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ABSTRACT

Topology optimization (TO) has proven to be a capable design methodology for the re-
alization of lightweight solutions that maximize structural stiffness or other design ob-
jectives. Due to its capability to be adapted to suit a wide range of objectives and con-
straints, both structural and non-structural, TO has been widely applied in all industries,
including aerospace. The application of TO in secondary structures offers the scope for
further weight savings and, therefore, this thesis investigates the employment of TO on
a galley structure provided by Safran-Cabins. The galley structure is an essential equip-
ment for the functioning of passenger aircrafts and hence, provides an ideal product,
which once optimized could offer widespread weight saving.

The next generation of commercial aircrafts require solutions which are lightweight
and yet economic to manufacture. TO solutions are renowned for their complex archi-
tectures and frequent employment in conjunction with additive manufacturing. How-
ever, for products such as galleys, which are required to be manufactured in large quan-
tities, complex manufacturing strategies are not economically feasible. Therefore, this
thesis proposes a modularization strategy which can be used to augment the monolithic
TO solution into an assembly of simpler and identical modules. The modular design
strategy has proven to be a capable strategy to enhance manufacturability as well as re-
duce costs over the board and offers a unique opportunity to leverage the capabilities of
TO for employment on a wider range of products.

To achieve the aforementioned goal, an image moment-based modularization strat-
egy is investigated which treats the TO solutions as digital images and identifies posi-
tions of simple bar/beam modules within the image based on matching of the image
moments. Through a detailed investigation, a fragment constrained bar matching strat-
egy is developed. It is demonstrated that, the proposed matching strategy is capable of
identifying positions of bar/beam modules within TO solutions from the literature. Ad-
ditionally, a post-processing strategy is developed to augment the obtained modules and
their positions into simplified and assembled frame structures analogous to the underly-
ing TO solution. The developed framework is employed on the topologically-optimized
galley, and its practical capabilities and limitations identified, thus providing a founda-
tional work to be further refined.
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1
INTRODUCTION

Air travel has been on the rise since the beginning of the 20th century but, never before
has the industry had to face the unique situation it faces at this moment. There is a pre-
dicted increase in demand for air travel and a simultaneous increase in fuel price [44].
These factors coupled with the need to reduce carbon footprints make lightweight solu-
tions that are quick to manufacture an utmost necessity to stay relevant in the industry.
Additionally, the COVID-19 pandemic has resulted in ae22.2 billion net loss for aviation
industry in Europe [7]. This leads to the requirement for the next decade of commercial
aircraft products to be cost-effective for the airlines and the manufacturers.

1
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(a) Travel prediction for 2040

(b) Carbon emission prediction for 2040

Figure 1.1: Extrapolated predictions made by the European Aviation Safety Agency [44].

In the past, the most crucial change introduced to aircraft structures to reduce
weight and improve efficiency was through the employment of composite materials.
Boeing introduced the first commercial aircraft with close to 50% use of composite ma-
terials in their 787 series nearly a decade ago [4]. Since then composite structures have
been employed throughout the aircraft in various applications, both on the exterior and
the interior. However, the overall design philosophies have remained the same. The
essential task being tailoring the material, thickness, and shape with a chosen design
architecture.

Topology optimization(TO) offers an advanced designing scheme that can identify
optimized design architectures (or topologies) for a given material and loading condi-
tion. Its most notable application in the aerospace industry is the optimization of the
leading edge ribs of the Airbus A380 [64], where a 500kg weight alleviation was achieved
as compared to its previous design. TO identifies both essential and redundant material
simultaneously throughout the domain, hence extracting the most suitable material dis-
tribution. Typically applied to primary structures which are largely enclosed, the usage
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of topology optimization into secondary structures has not been significantly explored.
If proven to be capable, this could offer a new avenue for new designs as well as notice-
able weight loss.

Figure 1.2: Airbus A380 leading edge ribs designed through topology optimization [64].

Cabin structures encompass a wide range of structures within the interior of the
aircraft and have been key employers of composite material. Often overlooked due to
their deceptively mundane application, cabin structures are vital in the functioning of
any passenger aircraft and are required to sustain a wide range of requirements: struc-
tural as well as functional. They are also silent contributors to the overall weight of any
aircraft. However, their essential configuration and architecture have largely remained
unchanged. Recently, AIRBUS illustrated the capacity for design advancements in cabin
structures through the development of an unorthodox truss like architecture to replace a
panel-based design for a partition wall. This new design displayed a significant increase
in performance as well as reduced weight by 50%.

.

Figure 1.3: Bionic Partition developed by AIRBUS (Nagy et al. [84])
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Therefore, with the need for reinvention of cabin structures and possible scope for
improvements, TO is a suited design and optimization strategy worthy of exploration.
Nonetheless, while topology optimization is a powerful tool, unlike the generous de-
sign domain offered by primary structures like aircraft ribs, cabin structures i.e galleys
are panel-based and complex in architecture and the generated design is to be opera-
tive/functional for daily use. Thus, the design domain is limited in both its scope as well
as its space. This exploration of the application of topology optimization on an unortho-
dox structure as a galley formulates the first research goal:

Can topology optimization be employed on a galley structure? If yes, how can
a suitable/practical structure be generated?

Although the use of TO offers weight savings, from a manufacturing and mainte-
nance perspective, complex structures realized as monoliths increase the direct manu-
facturing costs as well as auxiliary maintenance and deployment costs. Therefore, the
one-piece structure provided by TO is to be divided into suitable pieces so as to enhance
manufacturability. This allows us to retain the optimized structure provided by topology
optimization and regain the additional costs. Additionally, if the extracted parts exhibit
similarity, this could allow for an additional scope for reduction in manufacturing costs,
ease of maintenance and repair as well as lower certification and development costs.

This exploration for identification of a modular structure within TO solutions forms
the second research goal:

How can a topology optimized structure (galley) be suitably modularized into
simple modules?

In the following chapters, TO is employed on the G5 galley provided by SAFRAN-
Cabins. The requirements provided by EASA and the aircraft requirements provided by
AIRBUS are suitably modeled and implemented within the TO tool to generate an op-
timized structure of the same weight as the current composite structure. In this work a
commercial tool: TOSCA-ABAQUS is employed for modeling and optimization. Follow-
ing which a Legendre image moment matching-based modularization strategy is devel-
oped and investigated in its capability to identify similar width bars within the TO solu-
tion. Based on the investigation, a fragmented matching followed by a post-processing
pipeline is proposed to reconstruct a TO solution into a truss/frame like structure. This
methodology is investigated on TO solutions from literature and to finally conclude, em-
ployed on the optimized G5 galley.

The outline for the thesis is as follows: Firstly in Chapter 2, the modeling and analy-
sis methodology applied to currently assess the galley structure will be briefly explained.
The requirements of the galley for certification and aircraft integration is briefly de-
scribed. In Chapter 3, the basis on which TO functions is outlined with the analytical for-
mulation for the minimum compliance problem and the material penalization strategy.
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A survey of the implementations of constraints on design and geometry with additional
details on the numerical instabilities common to TO is described as well. Chapter 4 com-
prises the details on the modeling of the galley for TO as well as the subsequent TO inves-
tigations and their results. Chapter 5 comprises of previous investigations into the influ-
ence of modularity on performance and cost in literature as well as brief discussion into
methods employed to process TO structures for manufacturing. Chapter 6 describes the
analytical basis for the Legendre moments and investigates the moment matching char-
acteristics and the required adaptation to obtain relevant results from the bar matching
algorithm. Chapter 7 describes a modified fragmented-bar matching methodology, with
investigations on case studies from literature as well as implementation on the topology
optimized galley panels.





2
GALLEY DESIGN AND

CERTIFICATION

This chapter provides an overview of the cabin structure chosen to be optimized along
with its necessary certification and employment requirements. These requirements cur-
rently utilized for the design of the galley will be subsequently translated into suitable
objectives and constraints for TO. Section 2.2 describes the product-specific regula-
tions and customer requirements followed by Section 2.3 comprising of the industry-
approved methodology for the modeling and analysis of the structure.

7
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2.1. GALLEY STRUCTURES

Aircraft structures are often romanticized through wing boxes with complex ribs and
spar architectures due to this one of the most vital structures which fulfill the passen-
ger requirements firsthand is overlooked: Cabin Structures. Cabin structures although
categorized as secondary structures are vital in the safe and functional operation of any
passenger aircraft. Cabin structures encompass all elements within the passenger and
crew area such as galleys, luggage storage, lavatories, and seats. Of these, a structure
that grabs the attention of any passenger as you enter the aircraft is the galley structure.
galleys are shelf-like compartments that are used for various purposes including heating
food as well as storage of equipment and trolleys.

The G5 galley is one of the largest and most versatile cabin products developed by
SAFRAN-Cabins and will be the body of focus for this project. Capable of containing 7
fully equipped trolleys and 4 ovens, the G5 is truly a workhorse. Figure 2.1 illustrates
the panel-based architecture employed in the G5 structure and the various appliances
distributed throughout all its compartments.

(a) galley iso-view (b) Appliances and trolleys

Figure 2.1: G5 galley

It is to be noted that the G5 itself is a flexible product and can be adapted to the cus-
tomer requirements. This can include an assortment of appliances and configurations.
The specific model considered for investigation during the project is the SA ACP unit
with a trolley divider(non-chilled) to be employed in the A320.

Although straightforward in its application, it is vital that the galley satisfies strin-
gent safety requirements for aviation safety. Outlined by the European aviation safety
agency(EASA) [43], these requirements include a wide range of specifications from ma-
terial selection to emergency landing requirements. Additionally, the aircraft limitations
stipulated by AIRBUS allow to incorporate operational requirements.
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2.2. GALLEY REQUIREMENTS

Specified by the EASA, the CS-25 certification specification encompasses the certifica-
tion requirements of large air crafts. Of the myriad of safety requirements the certifica-
tion loading for the galley is based on the emergency landing requirements. The ulti-
mate inertia forces acting individually and relative to the surrounding structure are as
tabulated in Table 2.1. These requirements are the minimum requirements for the safety
of the passengers, but maximum operating forces are to be taken into consideration as
well, these are specific to the aircraft and operational parameters. To satisfy operational
as well as emergency requirements, the maximum possible loading is utilized for the
design of the structure.

Load factors (acceleration)

Load Direction
Emergency Landing Load Factors

CS-25 Requirements
Emergency Landing Load Factors

JAR 25.561 Ch.1
Max. Flight and

Landing Loads A318, A319, A320, A321
Max. Load Factors

Upward 3.0g 2.0g ABU P LU P

Forward 9.0g 9.0g ABFW D LFW D

Side-ward 4.0g 1.5g ABLR LL,R

Downward 6.0g 4.5g ABDW N LDW N

Rearward 1.5g 1.5g AB AF T L AF T

Table 2.1: Ultimate load factors

Although the galley is designed to sustain loads, it is essential that the interface with
the aircraft itself sustain the load transfer as well. The galley is attached to a set of hard-
point floor attachments. Each attachment point has distinct load-carrying capabilities
in all directions. Some points also have no load-carrying abilities in a certain direction
(flutter point attachments). These limitations dictate the limitations of design variables
for the loading requirements dictated by the ultimate load factors. Thus, the load trans-
fer to the aircraft is to be directed or redirected appropriately to prevent any separation.
The specific limitations are tabulated in Table 2.2.

Figure 2.2: Top and bottom attachments

Table 2.2: Interface limits

Attachment point i Direction Allowable (N)
1,3,4,
5,7,
8,9

X ±R X1,3,4,5,6,8,9

Y ±RY1,3,4,5,6,8,9

Z ±R Z1,3,4,5,6,8,9

2,6
X ±R X2,6

Y ±RY2,6

Z ±R Z2,6

10,11
X ±R X10,11

Y ±RY10,11

Z ±R Z10,11

12,13
X ±R X12,13

Y ±RY12,13

Z ±R Z12,13

14,15
X ±R X14,15

Y ±RY14,15

Z ±R Z14,15
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2.3. GALLEY MODELING AND ANALYSIS

The certified modeling and analysis tool used in-house utilizes the commercial tool
NX/NASTRAN (version 8.0) with modeling and post-processing performed on FEMAP
(version 10.3). The software uses the Finite Element Method to calculate deflections,
stresses, and reaction loads of the galley model.

• Elements - The conventional galley utilizes a multi-layered composite as the basic
material for all the panels. These are modeled using first ordered quadrilateral
and triangular elements. The element is build up out of 3 layers: 2 face sheets and
1 core. The insert weights are modeled with mass elements, located at the center
of gravity, which is attached to the structure with RBE3 elements.

• Loading - All insert weights are modeled as nodal forces at their tie-down or re-
straint points in the forward load case. In the case of doors, the load is modeled as
a distributed line load at the hinge side of the door and a nodal force at the latched
side. In all other cases, the inserts are modeled as distributed loads. The empty
structure weight is modeled through an acceleration force.

• Boundary conditions - All fixing points of the unit in the aircraft are considered
stiff (no moment transfer). Spring rates of Kx,y DaN/mm in the x-direction and
y-direction and Kz DaN/mm in the vertical (z) direction are used to simulate the
stiffness of aircraft attachments. (Stiffness rates are standard values provided by
Airbus).

(a) AFT view (b) side view

Figure 2.3: CG positions where loads are applied
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Figure 2.4: CG coupled to tie down points

CG
no.

Item
Weight

(kg)
X

(mm)
Y

(mm)
Z

(mm)
1 A w A xA y A zA

2 B wB xB yB zB

3 C wC xC yC zC

4 D wD xD yD zD

5 E wE xE yE zE

6 F wF xF yF zF

7 G wG xG yG zG

8 H wH xH yH zH

9 I w I xI yI zI

10 J w J x J y J z J

11 K wK xK yK zK

12 L wL xL yL zL

13 M wM xM yM zM

14 N wN xN yN zN

15 O wO xO yO zO

16 P wP xP yP zP

17 Q wQ xQ yQ zQ

18 R wR xR yR zR

19 S wS xS yS zS

20 T wT xT yT zT

21 U wU xU yU zU

22 V wV xV yV zV

23 W wW xW yW zW

24 X wX xX yX zX

25 Y wY xY yY zY

26 Z wZ xZ yZ zZ

Table 2.3: Centers of gravity of all G5 galley elements





3
TOPOLOGY OPTIMIZATION

Before a galley can be optimized, it is essential to understand the basis upon which
Topology optimization (TO) functions. This chapter presents a brief review of struc-
tural topology optimization beginning with its computational framework in Section 3.1.
This is followed followed by the implementations of relevant design and performance
constraints proposed and employed in literature in Section 3.1.2 and 3.1.3. Section 3.2
describes the numerical anomalies and instabilities frequently observed in TO as well as
the corresponding alleviation strategies. Since the galley has to satisfy multiple loading
requirements, Section 3.4 explores commonly employed approaches for multi-objective
optimization. Section 3.5 concludes with a brief exploration of commonly employed
topology optimization tools as well as a comparison of accessible packages.

13
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3.1. THE COMPLIANCE MINIMIZATION FORMULATION

Introduced by Bendsøe and Kikuchi, topology optimization is in essence a material dis-
tribution problem. Early versions utilized an artificial composite material (foam-like)
whose local elastic properties are estimated as a function of its local density. By opti-
mizing the compliance with respect to the local density, a globally optimized shape and
topology is obtained as illustrated in Figure 3.1.

(a) Artificial square void foam (b) Interpolated Elastic Modulii (c) Elastic Modulli vs angle.

(d) Optimal topology for minimum compliance with volume constraint 64%.

Figure 3.1: Structural optimization using local cell density optimization (Bendsøe and Kikuchi [21]).

The minimum compliance optimization problem takes the form:

minimize : L(v) =
∫
Ω

f · vd x +
∫
ΓT

t · vd s

s.t: Ei j kl ∈Uad

subject to : aE (u, v) = L (v) , v ∈U , design constraints.

where : aE(u, v) =
∫
Ω

Ei j klεkl (u)εi j (v)dx

(3.1)

Where Uad is the kinematically admissible deformation field and design constraints
can include limitations on stress, strain, natural frequency, etc. Ei j kl is the local elastic
tensor for the material. In a general material distribution problem Ei j kl can be used for
regions with material and 0 elsewhere. But this form of discrete optimization cannot be
solved using gradient descent methodologies. To convert the problem to a continuous
system, interpolation functions are employed to model the material property between
the solid and void states.

Ei j kl = IΩmat E 0
i j kl (3.2)
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I (x) =
{

1 if x ∈Ωmat

0 if x ∈Ω<Ωmat (3.3)

The original method employed homogenization to estimate the material elasticity
as a function of a square cell pseudo-density ρ1 and orientation (shown in 3.1). This is
coupled with a resource constraint (Vc ) i.e. the volume of the structure, resulting in the
typical topology optimization problem in its discretized form as stated in (3.4).

min
ρ

: fT u)

subject to : K (Ee )u = f

Ee = f
(
ρ
)∑

V
ρ∆v <Vc , 0 ≤ ρ ≤ 1

(3.4)

3.1.1. SIMP AND OTHER DENSITY-BASED INTERPOLATION METHODS

After the pioneering work by Bendsøe and Kikuchi, further work by Bendsøe and Yang
and Chuang employed power-law based empirical expressions to obtain the intermedi-
ate density properties of the material and eventually Rozvany et al. coined what is known
today as the SIMP 2 method. The empirical expression for the material elasticity with
respect to the TO density of the material is given by E = E0ρ

p . The parameter p is the pe-
nalization parameter that pushes the design variables towards 0 and 1. The magnitude
of p decides the influence of density on the stiffness of the material. As p is increased,
the material’s softening response to having voids increases. For p = 1, the model is anal-
ogous to a plate thickness sizing model, and as p is increased to 2-3 the model resembles
a rule of mixtures approximation as illustrated in Figure 3.2.

