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ABSTRACT
We present a novel framework for formal control of uncertain

discrete-time switched stochastic systems against probabilistic reach-

avoid specifications. In particular, we consider stochastic systems

with additive noise, whose distribution lies in an ambiguity set of

distributions that are 𝜀−close to a nominal one according to the

Wasserstein distance. For this class of systems we derive control

synthesis algorithms that are robust against all these distributions

and maximize the probability of satisfying a reach-avoid specifi-

cation, defined as the probability of reaching a goal region while

being safe. The framework we present first learns an abstraction

of a switched stochastic system as a robust Markov decision process
(robust MDP) by accounting for both the stochasticity of the system

and the uncertainty in the noise distribution. Then, it synthesizes

a strategy on the resulting robust MDP that maximizes the proba-

bility of satisfying the property and is robust to all uncertainty in

the system. This strategy is then refined into a switching strategy

for the original stochastic system. By exploiting tools from optimal

transport and stochastic programming, we show that synthesizing

such a strategy reduces to solving a set of linear programs, thus

guaranteeing efficiency. We experimentally validate the efficacy of

our framework on various case studies, including both linear and

non-linear switched stochastic systems. Our results represent the

first formal approach for control synthesis of stochastic systems

with uncertain noise distribution.

CCS CONCEPTS
• Theory of computation → Abstraction; Logic and verifi-
cation; • Mathematics of computing → Stochastic processes; •
Computer systems organization→ Robotic autonomy.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

HSCC ’23, May 09–12, 2023, San Antonio, TX, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0033-0/23/05. . . $15.00

https://doi.org/10.1145/3575870.3587127

KEYWORDS
Switched stochastic systems, Formal synthesis, Safe autonomy, Un-

certain Markov decision processes, Wasserstein distance

ACM Reference Format:
Ibon Gracia, Luca Laurenti, Dimitris Boskos, and Manuel Mazo Jr.. 2023.

Distributionally Robust Strategy Synthesis for Switched Stochastic Systems.

In Proceedings of the 26th ACM International Conference on Hybrid Systems:
Computation and Control (HSCC ’23), May 09–12, 2023, San Antonio, TX, USA.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3575870.3587127

1 INTRODUCTION
Switched stochastic systems are a class of stochastic hybrid systems

that are composed by a finite set of modes and a controller that

can freely switch between them [7, 40]. Because of their modelling

flexibility, switched stochastic systems are currently employed in

many real-world applications, including robotics [25] and cyber-

physical systems [17]. Many of these applications have two features

in common: 1) they are safety-critical, hence formal guarantees of

correctness are required, 2) the noise characteristics of the system

are uncertain, as we often have only partial knowledge on the statis-

tical properties of the system due to the use of statistical estimation

techniques and distributional shifts, i.e., the noise distribution of

the system may change [30]. However, existing formal control syn-

thesis and verification methods for switched stochastic systems all

assume that the noise distribution is known exactly. This leads to

the fundamental research question that we aim to address in this

paper: how can we derive formal guarantees for stochastic systems
whose noise distribution is uncertain?

In this paper we present a formal control framework to synthe-

size robust strategies for discrete-time switched stochastic systems

with uncertain additive noise. In particular, we assume that in each

mode the system evolves according to possibly non-linear dynamics

and is affected by an additive noise term whose distribution belongs

to a Wasserstein ambiguity set, i.e., a set of distributions that are

closer than a given 𝜖 > 0, according to the Wasserstein distance, to

a nominal distribution [15, 26]. For instance, such a set could be esti-

mated using data-driven techniques [26]. We consider a finite-time

probabilistic reach-avoid specification, defined as a lower bound on

the probability that the system reaches a goal region while avoiding

bad states. Building on a robust control synthesis framework, we

synthesize a strategy that maximizes the probability that the system

https://doi.org/10.1145/3575870.3587127
https://doi.org/10.1145/3575870.3587127
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satisfies the specification for the worst-case choice of adversarial

distributions from the ambiguity set.

Our approach proposes to abstract the original system into

a finite-state uncertain Markov decision process (MDP) [27, 37],

namely a robust MDP [27], whose uncertainty in the transition

probabilities also accounts for the distributional ambiguity in the

original system. In particular, by relying on recent results from

distributional robust optimization [30], we show that dynamic pro-

gramming for the resulting robust MDP reduces to solving a set of

linear programs, thus guaranteeing efficiency. We formally prove

the correctness of our framework and test our approach on two case

studies including both linear and non-linear systems and for various

ambiguity sets. Note that while in this paper we focus on reach-

avoid specifications, this is not limiting. In fact, probabilistic reach-

avoid specification are the key building block for model-checking

algorithms of various temporal logics, such as PCTL [19, 22] or

LTL [9, 20]. Consequently, to the best of our knowledge, our results

represent the first step to obtain formal methods for stochastic

systems with uncertain or partially unknown noise characteristics.

Related Works. Various formal verification and synthesis algo-

rithms have been developed for switched stochastic systems, with

approaches including stochastic barrier functions [32] and abstrac-

tions to finite Markov models [9, 13, 24, 37], including interval
Markov decision processes (IMDPs)), which are a class of Markov

decision processes in which the transition probabilities belong to

intervals [16, 21] and admits efficient control synthesis algorithms

[9, 22]. However, all of these works assume that both the dynamics

and the noise distribution of the system are well known, which is

often an unrealistic assumption due to e.g., unmodelled dynamics,

distributional shifts, or data-driven components. In order to close

this gap recent works have started to employ machine learning

algorithms, including neural networks and Gaussian processes, to

devise formal control strategies in the case where the dynamics

are (partially) unknown or simply too complex to be modelled

[1, 20]. Nevertheless, none of these works consider the case when

the distribution of the system is uncertain and lies in an ambiguity

set.

Ambiguity sets are commonly used in distributionally robust

optimization (DRO) problems to represent a set of probability dis-

tributions with respect to which the decision-maker wants to be

robust [33]. An ambiguity set is defined as a set of probability dis-

tributions that are close to a nominal distribution, which represents

our approximate knowledge of the uncertainty model. According

to the way closeness is quantified, ambiguity sets are typically

constructed based on moment constraints [11, 28], statistical diver-

gences [8], and optimal transport discrepancies [4, 5, 15] like the

Wasserstein distance. Wasserstein ambiguity sets, such as those

considered in this paper, constitute a convenient choice to group

ambiguous distributions, especially for data-driven problems. This

is justified by the fact that theWasserstein metric penalizes horizon-

tal dislocations between distributions [31], it provides ambiguity

sets that have finite-sample guarantees of containing the true dis-

tribution [14], and it enables the formulation of tractable DRO

problems [26]. Dynamic aspects of distributional uncertainty with

optimal transport ambiguity are studied in [6], which tracks the

evolution of Wasserstein ambiguity sets for systems with an un-

known state disturbance distribution, and [18], which develops a

risk-aware robot control scheme to avoid dynamic obstacles that

evolve according to an ambiguous distribution.

While in this work we focus on abstracting our system to a ro-

bust MDP, another class of Markov processes that is closely related

to our work is distributionally robust Markov decision processes

(DR-MDPs) [10, 38, 39], which are MDPs whose transition probabil-

ities depend on some parameters that are uncertain and lie in some

ambiguity set. These are substantially different from the robust

MDPs considered in this paper because we do not consider any

additional probabilistic structure over the ambiguous distributions

to signify which uncertainty model is more likely to occur. Planning

algorithms against complex specifications for various classes of ro-

bust Markov models have been already considered in the literature

[22, 27, 29, 37]. However, how to combine these algorithms with

tools of optimal transport to abstract and perform formal synthesis

of continuous-space dynamical systems affected by noise of uncer-

tain distribution is not considered in these works and represents a

key contribution of our work.

