (Watkins and Dayan 1992) was
one of the early breakthroughs in RL. Its update policy is defined by eq. (6.15).

Q(St, At)← Q(St, At) + α[Rt+1 + γ max
a

Q(St+1, a)−Q(St, At)] (6.15)

6.3. Temporal Difference Learning Part II 81

Algorithm 13 SARSA
init Q(s, a)∀s ∈ S, a ∈ A ▷ Except that Q(terminal, ·) = 0
for episode in episodes do

init S
Choose A from S using policy derived from Q
repeat for each step of episode

take action A, observe R and S′

Choose A′ from S′ using policy derived from Q
Q(S, A)← Q(S, A) + α[R + γQ(S′, A′)−Q(S, A)]
S ← S′ and A← A′

until S is terminal
end for

The reason that Q-learning is off-policy is that it approximates qπ(s, a) independently of the adopted
policy. In essence, it approximates the expected return for state-action pairs assuming a greedy policy is
adopted even though it can be visiting any state-action pair according to some type of policy. Watkins
and Dayan (1992) demonstrate if state-action pairs are continually visited and updated, then the algorithm
converges to an optimal policy.

From a RL standpoint, this isnt a very interesting algorithm if P and R are already known. However, it
becomes interesting if the agent can learn qπ simply by exploring the environment and experiencing P and
R without knowing what they actually are. These type of algorithms (i.e. ones that do not know P and R)
are known as model-free algorithms. Algorithm 14 present the Q-learning algorithm.

Algorithm 14 Q-Learning from Sutton and Barto (2018)
1: init Q(s, a)∀s ∈ S, a ∈ A ▷ Except that Q(terminal, ·) = 0
2: for episode in episodes do
3: init S
4: Choose A from S using policy derived from Q
5: repeat for each step of episode
6: Take action A, observe R and S′

7: Choose A′ from S′ using policy derived from Q
8: Q(S, A)← Q(S, A) + α[R + γ max

a
Q(S′, a)−Q(S, A)]

9: S ← S′

10: until S is terminal
11: end for

6.3.4. Double Q-Learning
Q-learning is one of the breakthroughs in TD learning but one of its main disadvantages is the that is uses
a maximization function to construct its target policies. As a result, q-learning continuously overestimates
its true value q(s, a). This occurs because estimated values Q(s, a) are noisy compared to the true values
q(s, a), hence they will be distributed around q(s, a), with some being greater and some less than the true
values. If the maximum of the estimated values Q(s, a) is taken, it will be greater than the maximum of
the true value q(s, a) . Hence, a positive bias exists, which is also known as maximization bias. Due to this
maximization bias, q-learning performs poorly in stochastic environments.

In a study conducted by Hasselt (2010), it was shown the maximization bias can be avoided by using
separate samples to determine the maximizing action and to estimate its values. For example, consider two
estimates Q1(a) and Q2a, that are two independent estimates of two separate sets of actions, where each
estimate is updated by the other in the next state. The first update consists of finding the maximizing
action of Q1 in the next state (i.e. a∗ = arg max

a
Q1(a)). Then, that action a∗ is used to determine

Q2(a∗) = Q2(arg max
a

Q1(a)) in order to update the estimate Q1(a). Since E[Q2(a∗)] = q(a∗), then the

estimate is unbiased. This process can be repeated with Q1(a) and Q2(a) reversed in order to produce a
second unbiased estimate Q1(arg max

a
Q2(a)). The proposed solution is the fundamental idea behind double

learning. It is important to note that double learning does not increase the computation per step because

82 Part II Chapter 6. Reinforcement Learning

only one estimate is updated each play. However, it does double the memory requirements because two
estimates are stored.

The concept of double learning can easily be integrated into algorithms for MDPs. For example, the
time steps in q-learning can be divided in two to create a new algorithm known as double q-learning (Hasselt
2010). In the first time step, the update is as follows:

Q1(St, At)← Q1(St, At) + α[Rt+1 + γ max
a

Q2(St+1, arg max
a

Q1(St+a, a))−Q1(St, At)] (6.16)

In the the second time step, Q1 and Q2 are reversed, such that Q2 is updated. Both of these estimators
are treated symmetrically in all of the updates. A complete algorithm for Double Q-learning is given in
algorithm 15, where an ϵ − greedy policy is used as the behvaiour policy for based on the sum of the two
estimates Q1 and Q2.

Algorithm 15 Q-Learning
1: init Q1(s, a)andQ2(s, a)∀s ∈ S, a ∈ A ▷ Except that Q(terminal, ·) = 0
2: for episode in episodes do
3: init S
4: repeat for each step of episode
5: Choose A from S using policy ϵ− greedy from Q1 + Q2
6: Take action A, observe R and S′

7: if random(0, 1) ≥ 0.5 then
8: Q1(St, At)← Q1(St, At) + α[Rt+1 + γ max

a
Q2(St+1, arg max

a
Q1(St+1, a))−Q1(St, At)]

9: else
10: Q2(St, At)← Q2(St, At) + α[Rt+1 + γ max

a
Q1(St+1, arg max

a
Q2(St+1, a))−Q2(St, At)]

11: end if
12: S ← S′

13: until S is terminal
14: end for

6.4. Planning
In this section, a unified view of model-based and model-free RL methods is developed. Model-based methods
required a model of the environment whereas model-free methods do not. As such, the primary component
of model-based methods is planning, while for model-free methods its learning. Although distinct differences
exist between these two methods, they share many similarities as well. For example, both methods compute
value functions by updating it with estimated value from looking ahead into the future. Section 6.4.1
introduces model-based methods. Section 6.4.2 and Section 6.4.3 each present a unique algorithm used for
planning, dyna-q and prioritized sweeping respectively.

6.4.1. Models and Planning
Agents that model the environment predict how the environment will respond to its actions. A model provides
a prediction of the next state and next reward, given a state and an action. If there are several potential
next states and next rewards, then the model is stochastic. Distributed models produce a description of all
possible state-reward pairs and their probabilities of occurring, whereas sample models indicate only one of
the possibilities.

These types of models can be used to simulate experiences, instead of requiring the agent to explore the
environment. A sample model and a distributed model can generate one episode and all possible episodes
respectively with their likelihood of occurring. Therefore, they can reduce an agent’s need to explore the
environment because the models can be used to simulate the environment and provide simulated experience.

There are many different definitions of the word planning. This literature study adopts the definition
from Sutton and Barto (2018) as "any computational process that takes a model as input and produces or
improves a policy for interacting with the modeled environment". According to this definition, there are two
unique approaches to planning possible in the field of AI. State-space planning, which is defined by Sutton
and Barto (2018) as "a search through the state space for an optimal policy or an optimal path to a goal".

6.4. Planning Part II 83

Value functions are computed over states, where state to state transitions occur due to actions. This is also
the approach that this literature study focuses on. On the other hand, plan-space planning is instead "a
search through the space of plans" defined by Sutton and Barto (2018).

There are two fundamental ideas behind all state-space planning methods: the computation of value
functions is done as an intermediate step to updating a policy; the computation of value function updates
based on simulated experiences. Figure 6.4 presents a diagram of this common structure.

Figure 6.4: State-space planning taken from Sutton and Barto (2018).

6.4.2. Dyna-Q
A number of interesting issues arise when planning is done online, while interacting with the environment.
Interaction with the environment leads to new information gained, thereby having the potential to change
model, which will influence planning. In order to prevent this, the planning process can be customized such
that it only considers states or decisions in the near future. An online planning agent with simple architecture,
known as a Dyna-Q agent, is introduced for this purpose.

Real experiences can be used in two ways by planning agents: experiences can update the value function
of the agent (similar to RL method discussed in in section 6.2 and section 6.3) and experiences can improve
the model (to resemble the real environment better). These are known as direct reinforcement learning and
model learning respectively. Figure 6.5 illustrates how experience affects a policy either directly or indirectly
through a model. The latter also known as indirect reinforcement learning.

Figure 6.5: Model-learning and direct reinforcement learning diagram taken from Sutton and Barto (2018).

There are advantages and disadvantages to both direct and indirect methods. Indirect methods achieve
better policies with fewer environmental interactions due utilizing the experiences more. By contrast, direct
methods are not affected by biases that appear when designing a model and are much simpler. Researchers
have argued both ways to which type of learning is superior but no common consensus is found. It is
interesting to note that most human and animal learning follow direct methods.

A Dyna-Q agent incorporates all of the processes shown in Figure 6.5, which include acting, direct RL,
model learning and planning, in a continuous manner. It is a combination of multiple algorithms each
used for an individual process. This literature study puts a specific focus on the model-learning aspect as
this has not been seen yet. It assumes that the environment is deterministic, such that the output is only
determined by the input and initial states. The method is table-based in that it keeps a table that logs
all of the transitions of state-action pairs experienced (i.e. St, At −→ Rt+1, St+1). If the model is queried
for a specific state-action pair that has been experienced before, it outputs the state and reward that were
observed last from that state-action pair. During planning, the model is queried only from state-action pairs
that have previously been experienced. In essence, real experience learned by the model give rise to simulated
experience. When starting states and actions are selected to be queried by the model to generate simulated
experience, it is known as search control.

84 Part II Chapter 6. Reinforcement Learning

Finally, Sutton and Barto (2018) states that "planning is achieved by applying reinforcement learning
methods to the simulated experiences just as if they had really happened". The same RL methods for direct
RL and and planning are used to update the policy. Learning and planning share many similarities, with their
main difference being the source of their experience.

In Dyna-Q agent, each process occurs simultaneously when considering a conceptualized version. How-
ever, due to ease of implementations dicrete timesteps are used. The planning process is the most compu-
tationally intensive part in the Dyna-Q agent.

Algorithm 16 Dyna-Q-Learning from Sutton and Barto (2018)
1: init Q(s, a), Model(s, a) ∀s ∈ S, a ∈ A(s)
2: repeat
3: S ← current (nonterminal) state
4: A← ϵ− greedy(S, Q)
5: Take action A, observe resultant reward R, and state S′

6: Q(S, A)← Q(S, A) + α[R + γ maxa Q(S0, a)Q(S, A)]
7: Model(S, A)← R, S′ (assuming deterministic environment)
8: for n times do
9: S ← random previously observed state

10: A← random action previously taken in S
11: R, S′ ←Model(S, A)
12: Q(S, A)← Q(S, A) + α[R + γ maxa Q(S0, a)Q(S, A)]
13: end for
14: until Run out of time

6.4.3. Prioritized Sweeping
When planning occurs for Dyna-Q agents, simulated experience occurs by randomly selecting state-action
pairs from a uniform distribution. The main consequence of a uniform selection is that many updates
are wasted on state-action pairs that are not useful towards achieving the objective. In order to improve
planning, simulated experiences should focus on specific state-action pairs. This is especially useful when
large state-action spaces are considered because an unfocused search would require more computation time
before converging to an optimal policy.

By going backward from goal states, it is possible to focus the search. However, methods should be
tailored for general reward functions instead of an idealistic goal state. Therefore, a search can be focused
by working back from states whose values have changed. A change of an estimated value indicates that a
plethora of other states should also change values. Hence, consider an agent that is exploring the environment
and one of its estimated values for a state changes. Then, a one-step update should focus on the actions
that caused a a change of value in that state. By updating the values of these actions, it is possible for
predecessor states to change as well. Again, the actions that affect the predecessor states should be updated,
which in turn might update states prior to the predecessor states. This backward propagation can continue
performing useful updates or can be terminated after a certain amount of steps.

When back propagation is applied over multiple steps, the number of state-action pairs that need to
be updated usually increases exponentially. Thus, it is useful to prioritize which pairs to update based on
their usefulness. One possible way of accomplishing this is to evaluate the magnitude of the change of an
estimated value. Updates done on states whose estimated values changed a lot, have a high likelihood of
producing bigger changes in their predecessor states. The prioritization of updates according to urgency is
a fundamental concept to prioritized sweeping. Prioritization is tracked by maintaining a queue of every
state-action pair whose estimated value changed, order by the magnitude of the change. When the pair with
the highest magnitude is updated, then the resulting change on its predecessor is determined. If the change
is bigger than a certain threshold it is added to the queue. It is important to note that if the state-action
pair already exists in the queue, then the maximum magnitude change is kept. The pairs are re-prioritized
and a next updated is performed. Algorithm 17 presents the prioritized sweeping method.

6.5. Multi-Agent Learning Part II 85

Algorithm 17 Prioritized Sweeping from Sutton and Barto (2018)
1: init Q(s, a), Model(s, a) ∀s ∈ S, a ∈ A(s)
2: repeat
3: S ← current (nonterminal) state
4: A← policy(S, Q)
5: Take action A; observe resultant reward R, and state S′

6: Model(S, A)← R, S′

7: P ← |R + γ maxa Q(S′, a)Q(S, A)|
8: if P > θ then
9: insert S, A into PQueue with priority P

10: end if
11: while PQueue is not empty do
12: S, A← first(PQueue)
13: R, S′ ←Model(S, A)
14: Q(S, A)← Q(S, A) + α[R + γ maxa Q(S′, a)Q(S, A)
15: for S, A predicted to lead S do
16: R← predicted reward for S, A, S
17: P ← |R + γ maxa Q(S′, a)Q(S, A)|
18: if P > θ then
19: insert S, A into PQueue with priority P
20: end if
21: end for
22: end while
23: until Run out of time

6.5. Multi-Agent Learning
Impressive results have been achieve by RL algorithms, especially when considering the convergence results
to an optimal policy. Due to their ability to learn from scratch, they are able to discover patterns that escape
even humans. However, much of the literature study up to now has been focused on a single learning agent.
Therefore, this section will address multi-agent system, which are systems where multiple agent are learning
at the same time.

Similar to reinforcement learning techniques, the goal for multi-agent system is often to monitor or explore
a given space. In RL, an agent learns a map of the area individually, whereas in multi-agent systems multiple
agents explore the environment, where each agent has its own perspective of the area that it is exploring.
Through cooperative learning, agents are able cooperate in order to achieve the best possible outcome for
the system. In an exploring setting, this entails that each agent shares their maps in order to achieve a global
perspective of the environment. The agents are then able to decide which areas are interesting for further
exploration. Another possibility is that agents behave competitively, where each agent wants to maximize
its own objective. In these environment, agents will exploit other agents weaknesses and thus it becomes
interesting to analyze if the agents reach a stable equilibrium.

The reward function for a multi-agent system is a function of the state and all of actions of the agents.
Hence, the reward of an agent not only depend on its own actions but also on the actions of other agents.
Transitions between state-action pairs are captured by multi-agent MDPs, from which it is very difficult
to converge to an optimal policy. When considering only a single agent, the optimal policy maximizes the
agents discounted rewards. However, in a multi-agent setting, the optimal policy can be various equilibrium
points depending on the user. For example, it is possible to maximize the sum of all agents discounted
rewards, also known as social welfare. Another possibility is to choose the Nash equilibrium point, which is
a set of policies where no agent has anything to gain by changing their strategy. It is important to note that
the Nash equilibrium point always exists. Using the NashQ-learning approach in Algorithm 18, it is possible
to find the Nash equilibrium point.

