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ABSTRACT

We present a novel framework for formal control of uncertain
discrete-time switched stochastic systems against probabilistic reach-
avoid specifications. In particular, we consider stochastic systems
with additive noise, whose distribution lies in an ambiguity set of
distributions that are e—close to a nominal one according to the
Wasserstein distance. For this class of systems we derive control
synthesis algorithms that are robust against all these distributions
and maximize the probability of satisfying a reach-avoid specifi-
cation, defined as the probability of reaching a goal region while
being safe. The framework we present first learns an abstraction
of a switched stochastic system as a robust Markov decision process
(robust MDP) by accounting for both the stochasticity of the system
and the uncertainty in the noise distribution. Then, it synthesizes
a strategy on the resulting robust MDP that maximizes the proba-
bility of satisfying the property and is robust to all uncertainty in
the system. This strategy is then refined into a switching strategy
for the original stochastic system. By exploiting tools from optimal
transport and stochastic programming, we show that synthesizing
such a strategy reduces to solving a set of linear programs, thus
guaranteeing efficiency. We experimentally validate the efficacy of
our framework on various case studies, including both linear and
non-linear switched stochastic systems. Our results represent the
first formal approach for control synthesis of stochastic systems
with uncertain noise distribution.

CCS CONCEPTS

« Theory of computation — Abstraction; Logic and verifi-
cation; - Mathematics of computing — Stochastic processes; «
Computer systems organization — Robotic autonomy.
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1 INTRODUCTION

Switched stochastic systems are a class of stochastic hybrid systems
that are composed by a finite set of modes and a controller that
can freely switch between them [7, 40]. Because of their modelling
flexibility, switched stochastic systems are currently employed in
many real-world applications, including robotics [25] and cyber-
physical systems [17]. Many of these applications have two features
in common: 1) they are safety-critical, hence formal guarantees of
correctness are required, 2) the noise characteristics of the system
are uncertain, as we often have only partial knowledge on the statis-
tical properties of the system due to the use of statistical estimation
techniques and distributional shifts, i.e., the noise distribution of
the system may change [30]. However, existing formal control syn-
thesis and verification methods for switched stochastic systems all
assume that the noise distribution is known exactly. This leads to
the fundamental research question that we aim to address in this
paper: how can we derive formal guarantees for stochastic systems
whose noise distribution is uncertain?

In this paper we present a formal control framework to synthe-
size robust strategies for discrete-time switched stochastic systems
with uncertain additive noise. In particular, we assume that in each
mode the system evolves according to possibly non-linear dynamics
and is affected by an additive noise term whose distribution belongs
to a Wasserstein ambiguity set, i.e., a set of distributions that are
closer than a given € > 0, according to the Wasserstein distance, to
a nominal distribution [15, 26]. For instance, such a set could be esti-
mated using data-driven techniques [26]. We consider a finite-time
probabilistic reach-avoid specification, defined as a lower bound on
the probability that the system reaches a goal region while avoiding
bad states. Building on a robust control synthesis framework, we
synthesize a strategy that maximizes the probability that the system
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satisfies the specification for the worst-case choice of adversarial
distributions from the ambiguity set.

Our approach proposes to abstract the original system into
a finite-state uncertain Markov decision process (MDP) [27, 37],
namely a robust MDP [27], whose uncertainty in the transition
probabilities also accounts for the distributional ambiguity in the
original system. In particular, by relying on recent results from
distributional robust optimization [30], we show that dynamic pro-
gramming for the resulting robust MDP reduces to solving a set of
linear programs, thus guaranteeing efficiency. We formally prove
the correctness of our framework and test our approach on two case
studies including both linear and non-linear systems and for various
ambiguity sets. Note that while in this paper we focus on reach-
avoid specifications, this is not limiting. In fact, probabilistic reach-
avoid specification are the key building block for model-checking
algorithms of various temporal logics, such as PCTL [19, 22] or
LTL [9, 20]. Consequently, to the best of our knowledge, our results
represent the first step to obtain formal methods for stochastic
systems with uncertain or partially unknown noise characteristics.

Related Works. Various formal verification and synthesis algo-
rithms have been developed for switched stochastic systems, with
approaches including stochastic barrier functions [32] and abstrac-
tions to finite Markov models [9, 13, 24, 37], including interval
Markov decision processes (IMDPs)), which are a class of Markov
decision processes in which the transition probabilities belong to
intervals [16, 21] and admits efficient control synthesis algorithms
[9, 22]. However, all of these works assume that both the dynamics
and the noise distribution of the system are well known, which is
often an unrealistic assumption due to e.g., unmodelled dynamics,
distributional shifts, or data-driven components. In order to close
this gap recent works have started to employ machine learning
algorithms, including neural networks and Gaussian processes, to
devise formal control strategies in the case where the dynamics
are (partially) unknown or simply too complex to be modelled
[1, 20]. Nevertheless, none of these works consider the case when
the distribution of the system is uncertain and lies in an ambiguity
set.

