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Distributed Reinforcement Learning Algorithm
for Dynamic Economic Dispatch With
Unknown Generation Cost Functions

Pengcheng Dai, Student Member, IEEE, Wenwu Yu , Senior Member, IEEE,
Guanghui Wen , Senior Member, IEEE, and Simone Baldi , Member, IEEE

Abstract—In this article, the dynamic economic dispatch
(DED) problem for smart grid is solved under the assump-
tion that no knowledge of the mathematical formulation
of the actual generation cost functions is available. The
objective of the DED problem is to find the optimal power
output of each unit at each time so as to minimize the total
generation cost. To address the lack of a priori knowledge,
a new distributed reinforcement learning optimization algo-
rithm is proposed. The algorithm combines the state-action-
value function approximation with a distributed optimization
based on multiplier splitting. Theoretical analysis of the
proposed algorithm is provided to prove the feasibility of
the algorithm, and several case studies are presented to
demonstrate its effectiveness.

Index Terms—Distributed reinforcement learning,
dynamic economic dispatch (DED), multiplier splitting,
state-action-value function approximation.

I. INTRODUCTION

THE POWER grid is undergoing significant changes due
to the integration of distributed energy resources, devel-
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opment of smart technologies, high demand of transactions and
energy management, and so on [1], [2]. Within this context,
smart grids have received increasing attention [3]. The smart
grid technology makes full use of communication and sensing
in an effort to attain safe, efficient, stable, and sustainable power
services [4]–[6]. In smart grids, the dynamic economic dispatch
(DED) problem has attracted much attention. The aim of DED is
to find the optimal power output of each generator at each time
to minimize the total generation cost in a given time horizon. In
most practical cases, the DED problem needs to be solved in a
distributed way. It has been learned from existing literature that
multiagent systems theory [7]–[9] is an appealing framework
to solve such a problem. The static economic dispatch (SED)
problem is a special case of DED which has also been studied
in the framework of multiagent systems [10]–[20]. Specifically,
a fully distributed λ-consensus algorithm was proposed in [10]
for smart grids with a directed topology. The authors of [11]
proposed a distributed discrete-time consensus algorithm under
a jointly connected switching undirected topology. In [12], under
a uniformly jointly strong connected directed graph with time-
varying delays, some distributed gradient push-sum algorithms
were discussed for SED. A distributed Laplacian-gradient al-
gorithm was proposed in [13] with feasible initial point. Yi
et al. [14] solved the SED problem via an initialization-free
distributed algorithm based on the multiplier splitting method.
Guo et al. [15] proposed an average consensus algorithm and
the distributed projection gradient algorithm to solve SED with
consideration of wind turbines and energy storage systems. A
distributed auction-based algorithm was proposed in [16] to
solve a nonconvex SED. In the presence of communication
uncertainties, an adaptive incremental cost consensus-based
algorithm was proposed in [18]. In contrast, few results on the
DED problem are reported in the literature due to the complexity
of this problem [21]–[23]. A distributed primal–dual dynamic
algorithm was proposed in [21]. Zhao et al. [22] deal with a fully
decentralized optimization for the multiarea DED through the
cutting plane consensus algorithm. More recently, by integrating
the average consensus protocol and alternating direction method
of multipliers (ADMM), a distributed coordination algorithm
has been proposed in [24] to solve the dynamic social welfare
problem. In practice, the accurate mathematical expression of
the cost functions in a DED problem may be unavailable as the
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cost functions are affected by various factors, such as operating
conditions and aging of the generator. Most of the aforemen-
tioned algorithms no longer work when the accurate mathemat-
ical formation of the cost function is unavailable. Hence, it is of
both theoretical and practical interest to design an algorithm to
solve the DED problem with little information of the actual cost
functions.

Reinforcement learning [25] is a method through which
an agent can find the optimal policy by interacting with the
environment. This has motivated the application of reinforce-
ment learning algorithms in control and optimization problems,
sometimes in the context of multiagent systems [26]–[31]. The
reinforcement learning-based approach is used to investigate
the optimal tracking control problem in [26]. Data-driven op-
timal control based on reinforcement learning was proposed
in [27] for discrete-time multiagent systems with unknown
dynamics. Wang et al. [28] proposed a dual heuristic dynamic
programming algorithm for a class of nonlinear discrete-time
systems affected by time-varying delay. The method of pol-
icy iteration in reinforcement learning was used in [29] to
find the optimal control for zero-sum games. Exciting ap-
plications of deep reinforcement learning are [30] and [31],
which show that an agent can learn to play Atari better than
humans. In this article, we draw inspiration from reinforcement
learning techniques, especially from state-action-value function
approximation and from nonlinear programming theories to
solve the DED problem with little information of actual cost
functions.

The contributions of this article are as follows.
1) The techniques of state-action-value function approxi-

mation based on semigradient Q-learning and distributed
optimization algorithm based on multiplier splitting are
successfully combined in the proposed algorithm. This
algorithm can deal with the situations in which the
mathematical expression of the cost functions is not
available.

