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Abstract

In this thesis the stored energy and its fluctuations of a central spin battery with nearest-
neighbour interactions between the battery spins are investigated. Using analytical ex-
pressions, it is shown that for 2 battery spins and equal strength in the flip-flop interaction
g and nearest-neighbour interaction J , the fluctuations are minimal whenever the bat-
tery is maximally charged when taking at least four charge spins. Similarly, whenever
the formed envelopes of the energy have a zero, the fluctuations have a global maximum.
In the same limit, it could also be seen that an increase of the charge spins Nc and
spin-ups m, resulted in a higher global maximum of the stored energy. Furthermore for
2 battery spins, taking the limit J ≫ g results in a situation where the battery cannot
be charged at all, whereas taking the limit g ≫ J results in a central spin battery where
no nearest-neighbour interactions are present; its stored energy as a function of time is
a single cosine function, that is always able to reach its theoretical maximum.
Similar results were found for systems with more than 2 battery spins. Increasing J with
constant g resulted in a decrease of the global maximum of the energy, dropping from its
theoretical maximum to its minimum. Opposite behaviour could be seen when increasing
g with constant J . Whenever the global maximum of the energy crossed the line E = 0,
the fluctuations at the same moment in time formed a peak.
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Chapter 1

Introduction

It is only around a century ago when people found out that the classical laws we humans
experience in our daily lives do not apply at the level of subatomic particles. Great physi-
cists, such as Werner Heisenberg and Albert Einstein, laid the foundation of quantum
theory, such as the unexpected behaviour of the electron: from uncertainty in position
and velocity, to both particle and wave-like behaviour. With the basis of quantum theory,
a whole new branch of physics was yet to be discovered.
Many phenomena within quantum theory were compared with its classical counterparts.
An important example was the quest to find similar applications of thermodynamics in
the quantum world. Classical thermodynamics was found to be useful for already a long
time due to its description of systems with an extremely large amount of particles in
only a small number of macroscopic quantities. The question arose how the simplifica-
tion of systems containing those amounts of particles could be translated to the quantum
world. In the classical and quantum world, average values are used to describe systems.
However, when decreasing the size of a classical system, thermal fluctuations in these
quantities are noticeable. These are present in the quantum regime as well, but in this
case these fluctuations mainly have a quantum origin [9]. Possible applications of quan-
tum thermodynamics that are studied theoretically are e.g. quantum thermal machines,
quantum refrigerators and quantum batteries. They all have a similar purpose as their
classical counterpart, but their mechanism is based on quantum phenomena [9].
A quantum battery is a quantum system in which energy can be stored, which can be
extracted in the form of work. They are of high interest due to their possible high perfor-
mance compared to their classical counterparts, i.e. faster charging time and potential
loss-free storage [6]. In this thesis, a so-called central-spin quantum battery is considered.
This is a quantum battery based on the central spin model [1], a theoretical model that
can be calculated exactly and can be realised by e.g. quantum dots [10, 11].
A central-spin battery consists of a battery part, containing Nb central-spins, and a
charge part, with Nc bath-spins. Central spins, from now denoted as battery spins, serve
as the battery’s core components, responsible for storing and transferring energy within
the system. On the other hand, bath spins, designated as charge-spins, act as the en-
ergy source, interacting with the battery spins through the flip-flop interaction. This
interaction results in the interchange of the quantum state of the two interacting spins.
Both battery- and charge-spins are spin-1/2 particles. If the battery-spins are prepared
such that all of them are spin-down, and charge-spins are prepared such that a number
of them are spin-up, then the charge-spins are able to elevate the battery-spins to an
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excited state. In this way, the charger spins ’charge’ the battery spins, as the increase of
energy within the battery part of the system can be used later in the form of extracted
work.
In the model described in this report, also nearest-neighbour interactions between the
battery spins are present. It is a type of coupling that only occurs between two nearest-
neighbour battery spins. This distinction separates the flip-flop interaction from the
nearest-neighbor interaction, as the former operates between any battery and charge
spin. Research on the influence of the nearest-neighbour interactions includes the impact
on the stable energy [4] and the charging process [12] of a quantum battery. The follow-
ing figure contains a model of a central spin quantum battery, with indications in what
direction the different interactions act. See the caption for more information.

Figure 1.1: This figure illustrates the mechanics of a central spin quantum battery. It contains a
battery part (orange circle) and charge part (green ring). Spin-up states are represented by a blue
arrow and spin-down states by a black arrow. The battery spins interact with the charge spin by
means of the flip-flop interaction (red arrows). This takes place between any pair of battery and
charge spin. The battery spins interact with each other as well by means of the nearest-neighbour
interaction (purple arrows). This only takes place between two consecutive spins.

In quantum mechanics, while certainty is attainable under specific conditions, Heisen-
berg’s uncertainty principle emphasizes the general uncertainty in quantum phenomena.
As the stored energy within the battery is established by means of quantum phenomena,
it has an uncertainty as well and thus there exist fluctuations in the stored energy. These
are undesired as they would reduce the performance of quantum batteries, i.e. incomplete
charging and reduction of the charging power [3].
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Figure 1.2: A quantum battery can be in a superposition of different states (left two batteries).
This results in fluctuations of the energy, which is illustrated on the right.

It is the goal of this project to investigate the stored energy E and its fluctuations Σ2

of a central-spin battery, which battery spins experience nearest-neighbour interactions.
Both quantities can be computed using well known tools in quantum theory, such as the
Hamiltonian and the density matrix. However, all concepts will be explained and the
calculations are done step-by-step. For this, the report is structured as follows: chapter 2
contains the theoretical framework necessary for the calculations of the stored energy and
its fluctuations. This chapter starts with section 2.1, which describes important concepts
and properties of spin-1/2 systems, such as the spin operators and its eigenstates. This
will be done for both individual spin-1/2 particles and multiple particle systems. Section
2.2 introduces the Hamiltonian and (reduced) density matrix, and shows how these can
be used to compute E and Σ2. The final section 2.3 of chapter 2 the Hamiltonian of
a central-spin quantum battery is given and the method of finding the reduced density
matrix of a quantum system using the given Hamiltonian is shown. The results in chapter
3 consists of two parts. The first, section 3.1, shows analytical calculations for a CSQB
with 2 battery spins. This is the only case for which solutions could be calculated in an
exact fashion. To extend these results to a larger system with more than 2 battery spins,
numerical calculations were used of which the results are given in section 3.2.



Chapter 2

Theoretical Framework

2.1 Spin-1/2 Systems

As the quantum battery described in this thesis is a central-spin battery, it is important
to introduce spin-1

2
systems. An introduction will be given on spin, the associated Pauli

matrices and their corresponding eigenvectors and eigenvalues. Initially, only single spin-
1
2
particles are considered, after which the discussed concepts will be extended to multiple

particle systems.
It is important to note that in this report ℏ = 1. So for the calculations, natural units
have been used.

2.1.1 Spin-1/2 Particles and Their States

Spin-1
2
systems consists of spin-1

2
particles. These particles have spin number s = 1

2
with

an associated quantum spin number ms. For ms we have ms ∈ {1
2
, −1

2
}, where the values

correspond with a different orientation of the spin. 1
2
corresponds with spin-up and −1

2

with spin-down. In nature, the class of particles that have spin-1
2
are called fermions.

There are different notations to write the eigenstates of systems. It is possible to do
this using vectors or bra-ket notation. I.e. we can denote spin-up and spin-down states
respectively as

|↑⟩ =
(

1
0

)
and |↓⟩ =

(
0
1

)
. (2.1)

Important matrices associated with spin-1
2
particles are the famous Pauli matrices. They

are given by

σx ≡
(

0 1
1 0

)
, σy ≡

(
0 −i
i 0

)
, σz ≡

(
1 0
0 −1

)
. (2.2)

Using the Pauli matrices, one can get the spin operators using the expression

sα ≡ ℏ
2
σα =

1

2
σα, α ∈ {x, y, z} (2.3)

Spin operators important for this thesis are the ladder operators, given by s± = sx± isy.
As the spin up and down states are defined in the z-direction, it follows that the sz

operator gives the energy value of the given state: sz |↑⟩ = 1
2
|↑⟩ and sz |↓⟩ = −1

2
|↓⟩,
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2.1. SPIN-1/2 SYSTEMS 6

which means ±1
2
are the eigenvalues of the eigenstates |↑⟩ and |↓⟩.