Ambiguity sets are commonly used in distributionally robust
optimization (DRO) problems to represent a set of probability dis-
tributions with respect to which the decision-maker wants to be
robust [33]. An ambiguity set is defined as a set of probability dis-
tributions that are close to a nominal distribution, which represents
our approximate knowledge of the uncertainty model. According
to the way closeness is quantified, ambiguity sets are typically
constructed based on moment constraints [11, 28], statistical diver-
gences [8], and optimal transport discrepancies [4, 5, 15] like the
Wasserstein distance. Wasserstein ambiguity sets, such as those
considered in this paper, constitute a convenient choice to group
ambiguous distributions, especially for data-driven problems. This
is justified by the fact that the Wasserstein metric penalizes horizon-
tal dislocations between distributions [31], it provides ambiguity
sets that have finite-sample guarantees of containing the true dis-
tribution [14], and it enables the formulation of tractable DRO
problems [26]. Dynamic aspects of distributional uncertainty with
optimal transport ambiguity are studied in [6], which tracks the
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evolution of Wasserstein ambiguity sets for systems with an un-
known state disturbance distribution, and [18], which develops a
risk-aware robot control scheme to avoid dynamic obstacles that
evolve according to an ambiguous distribution.

While in this work we focus on abstracting our system to a ro-
bust MDP, another class of Markov processes that is closely related
to our work is distributionally robust Markov decision processes
(DR-MDPs) [10, 38, 39], which are MDPs whose transition probabil-
ities depend on some parameters that are uncertain and lie in some
ambiguity set. These are substantially different from the robust
MDPs considered in this paper because we do not consider any
additional probabilistic structure over the ambiguous distributions
to signify which uncertainty model is more likely to occur. Planning
algorithms against complex specifications for various classes of ro-
bust Markov models have been already considered in the literature
[22, 27, 29, 37]. However, how to combine these algorithms with
tools of optimal transport to abstract and perform formal synthesis
of continuous-space dynamical systems affected by noise of uncer-
tain distribution is not considered in these works and represents a
key contribution of our work.

2 BASIC NOTATION

Let Ny := N U {0}. Given a set A, we denote by |A| its cardinality.
Given £, m € Ny with £ < m, we use the notation [£ : m] for the set
{€,£+1,...,m}. For a separable metric space X, we denote by B(X)
its Borel o-algebra and by D (X) the set of probability distributions
on (X, B(X)). When X is discrete and y € D(X) we also denote
y(x) = y({x}) the probability of the event described by the single-
ton {x}.Let ¢ : XXX — R3¢ be a continuous cost function defined
over the product space X X X. The optimal transport discrepancy
between two probability distributions p, p’ € D(X) is defined as
Te(p,p’) == inf

/ e(x, 5)dr(x, ), 1)
mell(p,p’) JXxX

where II(p, p’) is the set of all transport plans between p and p’,
a.k.a. couplings, i.e., probability distributions 7 € D (X x X), with
marginals p and p’, respectively. Since the cost ¢ is nonnegative,
7¢ provides a discrepancy measure between distributions in D (X).
By continuity of c, there always exists a transport plan & for which
the infimum in (1) is attained [35, Theorem 1.3]. Assume that X is
equipped with a metric d. Given s > 1 we denote by Ds(X) the
set of probability distributions on X with finite s-th moment, i.e.,
D(X) ={p € DX) : /X d(x,y)*dp(x) < oo for some y € X}.

Then the discrepancy W; = (‘7};)% is also a metric in the space
Dy (X) coined as the s-Wasserstein distance [35].

3 PROBLEM FORMULATION

We consider a partially-known discrete-time switched stochastic
process described as:

Xjer1 = fuge (Xp) + Vi, ©)
where k € N, x; € R", uy. € U,and U = {1, ..., m} is a finite set of
modes or actions. For every u € U, f,, : R" — R" is a possibly non-
linear continuous function. The noise term vy is an independent
random variable with a distribution plf"¢ that is identically dis-
tributed at each time step. While the exact distribution is unknown
we do assume the following:
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AssuMmPTION 1. The distribution piT™¢ is e-close (in the s-Wasserstein

sense) to a known distribution p, € Ds(R™), which we call nominal,
ie, piie € P, .= {p € Ds(R") : Wi(p,pp) < €}, where W is
determined by the metric d(x,y) = ||x — y||, where || - || is a norm on
R" that is fixed throughout the paper, and some choice of s > 1.

Intuitively, x;. is a stochastic process driven by an additive noise
process v, whose distribution is uncertain and is close to a nominal
one and our goal is to devise control strategies that are robust to all
distributions in $;,. As a consequence, system (2) represents a large
class of controlled stochastic systems with additive and uncertain
noise. For instance, such a system arises in a data-driven setting,
where measure concentration results [14] can be used to build a
Wasserstein ambiguity set from data of v; with high confidence
[26], or in a distributionally robust setting, where one wants to
synthesize control strategies that are robust against distributional
shifts of the system.

Let wx = xp 2, X1 2, . .bea path (trajectory) of System (2)
and denote by wx (k) = xi. the state of wx at time k. Given a path
wx, we denote by w,’§ the prefix of finite length k + 1 of wx. We also
denote by Qi‘“ the set of all sample paths with finite length, i.e,

it u Wp—
the set of prefixes (u’,ﬁ =xX) —> x| —> ... — xi for all k € N.
Given a finite path, a switching strategy chooses the mode (action)

of System (2).

DEFINITION 1 (SWITCHING STRATEGY). A switching strategy ox :
an — U is a function that maps each finite path a),’ﬁ € an to an
actionu € U.

For any py, € Py, u € U, X € B(R"), and x € R", let

010 = [ () + apa(ards )

be the stochastic transition function induced by system (2) with
noise fixed to p, in mode u € U, where 1x is the indicator function
with 1x(x) = 1, if x € X and 1x(x) = 0, otherwise. From the
definition of T;fv (X | x) it follows that, given a strategy oy, a noise
distribution p,, an initial condition x¢, and a time horizon [0 : K],
system (2) defines a stochastic process on the canonical space Q =
(R™)X+1 with the Borel sigma-algebra 8 () [3]. In particular, there
is a unique probability distribution P;O’U" generated by T, such
that for k € {1, ..., K}

P [y (0) € X] = 1x (x0),

]

k-1
oo [of (0) € X | ok =T, (X | of (k= 1).