6.6. Challenges in Reinforcement Learning
Enclosed simulation environments, such as video games, are preferable to use for RL because they have
quantifiable rewards and the ability to give many training examples. Computational simulations are able to

86 Part II Chapter 6. Reinforcement Learning

Algorithm 18 NashQ-Learning
1: t← 0
2: s← currentstate
3: ∀s∈S∀j←1,...,n∀aj∈Aj Qt

j(s, a1, ..., an)← 0
4: repeat
5: Choose action at

i

6: ss
7: Observe rt

1, ..., rt
n;at

1, ..., at
n;s′

8: for j in range n do
9: Qt+1

j (s, a1, ..., an)← (1λt)Qt
j(s, a1, ..., an) + λt(rt

j + γNashQt
j(s))

10: NashQtj(s) = Qt
j(s, π1(s), ..., πn(s)) and 1(s) ů ů ů n(s) are Nash EP calculated from Q values

11: end for
12: t← t + 1
13: until Run out of time

run in parallel and can be sped up to run faster than real-time. However, many RL techniques (i.e. deep Q
learning (Mnih et al. 2013)) require millions of training points due to fundamental problems of learning. The
first reason is that RL agents often learn from scratch and have no knowledge regarding the environment.
Another reason is that the environment often provides only a sparse reward signal. A sparse reward signal is
defined by a sequence of rewards, where most of them are non-positive. Hence, an agent will have difficulties
learning which actions contribute to a distant future reward. For very sparse reward systems, an agent might
never be able to learn how to perform a task because it never found a reward signal. Sparse reward signal
do not hinder humans from achieving tasks, due to their intrinsic motivation (Pathak et al. 2017).

The most intuitive solution to sparse reward problems is reward shaping. Mataric (1994) formulated
the idea back in 1994, and it has been used widely ever since. Reward Shaping means that we enhance
the primary reward of the environment with some additional reward features. By using additional reward
features, we shape the primary reward to appropriately reward or punish interactions, filling the gap of the
original sparse reward feature (Jaderberg et al. 2016). While the approach has a few upsides, it also comes
with various problems. The additional reward functions are usually hand-crafted and require human experts
to be successful. In addition to the expertise needed, human-crafted reward functions also have the problem
of introducing a human bias to the possible policies the agent will find to solve the problem. Thinking of a
complex game like chess, it is not easy to find experts that can design reward functions for the agent that
may vary with the state of the game. Moreover, by using hand-crafted reward functions, the agent might
fail to discover new policies that humans have not found yet.

A second general idea is to give incentives to an agent to learn about new things that it discovers in
its environment. In most default RL algorithms, agents use a greedy exploration, which in many scenarios
causes an agent to learn a simple type of behaviour that earns recurring low amount of reward. Since the
agent does not continue to explore, it become stuck in a local minimum with small, recurring rewards. One
way to combat this is to create an additional reward signal that gives incentives to the agent to explore
unseen regions in the state space. One particular paper by Pathak et al. (2017) uses an intrinsic curiosity
model to get a more robust exploration strategy.

Lastly, Andrychowicz et al. (2017) use a new method called hindsight experience replay. The general
idea behind hindsight experience replay is that the agent should learn from all episodes even if the episode
was not successful. It applies a clever trick to get an agent to learn from unsuccessful episodes: instead of
telling the agent the episode was unsuccessful and it receives a reward of 0, it will pretend that what the
agent accomplished was what it was supposed to do and reinforce it with a virtual goal. This essentially
create a dense reward signal out of a sparse reward signal.

Chapter 7

Research Proposal
Over the past decades, there has been a dramatic increase in airport terminal models. Such research has
demonstrated the ability to model airport processes, events and activities of passengers. These models fall
under three distinct categories: capacity planning, airport efficiency and airport security. Many models have
been built upon and turned into airport terminal simulators of varying capabilities. Recent breakthroughs
in computational power have allowed airport simulators to become ever more detailed, modelling passenger
flows to passenger activities.

Despite these incredible results, much is still unknown about the operational impact of the airport security
checkpoint. Hence, section 7.1 summarizes limitations of existing literature section 7.2 proposing research
questions to address these limitations.

7.1. Summary of limitations in literature
As mentioned previously, many airport terminal simulation software have been analyzed in this literature
study (see Chapter 4). In the past, simulators often had to tradeoff more detailed representation with
computational cost and greater need for data. However, recent developments in computation have seen a
proliferation of more microscopic simulators and models. One of the main pitfalls for academia research is
that most simulators are not open-source, therefore it is difficult to obtain and share information as to how
they model airport terminals.

From an industry perspective, simulators are of paramount importance because new terminal concepts
can be simulated without needing to reconstruct the airport. They allow airport architects to design, test
and evaluate new concepts which aid decision making of airport terminal design.

Therefore, valid simulators are needed that are open-source and able to model new security concepts.
Hence, it has been decided to use the AATOM simulator for future research. Since these new concepts have
not been tried before in literature, it is unclear how different security concepts influence the total performance
of the system and where bottlenecks in the operations are.

Indeed, existing literature has modelled the outbound passenger facilitation process. However, the main
focus has been on the overall performance or check-in. Previous studies in the field have not treated the
security checkpoint in much detail. Furthermore, it is now well established that small-scale interactions
have to be modelled in order to capture emergent behaviour that leads to bottlenecks. Hence, passenger
flow must be modelled in order to capture bottlenecks in the design of a security checkpoint configuration.
Furthermore, the use of advance computational techniques, such as simulation optimization or reinforcement
learning, have rarely been seen before in airport terminal literature. The latter has not been used at all in
airport terminal literature. Therefore, it would be of interest to use reinforcement learning to help design
airport security checkpoint configurations.

Lastly, Schiphol Airport sees a need to improve their allocation of resources during their operation of the
security checkpoint. There is an increasing concern that resources, such as airport operators, body scanners,
drop-off positions and security lanes, are not used to their full potential when constraints such as throughput,
cost and area are considered. Thus, there is a need to determine and evaluate optimal policies that improve
operational efficiency. An optimal policy is defined as the best strategy to take, thus the best mapping
from perceived state of the environment to action taken. From existing literature, it has been shown that
optimal policies can be found through the use of reinforcement learning. In reinforcement learning, an agent
converges to its optimal policy by learning to perform actions in an environment that maximize its cumulative
reward. Usually, rewards are given to the agent one time step after it performs an action. However, in an
security checkpoint setting, this is not possible because the efficiency can only be known after a certain
amount of time since that action has been performed. Therefore, delayed rewards are required to be given
to an agent. For the purpose of this thesis, q-learning will be used, which is a model-free algorithm, as it is
one of the most common reinforcement learning techniques in literature.

Therefore, an open-source airport terminal simulator is necessary to accommodate new security check-
point configurations that can evaluate their performance and to discover optimal policies that improve

87

88 Part II Chapter 7. Research Proposal

operational efficiency. The term operational concept is used to combine the design of an airport security
checkpoint configuration and policies that might be developed.

7.2. Research Objectives
The main objective of this research is:

To design and evaluate new airport security checkpoint operational concepts for outbound
passengers by using q-learning with delayed rewards.

In order to address the research objectives, the following research questions need to be answered.

1. How are airport security checkpoint operational concepts going to be designed?

(a) How are concepts going to differ from one another?
(b) How much design freedom will a reinforcement learning agent have in a concept?
(c) How are concepts going to be comparable?
(d) Which active policies are going to be analyzed?
(e) How are concepts going to be simulated?

i. What input parameters can be adjusted in each concept?
ii. What modifications are required in the Simulator?

The first research question addresses the operational concepts and their design. Sub-questions are
used to help scope a case study by choosing important aspects in the design of an operational concept.
These questions will be answered in collaboration with Schiphol Airport, who has performed a market
consultation in new airport security configurations and industry experience to suggest specific policies
of interest. Additionally, the researchers is forced to think about the integration of the operational
concepts into the simulator.

2. How will the performance of each airport security checkpoint concept be evaluated?

(a) What key performance indicators are going to be used?
(b) How will the results be verified/validated?

i. What input data will be needed to verify concepts?
(c) How will the results be compared?

The second research question focuses on the evaluation of a security checkpoint concept. Sub-questions
are used to aid in determining how operational concepts can be analyzed and statistically relevant.
These questions will partially be answered by the key performance indicators that Schiphol Airport is
using, but also allow the researcher to think about new types of analysis.

3. How are agents going to learn to design/change an airport security checkpoint operational concept?

(a) What reward functions/objectives are going to be used?
i. How can rewards be shaped to not have a sparse reward system?
ii. How to prevent an agent from being stuck in a local minimum?
iii. Will the agent have a single or multiple objectives? If multiple objectives are used, how can

they be evaluated?
(b) Will the agent use on-policy or off-policy methods?
(c) Will the agent use model-based or model-free algorithms?
(d) Will the agent have partial or full observability of the environment?
(e) Will there be one agent or multiple agents learning how to design a checkpoint?
(f) How can this be implemented in the simulator?

7.3. Work Packages Part II 89

The third research question targets the architecture of the reinforcement learning agent. Sub-questions
are asked to guide the researcher in the proper direction when making decisions on how to structure
an agent. Furthermore, the researcher is asked on the implementation of learning agents into the
simulator.

4. How will the performance of an agent be quantified?

(a) What means of quantification are there?

(b) Will the performance be based on the final checkpoint design or the agents achieved reward?

The fourth research questions addresses the evaluation of agents performance. Sub-questions aim at
defining what quantification methods there are and if agent performance will be based on its final
design or its ability to learn.

7.3. Work Packages
7.3.1. Initial Phase (12 Weeks)
WP. 01 Implement airport security configurations (4weeks)

This work package discusses the changes that have to be accomplished in the simulator in order to
implement novel airport security configurations. The approach should be modular such that many
different configurations can be explored. Weekly meetings are scheduled with Schiphol Airport to
keep track of progress.

WP. 01A Creating a simple modular security checkpoint (1 week)
This sub package assigns time to develop a simple security checkpoint within the AATOM
simulator. Although a security checkpoint is already implemented, it does not have the
ability to model different configurations. Thus, new classes/objects must be introduced into
the AATOM code to achieve modularity. In order to know scope which structural changes
in the code are necessary, a meeting will be scheduled with both the creator of the AATOM
simulator, Stef Janssen, and a researcher at the TU Delft using the simulator, Adin Mekic.
The simple security model will compromise of a divest belt, xray belt and a reclaim belt.
It is important to note that the movement of luggage between these system is of primary
importance. The belts and the flow of luggage must all be incorporated into the simulator.

WP. 01B Extend the system to include more security assets (1 week)
This sub package allocates time to extend the basic security system developed in the previous
sub package. By incorporating more security assets into the xray system of the AATOM
simulator, such as a decision belt, it possible to increase the complexity of the security
configuration.

WP. 01C Change simulation environment of security checkpoint while simulating(2 week)
In the AATOM simulator, the environment is currently generated at the start of the sim-
ulation and then agents proceed to interact with the environment. However, it would be
beneficial to change the environment during the simulation such that assets can be added
when needed. For example, the number of divest positions should be adjustable such that
during the simulation an extra position can be added if required. In order to know which
assets should be made changeable during the simulation, they have to be defined first.

WP. 02 Define a research scope (1 week)
This work package designates time to define the case study that will be used to analyze the
operational concepts. To do this the following must be accomplished: define operational concepts;
define testing conditions (i.e. how to compare different operational concepts); define objectives
for agents to learn; define possible actions for agents to take.

WP. 03 Implement learning agents (6 weeks)
This work package assigns time to implement agents that have the ability to learn into the AATOM
simulator. The approach should be modular such that agents can be reused for different learning
criteria.

90 Part II Chapter 7. Research Proposal

WP. 03A Implement learning frameworks(4 weeks)
This sub package allocates time for the implementation of learning frameworks. By using
the basic agent-environment interface (see Section 6.1.1), it becomes apparent which criteria
must be defined in order to establish a framework for learning. The observability of an agent
must be defined which allow it to determine what state it is currently in. The possible actions
an agent can take in a specific state must be defined. The resulting state and reward from a
certain action must implemented in the code. Reward shaping is of paramount importance
such that an agent converges to a good solution and does not get stuck in a local minimum.

WP. 03B Analyze learning behaviour(2 weeks)
As with all learning, it is uncertain what results might yield for the case study. Therefore,
this sub package designates time to analyze the preliminary results of learning agents. For
example, agents might learn something completely unintended in the simulation. While this
results might be interesting, it is very probable that they are not beneficial to the final
result. Thus, by taking the time to analyze the result this will help in improving the learning
experience of the agent.

WP. 04 Prepare for midterm meeting(1 Week)
This work package presents the workload and assignments needed to prepare for the midterm
meeting. At the meeting, the case study for this thesis will be presented along with progress made
during the initial phase. Presentation will be in the form of a PowerPoint, and multiple tries will
be performed during the week. Furthermore, answers should be prepared for specific questions.

7.3.2. Final Phase (12 weeks)
WP. 05 Implement midterm meeting comments(1 week)

This work package allocates time to adjust implementation done in the initial phase and the case
study depending on the feedback of the midterm meeting.

WP. 06 Execute case studies(2 weeks)
This work package dedicates time to executing the case studies defined in previous work packages.
Simulations will be run using the new implementations in the AATOM model. Since many simu-
lation runs are needed to train an agent, the simulations will be conducted on the Air Transport
Operation cluster. Therefore, learning how to use and book the cluster is of primary importance
in this work package.

WP. 07 Analyze simulation results(1 week)
This work package assigns time to analyze the simulation results. Analysis will be twofold: the
learning behaviour of the agent will be analyzed and the performance of the security concept will
be evaluated. Additional code must be written in order to analyze the results. The code shall be
general such that in can read a generic log file from the AATOM simulator.

WP. 08 Execute case studies(2 weeks)
This work package sets aside additional time to execute further case studies. It was decided to
execute case studies iteratively because unforeseen problems could potentially arise in the first
batch. For example, an agent may not learn as intended or get stuck in a local minimum. Hence,
it is beneficial to have another session where case studies can be repeated.

WP. 09 Analyze simulation results(1 week)
This work package allocates time to analyze the new simulation results. It will primarily rely on
the code done in the first analysis of the simulation results.

WP. 10 Execute case studies(2 weeks)
This work package assigns additional time to execute further case studies. This is the third and
final iteration to execute case studies.

WP. 11 Analyze simulation results(1 week)
This work package designates time to analyze the new simulation results. It will primarily rely on
the code done in the first analysis of the simulation results.