(a) Material interpolation models commonly
used in density-based topology optimization[19]

(b) Comparison of power-law based mate-
rial with Hashin Shtrickman material model

Figure 3.2: Material interpolation models

1ρ = 1 a solid square cell, ρ = 0 implies an empty cell (no material) and intermediate values (0 ≤ ρ ≤ 1) are for
foam like cells with intermediate void sizes.

2SIMP - Solid Isotropic Material with Penalization
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Penalizing the stiffness results in a material cost to benefit problem where the ma-
terial is used only in locations where the stiffness is required and at locations where the
material is not required the density drop results in an exponential drop in stiffness and
as the problem converges, at lower densities, the cost of material overtakes the effective
stiffness offered and hence the material is entirely eliminated. At higher densities for a
small increase in cost, an exponential increase in stiffness leads to fully solid material de-
position. The SIMP model has been the most widely used in topology optimization and
has been used to formulate simple yet powerful frameworks, one of the most famous
being the 99-line topology optimization code written in MATLAB [97].

It must be noted, the SIMP method assumes an isotropic-Elasticity(E) and TO-
density(ρ) relationship. But, the Poisson’s ratio is assumed constant (independent of
density) in most applications [119] [19]. Yet, the method has still shown to be superior to
the homogenization method ( where the Poisson’s ratio varies with density ). Zhou and
Rozvany illustrated the SIMP method’s capability by comparison to the homogenization
method as well as the analytical solution, as seen in Figure 3.3 for an MBB3 beam.

Figure 3.3: (a) MBB beam optimized using the homogenization method, (b) A modified second stage method
,(c) Analytical optimal result obtained using COC layout solutions, (d) MBB Beam optimized using the SIMP
method (Zhou and Rozvany [124]).

Other material interpolation models have been proposed as an alternative to SIMP.
A few of the prominent methods are listed here:

1. RAMP - Rational Material Penalization - Proposed as an alternative to the SIMP
model for its capability to increase the convexity (In comparison to the SIMP
model) of the problem [103]. The parameter q is analogous to the penalization
parameter p in the SIMP model. E0 here represents the lower threshold and ∆E
represents the difference between the upper and lower limits of the stiffness.

Eq
(
ρ
)= E0 + ρ

1+q
(
1−ρ)∆E (3.5)

2. SINH - Based on the hyperbolic sine function, this method was proposed for use
in cases where the SIMP model results in largely grey areas instead of solid-void

3MBB - Messerschmitt-Bölkow-Blohm, a German aerospace company whose famous patent for an optimized
beam structure is used as a standard design problem to assess topology optimization frameworks
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designs [28]. The method instead of penalizing the material stiffness penalizes
material volume with respect to the design variable ρ. The penalization of the
element volume using η2, achieves the same effect as penalizing element stiffness
using ρp . Hence resulting in the redistribution of intermediate density material.

η1 = η̂1(ρ) = ρ and

η2 = η̂2(ρ) = 1− sinh(p(1−ρ))

sinh(p)

(3.6)

3. Logistic function - A material interpolation model based on the logistic regression
analysis function is capable of penalizing low-density elements and enhancing
high dense elements, hence achieving more solid - void designs[38]. Here a repre-
sents the penalization parameter and −1/m represents the lower threshold.

Ei = e−a/m+aρ

1+e−a/m+aρ
E0 (3.7)

Apart from these artificial models, traditional models such as the Hashin Shtrickman
model, Voigt, and Reuss - Voigt model have been frequently used [19]. But in these cases,
the focus has been to design viable cellular material-based structure topology.

Much of the versatility of topology optimization is a result of its ability to be applied
to any discretized system and the integration of design constraints within the optimiza-
tion routine. Hence, this allows its employment in non-structural domains such as ther-
mal engineering [75][48], acoustical engineering [39], electronics design [85] and even
multi-physics applications [121].

TO without design constraints can be used as an initial tool for design. The re-
source/volume constraint described in Section 3.1 satisfies typical demands to generate
lightweight structures. But, from a manufacturing perspective, not all structures gener-
ated in this fashion can be realized. This leads to the requirement of the design space to
be limited to achievable structures. Furthermore, not all such topologies generated can
sustain the applications it is optimized for. This leads to the requirement of performance
constraints, to allow for direct integration of material and structural limitations. Each of
these is addressed by suitable design constraints.

3.1.2. DESIGN GEOMETRY CONSTRAINTS

Design constraints on the optimization problem allow for control of the design features
such as the body dimensions and hole sizes. The use of such constraints not only serves
a practical purpose but also allows to constraint the solution in some cases. The practi-
cal limitations can include material deposition limits in semiconductor manufacturing
(MEMS) [100] or tooling limitations on machined structures.
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PERIMETER CONSTRAINT

One of the first methods to impose geometrical constraints on the design was through
upper limits on the perimeter of the structure [51]. Although initially posed as a solution
to non-unique solutions (which will be elaborated in section 3.2), the bound placed by
the perimeter displayed a reduction of the geometric complexities of the obtained so-
lutions. The only drawback is that the perimeter and the scaling of the features of the
design did not exhibit a clear-closed form relationship other than a clear increase in fea-
ture sizes as the upper limit of the perimeter is reduced as illustrated in Figure 3.4. The
reduction in fine features with the perimeter constraint is accompanied by an increase
in the compliance of the structure. This can be largely attributed to the comparatively
localized drop in stiffness in the case of smaller holes and cutouts as compared to the
global drop in stiffness in the case of large cutouts. But from a manufacturing perspec-
tive, microscopic voids are not practically realizable. Therefore, the drop in stiffness is
counteracted with the relaxation of manufacturing complexity. Thus, the perimeter con-
straint allows to quantify the manufacturing complexity to some extent [50].

Figure 3.4: The MBB Problem constrained with a perimeter constraint of (a)30L , (b) 24L and (c) 22L. (Haber
et al. [51])

MINIMUM LENGTH SCALE

The minimum length scaling fixes a lower limit on the finest features of the design. A
lower limit on the feature sizes not only allows for manufacturing considerations but also
computational by-products such as single-node connections. This is especially common
in compliant mechanism design [90] as well as minimum compliance problems with low
material volume fraction limitations.

The most common method for applying a minimum length scale is through mesh
independent filters [29]. The method utilizes mesh independent filtering to achieve a ra-
dial smearing of the density about each pixel which allows for minimum length scaling.
A modification of this methodology to use nodal design variables instead of using ele-
ment density variables has shown promise as well [49]. However, heavy-side filter-based
projection methods that can provide scaling on both solids or voids have been shown to
not always provide manufacturable designs [114]. Local gradient constraints have also
shown to be effective in providing a minimum length scale [56], although their initial
intended purpose was to counteract checkerboarding effects. One of the other meth-
ods which have gained prominence is the monotonicity-based minimum length scale
(MOLE) which can be used in structured regular grids [90], where the monotonicity in
the coordinate and diagonal directions are studied for a span equal to the minimum
length desired. The function measuring the monotonicity is integrated over the domain
and is used as a constraint on the problem. A more recent and more complex [69] im-
plementation is proposed by Zhou et al. using a three-field formulation (design, filtered,
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(a) Results obtained using minimum length scale imposition using
mesh independent filters for various minimum member sizes
(a) dmi n = 4.0 ,(b) dmi n = 2.0, (c)dmi n =1.5 and (d) dmi n =1.0
(Guest et al. [49]).

(b) A minimum length scale imposed using
the MOLE method (b), eliminating single
node connections (a) in compliant mecha-
nism design (Poulsen [90]).

Figure 3.5: Minimum length scaling.

projected) where the filtered design variables impose length scaling on the solid region
and the projected variables on the void regions [125].

MAXIMUM LENGTH SCALE

Maximum length scaling limits the material deposition at a particular region in the do-
main, this allows limiting feature dimensions within the domain. Coupled with the min-
imum length scaling, feature sizes in the domain can be standardized to obtain more
intuitively realizable structures with standardized parts. This was achieved by a narrow-
band filtering approach used by Lazarov and Wang which avoids both large as well as
small members, and the limit is posed both on the solid as well as void regions [68].
However, filtering in the frequency domain does not allow for direct control in the den-
sity domain. To achieve a direct control in the density domain, morphological filters
have proven to be superior as they allow for modification of both solid and void regions
independently. Hence, achieving separate solid and void length scaling as illustrated in
Figure 3.7. An explicit method to impose general scaling in SIMP methods was proposed
by Zhang et al.. The method is capable of providing local control of the sizing by measur-
ing the features sizes with respect to a so-called structural skeleton, which is often used
in image processing [92] [11]. By measuring both minimum and maximum lengths with
respect to the structural skeleton, a custom banded scaling is possible as illustrated in
Figure 3.8.

3.1.3. DESIGN PERFORMANCE CONSTRAINTS

Topology optimized structures often fall short from a strength perspective when low vol-
ume fractions are considered. The reason being that although the obtained structure ex-
hibits an optimal objective (say compliance), the structure is incapable of carrying loads
without failure or collapsing (buckling). Hence, to achieve optimal structures which do
not fail for the applied loads, a suitable constraint is required. Common performance
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Figure 3.6: Maximum length scaling imposed using bandpass filters. The ws represents the frequency below
which the densities are set to 0 leading to larger feature sizes. As ws is increased the feature sizes generated
reduce. (Lazarov and Wang [68])

Figure 3.7: Maximum length scaling imposed morphological operations. Case 1: Maximum length scaling on
both phases and Case 2: Scaling only on the solid phase. (Lazarov and Wang[68])

measures utilized include stress constraints and buckling constraints for static loading
and eigenvalue constraints for dynamic considerations.

STRESS CONSTRAINTS

In most cases, topology optimization is utilized in cases where the number of design
variables is much larger than the number of design responses since this allows for an
efficient adjoint formulation. However, applying stress constraints directly results in an
inefficient formulation since the location of the critical stress is not previously known
leading to the addition of a number of constraints equal to the number of design vari-
ables. Furthermore, since in topology optimization, the elements are allowed to vanish,
this leads to local optima or more often called the "singularity phenomena" which can
be attributed to the retaining of constraints pertinent to elements that have vanished i.e
ρ ≈ 0 causing inaccessible solution space. This makes stress-constrained topology op-
timization a complicated endeavor but never-the-less an utmost necessity for capable
structural solutions.

Rozvany and Birker described the nature of the global solution of any n-dimensional
singular optimization problem as the solution at the tip of one of many k-dimensional
hyper-plane segments or ’spokes’ where few of the n dimensions vanish i.e k < n [95][93].
This is illustrated in Figure 3.9, where the global optimal lies at the tip of region FD.
The concept of singularities leading to local optima was shown to be alleviated if truss
members, as well as their design dependant constraint, were allowed to vanish [106] as
this eliminates the truncation caused at the connection points between the spokes and
the completely feasible solution space i.e represented by point D in Figure 3.9.



3.1. THE COMPLIANCE MINIMIZATION FORMULATION

3

21

Figure 3.8: Maximum and minimum scaling imposed on a short beam problem, and the corresponding struc-
tural skeleton. (Zhang et al.[123])

(a) Truss problem with singular solution.
(b) The region FD is inaccessible. The global optimal F is in-
accessible since traditional search algorithms stop at D

Figure 3.9: Singularity phenomenon illustration (Kirsch[62]).

A common approach to enable access to the global optima and eliminate the dis-
continuity caused due to the vanishing members is through the use of smooth envelope
functions which relax the stress constraints posed on the variables [93]. Cheng and Guo
recommended a method that introduces an ε parameter to the constraints to enlarge
the feasible domain. This relaxation parameter ε can be incorporated through various
strategies [32][42][46][40] , the most straightforward is through its inclusion as a toler-
ance or difference in the original constraints as stated in Equation 3.8.

g̃ j = ḡ j −ε≤ 0 (3.8)

Another common method used is the q − p approach formulated from the micro-
scopic stress perspective. It is important to note that although the stiffness is modeled as
a piece-wise distribution in topology optimization when the density is modeled varying
from solid(1) to void(0), it is more logical to assume the intermediate material structure
to be a cellular material. In such a case, computing stress magnitudes from the averaged
elastic properties do not reflect the actual stress experienced in the cellular material, the
epsilon relaxation method does not take into consideration this effect. Hence to modify
the stress parameter to depict the stress concentration experienced in the cellular ma-
terial as the density is decreased, a microscopic stress formulation is utilized [27]. Rep-
resented in Equation 3.9, p represents the penalization parameter commonly used in
the SIMP formulation and q the density exponential which decides the extent of inverse
correlation between the stress amplification and the density. The relationship between
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Figure 3.10: Modified design space with the epsilon relaxation (Verbart et al.[112]).

the parameters can be obtained using the requirements for the constraints to vanish at 0
density as well as the requirement for non-finite stress at 0 density i.e. p > q . Figure 3.11
represents the broadening of the solution space using the q −p relaxation strategy.

g̃ j =
ρ
εqp

j

∣∣σ j
∣∣

σlim
−1 ≤ 0, where εqp = p −q > 0 (3.9)

Figure 3.11: Modified design space using the qp approach (Verbart et al.[112]).

AGGREGATION

Topology optimization is already a computationally expensive operation. Each opti-
mization iteration requires a finite element solution as well as a design sensitivity com-
putation with respect to each element in the discretized domain. In cases where fine
FEM models are used for high-resolution structural solutions, the computational ex-
pense is further increased. When a large number of local stress constraints are consid-
ered, additional computation is added to the problem. The most common method to
compensate for this added expense is to utilize an aggregation function that combines
the local constraints in the problem to a single constraint or a set of localized constraints.
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The most commonly used aggregation functions are the Kreisselmeier-Steinhauser
function, P-norm, and P-mean. Each provides a unitary and continuous function as a
replacement to multiple stress variables as well as eliminates non-differentiable points
present at points where multiple maximum stress points can exist. Figure 3.12 illustrates
the aggregation of two functions f1 and f2.

• P-norm [118][53]

ΨPN =
(

N∑
e=1

f P
e

)1/P

(3.10)

• P-mean [41]

ΨPM =
(

1

N

N∑
e=1

f P
e

)1/P

(3.11)

• Kreisselmeier-Steinhauser [118]

ΨU
KS =

1

P
ln

(
N∑

e=1
eP fe

)
(3.12)

(a) P-norm aggregation applied to
function f1 and f2

(b) P-mean aggregation applied to
function f1 and f2

(c) KS norm aggregation applied to
function f1 and f2

Figure 3.12: Frequently used aggregation functions. (Verbart et al.[112]).

The P-norm is preferred when peak stresses are experienced whereas P-mean is pre-
ferred when a largely uniform stress distribution is present. The aggregation functions
demonstrate an asymptotic behavior tending to the maximum operator as the aggre-
gation parameter is increased, hence it may seem logical to utilize large aggregation
parameters to obtain more accurate sensitivities. However, it has been shown that the
resulting large gradients induce numerical instabilities, and hence it is advisable to use
moderately high values to ensure smooth aggregate functions and stable numerical con-
vergence.

It must be noted that as the number of distinct constraints increases the accuracy
of the aggregation function drops, hence such methods are not preferred for large (very
fine) problems. Therefore, although it may seem intuitive to aggregate all of the con-
straints at once, the resulting numerical instabilities can yield oscillating solutions. But



3

24 3. TOPOLOGY OPTIMIZATION

it must be noted that the computational time required for even this large number of it-
erations is much lesser than the local constraint problem. A middle ground, where a
regional aggregation approach is used achieves a good balance between the number of
iterations and computational time. In this approach, the design domain is sub-divided
into multiple regions and aggregation of constraints is performed locally within each
of these regions. Utilizing multiple aggregation regions/functions yields a better repre-
sentation of the local stress field, as well as the maximum stress in the domain there-
fore various recommendations for regional aggregation strategies, have been proposed.
París et al. suggested a blocked approach where geometrically local cells are grouped
[88]. However, to give prominence to the magnitude of stress rather than its geometric
location Le et al. recommends the selection of regions so as to increase the difference in
the stress experienced by the elements in each region [70]. Additionally, Holmberg et al.
suggests the use of regions where the difference in the aggregated stress between regions
is minimized [53]. It is to be noted that although division into regions increases the ac-
curacy of the aggregation, the positive effect of the division diminishes past a point of
division [70].

3.2. NUMERICAL INSTABILITIES IN TOPOLOGY OPTIMIZATION

Topology optimization for material distribution problems is prone to certain unique
complications. To extract feasible and coherent designs, it is essential that these insta-
bilities are addressed. The most prominent of these being checkerboarding and Mesh
dependant solutions, as described by Sigmund and Petersson [98].