3.1 Problem Formulation

In this paper we consider finite-time probabilistic reach-avoid spec-
ifications for System (2) regarding the probability that a trajectory
of System (2) reaches a goal region, whilst always avoiding a given
set of bad states. In particular, for a time horizon K € Ny, a bounded
safe set X, a target region Xigt C X and an initial state xo € X, the
reach-avoid probability is formally defined as

Preach (X Xtgt, K | x0, 0x, po) = P;Z’UX [Fk € [0: K] s.t.
wk(k) € Xegt AVE <k ok(K') e X]. (4)
We are now ready to formally state the problem we consider in this
paper.
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PROBLEM 1 (SWITCHING STRATEGY SYNTHESIS). Consider the
switched stochastic system (2), its corresponding ambiguity set Py, a
bounded safe set X, and a target region Xig; C X. Given an initial state
xo € X, a probability threshold py, € [0, 1], and a horizon K € Ny,
synthesize a switching strategy oy that allows us to determine if

Preach (X, tht, K | x0, 0x, o) = Pth, 6
for all p, € Py

Note that our focus on reach-avoid specifications in Problem 1
is not limiting: algorithms to compute more complex specifications,
such as linear temporal logic under finite traces (LTLf), syntactically
co-safe linear temporal logic (sc-LTL) or bounded linear temporal
logic (BLTL), often reduce to reachability computations [1, 2, 9, 19].

Overview of the Approach. To solve Problem 1, in Section 5 we con-
struct a finite-state abstraction of System (2) in terms of a robust
MDP. In Section 6 we synthesize an optimal strategy for the result-
ing abstraction via the solution of a set of linear programs. Finally,
we refine this strategy into a strategy for system (2) and derive
upper and lower bounds on the probability that the system satisfies
the specification under the refined strategy.

4 PRELIMINARIES

4.1 Robust Markov Decision Processes

We abstract system (2) into a robust Markov decision process (robust
MDP) M. Robust MDPs are a generalization of Markov decision
processes in which the transition probability distributions between
states are constrained to belong to an ambiguity set [27], [36].

DEFINITION 2 (ROoBUST MDP). A robust Markov decision process
(M) is a tuple M = (Q, A, T), where
o Q is a finite set of states,
o A is a finite set of actions, and A(q) denotes the set of available
actions at state q € Q,
o I' = {Tya}tqeQ,aca are the sets of possible transition probabil-
ity distributions of M, namely, Tq.q € D(Q).!

A path of a robust MDP is a sequence of states w = qo =, Q1 4,

Q2 2, .. such that a € A(qx) and there exists y € Iy, q, with
v(qr41) > 0 for all k € N. We denote the i-th state of a path
by w(i), a finite path of length k + 1 by ¥ and the last state of a
finite path ! by last(»™). The set of all finite paths is denoted
by Paths™.

DEFINITION 3 (IMDP). An interval Markov decision process (IMDP)
I [9], [23], also known as bounded parameter MDP (BMDP) [16], [21],
is a class of robust MDP I = (Q, A, T) whereT has the following
form:

Tpa={y €D(Q) :P(q.a.q') <y(q') < P(q.aq) forallq € Q},
(6)

for every q € Q, a € A(q). The bounds P, P are called transition prob-
ability bounds and must fulfill, for every state g € Q and action a €

!Note that the sets of transition probability distributions of the robust MDP are inde-
pendent for each state and action. This is known as rectangular property of the set of
transition probability distributions [27], [36].
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A(q), that0 < P(¢.a.q') < P(¢.a,q') < 1 and YqeoP(gaq) <
1< Zq,eQﬁ(q, a,q).

The actions of robust MDPs and IMDPs are chosen according to
a strategy o which is defined below.

DEFINITION 4 (STRATEGY). A strategy o of a robust MDP model M
is a function o : Paths™ — A that maps a finite path ¥, withk € N,
of M onto an action in A(last(o™)). If a strategy depends only on
last(of™) and k, it is called a memoryless (Markovian) strategy.

Given an arbitrary strategy o, we are restricted to the set of
robust Markov chains defined by the set of transition probability
distributions induced by o. In order to reduce this to a Markov
chain, we define the adversary function [16], also referred to as
“nature" [27], which assigns a transition probability distribution to
each state-action pair.

DEFINITION 5 (ADVERSARY). For a robust MDP M, an adversary
is a function & : Paths™ x A — D(Q) that, for each finite path
ot ¢ Pathsfi®) state q= last(o)ﬁn), and action a € A(q), assigns
an admissible distribution yqq € Tgq. The set of all adversaries is
denoted by E.

For an initial condition g9 € Q, under a strategy and a valid
adversary & € E, the robust MDP collapses to a Markov chain and

a probability distribution Probgo’(7 is induced on its paths.

5 ROBUST MDP ABSTRACTION

In order to solve Problem 1, we start by abstracting system (2)
into the IMDP T = (O, A, T) with the noise distribution fixed to the
nominal one, p. In this way, we embed the error caused by the state
discretization into I. After that, we expand the set of transition
probabilities T of T to also capture the distributional ambiguity
into the abstraction, obtaining the robust MDP M = (Q, A, T). Note
that the sets of states Q and actions A are the same in 7 and M.
Next we describe how we obtain Q and A, and in Section 5.2 we
consider the set of transition probability distributions T'.