2) The update of the operating policy depends not only on
the optimal solution of the approximate state-action-value
function but also on the last operating policy. This
means that the cost can be proven to be monotonically
nonincreasing at each iteration.

3) Time-varying parameters in approximate state-action-
value function are proposed. As compared to the use
of time-invariant parameters, they enable us to reduce the
error and preserve convexity of approximate state-action-
value function. To the best of our knowledge, this is the
first attempt to employ time-varying parameters in the
approximation of the state-action-value function.

The rest of this article is organized as follows. The DED
problem is formulated in Section II. The distributed reinforce-
ment learning optimization algorithm is proposed in Section III.
Section IV confirms the feasibility of the distributed reinforce-
ment learning optimization algorithm. Simulation results to
demonstrate the effectiveness of the algorithm are provided
in Section V. Finally, Section VI concludes this article. The
Appendix gives preliminaries about convex analysis, algebraic
graph theory, and reinforcement learning.

II. PROBLEM STATEMENT

A. Dynamic Economic Dispatch

We consider a smart grid setting where N units must make
their electricity generation equal to the total power demand at
each time slot t. The objective of the DED problem is to find
the optimal electricity allocation such that the total generation
cost of all units is minimized. The mathematical expression of
this problem is

min
T∑

t=1

N∑

i=1
Fi(pi,t)

s.t.
N∑

i=1
pi,t = Dt, t = 1, 2, . . . , T

p
i
≤ pi,t ≤ pi, i = 1, 2, . . . , N

|pi,t − pi,t−1| ≤ pR
i , i = 1, . . . , N, t = 1, . . . , T (1)

where Fi(·) is the generation cost function of unit i, pi,t

is the power output of unit i at time t, Dt is the total
power demand at time t, pR

i is the ramp-rate limit of
unit i. p

i
and pi are the minimum and maximum power

output of unit i, respectively. For notational brevity, set
pi,0 + pR

i = pi , pi,0 − pR
i = p

i
, and Dt −

∑N
i=1 pR

i ≤ Dt+1 ≤
Dt +

∑N
i=1 pR

i , t = 1, 2, . . . , T − 1. We denote Pi = [p
i
, pi ]

as the set of admissible power output of unit i.
Various forms of the generation cost function have been

proposed in the literature. The most common generation cost
function is Fi(pi,t) = aip

2
i,t + bipi,t + ci, where ai , bi , and

ci are some coefficients for unit i [19]. The cost function
considered in this article is a more general sinusoidal cost
function inspired by [33]

Fi(pi,t) = aip
2
i,t + bipi,t + ci + |ei · sin(fi · (pi

− pi,t))|

where the additional coefficients ei and fi are related to the
capacity of unit i. The mathematical expression of this cost
function is known for simulation purposes, but it is unknown
for the purpose of controller design.

When considering the above cost function, the following
challenges should be taken into account: 1) the nonconvex
objective function invalidates existing algorithms based on
convex optimization problems and 2) only the value of the
generation cost is known while the mathematical formulation
of the cost function is unknown. Fortunately, reinforcement
learning algorithm can be applied to tackle such challenges.

Remark 1: In the DED problem, the total demand Dt , the
feasible power output combination (FPOC) of units and the
generation cost at each time slot can be seen as the state, action,
and reward in the mind of reinforcement learning. Furthermore,
the generation cost at each time slot is also important and should
be fully considered while dealing with the DED problem. Hence,
the discount factor γ introduced in the step of reinforcement
learning (cf. Appendix C) is set as 1 in the DED problem.

Two standard assumptions are made to guarantee the
existence of an optimal distributed solution to (1).

Assumption 1: There exists at least one FPOC (p1,1, . . . ,
pN ,1, . . . , p1,T , . . . , pN ,T )T at all times such that
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∑N
i=1 pi,t = Dt, pi,t ∈ Pi , |pi,t − pi,t−1| ≤ pR

i , t = 1, . . . , T,
i = 1, . . . , N.

Assumption 2: The graph topology about the units is undi-
rected and connected. At each time slot t, each agent i can
only access the local power demand Di,t , adjust the local power
output pi,t , and obtain the local generation cost Fi(pi,t).

III. DISTRIBUTED REINFORCEMENT LEARNING

OPTIMIZATION ALGORITHM

In order to solve the DED problem with unknown cost
functions, we apply reinforcement learning ideas. Suppose each
agent corresponding to each unit was assigned a unique identifier
ID, e.g., its IP address. By using the graph discovery algorithm
proposed in [15], each agent can get the total number of agents.
A distributed reinforcement learning optimization algorithm is
proposed based on seven steps.

1) Discover the total demand at time slot t: Define D̄t [0] =
(D1,t , D2,t , . . . , DN,t)T . Apply the average-consensus protocol
(18) for each agent i as follows:

D̄t [k + 1] = D̄t [k]− εLD̄t [k] (2)

where L is the Laplacian matrix of graph G, ε ∈ (0, 1
max

i
li i

).