The σ+ operator increases the quantum spin number of a state by 1, while the s− operator
decreases the quantum number by the same amount. It also gives the energy level splitting
between both states: s+ |↓⟩ = |↑⟩ and s− |↑⟩ = |↓⟩. Note, however, that s+ returns zero
if it operates on spin-up state, as the state can not be any higher. Idem for s− but for
the lowest possible state.

2.1.2 Tensor Product

An important mathematical operation for the construction of bases with multiple parti-
cles is the tensor product. It is used to construct the Hilbert space of composite quantum
systems. When applying the operation on am×nmatrixA and p×q matrixB, amp×nq
matrix is formed given by:

A⊗B =

 a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 . (2.4)

When applying it on a n-dimensional vector v and m-dimensional vector w, we get the
following product mn-dimensional vector:

v ⊗w =


v1w
v2w
...

vnw

 (2.5)

When the tensor-product is applied on two quantum systems, it is applied on the bases
of these systems, and thus its eigenstates. To demonstrate this, suppose we have two
Hilbert subspaces A and B. The two spaces combined using the tensor product produces
another Hilbert subspace A⊗ B. Its states are given by

|α⟩ ⊗ |β⟩ = |α⟩ |β⟩ , |α⟩ ∈ A, |β⟩ ∈ B.

The tensor product will be used to construct the basis used for this research.

2.1.3 Multiple Particle Systems

When considering systems with multiple particles, there are various options for selecting
bases for the eigenstates. One common choice is the standard basis, which serves as a
foundation for constructing other bases. For instance, in a quantum system containing
a single spin-1

2
particle, the standard basis is {(1 0)T , (0 1)T}. However, for this thesis,

an alternative basis has been used, namely a reduced one (this will be explained further
shortly). The motivation behind this decision lies in the impracticality of the standard
basis due to its exponential growth in size. In a system composed of N spin-1

2
particles,

the standard basis expands to a size of 2N , making calculations inconvenient for larger
systems. Therefore, picking a different basis is desired, as it may simplify calculations
for other quantities essential to this thesis.
To keep the amount of calculations tractable, we can consider a subspace that contains
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all states that are symmetric under the exchange of particles, the so-called Dicke-states.
Consider N particles of which m have spin-up. The Dicke state describing this system is
given by

|m⟩ ≡ 1√(
N
m

) ∑
k

Pk(|↑1, · · · , ↑m, ↓m+1, · · · , ↓N⟩), (2.6)

where
(
N
m

)
= N !/[m!(N −m)!] and Pk is the notation for all distinct permutations of the

given state. A basis used for a system containing N particles, spanned by Dicke states
only increases with size N + 1. This is much smaller compared to the standard basis. It
is also to be expected, as the standard basis contains each individual permutation when
distributing m spin-ups over N spins. When describing all of these permutation as a
single state, a Dicke state, the size of the basis is reduced dramatically.
As the central spin battery contains multiple battery and charge spins, we must define
the spin-operators for multiple particle systems. For N particles, the spin-operators are
defined as

Sα =
N∑
j=1

sαj α ∈ {x, y, z}, (2.7)

where sαj is the spin operator of type α acting on particle j.
Suppose there are N spin-1/2 particles present, of which m have spin up. In that case,
the spin number is given by s = N/2 and the quantum spin number is given by ms =
m/2 − (m − N)/2 = m − N/2. In that case the necessary spin operators for this these
are given by:

Sz |m⟩N = (m− N

2
) |m⟩N ,

S+ |m⟩N =

√
N

2

(
N

2
+ 1

)
−

(
m− N

2

)(
m− N

2
+ 1

)
|m+ 1⟩N ,

S− |m⟩N =

√
N

2

(
N

2
+ 1

)
−

(
m− N

2

)(
m− N

2
− 1

)
|m− 1⟩N ,

(2.8)

with |m+ a⟩, a ∈ {1, 0,−1} being Dicke states [5, p. 166-168].

2.2 Energy and Fluctuations of a Quantum System

In order to calculate the energy stored in a quantum system, and to find the fluctuations
of the energy, there are some concepts that need to be discussed first. These concepts
are the Hamiltonian of a quantum system, the reduced density matrix and how it can be
found using the state of a quantum system. Eventually the formulas which compute the
energy and fluctuations of a quantum system are given.

2.2.1 Density Matrix and Reduced Density Matrix

The density matrix is a convenient way of describing a mixed state of a quantum system.
E.g. for a quantum battery with both battery and charge cells that interact with one
another, it is impossible to describe the system by using only a single ket vector. In order
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to still describe the system in a practical way, the density matrix comes in useful. It is
also required to calculate the stored energy and its fluctuations.
The density matrix ρ is defined by

ρ =
N∑
i

pi |ψi⟩ ⟨ψi| , (2.9)

where pi is the probability that the system is in state |ψi⟩.
Using the density matrix, one is able to easily calculate the expected value of an observ-
able A within a system by the following formula

⟨A⟩ =
N∑
i

pi ⟨ψi|A |ψi⟩ = Tr(ρA), (2.10)

with the trace of a N ×N matrix A is given by

Tr(A) ≡
N∑
i=1

Aii. (2.11)

Furthermore, suppose a quantum system is composed of two systems A and B. Let ρ
be the density matrix of the entire system. Then we can find the density matrix of only
system A, called the reduced density matrix, by using the partial trace:

ρA = TrB(ρ). (2.12)

With the partial trace, one can filter out one subsystem to be left with the (reduced)
density matrix of the other subsystem. This operation can be used when a system
contains multiple subsystems as well. By tracing over the subsystems that are not of
interest, one is left with the reduced density matrix of the desired subsystems [7].

2.2.2 Hamiltonian, Energy and Fluctuations

The Hamiltonian is a mathematical operator that is a key concept for quantummechanics.
It describes the energy of a quantum system, but also how a state of a system changes
over time according to Schrödinger’s equation:

iℏ
∂

∂t
|ψ⟩ = H |ψ⟩ . (2.13)

As mentioned in the previous section, the density matrix can be used to compute the
expected value of an observable. As the Hamiltonian corresponds with the energy of a
system, it may be clear that the stored energy of a quantum system E can be found by

E = Tr(ρH). [8] (2.14)

The fluctuations Σ2 of the stored energy can be computed as follows:

Σ2 = Tr(ρH2)− (Tr(ρH))2. [3] (2.15)
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2.3 Central Spin Quantum Battery

In this section, the mathematical foundation of the central spin battery will be laid. First
the Hamiltonian for this system will be given, after which it is shown how one can find
the reduced density matrix, the stored energy and its fluctuation using this Hamiltonian.

The total Hamiltonian H of a quantum battery consists of four sub-Hamiltonians. One
that describes the nearest-neighbour interaction within battery part, one that describes
the energy splitting of the battery part, one that describes the charge part and one that
describes the interaction between the two systems. Suppose one has Nb battery spins, Nc

charge spins and m total spins-up. Assume that Nc ≥ m ≥ Nb. Then the Hamiltonian
is given by:

H = H0
b +H ′

b +Hc +Hb−c

H0
b =

ωb

2
Sz
b

H ′
b = J

Nb−1∑
i=1

(
s+i s

−
i+1 + s−i s

+
i+1

)
Hc =

ωc

2
Sz
c

Hb−c = g
(
S+
b S

−
c + S−

b S
+
c

)
(2.16)

where ωb,c/2 is the energy splitting of the battery and charge spins, J is the strength
of the nearest-neighbor interaction between the battery spins, g is the strength of the
flip-flop interaction between the battery and charge spins, and the Sα

b,c and sαb are the
spin operators as given in Eq. (2.3) and (2.8).
The quantum battery is prepared such that at t = 0 the battery part is in its ground
state. This means that all battery cells are spin-down: |0⟩b = |↓1, ↓2, · · · , ↓Nb

⟩. The
charger is prepared with all m spin-ups and, if applicable, the rest of the cells spin-
down. The corresponding state is |m⟩c, which is defined as in 2.6. This gives the initial
state |0⟩b ⊗ |m⟩c = |0⟩b|m⟩c. Assume that at all times, the total number of spin-ups of
the whole system remains equal to m. From this it follows that, supposing the battery
contains j < m spins-up, the charger must contain m− j spins-up resulting in the state
|j⟩b|m− j⟩c. Going over all the possible combinations gives the basis

Hm = {|0⟩b|m⟩c, |1⟩b|m− 1⟩c, · · · , |Nb⟩b |m−Nb⟩c} . (2.17)

We can write the Hamiltonian in matrix form, which is more convenient than the form
in Eq. (2.16). We find for the Hamiltonian:

H =


b0 u1
u1 b1 + n1J u2

. . . . . . . . .

uNb−1 bNb−1 + nNb−1J uNb

uNb
bNb

 (2.18)
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where nj is the total number of contributions J by the Dicke state |j⟩b and uj and bj are
given by

uj = ⟨m− j|c⟨j|b (Hb−c) |j − 1⟩b|m− j + 1⟩c = ⟨m− j + 1|c⟨j − 1|b (Hb−c) |j⟩b|m− j⟩c
= g

√
j(Nb − j + 1)(Nc −m+ j)(m− j + 1),

bj = ⟨m− j|c⟨j|b
(
H0

b +Hc

)
|j⟩b|m− j⟩c =

ωb

2
(j − Nb

2
) +

ωc

2
(m− j − Nc

2
).