WP. 12 Write draft version of thesis(1 week)
This work package sets aside time to write the thesis. It is important to note that the thesis

7.3. Work Packages Part III 91

paper will be worked on during the other work packages as well. Special focus will be put on the
methodology and discussion of results.

WP. 13 Prepare for green light meeting(1 week)
In order to attend the green light meeting, the draft version of the thesis must be submitted.
This work package presents the workload and assignments needed to prepare for the green light
meeting. At the meeting, the final results of this thesis will be presented along with progress made
during the final phase. Presentation will be in the form of a PowerPoint, and multiple tries will
be performed during the week. Furthermore, answers should be prepared for specific questions.

7.3.3. Final Thesis and Defence Phase (4 weeks)
WP. 13 Implement green light meeting comments (1 week)

This work package allocates time to adjust analysis done in the final phase depending on the
feedback of the green light meeting.

WP. 14 Finish up thesis (1 week)
This work package assigns time to finalize the thesis. Special focus will be put on formatting,
spelling and layout of the thesis.

WP. 15 Prepare for defence (2 weeks)
The last work package sets aside time to prepare for the thesis defence. A presentation should be
created/prepared that discusses the methodology and key findings of the research. Time will be
used to rehearse the presentation and prepare for any possible questions that can be asked during
the defense.

III
Supporting Work

The following appendices were written in collaboration with another MSc Aerospace Engineer student, Didier
van der Horst, who is also doing his master thesis with Amsterdam Airport Schiphol (see Horst (2021) [25]).
Together, we developed and extended the original AATOM simulator from Janssen et al. (2019) [30] to
improve the security checkpoint process. Furthermore, we used the extended AATOM simulator to simulate
several case studies for Amsterdam Airport Schiphol.

93

Appendix A

AATOM Simulator
This appendix provides a detailed description of the Agent Based Airport Terminal Operations Model
(AATOM). AATOM was initially developed by Janssen et al. (2019). During this research the architec-
ture was updated and improved to facilitate the implementation of a modular security checkpoint. The
necessary architecture changes, along with the improved/added classes are presented in this appendix.

This appendix is structured in a top-down manner. Initially the highest level of hierarchy is covered,
namely the procedure that initializes the simulation by ’building’ its components (covered in Appendix A.3)
and the procedure that dictates the start conditions, end conditions and the step procedure in the simulation
(covered in Appendix A.4).

Then the main simulation components are covered, namely the environment and the agent. For the
environment, see Appendix A.5, the approach used to generate and update the environment is presented.
In Appendix A.6, covering the agents, a detailed description of the agent architecture, along with a detailed
description of each of the activities that an agent can perform is provided.

A.1. Assumptions
This section presents the assumptions used in the agent-based model. They are categorized into three parts:
passenger, operator and security checkpoint.

Passenger Assumptions

AssP ax. 01 All passenger activities are performed strictly sequentially. For example, passengers do not go
back to divest another item once they have completed the divest activity.

AssP ax. 02 All luggage items have the same divest and reclaim distributions.
AssP ax. 03 All passengers go through the SSc (adopted from Janssen et al. (2019)).
AssP ax. 04 Passengers always automatically stop inside the SSc scanner.
AssP ax. 05 Passengers are never denied access to the restricted area (adopted from Janssen et al. (2019)).
AssP ax. 06 Passengers can start the reclaim as soon as their luggage item is on the belt, and they are at

a reclaim location. I.e. passengers do not have to wait for the tray to be next to them.

Operator Assumptions

AssOps. 01 The rotation of operators in the security checkpoint is neglected.
AssOps. 02 Operators are always performing an activity, i.e. they do not slack.
AssOps. 03 Operator communication failures are captured inside agent attribute distributions.
AssOps. 04 Recheck operators only check luggage once it reaches the end of the reject belt.
AssOps. 05 Recheck operators check luggage in the order that it arrives at the recheck.
AssOps. 06 Divest operators are not modelled.

Security Checkpoint Assumptions

AssP ax. 01 Luggage is transferred instantaneously from divest belt to CT belt.
AssP ax. 02 Luggage is transferred instantaneously from decision belt to reclaim belt.
AssP ax. 03 "Stop the check" is not simulated. A scenario where the entire security lanes freezes due to a

suspicious/dangerous item.

95

96 Part III Chapter A. AATOM Simulator

AssP ax. 04 Luggage always acts as expected, i.e. it does not fall out of trays which can slow the CT
process.

AssP ax. 05 SSc rescans are not modelled, these are captured in the scan time.

A.2. Overview
At the highest level of hierachy, the Simulator dictates the main components of the simulation. In the
Simulator, the environment is constructed by means of the Map. Anything that is added to the Map,
is known as a MapComponent. Initially the user constructs the Map within the user interface by adding
MapComponents. The procedure of generating agents is specified in the AgentGenerator, and the stop
condition of the simulation is defined by the EndingCondition. Schematically a class diagram is depicted in
Figure A.1.

Figure A.1: UML Diagram of Simulator

A.3. User Interface
The user interface constructs the simulator such that a simulation can be run. This is done by initially
instantiating a Simulator object. Then, MapComponents are created and added to the Simulator. The
pseudo code is depicted in Algorithm 19.

Algorithm 19 Main File
1: Input airport layout Alayout, passenger attributes PAtt., operator attributes OAtt., security checkpoint

characteristics Cchar., ending conditions Endcond.

2:
3: for episode in episodes do
4: Sim← new Simulator(Endcond., new AgentBaseGenerator(PAtt.))
5: Sim.add(new Walls(Alayout))
6: Sim.add(new EntranceAreas(Alayout))
7: Sim.add(new CheckIn(Alayout))
8: Sim.add(new SecurityCheckpoint(Alayout, OAtt., Cchar.))
9: Sim.add(new GateArea(Alayout))

10: Sim.run()
11: end for

A.4. Simulator
The Simulator class can be regarded as highest hierachy in AATOM. It interfaces the end conditions and
updates the simulation. To achieve this, three methods are highlighted. First the add() method, which is used
to add objects to the simulator. Second, the run() method, which is used to start and end the simulation.

A.4. Simulator Part III 97

Third the step() method, which updates the simulator. During this update, the AgentGenerator checks
if new agents must be generated. Furthermore, step() updates all MapComponents that are identified as
directlyUpdatable. The pseudo-code for the add(), run(), and step() methods are depicted in Algorithm 20,
Algorithm 21 and Algorithm 22 respectively.

Simulator Attributes

SimAtt. 01 Agent Generator
Description: Generates passengers in the entrance area if generating conditions are satisfied.
Initialization: A passenger agent is generated when there are less than 20 passengers in
the banklining of the security checkpoint. This ensure continuous demand for the security
checkpoint.

SimAtt. 02 Map
Description: Contains all physical elements of the model.
Initialization: According to airport layout.

MapAtt. 01 Map Components
Description: A collection of all map components on the map.
Initialization: According to airport layout.

SimAtt. 03 Ending Conditions
Description: The ending conditions of a simulation.
Initialization: Simulations ends after a fixed number of steps.

Algorithm 20 Simulator Method: Sim.add(simulationObjects)
function Sim.add(simulationObjects)

for obj in simulationObjects do
if obj instance of Concept.class then ▷ Concept explained in Appendix A.5.2.

c← (Concept) obj
for mapComponent in c.getMapComponents() do

Map.add(mapComponent)
end for

end if

if obj instance of MapComponent.class then
Map.add(obj)

end if

if obj instance of Agent.class then
a← (Agent) obj
a.init()

end if
end for

end function

98 Part III Chapter A. AATOM Simulator

Figure A.2: UML Diagram of MapComponent.

Algorithm 21 Simulator Method: Sim.run()
function Sim.run

running ← True
while Endcond. not satisfied do

time← 0
if running then

time←step()
end if

end while
logOutput()

end function

Algorithm 22 Simulator Method: Sim.step()
function Sim.step()

agents← AgentGenerator.generateAgent(PAtt.)
Sim.add(agents)

for directlyUpdateable←Map.getMapComponents(directlyUpdateable.class) do
directlyUpdateable.update()

end for
end function

A.5. Environment
The Simulator contains a Map. The Map can be regarded as the environment which consists of different
MapComponents. The four main MapComponents that we highlight are the Agents, PhysicalObjects,
Areas and Concepts. A schematic class diagram of the MapComponent is shown in Figure A.2. It
can be seen that of these four MapComponents, the Agent and Concept are classes that are also
DirectlyUpdatable, indicating that they are updated each step by the Simulator class.

A.5.1. Physical Objects
One of the four main MapComponents is the PhysicalObject. The PhysicalObject is an object that
has a physical representation on the Map and is also visualized in the user-interface. The classification
of PhysicalObjects is presented in the class diagram shown in Figure A.3. Sensors are used to make
observations that agents would not be able to do. To provide modularity in constructing security checkpoint

A.5. Environment Part III 99

Figure A.3: UML Diagram of PhysicalObject.

configurations, the LuggageBelt class was implemented. LuggagBelts are able to transport the luggage
of passenger agents. Users can construct a modular checkpoint by defining luggage belts individually.

LuggageBelt attributes are presented below. The update of the luggage over the luggage belt is shown
in Algorithm 23.

Luggage Belts
Luggage Belt Attributes

BeltAtt. 01 Start Position
Description: A position indicating the start of the belt.
Initialization: According to airport layout.

BeltAtt. 02 End Position
Description: A position indicating the end of the belt.
Initialization: According to airport layout.

BeltAtt. 03 Luggages On Belt
Description: A collection of luggages that are on the belt.
Initialization: Empty.

BeltAtt. 04 Luggage at Start Position
Description: The luggage that is at the end position of the belt.
Initialization: Null.

BeltAtt. 05 Luggage at End Position
Description: The luggage that that is at the start position of the belt.
Initialization: Null.

100 Part III Chapter A. AATOM Simulator

Algorithm 23 Luggage Belt Method: Belt.update()
function Belt.update()

for luggage in luggagesOnBelt do
if luggage not at endPosition then

if getLuggageInFront() = null then
move luggage

end if
else

setLuggageAtEndPosition(luggage)
end if

end for
end function

A.5.2. Concepts
When a sub-process is added to the Map, a Concept must be implemented. A Concept describes the
relationship between different mapComponents and Agents in a specific airport sub-process. E.g., in a
larger sub-process such as the security checkpoint, the interaction between different LuggageBelts must be
defined.

Checkpoints
As this research focuses on security checkpoints, a Concept was created for the security checkpoint. This is
implemented in the Checkpoint class, which extends the Concept class. The Checkpoint therefore provides
the relationship between all PhysicalObjects and Agents that belong to the security checkpoint. These
relationships include (1) the order in which luggage flows over the Luggagebelts, (2) the transfer of luggage
between luggage belts, and (3) whether passengers and luggage items are suspicious and need corresponding
additional checks.

The relevant attributes of the Checkpoint are listed below. Each iteration the Checkpoint is updated,
the pseudo-code is presented in Algorithm 24. The pseudo-code for luggage transfers between belt is
presented in Algorithm 25.

Checkpoint Attributes

CheckAtt. 01 Luggage Flow
Description: A mapping from each luggage belt to a collection of luggage belts that it
is able to transfer to.
Initialization: According to airport layout.

CheckAtt. 02 Not Checked Luggages
Description: A collection of luggages that have been scanned by the CT sensor but not
yet checked by a security operator.
Initialization: Empty.

CheckAtt. 03 Luggages Rechecked
Description: A collection of luggages that have to be rechecked.
Initialization: Empty.

CheckAtt. 04 Passengers To Scan
Description: A collection of passengers that have to be scanned.
Initialization: Empty.

CheckAtt. 05 Passengers To Frisk
Description: A collection of passengers that have to be frisked.
Initialization: Empty.

A.6. Agent Part III 101

Algorithm 24 Checkpoint Method: Checkpoint.update()
function Checkpoint.update()

beltsToTransfer ← []
for belt in luggageBelts do

belt.update()
if belt instance of CTBelt.class then

belt← (CTBelt) belt
luggage, observation← belt.getCTSensor().getObservation()
luggageNotChecked.add(luggage)

end if
if belt.getLuggageAtEndPosition() != null then

beltsToTransfer.add(belt)
end if

end for

beltsToTransfer ← sort beltsToTransfer by time waiting for transfer
for belt in beltsToTransfer do

transferLuggage(belt)
end for

end function

Algorithm 25 Checkpoint Method: Checkpoint.transferLuggage(belt)
function Checkpoint.transferLuggage(belt)

luggage← belt.getLuggageAtEndPosition()
targetBelts← luggageF low.get(belt)
for targetBelt in targetBelts do

if targetBelt.isFree() then
if targetBelt instance of ReclaimBelt.class then

if luggage != suspicious and luggage can divert then
transferLogic← True

end if
else if targetBelt instance of RejectBelt.class then

if luggage = suspicious and luggage can divert then
transferLogic← True

end if
else

transferLogic← True
end if

if transferLogic = True then
belt.removeLuggage(luggage)
targetBelt.addLuggage(luggage)
break

end if
end if

end for
end function

A.6. Agent
This section will describe the architecture of the agent in more detail. Agents use the original AATOM
agent architecture. This architecture is depicted in the class diagram in Figure A.4. As per original AATOM
architecture, an Agents is initialized with three models: (1) the StrategicModel, (2) the TacticalModel
and (3) the OperationalModel. Each of these models has several internal modules. When an agent is

102 Part III Chapter A. AATOM Simulator

generated at the airport terminal or security checkpoint, it initializes with goals that it wants to accom-
plish (GoalModule). Through reasoning, an agent generates a plan (e.g. a list of activities) to achieve
these goals (PlanningModule). Based on the strategy, an agent will navigate (NavigationModule)
through the environment and execute activities (ActivityModule). Agents perform activities by observing
(PerceptionModule) and executing actions (ActuationModule). It is important to note agents continu-
ously maintain their beliefs and goals, thereby potentially resulting in new plans. Furthermore, agents are
only able to perform one activity at a time. The main sequence of operations followed by an agent is:
observation −→ perception −→ interpretation −→ reasoning −→ activity control −→ actuation −→ action.

Figure A.4: UML Diagram of an Agent.

The modules that were improved such that agents are compatible with the new security checkpoint are
the GoalModule, PlanningModule and ActivityModule. These are also the modules that are covered
in more detail in this appendix. The goal module is covered in Appendix A.6.1, the planning module in
Appendix A.6.2, and the activity module in Appendix A.6.3.

For all agents the initialisation and updates are identical. The initialisation of the agents is dictated by
the AgentGenerator. All internal modules of the agent are initialises simultaneously with the initialisation
of the Agents. The pseudo-code for the initialisation() of an agent is presented in Algorithm 26. An
Agent is DirectlyUpdatable. Therefore, every Simulator step updates the Agents. This update also
results in the update of the internal modules of the Agents. The pseudo-code for the update() of an agent
is presented in Algorithm 27.