3.2.1. CHECKERBOARDING

Checkerboarding refers to the occurrence of alternating solid and void elements in the
solution obtained (like checkerboards). Checkerboards are a by-product of rough nu-
merical modeling, as shown by Diaz. Quadrilateral elements with 4 nodes exhibit arti-
ficially large stiffness due to the low order shape functions. The actual stiffness of such
alternate arrangements of materials has actually been proved to be considerably low and
almost non-existent [24]. Hence making checkerboards both an incorrect modeling as
well as an undesirable design solution. The effective property estimated for periodic ma-
terial in 2D was shown to be considerably larger when modeled with 4 node elements in-
stead of 9 node elements.[23]. Hence, using 9 node elements completely eliminates the
presence of checkerboards. However, the increase in the number of nodes makes the use
of 9 node elements computationally expensive. Therefore, alternative filtering strategies
are employed in conjunction to low order elements to alleviate checkerboards. These
filtering strategies will be explored in Section 3.2.4.

4 node checkerboard properties : Ē1111 = Ē2222 = 0.5000, Ē1122 = 0.1500, Ē1212 = 0.1750
(3.13)
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(a) Checker-boarding in TO solutions.
(b) Difference in response of 4-node and 9-node model
of checkerboard

Figure 3.13: Illustration of checkerboarding and artificial stiffness in low order elements. (Diaz[35]).

8 node checkerboard properties : Ē1111 = Ē2222 = 0.1720, Ē1122 = 0.0941, Ē1212 = 0.1159
(3.14)

3.2.2. MESH DEPENDENCY AND NON-UNIQUENESS

Mesh dependency refers to the variation of the results as the mesh is refined or coars-
ened. Ideally, any mesh refinement must produce a more detailed description of the
boundaries rather than entirely qualitatively different designs. However, in the case of
topology optimization, the absence of solutions to the original problem with discrete de-
sign values results in a significant variation in the designs for varying mesh sizes [98] as
illustrated in Figure 3.14. Mesh dependency is also inherently a possibility in problems
with multiple solutions, i.e. non-unique solutions. A very simple example is the design
of a bar under tension (without any stress constraints) optimized for reduced material as
illustrated in Figure 3.15. The bar itself can either be a single strut or multiple members
in parallel and in either case, the stiffness is actually equal (hence multiplicity).

Figure 3.14: Variable solutions obtained for 500 and 5400 element discretization. (Sigmund and Petersson
[98]).

Figure 3.15: Illustration of multiple possible solutions for the same problem. (Sigmund and Petersson [98]).
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The freedom of the variables to take multiple solutions can be visualized as a by-
product of an unconstrained variation. Therefore, to pose a constraint on the solutions
and to enforce convergence onto unique solutions, constraints are posed on measures
of the density variations.

3.2.3. PERIMETER CONSTRAINT

Previously mentioned in reference to a measure of manufacturing complexity, the
perimeter constraint was originally posed as a constraint on the variation of the design
variables. The constrained problem is proven to include the optimal solution [12] and to
constrain the problem so as to produce mesh independent results [51][47] as illustrated
in Figure 3.16.

Figure 3.16: Mesh dependancy alleviation using perimeter constraints. (Haber et al. [51]).

The more mathematically rigorous form of the Perimeter constraint is the norm con-
straint of the design variables in the Sobolov space. A global gradient constraint is given
by equation 3.15.

‖ρ‖H 1 =
(∫
Ω

(
ρ2 +|∇ρ|2)dx

) 1
2 ≤ M (3.15)

The local gradient constraint achieves a similar result but results in a 2n/3n increase
in the number of constraints hence making the process inefficient. But it is to be noted
that the constraint posed on the local gradient almost assures grey designs but signifi-
cantly reduces checkerboards. The practical implications of Grey designs are elaborated
in Section 3.3. ∣∣∣∣ ∂ρ∂xi

∣∣∣∣≤ c (3.16)

3.2.4. FILTERING

Filtering is typically used in image processing to clean noisy data. Usually utilizing local
pixel neighborhood information and intensity variations to modify the image to yield
more clear features. A similar approach is utilized to modify design density and design
sensitivity to modify the problem to yield a unique and mesh-independent solution.
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SENSITIVITY FILTERING

Originally posed as a solution to checkerboarding problems, mesh independent filter-
ing utilizes a local recalculation of the design sensitivities of each element based on
a weighted average of the design sensitivities around it [99]. In checkerboard preven-
tion, the neighborhood was limited to a radius of 1 element, but through generaliza-
tion for larger radii, the method is useful for addressing mesh dependency. The method
was initially proposed for modeling bone growth and bone healing and is an excellent
representation of how local neighborhood response contributes to the material deposi-
tion/elimination rate at a particular location [82]. The filter is represented by equation
3.17. Based on a convolution operation, the local weights are decided based on the dis-
tance between the neighboring elements within a certain radius, hence making the sen-
sitivity information a geometrically dependant quantity rather than a mesh dependant
quantity. However, models with mesh-dependant sensitivity filtering have been shown
to produce good results as well [25].

∂̂ f

∂ρk
= (

ρk
)−1 1

N∑
i=1

Ĥi

N∑
i=1

Ĥiρi
∂ f

∂ρi

Ĥi = rmin −dist(k, i ), {i ∈ N |dist(k, i ) ≤ rmin}

(3.17)

Figure 3.17: Elimination of mesh dependency using Sensitivity filtering (sigmund [99]).

DENSITY FILTERING

The Density filtering approach was first performed by [29] and it is in a sense a dis-
cretized convolution with respect to the density [29]. The convolution-based density
filtering recalculates the density through a weight-based average over a region around
each cell (uniform, conical or exponential), which results in a smoothing of the density
(similar to sensitivity filtering) [26].

ρ̄(d) =∑
j

ω j

ω
ρ j

ω j = max

(
1−

(
x j −xi

)2 + (
y j − yi

)2

r
,0

)
ω=∑

j
ω j

(3.18)
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PDE FILTERING

A fairly new method aims to alleviate a problem in sensitivity and density filtering. The
very act of using mesh independent filters requires a search of neighboring elements
which is computationally expensive as the mesh size reduces. The PDE filtering ap-
proach aims to utilize an implicitly defined filter using the Helmholtz PDE equation [67].
This method is especially efficient when used with very fine meshes and performs well
under parallelization [8]. This method is also applicable as both a density filter as well as
a sensitivity filter.

∇>Kd∇ρ̃+ ρ̃ = ρ, where ρ̃ is the filtered density field

fp (x) = ρ(x)
∂c

∂ρ

∣∣∣∣
x

∇>Kd∇ f̂p + f̂p = fp , where f̂p is the filtered field

(3.19)

Figure 3.18: Restriction using Helmholltz PDE filter. (Lazarov and Sigmund [67])

It must be noted that the act of filtering was initially just a means to an end and
was not deemed logical. The need for rational designs outweighed the search for a ratio-
nalization of the operation. However, Sigmund and Maute deduced from a continuum
mechanics perspective, the act of filtering in TO can be interpreted as minimizing com-
pliance in a non-local elasticity problem [102]. Hence the act can be deemed more than
one of convenience.

3.3. BLACK AND WHITE RESULTS

In the case of application of TO for isotropic materials, the use of any artificial mate-
rial model employed (such as the SIMP model) is to allow for the local material i.e. ρ
to be encouraged towards solid (ρ = 1) or voids (ρ = 0). However, a frequent byprod-
uct of filtering is grey regions (0 ≤ ρ ≤ 1) in the converged solution. These regions are
dependant on the radii used for the filtering operators and results in a requirement for
post-processing to obtain black and white results. Analogous to this in image processing,
for feature identifications in grey figures, morphological operators are used. The Mor-
phological filters are neighborhood operators which modify the grid values based on the
maximum or minimum value in the search region about each cell/voxel. A combination
of these filtering techniques has shown to result in Black and White(BW) designs and
simultaneously pose minimum feature size constraints[101]. Figure 3.19 illustrates the
resulting BW designs through the different morphological operations.

• Erosion : All cells within a structural element are set to the minimum density
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Figure 3.19: Illustration of morphological filtering operations (Sigmund[101]).

within the element.

• Dilation : All cells within a structural element are set to the maximum density
within the element.

• Open : Erosion followed by Dilation.

• Close : Dilation followed by Erosion.

In an effort to locate fully B/W designs without filtering, multiple approaches have
been proposed. But an interesting method commonly used is the continuation method
[98]. A sequential design search is performed through variation of the penalization pa-
rameter either in SIMP or RAMP method. The converged result from the previous pe-
nalization parameter is used as the starting point for the next, higher penalization pa-
rameter. The nature of problems to become mesh dependant is avoided through this
method as by varying the penalization parameter sequentially, the tendency to get stuck
at a local stationary point (saddle) is avoided and the gradual variation of the penalty
parameter allows for more global information to be considered rather than information
specific to the current mesh, start design and penalization magnitude. The resulting ob-
servation is that the initial grey regions slowly convert to black and white. The method
and it’s variants have been shown to provide solutions which are globally optimal by Li
and Khandelwal [74], J Petersson [56], Buhl et al. [30], and Rojas-Labanda and Stolpe
[91]. However, some skepticism has been posed on the methodology since it is heuris-
tic. Although the method has been shown to provide close approximations of the global
optimal it cannot be proven to always work. Based on the results obtained by Stolpe
and Svanberg [104], even though the initial problem is convex, the trajectories of the pe-
nalization using continuation has shown to be non-continuous and not always provide
black and white designs even with very high values of the penalization parameter.

An alternate method is the use of heavy-side projection functions in conjunction
with density filtering. But an inevitable consequence of direct use of such projection
functions is the violation of constraints of the final design [74]. Hence, a modified
volume-preserving heavy side projection function was proposed by Xu et al. [117]. How-
ever, in most cases, the use of the continuation method and suitable filtering (other
than morphological filters) do not entirely eliminate all grey elements, especially at the
boundaries of the solid and void regions minimal amounts of grey elements can still be
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observed. Therefore, to address the same a thresholding strategy is employed to set all
elements above a prescribed density to 1 and below it to 0.

3.4. MULTI-OBJECTIVE TOPOLOGY OPTIMIZATION

TO by its very nature/formulation works best when the loading is unique, as the mate-
rial deposition is specifically decided for a given loading. However, capable structural
designs are required to be versatile and hence, must be capable of handling multiple
loading conditions. The idea of multi-objective optimization is more of an approxima-
tion as compared to a well-defined single objective problem. It is highly unlikely to find
a single optimal solution instead of a set of solutions that all satisfy the optimality con-
ditions, some better than others and some even equal in performance. The immediate
most logical method which comes to mind is the min-max formulation where the opti-
mization is performed specifically in each iteration with respect to the load case which
has the maximum compliance. However, such a formulation is trifled with disconti-
nuities and hence not preferred. The methods of solving multi-objective problems can
be broadly divided into two types based on the presence or absence of prior specifica-
tion/knowledge of preferences of the objectives relative to each other[77]. The former
is most often used in topology optimization as the criticality of each loading case is of-
ten known or in most cases considered equal. The most frequently employed being the
’global criterion method’, the simplest of which is the weighted exponential sum. The
weights utilized corresponding to the individual objectives behave as the corresponding
measure of significance/preference.

U =
k∑

i=1
wi [Fi (x)]p (3.20)

The most basic form of the weighted exponential is when p = 1 and all the weights are
set to 1 and this is commonly used in conjunction with the SIMP method for its simplic-
ity [97]. Similar variations such as the weighted product method and the exponentially
weighted criterion are utilized as well. Unit consistency is ensured using normalized
objectives.

U =
k∑

i=1

(
epwi −1

)
epFi (x) (3.21)

U =
k∏

i=1
[Fi (x)]wi (3.22)

The bound formulation is an alternate methodology for conversion of a min-max
objective formulation into a minimization operation, proposed by Bendsoe et al.. The
method is proven to outperform the simple weighted sum formulations when the objec-
tives included a combination of stiffness(compliance) and eigenvalue constraints[65].
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The modified formulation is given by (3.23).

min
D

β

subject to: wi Fi −β≤ 0, i = 1, . . . ,k
(3.23)

Although the weighted sum unification and its variants are commonly preferred for their
simplicity, this method is incapable of capturing a significant portion of the Pareto front,
since the solution obtained depends heavily on the weights used, and hence it is not as-
sured to converge to a global optimal [109]. Consequently, various methods have been
suggested for the selection of the weights (when the preference is not known or there is
an equal preference), therefore widening the Pareto front to widen the access to globally
optimal solutions. Common approaches in determining the weights are the use of evolu-
tionary search methods and fuzzy set logic [77]. However, studies illustrate the inability
of constant weights (obtained by any method) to provide globally optimized solutions.
Consequently, the weights themselves are to be a function of the objectives themselves
[78].

Additionally, the Kreisselmeier-Steinhauser aggregation methodology can be used
to model the min-max(compliance) function and has proven to provide more superior
results than the bound formulation for TO[57]. The KS objective does not possess any
tailoring parameters (weights) that affect the Pareto front and therefore form a suitable
alternative to the weight dependant formulations. Figure 3.20 illustrates a comparison
between the KS strategy and bound formulations. The KS objective provides a solution
that converges quickly when compared to the bound formulation and therefore it is a
suitable strategy for larger mesh size.

fKS = 1

p
ln

k∑
i=1

ep fi (3.24)

Figure 3.20: Comparison of convergence through (a) Bound formulation (b) Constant KS Aggregation ap-
proach (c) Graduated KS Aggregation approach (James et al.[57]).

For TO strategies to generate lightweight solutions, a compliance volume product
method has also been suggested by Li et al. to incorporate both volume and compli-
ance as a unified objective using a normalized exponential weighted criterion [72]. The
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unique feature of the method is the absence of any empirical decisions of the design con-
straints. The method is proven to be capable of capturing all the Pareto points in both
convex and non-convex problems. An illustration of the method is described in Figure
3.21 and the compliance volume product based objective is given by (3.25).

Minimize
X={x1,x2,...,xn }T

P (x) =
m∑

k=1

(
exp

(
qwc

k

)−1
)

exp

(
q

(
Ck (x)−C min

k

C max
k −C min

k

))

+ (
exp

(
qw v )−1

)
exp

(
q

(
V (x)−V min

V max −V min

)) (3.25)

(a) Load cases 1 : F1 , Load case 2 : F2,3, Load case 3 : F4,5, Load
case 4 : F6,7, Load case 5 : F8,9

(b) Individual load case solution (a-e) and multiple load case solution(f)

Figure 3.21: Illustration of compliance volume product objective results (Li et al. [72]).
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3.5. TOPOLOGY OPTIMIZATION TOOLS

Although initially, TO was more a researcher’s tool, its widespread capabilities resulted
in a significant number of modeling and simulation software providers adding it to their
catalog of product development tools. An extensive list of such tools tabulated in Ta-
ble 3.1 was consolidated by Barroqueiro et al. for their capability toe be employed for
additive manufacturing in the aerospace industry [15]. The most frequently used com-
mercial TO tool is OptiStruct by Altair [64]. However, in this project itself, two packages
were considered for use: TopOpt and Abaqus/TOSCA.

Commercial Software Developer FEA Solver Analysis Regime
Dreamcatcher Autodesk Standalone S,E
Within Enhance Autodesk Standalone S,E
Tosca Dassault Systemes Ansys/Abaqus /Nastran S,E,D
ATOM Dassault Systemes Abaqus S,E
Ansys Standalone S,E,D
Sol200 MSC Standalone S,E,D
Optistruct Altair Standalone S,E,D
Vanderplaats Genesis VRand Ansys S,E,D
Solid Thinking Inspire Solid Thinking Optisttruct S,E,D
PERMAS-TOPO Intes Standalone S,E,D
FEMtools Optimization Dynamic Design Solutions Ansys/Abaqus /Nastran S,E,D
OPTISHAPE-TS Quint Corporation Ansys S,E,D
ParetoWorks Sciart Rethinking Design Standalone S
ProTop CAESS Standalone S,E
Educational Tools
BESO 3D RMIT University Abaqus S
Topostruct Sawapan Standalone S
ToPy William Hunter Standalone S
TRINITAS Linköping University Standalone S
TopOpt TopOpt Research Group Standalone S.

Table 3.1: List of commercial and open-source tools available for topology optimization. The analysis regime
covered are S-Static, E-Eigen value and D- Dynamic (Barroqueiro et al. [15]).

3.5.1. EVALUATED TOOLS

TOPOPT

The TopOpt package developed by Danish Technological University is an open-source
topology optimization package that is capable of performing large-scale topology op-
timization in 3D[8]. The framework is based on PETSc/TAO where PETSc is a suite of
data structures and routines for the scalable (parallel) solution of scientific applications
modeled by partial differential equation and TAO is the toolkit for advanced optimiza-
tion. The Topopt package is readily able to voxel-based TO tasks as illustrated in Figure
3.22a, but it is incapable of importing CAD models. Thus keeping in mind the complex
architecture of the galley, the employment of TopOpt would prove to be rather cumber-
some.
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(a) TopOpt (b) Abaqus-TOSCA

Figure 3.22: Topology optimized 3D cantilever beam using available packages

ABAQUS/TOSCA

Abaqus is one of the leading commercial Finite Element Analysis tools. The optimization
toolbox within Abaqus utilizes a subset of the TOSCA optimization package. Capable of
performing size, shape, topology, and bead optimization, Abaqus is a highly capable tool
to realize lightweight, rigid, and durable structures. The professionally developed tool is
well adapted to handle both 2D as well as 3D structures with the capability of custom
free form modeling using the CAE application. Thus, making it an ideal candidate for
the G5 galley optimization. Therefore in the interest of time, availability, and simplicity,
ABAQUS/2019 was chosen for the optimization of the G5 galley.