5.1 States and Actions

The state-space Q of M is constructed as follows: consider a set of
non-overlapping regions Qgfe = {91, 92, - - -, 40, |} Partitioning
the set X so that either ¢ N Xigt = 0 or g N (X \ Xigt) = 0 for
all ¢ € Qgate- We denote by QOtgt the subset of Qg,r for which
g N Xigt = q and assume that it is a partition of Qgt. The states of
the abstraction comprise of Qg,f. and the unsafe region g, := R"\ X,
namely, Q := Qgafe U {qu}. We index Q by N ={1,..., N}, where
N :=|Q| and denote the actions of the abstraction as A := U.

5.2 Transition Probability Distributions

Accounting for the Discretization Error. To capture the state dis-
cretization error into the abstraction, we first consider an IMDP
abstraction of system (2) for a fixed distribution: the nominal proba-
bility distribution py. Since this IMDP is constructed for the nominal
distribution py, we call it “nominal" IMDP, and use the notation
7= (0, A, f) Note that building an IMDP abstraction of a sto-
chastic system with disturbances of a known distribution has been
widely studied in the literature [1, 9, 12, 22] and we report the full
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procedure here below for completeness. We have already defined
the state Q and action A spaces of 7 in Section 5.1. We now describe
the set T of 7. According to Definition 3, the set T is defined by the
transition probability bounds P and P of I.To formally account for
the discretization error, the bounds must satisfy for all ¢ € Qg,fe,
q €Qandaec A=U:

P(g.a,q') <minT! (¢’ | x)
x€q Po

_ 7
P(q,a,q") > maxT? (¢’ | x). @
x€q Po

Since we are interested in the paths of system (2) that do not exit
set X, we make state g, absorbing, i.e.,

P(qu.a,qu) = ﬁ(CIw a,qy) =1 (®)

for all a € A. In this way we include the “avoid" part of the specifi-
cation into the definition of the abstraction: the paths that reach
qu, will remain there forever and, therefore, will never reach the
target set Qtgt. Consequently, for each g € Q and a € A we obtain

Tga={y € D(Q) : P(g.a.¢') < y(¢') < P(g.a.q) forallg’ € Q}.
)

Accounting for the Distributional Uncertainty. Now, we expand the
sets {fq,a} ge0,aeA of transition probabilities of 7 to also embed the
distributional uncertainty into the abstraction. With this objective,
we first define the following cost between states in Q:

c(q.q) =inf{llx-ylI*:xeqyeq} (10)

for q,q' € Q, and where || - || and s are the same as for ‘W; in
Assumption 1. The cost c(q, ¢’ )% is the minimum distance, in the
sense of norm || - ||, between any pair of points in the regions gq
and ¢/, respectively . Using this cost and the exponent s in W;, we
define the optimal transport discrepancy 7; between distributions
over Q as in (1).2 Given a probability distribution y € D(Q) and
€ > 0, we denote by 7.¢(y) the set of all distributions to which
mass can be transported from y incurring a c-transport cost lower
than e. Using the previous elements, we are finally able to define I'.

DEFINITION 6. The discrete uncertainty set T is defined for every
state q € Qgafe and action a € A as:

o= | %), (11)

yelga

with € = €. For state q, and actiona € A, letTy 4 = fq,a (preserving
the absorbing property of the unsafe state).

Each Tga is the set of probability distributions over Q that are
e-close to fq,a, in the sense of the optimal transport discrepancy 7.
Once we have obtained the sets of transition probabilities I, along
with the state Q and action A spaces, our robust MDP abstraction
M is fully defined. The following proposition ensures that the
abstraction captures all possible transition probabilities of system
(2) to regions in the partition.

2Notice that, since c is also not a metric, the resulting optimal transport discrepancy
T is not a distance.
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PrOPOSITION 1 (CONSISTENCY OF THE ROBUST MDP ABSTRAC-
TION). Consider the robust MDP abstraction M = (Q, A,T) of system
(2). Let g € Qgafe, a € A, x € q, py € Py and define yxq € D(Q)
such that

Yx,a(q/) = T;U (q'lx)
forallq’ € Q. Then yxq € Tya.

The proof of Proposition 1 is given in Appendix 9. The intuition
behind Proposition 1 is that set Iy, contains the transition prob-
abilities yy 4 obtained by starting from any x € g, with g € Qg,fe
under a € A and for any p, € Py

REMARK 1 (MoODEL CHOICE FOR THE ABSTRACTION). An alterna-
tive way to include the distributional ambiguity into the abstraction
is to use an IMDP abstraction I = (Q, A, FIMDP), which has the same
state Q and action A spaces as M, and in which T'™MPP s defined by
transition probability bounds that fulfill:

PIMDP .a, " < ; inT? ('
PP gaq) < min minT,, (¢ [ %) .
12
—IMDP , a.
P ,a,q ) = T,
(g.a.9") max max 1o (q | X)

forall q € Qgate, ¢ € O a € A, and for which q,, is again absorbing.
Therefore, for fixedq € Q and a € A, set TI%DP of I is defined as

—IMDP
TIMPP = (y € D@ : PMP(gaq) < y(g) <P (q.a.q)

forallq’ € Q}.
(13)

This choice of the abstraction model allows to use efficient synthesis
algorithms for IMDPs [16], [21] to solve Problem 1. By the definition of
the transition probability bounds of I in (12), T"™PDP satisfies Propo-
sition 1, effectively capturing all possible transition probabilities of
system (2). However, IMDP I describes the uncertainty in a very loose
way, i.e., set T'™MPP of T can be excessively big for many ambiguity
sets Py. Intuitively, this is caused by FC%DP being only defined through
decoupled interval constraints for every successor state ¢’ € Q, This
is likely to result in more conservative solutions to the reach-avoid
problem as we will show in Section 7.