A.6. Agent Part III 103

Algorithm 26 Passenger Method: Agent.init()
function Agent.init()

goalModule.init() ▷ Initializes goals.
planningModule.init(goalModule) ▷ Initializes planning based on goals.

end function

Algorithm 27 Agent Method: Agent.update()
function Agent.update()

goalModule.update() ▷ Goals can change over the simulation.
planningModule.update() ▷ Plans must match the new goals.
beliefModule.update()
activityModule.update() ▷ Activities must match the new plan.
navigationModule.update() ▷ Navigation must match the new plan.
movementModule.update() ▷ Movement dictated by destination.

end function

A.6.1. Goal Module
The GoalModule is part of the agents StrategicModel. It manages the goals that an agent has. The user
defines the goals with which an agents is initialised. In context of this research, only the goals required to
successfully complete the security checkpoint were added. These are the check-in goal and the checkpoint
goal. The pseudo-code for the initialisation of the GoalModule is presented in Algorithm 28.

Goal Module Attributes

GoalModAtt. 01 Goals
Description: A collection of goals.
Initialization: Defined by the user.

Algorithm 28 Goal Module Method: GoalModule.init()
function GoalModule.init()

if not checkedIn then
goals.add(Goal(checkInActivity))

end if
goals.add(Goal(checkpointActivity))

end function

A.6.2. Planning Module
The PlanningModule is part of the agent’s StrategicModel. It manages the planning of activities
required to satisfy the agent’s goals. This requires the user to specify which activities need to be se-
quentially executed in order to satisfy a specific goal. Once the user has specified this order of se-
quential activities, the PlanningModule is initialised by adding all activities that belong to a certain
goal to the planning. In the pseudo-code, depicted in Algorithm 29, this is represented by the method
addActivitiesFromType(activityi) which adds all activities required to satisfy activityi in the correct
order to the agent’s planning.

The PlanningModule of the agent can be accessed at any moment in the simulation. By accessing
the PlanningModule, the next activity that an agents needs to execute can be determined. Within the
improved AATOM simulator, additional plans were implemented in order to fulfil the security checkpoint
goal.
Planning Module Attributes

PlanModAtt. 01 Planning
Description: A collection of activities to perform.
Initialization: Populated depending on the goals.

104 Part III Chapter A. AATOM Simulator

Algorithm 29 Planning Module Method: PlanningModule.init(goalModule)
function PlanningModule.init(goalModule)

for goal in goalModule.getGoals() do
if goal instance of checkInActivity.class then

planning.addActivitiesFromType(checkInActivity.class)
else if goal instance of checkpointActivity.class then

planning.addActivitiesFromType(checkpointActivity.class)
end if

end for
end function

A.6.3. Activity Module
The ActivityModule is part of the TacticalModel. It defines the logic required to execute a specific
activity. For every goal, a plan is derived. For this plan a set of activities are allocated to satisfy the plan.
In context of this research, specifically the activities required for the security checkpoint were added to the
existing AATOM simulator. This section will mainly discuss these new activities and present pseudo-code
for each of these activities, both for the passenger agent and the operator agent.

A passenger agent can have the goal to pass the security checkpoint. To succeed, a plan is derived
consisting of the following activities:

1. Lane Assignment activity
2. Divest activity
3. Check activity
4. Reclaim activity
5. Recheck activity

The operator agent can have the goal to perform a specific assignment, this assignment dictates the
planning of that operator agent and hence the activity which is executed. The different possible activities
are:

1. CT SinglePlex activity
2. CT MultiPlex activity
3. Physical Check activity
4. Luggage Recheck activity

As agents are DirectlyUpdatable, so are its models. Hence, the ActivityModule is directly updatable
which implies that its update() method is updated every step by the Simulator. The ActivityModule thus
updates all the activities that are to be executed. It first checks if an activity is in progress, if not it starts
the activity. If it is in progress the activity is updated. Refer to Algorithm 30 for the pseudo-code.

The general procedure for each activity is identical. Every activity has the following methods:

• isInProgress(): Defines if the activity is in progress
• canStart(): Defines if the activity can start
• update(): Defines the procedure of the respective activity

In the remainder of this section the canStart() and the update() function for each of the activities within
the security checkpoint will be discussed. To understand the corresponding pseudo-code, it should be realised
that activities are performed by an agents (they are linked to agents by the ActivityModel). Therefore,
whenever a position is referenced, the agent position is implied. Furthermore, when an observation is done,
it implies that the agent is observing.

A.6. Agent Part III 105

Algorithm 30 Activity Module Method: ActivityModule.update()
function ActivityModule.update()

activity ← planningModule.getNextActivity()
if activity.isInProgress() then

activity.Update()
return

end if
if activity.canStart() then

activity.startActivity()
return

end if
activity.goToActivity()

end function

Lane Assignment Activity
A passenger activity. Starts when a passenger reaches the end position of the banklining of the queue. A
passenger observes the occupancy of the security lanes, decides which lane to go to based on the minimum
number of passengers, and then goes to the entry position of that security lane. This is presented as
pseudo-code in Algorithm 31 and Algorithm 32.

Algorithm 31 Lane Assignment Activity Method: LaneAssignmentActivity.canStart()
function LaneAssignmentActivity.canStart()

if position = banklining.getExitPosition() then
checkpoints← observeAll(Checkpoint.class)
bestCheckpoint← selectLeastOccupied(checkpoints)

if bestCheckpoint != null then
navigationModule.setGoal(bestCheckpoint.getWaitingAreaDivest())
return True

end if
end if
return False

end function

Algorithm 32 Lane Assignment Activity Method: LaneAssignmentActivity.update()
function LaneAssignmentActivity.update()

if navigationModule.getReachedGoal() then ▷ If passenger has reached waiting area divest.
endActivity()

end if
end function

Divest Activity
A passenger activity. Starts when a passenger reaches the entry position of the security lane. A passengers
waits until a divest position is assigned to them, then goes to the divest position and drops their luggage
onto the belt. The total time to drop a luggage item is determined by the agents attributes. Once all luggage
has been divested, the passenger continues to the entry position of the security scanner. The canStart()
and update() methods are presented in Algorithm 33 and Algorithm 34 respectively. The specific methods
called within the update are illustrated in Algorithm 35, Algorithm 36 and Algorithm 37.

Divest Activity Attributes

DivestActAtt. 01 Phase
Description: Indicates what phase of the activity an agent is in.
Initialization: 0.

106 Part III Chapter A. AATOM Simulator

DivestActAtt. 02 Checkpoint
Description: Indicates the checkpoint the agent is in.
Initialization: The best checkpoint from the lane assignment activity.

Algorithm 33 Divest Activity Method: DivestActivity.canStart()
function DivestActivity.canStart()

if navigationModule.getReachedGoal() then ▷ If passenger has reached waiting area divest.
return True

end if
return False

end function

Algorithm 34 Divest Activity Method: DivestActivity.update()
function DivestActivity.update()

goToDivest()
stopAtDivest()
divestLuggage()

end function

Algorithm 35 Divest Activity Method: DivestActivity.goToDivest()
function DivestActivity.goToDivest()

if phase = 0 then
for divestBelt in observeAll(divestBelt.class in checkpoint) do

divestPositions← observeAll(divestPosition.class in divestBelt)
divestPositions← observe(pos if pos.unoccupied() for pos in divestPositions)
if not divestPositions = Empty then

divestPosition← divestPositions.selectFirst()
navigationModule.setGoal(divestPosition)
phase = phase + 1
break

end if
end for

end if
end function

Algorithm 36 Divest Activity Method: DivestActivity.stopAtDivest()
function DivestActivity.stopAtDivest()

if phase = 1 and position = divestPosition then
movementModule.setStopOrder(passenger.getDivestTime())
phase = phase + 1

end if
end function

A.6. Agent Part III 107

Algorithm 37 Divest Activity Method: DivestActivity.divestLuggage()
function DivestActivity.divestLuggage()

if phase = 2 and position = divestPosition and not movementModule.isInStopOrder() then
for luggage in getLuggages() do ▷ Gets the collection of luggages of a passenger.

if divestBelt.isFree() and luggage.stillOnPassenger() then
add(luggage to divestBelt)

end if
end for

if getLuggages() are all divested then
areasSSc←observeAll(WaitingAreaSSc.class in checkpoint)
areaSSc←selectLeastOccupied(areas)
navigationModule.setGoal(areaSSc)
EndActivity()

end if
end if

end function

Check Activity
A passenger activity. Starts when a passenger reaches the entry position of the security scanner. A passenger
observes if they can go into the security scanner and then proceeds to go to the scan point if it is unoccupied.
When passenger reaches the scan point the passenger is added to the lists of passengers to scan. Operateor
agents keep track of this list. An operator performs the passenger screen activity, where after the operator
either notifies that the passenger is scanned. A passenger completes their activity when they have been
scanned and are not suspicious. The canStart() and update() methods are presented in Algorithm 38
and Algorithm 39 respectively. The methods called within the update are illustrated in Algorithm 40 and
Algorithm 41.

Check Activity Attributes

CheckActAtt. 01 Phase
Description: Indicates what phase of the activity an agent is in.
Initialization: 0.

CheckActAtt. 02 Checkpoint
Description: Indicates the checkpoint the agent is in.
Initialization: The best checkpoint from the lane assignment activity.

CheckActAtt. 03 Area SSc
Description: Indicates the waiting area of the security scanner.
Initialization: The security scanner area observed from the divest activity.

Algorithm 38 Check Activity Method: CheckActivity.canStart()
function CheckActivity.canStart()

if navigationModule.getReachedGoal() then ▷ If passenger has reached waiting area SSc.
SSc←observe(SSc.class in areaSSc)
return True

end if
return False

end function

108 Part III Chapter A. AATOM Simulator

Algorithm 39 Check Activity Method: CheckActivity.update()
function CheckActivity.update()

goToSSc()
scanAndFrisk()

end function

Algorithm 40 Check Activity Method: CheckActivity.goToSSc()
function CheckActivity.goToSSc()

if phase = 0 and SSc.canGo() then
checkpoint.getPassengersToScan().add(passenger)
navigationModule.setGoal(SSc)
phase = phase + 1

end if
end function

Algorithm 41 Check Activity Method: CheckActivity.scanAndFrisk()
function CheckActivity.scanAndFrisk()

if phase = 1 and isScanned() and not isSuspicious() then
areaReclaim←observe(waitingAreaReclaim.class in checkpoint)
navigationModule.setGoal(areaReclaim)
EndActivity()

end if
end function

Reclaim Activity
A passenger activity. Starts when a passenger is not suspicious. A passenger goes to the reclaim area and
waits for their luggage to be scanned. Next, the passenger observes whether or not their luggage is rejected.
If all of their luggage has been rejected, then the activity ends immediately. By contrast, if a luggage has not
been rejected, then the passenger will observe if a reclaim position is unoccupied. When a reclaim position is
unoccupied, they proceed to go to that reclaim position and collect that luggage. If a passenger has another
piece of luggage, the process restarts with the passenger observing if their luggage has been rejected or not.
The total time to collect a luggage is dictated by the passenger attributes as described in the research paper.
Once all luggage has been collected, the activity is completed. The canStart() and update() methods
are presented in Algorithm 42 and Algorithm 43 respectively. The methods called within the update() are
illustrated in Algorithm 44, Algorithm 45, Algorithm 46 and Algorithm 47. In the pseudo-code, restarting the
reclaim process is managed by the attribute Phase and LuggageToCollect. The phase determines in which
part of the reclaim process the agent is. The LuggageToCollect is a collection of all luggage that are still to
be collected.

Reclaim Activity Attributes

ReclaimActAtt. 01 Phase
Description: Indicates what phase of the activity an agent is in.
Initialization: 0.

ReclaimActAtt. 02 Checkpoint
Description: Indicates the checkpoint the agent is in.
Initialization: The best checkpoint from the lane assignment activity.

ReclaimActAtt. 03 Area Reclaim
Description: Indicates the waiting area of the reclaim.
Initialization: The reclaim area observed selected in the check activity.

A.6. Agent Part III 109

ReclaimActAtt. 04 Luggages To Collect
Description: A collection of luggages that are available for collection.
Initialization: Empty.

ReclaimActAtt. 05 Luggages Collected
Description: A collection of luggages that have been collected.
Initialization: Empty.

Algorithm 42 Reclaim Activity Method: ReclaimActivity.canStart()
function ReclaimActivity.canStart()

if navigationModule.getReachedGoal() then ▷ If passenger has reached waiting area reclaim.
return True

end if
return False

end function

Algorithm 43 Reclaim Activity Method: ReclaimActivity.update()
function ReclaimActivity.update()

observeLuggage()
goToReclaim()
waitAtReclaim()
reclaimLuggage()

end function

Algorithm 44 Reclaim Activity Method: ReclaimActivity.observeLuggage()
function ReclaimActivity.observeLuggage()

if phase = 0 then
luggagesToCollect←observe(l if l.availableToCollect() for l in getLuggages())
luggagesSuspicious←observe(l if l.isSuspicious() for l in getLuggages())
if getLuggages() - luggagesCollected = luggagesSuspicious then

EndActivity() ▷ Proceed to recheck activity if only suspicious luggages left.
end if

end if
end function

Algorithm 45 Reclaim Activity Method: ReclaimActivity.goToReclaim()
function ReclaimActivity.goToReclaim()

if phase = 0 and not luggagesToCollect = Empty then
reclaimBelt← observe(reclaimBelt.class containing luggagesToCollect)
reclaimPositions← observeAll(reclaimPosition.class in reclaimBelt)
reclaimPositions← observe(pos if pos.unoccupied() for pos in reclaimPositions)
if not reclaimPositions = Empty then

reclaimPosition← reclaimPositions.selectFirst()
navigationModule.setGoal(reclaimPosition)
phase = phase + 1

end if
end if

end function

110 Part III Chapter A. AATOM Simulator

Algorithm 46 Reclaim Activity Method: ReclaimActivity.waitAtReclaim()
function ReclaimActivity.waitAtReclaim()

if phase = 1 and position = reclaimPosition then
movementModule.setStopOrder(passenger.getReclaimTime())
phase = phase + 1

end if
end function

Algorithm 47 Reclaim Activity Method: ReclaimActivity.reclaimLuggage()
function ReclaimActivity.reclaimLuggage()

if phase = 2 and not movementModule.isInStopOrder() then
for luggage in luggagesToCollect do

remove(luggage from reclaimBelt)
luggagesCollected.add(luggage) ▷ Can only remove luggage that was stopped for.

end for
if getLuggages()=luggagesCollected then

endActivity()
end if

luggagesToCollect←observe(l if l.availableToCollect() for l in getLuggages())
luggagesSuspicious←observe(l if l.isSuspicious() for l in getLuggages())
if not luggagesToCollect = Empty then

phase = phase− 1 ▷ Go back and collect luggage.
else

navigationModule.setGoal(areaReclaim) ▷ Free up reclaim position.
phase = phase− 2 ▷ Go back and wait for luggage to be scanned.

end if
end if

end function

Recheck Activity
A passenger activity. Starts when a passenger has rejected luggage. A passenger goes to the recheck area
and observes if their luggage has been selected for examination by a security operator. Once selected,
the passenger goes to the recheck position and waits for the security operator to perform the luggage
recheck activity. When the recheck is finished, the passenger observes if they collected all of their luggage.
If all luggage has been collected, the activity is completed. Otherwise, the passenger goes back to the
recheck area and the process restarts. The canStart() and update() methods are presented in Algorithm 48
and Algorithm 49 respectively. The methods called within the update() are illustrated in Algorithm 50,
Algorithm 51, and Algorithm 52. Similar to the reclaim activity, restarting the recheck activity when not all
luggage’s have been collected is managed by moving back in the attribute Phase.