2 BASIC NOTATION
Let N0 := N ∪ {0}. Given a set 𝐴, we denote by |𝐴| its cardinality.
Given ℓ,𝑚 ∈ N0 with ℓ ≤ 𝑚, we use the notation [ℓ :𝑚] for the set
{ℓ, ℓ +1, . . . ,𝑚}. For a separable metric space𝑋 , we denote by B(𝑋 )
its Borel 𝜎-algebra and by D(𝑋 ) the set of probability distributions
on (𝑋,B(𝑋 )). When 𝑋 is discrete and 𝛾 ∈ D(𝑋 ) we also denote

𝛾 (𝑥) := 𝛾 ({𝑥}) the probability of the event described by the single-

ton {𝑥}. Let 𝑐 : 𝑋 ×𝑋 → R≥0 be a continuous cost function defined

over the product space 𝑋 × 𝑋 . The optimal transport discrepancy

between two probability distributions 𝑝, 𝑝′ ∈ D(𝑋 ) is defined as

T𝑐 (𝑝, 𝑝′) := inf

𝜋∈Π (𝑝,𝑝′ )

∫
𝑋×𝑋

𝑐 (𝑥,𝑦)𝑑𝜋 (𝑥,𝑦), (1)

where Π(𝑝, 𝑝′) is the set of all transport plans between 𝑝 and 𝑝′,
a.k.a. couplings, i.e., probability distributions 𝜋 ∈ D(𝑋 × 𝑋 ), with
marginals 𝑝 and 𝑝′, respectively. Since the cost 𝑐 is nonnegative,
T𝑐 provides a discrepancy measure between distributions in D(𝑋 ).
By continuity of 𝑐 , there always exists a transport plan 𝜋 for which

the infimum in (1) is attained [35, Theorem 1.3]. Assume that 𝑋 is

equipped with a metric 𝑑 . Given 𝑠 ≥ 1 we denote by D𝑠 (𝑋 ) the
set of probability distributions on 𝑋 with finite 𝑠-th moment, i.e.,

D𝑠 (𝑋 ) = {𝑝 ∈ D(𝑋 ) :

∫
𝑋
𝑑 (𝑥,𝑦)𝑠𝑑𝑝 (𝑥) < ∞ for some 𝑦 ∈ 𝑋 }.

Then the discrepancy W𝑠 := (T𝑑𝑠 )
1

𝑠 is also a metric in the space

D𝑠 (𝑋 ) coined as the 𝑠-Wasserstein distance [35].

3 PROBLEM FORMULATION
We consider a partially-known discrete-time switched stochastic

process described as:

x𝑘+1
= 𝑓u𝑘 (x𝑘 ) + v𝑘 , (2)

where 𝑘 ∈ N, x𝑘 ∈ R𝑛 , u𝑘 ∈ 𝑈 , and𝑈 = {1, ...,𝑚} is a finite set of
modes or actions. For every 𝑢 ∈ 𝑈 , 𝑓𝑢 : R𝑛 → R𝑛 is a possibly non-

linear continuous function. The noise term v𝑘 is an independent

random variable with a distribution 𝑝true𝑣 that is identically dis-

tributed at each time step. While the exact distribution is unknown

we do assume the following:
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Assumption 1. The distribution 𝑝true𝑣 is 𝜀-close (in the 𝑠-Wasserstein
sense) to a known distribution 𝑝𝑣 ∈ D𝑠 (R𝑛), which we call nominal,
i.e., 𝑝true𝑣 ∈ P𝑣 := {𝑝 ∈ D𝑠 (R𝑛) : W𝑠 (𝑝, 𝑝𝑣) ≤ 𝜀}, where W𝑠 is
determined by the metric 𝑑 (𝑥,𝑦) = ∥𝑥 − 𝑦∥, where ∥ · ∥ is a norm on
R𝑛 that is fixed throughout the paper, and some choice of 𝑠 ≥ 1.

Intuitively, x𝑘 is a stochastic process driven by an additive noise

process v𝑘 , whose distribution is uncertain and is close to a nominal

one and our goal is to devise control strategies that are robust to all

distributions in P𝑣 . As a consequence, system (2) represents a large

class of controlled stochastic systems with additive and uncertain

noise. For instance, such a system arises in a data-driven setting,

where measure concentration results [14] can be used to build a

Wasserstein ambiguity set from data of v𝑘 with high confidence

[26], or in a distributionally robust setting, where one wants to

synthesize control strategies that are robust against distributional

shifts of the system.

Let 𝜔x = x0

u0−−→ x1

u1−−→ . . . be a path (trajectory) of System (2)

and denote by 𝜔x (𝑘) = x𝑘 the state of 𝜔x at time 𝑘 . Given a path

𝜔x, we denote by 𝜔
𝑘
x the prefix of finite length 𝑘 + 1 of 𝜔x. We also

denote by Ωfin

x the set of all sample paths with finite length, i.e,

the set of prefixes 𝜔𝑘x = x0

u0−−→ x1

u1−−→ . . .
u𝑘−1−−−−→ x𝑘 for all 𝑘 ∈ N.

Given a finite path, a switching strategy chooses the mode (action)

of System (2).

Definition 1 (Switching Strategy). A switching strategy 𝜎𝑥 :

Ωfin

x → 𝑈 is a function that maps each finite path 𝜔𝑘x ∈ Ωfin

x to an
action 𝑢 ∈ 𝑈 .

For any 𝑝𝑣 ∈ P𝑣, 𝑢 ∈ 𝑈 , 𝑋 ∈ B(R𝑛), and 𝑥 ∈ R𝑛 , let

𝑇𝑢𝑝𝑣 (𝑋 | 𝑥) =
∫

1𝑋 (𝑓𝑢 (𝑥) + 𝑣)𝑝𝑣 (𝑣)𝑑𝑣 (3)

be the stochastic transition function induced by system (2) with

noise fixed to 𝑝𝑣 in mode 𝑢 ∈ 𝑈 , where 1𝑋 is the indicator function

with 1𝑋 (𝑥) = 1, if 𝑥 ∈ 𝑋 and 1𝑋 (𝑥) = 0, otherwise. From the

definition of 𝑇𝑢𝑝𝑣 (𝑋 | 𝑥) it follows that, given a strategy 𝜎𝑥 , a noise

distribution 𝑝𝑣 , an initial condition 𝑥0, and a time horizon [0 : 𝐾],
system (2) defines a stochastic process on the canonical space Ω =

(R𝑛)𝐾+1
with the Borel sigma-algebraB(Ω) [3]. In particular, there

is a unique probability distribution 𝑃
𝑥0,𝜎𝑥
𝑝𝑣

generated by 𝑇𝑢𝑝𝑣 such

that for 𝑘 ∈ {1, ..., 𝐾}
𝑃
𝑥0,𝜎𝑥
𝑝𝑣

[𝜔𝐾x (0) ∈ 𝑋 ] = 1𝑋 (𝑥0),

𝑃
𝑥0,𝜎𝑥
𝑝𝑣

[𝜔𝐾x (𝑘) ∈ 𝑋 | 𝜔𝑘−1

x ] = 𝑇𝜎𝑥 (𝜔
𝑘−1

x )
𝑝𝑣

(𝑋 | 𝜔𝐾x (𝑘 − 1)) .

3.1 Problem Formulation
In this paper we consider finite-time probabilistic reach-avoid spec-

ifications for System (2) regarding the probability that a trajectory

of System (2) reaches a goal region, whilst always avoiding a given

set of bad states. In particular, for a time horizon𝐾 ∈ N0, a bounded

safe set 𝑋 , a target region 𝑋tgt ⊂ 𝑋 and an initial state 𝑥0 ∈ 𝑋 , the
reach-avoid probability is formally defined as

𝑃
reach

(𝑋,𝑋tgt, 𝐾 | 𝑥0, 𝜎𝑥 , 𝑝𝑣) := 𝑃
𝑥0,𝜎𝑥
𝑝𝑣

[∃𝑘 ∈ [0 : 𝐾] 𝑠 .𝑡 .