From Lemma 1 in Appendix B, we get lim
k→∞

D̄t [k] = ( 1
N Dt)1N

where 1N is a N -dimensional column vector with each entry
being one. Hence, the local estimation of the average power
demand converges to the actual average power demand at time
slot t. As result, the total demand at time slot t can be obtained
as Dt .

2) Find an FPOC at time slot t: Choose pi,t ∈
(max{p

i
, pi,t−1 − pR

i },min{p̄i , pi,t−1 + pR
i }). Define the

mismatch of demand generations mt [0] = (D1,t − p1,t , . . . ,
DN,t − pN,t)T , and apply Lemma 1 in Appendix B again as
follows:

mt [k + 1] = mt [k]− εLmt [k]. (3)

It holds that lim
k→∞

mt [k] = 1
N

N∑

i=1
(Di,t − pi,t)1N = α1N .

Adjust pi,t according to the following policy:

pi,t ←

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

pi,t + sign(α)min{min{p̄i , pi,t−1 + pR
i }

−pi,t , α}, α ≥ 0

pi,t + sign(α)min{−max{p
i
, pi,t−1 − pR

i }
+pi,t , |α|}, α < 0

(4)

where sign(·) is symbolic function. Repeat (3) and (4) till α = 0.
When α = 0, Pt = (p1,t , p2,t , . . . , pN ,t)T is an FPOC at time

slot t.
3) Measure the total generation cost at time slot t: Define

ct [0] = (c1,t , . . . , cN ,t)T and ct as the local estimation of the
average generation cost at time slot t, where ci,t = Fi(pi,t) for
each agent i. Apply the average-consensus protocol

ct [k + 1] = ct [k]− εLct [k]. (5)

As a result of Lemma 1 in Appendix B, we can obtain
lim
k→∞

ct [k] = ct1N , i.e., the local estimation of the average

generation cost converges to the actual average generation cost
at time slot t. Hence, the total generation cost is Nct .

4) Update the parameters of approximate function at time
slot t: Define Jt(Dt, Pt, θ

t) = φ(Pt)T θt to be the approximate
state-action-value function, where φ(Pt) is a feature vector. The
update of the parameters θt is

{
θt ← θt + β[Nct + min

Pt + 1

Jt+1(Dt+1, Pt+1, θ
t+1)

−Jt(Dt, Pt, θ
t)]φ(Pt)

. (6)

The feature vector may be constructed from Pt in many different
ways. For easier analysis, it is smart to design φ(Pt) such that
the approximate state-action-value function is a convex func-
tion. For example, let φ(Pt) = (p1,t , . . . , pN ,t , p

2
1,t , . . . , p

2
N,t)

T ,
θt = (θt

1, . . . , θt
2N )T , and fi(pi,t) = θt

i pi,t + θt
i+N p2

i,t . Then,

Jt(Dt, Pt, θ
t) = φ(Pt)T θt =

∑N
i=1 fi(pi,t), (6) becomes

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

θt
i ← θt

i + β[Nct + min
Pt + 1

Jt+1(Dt+1, Pt+1, θ
t+1)

−Jt(Dt, Pt , θ
t)]pi,t

θt
i+N ← θt

i+N + β[Nct + min
Pt + 1

Jt+1(Dt+1, Pt+1,

θt+1)− Jt(Dt, Pt, θ
t)]p2

i,t

. (7)

Remark 2: minPt + 1 Jt+1(Dt+1, Pt+1, θ
t+1) in (7) can be

obtained through step 5. Taking into account the particularity
of the finite horizon in (1), we use time-varying parameters θt

for each time slot t. This is done in order to guarantee that the
approximate state-action-value function is a convex function
(necessary for the analysis in Section IV). Equation (7) can be
seen as a semigradient method applied to the state-action-value
function [25].

5) Obtain min
Pt

Jt(Dt, Pt, θ
t) in a distributed way: Solve

the following problem about approximate state-action-value
function

min
N∑

i=1
fi(pi,t)

s.t.
N∑

i=1
pi,t = Dt

pi,t ∈ Pi , i = 1, 2, . . . , N
|pi,t − pa∗

i,t−1| ≤ pR
i , i = 1, 2, . . . , N (8)

where pa∗
i,0 = pi,0 for each i. Before moving on, letPnew

i,t = Pi ∩
[pa∗

i,t−1 − pR
i , pa∗

i,t−1 + pR
i ]. Problem (8) can be solved under the

following standard assumption.
Assumption 3: There exists a finite optimal solution Pa∗

t to
problem (8). The Slater’s constraint condition is satisfied for (8),
that is, there exist p̂i,t ∈ int(Pnew

i,t )∀i, such that
∑N

i=1 p̂i,t = Dt .
Here is the procedure to solve (8). The duality of (8) with

λ ∈ R is

max
λ∈R

N∑

i=1

qi(λ) =
N∑

i=1

inf
pi , t ∈Pnew

i , t

{fi(pi,t)− λpi,t + λ
1
N

Dt}.
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We formulate a constrained optimization problem with
Laplacian matrix L and Λ = (λ1, λ2, . . . , λN )T ∈ RN as

max
Λ

N∑

i=1
qi(λi)

s.t. LΛ = 0N .
(9)

The augmented Lagrangian duality of (9) with multipliers
Z = (z1, z2, . . . , zN )T ∈ RN is

min
Z

max
Λ

N∑

i=1

qi(λi)− ZT LΛ− 1
2
ΛLΛ.