Recheck Activity Attributes

RecheckActAtt. 01 Phase
Description: Indicates what phase of the activity an agent is in.
Initialization: 0.

RecheckActAtt. 02 Checkpoint
Description: Indicates the checkpoint the agent is in.
Initialization: The best checkpoint from the lane assignment activity.

RecheckActAtt. 03 Area Recheck
Description: Indicates the waiting area of the recheck.
Initialization: The reclaim area observed selected in the check activity.

A.6. Agent Part III 111

RecheckActAtt. 04 Luggages Collected
Description: A collection of luggages that have been collected.
Initialization: The luggages collected during the reclaim activity.

Algorithm 48 Recheck Activity Method: RecheckActivity.canStart()
function RecheckActivity.canStart()

if getLuggages()=luggagesCollected then
endActivity()

else ▷ Perform recheck because only suspicious luggage left.
return True

end if
end function

Algorithm 49 Recheck Activity Method: RecheckActivity.update()
function RecheckActivity.update()

goToRecheck()
waitAtRecheck()
finishRecheck()

end function

Algorithm 50 Recheck Activity Method: RecheckActivity.goToRecheck()
function RecheckActivity.goToRecheck()

if phase = 0 then
recheckArea←observe(recheckArea.class in checkpoint)
navigationModule.setGoal(recheckArea)
phase = phase + 1

end if
end function

Algorithm 51 Recheck Activity Method: RecheckActivity.waitAtRecheck()
function RecheckActivity.waitAtRecheck()

if phase = 1 and navigationModule.getReachedGoal() then
operators← observeAll(operator.class assigned to recheck in checkpoint)
operators← observe(o if o.hasLuggage() for o in operators)
if not operators = Empty then

operators← operators.selectFirst()
luggage← operator.getLuggage()
navigationModule.setGoal(operator)
phase = phase + 1

end if
end if

end function

112 Part III Chapter A. AATOM Simulator

Algorithm 52 Recheck Activity Method: RecheckActivity.finishRecheck()
function RecheckActivity.finishRecheck()

if phase = 2 and operator.gaveBackLuggage() then
luggagesCollected.add(luggage)
if getLuggages()=luggagesCollected then

endActivity()
else

navigationModule.setGoal(recheckArea)
phase = phase− 1

end if
end if

end function

CT SinglePlex Activity
An operator activity. The operator is allocated to one specific CT sensor. This is identified by the Operator
attribute Sensor. Starts when there is cabin luggage to be checked. An operator selects the first luggage
waiting to be checked. Then, they proceed to analyze whether or not the luggage should be rejected. The
time to make a decision is determined by taking a random sample from the operator performance distribution.
Decisions are based on the information obtained from the CT sensor. If the CT sensor raises an alarm, then
the luggage is rejected and otherwise it is cleared. Once a decision has been made, the luggage is able to
divert and the activity ends. The canStart() and update() methods are presented in Algorithm 53 and
Algorithm 54 respectively.

CT SinglePlex Activity Attributes

SinglePlexActAtt. 01 Sensor
Description: The CT sensor that the operator is assigned to.
Initialization: According to airport layout.

SinglePlexActAtt. 02 Activity Distribution
Description: A time distribution representing the performance of the operator.
Initialization: According to operator attributes.

Algorithm 53 CT SinglePlex Activity Method: CTSingleP lexActivity.canStart()
function CTSingleP lexActivity.canStart()

if not sensor.getNotCheckedLuggage() = Empty then
luggage← sensor.getNotCheckedLuggage().selectFirst()
sensor.getNotCheckedLuggage().remove(luggage)
decisionT ime← activityDistribution.sample()
observation← observe(luggage through sensor)
if observation = alarm then

luggage.setSuspicious(True)
else

luggage.setSuspicious(False)
end if
return True

end if
return False

end function

A.6. Agent Part III 113

Algorithm 54 CT SinglePlex Activity Method: CTSingleP lexActivity.update()
function CTSingleP lexActivity.update()

if luggage.canDivert() then ▷ Luggage can divert once decisionT ime has passed.
EndActivity()

end if
end function

CT MultiPlex Activity
An operator activity. The CT MultiPlex activity is similar to the CT SinglePlex activity. THe difference
is that in the SinglePlex activity, an operator is only able to check the CT images of a single sensor while
in the MultiPlex activity the operator is able to check the CT images of the entire checkpoint. This
differences arises in the canStart() method of the MultiPlex activity. Instead of obtaining the collection of
notCheckedLuggage from a single sensor, this collection is determined from the entire checkpoint. The
canStart() and update() methods are presented in Algorithm 55 and Algorithm 56 respectively.

CT MultiPlex Activity Attributes

MultiPlexActAtt. 01 Checkpoint
Description: The checkpoint that the operator is assigned to.
Initialization: According to airport layout.

MultiPlexActAtt. 02 Activity Distribution
Description: A time distribution representing the performance of the operator.
Initialization: According to operator attributes.

Algorithm 55 CT MultiPlex Activity Method: CTMultiP lexActivity.canStart()
function CTMultiP lexActivity.canStart()

if not checkpoint.getNotCheckedLuggage() = Empty then
luggage← checkpoint.getNotCheckedLuggage().selectFirst()
checkpoint.getNotCheckedLuggage().remove(luggage)
decisionT ime← activityDistribution.sample()
observation← observe(luggage through sensor)
if observation = alarm then

luggage.setSuspicious(True)
else

luggage.setSuspicious(False)
end if
return True

end if
return False

end function

Algorithm 56 CT MultiPlex Activity Method: CTMultiP lexActivity.update()
function CTMultiP lexActivity.update()

if luggage.canDivert() then ▷ Luggage can divert once decisionT ime has passed.
EndActivity()

end if
end function

Physical Check Activity
An operator activity. Starts either when there is a passenger to scan or to frisk. The operator will always
first perform a frisk procedure is that operator is able to start a frisk procedure, else the operator will
start the scan procedure. If there is a passenger to scan, the operator begins the security scanner. Once
scanned, the operator checks whether or not the security scanner raise an alarm. If no alarm was raised,

114 Part III Chapter A. AATOM Simulator

then the passenger is considered as unsuspicious and is cleared. By contrast, if an alarm was raised, the
passenger is considered suspicious and must be frisked. If there is a passenger to be frisked, then the
operator commands the passenger to move to the frisk position. It is important to note that an operator
can only frisk a passenger if they have the same gender. Once the position has been reached, the passenger
is searched for forbidden items. The time of the search is determined by taking a random sample from
the operator performance distribution. When the search is done, the passenger is marked as not suspicious
and the activity is completed. The canStart() and update() methods are presented in Algorithm 57 and
Algorithm 58 respectively. The methods called within the update() are illustrated in Algorithm 60 and
Algorithm 59.
Physical Check Activity Attributes

PhysCheckActAtt. 01 Checkpoint
Description: The checkpoint that the operator is assigned to.
Initialization: According to airport layout.

PhysCheckActAtt. 02 Scan or Frisk
Description: A boolean indicating whether to frisk or scan.
Initialization: Null.

PhysCheckActAtt. 03 Activity Distribution
Description: A time distribution representing the performance of the operator.
Initialization: According to operator attributes.

PhysCheckActAtt. 04 Phase
Description: Indicates what phase of the activity an agent is in.
Initialization: 0.

Algorithm 57 Physical Check Activity Method: PhysicalCheckActivity.canStart()
function PhysicalCheckActivity.canStart()

if not checkpoint.getPassengersToFrisk() = Empty then
for pax in checkpoint.getPassengersToFrisk() do

if isSameSex(pax) then
checkpoint.getPassengersToFrisk().remove(pax)
scanOrFrisk = Frisk
return True

end if
end for

end if
if not checkpoint.getPassengersToScan() = Empty then

for pax in checkpoint.getPassengersToScan() do
checkpoint.getPassengersToScan().remove(pax)
scanOrFrisk = Scan
return True

end for
end if
return False

end function

Algorithm 58 Physical Check Activity Method: PhysicalCheckActivity.update()
function PhysicalCheckActivity.update()

if scanOrFrisk=Scan then
scanning()

else if scanOrFrisk=Frisk then
frisking()

end if
end function

A.6. Agent Part III 115

Algorithm 59 Physical Check Activity Method: PhysicalCheckActivity.scanning()
function PhysicalCheckActivity.scanning()

if pax.getReachedGoal() and not pax.isScanned() then
scanT ime← pax.getScanTime()
sensor ← observe(SScSensor.class containing pax)
communicate(WaitCommand of scanT ime for pax)
pax.setScanned(True)

end if
if pax.isScanned() and not pax.isInStopOrder() then

observation←observe(pax through sensor)
if observation = alarm then

pax.setSus(True)
checkpoint.getPassengersToFrisk().add(pax)

else
pax.setSus(False)

end if
endActivity()

end if
end function

Algorithm 60 Physical Check Activity Method: PhysicalCheckActivity.frisking()
function PhysicalCheckActivity.frisking()

if phase = 0 then
communicate(GoToCommand to position for pax)
phase = phase + 1

else if phase = 1 and pax.getPosition()=position then
friskT ime← activityDistribution.sample()
communicate(WaitCommand of friskT ime for pax)
phase = phase + 1

else if phase = 2 and not pax.isInStopOrder() then
pax.setSus(True)
endActivity()

end if
end function

Luggage Recheck Activity
An operator activity. Starts when there is a luggage on the end position of the reject belt. An operator can
be assigned to multiple luggage belts and is not allocated to a single belt. An operator picks up the luggage
and motions for the owner to move to the recheck position. Once the owner has arrived at the position,
the operator begins the search. The time of the recheck is determined by taking a random sample from the
operator performance distribution. When the search is complete, the luggage is handed over to the passenger
and the activity is completed. The canStart() and update() methods are presented in Algorithm 61 and
Algorithm 62 respectively.
Luggage Recheck Activity Attributes
LugRecheckActAtt. 01 Reject Belts

Description: A collection of reject belts that the operator is assigned to.
Initialization: According to airport layout.

LugRecheckActAtt. 02 Activity Distribution
Description: A time distribution representing the performance of the operator.
Initialization: According to operator attributes.

LugRecheckActAtt. 03 Phase
Description: Indicates what phase of the activity an agent is in.
Initialization: 0.

116 Part III Chapter A. AATOM Simulator

Algorithm 61 Luggage Recheck Activity Method: LuggageRecheckActivity.canStart()
function LuggageRecheckActivity.canStart()

luggages←observe(belt.getLuggageAtEnd() if belt.endOccupied() for belt in rejectBelts)
luggage← selectLongestWaiting(luggages)
if not luggage = Null then

pax← luggage.getOwner()
Remove(luggage from belt)
return True

end if
return False

end function

Algorithm 62 Luggage Recheck Activity Method: LuggageRecheckActivity.update()
function LuggageRecheckActivity.update()

if phase = 0 and pax.getPosition()=position then
searchT ime← activityDistribution.sample()
communicate(WaitCommand of searchT ime for pax)
phase = phase + 1

else if phase = 1 and not pax.isInStopOrder() then
give(luggage to pax)
endActivity()

end if
end function

Appendix B

Case Studies for Amsterdam
Airport Schiphol
The agent-based simulator was developed in collaboration with Amsterdam Airport Schiphol (AAS). Along-
side the research as presented in the research paper, the developed simulator was also used in the operational
planning of AAS. Furthermore, the simulator was applied in an investigative study of future security check-
point configurations. These case studies aimed to answer operational questions considered by Schiphol
airport managers. Next to that, these case studies show the potential of using agent-based modelling in an
operational setting, as it can provide detailed insights into the operational performance.

The first case investigates the sensitivity of the conventional security checkpoint configuration (see Ap-
pendix B.1). The second case studies the effect of different operator allocations at the AAS security check-
point during the COVID-19 pandemic (see Appendix B.2). The third case study regards a preliminary sizing
and sequential analysis of a novel checkpoint configuration (see Appendix B.3). Finally, a graphical user
interface of the AATOM simulator was created (see Appendix B.4).

B.1. Sensitivity of conventional checkpoint configuration
A brief local sensitivity study is done to understand the sensitivity of the agent-based model’s input param-
eters. This local sensitivity also suffices as a means for validation. This is because the security experts from
AAS have experienced which parameters tend to have the largest effect on the throughput performance of
the checkpoint.

A tornado plot is shown in Figure B.1. This plot shows the impact of a 10% increase/decrease on the
throughput of the security checkpoint. Most remarkable is the effect of the image factor, scan time and
divest time. When increasing these parameters with 10%, the throughput degrades with at least 5%. Schiphol
experts indicate that the image factor is one of the factors that influence the performance of a checkpoint
highly.

For understanding, the image factor is the average number of trays that a passenger has. If the image
factor increases, then there will be more trays on the luggage belts. This increases the chance of dieback
which causes a significant decrease in checkpoint performance.

Figure B.1: Tornado plot with the +-10% sensitivity on the throughput

B.2. Security operator allocation under COVID-19 restrictions
March 2020 marked the outbreak of the global COVID-19 pandemic. To reduce the spread of this virus,
countries introduced multiple regulations. A major regulation was the restriction of international air travel,

117

118 Part IIIChapter B. Case Studies for Amsterdam Airport Schiphol

which led airline passenger numbers to drop by 60% (United Nations 2021). To limit losses due to this
outbreak, AAS was forced to downsize in operations and personnel. As national vaccination programs
started picking up, the COVID restrictions were slowly alleviated throughout 2021. This led air travel to
increase again.
In April 2021, AAS was faced with limited security operator availability as earlier COVID restrictions led
to downsizing of personnel. This introduced a challenging situation in which predicted operator availability
would not be sufficient for the expected demand in air travel, this imbalance could potentially lead to
bottlenecks at the airport security checkpoint. To overcome this challenge, AAS aimed to improve operator
allocation within the security checkpoints, resulting in a higher throughput. As decision support, the agent-
based simulator was used to provide performance insights into different security operator allocation scenarios.
The goal of this case study is to determine the allocation of security operators that would increase the
throughput of the security checkpoint, while adhering to the limited security operator availability.
To determine a security operator allocation that would increase the throughput, a two-phase approach was
considered. The initial phase aims to determine the performance of the security checkpoint as is at AAS,
the method and results for this phase are presented in Appendix B.2.1. Thereafter, phase 2 leverages on the
performance insights of the initial phase to improve operations, both the method and results are presented
in Appendix B.2.2.