(2.19)
The coefficients ui and bi are found using the spin operators stated in Eq. (2.8) and
performing the bra-ket calculations shown in Eq. (2.19). The Hamiltonian and its
coefficients are similar to the one given by Liu et al. [8], except it now contains nearest-
neighbour interaction terms.
As mentioned, nj is the total number of contributions J by the Dicke state |j⟩b. It is
the number of reversals in a given quantum state, taking into account all the possible
combinations for the given state and is a result of the summation in H ′

b in Eq. (2.16)
and the summation over all possible combinations, given in the Dicke state Eq. (2.6). In
this case, by ”reversal,” we mean when two nearest-neighbour battery spins are opposite
oriented, so when we have [↑ ↓] or [↓ ↑], where the two arrows are nearest-neighbour
spins. nj can be found as follows: take for example the Dicke state |2⟩b with N = 4. The(
4
2

)
= 6 possible combinations of this state are

1. [↑ ↑ ↓ ↓] → nrev = 1

2. [↑ ↓ ↑ ↓] → nrev = 3

3. [↑ ↓ ↓ ↑] → nrev = 2

4. [↓ ↑ ↑ ↓] → nrev = 2

5. [↓ ↑ ↓ ↑] → nrev = 3

6. [↓ ↓ ↑ ↑] → nrev = 1

where the total number of reversals nrev of each state is given next to the respective state.
In this case, the number of contributions is n2 =

∑
i nrev,i = 12. If N is small, the number

of contributions can still be calculated by hand. For larger N , however, the number of
combinations and thus values of nj become quite large, so it can be only computed using
a computer program.
Now that we have found a matrix description of H, we can diagonalize it to obtain the
form H = UDU †, where U is an unitary matrix and D a diagonal matrix. The wave
function of the entire system can be found by writing ψ(t) = Ue−iDtU †(1 0 . . . 0)T .
Since we are only interested in the stored energy and fluctuations in the battery spins,
we need the reduced density matrix of the battery part of the system. We can find this
using the wave function and the following expression:

ρb(t) = Trc(|ψ(t)⟩ ⟨ψ(t)|)
= |ψ1(t)|2 |0⟩ ⟨0|+ · · ·+ |ψNb+1(t)|2 |Nb⟩ ⟨Nb| .

(2.20)

From the definition one can see that the reduced density matrix is a diagonal matrix.
It has the characteristic that each element shows the occupation of its corresponding
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state: ρ11 is the probability of finding the system in the first state, or the state where all
battery spins are spin-down. ρ22 has a similar definition, except it is for the state where
one battery spin has spin-up. This continues for the diagonal elements of the matrix
until ρNbNb

, which is the probability of having all battery spins spin-up.
Finally, the stored energy and the fluctuations in the battery part of the system can be
found by the following expressions [8, 3]:

Eb(t) = Tr(H0
b ρb(t)),

Σ2
b(t) = Tr((H0

b )
2ρb(t))− (Tr(H0

b ρb(t))
2,

(2.21)

with H0
b being defined in matrix form as: H0

b = Diag
(
b′0 b

′
1 . . . b

′
Nb

)
, with b′j = ωb

2
(j −

Nb/2). Note that of the entire Hamiltonian H (2.16) only H0
b is in Eq. (2.21). This is

because only the energy that is stored in the battery spins when they are in their excited
states can be extracted in the form of work. Hence all other terms in H are neglected as
they do not contribute any energy that can be counted as stored energy.



Chapter 3

Results

The results are split into two parts. The first part is the case Nb = 2. This is the only
case of Nb where H can be diagonalized analytically, and thus where ρb(t), Eb(t) and
Σ2

b(t) can be computed in an exact fashion. For Nb > 2, a python program is used to do
similar analysis as done for Nb = 2.
To check whether the battery spins are all able to be spin-up at the same time when
considering specific values for the parameters given in Eq. (2.18), we can calculate the
theoretical maximal energy of a system. From the definition of the reduced density
matrix, all battery spins are spin-up when ρNbNb

(t) = 1. Call the reduced density matrix
for this condition ρmax

b , which is given by

ρmax
ij =

{
1 for i = j = Nb

0 else
(3.1)

In this manner we can calculate the maximum of the energy within the battery for general
Nb. We have

Emax
b = Tr(ρmax

b H0
b ) =

ωbNb

4
. (3.2)

This means that the maximum of the stored energy is linear with the size of the battery
part of the system. Furthermore, if ρb(t) = ρmax

b , then the fluctuations are equal to zero,
because under these conditions we have

Tr(ρmax
b H2

b ) = (Tr(ρmax
b H0

b ))
2

It is important to understand the meaning of the result found in equation (3.2). There
are multiple ways to interpret it, of which one is that it is the largest eigenvalue of the
battery part of the system (so the largest eigenvalue of H0

b ). Another way it can be
interpreted is that it is the theoretical maximum value that Eb(t) as given in Eq. (2.21)
can reach. As will be seen momentarily, the energy as function of time is in general
a trigonometric function that has values above and below zero. Emax

b is the maximum
possible value above zero of the energy.
A similar analysis can be done for the minimum possible energy. This is when the system
is in its ground state, or when all the battery spins are spin-down, and thus ρ11(t) = 1.
In that case, the minimum energy Emin

b is given by

Emin
b = −ωbNb

4
= −Emax

b (3.3)

12
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As with the maximum energy, the fluctuations are zero when the battery is in its ground
state.
To check whether these values are correct, we can compute Emax

b and Emin
b for Nb = 1,

and calculate its difference:
Emax

b − Emin
b =

ωb

2
,

which is equal to the energy splitting given in H0
b in Eq. (2.16).

3.1 Case Nb = 2

In order to simplify the calculations, assume that ωb = ωc ≡ ω. Then b1 = b2 = b =
ω/2(m− 1−Nc/2). H and H0

b are given by

H =

 b u1 0
u1 b+ 2J u2
0 u2 b

 , H0
b =

ω

2

 −1 0 0
0 0 0
0 0 1

 . (3.4)

Here u1, u2 and b are defined as in Eq. (2.19).
To calculate the reduced density matrix ρb(t), we use the method described in the previous
section. We start of by diagonalizing H such that H = UDU †.
We find D = Diag(λ1 λ2 λ3), where

λ1 = b,

λ2 = b+ J −
√
J2 + u21 + u22,

λ3 = b+ J +
√
J2 + u21 + u22.

(3.5)

Write A ≡ J2 + u21 + u22. We find for U :

U =
1√

2
√
A (A− J2)


√
2
√
Au2 u1

√√
A+ J u1

√√
A− J

0
(
J −

√
A
)√√

A+ J
(
J +

√
A
)√√

A− J

−
√

2
√
Au1 u2

√√
A+ J u2

√√
A− J


(3.6)

The eigenvectors of H are normalized in such a way that all the vectors share a common

factor of 1/
√

2
√
A(A− J2).