The distributed algorithm for agent i is given as follows:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ṗi,t = PPnew
i , t

(pi,t −∇fi(pi,t) + λi)− pi,t

λ̇i = ( 1
N Dt − pi,t)−

∑

j∈Ii
(zi − zj )−

∑

j∈Ii
(λi − λj )

żi =
∑

j∈Ii
(λi − λj )

. (10)

From the Karush-Kuhn-Tucker (KKT) condition, the equi-
librium point of (10) is the optimal solution to (8) (cf. anal-
ysis in Section IV). Denote one of such equilibrium points
col(Pa∗

t ,Λa∗, Za∗) as the column vector stacked with vectors
Pa∗

t ,Λa∗, and Za∗. Then, the value of
∑N

i=1(Fi(pa∗
i,t)) can be

obtained by Lemma 1 in Appendix B.
6) Renew the local operating policy: Renew the local operat-

ing policy according to the following algorithm.
Denote Wa∗ =

∑T
t=1

∑N
i=1(Fi(pa∗

i,t)), Wp =
∑T

t=1

∑N
i=1

(Fi(pi,t)), Wπ =
∑T

t=1

∑N
i=1(Fi(πi(Dt))), then, the local

operating policy can be renewed by

πi(Dt)←

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

pa∗
i,t , if Wa∗ = min{Wa∗,Wp,Wπ}

pi,t , if Wp = min{Wa∗,Wp,Wπ}
πi(Dt), otherwise

(11)

where Pa∗
t = (pa∗

1,t , . . . , p
a∗
N,t)

T = arg minPt
Jt(Dt, Pt , θ

t). In
particular, π(Dt) is a determined policy in DED problem.

7) Balance exploration and exploitation: In order to balance
exploration and exploitation, we use the ε-greedy policy, i.e.,
selecting the action (πi(Dt), . . . , πN (Dt))T with probability
1− ε, and other FPOC with probability ε.

The distributed reinforcement learning optimization algo-
rithm for the DED problem is summarized in Algorithm 1.

Remark 3: In the process of developing the distributed al-
gorithm, the key difficulties are: 1) How to determine the total
power demand at each time slot by agents in a distributed way in
the absence of a centralized decision-making agent with global
information? 2) How to find an FPOC in a distributed way?
3) How to renew the local operating policy in a distributed
manner? For issue 1, the total power demand Dt can be obtained
by the average-consensus protocol (2). The aim of (3) and (4) is
to solve issue 2 by finding an FPOC in a distributed way. Issue
3 is addressed through (11).

IV. THEORETICAL ANALYSIS

In this section, the main theoretical results of the proposed
distributed reinforcement learning optimization algorithm are
provided and proven via convex analysis and projection.

Algorithm 1: DED With Distributed Reinforcement
Learning Optimization.

1: Initialize t = 0, k = 0;
2: Initialize ε with ε-greedy policy;
3: Repeat
4: t← t + 1;
5: Obtain the total power demand Dt at time t via (2);
6: Initialize the parameters θt of the approximate state

action-value function;
7: Set Jt with θt = 0;
8: Until t = T
9: Define JT +1 = 0.

10: Repeat
11: k ← k + 1;
12: r̃ = rand(1);
13: Reset t = 1, Wp = 0, Wa∗ = 0;
14: Repeat
15: If k ≥ 2 and r̃ ≥ ε then
16: Repeat
17: Choose power output as π(Dt);
18: Obtain immediate generation cost of π(Dt)

via (5);
19: Update the parameter θt through (7);
20: Wp ←Wp + Nct ;
21: Find the Pa∗

t of (8) by (10);
22: Obtain immediate generation cost of Pa∗

t via (5);
23: Wa∗ ←Wa∗ + Nca∗

t ;
24: t← t + 1;
25: Until t = T + 1
26: Else
27: Repeat
28: Propose a power output pi,t of unit i;
29: Repeat
30: Predict the average demand-generation

mismatch α based on (3);
31: Adjust pi,t according to (4);
32: Until α→ 0
33: If k = 1 then
34: Denote the local operation policy π(Dt) as Pt ;
35: Wπ ←Wπ + Nct ;
36: Else
37: Choose power output as Pt ;
38: Obtain immediate generation cost via (5);
39: Update the parameter θt through (7);
40: Wp ←Wp + Nct ;
41: Find the Pa∗

t of (8) by (10);
42: Obtain immediate generation cost of Pa∗

t via (5);
43: Wa∗ ←Wa∗ + Nca∗

t ;
44: End if
45: t← t + 1;
46: Until t = T + 1
47: End if
48: Until t = T + 1
49: Update the local operation policy by (11);
50: Wπ = min{Wa∗,Wp,Wπ};
51: Until k = K
52: /* K is the maximum number of trials */
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First of all, the equilibrium point of (10) with Pa∗
t is analyzed

to be the optimal solution of (8), and the convergence of (10) to
the exact optimal solution of (8) is also proved. Denote