4
G5 TOPOLOGY OPTIMIZATION

The G5 optimization is conducted using the TOSCA package within ABAQUS. This chap-
ter comprises the modeling, analysis, and optimization strategy employed for the same.
Section 4.1 comprises the TO compatible modeling strategy employed in ABAQUS anal-
ogous to those currently used for certification. Section 4.2 describes the specifications
for the optimization itself , followed by the corresponding results in Sections 4.3 and 4.4.

35



4

36 4. G5 TOPOLOGY OPTIMIZATION

4.1. G5 MODELING

Keeping with the modeling method utilized for certification as specified in Section 2.3,
the galley is modeled using plates with all intermediate inserts and fixtures eliminated. A
key difference in the modeling employed for TO is the material model. Although the G5
galley is a composite structure, the TO methodology to be employed relies on the SIMP
model which assumes an isotropic material elasticity. Therefore, the galley material is
changed to Aluminium with Elastic modulus E = 70 GPa and Poisson’s ratio = 0.25. Addi-
tionally, the G5 currently employs variable plate thickness, however the model employed
for TO utilizes uniform thickness plates.

(a) G5 Solidworks model

(b) G5 Abaqus model

Figure 4.1: Modeling panel-based design of G5 as plate elements.
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4.1.1. LOADING

The certification loading is inertial in nature, different in all 6 directions. This is not
problematic in the case of static analysis, but in the case of topology optimization, the
material distribution and the relative density change constantly, hence this changes the
inertial loading in each iteration of the optimization process. Also, Abaqus is incapable
of performing topology optimization in the case of distributed loading since, all load
application points are frozen and if unfrozen, the load itself is no longer resisted by the
structure. Hence there is no direct method to incorporate self weight-induced inertial
loading. Therefore, the inertial loading of the galley itself will be omitted. However, the
galley weight is limited to close to 30% of all the appliance weight combined therefore
comparatively, the influence of the galley inertial load is comparatively lesser than the
appliance and trolley loading.

TROLLEY LOADING - CONSISTENT POINT LOAD SET

During the sideways load case, the trolley makes contact with the adjacent galley panels
as illustrated in Figure 4.2. This can be modeled as a uniformly distributed load (UDL)
over the corresponding panel surface. However, since loading points are frozen in TO,
a UDL force will yield an absence of any material removal in the adjacent panel. This
limits the possibilities for optimized solutions. Therefore, an alternative loading strat-
egy is required to simultaneously allow for load transfer as well as material removal. A
possible methodology is to utilize a set of point loads equal to a fraction of the inertial
load distributed over the panel. Additionally, to ensure that consistency is maintained
on converting from a uniformly distributed load to a point load, the moment and forces
experienced at the boundaries of the panel must remain equivalent.

(a) Trolley inertial force (b) UDL trolley inertial force on the adjacent panel

Figure 4.2: Trolley loading on adjacent panel.

To this extent, a simplified set of point loads is proposed which produces the same
displacement profile as well as reaction force profile as a UDL. This can be obtained
as a solution to the equivalent nth moment transfer at the boundaries due to n point
loads. The locations of a set of N equal loads to replace a UDL(P applied over a span L)
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is provided through solving a set of N non-linear equations given by (4.1).

N∑
i=1

xi
n = N Ln

n +1
where, n ∈ (1, N ) (4.1)

With the equal point loads given by:

Fi = PL

N
(4.2)

No. of point loads Location (0-L) Load (FT = P*L)
1 0.5 FT

2 0.21132487, 0.78867513 0.5 FT

3 0.14644661, 0.5, 0.85355339 0.333 FT

4 0.10267276, 0.40620376, 0.59379624, 0.89732724, 0.25 FT

5 0.08375126, 0.3127293, 0.5, 0.6872707, 0.91624874 0.2 FT

Table 4.1: UDL equivalent point load and locations for a span of L=1.

The results in Figure 4.3 prove that the method is successful in approximating the
displacement profile of a UDL load over a 1x1m span plate clamped on all edges. There-
fore in the context of a galley where UDL load is applied on a panel, the replaced set
of point loads can result in the same magnitude of load and moment transferred to the
adjacent connected panels.

(a) 1 point load
Max disp. = 1.176E-4m

(b) 4 point loads
Max disp. = 1.459E-5m

(c) 9 point loads
Max disp. = 2.482E-5m

(d) 16 point loads
Max disp. = 2.779E-5m

(e) 25 point loads
Max disp. = 2.626E-5m

(f) UDL load
Max disp. = 2.621E-5m

Figure 4.3: Maximum displacement of 1x1m fully clamped plate subjected to UDL (Magnitude 1 kN) and a set
of equivalent point loads.
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Figure 4.4 illustrates the results when the same ’UDL equivalent point load set’ ap-
proach is used as the loading case for topology optimization of said plate. The resulting
topology is designed to handle the same amount of load as the total UDL and has the
benefit of being a more practical structure. For the G5 itself a set of 3×3 set is used for
the LEFT/RIGHT load case and 2×3 set is used for the AFT Load case.

(a) 1 point load|SEmi n =
1.4285e-1

(b) 4 point loads|SEmi n =
1.1966e-2

(c) 9 point loads|SEmi n =
1.1806e-2

(d) 16 point loads|SEmi n =
1.3360e-2

(e) 25 point loads|SEmi n =
1.4599e-2 (f) TO density legend

Figure 4.4: TO solution for 1x1m fully clamped plate subjected to a set of UDL equivalent point loads(white
squares)

APPLIANCE LOADS

Following the currently accepted methodology for loading as specified in Section 2.3.
The appliance inertial loads are modeled as point loads applied at the CG of the ap-
pliance with coupling to tie-down points of the appliances within the cabinet space as
illustrated in Figure 4.5.

Figure 4.5: Appliance loading through CG coupling.
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4.1.2. BOUNDARY CONDITIONS

The galley is attached to the aircraft at discrete locations through fixtures and anchors
as indicated by Figure 4.6. These interface points form the boundary conditions for the
analysis of the structure. The joints connecting the G5 galley to the aircraft are incapable
of supporting any reaction moments and can only sustain reaction forces. The joints are
modeled through a single connection point coupled to the galley as illustrated in Figure
4.7.

Figure 4.6: G5 Interface points

(a) Bottom (UX,UY,UZ = 0) (b) Top (UX = 0)

Figure 4.7: G5 boundary conditions.
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4.2. G5 TOPOLOGY OPTIMIZATION FORMULATION

Following the construction of a suitable model and adaptation of loads and boundary
conditions, the TO of the galley itself requires suitable topological descriptors and de-
scriptive design responses to be enhanced and constrained. These are encompassed
within the Design domain, the optimization objective, and constraints. The Finite El-
ement Model is constructed within ABAQUS with the required boundary conditions.
Each load case is modeled as an individual static analysis. The constructed model and
the static analysis results are utilized as the descriptors for the objective and constraints
within TOSCA (within ABAQUS).

DESIGN DOMAIN

The design domain is the Finite Element Mesh of the undivided galley as a whole. The
domain is discretized into quadrilateral elements of size 10mm. For simplicity and in the
interest of uniformity, a constant shell thickness of 12.5mm is adopted throughout the
galley.

Figure 4.8: Quad mesh | no. of nodes = 209139 | no. of elements = 209521.

OBJECTIVE

As described in Section 2.2, the maximum inertial loads in the 6 principal directions form
the load cases from the loading requirements of the Galley. Since each of the six load
cases (LC) is unique and dissimilar in magnitude and direction, the structural response
of the galley is unique in each case. Therefore, the optimization of the G5 requires all
6 load cases to be considered. Therefore, multiobjective optimization is best suited for
the G5 galley. As described in Section 3.4, the objectives can be combined through var-
ious methods. Since each of the load cases is independent, the structural response to
each case can be considered equally important. Consequently, a straightforward com-
pliance(C) sum formulation can be employed as the objective to be minimized. Within
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ABAQUS the compliance is represented through its analytical equivalent, the strain en-
ergy(SE). It is to be noted, although Strain energy is essentially any integral over the strain
and elasticity field over the entire domain, within the TOSCA toolbox itself the SE is com-
puted based on the external loading 1.

Therefore the optimization objective can be stated as (4.3).

minOb j ecti ve =
LC=6∑
LC=1

CLC =
LC=6∑
LC=1

SELC

where, C = SE =∑
uT K u

(4.3)

Figure 4.9: Load case description

Table 4.2: Inertial load factors

Load case ID Direction Inertial Load Factors

1 AFT L AF T

2 DWN LDW N

3 FWD LFW D

4 LEFT LL

5 RIGHT LR

6 UP LU P

4.2.1. DESIGN CONSTRAINTS

Assuming a constant thickness of 12.5mm throughout the galley, the weight of a fully
metal galley would have a mass of Wm . To achieve a structural weight equal to that of the
current composite design (Wg ) a mass constraint is to be imposed. This is formulated as
a volume constraint of (35%) and supplemented into the optimization routine.

4.2.2. REACTION FORCE CONSTRAINT

The interface load limits as prescribed in Section 2.2 are limitations on the connection
points and can be posed as reaction force constraints. Considering each of the 13 in-
terfaces and the 6 load cases a total of 186 reaction forces are to be considered and 352
constraints are to be employed( Maximum and minimum limits). The addition of con-

1It should be noted that the accurate formulation for C/SE is 0.5×∑
uT K u. Within ABAQUS for TO based on

linear FEM, the 0.5 coefficient can be neglected without affecting the optimization result.
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straints to an already fine-mesh model increases the computational expense of the op-
timization problem significantly2. Hence, to reduce the number of constraints max and
min unification is applied over the reaction forces at each interface. The specific limits
are as tabulated in Table 2.2.

RFimi n ≤ RFi ≤ RFimax (4.4)

min({RFi (LC ) : LC = 1 to 6}) ≥ RFimi n

max({RFi (LC ) : LC = 1 to 6}) ≤ RFimax

(4.5)

4.2.3. OPTIMIZATION ALGORITHM

The use of a discretized domain in pairing with interpolation schemes such as SIMP es-
sentially converts the optimal topology problem into a continuous sizing problem thus
allowing for the use of continuous optimization strategies. The standard continuous
structural optimization strategies rely on the use of the value/values of design variables
and their associated displacement profile from the previous iteration to update the cor-
responding design variables suitably for the next step [89]. This sensitivity-based ap-
proach in pairing with suitable optimality criteria(OC) allows for the identification of the
optimized solution. Consider the continuous form of the minimum compliance prob-
lem from Section 3.1 coupled with the SIMP material interpolation model given by 3

(4.6). As an alternative to computing the objective sensitivity directly, the Lagrange mul-
tiplier strategy can be utilized to encompass the constraints within a unified objective.
The unified unconstrained objective or the Lagrange function is given by (4.7).

minu∈U ,ρ l (u)
s.t. aE (u, v) = l (v), for all v ∈U

Ei j kl (x) = ρ(x)p E 0
i j kl∫

Ωρ(x)dΩ≤V ; 0 < ρmin ≤ ρ ≤ 1

(4.6)

L =l (u)− {aE (u, ū)− l (ū)}+Λ
(∫
Ω
ρ(x)dΩ−V

)
+∫

Ω
λ+(x)(ρ(x)−1)dΩ+

∫
Ω
λ−(x)

(
ρmin −ρ(x)

)
dΩ

(4.7)

Λ,Λ−(x), and Λ+(x) are the Lagrange multipliers for the constraints in (4.6) and the
necessary conditions for the optimal sizing variable ρ are an subset of the stationary
conditions for the Lagrange function given by 4.8. For intermediate densities (0 ≤ ρ ≤ 1),
the Lagrange multiplierΛ is given by (4.9) based on which an update strategy is proposed
by Bendøse and Sigmund given in (4.10). The update strategy attempts to either add

2The choice of aggregating was for no other reason than to hasten the optimization process.
3The minimum value of ρ is limited to ρmi n = 10−3 to avoid singularities occurring at ρ = 0.
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or reduce the density based on the the parameter Bk ( Bk = 1 implies optimality). The
parameters ζ and η are tuning parameters where ζ controls the aggressiveness of the
update scheme and η sets the limiting update magnitude.

∂Ei j kl

∂ρ
εi j (u)εkl (u) =Λ+λ+−λ− (4.8)

pρ(x)p−1E 0
i j klεi j (u)εkl (u) =Λ (4.9)

ρK+1 =


max

{
(1−ζ)ρK ,ρmin

}
if ρK Bη

K ≤ max
{
(1−ζ)ρK ,ρmin

}
min

{
(1+ζ)ρK ,1

}
if min

{
(1+ζ)ρK ,1

}≤ ρK Bη

K

ρK Bη

K otherwise

BK =Λ−1
K pρ(x)p−1E 0

i j klεi j (uK )εkl (uK )

(4.10)

The update strategy described by (4.10) represents a traditional OC-based gradient
descent approach applied to the topology optimization problem. However, a key limi-
tation of the Lagrange multiplier method is its functioning limited to self-adjoint prob-
lems. Specifically, within the scope of TO, non-structural constraints such as size con-
straints cannot be included within the optimality criteria scheme. To this extent, math-
ematical programming strategies provide a suitable alternative to the OC-based strat-
egy. Nonetheless, a distinguishing feature of TO is the customary large number of design
variables, leading to large computational expenses if indiscriminately implemented in
conjunction with mathematical programming. Hence, programming strategies imple-
mented for TO are required to be capable of handling a large number of variables and
constraints. Within the field of TO, one such method is predominantly employed, it is
the method of moving asymptotes (MMA)[105][17]. Belonging to the group of convex
approximation methods, MMA optimizes the given problem by solving a convex sub-
problem in each iteration. Given an objective function F (x1, x2, x3...xn) to be minimized,
the convex sub-problem at iteration j has the form:

F j (x) = F
(
x j

)
+

n∑
i=1

(
ri

Ui −xi
+ si

xi −Li

)
L j

i ≤ x j
i ≤U j

i

(4.11)

Where ri ,si are chosen as,

if
∂F

∂xi

(
x j

)
> 0 then ri =

(
Ui −x j

i

)2 ∂F

∂xi

(
x j

)
and si = 0

if
∂F

∂xi

(
x j

)
< 0 then ri = 0 and si =−

(
x j

i −Li

)2 ∂F

∂xi

(
x j

) (4.12)
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Here, Li and Ui are the so-called asymptotes. In the case of MMA, both Li and Ui are
finite in magnitude leading to F j being strictly convex (except when ( ∂F

∂xi
) j = 0) 4. This

allows for the optimizer to sequentially move towards the optimized solution similar to
the OC strategy. In the implementations for straightforward minimum compliance, the
MMA does not perform significantly superior to the OC method; However, the distin-
guishing feature of the MMA is in its capability to incorporate more complex objectives
and the capability of handling a large number of constraints as well as its excellent con-
vergence properties[17]. Therefore, considering the large FEM model of the G5 galley as
well as the significant number of constraints, the MMA optimizer within ABAQUS/Tosca
can be deemed acceptable for the G5 optimization application5.

Material Interpolation technique SIMP | p = 3
Maximum - Minimum Density 0.001 - 1.00

Convergence criteria : Objective ∆ 0.0001
Convergence critera : Element Density ∆ 0.0001

Frozen regions Loading & BC regions
MMA - Density update Strategy Normal

4The values for the asymptotes are dependant on the constraints posed on xi . As a general recommendation,
if the process tends to oscillate the asymptotes are to be moved closer to xk and if the process is slow the
asymptote gap can be relaxed and moved apart. This is incorporated in ABAQUS as a ’CONSERVATIVE’ and
’AGGRESSIVE’ setting respectively

5Within the Abaqus optimization toolbox MMA is the sole optimizer available, however, the author prefers to
underline its capabilities and proven track record within TO.
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4.3. RIGID INTERFACE OPTIMIZATION

Keeping in mind that the G5 galley domain has been previously designed to handle the
interface loading requirements albeit, with composite panel material, it is best to build
the optimization complexity in 2 steps. Therefore, the first TO study will be conducted
without consideration of interface load transfer. This reduces the optimization to a
classic volume-constrained minimum compliance problem. The optimization problem
statement is as described in statement 4.13 6

min
ρ

SE =
LC=6∑
LC=1

SELC

subject to :
∫
Ω
ρδv ≤Vl i m

(4.13)

The results of the optimization routine described by (4.13) is illustrated in Figure
4.10 7. The optimization has been successful in reducing the volume. However, it must
be noted that much of the upper part of the galley has been eliminated. This can be
attributed due to the lack of stiffness offered by the upper joints (12,13,14,15). Due to
the absence of load-carrying capability in 2 of 3 directions of these joints the optimizer
demonstrates a preference to redirect material towards the load-capable interface points
at the bottom to achieve larger compliance reduction. Consequently, much of the lim-
ited fraction of material available is directed towards retaining the stiffness offered by the
lower interface points leading to non-uniform material retention over the entire struc-
ture resulting in some panels almost entirely eliminated and some entirely retained. Al-
though this is an expected outcome from topology optimization, panels in their entirety
cannot be eliminated without losing the functionality of the Galley. Consequently, addi-
tional constraints are necessary for achieving/retaining functionality.