For the wavefunction of the entire system ψ(t), we find:

ψ(t) =
1

2
√
A (A− J2)


2
√
Au22e

−iλ1t + u21

[(√
A+ J

)
e−iλ2t +

(√
A− J

)
e−iλ3t

]
(A− J2)u1

(
e−iλ3t − e−iλ2t

)
u1u2

[
−2

√
Ae−iλ1t +

(√
A+ J

)
e−iλ2t +

(√
A− J

)
e−iλ3t

]

(3.7)

Using the expression given in Eq. (2.20), we find for ρb:

ρb(t) = ρ11(t)|0⟩⟨0|+ ρ22(t)|1⟩⟨1|+ ρ33(t)|2⟩⟨2| (3.8)
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where

ρ11(t) =
1

A (A− J2)2

{
Au42 + u41

[
J2 +

(
A− J2

)
cos2(

√
At)

]
+
√
Au21u

2
2

[(√
A+ J

)
cos

((√
A− J

)
t
)
+
(√

A− J
)
cos

((√
A+ J

)
t
)]}

ρ22(t) =
u21
A

(
1− cos2

(√
At

))
ρ33(t) =

u21u
2
2

A (A− J2)2

{
A+ J2 −

√
A
[(√

A+ J
)
cos

((√
A− J

)
t
)
+
(√

A− J
)
cos

(
(
√
A+ J)t

)]
+
(
A− J2

)
cos2

(√
At

)}
.

(3.9)
ρ11(t) is the probability of finding the battery in the ground state (both battery spins
are spin-down) at time t, ρ22(t) is the probability of finding the battery such that one
battery spin is spin-up and the other is spin-down at time t and ρ33(t) is the probability
that both battery spins are spin-up.
When substituting J = 0 in Eq. (3.9), the same result is obtained as found by Liu et al.
[8]. Furthermore,

∑3
i=1 ρii(t) = 1 for all t, ρ11(0) = 1 and ρ22(0) = ρ33(0) = 0.

Using these coefficients we can calculate the stored energy and its fluctuations with

Eb(t) =
ω

2
(ρ33(t)− ρ11(t))

Σ2(t) =
ω2

4
(ρ11(t)(1− ρ11(t)) + ρ33(t)(1− ρ33(t))) + ωρ33(t)ρ11(t)

(3.10)

Unfortunately, the expressions for ρb(t) are quite long with inconvenient terms for general
J , g, Nc and m. The expressions only get worse once we fill them in Eq. (3.10). However,
the formulas for these last two quantities reduce to simpler expressions if we let u1 =
u2 ≡ u. This is the case for Nc = 2(m − 1), where we can choose any m ≥ 2. In that
case, the fluctuations and energy expressions reduce to

Eb(t) = − ω

4
√
A

[(√
A+ J

)
cos

((√
A− J

)
t
)
+
(√

A− J
)
cos

((√
A+ J

)
t
)]

Σ2
b(t) =

ω2

4A

(
u2 + J2 + u2 cos2

(√
At

))
− Eb(t)

2

=
ω2

32A

(
4A− 2

(
A− J2

)
cos (2Jt)−

(√
A+ J

)2

cos
(
2
(√

A− J
)
t
)

−
(√

A+ J
)2

cos
(
2
(√

A+ J
)
t
))

(3.11)

Eb(t) has extrema at t = jπ√
A
and t = π

2J
(1+2j). Only the values t = jπ√

A
are also extrema

for the fluctuations. Unfortunately, these extrema are not consistent in terms of maxima
and minima. The extrema alternate between maxima and minima for different values of
j, but this also happens for the same values of j and different values of Nc and m.

3.1.1 Special Case J = g ≡ h

Using the constraint Nc = 2(m − 1) we can find even simpler expressions than given in
Eq. (3.11), if we consider the case J = g ≡ h. When we substitute Nc = 2(m − 1) in
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u2 = 2m(Nc −m+ 1)h2, we get u2 = 2(m2 −m)h2. We know furthermore, if J = g = h,
that A = (2M + 1)h2, where

M ≡ u2

g2
=
u2

h2
=

(√
2m(Nc −m+ 1)

)2

. (3.12)

Notice that M = 2(m2 − m). We obtain 2M + 1 = 4m2 − 4m + 1. Finally, using the
transformation m → n + 1, n ∈ N, we get 2M + 1 = 4m2 − 4m + 1 = 4n2 + 4n + 1 =
(2n+ 1)2 = k2, k ∈ N. This means that A can be written as A = k2h2 for

m = n+ 1

Nc = 2(m− 1) = 2n n ∈ N
k = 2n+ 1

(3.13)

For the rest of this section, so for all results where Nb = 2, mostly n and k will be
used to describe the size of the systems (Nc and m) and will be put on axes of figures.
This has been done for several reasons. Of course, Nc and m have a clear physical
interpretation, but when choosing one of those, one might forget that these both increase
or decrease simultaneously. This is because for the rest of this section, we keep using the
simplification u1 = u2 = u which only suffices for the values given in Eq. (3.13). When
taking n or k and increase it, it is clear that both m and Nc increase. Furthermore, k is
found in many expressions to come, so it is more convenient to use it in context as well.
However, whenever necessary, the value of Nc or m is given as well to include a physical
interpretation to the results for those cases.
Now, when calculating the fluctuations in the energy, we find{
Eb(t) = − ω

4k
((k + 1) cos((k − 1)ht) + (k − 1) cos((k + 1)ht))

Σ2(t) = ω2

32k2
(4k2 − 2(k2 − 1) cos(2ht)− (k + 1)2 cos(2h(k − 1)t)− (k − 1)2 cos(2h(k + 1)t))

(3.14)
Σ2(t) and Eb(t) have global maxima at

tEj,k =
π

h

(
j ± 1

k

)
and tΣj,k =

π

h
(j +

1

2
(1± 1

k
)), for j ∈ Z. (3.15)

The values of the global maxima of Eb(t) and Σ2
b(t) will be given and discussed shortly.

These values show that both functions are periodic, with period π
h
. Σ2

b(t) has a phase-
difference of π/(2h) compared to E(t). More importantly, one can see that the battery
gets charged faster when the system is increased in size (when k is increased) or when the
nearest-neighbour and flip-flop coupling is increased, so when h is increased. The period
does not change when increasing k, but the respective maximum gets closer to the fixed
point in the period. This will be made more clear momentarily.
Filling in the found values of t in their corresponding quantity gives

Σ2(tΣ0,k) =
ω2

8
(1 + cos(π/k)),

Eb(t
E
0,k) =

ω

2
cos(π/k).

(3.16)

The values of Eb,max and Σ2
b,max are plotted in the figure below.
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(a) Global maximum of Eb(t).
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Figure 3.1: The global maximum of both the energy (a) and the fluctuations (b) as function of k.
In the plots, the maximum values are plotted for both the allowed values (as given in Eq. (3.13))
and continuous values of k. Observe that both plots approach the value 1, which can be justified
by taking the limit of k → ∞ for the expressions given in Eq. (3.16). Furthermore, in this plot
ω = 2 and Nb = 2.

Keep in mind that, as the maxima of both quantities are plotted against k, they are
a function of Nc and m as well.
When taking the limit k → ∞ in 3.16 we obtain

lim
k→∞

Σ2(tΣ0,k) =
ω2

8
(1 + cos(0)) =

ω2

4
,

lim
k→∞

Eb(t
E
0,k) =

ω

2
cos(0) =

ω

2
= Emax

b .

which explains how both graphs in Fig. (3.1) approach the value 1, as in these graphs ω
is set to 2. Note, as indicated in the expression, that the limit value of the energy is its
theoretical maximum, given in Eq. (3.2).
For the case J = 0, or the case where no nearest-neighbour interactions are present, we
find for the same values of n {

Eb(t) = −ω
2
cos(

√
2Mgt)

Σ2(t) = ω2

8
sin2(

√
2Mgt)

(3.17)

where M is the same as defined in Eq. (3.12). M can be written in terms of k as well,
which gives M = (k2 − 1)/2. Notice that in this case, for every allowed value of Nc and
m, the battery is always able to be charged to ω/2. As already shown in Eq. (3.16) and
Fig. (3.2), this is not the case whenever J = g = h. So apparently, the nearest-neighbour
interaction together with the fact that J = g = h prevents the battery to be charged to
its maximal possible value. What might cause some confusion, is that the energy given
in both Eq. (3.16) and (3.17) are cosine functions. However, Eq. (3.16) is the global
maximum of the energy as a function of k (and thus of Nc and m), while Eq. (3.17) is
the energy as function of time. They cannot be compared and have a different physical
interpretation. However, what we can say about these expressions is that for J = 0 the
maximum value ω/2 can always be reached, as long as we take allowed values of Nc and
m according to Eq. (3.13), but this is not the case whenever J = g = h as we can see
in Eq. (3.16) and Fig. (3.1). One minor observation that can be made too is that the
fluctuations for J = g = h differ by a factor (ω2/4)/(ω2/8) = 2 for m,Nc → ∞ compared
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to J = 0.
We are also interested in the behaviour of the fluctuations. As mentioned in the in-
troduction, fluctuations are undesired in a quantum battery and thus it is best to have
them minimized whenever the battery part is fully charged. In other words, it would
be beneficial if the fluctuations have a (local) minimum at the same moment the stored
energy has a global maximum. For this we need to check whether, or for what values of
k, dΣ2

dt
(tEj,k) = 0 and d2Σ2

dt2
(tEj,k) > 0.