𝜔𝑘x (𝑘) ∈ 𝑋tgt ∧ ∀ 𝑘′ < 𝑘 𝜔𝑘x (𝑘′) ∈ 𝑋 ] . (4)

We are now ready to formally state the problem we consider in this

paper.

Problem 1 (Switching Strategy Synthesis). Consider the
switched stochastic system (2), its corresponding ambiguity set P𝑣 , a
bounded safe set𝑋 , and a target region𝑋tgt ⊂ 𝑋 . Given an initial state
𝑥0 ∈ 𝑋 , a probability threshold 𝑝th ∈ [0, 1], and a horizon 𝐾 ∈ N0,
synthesize a switching strategy 𝜎𝑥 that allows us to determine if

𝑃
reach

(𝑋,𝑋tgt, 𝐾 | 𝑥0, 𝜎𝑥 , 𝑝𝑣) ≥ 𝑝
th
, (5)

for all 𝑝𝑣 ∈ P𝑣 .

Note that our focus on reach-avoid specifications in Problem 1

is not limiting: algorithms to compute more complex specifications,

such as linear temporal logic under finite traces (LTLf), syntactically
co-safe linear temporal logic (sc-LTL) or bounded linear temporal
logic (BLTL), often reduce to reachability computations [1, 2, 9, 19].

Overview of the Approach. To solve Problem 1, in Section 5 we con-

struct a finite-state abstraction of System (2) in terms of a robust

MDP. In Section 6 we synthesize an optimal strategy for the result-

ing abstraction via the solution of a set of linear programs. Finally,

we refine this strategy into a strategy for system (2) and derive

upper and lower bounds on the probability that the system satisfies

the specification under the refined strategy.

4 PRELIMINARIES
4.1 Robust Markov Decision Processes
We abstract system (2) into a robust Markov decision process (robust
MDP) M. Robust MDPs are a generalization of Markov decision

processes in which the transition probability distributions between

states are constrained to belong to an ambiguity set [27], [36].

Definition 2 (Robust MDP). A robust Markov decision process
(M) is a tupleM = (𝑄,𝐴, Γ), where

• 𝑄 is a finite set of states,

• 𝐴 is a finite set of actions, and𝐴(𝑞) denotes the set of available
actions at state 𝑞 ∈ 𝑄 ,

• Γ = {Γ𝑞,𝑎}𝑞∈𝑄,𝑎∈𝐴 are the sets of possible transition probabil-
ity distributions ofM, namely, Γ𝑞,𝑎 ⊆ D(𝑄).1

A path of a robust MDP is a sequence of states𝜔 = 𝑞0

𝑎0−−→ 𝑞1

𝑎1−−→
𝑞2

𝑎2−−→ . . . such that 𝑎𝑘 ∈ 𝐴(𝑞𝑘 ) and there exists 𝛾 ∈ Γ𝑞𝑘 ,𝑎𝑘 with

𝛾 (𝑞𝑘+1
) > 0 for all 𝑘 ∈ N. We denote the 𝑖-th state of a path 𝜔

by 𝜔 (𝑖), a finite path of length 𝑘 + 1 by 𝜔𝑘 and the last state of a

finite path 𝜔fin
by last (𝜔fin). The set of all finite paths is denoted

by Pathsfin
.

Definition 3 (IMDP). An intervalMarkov decision process (IMDP)
I [9], [23], also known as bounded parameter MDP (BMDP) [16], [21],
is a class of robust MDP I = (𝑄,𝐴, Γ) where Γ has the following
form:

Γ𝑞,𝑎 = {𝛾 ∈ D(Q) : 𝑃 (𝑞, 𝑎, 𝑞′) ≤ 𝛾 (𝑞′) ≤ 𝑃 (𝑞, 𝑎, 𝑞′) for all 𝑞′ ∈ 𝑄},
(6)

for every 𝑞 ∈ 𝑄 , 𝑎 ∈ 𝐴(𝑞). The bounds 𝑃, 𝑃 are called transition prob-
ability bounds and must fulfill, for every state 𝑞 ∈ 𝑄 and action 𝑎 ∈
1
Note that the sets of transition probability distributions of the robust MDP are inde-

pendent for each state and action. This is known as rectangular property of the set of

transition probability distributions [27], [36].
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𝐴(𝑞), that 0 ≤ 𝑃 (𝑞, 𝑎, 𝑞′) ≤ 𝑃 (𝑞, 𝑎, 𝑞′) ≤ 1 and
∑
𝑞′∈𝑄 𝑃 (𝑞, 𝑎, 𝑞′) ≤

1 ≤ ∑
𝑞′∈𝑄 𝑃 (𝑞, 𝑎, 𝑞′) .

The actions of robust MDPs and IMDPs are chosen according to

a strategy 𝜎 which is defined below.

Definition 4 (Strategy). A strategy𝜎 of a robust MDPmodelM
is a function 𝜎 : Pathsfin → 𝐴 that maps a finite path𝜔𝑘 , with 𝑘 ∈ N,
ofM onto an action in 𝐴(last (𝜔fin)). If a strategy depends only on
last (𝜔fin) and 𝑘 , it is called a memoryless (Markovian) strategy.

Given an arbitrary strategy 𝜎 , we are restricted to the set of

robust Markov chains defined by the set of transition probability

distributions induced by 𝜎 . In order to reduce this to a Markov

chain, we define the adversary function [16], also referred to as

“nature" [27], which assigns a transition probability distribution to

each state-action pair.

Definition 5 (Adversary). For a robust MDP M, an adversary
is a function 𝜉 : Pathsfin × 𝐴 → D(𝑄) that, for each finite path
𝜔fin ∈ Pathsfin, state 𝑞 = last (𝜔fin), and action 𝑎 ∈ 𝐴(𝑞), assigns
an admissible distribution 𝛾𝑞,𝑎 ∈ Γ𝑞,𝑎 . The set of all adversaries is
denoted by Ξ.

For an initial condition 𝑞0 ∈ 𝑄 , under a strategy and a valid

adversary 𝜉 ∈ Ξ, the robust MDP collapses to a Markov chain and

a probability distribution 𝑃𝑟𝑜𝑏
𝑞0,𝜎

𝜉
is induced on its paths.

5 ROBUST MDP ABSTRACTION
In order to solve Problem 1, we start by abstracting system (2)

into the IMDP Î = (𝑄,𝐴, Γ̂) with the noise distribution fixed to the

nominal one, 𝑝𝑣 . In this way, we embed the error caused by the state

discretization into Î. After that, we expand the set of transition

probabilities Γ̂ of Î to also capture the distributional ambiguity

into the abstraction, obtaining the robust MDPM = (𝑄,𝐴, Γ). Note
that the sets of states 𝑄 and actions 𝐴 are the same in Î and M .

Next we describe how we obtain 𝑄 and 𝐴, and in Section 5.2 we

consider the set of transition probability distributions Γ.

5.1 States and Actions
The state-space 𝑄 of M is constructed as follows: consider a set of

non-overlapping regions 𝑄
safe

= {𝑞1, 𝑞2, . . . , 𝑞 |𝑄
safe

| } partitioning
the set 𝑋 so that either 𝑞 ∩ 𝑋tgt = ∅ or 𝑞 ∩ (𝑋 \ 𝑋tgt) = ∅ for

all 𝑞 ∈ 𝑄
safe

. We denote by 𝑄tgt the subset of 𝑄
safe

for which

𝑞 ∩ 𝑋tgt = 𝑞 and assume that it is a partition of 𝑄tgt. The states of

the abstraction comprise of𝑄
safe

and the unsafe region𝑞𝑢 := R𝑛\𝑋 ,
namely, 𝑄 := 𝑄

safe
∪ {𝑞𝑢 }. We index 𝑄 by N = {1, . . . , 𝑁 }, where

𝑁 := |𝑄 | and denote the actions of the abstraction as 𝐴 := 𝑈 .