Pnew
t = Pnew

1,t × Pnew
2,t × · · · × Pnew

N,t

Pt = (p1,t , p2,t , . . . , pN ,t)T

Λ = (λ1, λ2, . . . , λN )T

Z = (z1, z2, . . . , zN )T

∇f(Pt) = (∇f1(p1,t),∇f2(p2,t), . . . ,∇fN (pN,t))T .

Then, the compact form of (10) is
⎧
⎪⎪⎨

⎪⎪⎩

Ṗt = PPnew
t

(Pt −∇f(Pt) + Λ)− Pt

Λ̇ = −LΛ− LZ + 1
N Dt1N − Pt

Ż = LΛ
. (12)

The following theorem is given for the equilibrium point
of (12), which indicates that Pa∗

t in the equilibrium point
(Pa∗

t ,Λa∗, Za∗) of (12) is corresponding to the optimal solution
of (8).

Theorem 1: Suppose that Assumptions 1–3 hold and with
the equilibrium point of distributed algorithm (12) with
(Pa∗

t ,Λa∗, Za∗), then, Pa∗
t is the optimal solution of (8).

Proof: By the property of the equilibrium point
(Pa∗

t ,Λa∗, Za∗) of (12), we get the following equations.
1) LΛa∗ = 0, i.e., Λa∗ = λa∗1N , λa∗ ∈ R, because the

undirected graph G is connected.
2) −LΛa∗ − LZa∗ + 1

N Dt1N − Pa∗
t = 0, which implies

that Dt = 1T
N Pa∗

t , i.e.,
N∑

i=1
pa∗

i,t = Dt .

3) PPnew
t

(Pa∗
t −∇f(Pa∗

t ) + Λa∗)− Pa∗
t = 0, which

implies that −∇f(Pa∗
t ) + Λa∗ ∈ NPnew

t
(Pa∗

t ).
Therefore, the equilibrium point (Pa∗

t ,Λa∗, Za∗) of (12)
satisfies the KKT condition for (8)

⎧
⎪⎨

⎪⎩

0 ∈ ∇fi(pa∗
i,t)− λa∗ + NPnew

t
(pa∗

i,t)
N∑

i=1
pa∗

i,t = Dt

. (13)

Hence, Pa∗
t in the equilibrium point (Pa∗

t ,Λa∗, Za∗) of (12)
is the optimal solution of (8).

Based on the above result, our next task is to prove that the
trajectories of (12) with Pt will converge to the optimal solution
Pa∗

t .
Theorem 2: Under Assumptions 1–3, given the initial points

pi,t ∈ Pnew
i,t , i ∈ 1, 2, . . . , N , the trajectories of the algorithm of

(12) are bounded and the power output pi,t of agent i converges
to pa∗

i,t .

Proof: Denote Pnew
t = Pnew

t ×RN ×RN . We define a new
vector M = col(Pt,Λ, Z) and the function F (M) : R3N →
R3N as

F (M) =

⎛

⎜
⎜
⎝

∇f(Pt)− Λ

LΛ + LZ − ( 1
N Dt1N − Pt)

−LΛ

⎞

⎟
⎟
⎠ . (14)

Then, (12) can be written as Ṁ = PPnew
t

(M − F (M))−M .
Define H(M) = PPnew

t
(M − F (M)) and the dynamics be-

come Ṁ = H(M)−M . Consider the candidate Lyapunov
function

V = − 〈F (M),H(M)−M〉 − 1
2
‖H(M)−M‖2

+
1
2
‖M −Ma∗‖2

where Ma∗ = col(Pa∗
t ,Λa∗, Za∗) is the equilibrium point of

(12). Via convex analysis and projection, we obtain

V = − 〈F (M),H(M)−M〉 − 1
2
‖H(M)−M‖2

+
1
2
‖M −Ma∗‖2

=
1
2
[‖M − F (M)−M‖2 − ‖H(M)− (M − F (M))‖2]

+
1
2
‖M −Ma∗‖2

≥ 1
2
‖M −H(M)‖2 +

1
2
‖M −Ma∗‖2.