Computing this we find

d(Σ2)

dt
(tEj,k) =

hω2(k2 − 1)

16k2
(2 sin(±2π/k) + (k + 1) sin(∓2π/k) + (k − 1) sin(±2π/k))

=
hω2(k2 − 1)

16k2
(2 sin(±2π/k)− 2 sin(±2π/k)) = 0

and

d2(Σ2)

dt2
(tEj,k) =

h2ω2(k2 − 1)

8k2
(
2 cos(2π/k) + (k2 − 1) cos(2π/k) + (k2 − 1) cos(2π/k)

)
=
h2ω2(k2 − 1)

4
cos(2π/k).

Of all the allowed values for k (see 3.13), the last expression is positive for k ≥ 5, and
thus Nc ≥ 4. Only for k = 3 (Nc = 2) we have that ∂2Σ2/∂t2 is negative. We can
conclude that the fluctuations have a (local) maximum for k = 3 (or Nc = 2) and a
(local) minimum for k ≥ 5 (or Nc ≥ 4) at tEi,k.
To give an intuition how the energy and its fluctuations evolve over time, for three cases
of n the energy and fluctuations are plotted in figure 3.2 below. In the plots, the values
of t for which Eb(t) and Σ2(t) have global maxima are marked as well. The three chosen
cases are n = 1, n = 2 and n = 5. See the tables A.1 and A.2 in the Appendix for more
information on the chosen cases.
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Figure 3.2: The energy and its fluctuations of a central spin battery with 2 battery spins as functions
of time. The graph also shows at which values of t both the energy and fluctuations have a global
maximum, respectively marked by a red and green ×. (a) and (b) shows the energy and fluctuations
for n = 1, (c) and (d) for n = 2 and (e) and (f) for n = 5. For more information, see the tables A.1
and A.2 in the Appendix. As already proven, one can see that for the case n = 1, Eb(t) and Σ2

b(t)
have global maxima for the same values of t, but that the fluctuations have a minimum whenever
the energy has a global maximum for n ≥ 2. Also note that the energy can both have a maximum
or a minimum whenever the fluctuations have a global maximum. Furthermore, in this figure ω = 2
and h = 1.

As mentioned before, one can see that the period of both functions is not affected by
an increase of the size of the system, or by an increase of n or k. However, it is clear
that when n is increased, more extrema appear and the global maxima get closer to a
fixed point in the period. For the fluctuations, this point is at π/h(j + 1/2), and for the
energy this point is πj/h, meaning that the charge time gets smaller when increasing the
system size. This last point is true, purely because one of the fixed points of the energy
is at t = 0, hence the charging time decreases when increasing n.
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Also observe that when n is increased, the value of Σ2
b(t

E
j,k) decreases. This can be

interpreted as whenever the energy gets closer to its theoretical maximum (see 3.2), the
fluctuations approaches 0. This happens in two ways: if the energy gets closer to its
theoretical maximum in time, but also if it gets closer by increasing n (or k). We can
prove this last statement by computing Σ2

b(t
E
i,j), which gives

Σ2
b(t

E
i,j) =

ω2

8

(
1− cos

(
2π

k

))
. (3.18)

and taking the limit k → ∞ (so Nc,m→ ∞), to obtain

lim
k→∞

Σ2
b(t

E
i,j) =

ω2

8
(1− cos(0)) = 0.

This behaviour can also be explained by using the fact that the theoretical maximum
is attained whenever ρb(t) = ρmax

b . In that case, as already showed, the fluctuations are
equal to 0.
Finally, when increasing n, envelopes within the graph of Eb and Σ2

b will be more visu-
alised. In figure A.1, the energy and fluctuations for high values of n are plotted. The first
thing that can be noticed is that, as already proven, if the envelope of the energy has a
maximum, which is automatically its global maximum, the fluctuations has a minimum.
As the global maximum of the energy for high values is close to its theoretical maximum,
the fluctuations are close to zero. Furthermore, if the envelope of the fluctuations has a
maximum, or the fluctuations have a global maximum, then the envelope of the energy
has a zero. To proof that the energy approaches zero at tΣj,k when taking k → ∞, we can
compute Eb(t

Σ
j,k) and take the appropriate limit, giving

lim
k→∞

Eb(t
Σ
j,k) = lim

k→∞

{ω
2
(−1)

k+1
2 sin

( π
2k

)}
= 0 (3.19)

Note that this is only true whenever the envelope of the energy has a maximum. The
energy has multiple zeros, but most of them do not coincide with a global maximum
of the fluctuations (as seen in the example figures 3.2 and A.1). Only the ones that
correspond to the zero of the formed envelopes do. This is an important notion which
returns later for Nb > 2.

3.1.2 Special Case J ≫ g

For this trivial case, Eb(t) and Σ2
b(t) can be found easily when taking J large enough

with respect to g, such that the limit can be approximated to 1 ≫ g/J ≈ 0. Assume
that this limit is true whenever J > 100g. For this limit, the functions in 3.11 reduce to

Σ2
b(t) = 0,

Eb(t) = −ω
2
.

(3.20)

This means that if the nearest-neighbour interaction, an interaction that takes place be-
tween nearest-neighbour battery spins, is large enough compared to flip-flop interaction,
which takes place between the battery and charge spins, then the battery is not able to
be charged at all, resulting in no fluctuations in the stored energy as well.
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3.1.3 Special Case g ≫ J

Suppose u2 = Mg2, where M is defined as in Eq. (3.12). Then for the given limit
A = 2Mg2 + J2 ≈ 2Mg2. This simplifies the energy and fluctuations to{

Σ2(t) = ω2

8
sin2(

√
2Mgt)

Eb(t) = −ω
2
cos(

√
2Mgt)

(3.21)

which is the same expression as for the case J = 0 seen in Eq. (3.17). This is as ex-
pected, because if the flip-flop interaction is large enough such that the nearest-neighbour
interaction can be neglected, the battery will behave as one where no nearest-neighbour
interaction is present.

3.1.4 Example where J ̸= g

In this report, no further calculations of Eb(t) and Σ2
b(t) are done for general g and J .

This is because the functions of the two mentioned quantities can differ largely for every
case of J , g and n. The extrema of Eb(t) can be calculated easily by hand, but they
are not particularly consistent in being a minimum or a maximum. However, to check
whether some found results from the previous sections are true for J ̸= g, we can directly
calculate the energy and fluctuations by using a specific of J and g. Suppose we take
J = 1, g = 2, ω = 2 and n = 1. This gives m = 2, Nc = 2 and

Eb(t) = − 1

2
√
33

[(√
33 + 1

)
cos

((√
33− 1

)
t
)
+
(√

33− J
)
cos

((√
33 + 1

)
t
)]
(3.22)

One of its extrema is at t = 4π√
33
, which gives the values

Eb(t) = − 1

2
√
33

[(√
33 + 1

)
cos

((√
33− 1

) 4π√
33

)
+
(√

33− 1
)
cos

((√
33 + 1

) 4π√
33

)]
≈ 0.99

This value is much closer to its theoretical maximum given by Eq. (3.2) when comparing
it to the case where J = g = h. For the same values of Nc and m, it was equal to 1

2
.

This means that for J = g = h some sort of resonance occurs that prevents the battery
from charging close to its theoretical maximum. Letting the strength of the flip-flop
interaction be greater than the nearest-neighbour interaction results in a maximum close
to the theoretical maximum.