5.2 Transition Probability Distributions
Accounting for the Discretization Error. To capture the state dis-

cretization error into the abstraction, we first consider an IMDP

abstraction of system (2) for a fixed distribution: the nominal proba-

bility distribution 𝑝𝑣 . Since this IMDP is constructed for the nominal

distribution 𝑝𝑣 , we call it “nominal" IMDP, and use the notation

Î = (𝑄,𝐴, Γ̂). Note that building an IMDP abstraction of a sto-

chastic system with disturbances of a known distribution has been

widely studied in the literature [1, 9, 12, 22] and we report the full

procedure here below for completeness. We have already defined

the state𝑄 and action𝐴 spaces of Î in Section 5.1. We now describe

the set Γ̂ of Î. According to Definition 3, the set Γ̂ is defined by the

transition probability bounds 𝑃 and 𝑃 of Î. To formally account for

the discretization error, the bounds must satisfy for all 𝑞 ∈ 𝑄
safe

,

𝑞′ ∈ 𝑄 and 𝑎 ∈ 𝐴 = 𝑈 :

𝑃 (𝑞, 𝑎, 𝑞′) ≤ min

𝑥∈𝑞
𝑇𝑎
𝑝𝑣
(𝑞′ | 𝑥)

𝑃 (𝑞, 𝑎, 𝑞′) ≥ max

𝑥∈𝑞
𝑇𝑎
𝑝𝑣
(𝑞′ | 𝑥) .

(7)

Since we are interested in the paths of system (2) that do not exit

set 𝑋 , we make state 𝑞𝑢 absorbing, i.e.,

𝑃 (𝑞𝑢 , 𝑎, 𝑞𝑢 ) = 𝑃 (𝑞𝑢 , 𝑎, 𝑞𝑢 ) = 1 (8)

for all 𝑎 ∈ 𝐴. In this way we include the “avoid" part of the specifi-

cation into the definition of the abstraction: the paths that reach

𝑞𝑢 , will remain there forever and, therefore, will never reach the

target set 𝑄tgt. Consequently, for each 𝑞 ∈ 𝑄 and 𝑎 ∈ 𝐴 we obtain

Γ̂𝑞,𝑎 = {𝛾 ∈ D(𝑄) : 𝑃 (𝑞, 𝑎, 𝑞′) ≤ 𝛾 (𝑞′) ≤ 𝑃 (𝑞, 𝑎, 𝑞′) for all 𝑞′ ∈ 𝑄}.
(9)

Accounting for the Distributional Uncertainty. Now, we expand the

sets {Γ̂𝑞,𝑎}𝑞∈𝑄,𝑎∈𝐴 of transition probabilities of Î to also embed the

distributional uncertainty into the abstraction. With this objective,

we first define the following cost between states in 𝑄 :

𝑐 (𝑞, 𝑞′) := inf{∥𝑥 − 𝑦∥𝑠 : 𝑥 ∈ 𝑞,𝑦 ∈ 𝑞′}, (10)

for 𝑞, 𝑞′ ∈ 𝑄 , and where ∥ · ∥ and 𝑠 are the same as for W𝑠 in

Assumption 1. The cost 𝑐 (𝑞, 𝑞′)
1

𝑠 is the minimum distance, in the

sense of norm ∥ · ∥, between any pair of points in the regions 𝑞

and 𝑞′, respectively . Using this cost and the exponent 𝑠 in W𝑠 , we

define the optimal transport discrepancy T𝑐 between distributions

over 𝑄 as in (1).
2
Given a probability distribution 𝛾 ∈ D(𝑄) and

𝜖 ≥ 0, we denote by T 𝜖𝑐 (𝛾) the set of all distributions to which

mass can be transported from 𝛾 incurring a 𝑐-transport cost lower

than 𝜖 . Using the previous elements, we are finally able to define Γ.

Definition 6. The discrete uncertainty set Γ is defined for every
state 𝑞 ∈ 𝑄

safe
and action 𝑎 ∈ 𝐴 as:

Γ𝑞,𝑎 :=
⋃

𝛾 ∈ Γ̂𝑞,𝑎

T 𝜖𝑐 (𝛾), (11)

with 𝜖 = 𝜀𝑠 . For state 𝑞𝑢 and action 𝑎 ∈ 𝐴, let Γ𝑞,𝑎 := Γ̂𝑞,𝑎 (preserving
the absorbing property of the unsafe state).

Each Γ𝑞,𝑎 is the set of probability distributions over 𝑄 that are

𝜀-close to Γ̂𝑞,𝑎 , in the sense of the optimal transport discrepancy T𝑐 .
Once we have obtained the sets of transition probabilities Γ, along
with the state 𝑄 and action 𝐴 spaces, our robust MDP abstraction

M is fully defined. The following proposition ensures that the

abstraction captures all possible transition probabilities of system

(2) to regions in the partition.

2
Notice that, since 𝑐 is also not a metric, the resulting optimal transport discrepancy

T𝑐 is not a distance.
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Proposition 1 (Consistency of the Robust MDP Abstrac-

tion). Consider the robust MDP abstractionM = (𝑄,𝐴, Γ) of system
(2). Let 𝑞 ∈ 𝑄

safe
, 𝑎 ∈ 𝐴, 𝑥 ∈ 𝑞, 𝑝𝑣 ∈ P𝑣 and define 𝛾𝑥,𝑎 ∈ D(𝑄)

such that

𝛾𝑥,𝑎 (𝑞′) := 𝑇𝑎𝑝𝑣 (𝑞
′ |𝑥)

for all 𝑞′ ∈ 𝑄 . Then 𝛾𝑥,𝑎 ∈ Γ𝑞,𝑎 .

The proof of Proposition 1 is given in Appendix 9. The intuition

behind Proposition 1 is that set Γ𝑞,𝑎 contains the transition prob-

abilities 𝛾𝑥,𝑎 obtained by starting from any 𝑥 ∈ 𝑞, with 𝑞 ∈ 𝑄
safe

under 𝑎 ∈ 𝐴 and for any 𝑝𝑣 ∈ P𝑣 .

Remark 1 (Model Choice for the Abstraction). An alterna-
tive way to include the distributional ambiguity into the abstraction
is to use an IMDP abstraction I = (𝑄,𝐴, ΓIMDP), which has the same
state 𝑄 and action 𝐴 spaces as M, and in which ΓIMDP is defined by
transition probability bounds that fulfill:

𝑃 IMDP (𝑞, 𝑎, 𝑞′) ≤ min

𝑝𝑣 ∈P𝑣

min

𝑥∈𝑞
𝑇𝑎𝑝𝑣 (𝑞

′ | 𝑥)

𝑃
IMDP (𝑞, 𝑎, 𝑞′) ≥ max

𝑝𝑣 ∈P𝑣

max

𝑥∈𝑞
𝑇𝑎𝑝𝑣 (𝑞

′ | 𝑥)
(12)

for all 𝑞 ∈ 𝑄
safe

, 𝑞′ ∈ 𝑄 𝑎 ∈ 𝐴, and for which 𝑞𝑢 is again absorbing.
Therefore, for fixed 𝑞 ∈ 𝑄 and 𝑎 ∈ 𝐴, set ΓIMDP

𝑞,𝑎 of I is defined as

ΓIMDP

𝑞,𝑎 = {𝛾 ∈ D(Q) : 𝑃 IMDP (𝑞, 𝑎, 𝑞′) ≤ 𝛾 (𝑞′) ≤ 𝑃
IMDP (𝑞, 𝑎, 𝑞′)

for all 𝑞′ ∈ 𝑄}.
(13)

This choice of the abstraction model allows to use efficient synthesis
algorithms for IMDPs [16], [21] to solve Problem 1. By the definition of
the transition probability bounds of I in (12), ΓIMDP satisfies Propo-
sition 1, effectively capturing all possible transition probabilities of
system (2). However, IMDP I describes the uncertainty in a very loose
way, i.e., set ΓIMDP of I can be excessively big for many ambiguity
setsP𝑣 . Intuitively, this is caused by ΓIMDP

𝑞,𝑎 being only defined through
decoupled interval constraints for every successor state 𝑞′ ∈ 𝑄 , This
is likely to result in more conservative solutions to the reach-avoid
problem as we will show in Section 7.