Hence, V = 0 if and only if M = Ma∗. The derivative of V
along (12) is

V̇ = (F (M)− [JF (M)− I](H(M)−M))T (H(M)−M)

+ (M −Ma∗)T (H(M)−M) (15)

where JF (M) is the Jacobian matrix of F (M)

JF (M) =

⎛

⎜
⎜
⎝

∇2f(Pt) −I 0

I L L

0 −L 0

⎞

⎟
⎟
⎠ (16)

which is positive semidefinite.
With the property of projection, it is obvious that
〈M − F (M)−H(M),H(M)−Ma∗〉 ≥ 0, which implies
〈M −H(M)− F (M),H(M)−M + M −Ma∗〉 ≥ 0.
Hence, 〈H(M)−M,M −Ma∗ + F (M)〉 ≤ −‖H(M)−
M‖2 − 〈F (M),M −Ma∗〉. We may further get that

V̇ = 〈M −Ma∗ + F (M),H(M)−M〉+ ‖H(M)−M‖2

− (H(M)−M)T JF (M)(H(M)−M)

≤ − (H(M)−M)T JF (M)(H(M)−M)〉
− 〈F (M),M −Ma∗〉

≤ − 〈F (M),M −Ma∗〉
≤ −〈F (M)−F (Ma∗),M −Ma∗〉−〈F (Ma∗),M−Ma∗〉
≤ 0.

The last inequality holds because the Laplacian matrix is positive
semidefinite, f(Pt) is convex, and because of the variational
inequality of the optimal solution Ma∗. Therefore, there exists
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Fig. 1. Communication graph in Example 1.

TABLE I
PARAMETERS OF GENERATION UNITS

a forward compact invariance set given as

IS = {M |1
2
‖M −Ma∗‖2 ≤ V (M(0))}.

From the KKT condition, there exist pa∗ ∈ NPnew
t

(Pa∗
t ) such

that pa∗ = −∇f(Pa∗
t ) + Λa∗. Furthermore, we can obtain

V̇ ≤ − 〈F (M),M −Ma∗〉
= − 〈Pt − Pa∗

t ,∇f(Pt)− Λ−∇f(Pa∗
t )〉

− 〈Λ− Λa∗, LΛ + LZ − (
1
N

Dt1N − Pa∗
t )〉

− 〈Z − Za∗,−LΛ〉 − 〈Pt − Pa∗
t ,Λa∗ − pa∗〉

≤ − 〈Pt − Pa∗
t ,∇f(Pt)−∇f(Pa∗

t )〉
+ 〈Pt − Pa∗

t , pa∗〉 − 〈Λ− Λa∗, L(Λ− Λ)〉
≤ − 〈Pt − Pa∗

t ,∇f(Pt)−∇f(Pa∗
t )〉

− 〈Λ− Λa∗, L(Λ− Λ)〉.

Denote the setM = {M |V̇ = 0}. Because of the positive defi-
nite Hessian matrix∇2f(Pt) and the null space for the Laplacian
matrix L, we can obtainM = {Pt = Pa∗

t ,Λ ∈ span{1N }}.
Next, we claim that the maximal invariance set within the set
M is the equilibrium point of (8). Because of Λ ∈ span{1N }},
Z = Za∗. According to (13), it is obvious that Λ̇ = LZa∗ −
( 1

N Dt1N − P ∗at ). We claim that LZa∗−( 1
N Dt1N−Pa∗

t )=0.
Assume that LZa∗ − ( 1

N Dt1N − Pa∗
t ) �= 0, then Λ will go to

infinity, which contradicts thatM is a compact set within IS.
Hence, Λ̇ = 0 and Λ = Λa∗. By the LaSalle invariance principle,
the power output pi,t of agent i converges to pa∗

i,t .

V. SIMULATION

In this section, the proposed distributed reinforcement learn-
ing optimization algorithm is tested through several examples.

Example 1: Consider four units connected via the undirected
graph shown in Fig. 1. The cost function for each unit i is
taken as Fi(pi) = aip

2
i + bipi + ci + |ei · sin(fi · (pi

− pi))|,
with coefficients shown in Table I (known only to the purpose of

Fig. 2. Total generation cost of policy produced by the distributed
reinforcement learning optimization algorithm in Example 1.

Fig. 3. Time-varying parameters θt
i in approximate state-action-value

function.

Fig. 4. Time-varying parameters θt
i+N in approximate

state-action-value function.

simulation). The admissible power outputs of each unit are set
as follows: P1 = [200, 600], P2 = [100, 400], P3 = [100, 300],
and P4 = [50, 200] (MW). The total power demand Dt is 800,
850, 880, 900, 860, 930, and 950 (MW) for time periods [0,2),
[2,6), [6,8), [8,18), [18,22), and [22,24), respectively.

We take for simplicity ε in the ε-greedy policy to be constant
and equal to 0.2. As shown in Fig. 2, the total generation cost
of updated policy is getting better and better during the training
process. Figs. 3 and 4 show the time-varying parameters θt

in approximate state-action-value functions for all time slots.
In this example, the approximate state-action-value functions
take the form Jt(Dt, Pt , θ

t) =
∑N

i=1(θ
t
i pi,t + 1

4θt
i+N p2

i,t). The
optimal solutions Pa∗

t of the approximate function for all time
slots after training are shown in Fig. 5.

