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Abstract

Reinforcement Learning (RL) deals with problems
that can be modeled as a Markov Decision Process
(MDP) where the transition function is unknown.
In situations where an arbitrary policy 7 is already
in execution and the experiences with the environ-
ment were recorded in a batch D, an RL algorithm
can use D to compute a new policy /. However,
the policy computed by traditional RL algorithms
might have worse performance compared to 7. Our
goal is to develop safe RL algorithms, where the
agent has a high confidence that the performance
of 7’ is better than the performance of 7 given D.
To develop sample-efficient and safe RL algorithms
we combine ideas from exploration strategies in RL
with a safe policy improvement method.

1 Model-based Exploration in RL

To find the optimal policy quickly, the R-max algorithm
[Brafman and Tennenholtz, 2002] incentivizes the agent to
explore unknown parts of the environment in early stages of
the learning process. To do so, it keeps track of a set of state-
action pairs considered known:

K, ={(s,a) € S x A|n(s,a) >m}, (1)

where n(s,a) is the number of times the agent has applied
action a in state s, and m is a threshold to consider a state-
action pair known.

Often, the state space .S can be represented by a set of state
factors X = {Xi,---, X|x|} where each factor has a do-
main Dom(X;). When these factors are highly independent,
a Factored MDP (FMDP) can compactly represent an MDP,
using a dependence function D : S x A x X — 7 that indi-
cates the commonalities among different factors, where 7 is a
set of dependency identifiers [Strehl, 2007]. The probabilistic
transition function can be compactly represented:

|X|
T(s'|s,a)= HP(S; | D(s,a,X;)),
i=1
where s, is the value of X in the next state s’.
The factored R-max algorithm is a direct extension of R-
max for FMDPs [Guestrin et al., 2003]. It maintains an
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estimate of each transition component distribution and de-
cides which state-action pairs are known or not according
to these estimates. This algorithm only considers as known
parts of the environment where the estimate of all transition
components have been experienced enough times. In par-
ticular, given a minimum number of samples for each fac-
tor m = (myq, ... ,m|x|) and the counters of each transition
component n(j), the set of known state-action pairs is con-
structed as follows:

Kz ={(s,a) € S x A|VX;:n(D(s,a,X;)) >m;}. (2)

2 Safe Policy Improvement

Safe Policy Improvement (SPI) addresses the question of how
to compute a new policy 7 that outperforms the behavior pol-
icy 7, with high confidence 1 — 4, given a batch of previous
interactions D and an admissible error (.

The SPI by Baseline Bootstrapping (SPIBB) framework is
a model-based approach that guarantees safety by bootstrap-
ping unknown parts of the approximated model with the be-
havior policy ;, [Laroche et al., 2019]. Formally, the set of
bootstrapped state-action pairs ®8B,,, is the complement of the
set K(,, (1). This way, the SPIBB algorithms guarantee to
perform at least as well as the behavior policy and do not rely
on a safety test, in contrast to other SPI algorithms.

The policy-based 11;,-SPIBB algorithm attributes the same
probability to bootstrapped pairs as the behavior policy,
which restricts the policy space to

I, = {7 | m(s,a) = mp(s,a) : Vr € II,V(s,a) € B, }. (3)
Laroche et al. [2019] prove that if m = % log M then
the II,-SPIBB algorithm is safe, where € is a bound on the
L distance between the estimated transition function and the
true transition function, that depends on the precision param-
eter (.

The I1,-SPIBB algorithm can change the policy if a subset
of the state-action pairs is well known, therefore it ca be less
conservative than other SPI algorithms. Nevertheless, when
the problem is described by a set of factors, m grows expo-
nentially in the number of factors. In the next section we
show that, by taking in account the independence between
features, it is possible to exploit the factored representation
of the problem using a minimum number of samples that is
only polynomial in the number of parameters of the FMDP.
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3 Main Contributions

To exploit the structure of an FMDP we proposed the Fac-
tored II,-SPIBB algorithm, an adaptation of II,-SPIBB al-
gorithm for factored environments [Simdo and Spaan, 2019].
This algorithm takes an extra input: the dependency func-
tion D that determines which transition components must be
estimated.

First, the algorithm estimates each transition component
according to D using the same counters as the factored R-
max algorithm. Second, it redefines the set of state-action
pairs to be bootstrapped B, as the complement of the set of
known state-action pairs K (2). In this way, given 8,5 and
the behavior policy 7, the constrained policy space II; can
be computed using (3). Finally, the algorithm searches for
an optimal policy in II;, however, in this case the transition
function 7'(- | s, a) is estimated according to the estimate of
each transition component.

The theoretical analysis shows that it is possible to bound
the probability that the Factored II,-SPIBB algorithm com-
putes a policy worse than the behavior policy. To do so it is
necessary to define 773 such that

2|X|? ‘Q|2\Dom(Xi)l
= —log 5
Therefore, given a desired e, the term |A||S| is replaced by
|Q| and |S| is reduced to |Dom(X;)|. This comes at the
lower cost of adding a term polynomial in the number of vari-
ables | X|? (necessary to bound the error of each component
distribution). In domains where the features are highly inde-
pendent from each other these results reduce significantly the
number of samples necessary to improve the behavior policy.

Next, we relax the assumption that the dependency func-
tion D is known a priori, by proposing the Structure Learn-
ing 1I,-SPIBB that integrates different structure learning al-
gorithms [Diuk et al., 2009; Strehl et al., 2007] in the SPIBB
framework.

The empirical analysis shows a large difference in the num-
ber of samples necessary to change the behavior policy of
flat SPI algorithms and their factored counterparts. In the
SysAdmin domain (Figure 1), the Factored II,-SPIBB algo-
rithm manages to compute policies better than the behavior
policy given batches with only 100 trajectories, in contrast to
the I1,-SPIBB algorithm, that only shows improvement when
|D| > 2000. Finally, we find that even without the prior
knowledge about the dependency function D, the Factored
11,-SPIBB algorithm equipped with the structure learning k-
meteorologists algorithm can also exploit the independence
between features, finding improved policies with 1000 trajec-
tories.
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4 Future Work

Some directions for future work include: extension of other
model-based safe RL methods to factored environments, such
as the robust approach by Petrik et al. [2016]; exploitation
of other types of structure in the SPIBB framework such as
decision trees and relation between objects; and development
of a general SPIBB framework to be applied under different
assumptions of prior knowledge.
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Figure 1: Average performance of the policy computed by different
algorithms (y-axis). The z-axis shows the number of trials in D.
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