6 STRATEGY SYNTHESIS
Our goal is to synthesize a switching strategy 𝜎∗x for system (2) that

maximizes (5). To capture the distributional uncertainty and the

effect of quantization, we consider the proposed abstractionM. We

synthesize the robustly maximizing strategy 𝜎∗ for the abstraction
M, and refine it, retaining formal guarantees of correctness, when

mapped back to the concrete system. In Section 6.1 and 6.2 we show

how an optimal strategy 𝜎∗ for the abstractionM can be efficiently

computed via linear programming, then in Section 6.3 we prove

the correctness of our strategy synthesis approach.

6.1 Robust Dynamic Programming
Once we have obtained a robust MDP abstraction M = (𝑄,𝐴, Γ),
the uncertainties of M are characterized by an adversary 𝜉 that at

each time step, given a path ofM and an action, selects a feasible

distribution from Γ (see Definition 5). As a consequence, in order

to be robust against all uncertainties, as common in the literature

[16, 27], we aim to synthesize a strategy 𝜎∗ such that:

𝜎∗ ∈ arg max

𝜎∈Σ
min

𝜉∈Ξ
𝑃

reach
(𝑄

safe
, 𝑄tgt, 𝐾 | 𝑞, 𝜎, 𝜉), (14)

for all 𝑞 ∈ 𝑄 , where 𝑃
reach

(𝑄
safe

, 𝑄tgt, 𝐾 | 𝑞, 𝜎, 𝜉) is defined as in

(4) for system (2).

We denote by 𝑝𝐾 and 𝑝
𝐾
, respectively, the worst and best-case

probabilities of the paths ofM satisfying the reach-avoid specifica-

tion under optimal strategy 𝜎∗:

𝑝𝐾 (𝑞) := min

𝜉∈Ξ
𝑃

reach
(𝑄

safe
, 𝑄tgt, 𝐾 | 𝑞, 𝜎∗, 𝜉)

𝑝
𝐾 (𝑞) := max

𝜉∈Ξ
𝑃

reach
(𝑄

safe
, 𝑄tgt, 𝐾 | 𝑞, 𝜎∗, 𝜉)

(15)

for all 𝑞 ∈ 𝑄 . The following proposition from [22] guarantees that

the probabilities in (15) and the optimal strategy in (14) can be

obtained through dynamic programming.

Proposition 2. [22] Let 𝑝𝐾 be as defined in (15) and 𝑘 ∈ [0 :

𝐾 − 1]. Then, it holds that

𝑝𝑘+1 (𝑞) =
{

1 if 𝑞 ∈ 𝑄tgt

max𝑎∈𝐴 min𝛾 ∈Γ𝑞,𝑎
∑
𝑞′∈𝑄 𝛾 (𝑞′)𝑝𝑘 (𝑞′) otherwise,

(16)

with initial condition 𝑝0 (𝑞) = 1 for all 𝑞 ∈ 𝑄tgt and 0 otherwise.

Furthermore, for each path 𝜔𝑘 with 𝑘 ∈ [0 : 𝐾 − 1], it holds that

𝜎∗ (𝜔𝑘 ) ∈ arg max

𝑎∈𝐴

{
min

𝛾 ∈Γlast (𝜔𝑘 ),𝑎

∑︁
𝑞′∈𝑄

𝛾 (𝑞′)𝑝𝐾−𝑘−1 (𝑞′)
}
. (17)

A consequence of Proposition 2 is that in our setting there exists

an optimal policy that is Markovian and time dependent. Hence, we

can restrict our search for 𝜎∗ to this class of strategies. Furthermore,

once 𝜎∗ is fixed, 𝑝
𝑘+1

, an upper bound of 𝑃
reach

, can be readily

computed via the dynamic programming recursion

𝑝
𝑘+1 (𝑞) =

{
1 if 𝑞 ∈ 𝑄tgt

max𝛾 ∈Γ𝑞,𝜎∗
∑
𝑞′∈𝑄 𝛾 (𝑞′)𝑝𝑘 (𝑞′) otherwise,

(18)

which is analogous to that in (16) and has initial condition 𝑝
0 (𝑞) = 1

for all 𝑞 ∈ 𝑄tgt and 𝑝
0 (𝑞) = 0 otherwise.

6.2 Computation of Robust Dynamic
Programming via Linear Programming

We now show how for each state 𝑞 ∈ 𝑄 and time 𝑘 ∈ [0 : 𝐾 − 1],
recursion (16) reduces to solving |𝐴| linear programs. In particu-

lar, the following theorem guarantees that the inner problem in

recursion (16) can be solved via linear programming. While in the

theorem we explicitly consider 𝑝𝑘 , the upper bound 𝑝
𝑘
follows

similarly.

Theorem 1 (Robust Dynamic Programming as a Linear Pro-

gram). Consider the robust dynamic programming recursion (16) for
the robust MDPM = (𝑄,𝐴, Γ). Then, for any 𝑘 ∈ [0 : 𝐾 − 1], 𝑞 ∈ 𝑄,
and 𝑎 ∈ 𝐴 the inner minimization problem in (16) is equivalent to
the following linear program:

min

𝛾𝑖 ,𝛾 𝑗 ,𝜋𝑖 𝑗

∑︁
𝑖∈N

𝛾𝑖𝑝
𝑘 (𝑞𝑖 ), (19)
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s.t. 𝑃 (𝑞, 𝑎, 𝑞 𝑗 ) ≤ 𝛾 𝑗 ≤ 𝑃 (𝑞, 𝑎, 𝑞 𝑗 ) 𝑗 ∈ N (20a)∑︁
𝑗∈N

𝛾 𝑗 = 1 (20b)

𝜋𝑖 𝑗 ≥ 0, 𝑖, 𝑗 ∈ N (20c)∑︁
𝑖∈N

𝜋𝑖 𝑗 = 𝛾 𝑗 , 𝑗 ∈ N (20d)∑︁
𝑗∈N

𝜋𝑖 𝑗 = 𝛾𝑖 , 𝑖 ∈ N (20e)∑︁
𝑖, 𝑗∈N

𝜋𝑖 𝑗𝑐 (𝑞𝑖 , 𝑞 𝑗 ) ≤ 𝜀𝑠 , (20f)

where 𝑃 , 𝑃 , and 𝑐 are defined in (7), (8), and (10), respectively, and 𝑠
is given in Assumption 1.

Proof. We show that, for a fixed state 𝑞 ∈ 𝑄 and action 𝑎 ∈ 𝐴,
the set of transition probabilities Γ𝑞,𝑎 defined in (11) is the poly-

tope described by the linear equations (20). To this end, let 𝛾 ≡
(𝛾1, . . . , 𝛾𝑁 ) ∈ Γ𝑞,𝑎 . From the definition of Γ𝑞,𝑎 in (11), there ex-

ist 𝛾 ≡ (𝛾1, . . . , 𝛾𝑁 ) ∈ Γ̂𝑞,𝑎 and an optimal transport plan 𝜋 ≡
(𝜋𝑖 𝑗 )𝑖, 𝑗=1,...,𝑁 that transports mass from 𝛾 to 𝛾 with a cost T𝑐 (𝛾,𝛾)
smaller than 𝜀𝑠 . Consider now the set Γ̂𝑞,𝑎 as defined in (9) with the

transition probability bounds 𝑃 and 𝑃 given by (7) and (8). Then 𝛾

satisfies the constraints (20a) and (20b). Since the optimal transport

cost T𝑐 (𝛾,𝛾) is attained by the transport plan 𝜋 , it follows from (1)

with 𝑋 ≡ 𝑄 and 𝑐 as in (10) that

T𝑐 (𝛾,𝛾) =
∑︁
𝑖, 𝑗∈N

𝜋𝑖 𝑗𝑐 (𝑞𝑖 , 𝑞 𝑗 ) .