Remark 4: As the approximate state-action-value function
Jt(Dt, Pt, θ

t) is the sum of total generation cost from time slot
t to time slot T in the DED problem considered in this article.
It can be seen from Figs. 3 and 4 that θi

t and θt
i+N are almost

decreasing from time slot 1 to time slot T . Note that θt
i for time

slot 2 is larger than θt
i over time slot 1 which does not satisfy
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Fig. 5. P a∗ of approximate state-action-value function after training.

Fig. 6. Time-invariant parameters θi in approximate state-action-value
function.

Fig. 7. Time-invariant parameters θi+N in approximate state-action-
value function.

the property of decreasing; however, it has no effect according
to the form of approximate state-action-value function.

In order to show the advantage of using time-varying pa-
rameters θt in the function approximation, a time-invariant
parameter θ will be considered for all time slots. In other
words, the approximate function takes the form J(Dt, Pt, θ) =
∑N

i=1(θipi,t + 1
4θi+N p2

i,t). The parameters θi and θi+N are
updated according to

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

θi ← θi + β[Nct + min
Pt + 1

J(Dt+1, Pt+1, θ)

−J(Dt, Pt, θ)]pi,t

θi+N ← θi+N + β
4 [Nct + min

Pt + 1

J(Dt+1, Pt+1, θ)

−J(Dt, Pt, θ)]p2
i,t

. (17)

Figs. 6 and 7 show the updating process. As shown in Fig. 7, θ6

goes below zero, which contradicts the assumption of convexity
of approximate state-action-value function. In this case, the
step 5 cannot be performed as the necessary assumptions are
violated.

Remark 5: By the definition of the state-action-value func-
tion, one gets that using time-invariant parameters θ for each
time slot will cause severe fluctuations for the update of θ.

Fig. 8. Evolution of the total generation cost of updated policies in
difference ε.

Fig. 9. IEEE 39-bus system.

The reinforcement learning optimization algorithm associated
with time-varying parameters θt for each time slot t can reduce
the concussion in the process of update of θt . It is also worth
pointing out that using the time-varying parameter is also an
efficient way when there exist the same FPOC in different time
slots.

For the purpose of considering the effect of different ε in the
ε-greedy policy, we take fixed ε = 0.1, ε = 0.2, and ε = 0.3,
and also take ε = 1

k , ε = 10
k , and ε = 100

k which decreases grad-
ually such that the operating policy is greedy limit with infinite
exploration (GLIE) in ε-greedy. Fig. 8 shows the evolution of
the total generation cost of each updated policy through 10 000
times training. As shown in Fig. 8, distributed reinforcement
learning optimization algorithm yields a favorable policy when
taking ε = 0.3.

Remark 6: It can be seen from the results given in Example 1
that the exploration in the distributed reinforcement learning
optimization algorithm is very important as the number of FPOC
is infinite in each time slot.

Example 2. We consider the IEEE-39 bus system with ten
units. The communication network of these agents, which
is described by the blue lines in Fig. 9, is undirected and
connected. The cost function of each unit i is determined as
Fi(pi) = aip

2
i + bipi + ci , where the coefficients are shown

in Table II together with the minimum and maximum power



DAI et al.: DISTRIBUTED REINFORCEMENT LEARNING ALGORITHM FOR DYNAMIC ECONOMIC DISPATCH 2265

TABLE II
PARAMETERS OF UNITS

Fig. 10. Exact optimal solution.

Fig. 11. Evolution of policy after 1087 times training.

generation of each unit. In this example, we consider the DED
problem in five time slots. The power demand Dt is assumed
to be 1500, 1600, 1700, 1800, and 1900 (MV) for time slot
1, 2, 3, 4, and 5, respectively. At first, consider the object
function to be a quadratic convex function and the feasible set
to be also a convex set. We use the distributed optimization
algorithm based on the multiplier splitting method to find the
exact optimal solution at time slot 1, 2, 3, 4, and 5 in Fig. 10.
However, we do not know the form of the cost functions and
the exact parameters in cost functions of units actually. Under
this premise, we use the distributed reinforcement optimization
algorithm to find the optimal policy. Fig. 11 shows that the
evolution of the operating policy produced by the distributed
reinforcement learning optimization algorithm after 1087 times
training in this example. The exact optimal solution and the
operating policy after 1087 times training are, respectively,
shown in Tables III and IV. The error between exact optimal
cost and the operating policy cost is less than 4% of exact
optimal cost. In contrast to the ED problem studied in [34], the
DED problem under consideration is more difficult due to the
ramp-rate limit in each time slot.

TABLE III
EXACT OPTIMAL SOLUTION FOR ALL TIME

TABLE IV
OPERATING POLICY AFTER 1087 TIMES TRAINING

VI. CONCLUSION

In this article, we formulated a DED problem with little prior
information of the generation cost functions in smart grid. To
solve the DED problem, we combined the state-action-value
function approximation and the distributed optimization algo-
rithm based on multiplier splitting to get a distributed reinforce-
ment learning optimization algorithm. Each step in the proposed
algorithm was fully distributed. Theoretical analysis as well as
case studies were presented to demonstrate the effectiveness of
these proposed algorithms.