3.2 Case Nb > 2

For this case, numerical calculations are used to check whether the results found in the
previous section also apply for systems with more than 2 battery spins. The calculations
in this section follow again, as done in section 3.1, the steps given in section 2.3. This
time, however all of the calculations are done numerically using Python. See section A.2
for the code. Before showing the results of this section, it is important to have a warning
in advance. Due to not having a closed expression for finding the contributions nJ (as
already mentioned in section 2.3) and limited computing power, only for a maximum of
24 battery spins the Hamiltonian could be calculated. See table A.3 in the Appendix for
the values of these contributions.
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3.2.1 Case J = g = h

First of all, an interesting result from subsection 3.1.1 was the envelope behaviour of
both the energy and its fluctuations. Whenever the energy had a global maximum, the
fluctuations had a minimum. Whenever the fluctuations had a global maximum, the
energy’s envelope had a minimum. This occurred when taking J = g = h. To see
whether this behaviour also occurs for Nb > 2, for the cases Nb = 4 and Nb = 5 the
energy and fluctuations as function of time are plotted below.
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Figure 3.3: For two cases the energy and its fluctuations plotted as function of time. The chosen
cases are for (a) and (b): Nb = 4 and h = 1. For (c) and (d) we have Nb = 5 and h = 5. In both
plots Nc = 120, m = 60 and ω = 2. As for the plots before, the maxima of both the energy and
fluctuations are marked with respectively a red and green ×. For both cases, envelope behaviour
can be seen once more.

In this figure we can again see the envelope behaviour of both the energy and fluc-
tuations. It also can be seen that whenever the envelope of the energy has a maximum
(marked with a red ×), the envelope of the fluctuations has a minimum. This is precisely
in line with the results found for Nb = 2. Similar results can be seen the other way
around: whenever the envelope of the fluctuations has a maximum, the envelope of the
energy has a value close to zero. However, unlike for the case Nb = 2, the energy does not
have a precise zero. This can be interpreted as follows: whenever the formed envelope of
the energy is closest to zero, then the envelope of the fluctuations has a maximum.
From section 3.1.1 we also concluded that if the maximum of the energy’s envelope gets
closer to its theoretical maximum given by 3.2, the minimum of the fluctuations’ envelope
gets closer to 0. This can also be seen in Fig. (3.3). Looking carefully, for Nb = 5, one
can see that the marked maxima of the energy get slightly lower over time in Fig. (3.3c).
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This results in an increase of the minimum of the fluctuations’ envelope as can be seen in
Fig. (3.3d). This can be interpreted that also for Nb > 2, the minimum of the envelope of
the fluctuations get closer to 0 whenever the maximum of the envelope of the energy get
closer to its theoretical maximum. This last mentioned observation will be investigated
more clearly momentarily.
Eq. (3.15) showed that the charging time is inversely proportional with h. To check
whether this is true for the cases given above, the charging time as function of h is plot-
ted in the figure below. Both cases are plotted in the same figure as their function is
almost identical.
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Figure 3.4: Charging time plotted against h. The two chosen cases where Nb = 4 and Nb = 5. The
fitted function used for these plots is f(x) = a/x. For both cases, the estimated value of a was
approximately 0.0260. Also for both graphs, Nc = 120 and m = 60.

The charging time for both cases of Nb follow the same graph. This might be due to
the small difference in Nb compared to the number of charge spins and spin-ups. What is
apparent is how well the graphs lay on the fitted graphs. It shows that for higher values
of Nb, the charging time has a inversely proportional relationship with h.
As already mentioned in the analysis of Fig. (3.3), the fact that the minimum of the
envelope of the fluctuations gets closer to 0 whenever the maximum of the energy gets
closer to its theoretical maximum will be shown more clearly. This will be done by
plotting the global maximum of the energy as a function of Nc and m with constant Nb.
The following figure consists of such a plot for Nb = 5.
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(a) Global maximum of Eb(t) as a function of m.
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(b) The fluctuations at the same moment in time the
energy has a global maximum, as a function of m.

Figure 3.5: This figure shows the maximum energy (a) and the fluctuations at the same moment in
time the energy has a maximum, as a function of the number of spin-ups m. In this plot Nb = 5, m
is ranged from 5 to 41 with steps of 2, Nc = 2m, ω = 2 and h = 1. The plot also contains a curve-fit,
for which similar functions are used as the functions found for the case Nb = 2 (second expression
in 3.16 and 3.18). The fitted function for the energy is f(x) = 2.5 cos(b/x), with b ≈ 6.48. The
fitted function for the fluctuations is g(x) = a(1− cos(x/b)), with a ≈ 1.56 and b ≈ 13.82. Finally,
the figures also shows the predicted limit values. For the energy, this is the theoretical maximum
given by 3.2, which in this case is 5

2 . For the fluctuations this is 0.

A similar analysis has been done for a quantum battery consisting of 10 battery spins.
The problem with a higher number of battery spins is that the number of charge spins
and spin-ups has to be made much higher for the energy to even get over half of its
theoretical maximum, when comparing it to cases where Nb is smaller. This can be
explained by the fact that for higher numbers of Nb the nearest-neighbour interaction
becomes more dominant as the contributions nJ get much higher (as can be seen in table
(A.3)). That is why in the following graph the range of m is shifted to much higher
values when comparing it to the range in Fig. (3.5).
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(a) Global maximum of Eb(t) as a function of m.
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(b) The fluctuations at the same moment in time the energy
has a global maximum, as a function of m.

Figure 3.6: This figure shows the maximum energy and the value of the fluctuations at the same
moment in time the energy attains its maximum as a function of m. In this figure, Nb = 10, m
is ranged from 50 to 200 with steps of 5, Nc = 2m, ω = 2 and h = 2. The plot of the energy
also contains the theoretical maximum given by Eq. (3.2), which in this case is equal to 5. The
horizontal line in the plot of the fluctuations is the line Σ2

b = 0. Unlike the plots in Fig. (3.5),
these plots contain no fitted functions. This is because python was not able to find corresponding
parameters for the predicted functions as given in figure 3.5.

We again see the predicted behaviour; the energy increases with the size of the system
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(with the increase of m and Nc) and approaches its theoretical maximum Emax
b = 5.

Simultaneously, the fluctuations drop closer to 0. However, in contrast to Eq. (3.18) and
Fig. (3.5), for the case where Nb = 10, E(t) is not quite able to reach its theoretical
maximum Emax

b = 5 and the fluctuations does not completely drop to 0. It also shows
much more fluctuations in the values of the plot compared to the case where Nb = 5.
Important to note is that for this case, no clear envelopes are formed as seen in Fig.
(3.3). See Fig. (A.2) for a plot of both the energy and fluctuations for Nb = 10.

3.2.2 Varying J

The question arising for the coming two sections is how slight differences in strength
of the nearest-neighbour interaction and the flip-flop interaction affect the behaviour of
the stored energy and its fluctuations. From section 3.1.2, we can already predict that
when taking J/g large enough, the battery is not able to be charged even close to the
theoretical maximum of the energy. Especially for systems with a large number of battery
spins, the nearest-neighbour interaction can quickly dominate the flip-flop interaction,
in the sense that the battery cannot be charged anymore due to the large difference in
strength between these two interactions. To demonstrate this, for the case Nb = 5 the
global maximum of the energy has been plotted as function of J with constant g. See
figure 3.7. It also contains a plot of the fluctuations at the moment in time the energy
has its global maximum, as a function of J .
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(a) Global maximum of Eb(t) as a function of J .
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(b) The fluctuations at the same moment in time the energy
has a global maximum, as a function of J .

Figure 3.7: This global maximum of the energy (a) and the value of the fluctuations at the same
moment in time when the energy has its maximum (b), as function of J and constant g. For this
case, Nb = 5, m = 30, Nc = 60, ω = 2, g = 1 and J is ranged from 1 to 50. The plot of the energy
also contains the lines E = ± 5

2 which are respectively its theoretical maximum and minimum, given
by Eq. (3.2) and Eq. (3.3). Finally, both figures contain the line J = 23.7. This is an estimation
for which value of J the graph of the maxima of Eb crosses the J-axis and it shows that it coincides
with the peak of the graph of the fluctuations.