Thus, since T𝑐 (𝛾,𝛾) is less than 𝜀𝑠 , we deduce that 𝛾 , 𝛾 , and 𝜋 satisfy

the linear constraints (20c)-(20f). Conversely, one can check along

the same lines that for any 𝛾 ≡ (𝛾1, . . . , 𝛾𝑁 ), 𝛾 ≡ (𝛾1, . . . , 𝛾𝑁 ), and
𝜋 ≡ (𝜋𝑖 𝑗 )𝑖, 𝑗=1,...,𝑁 satisfying (20), it also holds that 𝛾 ∈ Γ𝑞,𝑎 . The
proof is complete. □

Intuitively, for each state 𝑞 ∈ 𝑄 and action 𝑎 ∈ 𝐴, the constraints
(20a)-(20f) capture the union of the 𝑐-transport cost ambiguity balls

in D(𝑄) that have radius 𝜀𝑠 and centers all possible distributions

of the nominal IMDP. Specifically, (20a) and (20b) represent the

distributions𝛾 of the nominal IMDP, i.e., the set Γ̂𝑞,𝑎 . The constraints
(20c)-(20e) describe a transport plan 𝜋 , i.e., a nonnegative measure

on𝑄 ×𝑄 (cf. (20c)), which has as its marginals the distribution 𝛾 of

the nominal IMDP (cf. (20d)), and the target distribution 𝛾 (cf. (20e)),

respectively. Finally, (20f) implies that transport cost to reach the

target distribution 𝛾 is bounded by 𝜀𝑠 , namely, that 𝛾 belongs to the

𝑐-transport cost ambiguity ball of radius 𝜀𝑠 .

Remark 2. Theorem 1 guarantees that, similarly to IMDPs without
distributional uncertainty [16, 22], optimal policies can be computed
by solving a set of linear programs. In particular, for any 𝑘 ∈ [0 :

𝐾 − 1] and 𝑞 ∈ 𝑄, we can solve the linear program in Theorem 1 for
each 𝑎 ∈ 𝐴 and take the action that maximizes the resulting value
function. However, in the IMDP case the resulting linear program has
substantially fewer variables and constraints compared to the problem
in Theorem 1 (order of 𝑁 for IMDPs, against order of 𝑁 2 for Theorem
1). Nevertheless, as we detail in Appendix A, the number of variables

and constraints in our approach can often be substantially reduced
when the support of the noise is bounded.

6.3 Correctness
In this section we prove the correctness of our abstraction for

system (2). We begin by refining the strategy 𝜎∗ to system (2). Let

𝐽 : R𝑛 → 𝑄 map the continuous state 𝑥 ∈ R𝑛 to the corresponding

discrete state 𝑞 ∈ 𝑄 ofM, i.e., for any 𝑥 ∈ R𝑛 ,
𝐽 (𝑥) = 𝑞 ⇐⇒ 𝑥 ∈ 𝑞. (21)

Given a finite path 𝜔𝑘x = x0

u0−−→ x1

u1−−→ . . .
u𝑘−1−−−−→ x𝑘 of system (2),

we define by

𝐽 (𝜔𝑘x) = 𝐽 (x0)
u0−−→ 𝐽 (x1)

u1−−→ . . .
u𝑘−1−−−−→ 𝐽 (x𝑘 )

the corresponding finite path of theMDP abstraction. Consequently,

a strategy 𝜎∗ for M is refined to a switched strategy 𝜎∗𝑥 for system

(2) such that:

𝜎∗𝑥 (𝜔𝑘x) := 𝜎∗ (𝐽 (𝜔𝑘x)). (22)

The following theorem, which is a direct consequence of Theorem

1 and Theorem 2 in [19], ensures that the guarantees obtained for

the robust MDP abstraction also hold for system (2).

Theorem 2 (Correctness). Let M be a robust MDP abstraction
of system (2), 𝜎∗ ∈ Σ be an optimal strategy for M and 𝜎∗x the
corresponding switching strategy. Then, for any 𝑞 ∈ 𝑄 , 𝑥 ∈ 𝑞, and
𝑝𝑣 ∈ P𝑣 it holds that

𝑝
𝐾 (𝑞) ≥ 𝑃

reach
(𝑋,𝑋tgt, 𝐾 | 𝑥, 𝜎∗x, 𝑝𝑣) ≥ 𝑝𝐾 (𝑞),

where 𝑝𝐾 and 𝑝𝐾 are defined in (15).

Theorem 2 guarantees that in order to solve Problem 1 we can

synthesize an optimal strategy 𝜎∗ for a robust MDP abstraction of

system (2) and then simply check if 𝑝𝐾 (𝐽 (𝑥)) is greater than the

given threshold.

7 CASE STUDIES
In this section we evaluate our method on two case studies of

reach-avoid specifications using the abstractions in this paper, for a

linear and a nonlinear system, respectively.We consider data-driven

ambiguity sets which are built from i.i.d. samples v1, . . . , v𝑀 of a

Gaussian mixture. Using these samples, we construct an ambiguity

ball centered on the empirical distribution

𝑝𝑣 =
1

𝑀

𝑀∑︁
𝑖=1

𝛿v𝑖 , (23)

of the data [26], where 𝛿v𝑖 denotes the Dirac distribution that as-

signs unit mass to v𝑖 . For the metric of the ball we consider the

2-Wasserstein distance, which penalizes more distributions that

have considerable mass far from the samples. This choice is appro-

priate for our case studies, which consider sufficiently light-tailed

distributions. We present results for multiple values𝑀 of the sam-

ple size and the radius 𝜀. To synthesize the respective strategies, we

run the robust dynamic programming algorithm 𝐾
lower

times for

the case of 𝑝𝑘 and 𝐾upper times for the case of 𝑝
𝑘
. Making use of

𝑝𝐾lower and 𝑝
𝐾upper

we define the “average error"
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# Approach 𝜀 𝑒avg Synthesis Time (h)

#1 IMDP 0 0 2.8

#2 Robust MDP 5 × 10
−3

0.05 23.2

#3 Robust MDP 10
−2

0.18 23.8

#4 Robust MDP 1.5 × 10
−2

0.33 26.2

#5 IMDP 5 × 10
−3

0.83 2.8

Table 1: Summary of the results obtained for system (25).
The robust dynamic programming algorithm was run for
𝐾

lower
= 40 and 𝐾upper = 9 iterations.

The label “robust MDP" denotes our proposed approach, while the

label “IMDP" refers to the alternative approach pointed out in

Remark 1.

𝑒avg :=
1

𝑁

∑︁
𝑞∈𝑄

(𝑝𝐾upper (𝑞) − 𝑝𝐾lower (𝑞)), (24)

which allows us to assess the conservatism of the solution.
3

All results were obtained with an Intel Core i5-7300HQ CPU at

2.50GHz-2.50 GHz with 8GB of RAM.

7.1 Linear System
For this case study we consider a discrete-time version of the unicy-

cle model [34], which is obtained using a first order Euler discretiza-

tion with a time step Δ𝑡 = 1. We fix the velocity of the vehicle to the

constant value 1 and consider its orientation angle 𝑢 as the control

input. Thus we get the switched system:

𝑥𝑘+1
= 𝑥𝑘 + Δ𝑡

( [
cos (𝑢𝑘 )
sin (𝑢𝑘 )

]
+ v𝑘

)
. (25)

The state of the system is the vehicle position 𝑥𝑘 ∈ R2
and its

control input 𝑢𝑘 takes values in𝑈 = {0, 2𝜋
8
, . . . , 7 2𝜋

8
}.