6Henceforth any optimization problem statement implicitly includes 1) A static equilibrium constraint for all
the load cases and 2) Design variable ρ ∈ [0,1].

7All thresholded for a minimum value of 0.3. The contour description of all subsequent TO results will follow
the same legend as Figure 4.4.
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(a) 3D view

(b) Front view

(c) Panel 38 (d) Panel 42

Figure 4.10: Rigid interface G5 TO result. Vl i m = 0.35V0. SEopti mi zed = 84.43J



4

48 4. G5 TOPOLOGY OPTIMIZATION

4.3.1. BANDED GEOMETRIC CONSTRAINT

The generated topology in Figure 4.10 contains fully eliminated panels, fully retained
panels, and everything in between. Ideally, any material removal must not incur a com-
plete loss in the partitioning and any material retention must not create a dispropor-
tionate shortage of material in other regions i.e. an entire panel must not be eliminated
and no panel must be fully retained. As already observed, all the panels on the upper
region of the galley have been eliminated and the center trolley partition wall has al-
most entirely been retained. Figure 4.10c and Figure 4.10d illustrate other intermediate
topologies. Of the two panels, the former is preferable, as it maintains a practical par-
tition and at the same time depicts large volume reduction. Whereas, the latter depicts
more scope for material removal. The key identifying feature of Panel 38 is the features
are limited in their geometrical dimension. Hence, a dimensional constraint could offer
an alternate preferable solution.

Adding a geometric constraint to constrain topology dimensions to a given range
results in a more standardized topology. In the G5 study case, a geometric constraint of
2cm to 4cm is employed. It can be argued that the constraint range is much larger than
the plate thickness (12.5mm). But the constraint was set keeping in mind that the ele-
ment size adopted for the mesh is 1cm (average) and TO size constraints must be larger
than 2 times the mesh size to avoid checkerboards and a 2 element gap between the
lower and upper dimension limit is advisable. The chosen geometric limits are the most
reasonable form of the dimension constraint while keeping in mind the plate thickness,
mesh size, and TO filter properties (R f i l ter = 1.3del ).

The generated topology is presented in Figure 4.13. Compared to the topology with-
out geometric constraint, the material retention is more suitable and retains the func-
tionality of the galley. It can also be observed that this constraint has countered the
preference of entirely disregarding the upper anchors. The webbed structure obtained
in the rear panel displayed in Figure 4.11a is an ideal topology for low weight as well
as maintaining functionality. The topology can be described/characterized by branches
growing from the anchor locations and spreading in such a way so as to possess a large
volume of coverage while maintaining the required resource limitations. Interestingly,
the obtained structure is reminiscent of iso-grid or grid stiffened structures as illustrated
in Figure 4.11. Figure 4.11a showcases the localization of stress within the branches anal-
ogous to the tailored stress paths of grid stiffened structures similar to Figure 4.11b.
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(a) Stress flow through discrete branches leading
to the interface locations.

(b) Grid stiffened structure (Sanmiguel
[96]).

Figure 4.11: Grid stiffened structure-esque topology obtained through addition of geometry constraints.

Comparing the strain energies an expected outcome of added additional constraints
is observed. The minimized compliance increases from SEG5 = 84.43J to SEG5Z = 209J
. This translates to roughly a 2.5x increase in the deformation at the loading points. A
similar trend is noticed in the maximum displacement tabulated in Table 4.3 with a max-
imum displacement of 26mm observed in FWD.

The generated topology in Figure 4.13 contain localized checkerboard regions,
which as described in Section 3.2.1 are artificially stiffening regions which are numer-
ical anomalies and undesirable in TO. Unfortunately, due to the chosen mesh size and
filter radius, these regions cannot be entirely eliminated. A possible mitigation strategy
is through a reduction of the desired final volume fraction, leading to a contraction of
the checkerboard regions as displayed in Figure 4.14. However, this reduction in volume
constraint affects both checkerboard and relevant regions alike, therefore also eliminat-
ing relevant material branches and generating floating regions. A possible cause is due to
the conflicting scenario created by the mesh size, filter sizes, and the banded dimension
constraint.

Considering the adopted mesh size of 10mm and checkerboard filter size of 13mm
(R f i l ter = 1.3del ) the geometric size constraint of 20mm to 40 mm is questionable. The
minimum geometry size constraint implementation within ABAQUS follows a similar
filtering strategy to the checkerboard filtering. As a consequence of filtering the already
filtered variable, the checkerboards are induced within the solution. Figure 4.12 illus-
trates an identical situation of filter conflict in a cantilever beam. Ideally, the mesh size
is to be much finer than the geometrical constraints implemented. Unfortunately, the
computational limitations are already tested with a mesh size of 0.01.
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(a) Without size constraint. (b) With size constraint dmi ni mum = 0.02

Figure 4.12: Cantilever beam TO solution with mesh size of 0.01m and checkerboard filter 0.013m.

Load
Case

Min SE + Vol.C Min SE + Vol.C + Size.C

Opt. objective = 84.43 J Opt. objective = 209 J

AFT 1.869 mm Bottom Trolley Rear Panel 4.992 mm

DWN 1.710 mm Upper Appliance deck 1.669 mm

FWD 0.488 mm Upper deck central deck 0.996 mm

LEFT 9.100 mm Trolley mid
panel

25.870 mm

RIGHT 6.863 mm 19.480 mm

UP 2.564 mm central horizontal panel 5.884 mm

Table 4.3: Max. displacement magnitude and location change due to additional size constraint.
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(a) 3D view

(b) Front view (Checkerboards observed)

Figure 4.13: Rigid interface banded dimension constrained G5 TO result. Vl i m = 0.35V0. SEopti mi zed = 209J .
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4.3.2. MAX GEOMETRY CONSTRAINT

As observed in Section 4.3.1, the most intuitive form of the geometry constraint yields
checkerboards due to the conflicts with the filtering strategies employed. Therefore, the
geometric constraint requires relaxation. Consequently, with the motivation of retain-
ing slender members, it is advisable to retain the upper limit on the dimensions, and
to avoid the numerical anomalies caused due to the mesh size and the filtering radius,
the lower limit is eliminated. Therefore, the original banded constraint of limiting di-
mensions to 2cm-4cm is replaced with a new constraint of a maximum feature size of
3cm. The corresponding results are illustrated in Figure 4.15. A clear improvement can
be observed in the features in comparison to Figure 4.13. The checkerboard regions are
almost entirely eliminated and simultaneously the branched structures are expanded.

It is to be noted that although in this case, the results are promising, the stiffness of
the interface is assumed to be rigid. But, as specified in the Section 2.2, AIRBUS stipu-
lates limitations on the strengths of the joints. On observation, joints 5, 12, and 13 have
violated these limitations and few other locations trail very close to these limits as well.
Hence in the interest of satisfying current interface requirements, additional reaction
force constraints need to be introduced.

Joint
ID

RFX (kN) RFY (kN) RFZ (kN)
min max min max min max

1 -1.988 7.869 -1.929 0.171 -5.268 16.228
2 -2.056 11.034 -0.253 0.0112 -9.414 10.433
3 -0.717 0.103 -11.782 7.876 -14.24 13.293
4 -0.561 0.365 -11.666 11.662 -7.108 4.510
5 -0.594 0.163 -11.687 14.372 -16.572 17.133
6 -1.496 7.937 -0.067 0.319 -10.429 10.503
7 -2.421 6.486 -0.113 1.914 -4.181 8.862
8 -2.364 14.986 -2.006 2.673 -3.174 19.837
9 -1.557 6.995 -1.315 1.751 -4.818 3.060

12 -3.964 16.600
13 -4.415 19.125
14 -1.248 0.959
15 -0.290 0.248

Table 4.4: Max interface load transferred of 6 load cases for TO result. vl i m = 35%V0.
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(a) 3D view.

(b) Front view

Figure 4.15: Rigid interface maximum dimension constrained G5 TO result. Vl i m = 0.35V0. SEopti mi zed =
203J .
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4.4. FINITE STRENGTH INTERFACE OPTIMIZATION

Although the current galley architecture was designed to handle the interface load lim-
itations, the reduction in volume and change in material proved to violate these limits.
To this extent, the interface load limitations are introduced as reaction force limits to the
optimization routine. Also, to avoid panel eliminations, the use of maximum feature size
constraint as described in Section 4.3.2 is retained. The modified optimization problem
is as stated as in statement 4.14.

min
ρ

SE =
LC=6∑
LC=1

SELC

subject to :∫
Ω
ρδv ≤ 0.35V0

min({RFi (LC ) : LC = 1 to 6}) ≥ RFimi n

max({RFi (LC ) : LC = 1 to 6}) ≤ RFimax

(4.14)

The resulting TO outcome is presented in Figure 4.17. The webbed structure is re-
tained from the optimization case without the RF constraints. The key distinguishing
feature of the RF constrained case is the localization of material towards one of the sup-
port points. Specifically, in comparison with the TO result without RF constraints sup-
port point 3 draws more load. This can be observed in comparison of Tables 4.4 and
4.5, leading to more number of branches connecting interface point 3 as illustrated in
Figure 4.16 . This preference of localization resulted in the overlapping/merging of the
branches and a netted region on the rear panel above support point 3.

The addition of the RF constraints has also ensured that the interface load limita-
tions are satisfied. As tabulated in Table 4.5, the reaction forces in all the joints are within
or equal to the required limits. Joints 5, 12, and 13 which previously violated these re-
quirements were alleviated of the additional load and these loads were redirected to
other joints. Noticeably to joints 14 and 15(from 12 and 13) in the upper region and:
3 and 4 (from 5) in the lower region. This phenomenon is replicated in the case with
lowered resource constraint (30%) as well, as illustrated in Figure 4.18.
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(a) Without RF constraints.

(b) with RF constraints.

Figure 4.16: TO rear panel comparison with and without RF constraints.

Joint
ID

RFX (kN) RFY (kN) RFZ (kN)
min max min max min max

1 -2.907 10.991 -2.842 0.337 -8.675 21.264
2 -1.740 9.001 -0.119 0.005 -10.360 10.534
3 -0.675 0.112 -12 9.435 -19.663 22.039
4 -0.589 0.314 -12 12 -11.870 5.825
5 -0.546 0.125 -10.381 12 -18.261 17.785
6 -2.631 12.646 -0.043 0.334 -10.765 8.55
7 -1.110 5.319 -0.152 2.328 -5.675 20.816
8 -2.462 16 -2.075 2.765 -4.778 27.888
9 -2.586 11.631 -1.181 1.567 -6.459 2.937

12 -2.483 9.887
13 -2. 234 10.000
14 -2.554 3.765
15 -0.536 2.282

Table 4.5: Max Interface loads of 6 load cases for G5 TO solution with Reaction force constraints
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(a) 3D view.

(b) Front view

Figure 4.17: Reaction force and maximum dimension constrained G5 TO result. Vl i m = 0.35V0. SEopti mi zed =
277J .
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(a) 3D view.

(b) Front view

Figure 4.18: Reaction force and maximum dimension constrained G5 TO result. Vl i m = 0.30V0. SEopti mi zed =
313.23J .
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4.5. CONCLUSIONS

This chapter summarizes the modeling and optimization strategy employed for TO of a
G5 galley and therefore the outcomes of the investigation of the first research question
for the project.

How can topology optimization be employed on a galley structure? How can
a suitable/practical structure be generated ?

For the employment of TO on the G5 galley, its most barebones form is modeled
within ABAQUS devoid of any inserts, fixtures, and fasteners as an assembly of S4 plate
elements. This form of modeling is analogous to the strategy employed currently in
house; however, a distinguishing feature of the employed TO model is the use of Alu-
minium as the comprising material of the galley. The use of the isotropic material al-
lows for the use of the SIMP interpolation model for the sensitivity analysis as well as
adapts the TO framework to function within the limitations of ABAQUS. To compen-
sate for the change in material, a volume constraint is imposed on the TO objective to
limit the mass of the optimized structure to the mass of the current composite galley.
The volume constraint is posed on the compliance minimization objective comprising
of the sum of the structural compliance under the 6 distinct loading cases. Preliminary
investigations displayed a lack of functionality in the TO solutions due to the vanishing
of complete panels. To this extent, suitable geometric constraints are posed to allevi-
ate the non-uniform material removal throughout the galley and to retain a functional
galley structure. The TO study is concluded with the addition of aircraft interface limi-
tations in the form of reaction force constraints on the minimum compliance objective.
The investigated modeling strategy and the assembled optimization objectives and con-
straints form a capable framework for the initial development of any galley. Table 4.6
describes the Author’s proposition for preliminary development of TO galley solutions
and represents the recommendations based on the outcomes of the investigation into
the implementation of TO on the galley structure.

Element type | Mesh size Quad Shell : S4 | 10mm
Shell Thickness 12.5 mm
Objective minimum compliance | sum of all 6 load cases
Volume constraint 0.35 (Results in final mass equivalent to weight of current composite G5)
Material | Interpolation model Aluminium (E=70GPa, ν= 0.25) | SIMP (0.001 ≤ ρ ≤ 1.000))
Optimizer Sensitivity based MMA | NORMAL Density update strategy
Geometric restriction d f eatur e ≤ 30mm
Checkerboard filter 13mm ( Default for a mesh size of 10mm)
Reaction force constraints MIN and MAX aggregation to identify critical load cases for each interface

Table 4.6: Proposed parameters for TO of galleys.

At this point, the author would like to acknowledge two critical assumptions made
in the TO study. Firstly, due to the incapability of the utilized toolbox, the self-weight
induced inertial forces of the galley are absent in the compliance calculations. Due to
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the continually varying mass and topology of the structure, the location, as well as mag-
nitude of the galley inertial load, do not remain constant. Therefore any pseudo inertial
load applied would rather behave as an external load rather than the galley’s own iner-
tial load. Hence, once the TO solution is obtained a secondary analysis comprising of the
galley inertial load is essential in validating the efficacy of the optimized solution. Sec-
ondly, material strength limitations of any form are absent in the employed optimiza-
tion scheme. The Author would like to mention that, a preliminary study with stress
limitations was conducted and is available in the Appendix. However, in the interest of
computational expense and keeping within the scope of the project, this aspect has been
omitted and is proposed for further study.



5
MODULARITY

This chapter briefly introduces the concept of modularity and its influence. Section 5.1
and Section 5.2 describe the studied effects of modularity on performance and cost re-
spectively. The common strategies to extract features from TO-generated solutions are
explored in Section 5.3 and Section 5.4 briefly describes the concept of shape matching
using image moments.
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Although the term ’Modularity’ is used in various forms, in its most basic form it
refers to the ability of a structure to be broken down into smaller parts that are inde-
pendent of each other [66]. The most notable influence of the modular design approach
in the commercial market was encountered in the automotive industry. Both Ford and
GM augmented their manufacturing tactics to modular assembly strategies to allow for
more efficient manufacturing in 1999. Although primarily used as a measure to simplify
manufacturing and offer cost-effective products to the market an added customer ben-
efit was realized: customization. Hence, modularization became a suitable method for
large-scale production while simultaneously offering variety. However, the modular de-
sign philosophy is not limited to structural division and assembly. In its more prevalent
form modularization implies the utilization of sub-structures that are similar to each
other. As defined by Kamrani and Nasr, modular design is a design technique that can
be used to develop complex products using similar components [60]. This form of mod-
ularization is best represented by the iconic LEGOTM blocks which are infamous for their
portfolio of similar blocks and their capability to achieve complex macro structures [1].

The set of LEGO blocks is an ideal example of the capability of similar substructures
and their inherent manufacturing advantages. The product has not only been a source of
various designs, but also an interesting case of manufacturing quality control. All prod-
ucts manufactured from 1958 to date are compatible and are manufactured with a tol-
erance of 0.01mm [6]. This can be attributed to the focus of design being constrained to
a limited set of smaller, simpler, and similar parts. The minimization of focus on man-
ufacturing limited to a set of identical parts avails the opportunity to focus efforts on
mitigating auxiliary costs induced by part variety. Within the scope of this project, this
more evolved definition of modularity will be adopted.

Within the scope of TO, the generated structures are typically monolithic in nature
and their complex topologies require specialized manufacturing strategies. This is pre-
dominantly achieved through machining of a single block of material [64] ,casting [59] or
3D printing [15]. These manufacturing strategies considering the complex topologies of
the structures limit the manufacturing quantities to a large extent due to the economic
consequences. Although the geometric constraints described in Section 3.1 allows for
some degree of control on the topological complexities, from a mass production per-
spective TO solutions require a more rigorous augmentation methodology.

Modularity offers a possible solution to bridge this gap of complexity over quantity.
The high-performing TO monoliths if augmented into similar/identical substructures
can provide efficient manufacturing capabilities. However, the diminishing influence
of modularity of performance cannot be ignored. Therefore, the modular philosophy
becomes a balancing act between performance and cost. The functional variables being,
the size of the sub-components, their variety, and their individual quantity.