6 STRATEGY SYNTHESIS

Our goal is to synthesize a switching strategy o for system (2) that
maximizes (5). To capture the distributional uncertainty and the
effect of quantization, we consider the proposed abstraction M. We
synthesize the robustly maximizing strategy ¢* for the abstraction
M, and refine it, retaining formal guarantees of correctness, when
mapped back to the concrete system. In Section 6.1 and 6.2 we show
how an optimal strategy o* for the abstraction M can be efficiently
computed via linear programming, then in Section 6.3 we prove
the correctness of our strategy synthesis approach.

6.1 Robust Dynamic Programming

Once we have obtained a robust MDP abstraction M = (Q, A, T),
the uncertainties of M are characterized by an adversary ¢ that at
each time step, given a path of M and an action, selects a feasible
distribution from I' (see Definition 5). As a consequence, in order
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to be robust against all uncertainties, as common in the literature
[16, 27], we aim to synthesize a strategy ¢* such that:

o' e arg max min Preach (Qsafes Otgt, K | g.0.%), (14)
o€ EeE

for all g € Q, where Preach (Qsafe, Otgt: K | ¢, 0, &) is defined as in
(4) for system (2).

We denote by pX and j_)K , respectively, the worst and best-case
probabilities of the paths of M satisfying the reach-avoid specifica-
tion under optimal strategy o*:

EK(Q) = rglelg Preach (Qsates thta K|gq, o, &)

K . (15)
p (@) = rgggpreach(Qsafes tht>K lg.0%.¢)

for all g € Q. The following proposition from [22] guarantees that
the probabilities in (15) and the optimal strategy in (14) can be
obtained through dynamic programming.

PROPOSITION 2. [22] Let pX be as defined in (15) and k € [0 :
K — 1]. Then, it holds that

P () = {1 4 € O

maxge A Minyer, |, Xqe0 y(q’)gk(q’) otherwise,
(16)

with initial condition p°(q) = 1 for all q € Qtgt and 0 otherwise.
Furthermore, for each path o with k € [0 : K — 1], it holds that

Y@} an

o* () € argmax { min
Ye asl(wk),a qleQ

acA T,

A consequence of Proposition 2 is that in our setting there exists

an optimal policy that is Markovian and time dependent. Hence, we

can restrict our search for o to this class of strategies. Furthermore,

once ¢* is fixed, ﬁkﬂ, an upper bound of P,cp, can be readily
computed via the dynamic programming recursion

1—)k+1 (q) — 1 r lfq € tht
maXyer, ,« Zq’eQ y(q')p"(q') otherwise,

18)

which is analogous to that in (16) and has initial condition ;_)0 (=1
for all g € Qtgt and 7°(g) = 0 otherwise.

6.2 Computation of Robust Dynamic
Programming via Linear Programming

We now show how for each state ¢ € Q and time k € [0 : K — 1],
recursion (16) reduces to solving |A| linear programs. In particu-
lar, the following theorem guarantees that the inner problem in
recursion (16) can be solved via linear programming. While in the
theorem we explicitly consider p¥, the upper bound 1_)k follows
similarly. -

THEOREM 1 (ROBUST DYNAMIC PROGRAMMING AS A LINEAR PRO-
GRAM). Consider the robust dynamic programming recursion (16) for
the robust MDP M = (Q, A,T). Then, foranyk € [0: K —1],q € Q,
and a € A the inner minimization problem in (16) is equivalent to
the following linear program:

min " yip*(qn), (19)
YisYjsTij ieN -



HSCC 23, May 09-12, 2023, San Antonio, TX, USA

st. P(q.a,q;) <7 < P(q.a,q)) JEN (20a)
yi=1 (20b)
JeN
mij 2 0, LjeN (20c)
Tij = ?j, jeN (20d)
ieN
Z Tij =VYi» ieN (20e)
JeN
Z mije(qi,qj) < €, (20f)

iLjeN

where P, P, and c are defined in (7), (8), and (10), respectively, and s
is given in Assumption 1.

ProOF. We show that, for a fixed state ¢ € Q and action a € A,
the set of transition probabilities Iy, defined in (11) is the poly-
tope described by the linear equations (20). To this end, let y =
(Y1,---,¥YN) € Tgq- From the definition of Iy 4 in (11), there ex-
isty = (y1,.--,YN) € I/:q’a and an optimal transport plan 7 =
(7ij)i,j=1,...,~ that transports mass from ¥ to y with a cost 7c(y,7)
smaller than £°. Consider now the set fq,a as defined in (9) with the
transition probability bounds P and P given by (7) and (8). Then 7
satisfies the constraints (20a) and (20b). Since the optimal transport
cost 7¢(y,y) is attained by the transport plan 7, it follows from (1)
with X = Q and c as in (10) that

Te(r.7) = D mije(qiq))-
iLjeN
Thus, since 7¢(y, y) is less than ¢°, we deduce that y, 7, and 7 satisfy
the linear constraints (20c)-(20f). Conversely, one can check along
the same lines that for any y = (y1,...,yn),¥ = 1,--.,¥N), and
7t = (7ij)i j=1,..,N satisfying (20), it also holds that y € Ty 4. The
proof is complete. O

Intuitively, for each state g € Q and action a € A, the constraints
(20a)-(20f) capture the union of the c-transport cost ambiguity balls
in D(Q) that have radius ¢* and centers all possible distributions
of the nominal IMDP. Specifically, (20a) and (20b) represent the
distributions y of the nominal IMDP, i.e., the set fq,a. The constraints
(20c)-(20e) describe a transport plan 7, i.e., a nonnegative measure
on Q X Q (cf. (20c)), which has as its marginals the distribution y of
the nominal IMDP (cf. (20d)), and the target distribution y (cf. (20e)),
respectively. Finally, (20f) implies that transport cost to reach the
target distribution y is bounded by &°, namely, that y belongs to the
c-transport cost ambiguity ball of radius ¢°.