For system (25), we define the safe set 𝑋 as the rectangle [0, 1] ×
[0, 1] ⊂ R2

by further excluding the obstacles contained therein

(cf. Figure 2). We partition the rectangle [0, 1] × [0, 1] into a uni-

form grid, which together with the complement of the rectangle

yields 𝑁 = 1601 regions. The ambiguity set is centered at an em-

pirical distribution of 𝑀 = 10 samples, which are drawn from

a Gaussian mixture with two components, centered at [−0.01, 0]
and [0.01, 0], respectively, and with the same covariance matrix

diag(2.5 × 10
−5, 2.5 × 10

−5). As a result, the centers of both com-

ponents are separated by a distance close to the size of the state

discretization. The obtained results are summarized in Table 1. The

derivation of the abstraction took 10 minutes for all cases, since

they all rely on the same nominal IMDP abstraction Î.4 It can be

observed in Table 1 that both the average error 𝑒avg as well as the

time required to perform the strategy synthesis increase as the

ambiguity set grows.

The lower bound on the reachability probability obtained for

experiments #1 − #4 (representing the different 𝜀 values in Table 1)

3
Here the conservatism of the solution has two sources: the distributional ambiguity

and the accuracy of the abstraction.

4
Notice that in the case of Experiment #1, the abstraction is simply the nominal IMDP,

since no distributional ambiguity is present.

Lower Bound in Reachability Probability
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Figure 1: Results of experiments #1 − #4 in Table 1. Lower
bound in the probability of reachability. The plotted trajec-
tories correspond to Monte Carlo simulations of System (25)

taking samples from a distribution 𝑝𝑣 ∈ P𝑣 .

is presented in Figure 1. This figure highlights how accounting for

the distributional ambiguity leads to more realistic bounds: notice

that the lower bound obtained for Experiment #1, where 𝜀 = 0, is

1 everywhere, which means that every trajectory will satisfy the

specification. This trivial lower bound is the result of assuming that

the empirical distribution is the true one, which is unrealistic. The

corresponding abstraction only embeds the ambiguity that arises

from discretizing the state space. Indeed, considering a value of 𝜀

greater than zero leads to a more realistic lower bound, as observed

for Experiments #2−#4. It is clear from the figure that the larger the

ambiguity set is, the more conservative the lower bound becomes.

Figure 2 shows the vector field of System (25) when the optimal

strategy synthesized for experiment #2 is applied. The synthesized

strategy is almost the same for experiments #2 − #4.
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Figure 2: Vector field of System (25) in closed loop with the
optimal strategy obtained for experiment #2 in Table 1.
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To compare our approach with the one that relies on IMDP ab-

stractions described in Remark 1, we present the results obtained

with the latter in the last row of Table 1. For this experiment, which

we refer to as experiment #5, the abstraction was constructed in

13 minutes. We compare the obtained lower bounds on the reach-

ability probability for experiments #2 and #5 in Figure 3, since

they are obtained for the same ambiguity set. The results show

how our proposed approach, despite requiring a larger amount of

time to perform strategy synthesis, is able to provide non-trivial

satisfaction guarantees, unlike the approach from Remark 1. Fur-

thermore, our approach is able to synthesize a strategy that satisfies

the reachability task, in contrast to the approach based on the IMDP

abstraction. To empirically verify this argument, we computed 1000

MC simulations starting from the same states as the ones shown

in Figures 1 and 3. In particular, all the trajectories of Experiments

#1 − #4 satisfied the specification, unlike in Experiment #5, where

no trajectory satisfied the specification.
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(a) Robust MDP abstraction ap-
proach
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(b) IMDP abstraction approach

Figure 3: Results of experiments #2 and #5 in Table 1. Lower
bound in the probability of reachability. The trajectories
in both figures correspond to Monte Carlo simulations of
System (25) taking samples from a distribution 𝑝𝑣 ∈ P𝑣 . The
ones that satisfy the specification are presented in blue, while
the ones that do not are presented in red.

Remark 3 (Synthesis time). To justify the long synthesis times
presented in Table 1, note that the algorithm of Section 6 was imple-
mented in MATLAB, without paralelization, and the linear program
presented in Section 6.2 was solved using the solver Linprog. We used
the same solver to synthesize strategies for the IMDP abstractions
to obtain a fair comparison, instead of exploiting faster, dedicated
algorithms for IMDP models [16].

7.2 Nonlinear System with 4 Modes
For the second case study we consider the nonlinear system from

[1, 20] with dynamics:

𝑥𝑘+1
= 𝑥𝑘 + 𝑓𝑢𝑘 (𝑥𝑘 ) + v𝑘 . (26)

Denoting by 𝑥 (𝑖 ) the 𝑖-th component of the state, the map 𝑓𝑢𝑘 is

given by

𝑓𝑢 (𝑥) =


[0.5 + 0.2 sin(𝑥 (2) ), 0.4 cos(𝑥 (1) )]𝑇 if 𝑢 = 1

[−0.5 + 0.2 sin(𝑥 (2) ), 0.4 cos(𝑥 (1) )]𝑇 if 𝑢 = 2

[0.4 cos(𝑥 (2) ), 0.5 + 0.2 sin(𝑥 (1) )]𝑇 if 𝑢 = 3

[0.4 cos(𝑥 (2) ),−0.5 + 0.2 sin(𝑥 (1) )]𝑇 if 𝑢 = 4.

(27)

The system has state 𝑥𝑘 ∈ R2
and its control input 𝑢𝑘 switches

between the discrete values 1, 2 , 3, and 4. In analogy to the first case

study, we define the safe set𝑋 as the rectangle [−2, 2]×[−2, 2] ⊂ R2

and exclude the obstacles contained therein and discretize it into

a uniform grid, which results in abstraction with 𝑁 = 1601 states.

The ambiguity set here is centered at an empirical distribution of

𝑀 = 20 samples, that are again drawn from a Gaussian mixture with

two components, centered at [−0.05, 0] and [0.05, 0], respectively,
with covariance matrix diag(4× 10

−4, 4× 10
−4). Again, the centers

of both components are separated by a distance close to the size of

the state discretization. The results were obtained for an ambiguity

radius 𝜀 = 5 × 10
−2
, which yield 𝑒avg = 0.25. Furthermore, the

abstraction time was around 20 minutes, and the synthesis process

took 2.43 hours: the value iteration algorithm was run 𝐾
lower

= 15

times for the case of 𝑝𝑘 and 𝐾upper = 6 times for the case of 𝑝
𝑘
. The

results obtained are shown in Figure 4.
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Figure 4: Results obtained for the nonlinear system (26). The
trajectories in Figure 4a) correspond to Monte Carlo sim-
ulations of System (26) taking samples from a distribution
𝑝𝑣 ∈ P𝑣 . The ones that satisfy the specification are presented
in blue, while the ones that do not are presented in red.
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8 CONCLUSION AND FUTUREWORK
In this paper we presented a framework for the formal control of

switched stochastic systems with additive, random disturbances

whose probability distribution belongs to a Wasserstein ambigu-

ity set. To this end, we derived a robust MDP abstraction of the

original system and proposed an algorithm, termed robust dynamic

programming, to synthesize robust strategies that maximize the

probability of satisfying a reach-avoid specification. The obtained

results demonstrate the effectiveness of our approach in systems

with both linear and nonlinear dynamics, and show its superiority

with respect to leveraging directly IMDP abstractions.

Future work includes the exploitation of dedicated robust dy-

namic programming algorithms to speed up the abstraction process,

as well as refinement strategies to obtain smaller abstraction with-

out resorting to additional insight regarding the system or the

domain. In addition, we aim to extend the approach to richer speci-

fications expressed as, for example, LTLf, BLTL or sc-LTL formulas.

9 PROOF OF PROPOSITION 1
To prove the proposition we will use two technical lemmas that link

couplings and optimal transport discrepancies in the continuous

and abstract space.