5.1. MODULARITY AND PERFORMANCE

5

63

5.1. MODULARITY AND PERFORMANCE

The performance of any assembled structure is inferior to its parent-monolithic struc-
ture, this effect is well embodied in the comparison of welded and bolted joints [71].
However, to study the effect of the modules on the performance of the assembled struc-
tures, this drop in performance needs to be solely attributed to the modules themselves
rather than the interfacing consequences. A relevant case to study to understand this
influence of modules on the monolith is truss optimization.

The use of a limited variety of design variables in construction is analogous to truss
topology design with discrete variables [126][73]. This constrained version of the truss
sizing problem naturally results in sub-optimal solutions in comparison to free sizing so-
lutions; However, it is more representative of a practical truss sizing where truss or beam
dimensions are limited. Enrique Herencia et al. showed that for a given load case, the
weight of a truss increase as the number of discrete variables is reduced [45]. Thus illus-
trating a decrease in specific performance as the number of distinct modules is reduced.
This behavior is illustrated in Figure 5.1, where the decaying effect of weight decrease
with respect to an increased number of discrete variables is an interesting finding. This
behavior allows possibilities for standardization of parts without increasing the weight
significantly above the optimal, in this case limiting to 3-4 design variants.

Figure 5.1: Weight of weight-optimized 10 bar truss structure vs the number of allowed cross-section areas
(Enrique Herencia et al. [45]).

The effect of module scale on global optimal is not easily measured in truss opti-
mization but can be inferred in periodicity studies in TO. This phenomenon is repre-
sented in the TO of periodic materials [55] and in the design of material microstructures
[122]. As the scale of the modules decreases, it is observed that the stiffness reduces
rapidly (compliance increases). Similar behavior is observed in the design of macro
structures [81][58]. Jiang and Wu utilized this methodology to design modular energy
storage flywheels [58]. As the periodicity in the domain is increased, a progressive drop
in performance (increase in compliance) is exhibited and over a point of division, the
compliance approaches a constant value. This implies, if the initial monolithic design
is over-designed, the modularized design can be adapted to fall within required perfor-
mance metrics. Analogous behavior was noted by Hao Zuo et al. in the influence of
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periodicity on the natural frequency of periodic topologies. The natural frequency ini-
tially drops as the periodicity is increased and approaches a constant value for further
increase [52]. This reiterates the detrimental effect of modularity on performance as
well as the decaying effect of the increase in performance with an increase in available
design variables.

(a) Compliance increase with size decrease (or increased modularity) (Zhang and Sun [122]).

(b) Decaying effect of drop in performance with
increase in modularity (Moses et al. [81]).

(c) Decaying effect of drop in natural frequency with
increase in modularity (Hao Zuo et al. [52]).

Figure 5.2: Illustration of influence of constructional modularity on performance (compliance) and natural
frequency.

It is interesting to note that modular variety itself has a secondary variation within
it where the number of modules of each type themselves can decide the performance.
An increase in the variety of parts allows for better performance due to being closer to
the free sizing optima. If instead of the size and variety of modules, the total number
of a module itself were studied, intuitively we can predict that the performance must
increase with the increase in the number of allowed modules. This phenomenon was
studied by Asadpoure et al., with a fixed ground structure, the performance of the op-
timum truss was compared for varying numbers of allowed members [14]. The study
showed an initial increase in performance(decrease in max deflection) and as the allow-
able members were increased the performance increase decays, as illustrated in Figure
5.3. A similar study with respect to the number of parts to be replaced by a common
module was conducted by Van Gent and Kassapoglou. The study provides a practical
example of an airframe structure, where its weight is studied as the number of unique
stiffeners are replaced by common designs, shown in Figure 5.4. The weight of the fuse-
lage is shown to increase as the number of unique stiffeners are increased.
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Figure 5.3: Opposing behaviour of maximum deflection and cost(material) with respect to number of truss
elements allowed (Asadpoure et al. [14]).

Figure 5.4: cost vs weight vs no. of replaced designs for constant load requirements for fuselage stiffener de-
signs. DOC : Direct operating cost (Van Gent and Kassapoglou [110]).

Figure 5.4 is an ideal depiction of the break-even analysis required in any modular-
ization intention. The increase in weight is accompanied by a noticeable decrease in
manufacturing cost, the possibility of economic advantage is one of the key motivations
for any modularization campaign apart from the ease in manufacturing. Modulariza-
tion can thus be a useful strategy when the loss in performance can be outweighed by
the economic advantage in manufacturing.

5.2. MODULARITY AND COST

Modularity in design if performed responsibly can lead to simple design architectures
without a significant drop in performance. But, the major interest in modularity is in its
ability to reduce manufacturing costs. The major manufacturing costs can broadly be
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defined into 3 parts: labor, tooling, and material. The relation between modularity and
labor cost is explained through the quantity and cost relationship. As quantity increases,
the mode of manufacturing is modified from manual labor to more automated systems
which leads to long term cost savings [31], see figure 5.5a.

It is to be noted that although a unit cost reduction exists a conglomeration of the
modular units is what is required to manufacture an entire structure. Hence, it is only
discretization over a break-even point that allows for the labor cost to be regained.

(a) Comparision of manufacturing costs per unit for different
manufacturing methods (Ceroni [31]).

(b) Influence of modularity on labour and tooling cost
(Van Gent and Kassapoglou [110]).

Figure 5.5: Manufacturing cost variation with respect to production volume.

Van Gent and Kassapoglou illustrated the influence of modularity on labor and tool-
ing costs. The increased modularity is shown to reduce labor costs as well as reduce
tooling costs. Interestingly, the converse argument of using an objective function that
mimics the cost increase due to extra parts is shown to produce designs with a fewer
number of part variants [14]. Apostolopoulos and Kassapoglou showed that for a given
composite laminate the cost of manufacturing is minimized when the laminate is con-
structed through an assembly of smaller laminates. The reduction in cost is attributed
to the learning curve resulting in a reduced cost with each successive module. For a spe-
cific size of modules, the decrease in cost bypasses the increased cost of assembly, hence
achieving profits through low size constructional modularity [13]. Axillary costs such as
certification and maintenance are also reduced through constructional modularization.
When coupled with automated non-destructive testing methods, the minimum flaw size
for detection and the scanning probe travel dimensions optimum module size can be es-
timated [61].

A good description of the variation of the cost breakdown with modularity is pro-
vided by Van Gent and Kassapoglou for the design of fuselage stiffeners (see figure 5.6).
The major contribution is taken over by the material cost due to the increase in material
and the accompanying costs of labor and assembly decrease. A decrease in tooling cost
can be attributed to the requirement of simpler or fewer tools for manufacturing fewer
variants of modules. In this case learning curve effects also contributed to the decrease
in manufacturing costs. As the modularity becomes excessive, the material costs over-
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take the tooling and labor costs. At higher levels of modularity, the tool life and other
maintenance costs are also factors to be considered. This allows for a cost-weight trade
off analysis to be performed as illustrated in Figure 5.4. However, under more complex
loading cases, the drop in cost with increase in modularity is not consistent. This is illus-
trated in Figure 5.7, where the material cost increase is larger than the tooling cost drop
leading to an increase in cost as well as weight. Therefore, a range of modularity can be
identified within which the increase in weight can be countered with the cost reduction.
Specifically in Figure 5.7, 6 to 21 replaced designs are the limited region within which a
cost reduction can be obtained.

Figure 5.6: Cost breakdown at different levels of modularity (blue: labor, green: material, red: tooling)
(Van Gent and Kassapoglou [110]).

Figure 5.7: Cost-weight trade diagram (Van Gent and Kassapoglou [110]).
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5.3. MODULARIZATION OF TOPOLOGY OPTIMIZED STRUC-
TURES

As described in Section 3.1, TO is the global optimization of a domain leading to a design
that assumes a highly flexible manufacturing method, capable of realizing structures
with any configuration of material distribution. In practice, manufacturing limitations
such as tool accessibility, tool maneuverability, etc limit the capabilities to achieve such
designs. In most cases, the complexities can be simplified with additional constraints
on the optimization routine (dimensional, curvature, etc). Nonetheless, this inevitably
leads to a drop in performance and in most cases remains inaccessible for mass pro-
duction due to the higher cost incurred. Therefore, the fragmentation of such complex
structures is an essential postprocessing operation to relax manufacturing as well as eco-
nomic constraints.

An ideal example of fragmentation of complex structures is the partition wall de-
signed by Nagy et al. in collaboration with AIRBUS [83] [5]. The crisscross truss design
generated was initially modeled as a uni-body structure, however, it was then broken
down into multiple pieces and manufactured individually. The process of the division
was entirely manual and each piece was further shape and size optimized with a mam-
mal bone-based internal structure [3], leading to 3D printing of each individual piece.

(a) Modularization of the complex partition wall structure. (b) 3D printing of fragments.

Figure 5.8: Modularization of complex partition structure (Nagy et al. [83]).

Although it is quite pleasing to visualize an industry where everything is 3D printed,
the technology is currently still in its infancy from a mass production perspective. Nev-
ertheless, fragmentation does allow for TO solutions to be utilized as initial design ideas
to be post-processed for conventional manufacturing. The most simple method com-
monly used to extract features from TO solutions is the image interpretation approach
where features are drawn by experienced designers over TO results [86]. However, such a
method requires manual interactions which are followed by further shape optimization
which is a complex optimization feat on its own. A more general image interpretation
method was proposed by Lin and Chao where thresholded topologies are used to iden-
tify boundaries of internal holes [34][76]. However, methods employing feature identi-
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fication methods require frequent interaction and in most cases rely on experience for
successful extraction [120]. Other automated reconstruction methods focus on match-
ing boundaries using free form surfaces such as B-Spline curves [87]. Although such
methods can be used to describe complex surfaces suitable for additive manufacturing,
the obtained designs remain expensive for manufacturing with traditional subtractive
manufacturing or even assembly-based manufacturing [120]. Additionally, these strate-
gies do not execute fragmentation of any kind, therefore the TO solution is simplified
while retaining a single-piece structure.

One of the frequently employed methods which achieve manufacturing simplicity
as well as modularization to some extent is the extraction of truss/frame designs from
low volume fraction TO solutions. Commonly employed in Civil Engineering [116], TO
is used to generate suitable Strut and Tie models(STM) for the design of reinforcements
for concrete structures. The typical strategy involves a thinning process, where a single
pixel/element skeleton of the obtained TO solution is generated followed by the node
identification method where the endpoints of the truss elements are identified and con-
nected through suitably sized truss elements. By limiting the truss profiles to a set of
discrete design variables, the STM embodies to a large extent the modular design phi-
losophy.

Figure 5.9: Strut and Tie model extraction process using thinning (Xia et al. [116]).

Truss/frame structures are by their very nature fragmented and within the realm of
structural engineering, their design represents the most iconic form of design optimiza-
tion. Researched extensively for over a decade [80], truss optimization has undergone
significant evolution [22]. In the pioneering works of Dorn et al., a method to evaluate
optimal truss topologies was established, which is still employed [37]. The methodology
is often called the ground structure(GS) approach which employs a grid of points in the
domain which are interconnected by truss members to varying degrees. The optimal
truss solution is obtained through sizing of the connecting truss members, which also
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allows for the vanishing of the truss members. To obtain a solution closer to the global
optimal, a large number of points are required in the GS leading to a drastic increase in
the computational requirements. An alternate route is through a fixed interconnected
set of points and the optimization of the coordinates of said points often referred to as
truss geometry optimization [36]. However, from a broader perspective, the most practi-
cal form of truss optimization is one where both sizing and geometry are simultaneously
optimized and where truss sizes are discrete in variety[10]. This broader form of the
problem is one that could theoretically provide the best truss, yet its complexity limits
its usage to fairly simple employments. However, topology optimization provides the ca-
pability to simultaneously obtain the optimal size and topology and is computationally
more efficient to truss optimization, and offers versatility to be adapted to a wide range
of structures. Nevertheless, the modularity offered by truss optimization is not retained
through TO.

(a) Varying levels of ground structure connectivity.
(b) Influence of initial ground-structure on the solution ob-
tained to the optimization problem.

Figure 5.10: Ground structure approach to truss optimization (Bendøse and Sigmund[17]).

Studying the G5 TO solution from chapter 4, a noticeable similarity is found be-
tween the low volume fraction TO solution and skeletal truss/frame-based architectures.
Therefore, an intuitive leap can be made that truss/frame-based design could prove to
be a suitable translation of the TO solution to a modular design. However, one could
question if a truss/frame-based structure can perform on par with Panel based designs,
especially within the context of the project study case of an aircraft galley. However, the
partition wall designed by AIRBUS represents an example of the very same [83][3]. The
frame like design was 45% lighter than previous designs while simultaneously increas-
ing its performance. Although the parts themselves were manufactured through additive
manufacturing, the structure itself proves the capability of a truss/frame structure to re-
place a panel-based cabin structure.

The standard STM extraction strategy functions based on regular quad meshing
and on simple design domains [116]. As the domain complexity increases and mesh-
ing varies, this method can fall short. Additionally from a broader perspective, the use of
mesh dependant strategies largely limits the scope of module identification. The very act
of identifying skeletal truss/frame architectures in a TO solution is analogous to shape
identification in images. The identification of shapes embodies the same philosophy as
modularization where a number of simpler modules suitably arranged can achieve the
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.

Figure 5.11: Performance of truss-based bionic partition as compared to initial panel-based structure [3]

same goal as the assembly as a whole. Therefore, image processing-based shape match-
ing could provide an alternate route to the modularization of TO solutions.

5.4. IMAGE MOMENT BASED SHAPE MATCHING

The piece-wise density distribution of TO solutions largely resembles the pixel-wise in-
tensity distribution of digital images. Therefore, an intuitive proposition can be made
that methods developed within image processing can be adopted suitably for processing
TO solutions. Within the context of this project, the requirement of the process involves
the extraction of the position and shapes of simple modules within a TO solution. This
can be visualized as identifying the best fitting shapes and their positions within an im-
age. Or if the modules themselves are fixed in shape/feature this can be equated to the
best fitting positions of a set of shapes within a domain to approximate the underlying
image. The prevalent methods employed for shape/ object identification and detection
either rely on Machine learning or Deep learning-based approaches [115]. Such systems
rely on large data banks as a source of information to train the computational model. In
the interest of using a data-independent methodology, a purely mathematical compari-
son formulation is preferred. One such method is through image moments.

Image moments are a set of descriptors of 2D/3D images. The concept was first put
forward by Hu. The Hu-moments are a set of descriptors that are invariant to translation,
scale, rotation, and mirroring [54]. The Hu moments are based on geometric moments.
The geometric moments are capable of identifying features such as area, centroid, and
orientation but they are incapable of direct image reconstruction and the contributions
of higher-order geometric moments are not easily comprehendible [107]. Teague pro-
posed the use of orthogonal functional moments in place of geometric moments for the
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first time. Their orthogonal properties allow for reconstruction of the image and also
for each moment to capture unique non-overlapping information from the image. The
two continuous orthogonal functions proposed were Zernike polynomials and Legen-
dre polynomials[107]. Since then, image moments have been developed and studied for
their image characterizing capabilities[108].

Figure 5.12: Image reconstruction using Legendre polynomials (Chiang and Liao [33]).

Legendre polynomials are ideal in this case since their rectangular orthogonality domain
follows the shapes of the panels in the structure. Each panel can be considered as an
individual image and the corresponding Legendre moments can be used for their mod-
ularization. Since we aim to investigate the presence of certain similar modules within
each panel, the question becomes what kind of modules. In this case, as obtained in
Chapter 4, the TO solution obtained is one with slender members. This is quite analo-
gous to truss structures or more specifically a frame structure. Therefore a bar/beam-
based module identification would be well suited for the initial study. Additionally, al-
though the lengths of the bar elements can vary, their cross sections if enforced to be
constant can still embody a very basic form of modularity.

In summary, modularization of complex monoliths allows for simplification in man-
ufacturing and additional profitability. Therefore, the TO solution if adapted into a mod-
ularized design can prove to be competent for large-scale employment. The congru-
ence of TO solutions to digital images allows for shape matching strategies to be trans-
lated into modularization techniques for TO solutions. Therefore based on the Legen-
dre image moments from image processing, a framework will be investigated to extract
bar/beam-based modularized designs from TO solutions.



6
MODULE IDENTIFICATION IN

TOPOLOGY OPTIMIZATION

SOLUTIONS USING IMAGE

MOMENTS

This chapter comprises an investigation into the image moment-based modularization
strategy. Section 6.1 describes the principle of Legendre image moments followed by
Section 6.2 which describes the moment matching strategy proposed to identify bar po-
sitions within a domain. Section 6.3 and 6.4 describe the results from the global bar
matching. The nature of the objective and its nonlinearities is studied in detail in Sec-
tion 6.5. Section 6.6, 6.7 and 6.8 describe the sequential augmentation of the moment
matching strategy.
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6.1. LEGENDRE MOMENTS

Topology optimization performed using FEM, results in a structure being described by
a piece-wise intensity distribution described by the finite element mesh. This is analo-
gous to digital images where an image is described in pixelated form. As described in
Section 5.4, within the field of image processing a common method used to represent
an image is using image moments. Image moments are a finite set of image descriptors
that are used to describe an image [9]. These image moments are not only capable of de-
scribing and reconstructing an image but are also capable of distinguishing images. Of
this subsidiary technique of image processing, Legendre moments are a 2D equivalent
of the 1D-Legendre polynomial curve fitting method. Similar to which, an image can be
approximated using a set of Legendre polynomials(in 2D). Based on the Legendre poly-
nomials, the Legendre moments for 2D images are given by (6.1) where ∆x and ∆y are
the sampling intervals within a pixel.