B.2.1. Phase I: Performance of the AAS security checkpoint
To accurately redesign the operator allocation of the security checkpoint it is necessary to understand the
performance of the existing checkpoint. Below the method to establishing this understanding, along with
the results are presented.

Method
Initially, data was acquired to establish a baseline value for the performance of the security checkpoint. This
data was gathered through both manual measurements at the security checkpoint, and by means of the
data warehouse sources of AAS. The configuration of existing security checkpoint is depicted in Figure B.2.
In this checkpoint bay, 4 operators are allocated to the security scanners, 2 operators are allocated the CT
scanners, and 2 operators are allocated to luggage recheck.

Figure B.2: Current security checkpoint concept at terminal 3 of Schiphol Airport

The performance of the security checkpoint is scored by quantifying five performance indicators:

1. Throughput: The main indicator for the capacity of the security lane. This is quantified as passen-
gers/min/lane. This performance indicator can be derived both through manual measurements as well
as simulator output.

2. Operator throughput: An indicator for the efficiency of the operator. It is quantified as passen-
gers/min/operator. This performance indicator can only be derived from simulator output.

3. Operator utilisation: Quantified as the percentage of time that the operators are actually productive.
This performance indicator can only be derived from simulator output.

4. Time in critical operations: This performance indicator provides insights into which security check-
point sub process causes the bottleneck. It is quantified as percentage of time that a sub process is in
critical operations. A more detailed description of this indicator is found in the research paper. This
performance indicator can only be derived from simulator output.

B.2. Security operator allocation under COVID-19 restrictionsPart III 119

5. Spread in simulation performance output: An indicator for the stability of a security checkpoint
performance. If all of the simulations lie within a small range, it indicates that that specific configuration
is predictable and resilient. It is determined by the difference in maximum and minimum achieved
throughput. A small range is favourable as it indicates a smaller spread.

Results
The performance of the baseline configuration provides insights into what measures should be taken to
improve the current configuration. The performance of the baseline configuration is depicted in Table B.1.
It can be seen that the simulated throughput aligns with measured throughput.

Table B.1: The performance of the baseline configuration of the security checkpoint

Baseline configuration
Measured throughput [pax/min/lane] 2.33
Simulated throughput [pax/min/lane] 2.35

Simulated operator throughput [pax/min/operator] 0.29
Spread in simulation performance [pax/min/lane] 1

Furthermore, the time in critical operations as well as the density of the simulation throughput are visualised
in Figure B.4 and Figure B.3 respectively. Noteworthy is the large tail on the lower end of the density of
simulation throughput. This indicates that there are numerous simulations in which a low throughput is
achieved. In reality, this property is also observed and referred to as dieback: a situation where the luggage
belts is completely occupied, which leaves no space for operations to proceed. From the time in critical
operations it is observed that the SSc operator is not in critical operations at all, while the recheck process
and CT process are in critical operations for larger parts of the simulations.

Figure B.3: Density of the achieved simulation
throughput for the baseline configuration.

Figure B.4: The time in critical operation for each sub
process for the baseline configuration.

These performance insights can be used to determine new security operator allocations. This is done in
phase two.

B.2.2. Phase II: Improving the AAS security checkpoint
Together with experts from AAS, three different operational concepts were developed. These were designed
with the goal to improve checkpoint performance. The method and results are presented below.

Method
The new operational concepts with different operator allocations were designed using the insights from phase
1, i.e. the baseline configuration. From these results it was concluded that the SSc operator is not in critical
operations, while the CT and recheck show high critical operations. Three alternative concepts were derived
that aim to limit the bottlenecks at the CT and recheck. This is done by using resources from the well
performing SSc process. These new concepts are depicted in Figure B.5, Figure B.6 and Figure B.7.

120 Part IIIChapter B. Case Studies for Amsterdam Airport Schiphol

Figure B.5: Concept 1: removing a
SSc operator.

Figure B.6: Concept 2: reassigning a
SSC operator to CT positions.

Figure B.7: Concept 3: reassigning a
SSC operator to CT or recheck.

Concept 1 reduces the total amount of operators by removing an operator from the SSc. In this scenario,
3 SSc operators operate 2 SSc assets. Concept 2 does not remove this operator, rather it reassigns this
operator to a more critical area within the checkpoint: the CT position. This operator is able to assist at
both CT positions. Concept 3 is considered more dynamic. It also reassigns the task of one of the SSc
operators, however, the task of this reassigned operator can either be assisting at the CT check or luggage
recheck. A business rule is established: if there are more than 4 luggages on the reject belt, the operator
will be assigned to assist in luggage recheck. Else, the operator will assist in CT check.

Each of these configurations were ran in the agent-based simulator. The number of required simulations
is established by ensuring that the coefficient of variation is stable. This occurs after n = 50 simulations.
The performance of these checkpoints was determined by using the same performance indicators as used in
phase one. To determine which configuration is to be implemented, a comparison of the results between the
baseline and proposed configurations is done. The results of this comparison is the topic of the next section.

Results & Discussion
The performance results of all tested concepts is compared against the performance results of the baseline
configuration, this is depicted in Table B.2, in bold the best scoring concept for that specific KPI is identified.
Concecpt III shows the best performance in both throughput and spread in simulation performance. This
indicates that this concept has the highest capacity and is also the most stable in operations. Furthermore,
when comparing the operator throughput Concept III only scores slightly worse than Concept I, while Concept
I has 7 operators and Concept III has 8 operators. This is explained by the fact that the operators are more
effectively utilised. From the operator utilisation it can be seen that by removing a SSc operator from the
baseline concept, and re-assigning it elsewhere, the operator utilisation is more balanced. This is especially
apparent in Concept III. In this concept the spare operator is dynamically assigned to either CT or recheck,
this evens out the operator utilisation. As the operator utilisations are more evenly distributed over the
operators, it can be stated that the workload of the operators is more evenly distributed.

Table B.2: Simulation results of the baseline concept and proposed operator allocations.

Baseline configuration Concept I Concept II Concept III
Measured throughput [pax/min/lane] 2.33 NA NA NA
Simulated throughput [pax/min/lane] 2.36 2.36 2.58 2.66

Simulated operator throughput [pax/min/operator] 0.29 0.34 0.32 0.33
Spread in simulation performance [pax/min/lane] 0.88 1.2 0.51 0.45

Utilisation CT operator [%] 86% 86% 79% 81%
Utilisation male SSc operator [%] 66% 70% 74% 74%

Utilisation female SSc operator [%] 20% 33% 36% 37%
Utilisation recheck operator [%] 86% 86% 83% 79%

To further investigate the spread in simulation performance, the density of the achieved throughput was
plotted. These are visualized in Figure B.8, Figure B.9, Figure B.10, and Figure B.11. Especially noteworthy
in these figures is the phenomenon of simulations with lower achieved throughput, which is apparent in the
baseline configuration, concept 1, and to a smaller extend in concept 2 as well. This indicates that there
are multiple simulations in which the throughput drastically decreases. This is unfavourable, as it makes
the configuration of the checkpoint less resilient and less predictable. The reason that Concept 3 does not

B.2. Security operator allocation under COVID-19 restrictionsPart III 121

show this property is due to the dynamic changing of the spare operator, therefore bottlenecks are resolved
very locally within the checkpoint lanes. To substantiate this claim the time in critical operations of each
different concept is visualised. This is depicted in Figure B.12, Figure B.13, Figure B.14, and Figure B.15.
With respect to all other configurations, Concept 3 has very little time in critical operations, hence very
little bottlenecks. Also, when comparing the spread of the boxplots, its is much lower for Concept 3 - again
indicating the reliability of this concept.

Figure B.8: Baseline Figure B.9: Concept 1 Figure B.10: Concept 2

Figure B.11: Concept 3

Figure B.12: Baseline
Figure B.13: Concept 1

Figure B.14: Concept 2 Figure B.15: Concept 3

Conclusion
In line with the results, the simulated performance of Concept 3 was considered most promising. To conclude,
Concept 3 was chosen as it was able to achieve the highest passenger throughput [pax/min/lane] while
showing very little decrease in operator throughput [pax/min/agent]. Furthermore the reliability of this
configuration is higher than all other configurations, as the range in which the simulated throughput fall is
much more narrow. Finally, the operator utilisation is more balanced indicating that the workload is more
evenly distributed over the different agents. For these reasons, this concept was selected for implementation
at the security checkpoints of AAS. As of writing this report, the working instructions of the security personnel

122 Part IIIChapter B. Case Studies for Amsterdam Airport Schiphol

at AAS have been altered such that these newly developed instructions are incorporated.

B.3. Future security checkpoints
The conventional checkpoint configuration, which is currently also operated by AAS, consists of a lane
configuration. The entire security checkpoint consists of multiple security lanes. Inherent to the lane
configuration is the one-to-one relationship of security assets; each lane has one CT scanner, one Security
Scanner and one Luggage Recheck position. The airport security experts at AAS believe that this one-to-one
relationship of assets will bound the efficiency performance of the security checkpoint. Reason being that
the lane configuration reduces the flexibility in optimally utilising individual assets, as the lane is always
restricted by the worst performing asset.

Therefore, AAS is exploring novel checkpoint configurations. Specifically, AAS is analysing the configuration
where individual security processes are grouped together. An example of this configuration in shown in
Figure B.16. Airport experts believe that this novel checkpoint configuration introduces multiple advantages.
First and foremost, the disregard of the one-to-one asset relationship, which would allow better utilisation
of assets. Second, passengers and luggage can overtake, meaning that the throughput of a checkpoint is no
longer dictated by its slowest passenger. And third, airport security experts believe that such configuration
could also reduce the required area, which is considered as scarce and expensive resource at airport terminals.

Figure B.16: A schematic of the novel non-lane checkpoint configuration.

This case study aimed to quantify the difference in performance between a conventional lane concept and
a novel non lane concept at departure terminal 3 at AAS, while keeping the number of security assets and
operators equal.

Method
In line with the aim of this case study, a three step approach was used to determine the performance difference
between conventional and novel checkpoint configuration. First, a preliminary performance estimation of
future security assets based on expert opinion was executed. Then, the novel checkpoint is placed within the
available area. Lastly, both the conventional and novel checkpoint configuration are simulated after which a
comparison is executed.

As the development of a novel checkpoint configuration will require time, it was deemed necessary to estimate
the performance of future security assets to account for the innovations that are feasible in the near future. To
do so, security experts from AAS quantified potential improvements to the current technology. Using these
estimations, four scenarios were derived. In each of these scenarios multiple technological advancements
were considered. The four scenarios are:

1. Scenario 1: Improved CT, recheck, and SSc algorithms: The improved CT algorithms reduce the
reject rate of the CT and decreases the time a CT operator requires to make a decision on a specific
luggage tray. Due to improved recheck algorithms, the recheck operator deals with less complex
luggage rechecks, leading to a lower recheck time. Due to improved SSc algorithms the SSC reject
rate goes down. Also, passengers no longer have to divest complex items like belts and shoes. This
results in a lower amount of trays per passenger, i.e. image factor, and a lower divest time and reclaim
time.

B.3. Future security checkpoints Part III 123

2. Scenario 2: Walk through SSc: This scenario is identical to scenario 1, however, it consists of walk
through SSc. This reduces the scan time per passenger.

3. Scenario 3: Improved CT with AUTOCLEAR: This scenario is very similar to scenario 1. How-
ever, a new promising technology is (AUTOCLEAR) is implemented. This technology results in CT
operators not having to check every luggage tray. Instead, a predetermined amount of luggage trays
is automatically cleared (hence AUTOCLEAR) by a CT algorithm. Therefore, the amount of trays the
CT operator has to check is reduced.

4. Scenario 4 Improved CT with AUTOCLEAR and walk through SSc: This scenario is identical
to scenario 3, however, it consists of walk through SSc. This reduces the scan time per passenger.

With these scenarios defined and quantified, a preliminary sizing was done by means of previous research
executed at AAS and individual process rates of the security process. It should be noted that the novel
configuration that was developed has exactly the same amount of operators as the conventional configura-
tion. The checkpoint configuration for the conventional setup and novel setup are depicted in Figure B.17
and Figure B.18 respectively. Both of these checkpoint configurations were simulated for scenario one to
four. To compare the performance of each of these configurations a total of 3 performance indicators were
employed: (1) throughput [pax/min/checkpoint], (2) individual operator utilisation [%], and (3) time in
critical operations.

Figure B.17: The layout of the security checkpoint at
departure filter 3 of AAS.

Figure B.18: The proposed novel configuration of the
security checkpoint at departure filter 3 of AAS.

Results & Discussion
To analyse the performance of the different security checkpoints the throughput, operator utilisation and
time in critical operations were considered. As indicated in Table B.3, the throughput of the novel checkpoint
is higher than that of the conventional checkpoint for all simulated scenarios. This is due to the increase in
number of divest positions in the novel concept. Due to this increase in divest positions, the total inflow of
passengers is larger, which ultimately determines the maximum theoretical throughput that can be achieved
by a checkpoint.

Although the throughput is higher for the novel concept, it is still believed that the potential gain in
throughput is larger than that of the conventional concept. This is substantiated by the percentage of time
in critical operations as depicted in Table B.4. From this table it is clear that the conventional checkpoint
has very low time in critical operations, thus almost no bottlenecks are present. On the other hand, the novel
concept is on average 24% of the time in critical operations. With an average of 24%, quite some bottlenecks
are still to be resolved in this configuration, meaning that the throughput can theoretically still increase. It
is exactly the low amount of critical operations which indicates that there is no room for improvement in
the configuration of the conventional checkpoint, as there are no bottlenecks to resolve.

Table B.3: Throughput of conventional and novel checkpoint configuration for different scenarios.

throughput [pax/min/checkpoint] S1 S2 S3 S4 mean
conventional checkpoint 41.7 42.8 42.2 45.2 43.0
novel checkpoint 49.8 53.0 49.7 53.1 51.4

124 Part IIIChapter B. Case Studies for Amsterdam Airport Schiphol

Table B.4: Mean percentage of time in critical operations of conventional and novel checkpoint configuration for different
scenarios.

critical operations [%] S1 S2 S3 S4 mean
conventional checkpoint 10 2 9 2 6
novel checkpoint 32 14 35 14 24

Table B.5: Mean operator utilisation of conventional and novel checkpoint configuration for different operator types.