In this example, one can see that for the first couple of values of J , the battery is
still able to be charged close to its theoretical maximum, which is equal to 5

2
. However,

after a certain point somewhere around J = 12, the maxima drop and approach the
theoretical minimum. Apparent is that the fluctuations has a clear peak. This can be
explained by the behaviour of the envelope of the energy whenever the fluctuations has
a global maximum, or vice versa. In section 3.1.1, and in particular Fig. (A.1) and Eq.
(3.19), we have seen that the envelope of the energy has a zero whenever the envelope
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of the fluctuations has a maximum (or whenever the fluctuations has global maximum).
This also means that if the energy has a global maximum E = 0, and thus the envelope
of the energy has a maximum E = 0, then the fluctuations reaches its maximum value.
This observation can be formulated as follows: the closer the envelope of the energy is
to zero, the higher the value of the fluctuations.

3.2.3 Varying g

Previously we saw how the increase of the system for constant Nb affected the maximum
achievable value of the energy. This was shown for Nb = 2 (Eq. (3.16) and Fig. (3.1a))
and for Nb > 2 (Fig. (3.5a) and Fig. (3.6a)). This is not the only method to increase the
global maximum of the energy. Another possibility is by increasing g with constant J .
The previous section showed that if the nearest-neighbour interaction is strong enough
compared to the flip-flop interaction, the battery is not able to be charged much higher
than its theoretical minimum. This observation can also be turned around; if we initially
have a battery which is not able to be charged due to an improper ratio J/g, we can
counter this by increasing g. In this way, the global maximum will increase approaching
its theoretical maximum. The following figure shows this behaviour for the case Nb = 5.
See the caption for more information.
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(a) Global maximum of Eb(t) as a function of g.
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(b) The fluctuations at the same moment in time the energy
has a global maximum, as a function of g.

Figure 3.8: This figure shows both the global maximum of the energy (a) and the fluctuations at
the same moment in time the energy has a global maximum, as a function of g. For this case,
Nb = 5, Nc = m = 8, J = 5, ω = 2 and g is ranged between 1 and 14. (a) also contains the linse
E = ± 5

2 , which are respectively its theoretical maximum and minimum, given by 3.2 and 3.3. (b)
contains the line Σ2 = 0. Finally, both figures also contain the vertical line g = 4.8. This is the
estimated value for which the graph of the maximum of Eb crosses the g-axis. It is put in both
graphs to demonstrate that the peak of the fluctuations is whenever the maxima of Eb crosses the
value E = 0.

The figure looks similar to Fig. (3.7), except the plot of the energy 3.8a is mirrored
along the g-axis when comparing it to figure 3.7a. This difference in figure is as predicted:
at first, we have the ratio J/g > 1, which results in the lack of ability of the battery to be
charged. In that case, both the energy and fluctuations are close to zero. However, when
increasing g, and thus the coupling between the battery- and charge-spins, the global
maximum increases. As the global maximum of the energy approaches and surpasses 0,
the fluctuations form a peak. This behaviour was already recognised and explained in
the previous case, using results from the section where Nb = 2. Note however, that the
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energy is not quite able to truly reach the theoretical maximum. This can be a result
from not having sufficient charge-spins and spin-ups.



Chapter 4

Conclusions and Recommendations

4.1 Conclusions

In this thesis the stored energy and its fluctuations of a central spin battery with nearest-
neighbour interaction between the battery spin is calculated and analysed. For a system
with 2 battery spins, these calculations are done analytically. For Nb > 2, these calcula-
tions were done numerically using python.

For Nb = 2, the simplification was used that ωb = ωc ≡ ω and u1 = u2 ≡ u. The
former assumption meant that the energy splitting for both the battery and charge spins
were equal. The latter one does not necessarily have a unambiguous physical meaning,
but it adds a constraint to the number of spin-ups m and charge spins Nc, given by
Nc = 2(m − 1). Using these simplifications and defining J = g ≡ h, meaning that the
strength of the nearest-neighbour and flip-flop interaction were equal, we could show that
the global maximum of both the energy and fluctuations was dependent on the number of
charge spins and spin-ups. This stood in contrast to the case where no nearest-neighbour
interactions were present (or where J = 0), in which case the maximum was always equal
to the theoretical maximum. However, the limit Nc,m→ ∞ of the energy for J = g = h
gave the expected theoretical maximum.
Using the values of t for which the energy had a global maximum, it could be seen
that the charge time of the battery is inversely proportional to both h and k, where
k = Nc + 1 = 2m− 1.
What was shown too, is that for Nc ≥ 4 the fluctuations had a minimum whenever the
function of the energy had a global maximum, taking only the allowed values for m and
Nc according to the constraint following from the simplification.
Taking higher values of Nc andm, envelopes were formed for both the energy and fluctua-
tion as function of t. Observing these formed envelopes, it was clear that the fluctuations
had a global maximum whenever the envelope of the energy had a zero.
The limit J ≫ g resulted in a battery that could not be charged at all, and which
fluctuations remained 0 for all t. This could be explained by the fact that whenever
J ≫ g, the nearest-neighbour interaction dominated the flip-flop interaction resulting in
no possibility for the battery to be charged. Taking the limit g ≫ J , the battery could
be approached as one where no nearest-neighbour interaction is present, giving the same
results as when J = 0.
Finally, letting the strength of the flip-flop interaction be twice the strength of the nearest-

27
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neighbour interaction resulted in a maximum much closer to the theoretical maximum
compared to the case where J = g = h, for the same number of spin-ups and charge
spins. No direct explanation was found for why the battery is not able to be charged
close to its theoretical maximum when taking J = g = h, when comparing it to taking
g = 2J with the same number of charge spins and spin-ups. A reason could be that the
system is arranged in such a way, that a certain resonance occurs which prevents the
battery to be charged closer to its theoretical maximum.
For Nb > 2, similar results were found. For J = g = h and the chosen cases of Nb,
envelopes formed that showed similar behaviour as for the case Nb = 2; the envelope of
the energy had maxima whenever the envelope of the fluctuations had minima, and the
fluctuations had global maxima whenever the envelope of the energy was closest to 0.
Again, for the chosen cases, the charging time was inversely proportional to h.
Plotting the global maximum of the energy as a function of m and Nc, it was shown that
for Nb > 2 the global maximum was dependent on the size of the system (with constant
Nb), which graph looked similar to the one of the case Nb = 2. A plot of the fluctuations
at the same moment in time the energy had a global maximum showed that whenever
the energy was closer to its theoretical maximum, the fluctuations was closer to 0.
Furthermore, in this section, it was also investigated when J and g differed from each
other without directly falling into the limiting cases (as those given in the section in
which Nb = 2). When varying J , it could be seen that increasing J did not have any
effect on the global maximum of the energy until a certain turning point, which made the
global maximum drop from its theoretical maximum to its theoretical minimum. The
fluctuations at the same moment in time the energy had its global maximum showed
that a peak formed when the global maximum of the energy crossed the line E = 0.
This could be explained by the behaviour we saw previously: the fluctuations have a
maximum whenever the envelope of the energy has a zero. So if the energy has a global
maximum Emax = 0, then the envelope of the energy has a zero (as its global maximum
is a zero), resulting in the fluctuations to have a maximum.
Varying g gave similar results as the previous observation. Starting with a situation
where a battery could not be charged much more than its theoretical minimum due to
an improper ratio J/g > 1, the global maximum could be increased to its theoretical
maximum by increasing g. Again, the global maximum of the energy crossed the line
E = 0, which resulted in a peak for the fluctuations. This could be explained by the
same reason as given by the previous observation.