λmn = (2m +1)(2n +1)

4

∑
x

∑
y

Pm(x)Pn(y) f (x, y)∆x∆y (6.1)

Figure 6.1: Legendre curves

Table 6.1: Legendre polynomials

n Pn(x)
0 1
1 x
2 (3x2 −1)/2
3 (5x3 −3x)/2
4 (35x4 −30x2 +3)/8
5 (63x5 −70x3 +15x)/8

The digital image can be reconstructed using the Legendre moments as a continu-
ous function given by:

fr econstr ucted ≈
i=m∑
i=0

j=n∑
j=0

λi j Pi (x)P j (y) (6.2)
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Figure 6.2: 2D Legendre functions P1(x)P1(y), P2(x)P2(y), P3(x)P3(y),
P5(x)P5(y), P6(x)P6(y), and P7(x)P7(y)

Figure 6.3: 2400 pixel image reconstruction using Legendre moments up-to order 5, 10, 15, 20, and 30.
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Figure 6.4: L2 error in comparison to the reference image:A for letters V, O, N, M, and a slightly different A.
Moment matrix size utilized = 10x10

Through the use of these moments, the information from a multi-pixel image is
stored as a set of image descriptors. These moments can not only be used to recon-
struct an image as illustrated in Figure 6.3 but can also be used to compare images as
illustrated in Figure 6.4. The difference between the Legendre moments of the two cases
is maximized with the difference between the images. Consider the letter A and V which
are approximate mirror images about the X axis, hence the error is maximized. And of
course, as the similarities increase, the error is minimized. This is observed in the com-
parison of the two different forms of the letter ’A’.

ORTHOGONALITY

Since the Legendre polynomials are orthogonal in nature, this implies that any image
can be reproduced theoretically by the Legendre polynomial set and must theoretically
be complete. This also ensures that any 2 complete Legendre moment sets must not
be identical unless the images are identical. However, in the context of digital images a
truly complete set of moments is not possible due to its piece-wise nature. Therefore,
as a corollary: In the case of incomplete or limited sets of Legendre moments, identical
moments implies that images must be similar.

Following along these lines, it is hypothesized:

Given the Legendre moments of a TO solution, and the Legendre moments of a
bar as a function of its coordinates, orientation, and dimensions, by matching
the corresponding moments, the equivalent/approximate positions of the bars
can be identified.

To this extent, the following sections investigate a methodology to use Legendre mo-
ments to extract the positions of a set of bars within a work space to approximate a struc-
ture obtained from topology optimization.
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Figure 6.5: Moment matching hypothesis

6.2. MOMENT MATCHING

The results from TO using FEM, although results in a similar illustration as that of dig-
ital images, the latter are entirely limited to identically sized grid-based pixels in high
resolution. Equation 6.1 is an approximation which is suited for digital images. To suit
all possible mesh schemes, the more accurate integral form is utilized to compute the
Legendre moments given by Equation 6.3.

λmn = (2m +1)(2n +1)

4

∫ 1

−1

∫ 1

−1
Pm(x)Pn(y) f (x, y)d xd y (6.3)

The Legendre moment for the bar is calculated similarly by limiting the integration
domain within the bar. Given the central coordinate of the bar of thickness W is given by
x0,y0, length L and inclined at an angle θ. The Legendre moment for the bar is given by
Equation 6.4. The analytical expressions for bar moment value up to λ10,10 are obtained
as a function of the bar properties using Sympy[79]. A subset of which are tabulated in
Table 6.2. A reconstruction of a sample bar is conducted in Figure 6.6.

λmn = (2m +1)(2n +1)

4

∫ W
2

−W
2

∫ L
2

− L
2

Pm(x0 + l cosθ−w sinθ)Pn(y0 + l sinθ+w cosθ)dld w

(6.4)
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m n λmn(x0, y0,L,W,θ)
0 0 0.25LW
0 1 0.75LW y0

1 0 0.75LW x0

1 1 0.1875L3W sinθ cosθ+L(−0.1875W 3 sinθcosθ+2.25W x0 y0)

1 2
L3(1.875W x0 sin2θ+3.75W y0 sinθcosθ)/4+L(0.46875W 3x0 cos2θ

−0.9375W 3 y0 sinθcosθ+5.625W x0 y2
0 −1.875W x0)

1 3

0.1640625L5W sin3θcosθ+L3(−1.09375W 3 sin3θcosθ+1.09375W 3 sinθcos3θ

+13.125W x0 y0 sin2θ+13.125W y2
0 ∗ sinθcosθ−2.625W sinθcosθ)/4

+L(−0.1640625W 5 sinθcos3θ+3.28125W 3x0 y0 cos2θ

−3.28125W 3 y2
0 sinθcosθ+0.65625W 3 sinθcosθ+13.125W x0 y3

0 −7.875W x0 y0)

Table 6.2: Bar Legendre moments

Figure 6.6: Bar reconstruction using bar moment equations : Nm = 2 ⇒4 terms , Nm=10 ⇒ 100 terms

It is to be noted that to ensure that the Legendre polynomials are utilized only within
their orthogonal regions(-1,1), the functions are remapped from a [-1,1] bounding box to
a D[(XL , XU ), (YL ,YU )] bounding box for general FEM solution. This is done to maintain
a direct relationship between the dimensions of the structure and its elements(bars).
All the expressions in table 6.2 are limited to variables which result in the bar entirely
being within the [(-1,1),(1,1)] bounding box. Hence to convert them to a more general
and convenient form, the variables are transformed to an endpoint formulation and are
multiplied by suitable Jacobians. Given a general bounding box D[(XL , XU ),(YL ,YU )], a
linear remapping is performed to obtain the corresponding location in the D[(-1,1),(-
1,1)] Legendre domain.
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Figure 6.7: Mapping for generalized Legendre moment calculation.

ζ= 2x −XU L −XLL

XU L −XLL
,η= 2y −YU L −YLL

YU L −YLL
(6.5)

λmn = (2m +1)(2n +1)

4

∫ XU

XL

∫ YU

YL

Pm(
2x −XL −XU

XU −XL
)Pn(

2y −YL −YU

YU −YL
) f (x, y)d xd y (6.6)

The variables for the bar(ζ0,η0,L,W,θ) are converted to an endpoint
formulation(x1, y1, x2, y2, w) using (eqendp).

ζ0 = ζ1 +ζ2

2
,η0 = η1 +η2

2

L =
√

(ζ2 −ζ1)2 + (η2 −η1)2

α= tan−1
(

y2 − y1

x2 −x1

)
,θ = tan−1

(
η2 −η1

ζ2 −ζ1

)
JW = 1

2

√
sin2α

(XU L−XLL )2 + cos2α
(YU L−YLL )2

JL = 1

2

√
cos2α

(XU L−XLL )2 + sin2α
(YU L−YLL )2

W = w

JW

(6.7)

The generalized bar moment is given by Equation 6.8.

Λmn(x1, y1, x2, y2, w) = JW × JL ×λmn(ζ0,η0,L,W,θ) (6.8)
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The computed set of Legendre moments are operated and analyzed in the form of a
Legendre moment matrix(LM). The moment matrix of size Nm = 3 is given by Equation
6.9.

[
LM3×3

]=
Λ0,0 Λ0,1 Λ0,2

Λ1,0 Λ1,1 Λ1,2

Λ2,0 Λ2,1 Λ2,2

 (6.9)

A common method to compare two matrices is using the Euclidean distance or the
L2 norm of the difference matrix(L2E) given by Equation 6.10, i.e, the L2 norm is to be
minimized for two matrices to be similar. This is the error formulation utilized in Figure
6.4. A preliminary study is conducted to assess the viability of using L2 norm distribution
for comparison of the moments of a free-length bar anchored at (0,0), in comparison to
a bar position B[0,0,0.707,0.707]. The results illustrate that for all moment matrix sizes
above 1×1, a clear minimal is indicated at the position of the reference bar as expected.
The Ring contour obtained for LM1×1 can be explained by what the unitary matrix repre-
sents. The first term in the matrix is proportional to the area of the bar. Hence, all points
which result in a bar of the same length as the reference bar produce a minimal L2E.

L2E
(
LM f em ,LMbar

)=
√√√√N−1∑

i=0

N−1∑
j=0

(
LM f em j ,i

−LMbar j ,i

)2
(6.10)

The results also indicate that by increasing the moment matrix size, the valley lead-
ing to the contour’s minimal contracts. This is due to the increase in the L2E norm for
dissimilar positions, i.e. the L2E value approaches 0 only when the position is much
closer to the reference position (as compared to the L2E for the same position for a
smaller LM size).
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Figure 6.8: L2 norm contour for anchored bar at 0,0 with reference bar B[0,0,0.707,0.707] within domain D[(-
1,1),(-1,1)] for moment matrix size N = 1 to 9.
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6.3. GLOBAL OBJECTIVE OPTIMIZATION USING BOUNDING BOX

CONSTRAINED BARS

The simplest form of the bar match optimization is one in which the bars are allowed
to move freely within the image domain. The matching optimization statement is given
by 6.11 where n bars are matched within an image domain D[(XLL , XU L),(YLL ,YU L)] with
the moment matrix of the TO solution given by LM f em .

min
x1,y1,x2,y2...x2n ,y2n

L2E

(
LM f em ,

n∑
i=1

LMbi

)
s.t. XLL < xi < XU L

YLL < yi < YU L

where, LMbimn =Λmn(x2i−1, y2i−1, x2i , y2i , w)

(6.11)

A simple form of this is investigated for a trial case where 4 bars are attempted
to be matched to a X shape. The reference bars are Bars B[0.85,0.85,0.15,0.15] ,
B[0.52,0.48,0.85,0.15] and B[0.48,0.52,0.15,0.85] with widths 0.04. The accurate reference
LM is used based on the end points with the bounding domain D[(0,1),(0,1)]. The opti-
mization problem is specified as:

min
x1,y1,x2,y2...x2n ,y2n

L2E

(
LMX ,

N∑
i=1

LMbi

)
s.t. 0 < xi < 1, 0 < yi < 1

where, LMbimn =Λmn(x2i−1, y2i−1, x2i , y2i , w)

N = 4

LMXmn =Λmn(0.85,0.85,0.15,0.15,0.04)+
Λmn(0.52,0.48,0.85,0.15,0.04)+
Λmn(0.48,0.52,0.15,0.85,0.04)

(a) Xshape optimization problem (b) Reference X Image

Figure 6.9: X shape optimization problem

A gradient descent optimizer (scipy-trust-const) [113] is employed for varying sizes
of LM to obtain the results in Figure 6.10. The results illustrate the incapability of mo-
ment matrices lesser than size 3 to provide a viable optimal. The result clearly illustrates
the absence of any definite improvement with an increase in moment matrix size. It is
observed that with each additional term either noise or relevancy is added to the objec-
tive. But Nm = 9 (or 10) illustrates some amount of consistency.

Although the bar positions were identified with the largest moment matrix size, this
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is a fairly trivial case. The bar positions are very straightforward and the closed-form ex-
pressions were used to obtain the reference moment matrix. For the TO case itself, the
moment matrix of the TO result is to be obtained. Therefore unlike an image with uni-
form identical pixels a general arbitrary quadrilateral mesh needs to be considered. This
requires a general form of computation of the Legendre moments for the finite element
mesh.

Figure 6.10: Analytical gradient descent optimizer for X shape 4 bars

6.4. TOPOLOGY OPTIMIZATION LEGENDRE MOMENT

The Legendre moments for the TO solutions are computed based on the integral form
of the Legendre moment. Limited to quad elements, the Legendre moment for the TO
element is computed using the 2D form of the Gaussian quadrature.

Figure 6.11: Mapping quad-element to the 2D Gaus-
sian quadrature domain.

Table 6.3: Gaussian quadrature coordinates and weights

n x w

1 0 2

2 ± 1p
3

1

3 −
√

3
5 ,0,

√
3
5

5
9 , 8

9 , 5
9

4 ±
√

3
7 − 2

7

√
6
5 ,±

√
3
7 + 2

7

√
6
5

18+p30
36 , 18−p30

36

The mapping between the quadrilateral and the 2D Gaussian integration domain is
performed using a bi-linear interpolation function given by:

x = 1

4

(
(1−ζ)(1−η)x1 + (1+ζ)(1−η)x2 + (1+ζ)(1+η)x3 + (1−ζ)(1+η)x4

)
y = 1

4

(
(1−ζ)(1−η)y1 + (1+ζ)(1−η)y2 + (1+ζ)(1+η)y3 + (1−ζ)(1+η)y4

) (6.12)
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The 2D Gaussian quadrature of a TO solution is given by a summation over all the ele-
ments and is given as:

Λmn = (2m +1)(2n +1)

4

N∑
i=1

∫ m

Ael i

Pm(
2x −XU L −XLL

XU L −XLL
)Pn(

2y −YU L −YLL

YU L −YLL
)d xd y (6.13)

Λmn ≈ (2m +1)(2n +1)

4

N∑
i=1

r∑
j=1

s∑
k=1

w j wk Pm

(
2x j k −XU L −XLL

XU L −XLL

)
Pn

(
2y j k −YU L −YLL

YU L −YLL

)
× ∣∣det J

(
x j k , y j k

)∣∣
(6.14)

where the Jacobian for the mapping is given by:

J (ζ,η) = ∂(x,y)
∂(ζ,η) =

[
∂x
∂ζ

∂x
∂η

∂y
∂ζ

∂y
∂η

]
= 1

4

[ (−(1−η)x1 + (1−η)x2 + (1+η)x3 − (1+η)x4
)

(−(1−ζ)x1 − (1+ζ)x2 + (1+ζ)x3 + (1−ζ)x4)(−(1−η)y1 + (1−η)y2 + (1+η)y3 − (1+η)y4
) (−(1−ζ)y1 − (1+ζ)y2 + (1+ζ)y3 + (1−ζ)y4

) ]

= 1
4

[ −(1−η) (1−η) (1+η) −(1+η)
−(1−ζ) −(1+ζ) (1+ζ) (1−ζ)

]
x1 y1

x2 y2

x3 y3

x4 y4


T

(6.15)

Utilizing the summation in (6.14), a topology optimization solution is reconstructed
using moment matrices of varying sizes. Figure 6.12 illustrates the capability of the
methodology in reconstructing a TO solution as well as the possibility to use arbitrary
FEM mesh rather than a structured mesh such as a digital image.

Thus, repeating the X shape optimization from Figure 6.9 but with a mesh equiva-
lent of the same bar positions, and calculating the reference moment using the numer-
ical integration scheme, the gradient descent optimization was repeated. The resulting
converged solution for varying sizes of reference LM , is illustrated in Figure 6.14a . The
pixelated reference is an ideal parallel to the eventual TO solution. The gradient descent-
based bar matching results in noisy results, frequently resulting in only partial matches.
The incapability of lower-order moment matrices is maintained. However, contrary to
the previous observations in Figure 6.10 where the matching is improved at specific LM
size, the bar match results do not change/ improve at these specific LM sizes. But this
could be attributed to a coarse mesh. Hence, Figure 6.14b illustrates the result with a
finer mesh for the same pixelated shape. Since the finer elements allow for a larger num-
ber of numerical integration points, the resulting reference moment approaches the an-
alytical solution as the elements become finer. But, the finer elements do not assure an
accurate match. What can be inferred is that as the number of moments increases each
additional moment is not ensured to carry more information i.e improve the objectives
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Figure 6.12: Reconstruction of a FEM solution using a generalized LM calculation.

ability to identify the optimal. Studying the magnitudes of the moment matrix itself in
Figure 6.13, it can be noted that there are a large number of moments that carry almost
no magnitudes. This implies that the choice of adding more terms does not ensure ac-
curacy. This is contrary to the computational mindset, where more number of terms
assures more accuracy or a convergent phenomenon can be observed. Hence in the
case of a TO solution, the selection of moment matrix order is one to be made carefully.
This can be further studied with a TO case study.

Figure 6.13: X shape LM10x10 magnitudes.
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(a) Coarse

(b) Fine

(c) Finer

Figure 6.14: Pixelated X shape bar matching.
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GLOBAL BAR MATCHING OF TOPOLOGY OPTIMIZATION SOLUTION

The cantilever beam is an ideal example of typical TO results (see figure 6.15) and shall
be used for the preliminary study of the moment matching methodology. Therefore with
the same objective formulation as before the new optimization process can be stated as
in Statement 6.16. The results of the 2 cases are presented in Figure 6.16. A clear sub-
optimal matching is noticed in both cases. It is to be noted here, that the idea of sub op-
timal matching is a subjective one. Essentially what is desired is a bar position which ap-
proximates the underlying TO solution. A sub-optimal match refers to matching where
any semblance to an approximation is lacking. From visual inspection, it is observed
that the material coverage of none of the bars is as good as it can be. In some cases, the
bars approach good positions but do not move further. Thus it can be inferred that the
objective is highly nonlinear and non-convex and possesses local stationary points in
the solution space. Therefore, it is essential to understand the nature of the objective so
as to suitably modify and augment the optimization statement.

min
(x1,y1,x2,y2)...(x2n−1,y2n−1,x2n ,y2n )

L2E

(
LMF E Mcanti lever ,

n∑
i=1

LMbi

)
s.t. 0 < xi < 1

0 < yi < 0.25

where, LMbimn =Λmn(x2i−1, y2i−1, x2i , y2i ,0.025)

(6.16)

(a) mesh and loading. (b) TO solution.