With respect to future works, the case that the total power
demand Dt+1 is decided by the feasible power output Pt at time
slot t should be considered. Some constraints such as energy
storage can also be considered in the future.

APPENDIX

A. Preliminaries on Convex Analysis

The following definitions and properties about convex set,
convex function, and projection can be found in [32].

A set Ω ⊂ Rn is called a convex set, if αx + (1− α)y ∈
Ω∀x, y ∈ Ω∀α ∈ [0, 1]. A function f(·) : Ω→ R is called to
be a convex function, if f(αx + (1− α)y) ≤ αf(x) + (1−
α)f(y)∀x, y ∈ Ω∀α ∈ [0, 1]. If f(·) : Ω→ R is differentiable
at x ∈ Ω, its gradient, denoted by ∇f(x). f(·) : Ω→ R, is
called differentiable on Ω, if f(x) is differentiable at any point
x ∈ Ω. Denote NΩ(x) as the normal cone of Ω at x, that is,
NΩ(x) = {y : 〈y, x′ − x〉 ≤ 0∀x′ ∈ Ω}.

For a closed set Ω, define the projection of x onto Ω
is PΩ(x) = argminy∈Ω‖x− y‖. The common properties of
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projection are as follows:

〈x− PΩ(x), PΩ(x)− x′〉 ≥ 0∀x′ ∈ Ω∀x ∈ Rn

‖x−PΩ(x)‖2+‖PΩ(x)−x′‖2 ≤ ‖x−x′‖2 ∀x′ ∈ Ω∀x ∈ Rn .

Further, the normal cone NΩ(x) can also be defined as
NΩ(x) = {y : PΩ(x + y) = x}.

B. Algebraic Graph Theory

The interaction topology of a system consisting of N units
can be described by a graph. Let G = (V, E) be a graph with
the set of nodes (i.e., units) V = {1, 2, . . . , N}, the set of edges
E ⊆ V × V . A directed edge eij ∈ E represents that node i can
get the information from node j; the graph G is said to be
undirected when eij ∈ E if and only if eji ∈ E . The in-degree
neighbors Ii of node i is the set of nodes who can send
their information to node i, i.e., Ii = {j|eij ∈ E}. A path is
a sequence of distinct nodes in V such that any consecutive
nodes in the sequence correspond to an edge of graph. The
undirected graph is connected, if there exists at least one path
between any two nodes. The adjacency matrix A has the entries
aij = 1 if eij ∈ E , and aij = 0, otherwise. The Laplacian matrix
L = [lij ]N×N of G = (V, E) is defined as

lij =

⎧
⎨

⎩

− aij , i �= j

∑N

k=1,k �=i
aik , i = j

.

Lemma 1: [7] Assume that the undirected graph G is
connected, the first-order discrete-time protocol

x[k + 1] = x[k]− εLx[k] (18)

where ε ∈ (0, 1
maxi li i

), achieves asymptotic average consensus,

i.e., limk→∞ xi [k] = 1
N

∑N
i=1 xi [0]∀i ∈ {1, 2, . . . , N}, where

xi [k] is the ith element of x[k].

C. Reinforcement Learning

Reinforcement learning is a framework of the problem of
learning from interaction to achieve a goal. The learner is called
the agent, which interacts with the environment by getting some
immediate reward as a consequence of taking an action. Rein-
forcement learning with discrete states and actions is usually for-
mulated as a Markov decision process (MDP). The MDP is de-
fined as a tuple {S,A, T ,R, γ}, whereS is the set of states,A is
the set of actions. T : S ×A× S → [0, 1] is the state transition
function, R : S ×A× S → R represents the reward function,
and γ ∈ [0, 1] is a discount factor. A policy π : S ×A → [0, 1]
is a probability distribution over actions for each state. The state-
action-value function qπ (s, a) under policy π is defined as the
expected discount of the long-term reward to the agent at the ini-
tial state s, taking action a, and then, following policy π. The aim
of reinforcement learning is to find the optimal policy π∗. The
policy π∗ to maximize (minimize) cumulative reward is called
to be the optimal policy, if qπ ∗(s, a) ≥ qπ (s, a)(or qπ ∗(s, a) ≤
qπ (s, a))∀s ∈ S, a ∈ A∀π. In standard reinforcement learning

problem, the environment is unknown, i.e., the transition func-
tion T and reward functionR are unknown but static.

For large state and action spaces, function approximation in
reinforcement learning is usually employed. Let J(s, a, θ) be
an approximate function of the state-action-value function. We
assume that J(s, a, θ) is a differential function of parameter
vector θ for all s ∈ S, a ∈ A. The update of θ is as follows:

θ ← θ + κδ∇θJ(s, a, θ)

where κ ∈ (0, 1) and δ is the one-step temporal difference (TD)
error given by

δ = r + γJ(s′, a′, θ)− J(s, a, θ)

where r is immediate reward after taking action a on state s, γ is
the discount factor, and (s′, a′) is state-action pair immediately
after (s, a).
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