Mean operator utilisation [%] CT Male SSc Female SSc Recheck mean
conventional checkpoint 52 72 25 32 45
novel checkpoint 54 87 68 25 59

Furthermore, for both the conventional and the novel checkpoint, the operator utilisation is unevenly dis-
tributed between operator types. For the conventional checkpoint both the female SSc operator and recheck
operator show poor utilisation. For the novel checkpoint only the recheck operator shows poor utilisation.
The discrepancy between these operator utilisation indicates that both checkpoints have not optimally al-
located the operators. Hence, changing the allocation might improve the throughput. This is not always
possible as certain security assets require a minimum amount of operators. This is especially the case in
the conventional concept for the recheck operator. With a utilisation of 32% this operator is poorly utilised.
However, it is not possible to remove this operator as the recheck position requires at least one operator.
On the other hand, multiple recheck operators man the recheck station in the novel concept, it therefore
becomes much easier to remove recheck operators and improve the recheck operator utilisation which is
currently 25%. This phenomenon is inline with the expectation of security experts, who believe that the
one-to-one relationship of the conventional configuration reduces the flexibility to optimise the lane.

Conclusion
In conclusion, the expectations of the AAS security experts fall in line with the simulated performance results
when comparing the conventional checkpoint and novel checkpoint configuration. The quantification shows
that the novel checkpoint performs better, while having a larger throughput potential than the conventional
checkpoint. Furthermore, more flexibility in operator allocation is introduced in the novel configuration,
allowing to evenly distribute the workload between security operators.

B.4. Application for the checkpoint simulator
An application has been developed such that airport managers can use the simulator without programming
experience. The application was developed in python using the tkinter package. Airport managers are able
to select four different security checkpoint configurations. For each configuration, there are different input
variables available. When the simulate button is pressed, the application launches the AATOM simulator
and simulates the security checkpoint configuration selected. Once the simulation terminates, the results
are automatically visualized in the application. A representation is shown in Figure B.19.

B.4. Application for the checkpoint simulator Part III 125

Figure B.19: The interface of the application that has been developed for the security checkpoint simulator.

Bibliography
[1] Airport Research Center. CAST Terminal. url: https://arc.de/cast-terminal-simulation/.

[Accessed 20-11-20].
[2] I. Akgun, A. Kandakoglu, and A.F. Ozok. “Fuzzy integrated vulnerability assessment model for critical

facilities in combating the terrorism”. In: Expert Systems with Applications 37.5 (May 2010), pp. 3561–
3573. doi: 10.1016/j.eswa.2009.10.035.

[3] M. Andrychowicz et al. “Hindsight experience replay”. In: Advances in neural information processing
systems. 2017, pp. 5048–5058.

[4] S. Appelt et al. “Simulation of passenger check-in at a medium-sized US airport”. In: 2007 Winter
Simulation Conference. IEEE. Dec. 2007, pp. 1252–1260. doi: 10.1109/WSC.2007.4419729.

[5] V.L.L. Babu, R. Batta, and L. Lin. “Passenger grouping under constant threat probability in an airport
security system”. In: European Journal of Operational Research 168.2 (Jan. 2006), pp. 633–644. doi:
10.1016/j.ejor.2004.06.007.

[6] M. Bevilacqua and F.E. Ciarapica. “Analysis of check-in procedure using simulation: a case study”. In:
2010 IEEE International Conference on Industrial Engineering and Engineering Management. IEEE.
Macao, China, Dec. 2010, pp. 1621–1625. doi: 10.1109/IEEM.2010.5674286.

[7] J.P. Braaksma and W.J. Cook. “Human orientation in transportation terminals”. In: Transportation
engineering journal of the American Society of Civil Engineers 106.2 (1980), pp. 189–203.

[8] J.P. Brashear and J.W. Jones. “Risk analysis and management for critical asset protection (RAMCAP
plus)”. In: Wiley handbook of science and technology for homeland security (Feb. 2008), pp. 1–15.
doi: 10.1002/9780470087923.hhs003.

[9] M. Brown et al. “One size does not fit all: A game-theoretic approach for dynamically and effectively
screening for threats”. In: Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI).
Phoenix, Arizona, USA: ACM, Feb. 2016, pp. 425–431. doi: 10.5555/3015812.3015877.

[10] L. Brunetta, L. Righi, and G. Andreatta. “An operations research model for the evaluation of an airport
terminal: SLAM (simple landside aggregate model)”. In: Journal of Air Transport Management 5.3
(July 1999), pp. 161–175. doi: 10.1016/S0969-6997(99)00010-1.

[11] P.K. Chawdhry. “Risk modeling and simulation of airport passenger departures process”. In: Proceed-
ings of the 2009 Winter Simulation Conference (WSC). Austin, TX, USA: IEEE, Dec. 2009, pp. 2820–
2831. doi: 10.1109/WSC.2009.5429244.

[12] S. Crook. “The use of simulation and virtual reality in the design and operation of airport terminals”.
In: International Conference on Simulation (1998), pp. 8–10. doi: 10.1049/cp:19980609.

[13] ECAC Common Evaluation Process of Security Equipment. European Civil Aviation Conference. url:
https://www.ecac-ceac.org/cep-main. [Online; Accessed 14-10-20].

[14] Economic performance of the airline industry. End-Year Report. International Air Transport Associa-
tion, Dec. 2019. url: https://www.iata.org/en/iata-repository/publications/economic-
reports / airline - industry - economic - performance --- december - 2019 --- report/. [Ac-
cessed 08-10-20].

[15] S. Eilon and S. Mathewson. “A simulation study for the design of an air terminal building”. In: IEEE
Transactions on Systems, Man, and Cybernetics 4 (July 1973), pp. 308–317. doi: 10.1109/TSMC.
1973.4309241.

[16] M.S. Fayez et al. “Managing airport operations using simulation”. In: Journal of Simulation 2.1 (Dec.
2008), pp. 41–52. doi: 10.1057/palgrave.jos.4250030.

[17] FY 2020 Budget in Brief. Finance Report. Homeland Security, 2019. url: https://www.dhs.gov/
sites/default/files/publications/fy_2020_dhs_bib.pdf. [Accessed 08-10-20].

127

https://arc.de/cast-terminal-simulation/
https://doi.org/10.1016/j.eswa.2009.10.035
https://doi.org/10.1109/WSC.2007.4419729
https://doi.org/10.1016/j.ejor.2004.06.007
https://doi.org/10.1109/IEEM.2010.5674286
https://doi.org/10.1002/9780470087923.hhs003
https://doi.org/10.5555/3015812.3015877
https://doi.org/10.1016/S0969-6997(99)00010-1
https://doi.org/10.1109/WSC.2009.5429244
https://doi.org/10.1049/cp:19980609
https://www.ecac-ceac.org/cep-main
https://www.iata.org/en/iata-repository/publications/economic-reports/airline-industry-economic-performance---december-2019---report/
https://www.iata.org/en/iata-repository/publications/economic-reports/airline-industry-economic-performance---december-2019---report/
https://doi.org/10.1109/TSMC.1973.4309241
https://doi.org/10.1109/TSMC.1973.4309241
https://doi.org/10.1057/palgrave.jos.4250030
https://www.dhs.gov/sites/default/files/publications/fy_2020_dhs_bib.pdf
https://www.dhs.gov/sites/default/files/publications/fy_2020_dhs_bib.pdf

128 Part III Bibliography

[18] M.R. Gatersleben and S.W. van der Weij. “Analysis and Simulation of Passenger Flows in an Airport
Terminal”. In: Proceedings of the 31st Conference on Winter Simulation: A Bridge to the Future.
Vol. 2. Phoenix, Arizona, USA: Association for Computing Machinery, Dec. 1999, pp. 1226–1231.
doi: 10.1145/324898.325045.

[19] F. Glover and M. Laguna. “Tabu search”. In: Handbook of combinatorial optimization. Boston, MA,
USA: Springer, 1998, pp. 2093–2229. doi: 10.1007/978-1-4613-0303-9_33.

[20] M. Gongora and W. Ashfaq. “Analysis of passenger movement at birmingham international airport
using evolutionary techniques”. In: 2006 IEEE International Conference on Evolutionary Computation.
IEEE. Vancouver, BC, Canada, July 2006, pp. 1339–1345. doi: 10.1109/CEC.2006.1688464.

[21] S.G. Hamzawi. “Management and planning of airport gate capacity: a microcomputer-based gate
assignment simulation model”. In: Transportation Planning and Technology 11.3 (July 1986), pp. 189–
202. doi: 10.1080/03081068608717341.

[22] H.V. Hasselt. “Double Q-learning”. In: Advances in neural information processing systems. Vancouver,
British Columbia, Canada: Curran Associates Inc., 2010, pp. 2613–2621. doi: 10.5555/2997046.
2997187.

[23] John H Holland. “Genetic algorithms”. In: Scientific american 267.1 (1992), pp. 66–73.
[24] R. Horonjeff et al. Planning and design of airports. McGraw-Hill Companies, 2010.
[25] D.J. van der Horst. “Simulation optimisation approach to configuration of a novel security checkpoint”.

MA thesis. Delft University of Technology, Nov. 2021.
[26] HUB Performance. PAX2Sim Applications. url: http://www.hubperformance.com/products/

pax2sim-applications. [Accessed 20-11-20].
[27] Implementing Regulation (EU) 2015/1998. Legislation Report L 299/1. European Comission, Nov.

2015. url: http://data.europa.eu/eli/reg_impl/2015/1998/oj.. [Accessed 14-10-20].
[28] INCONTROL Airport Simulation Solutions. Digital Brochure - Passenger Flows. url: https : / /

support.incontrolsim.com/en/pd-solution-areas/265-digital-brochure-passenger-
flows-hq/download.html. [Accessed 20-11-20].

[29] M. Jaderberg et al. “Reinforcement learning with unsupervised auxiliary tasks”. In: arXiv preprint
arXiv:1611.05397 (2016).

[30] S. Janssen et al. “AATOM: An Agent-Based Airport Terminal Operations Model Simulator”. In: Sum-
merSim ’19. Berlin, Germany: Society for Computer Simulation International, July 2019, p. 12. doi:
10.5555/3374138.3374158.

[31] H.K. Jim and Z.Y. Chang. “An airport passenger terminal simulator: A planning and design tool”.
In: Simulation Practice and Theory 6.4 (May 1998), pp. 387–396. doi: 10.1016/S0928-4869(97)
00018-9.

[32] P.E. Joustra and N.M. Van Dijk. “Simulation of check-in at airports”. In: Proceeding of the 2001
Winter Simulation Conference. Vol. 2. Arlington, VA, USA: IEEE, Dec. 2001, pp. 1023–1028. doi:
10.1109/WSC.2001.977409.

[33] W.J Dunlay Jr et al. “A system analysis procedure for estimating the capacity of an aiport: system
deinfition, capacity definition and review of available models.” In: (Oct. 1975).

[34] W.J. Dunlay Jr and C.H. Park. “Tandem-queue algorithm for airport user flows”. In: Journal of Trans-
portation Engineering 104 (Mar. 1978), pp. 131–149.

[35] W.J. Dunlay Jr and C.H. Park. “Tandem-queue algorithm for airport user flows”. In: Journal of Trans-
portation Engineering 104.2 (1978).

[36] Y. Ju, A. Wang, and H. Che. “Simulation and optimization for the airport passenger flow”. In: 2007
International Conference on Wireless Communications, Networking and Mobile Computing. Shanghai,
China: IEEE, Sept. 2007, pp. 6605–6608. doi: 10.1109/WICOM.2007.1621.

[37] J. Kennedy and R. Eberhart. “Particle swarm optimization”. In: Proceedings of ICNN’95-International
Conference on Neural Networks. Vol. 4. IEEE. Perth, WA, Australia, Aug. 1995, pp. 1942–1948. doi:
10.1109/ICNN.1995.488968.

https://doi.org/10.1145/324898.325045
https://doi.org/10.1007/978-1-4613-0303-9_33
https://doi.org/10.1109/CEC.2006.1688464
https://doi.org/10.1080/03081068608717341
https://doi.org/10.5555/2997046.2997187
https://doi.org/10.5555/2997046.2997187
http://www.hubperformance.com/products/pax2sim-applications
http://www.hubperformance.com/products/pax2sim-applications
http://data.europa.eu/eli/reg_impl/2015/1998/oj.
https://support.incontrolsim.com/en/pd-solution-areas/265-digital-brochure-passenger-flows-hq/download.html
https://support.incontrolsim.com/en/pd-solution-areas/265-digital-brochure-passenger-flows-hq/download.html
https://support.incontrolsim.com/en/pd-solution-areas/265-digital-brochure-passenger-flows-hq/download.html
https://doi.org/10.5555/3374138.3374158
https://doi.org/10.1016/S0928-4869(97)00018-9
https://doi.org/10.1016/S0928-4869(97)00018-9
https://doi.org/10.1109/WSC.2001.977409
https://doi.org/10.1109/WICOM.2007.1621
https://doi.org/10.1109/ICNN.1995.488968

Bibliography Part III 129

[38] A. Kierzkowski and T. Kisiel. “Simulation model of security control system functioning: A case study
of the Wroclaw Airport terminal”. In: Journal of Air Transport Management 64 (Sept. 2017), pp. 173–
185. doi: 10.1016/j.jairtraman.2016.09.008.

[39] Byeoung-su Kim et al. “A method of counting pedestrians in crowded scenes”. In: International Con-
ference on Intelligent Computing. Springer. Berlin, Heidelberg, Germnany, 2008, pp. 1117–1126. doi:
10.1007/978-3-540-85984-0_134.

[40] W. Kim, Y. Park, and B.J. Kim. “Estimating hourly variations in passenger volume at airports using
dwelling time distributions”. In: Journal of Air Transport Management 10.6 (Nov. 2004), pp. 395–400.
doi: 10.1016/j.jairtraman.2004.06.009.

[41] A.S. Kiran, T. Cetinkaya, and S. Og. “Simulation modeling and analysis of a new international ter-
minal”. In: 2000 Winter Simulation Conference Proceedings. Vol. 2. Orlando, FL, USA: IEEE, Dec.
2000, pp. 1168–1172. doi: 10.1109/WSC.2000.899081.

[42] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. “Optimization by simulated annealing”. In: science
220.4598 (May 1983), pp. 671–680. doi: 10.1126/science.220.4598.671.

[43] D.B. Koch. “3d visualization to support airport security operations”. In: IEEE Aerospace and Electronic
Systems Magazine 19.6 (June 2004), pp. 23–28. doi: 10.1109/MAES.2004.1308826.