Lemma 1 (Induced Coupling on theDiscrete Space). Consider
the coupling 𝜋 ∈ P(R𝑛 × R𝑛) with marginals 𝑝 and 𝑝′, a finite
(measurable) partition 𝑄 of R𝑛 , and the induced distributions 𝛾,𝛾 ′ ∈
D(𝑄) with 𝛾 (𝑞) := 𝑝 (𝑞) and 𝛾 ′ (𝑞) := 𝑝 (𝑞) for all 𝑞 ∈ 𝑄 . Then
𝜈 ∈ P(𝑄 ×𝑄), defined by

𝜈 (𝑞, 𝑞′) :=

∫
𝑞×𝑞′

𝑑𝜋 (𝑥,𝑦) (28)

is a coupling between 𝛾 and 𝛾 .

Proof. The proof follows directly from the fact that∑︁
𝑞′∈𝑄

𝜈 (𝑞, 𝑞′) =
∑︁
𝑞′∈𝑄

∫
𝑞×𝑞′

𝑑𝜋 (𝑥,𝑦) =
∫
𝑞×R𝑛

𝑑𝜋 (𝑥,𝑦) = 𝛾 (𝑞),

and analogously for the other marginal. □

Next, given two distributions on the continuous space R𝑛 we

establish bounds on the optimal transport discrepancy T𝑐 of their
induced distributions on 𝑄 , based on their 𝑠-Wasserstein distance

in the continuous space.

Lemma 2 (Induced optimal transport discrepancy). Let𝑝, 𝑝′ ∈
D𝑠 (R𝑛) and consider the induced distributions 𝛾,𝛾 ′ ∈ D(𝑄) with
𝛾 (𝑞) := 𝑝 (𝑞) and 𝛾 ′ (𝑞) := 𝑝 (𝑞) for all 𝑞 ∈ 𝑄 . Then for any 𝑠 ≥ 1 and
𝜀 ≥ 0 it holds that

W𝑠 (𝑝, 𝑝′) ≤ 𝜀 ⇒ T𝑐 (𝛾,𝛾 ′) ≤ 𝜀𝑠 ,

where 𝑐 is given in (10).

Proof. Consider the map 𝐽 in (21) and note that due to (10),

∥𝑥 − 𝑦∥𝑠 ≥ 𝑐 (𝐽 (𝑥), 𝐽 (𝑦)) (29)

for all 𝑥,𝑦 ∈ R𝑛 . Let 𝜋 be an optimal coupling for the 𝑠-Wasserstein

distance W𝑠 (𝑝, 𝑝′) and 𝜈 be the induced coupling on 𝑄 given by

(28). Then we get from (1), (21), and (29) that

W𝑠 (𝑝, 𝑝′)𝑠 =
∫
R𝑛×R𝑛

∥𝑥 − 𝑦∥𝑠𝑑𝜋 (𝑥,𝑦)

≥
∫
R𝑛×R𝑛

𝑐 (𝐽 (𝑥), 𝐽 (𝑦))𝑑𝜋 (𝑥,𝑦)

=
∑︁

𝑞,𝑞′∈𝑄
𝑐 (𝑞, 𝑞′)

∫
𝑞×𝑞′

𝑑𝜋 (𝑥,𝑦)

=
∑︁

𝑞,𝑞′∈𝑄
𝑐 (𝑞, 𝑞′)𝜈 (𝑞, 𝑞′) ≥ T𝑐 (𝛾,𝛾 ′),

which implies the result. The last inequality follows from (1) and

Lemma 1, which asserts that 𝜈 is a coupling between 𝛾 and 𝛾 ′. The
proof is complete. □

The intuition behind Lemma 2 is the following: if the 𝑠-Wasserstein

distance between two distributions in R𝑛 is at most 𝜀, then the

optimal transport discrepancy (based on 𝑐) between their induced

distributions on 𝑄 is not more than 𝜀𝑠 .

Proof of Proposition 1. Let𝑞,𝑎, 𝑥 , and 𝑝𝑣 as given in the state-

ment and define

𝛾𝑥,𝑎 (𝑞′) := 𝑇𝑎
𝑝𝑣
(𝑞′ | 𝑥)

for all 𝑞′ ∈ 𝑄 . Then it follows from (7) and (9) that

𝛾𝑥,𝑎 ∈ Γ̂𝑞,𝑎 . (30)

Next, we get from (3) andAssumption 1 that𝑇𝑎𝑝𝑣 (· | 𝑥) and𝑇
𝑎
𝑝𝑣
(· | 𝑥)

are distributions in D𝑠 (R𝑛) and that

W𝑠

(
𝑇𝑎𝑝𝑣 (· | 𝑥),𝑇

𝑎
𝑝𝑣
(· | 𝑥)

)
≤ 𝜀.

Since the induced distributions of 𝑇𝑎𝑝𝑣 (· | 𝑥) and 𝑇𝑎
𝑝𝑣
(· | 𝑥) on

𝑄 are 𝛾𝑥,𝑎 and 𝛾𝑥,𝑎 , respectively, it follows from Lemma 2 that

T𝑐 (𝛾𝑥,𝑎, 𝛾𝑥,𝑎) ≤ 𝜀𝑠 ≡ 𝜖 , namely, 𝛾𝑥,𝑎 ∈ T 𝜖𝑐 (𝛾𝑥,𝑎). Thus, we deduce
from (11) and (30) that 𝛾𝑥,𝑎 ∈ Γ𝑞,𝑎 and conclude the proof. □
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A REFORMULATION OF THE LINEAR
PROGRAM IN THEOREM 1

Consider the transition probability bounds (7) and (8) of the nominal

IMDP Î. For each 𝑞 ∈ 𝑄 and 𝑎 ∈ 𝐴 let

N𝑞,𝑎 := {𝑖 ∈ N : 𝑃 (𝑞, 𝑎, 𝑞𝑖 ) > 0} (31)

be the set of outgoing transitions in Î that may have nonzero tran-

sition probability. The following theorem provides a reformulation

of the linear program (19)-(20), which has a reduced complexity

when N𝑞,𝑎 is strictly smaller than N .

Theorem 3. Under the assumptions of Theorem 1, for each 𝑞 ∈ 𝑄
and 𝑎 ∈ 𝐴 the linear program (19)-(20) is equivalent to:

min

𝜋𝑖 𝑗

∑︁
𝑖∈N, 𝑗∈N𝑞,𝑎

𝜋𝑖 𝑗𝑝
𝑘 (𝑞𝑖 ), (32)

s.t. 𝑃 (𝑞, 𝑎, 𝑞 𝑗 ) ≤
∑︁
𝑖∈N

𝜋𝑖 𝑗 ≤ 𝑃 (𝑞, 𝑎, 𝑞 𝑗 ) 𝑗 ∈ N𝑞,𝑎 (33a)∑︁
𝑖∈N, 𝑗∈N𝑞,𝑎

𝜋𝑖 𝑗 = 1 (33b)

𝜋𝑖 𝑗 ≥ 0, 𝑖 ∈ N , 𝑗 ∈ N𝑞,𝑎 (33c)∑︁
𝑖∈N, 𝑗∈N𝑞,𝑎

𝜋𝑖 𝑗𝑐 (𝑞𝑖 , 𝑞 𝑗 ) ≤ 𝜀𝑠 , (33d)

with N𝑞,𝑎 as given in (31).

Proof. Notice that one can directly eliminate the optimization

variables 𝛾𝑖 and 𝛾𝑖 by substituting their expressions (20d) and (20e)

in (19), (20a), and (20b). Thus, since each 𝛾 𝑗 , and therefore also

each 𝜋𝑖 𝑗 is identically fixed to zero when 𝑗 ∉ N𝑞,𝑎 , we obtain the

equivalent optimization problem (32)-(33) after eliminating all the

redundant decision variables. □
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