REMARK 2. Theorem 1 guarantees that, similarly toIMDPs without
distributional uncertainty [16, 22], optimal policies can be computed
by solving a set of linear programs. In particular, for any k € [0 :
K — 1] and q € Q, we can solve the linear program in Theorem 1 for
each a € A and take the action that maximizes the resulting value
function. However, in the IMDP case the resulting linear program has
substantially fewer variables and constraints compared to the problem
in Theorem 1 (order of N for IMDPs, against order of N? for Theorem
1). Nevertheless, as we detail in Appendix A, the number of variables
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and constraints in our approach can often be substantially reduced
when the support of the noise is bounded.

6.3 Correctness

In this section we prove the correctness of our abstraction for
system (2). We begin by refining the strategy ¢* to system (2). Let
J : R™ — Q map the continuous state x € R” to the corresponding
discrete state g € Q of M, i.e., for any x € R",

J(x)=q & x¢€q. (21)

u u Ug—
Given a finite path w,’i =X -5 X| — ... —5 xj of system (2),

we define by

T(k) = J(x0) 25 J(x1) 25 . 2L 1(xg)

the corresponding finite path of the MDP abstraction. Consequently,
a strategy o for M is refined to a switched strategy o for system
(2) such that:

o (@) = 0" (J(@y))- (22)
The following theorem, which is a direct consequence of Theorem

1 and Theorem 2 in [19], ensures that the guarantees obtained for
the robust MDP abstraction also hold for system (2).

THEOREM 2 (CORRECTNESS). Let M be a robust MDP abstraction
of system (2), c* € I be an optimal strategy for M and o} the
corresponding switching strategy. Then, for any q € Q, x € q, and
Po € Py it holds that

P(9) 2 Preach (X Xigt. K | x,0% po) = p¥(q).
where pK andﬁK are defined in (15).

Theorem 2 guarantees that in order to solve Problem 1 we can
synthesize an optimal strategy ¢* for a robust MDP abstraction of
system (2) and then simply check if pX (J(x)) is greater than the
given threshold. -

7 CASE STUDIES

In this section we evaluate our method on two case studies of
reach-avoid specifications using the abstractions in this paper, for a
linear and a nonlinear system, respectively. We consider data-driven
ambiguity sets which are built from i.i.d. samples vi ..., vM of a
Gaussian mixture. Using these samples, we construct an ambiguity
ball centered on the empirical distribution

1 M
Po= Z; Syt (23)

of the data [26], where J,: denotes the Dirac distribution that as-
signs unit mass to v'. For the metric of the ball we consider the
2-Wasserstein distance, which penalizes more distributions that
have considerable mass far from the samples. This choice is appro-
priate for our case studies, which consider sufficiently light-tailed
distributions. We present results for multiple values M of the sam-
ple size and the radius ¢. To synthesize the respective strategies, we
run the robust dynamic programming algorithm Kj,y,, times for
the case of p¥ and Kupper times for the case ofj_)k. Making use of

=K, .
pKiower and p™wrrer we define the “average error’
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# Approach € eavg  Synthesis Time (h)
#1 IMDP 0 0 2.8
#2 Robust MDP 5% 1073  0.05 23.2
#3  Robust MDP 1072 0.18 23.8
#4 Robust MDP 1.5x107% 0.33 26.2
#5 IMDP 5x1073  0.83 2.8

Table 1: Summary of the results obtained for system (25).
The robust dynamic programming algorithm was run for
Kiower = 40 and Kypper = 9 iterations.

The label “robust MDP" denotes our proposed approach, while the
label “IMDP" refers to the alternative approach pointed out in
Remark 1.

1 —K,
cavg = 3 D, 7 (g) ~ povr () (24)
q€Q
which allows us to assess the conservatism of the solution.?
All results were obtained with an Intel Core i5-7300HQ CPU at
2.50GHz-2.50 GHz with 8GB of RAM.

7.1 Linear System

For this case study we consider a discrete-time version of the unicy-
cle model [34], which is obtained using a first order Euler discretiza-
tion with a time step At = 1. We fix the velocity of the vehicle to the
constant value 1 and consider its orientation angle u as the control
input. Thus we get the switched system:

cos (ug)
sin (uy)

+ vk). (25)

X1 = X + At(

The state of the system is the vehicle position x; € R? and its
control input uy takes values in U = {0, 27”, ceo 7%”}.

For system (25), we define the safe set X as the rectangle [0, 1] x
[0,1] c R? by further excluding the obstacles contained therein
(cf. Figure 2). We partition the rectangle [0,1] X [0, 1] into a uni-
form grid, which together with the complement of the rectangle
yields N = 1601 regions. The ambiguity set is centered at an em-
pirical distribution of M = 10 samples, which are drawn from
a Gaussian mixture with two components, centered at [-0.01, 0]
and [0.01, 0], respectively, and with the same covariance matrix
diag(2.5 X 1073, 2.5 x 107°). As a result, the centers of both com-
ponents are separated by a distance close to the size of the state
discretization. The obtained results are summarized in Table 1. The
derivation of the abstraction took 10 minutes for all cases, since
they all rely on the same nominal IMDP abstraction 7.% It can be
observed in Table 1 that both the average error e,y as well as the
time required to perform the strategy synthesis increase as the
ambiguity set grows.