[44] LWW Laing. “A computer simulation model for the design of airport terminal buildings”. In: Computer-
Aided Design 7.1 (Jan. 1975), pp. 37–42. doi: 10.1016/0010-4485(75)90138-4.

[45] R. Lui, R. Nanda, and J.J. Browne. “International passenger and baggage processing at john f. kennedy
international airport”. In: IEEE Transactions on Systems, Man, and Cybernetics 2 (Apr. 1972), pp. 221–
225. doi: 10.1109/TSMC.1972.4309096.

[46] S. Luke. Essentials of Metaheuristics. second. Lulu, Feb. 2013.
[47] I.E. Manataki and K.G. Zografos. “A generic system dynamics based tool for airport terminal per-

formance analysis”. In: Transportation Research Part C: Emerging Technologies 17.4 (Aug. 2009),
pp. 428–443. doi: 10.1016/j.trc.2009.02.001.

[48] I.E. Manataki and K.G. Zografos. “Assessing airport terminal performance using a system dynamics
model”. In: Journal of Air Transport Management 16.2 (Mar. 2010), pp. 86–93. doi: 10.1016/j.
jairtraman.2009.10.007.

[49] M.J. Mataric. “Reward functions for accelerated learning”. In: Machine learning proceedings 1994.
Elsevier, July 1994, pp. 181–189. doi: 10.1016/B978-1-55860-335-6.50030-1.

[50] L. McCabe and M. Gorstein. “Airport Landside”. In: 1 (June 1982).
[51] F.X. McKelvey. “Use of an analytical queuing model for airport terminal design”. In: Transportation

Research Record (1988), pp. 4–11.
[52] B.L. Metais. “Bechtel Airport Computer Simulation Model”. In: unpublished), June (1974).
[53] E. Miller, G. LaFree, and L. Dugan. Global Terrorism Database. National Consortium for the Study

of Terrorism and Responses to Terrorism. May 2018. url: https : / / start . umd . edu / data -
tools/global-terrorism-database-gtdg. [Online; Accessed 08-10-20].

[54] V. Mnih et al. “Playing atari with deep reinforcement learning”. In: arXiv preprint arXiv:1312.5602
(2013).

[55] S.A. Mumayiz. A methodology for planning and operations management of airport passenger terminals:
a capacity/level of service approach. Jan. 1985. url: https://hdl.handle.net/2134/7403.

[56] R. De Neufville and A. Odoni. Airport Systems. Planning, Design and Management. 2003.
[57] G.F. Newell. Applications of queueing theory. Chapman and Hall, 1982.
[58] X. Nie et al. “Passenger grouping with risk levels in an airport security system”. In: European Journal

of Operational Research 194.2 (Apr. 2009), pp. 574–584. doi: 10.1016/j.ejor.2007.12.027.
[59] A.R. Odoni and R. de Neufville. “Passenger terminal design”. In: Transportation Research Part A:

Policy and Practice 26.1 (Jan. 1992), pp. 27–35. doi: 10.1016/0965-8564(92)90042-6.
[60] D. Pathak et al. “Curiosity-driven exploration by self-supervised prediction”. In: Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2017, pp. 16–17.

https://doi.org/10.1016/j.jairtraman.2016.09.008
https://doi.org/10.1007/978-3-540-85984-0_134
https://doi.org/10.1016/j.jairtraman.2004.06.009
https://doi.org/10.1109/WSC.2000.899081
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1109/MAES.2004.1308826
https://doi.org/10.1016/0010-4485(75)90138-4
https://doi.org/10.1109/TSMC.1972.4309096
https://doi.org/10.1016/j.trc.2009.02.001
https://doi.org/10.1016/j.jairtraman.2009.10.007
https://doi.org/10.1016/j.jairtraman.2009.10.007
https://doi.org/10.1016/B978-1-55860-335-6.50030-1
https://start.umd.edu/data-tools/global-terrorism-database-gtdg
https://start.umd.edu/data-tools/global-terrorism-database-gtdg
https://hdl.handle.net/2134/7403
https://doi.org/10.1016/j.ejor.2007.12.027
https://doi.org/10.1016/0965-8564(92)90042-6

130 Part III Bibliography

[61] D.R. Pendergraft, C.V. Robertson, and S. Shrader. “Simulation of an airport passenger security sys-
tem”. In: Proceedings of the 2004 Winter Simulation Conference, 2004. Vol. 1. Washington, DC,USA:
IEEE, Dec. 2004, p. 878. doi: 10.1109/WSC.2004.1371402.

[62] J. Pita et al. “Using game theory for Los Angeles airport security”. In: AI magazine 30.1 (Jan. 2009),
pp. 43–43. doi: 10.1609/aimag.v30i1.2173.

[63] I. Rechenberg. “Evolutionsstrategien”. In: Simulationsmethoden in der Medizin und Biologie. Berlin,
Germany: Springer, 1978, pp. 83–114. doi: 10.1007/978-3-642-81283-5_8.

[64] Regulation (EC) No 185/2010. Legislation Report L 55/1. European Comission, Mar. 2010. url:
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32010R0185&qid=
1605260106074&from=EN. [Accessed 8-10-20].

[65] Regulation (EC) No 2320/2002. Legislation Report L 355/1. European Comission, Dec. 2002. url:
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32002R2320&qid=
1605253622133&from=EN. [Accessed 8-10-20].

[66] Regulation (EC) No 300/2008. Legislation Report L 97/72. European Comission, Mar. 2008. url:
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008R0300&from=
EN. [Accessed 08-10-20].

[67] E. Roanes-Lozano, L.M. Laita, and E. Roanes-Macías. “An accelerated-time simulation of departing
passengers flow in airport terminals”. In: Mathematics and Computers in Simulation 67.1-2 (2004),
pp. 163–172.

[68] E. Ruiz and R.L. Cheu. “Simulation model to support security screening checkpoint operations in
airport terminals”. In: Transportation research record 2674.2 (2020), pp. 45–56. doi: 10 . 1177 /
0361198120903242.

[69] M. Saffarzadeh and J.P. Braaksma. “Optimum design and operation of airport passenger terminal
buildings”. In: Transportation Research Record 1703.1 (Jan. 2000), pp. 72–82. doi: 10.3141/1703-
10.

[70] P. Schouten. “Security as controversy: Reassembling security at Amsterdam Airport”. In: Security
Dialogue 45.1 (2014), pp. 23–42. doi: 10.1177/0967010613515014.

[71] M. Schultz and H. Fricke. “Managing passenger handling at airport terminals”. In: 9th Air Traffic
Management Research and Development Seminars. 2011.

[72] S. Solak, J.P.B Clarke, and E.L. Johnson. “Airport terminal capacity planning”. In: Transportation
Research Part B: Methodological 43.6 (July 2009), pp. 659–676. doi: 10.1016/j.trb.2009.01.002.

[73] A.A. Soukour et al. “Staff scheduling in airport security service”. In: IFAC Proceedings Volumes
45.6 (2012). 14th IFAC Symposium on Information Control Problems in Manufacturing, pp. 1413–
1418. issn: 1474-6670. doi: 10 . 3182 / 20120523 - 3 - RO - 2023 . 00169. url: https : / / www .
sciencedirect.com/science/article/pii/S1474667016333493.

[74] Strategic objectives of ICAO for 2005-2010. Strategic Report. International Civil Aviation Organization,
Dec. 2004. url: https://www.icao.int/Documents/strategic- objectives/strategic_
objectives_2005_2010_en.pdf. [Accessed 08-10-20].

[75] Study on civil aviation security financing. Strategic Report TREN/F3/51-2002. Avia Solution, Sept.
2004. url: https://ec.europa.eu/transport/sites/transport/files/themes/security/
studies/doc/2004_09_study_financing_aviation_security_en.pdf. [Accessed 14-10-20].

[76] R.S. Sutton and A.G. Barto. Reinforcement learning: An introduction. MIT press, 2018.
[77] Patrick Taillandier et al. “GAMA: a simulation platform that integrates geographical information data,

agent-based modeling and multi-scale control”. In: International Conference on Principles and Practice
of Multi-Agent Systems. Springer. 2010, pp. 242–258.

[78] S. Takakuwa, T. Oyama, and S. Chick. “Simulation analysis of international-departure passenger flows
in an airport terminal”. In: Winter Simulation Conference. Vol. 2. New Orleans, LA, USA: IEEE, Dec.
2003, pp. 1627–1634. doi: 10.1109/WSC.2003.1261612.

[79] Seth Tisue and Uri Wilensky. “Netlogo: A simple environment for modeling complexity”. In: Interna-
tional conference on complex systems. Vol. 21. Boston, MA. 2004, pp. 16–21.

https://doi.org/10.1109/WSC.2004.1371402
https://doi.org/10.1609/aimag.v30i1.2173
https://doi.org/10.1007/978-3-642-81283-5_8
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32010R0185&qid=1605260106074&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32010R0185&qid=1605260106074&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32002R2320&qid=1605253622133&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32002R2320&qid=1605253622133&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008R0300&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008R0300&from=EN
https://doi.org/10.1177/0361198120903242
https://doi.org/10.1177/0361198120903242
https://doi.org/10.3141/1703-10
https://doi.org/10.3141/1703-10
https://doi.org/10.1177/0967010613515014
https://doi.org/10.1016/j.trb.2009.01.002
https://doi.org/10.3182/20120523-3-RO-2023.00169
https://www.sciencedirect.com/science/article/pii/S1474667016333493
https://www.sciencedirect.com/science/article/pii/S1474667016333493
https://www.icao.int/Documents/strategic-objectives/strategic_objectives_2005_2010_en.pdf
https://www.icao.int/Documents/strategic-objectives/strategic_objectives_2005_2010_en.pdf
https://ec.europa.eu/transport/sites/transport/files/themes/security/studies/doc/2004_09_study_financing_aviation_security_en.pdf
https://ec.europa.eu/transport/sites/transport/files/themes/security/studies/doc/2004_09_study_financing_aviation_security_en.pdf
https://doi.org/10.1109/WSC.2003.1261612

Bibliography Part III 131

[80] V. Tosic. “A review of airport passenger terminal operations analysis and modelling”. In: Transportation
Research Part A: Policy and Practice 26.1 (Jan. 1992), pp. 3–26. doi: 10.1016/0965-8564(92)
90041-5.

[81] V. Tosic, O. Babic, and M. Janic. “Airport passenger terminal simulation”. In: Annals of Operations
Research in Air Transportation, Faculty of Transport and Traffic Engineering. University of Belgrade
(1983), pp. 83–103.

[82] United Nations. Air travel down 60 per cent, as airline industry losses top $370 billion: ICAO. 2021.
url: https://news.un.org/en/story/2021/01/1082302 (visited on 10/13/2021).

[83] J. William W.J. Dunlay Jr. “Model of airport employee access traffic”. In: Journal of Transportation
Engineering 104.3 (May 1978).

[84] C. Watkins and P. Dayan. “Q-learning”. In: Machine learning 8.3-4 (1992), pp. 279–292. doi: 10.
1007/BF00992698.

[85] H.H. Willis et al. Estimating terrorism risk. Rand Corporation, 2006.
[86] D. Wilson, E.K. Roe, and S.A. So. “Security checkpoint optimizer (SCO): An application for simu-

lating the operations of airport security checkpoints”. In: Proceedings of the 2006 Winter Simulation
Conference. Monterey, CA, USA: IEEE, Dec. 2006, pp. 529–535. doi: 10.1109/WSC.2006.323126.

[87] P.P.Y. Wu and K. Mengersen. “A review of models and model usage scenarios for an airport complex
system”. In: Transportation Research Part A: Policy and Practice 47 (2013), pp. 124–140. doi: 10.
1016/j.tra.2012.10.015.

[88] K.G. Zografos and M.A. Madas. “Development and demonstration of an integrated decision support
system for airport performance analysis”. In: Transportation Research Part C: Emerging Technologies
14.1 (Feb. 2006), pp. 1–17. doi: 10.1016/j.trc.2006.04.001.

https://doi.org/10.1016/0965-8564(92)90041-5
https://doi.org/10.1016/0965-8564(92)90041-5
https://news.un.org/en/story/2021/01/1082302
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698
https://doi.org/10.1109/WSC.2006.323126
https://doi.org/10.1016/j.tra.2012.10.015
https://doi.org/10.1016/j.tra.2012.10.015
https://doi.org/10.1016/j.trc.2006.04.001

	Introduction
	I Scientific Paper
	II Literature Study
	Introduction
	Airport Terminal
	EU Regulations
	Common Rules of Civil Aviation Security
	Common Evaluation Process of Security Equipment

	Security Configuration
	Security Checkpoint Activities
	Queue
	Lane and Position Allocation
	Baggage Drop
	Screening
	Additional Screening
	Baggage Reclaim

	Simulation Models
	Capacity Models
	Queuing Models
	Stochastic Models
	Statistical Models

	Efficiency
	Discrete-Event Based Models
	System Dynamic Models
	Agent-Based Models

	Security
	Security Definitions
	TVC Method
	Attack Trees
	Probabilistic Methods
	Fuzzy Model
	Game Theory

	Limitations and Conclusions of Simulation Models

	Simulation Software
	Non-Airport Terminal Simulators
	Airport Terminal Simulators
	Academia Developed Simulators
	Industry-Based Simulators
	Government-Based Simulators

	Limitations and Conclusion for Simulation Software

	Simulation Optimization
	Single State Methods
	Hill Climbing
	Simulated Annealing
	Tabu Search

	Population Methods
	Evolutionary Algorithm Terminology
	Evolution Strategies
	Genetic Algorithm
	Particle Swarm Optimization

	Multi-Objective Methods
	Multi-Objective Methods Terminology
	Naive Methods
	Pareto Methods

	Reinforcement Learning
	Markov Decision Processes
	Agent-Environment Interface
	Returns and Episodes
	Policies and Value Functions

	Monte Carlo Method
	Temporal Difference Learning
	Temporal Difference Prediction
	SARSA
	Q-Learning
	Double Q-Learning

	Planning
	Models and Planning
	Dyna-Q
	Prioritized Sweeping

	Multi-Agent Learning
	Challenges in Reinforcement Learning

	Research Proposal
	Summary of limitations in literature
	Research Objectives
	Work Packages
	Initial Phase (12 Weeks)
	Final Phase (12 weeks)
	Final Thesis and Defence Phase (4 weeks)

	III Supporting Work
	AATOM Simulator
	Assumptions
	Overview
	User Interface
	Simulator
	Environment
	Physical Objects
	Concepts

	Agent
	Goal Module
	Planning Module
	Activity Module

	Case Studies for Amsterdam Airport Schiphol
	Sensitivity of conventional checkpoint configuration
	Security operator allocation under COVID-19 restrictions
	Phase I: Performance of the AAS security checkpoint
	Phase II: Improving the AAS security checkpoint

	Future security checkpoints
	Application for the checkpoint simulator