4.2 Recommendations

For further research, multiple paths can be taken. First, the origin of the lower global
maximum for J = g = h, compared to the case where J = 0 could be investigated.
For this, the analytical expressions in 3.11 could be used and letting g = (1 + ϵ)J , with
some number ϵ > 0. Using the limit ϵ→ 0, the behaviour of the energy and fluctuations
could be analysed from which a conclusion might be taken why this behaviour occurs.
Furthermore, a reason for the maximum of the fluctuations whenever the envelope of the
energy has a zero may be found by studying the relationship between the fluctuations
and the occupation given by the reduced density matrix.
To extend the research, one could investigate the influence of decoherence on the system.
This can be done by introducing the Lindblad operator in the master equation [2].
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Appendix A

Appendix

A.1 Additional Graphs and Tables
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Table A.1: Information about Eb for the three cases plotted in figure 3.2 in section 3.1.1. For each
case, the table contains the values of n, m, Nc, and k, the function Eb(t), the values of t for which
it contains a global maximum, and it contains its function value at the global maximum. For all
three cases, J = g = h and Nb = 2.
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Table A.2: Information about Σ2
b for the three cases plotted in figure 3.2 in section 3.1.1. For each

case, the table contains the values of n, m, Nc, and k, the function Σ2
b(t), the values of t for which

it contains a global maximum, and it contains its function value at the global maximum. For all
three cases, J = g = h and Nb = 2.
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Figure A.1: The energy and its fluctuations as functions of time for Nb = 2. The graph also shows
at which values of t both the energy and fluctuations has a global maximum, respectively marked
by a red and green ×. (a) and (b) shows the energy and fluctuations for n = 7 (m = 8, Nc = 14),
(c) and (d) for n = 18 (m = 19, Nc = 36) and (e) and (f) for n = 50 (m = 51, Nc = 10). The plots
of the energy also shows the theoretical maximum as given in Eq. (3.2). The higher n gets, the
more clear one can see the formation of envelopes. Furthermore, in this figure ω = 2 and h = 1.
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Figure A.2: The energy and its fluctuations as functions of time. The graph also shows at which
values of t both the energy and fluctuations have a global maximum, respectively marked by a red
and green ×. In this case, Nb = 10, m = 100 and Nc = 200. Furthermore, in this figure ω = 2
and J = g = h = 1. The graph shows that for higher values of Nb no clear envelopes are formed
anymore.

N m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9 m = 10 m = 11 m = 12
2 2
3 4
4 6 12
5 8 24
6 10 40 60
7 12 60 120
8 14 84 210 280
9 16 112 336 560
10 18 144 504 1008 1260
11 20 180 720 1680 2520
12 22 220 990 2640 4620 5544
13 24 264 1320 3960 7920 11088
14 26 312 1716 5720 12870 20592 24024
15 28 364 2184 8008 20020 36036 48048
16 30 420 2730 10920 30030 60060 90090 102960
17 32 480 3360 14560 43680 96096 160160 205920
18 34 544 4080 19040 61880 148512 272272 388960 437580
19 36 612 4896 24480 85680 222768 445536 700128 875160
20 38 684 5814 31008 116280 325584 705432 1209312 1662804 1847560
21 40 760 6840 38760 155040 465120 1085280 2015520 3023280 3695120
22 42 840 7980 47880 203490 651168 1627920 3255840 5290740 7054320 7759752
23 44 924 9240 58520 263340 895356 2387616 5116320 8953560 12932920 15519504
24 46 1012 10626 70840 336490 1211364 3432198 7845024 14709420 22881320 29745716 32449872

Table A.3: This table contains all values of the contributions nj , necessary for the Hamiltonian in
matrix form (2.18). All values are calculated using a python program. The table works as follows:
the rows indicate what size of the system you are working in and the columns indicate the number
of spin-ups of the given Dicke state (2.6). E.g., the state |5⟩ for N = 16, has a total contribution
n5 = 30030. For each system with size N , only half of the values nj are given. This is because
the number of contributions is symmetric. Suppose we have an even number N spins of which m
are spin-up. Then N − m spins are spin-down. This gives the same number of contributions nm

as if we turned the situation around: so N −m spin-ups and m spin down. This is because both
situations produce the same permutations of states, except all spins are opposite oriented. This
does not affect the total number of reversals, as it only matters if two nearest-neighbour spins are
opposite oriented. A similar analysis can be done for an odd number of spins.



A.2. CODE 34

A.2 Code

This section only contains the main code used for this thesis. All evaluation code e.g. the
code used to make the figures, can be found on https://github.com/olivierkokkedee/BEP-
quantum-battery. As already mentioned in the README.md file, the code might not
contain all code used for the evaluation of the data, as it may already be deleted. It may
also contain code that is used nowhere in this thesis.

import numpy as np

import matplotlib.pyplot as plt

from itertools import combinations

import pandas as pd

import math

import os

os.chdir(’private’)

from scipy.optimize import curve_fit

#Defining all parameters

h=1

n=60

Nb=5

Nc=8

m=8

k=2*n+1

J=5

omega_b=2

omega_c=2

g=10

M=2*m*(Nc-m+1)

A=2*M*g**2+J**2

t_end=10

t_steps=5000

t=np.linspace(0,t_end,t_steps+1)

ftsize=16

#%matplotlib inline

#Opening the excel file which contains all contribution values n for certain

states

df = pd.read_excel(’private’)

nJ_contribution = df.iloc[:, 1:].to_numpy()

#u_j and b_j, as they are defined in Liu et al.

def u(j, Nb, Nc, m, J, omega_b, omega_c, g):

return g * np.sqrt(j * (Nb - j + 1) * (Nc - m + j) * (m - j + 1))

def b(j, Nb, Nc, m, J, omega_b, omega_c, g):

return omega_b / 2 * (j - Nb / 2) + omega_c / 2 * (m - j - Nc / 2)

#creating the array which contains all contributions nJ, so I can add it to

https://github.com/olivierkokkedee/BEP-quantum-battery
https://github.com/olivierkokkedee/BEP-quantum-battery
https://github.com/olivierkokkedee/BEP-quantum-battery/blob/main/README.md
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the Hamiltonian later

def get_nJ_diagonal(Nb):

diagonal = np.array([0]) # Start with a single element, 0

if (Nb - 2) % 2 == 0:

for i in range(1, int(Nb / 2) + 1):

diagonal = np.append(diagonal, nJ_contribution[Nb - 2, i - 1])

diagonal = np.concatenate((diagonal, diagonal[-2::-1]))

else:

for i in range(1, int(math.floor(Nb / 2)) + 1):

diagonal = np.append(diagonal, nJ_contribution[Nb - 2, i - 1])

diagonal = np.concatenate((diagonal, diagonal[::-1]))

return diagonal

#the following functions calculate the intermediate steps to calculate the

energy and fluctuations

def total_hamiltonian(Nb, Nc, m, J, omega_b, omega_c, g):

nJ_diag=get_nJ_diagonal(Nb)

u_arr = [u(j + 1, Nb, Nc, m, J, omega_b, omega_c, g) for j in range(Nb)]

b_arr = [b(j, Nb, Nc, m, J, omega_b, omega_c, g) for j in range(Nb + 1)]

b_arr=b_arr+nJ_diag*J

H = np.diag(b_arr) + np.diag(u_arr, k=1) + np.diag(u_arr, k=-1)

return H

def H_b(Nb,omega_b):

diagonal=[omega_b/2*(j-Nb/2) for j in range(Nb+1)]

Hb=np.diag(diagonal)

return Hb

def state_psi(t, Nb, Nc, m, J, omega_b, omega_c, g):

H = total_hamiltonian(Nb, Nc, m, J, omega_b, omega_c, g)

eigenvalues, eigenvectors = np.linalg.eig(H)

normalized_eigenvectors = np.array([v / np.linalg.norm(v) for v in

eigenvectors.T]).T

U = normalized_eigenvectors

D = np.diag(np.exp(-1j * eigenvalues * t))

A = np.dot(U, np.dot(D, U.conj().T))

x = np.zeros((Nb + 1, 1))

x[0] = 1

return np.dot(A, x)

def reduced_density(t, Nb, Nc, m, J, omega_b, omega_c, g):

rho_b=np.zeros((Nb+1,Nb+1))

psi=state_psi(t, Nb, Nc, m, J, omega_b, omega_c, g)

for i in range(Nb+1):

rho_b[i,i]=abs(psi[i,0])**2

return rho_b
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def E_t(t, Nb, Nc, m, J, omega_b, omega_c, g):

rho_b=reduced_density(t, Nb, Nc, m, J, omega_b, omega_c, g)

Hb=H_b(Nb,omega_b)

return np.dot(Hb,rho_b).trace()

def fluctuations(t, Nb, Nc, m, J, omega_b, omega_c, g):

Et=E_t(t, Nb, Nc, m, J, omega_b, omega_c, g)

Hb=H_b(Nb, omega_b)

rho_b=reduced_density(t, Nb, Nc, m, J, omega_b, omega_c, g)

Hb_sq=np.dot(Hb,Hb)

A=np.dot(Hb_sq,rho_b)

return A.trace()-Et**2
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