The lower bound on the reachability probability obtained for
experiments #1 — #4 (representing the different ¢ values in Table 1)

3Here the conservatism of the solution has two sources: the distributional ambiguity
and the accuracy of the abstraction.

“Notice that in the case of Experiment #1, the abstraction is simply the nominal IMDP,
since no distributional ambiguity is present.
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Lower Bound in ility Probability

Figure 1: Results of experiments #1 — #4 in Table 1. Lower
bound in the probability of reachability. The plotted trajec-
tories correspond to Monte Carlo simulations of System (25)
taking samples from a distribution p, € P.

is presented in Figure 1. This figure highlights how accounting for
the distributional ambiguity leads to more realistic bounds: notice
that the lower bound obtained for Experiment #1, where ¢ = 0, is
1 everywhere, which means that every trajectory will satisfy the
specification. This trivial lower bound is the result of assuming that
the empirical distribution is the true one, which is unrealistic. The
corresponding abstraction only embeds the ambiguity that arises
from discretizing the state space. Indeed, considering a value of ¢
greater than zero leads to a more realistic lower bound, as observed
for Experiments #2 — #4. It is clear from the figure that the larger the
ambiguity set is, the more conservative the lower bound becomes.
Figure 2 shows the vector field of System (25) when the optimal
strategy synthesized for experiment #2 is applied. The synthesized
strategy is almost the same for experiments #2 — #4.

Figure 2: Vector field of System (25) in closed loop with the
optimal strategy obtained for experiment #2 in Table 1.
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To compare our approach with the one that relies on IMDP ab-
stractions described in Remark 1, we present the results obtained
with the latter in the last row of Table 1. For this experiment, which
we refer to as experiment #5, the abstraction was constructed in
13 minutes. We compare the obtained lower bounds on the reach-
ability probability for experiments #2 and #5 in Figure 3, since
they are obtained for the same ambiguity set. The results show
how our proposed approach, despite requiring a larger amount of
time to perform strategy synthesis, is able to provide non-trivial
satisfaction guarantees, unlike the approach from Remark 1. Fur-
thermore, our approach is able to synthesize a strategy that satisfies
the reachability task, in contrast to the approach based on the IMDP
abstraction. To empirically verify this argument, we computed 1000
MC simulations starting from the same states as the ones shown
in Figures 1 and 3. In particular, all the trajectories of Experiments
#1 — #4 satisfied the specification, unlike in Experiment #5, where
no trajectory satisfied the specification.

obs - !
obs
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
obs

0
0 0.2 0.4 0.6 0.8 1 0 0.5 1

(a) Robust MDP abstraction ap- (b) IMDP abstraction approach
proach

Figure 3: Results of experiments #2 and #5 in Table 1. Lower
bound in the probability of reachability. The trajectories
in both figures correspond to Monte Carlo simulations of
System (25) taking samples from a distribution p, € $,. The
ones that satisfy the specification are presented in blue, while
the ones that do not are presented in red.

REMARK 3 (SYNTHESIS TIME). To justify the long synthesis times
presented in Table 1, note that the algorithm of Section 6 was imple-
mented in MATLAB, without paralelization, and the linear program
presented in Section 6.2 was solved using the solver Linprog. We used
the same solver to synthesize strategies for the IMDP abstractions
to obtain a fair comparison, instead of exploiting faster, dedicated
algorithms for IMDP models [16].

7.2 Nonlinear System with 4 Modes

For the second case study we consider the nonlinear system from
[1, 20] with dynamics:

Xp1 = Xk + fu () + Vi (26)
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Denoting by x(D) the i-th component of the state, the map ﬁ,k is
given by

[0.5 + 0.2 sin(x(?), 0.4 cos(x(1)]T ifu=1
~ [-0.5+0.2 sin(x(z)), 0.4cos(x(l))]T ifu=2
Ju(x) = . T .
[0.4 cos(x(®)),0.5 + 0.2 sin(x(1))] ifu=3
[0.4 cos(x®)), =0.5 + 0.2 sin(x ()] T ifu=4.
(27)

The system has state x; € R? and its control input u; switches
between the discrete values 1, 2, 3, and 4. In analogy to the first case
study, we define the safe set X as the rectangle [-2, 2] x[-2, 2] c R?
and exclude the obstacles contained therein and discretize it into
a uniform grid, which results in abstraction with N = 1601 states.
The ambiguity set here is centered at an empirical distribution of
M = 20 samples, that are again drawn from a Gaussian mixture with
two components, centered at [—0.05, 0] and [0.05, 0], respectively,
with covariance matrix diag(4 X 1074, 4x 10_4). Again, the centers
of both components are separated by a distance close to the size of
the state discretization. The results were obtained for an ambiguity
radius ¢ = 5 x 10~2, which yield eavg = 0.25. Furthermore, the
abstraction time was around 20 minutes, and the synthesis process
took 2.43 hours: the value iteration algorithm was run Kjgyer = 15
times for the case of pk and Kypper = 6 times for the case of j_)k. The
results obtained are shown in Figure 4.

22 4 0 1 2 2 4 0 1 2
(a) Lower bound on the (b) Upper bound on the
reachability probability reachability probability

2

(c) Optimal strategy

Figure 4: Results obtained for the nonlinear system (26). The
trajectories in Figure 4a) correspond to Monte Carlo sim-
ulations of System (26) taking samples from a distribution
Pv € Py. The ones that satisfy the specification are presented
in blue, while the ones that do not are presented in red.
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8 CONCLUSION AND FUTURE WORK

In this paper we presented a framework for the formal control of
switched stochastic systems with additive, random disturbances
whose probability distribution belongs to a Wasserstein ambigu-
ity set. To this end, we derived a robust MDP abstraction of the
original system and proposed an algorithm, termed robust dynamic
programming, to synthesize robust strategies that maximize the
probability of satisfying a reach-avoid specification. The obtained
results demonstrate the effectiveness of our approach in systems
with both linear and nonlinear dynamics, and show its superiority
with respect to leveraging directly IMDP abstractions.

Future work includes the exploitation of dedicated robust dy-
namic programming algorithms to speed up the abstraction process,
as well as refinement strategies to obtain smaller abstraction with-
out resorting to additional insight regarding the system or the
domain. In addition, we aim to extend the approach to richer speci-
fications expressed as, for example, LTLf, BLTL or sc-LTL formulas.

9 PROOF OF PROPOSITION 1

To prove the proposition we will use two technical lemmas that link
couplings and optimal transport discrepancies in the continuous
and abstract space.

LEmMMA 1 (INDUCED COUPLING ON THE DISCRETE SPACE). Consider
the coupling © € P(R" x R™) with marginals p and p’, a finite
(measurable) partition Q of R", and the induced distributions y,y’ €

D(Q) with y(q) := p(q) and y'(q) := p(q) for allq € Q. Then
v e P(QXQ), defined by

vgd)= [ dnxy 28)
qxq’
is a coupling between y and y.

ProoF. The proof follows directly from the fact that
Yovadr= Y, [ axt= [ axt) =1,
q'€Q qeQ PR
and analogously for the other marginal. O
Next, given two distributions on the continuous space R" we
establish bounds on the optimal transport discrepancy 7¢ of their

induced distributions on Q, based on their s-Wasserstein distance
in the continuous space.

LEMMA 2 (INDUCED OPTIMAL TRANSPORT DISCREPANCY). Letp, p’ €
Ds(R™) and consider the induced distributions y,y’ € D(Q) with

v(q) = p(q) andy’(q) := p(q) forallq € Q. Then for anys > 1 and
& 2 0 it holds that

Ws(p.p') <e= Te(yy') < €,
where c is given in (10).
Proor. Consider the map J in (21) and note that due to (10),

llx = yllI* > e(J(x), J (1)) (29)

for all x,y € R™. Let 7 be an optimal coupling for the s-Wasserstein
distance ‘Ws(p, p’) and v be the induced coupling on Q given by
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(28). Then we get from (1), (21), and (29) that
Walp.p') = / I - ylP*dr(x,y)
RrxR”?

> / c(J(x), J())dr(x, y)
R xR”?

Y, caq) [ dntxy)
axq’

q.9'€Q

= > aq)veq) = T(yy),
2.9'€Q

which implies the result. The last inequality follows from (1) and
Lemma 1, which asserts that v is a coupling between y and y’. The
proof is complete. O

The intuition behind Lemma 2 is the following: if the s-Wasserstein
distance between two distributions in R” is at most ¢, then the
optimal transport discrepancy (based on c) between their induced
distributions on Q is not more than &°.

PRroOF OF ProPOSITION 1. Let g, a, x, and p, as given in the state-
ment and define

?x,a(q,) = TI'?D (q, | x)
for all ¢ € Q. Then it follows from (7) and (9) that

Vxa € Tga (30)
Next, we get from (3) and Assumption 1 that T} (- | x) and T[i: -1 x)
are distributions in Ds(R™) and that

W,(T8 (10,78 (| 0) <
Since the induced distributions of Tp“v(- | x) and Tﬁa (- | x) on

Q are yy,q and ¥y, q, respectively, it follows from Lemma 2 that
Te(Yx.a Vx.a) < € = €, namely, yx g € 7.6 (Yx,q)- Thus, we deduce
from (11) and (30) that yx,q € Ty 4 and conclude the proof. O
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A REFORMULATION OF THE LINEAR
PROGRAM IN THEOREM 1

Consider the transition probability bounds (7) and (8) of the nominal
IMDP I.Foreachq € Qanda € Alet

Nga = {i € N: P(q,a,qi) > 0} (31)

be the set of outgoing transitions in 7 that may have nonzero tran-
sition probability. The following theorem provides a reformulation
of the linear program (19)-(20), which has a reduced complexity
when Ny q is strictly smaller than N.

THEOREM 3. Under the assumptions of Theorem 1, for each q € Q
and a € A the linear program (19)-(20) is equivalent to:

- k
§ ARG 32
min ) mijp- (qi) (32)
ieN,jeNga

s.t. P(q.a,qj) < Z mij < ﬁ(q, a,q;) Jj€Nga (332)
ieN

Z mij =1 (33b)
ieN,jeNga

mij = 0, ieN,je Nq’u (33¢)

Z nijc(q,-, qj) < Ss, (33d)

ieN,j€ENga
with Ng,q as given in (31).

Proor. Notice that one can directly eliminate the optimization
variables y; and y; by substituting their expressions (20d) and (20e)
in (19), (20a), and (20b). Thus, since each ¥}, and therefore also
each 7;; is identically fixed to zero when j ¢ Ng 4, we obtain the
equivalent optimization problem (32)-(33) after eliminating all the
redundant decision variables. O
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