Figure 6.15: Cantilever case study
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(a) 2 bar match.

(b) 4 bar match.

Figure 6.16: Global GD match on cantilever beam TO result.

6.5. MOMENT MATCHING CONVEXITY STUDY

As observed in Section 6.4, the matching through the L2E is not ideal. It is observed that
often the bars settle in positions dissimilar to the underlying FEM solution. This leads
to a conclusion of an inherent non-convexity and non-linearity existing in the objec-
tive chosen. Therefore to investigate these characteristics, this section provides a study
conducted to gain an understanding of the objective characteristics. Specifically, the in-
fluence of LM size, the width, and length of a test bar with respect to a fixed reference
bar, and the influence of matching of multiple bars.

6.5.1. INFLUENCE OF MOMENT MATRIX SIZE

A basic understanding of the objective profile is obtained by monitoring the L2E for a
bar rotated about a position and compared to a particular angular position and for a bar
translated along a direction and compared to a particular position. These are referred to
as an angle and translation study respectively. For simplicity, the analytical expressions
are used for the reference matrix as well as the test matrix. The results in Figure 6.19
indicate that as the LM size increases, the nonlinearity increases as well, although the
global minimal becomes more significant. It can be conclusively stated that the objective
characteristics are non-convex for moment matrix sizes above N = 2. Coupled with the
fact that relevant moment matching is possible only with LM size above 2x2, this implies
that any moment matching will always be non-convex.

In both the angle and translation study, the local minima and saddle points are ob-
served on either side of the optimal position. In the translation case, the number of local
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minimal increases in numbers as the size of the moment matrix increases. This when
coupled with the narrowing of the global optimal valley, the ability of the multiple local
minimal to settle the descent-based optimizers is inflated.

(a) Angle Study (b) Translation Study

Figure 6.17: Effect of moment matrix size on non-linearity.

6.5.2. INFLUENCE OF MATCHING BAR WIDTH

The width study analyzes the scenarios where the width of the matching bar does not
match the width of the underlying topology. The generated TO solution does not al-
ways contain members of the same size as being matched. Therefore when bar width
is chosen for matching, cases where the width can be larger or smaller than the feature
width, are not uncommon. Therefore, an understanding of the influence of the moment
matrix on the objective of matching varying width bars to a fixed-width reference bar is
obtained using an angle and translation study, illustrated in Figure 6.18.

Considering a case where a reference bar of width 0.05 is attempted to be matched
with bars with varying widths of 0.025 - 0.1, the use of a larger moment matrix is sup-
ported. It is observed that at lower LM sizes, when thinner bars are attempted to be
matched to thicker bars, the optimal position obtained is the same as the reference but
as the matching thickness increases, the optimal location shifts. In the case of rotation
matching the singular optimal location is replaced by twin troughs on either side, lead-
ing to an angular offset and in the case of translation, a unidirectional offset is observed
in the global optimal. This can be visualized as a slightly angular and translatory offset
when thick bars are matched to thin bars. The mismatch also yields multiple local mini-
mal with respect to the angle. At larger LM size, no angular offset is observed when both
smaller or larger bars are matched, which can be attributed to the narrower optimal ob-
ject valley. But, the saddle regions and smaller valleys on either side are still maintained
and are in some cases aggravated.
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(a) Angle Study (b) Translation Study

Figure 6.18: Effect of matching width on non-linearity.

6.5.3. INFLUENCE OF MATCHING BAR LENGTH

The length study is the most telling of the occurrences of bars settling in local stationary
points. It is best to associate the lengths with the search locations of the bars. Consider
a gradient descent optimization routine attempting to match a bar of length 0.8m at
45 degrees with Nm = 5, which reaches the position of 1.7 radians with a length of 1.1.
As illustrated in Figure 6.19c, at this position, any attempt to increase or decrease the
length1 or change the angular position leads to an increase in the objective. Hence, the
optimization routine has no option but to settle at the stationary point.

Hence, undoubtedly if the optimizer is allowed to vary both angular positions as well
as spatial positions of the bar, the occurrences of many more of such local stationary
points increase the probability of sub-optimal matching solutions. Therefore, a case can
be made for the use of a smaller Nm , since the increase of Nm yields increase in local
valleys. Therefore, using smaller Nm partially reduces the non-linearity in the objective.

1A limit exists to the lengths of the bar i.e. a bar can exist only inside the bounding box, therefore the length is
limited by what is allowable by the edges of the domain
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(a) Angle Study (b) Translation Study

(c) Local stationary points.a

aA D[(0,0),(1,1)] is used for the L2E study

Figure 6.19: Effect of matching length on non-linearity for Nm =2, 5, and 9.
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6.5.4. INFLUENCE OF MULTIPLE BARS

Since the global match approach attempts to match multiple bars simultaneously, there
can be instances where a bar is attempting to be matched to multiple features in the
underlying image. This phenomenon is already observed in the cantilever beam case
in Figure 6.16. Although the number of bars is far fewer than necessary it is observed
that the bar positions do line up with the underlying material in many instances. This is
studied independently with respect to angular and translatory variation through the use
of reference matrices with 2 bars of different widths at different angular and translatory
positions respectively. The resulting L2E curves are illustrated in Figure 6.20. The curves
clearly indicate that in the case of multiple features, the corresponding angle and trans-
lation values respectively depict individual local minimal. This implies that the search
bar will descend onto the first one it comes across. This is contrary to intuition which
would expect that an intermediary position would be generated as an optimal. There-
fore, this implies that multiple bars can cause secondary local minimal which further
hinder the matching process.

(a) Angular study. (b) Translation study.

Figure 6.20: Multiple feature - single bar match study

Therefore, in the case of far fewer than required bars being attempted to match,
the bars will not only be hindered by the inherent non-linearities in the L2E but will
also face the issues of mismatching in width, in length, and the additional local minima.
When taking into consideration the large number of possible positions bars can take in a
domain, and the nonlinearity of the solution space, it is logical to constrain the solution
space in some form.
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6.6. FRAGMENT CONSTRAINED OPTIMIZATION

The convexity studies indicate that local stationary points exist in various positions
across the solution space. If the solution space were to be divided to allow for match-
ing to occur locally within each space individually and not allow any movement of the
bars across spaces, the nonlinearities arising from the interaction of bars belonging to
one space with the other design space is reduced.

This can be achieved by allowing bars to operate within localized regions, which
shall henceforth be called fragments resulting in a optimization problem in the form rep-
resented by (6.17). Hence a modified form of global optimization is investigated where
bars are allowed to move within corresponding fragments. Consider the case of the can-
tilever beam matching with each bar being constrained to a quarter of the domain, the
optimization statement is modified to (6.18).

min
x1,y1,x2,y2...x2n ,y2n

L2E

(
LM f em ,

n∑
i=1

LMbi

)
s.t. XLLi < x2i−1,2i < XU Li

YLLi < y2i−1,2i < YU Li

where, LMbimn =Λmn(x2i−1, y2i−1, x2i , y2i , w)

(6.17)

min
x1,y1,x2,y2...x2n ,y2n

L2E

(
LM f em ,

n∑
i=1

LMbi

)
s.t. 0 < x0,1 < 0.25

0.25 < x2,3 < 0.5

0.5 < x4,5 < 0.75

0.75 < x6,7 < 1

0 < y0−7 < 0.25

where, LMbimn =Λmn(x2i−1, y2i−1, x2i , y2i , w)

(6.18)

Figure 6.22a illustrates the results for the fragment constrained bar match with 4
fragments. It can be observed that the best solutions appear with an LM size larger than
7x7. This is well explained by the LMcanti l ever magnitudes in Figure 6.21. The largest
contributor is LM7,4, therefore only after its inclusion into the L2E do the results im-
prove. But, again any additional LM terms do not retain the same converged position.
This implies, that the localization of the bars does not entirely eliminate the possibilities
of local minimal. It can also be observed that the use of smaller domains and a larger
number of bars does not ensure better results. Figure 6.22b illustrates the cantilever
match with 4x4 fragmentation. Although it is intuitive to assume that allowing a larger
number of bars to move around to match the image would provide far improved results,
the L2E objective does not prove to be influenced positively by an increase in the num-
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ber of bars. This could be attributed to the incapability of bars, moving around within
small fragments to cause large-scale improvements in the objective.

The L2E objective is computed with respect to the LM of the TO solution inside the
bounding domain and the LM of the bars within smaller domains but still in reference to
the Legendre polynomials stretching to the bounding domain. Although the LM func-
tion is linear i.e. the moment of the bars altogether is the sum of the individual moments
of the bar (LMm,n(b1,b2) = LMm,n(b1)+LMm,n(b2)), as the size of the bars/fragments is
reduced, the sensitivities of the design variables (bar endpoint coordinates) constrained
to these fragments are insufficient to effectively move all of the bars. This could explain
the incapability of the descent optimizer to match the bars in the case of smaller frag-
ments.

Hence, it is advisable to not reduce fragments to sizes much smaller than the do-
main itself. But, this works against the requirement of complex topologies requiring
more straight bars to approximate curved features in the underlying TO solution. Hence
a method to satisfy structural resolution, as well as L2E capability, is required. Since the
LM can be calculated with respect to any domain size and the number of bars themselves
are dependant on the underlying TO solution, the use of smaller reference domains to
be matched is a possible middle ground. Thus, a localized matching is preferable rather
than global TO domain matching. This allows for bars to be of relative size to the do-
main itself and simultaneously allows for a larger number of bars to be matched inde-
pendently.

Figure 6.21: Cantilever beam TO solution LM magnitudes.
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(a) 4x1 match.

(b) 4x4 match.

Figure 6.22: Fragment constrained cantilever matching
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6.7. FRAGMENT-WISE OPTIMIZATION

Studying the reconstruction of bars of varying widths in Figure 6.25, it is observed that an
increase in the width results in an increase in the precision of reconstruction for the same
Nm . This implies that as the proportion of the bar region in the moment calculation
domain increases, the magnitude for the moment values increase as well. This behavior
is quite intuitive and is well illustrated for varying bar widths at the same position in
Figure 6.23 and Figure 6.242. A clear movement of the relevant moments to higher orders
is noticed as the width is reduced. This implies that as the domain sizes increase with
respect to the bar size, the relevancy of lower-order moments is lost.

Figure 6.23: LM 10x10 magnitudes with increase in bar width.

Figure 6.24: Bar Legendre moment (Λmn ) magnitude change for varying widths (moment matrix size :
100x100). B[0.1, 0.1, 0.6, 0.9] in D[0, 1, 0, 1]. (Note : The Red box indicates the bar moments available as
closed-form expressions).

2The analytical expression for the bar moments are available only up to 10x10, in this case, the comparatively
expensive numerical integration was used to obtain LM100x100.
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(a) Bar width = 0.05

(b) Bar width = 0.1

(c) Bar width = 0.20

(d) Bar width = 0.40

Figure 6.25: Bar reconstruction of varying widths using varying size LM
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Hence, to enhance the efficacy of matching as well as to simplify the optimization
routine, it is best to perform the moment matching with fragment sizes that are com-
patible with the width of the matching bars. Consider the cantilever beam with 4× 1
fragment-wise matching in Figure 6.27b. The fragment match is noticeably improved by
reducing the scope to specific fragments. This can be attributed to the larger amount of
relevant moments present within the LM10×10. But, at the same time, the smaller frag-
ment sizes have also illustrated the noise introduction by additional terms. Consider the
4×1 case itself, post LM size of 5×5, the additional terms have not added any relevancy
to improve positioning, instead, the positions have been diminished. This implies that
post a minimum number of terms, additional terms can be detrimental to the matching.
An argument could be made to use the largest terms within the corresponding LM to
identify positions. However, it must be noted that relevancy (magnitudes) of moments
and descriptive capabilities are not complementary. This will be revisited in Section 6.9
with a magnitude weighted norm.

(a) Match

(b) Fragment moment magnitudes

Figure 6.26: Cantilever 4×1 fragment-wise matching.

As the width approaches the fragment size itself, the magnitudes of the relevant mo-
ments approach the amplitudes of the non-significant moments. Hence, the descriptive
ability of the moments is lost. This is well noticed in the comparison of the cantilever
fragment-wise matching with 4×1 and 8×4 fragmentation. The latter has a large num-
ber of bars disappearing due to the fact that the corresponding LM of the fragments
comprises lower amplitudes. Hence, any difference in the moments computed within
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the L2E is not significant enough to identify positions, rather the bars themselves van-
ish. This effect is magnified at larger LM sizes. Up to LM3×3, the matching within the
smaller fragments can actually be deemed reasonable. But in many cases, due to the in-
herent non-linearity of the objective itself, the vanishing of bars, as well as mismatches,
are still possible. Therefore, although fragmentation allows for better-localized match-
ing, it does not completely eliminate mismatches.

(a) Match

(b) Fragment moment magnitudes

Figure 6.27: Cantilever 8×4 fragment-wise matching.

To summarize, fragment-wise matching is more capable when compared to the for-
mer method of global matching. The smaller fragments allow for more relevant mo-
ments to be captured at lower moments and as the fragment sizes reduce, the impor-
tance of larger order moments decays. With smaller fragment sizes, the lower order mo-
ments are capable of identifying bar positions. A LM size of 3 appears to be ideal for
application. But, the presence of localized minimal still inhibits matching. Therefore, to
further improve accuracy, a reduction of the solution space is necessary.
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6.8. BOUNDARY SEARCH

Unlike images where floating regions can exist, TO is limited (in preferable cases) to
structures that are capable of carrying loads, and hence, no floating members and hang-
ing members must exist unless the latter is carrying a load or is a boundary condition.
Hence it is analytical to predict that a member in one fragment must connect to a mem-
ber in a neighboring fragment. Hence the endpoints must lie along the fragment bound-
ary. Therefore, taking advantage of the properties of the underlying TO solution, an addi-
tional constraint can be added to the moment matching optimizer. Given by Statement
6.19, the solution space is limited to bar endpoints lying only along the fragment bound-
ary.

min
x1,y1,x2,y2...x2n ,y2n

L2E

(
LM f em ,

n∑
i=1

LMbi

)
s.t. XLLi < x2i−1,2i < XU Li

YLLi < y2i−1,2i < YU Li

(xi −XLLi )(xi −XU Li )(yi −YLLi )(yi −Y U Li ) = 0

where, LMbimn =Λmn(x2i−1, y2i−1, x2i , y2i , w)

(6.19)

However, in this form the constraint is non-differentiable at the corners. There-
fore, a straightforward gradient descent optimizer cannot be employed. Nevertheless,
constraining the optimization to the boundary, the search domain has been drastically
reduced, hence any use of an optimizer can be replaced with an explicit search of the
domain. Hence, with a limited set of points on the boundary, a brute-force analysis con-
ducted to obtain the most suitable bar within the set is a good alternative to the former
gradient descent algorithm. This partially alleviates the mismatches due to the non-
linearities in the objective.

(a) Boundary constrained brute force match for single bar.

(b) Brute force search bars
for 5 points on each side (set
size:150)

Figure 6.28: Boundary constrained matching

Figure 6.28a illustrates the brute-force analysis conducted for varying Nm . The
opacity and thickness indicating how close the L2E for the bar is to the search set min-
imal L2E(dashed red). It is observed that in this case, the closest position is identifi-
able for all Nm . The figure is also indicative of why any boundary-constrained optimizer
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would fail if reliant on gradient descent methods since local stationary points exist along
the boundary as well. Figure 6.29 depicts the boundary search employed for variable
fragment sizes of the cantilever TO solution.

Figure 6.29: TO cantilever beam bar matching using fragment-wise boundary search.

6.8.1. ALIASING

Similar to its namesake in signal processing, if far fewer points than required are used to
estimate the position of the bar, an erroneous result is possible. This is illustrated in Fig-
ure 6.30. As the number of search points increases, the aliasing reduces to a discernible
extent. Figure 6.31 depicts a similar mismatch in the case of a TO result. To counteract
the increased number of search points it is best to limit the size of the LM. This is also
aided by the fact that in smaller fragment sizes, the lower order elements carry most of
the information, hence any additional terms add more noise than information. This is
reflected in the quality of the matches at larger LM. Even with larger sampling, the qual-
ity of results either is inferior or does not improve. Therefore, it is best advised to use a
combination of larger sampling with lower-order LM by limiting to Nm = 5.
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(a) Aliasing in boundary bounded optimization with 3x3 points.

(b) Objective 3x3 points.

(c) Aliasing in boundary bounded optimization with 5x5 points.

(d) Objective 5x5 points.

(e) Aliasing in boundary bounded optimization with 7x7 points.

(f) Objective 7x7 points.

Figure 6.30: Aliasing illustration
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(a) 3x3

(b) 5x5

(c) 9x9

(d) 12x12

Figure 6.31: Aliasing in a TO match
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MATERIAL LEAKAGE

Although boundary bounded search reduces the search domain significantly, an inaccu-
racy is introduced in the moment calculation due to a portion of the bars falling outside
the domain. This is illustrated in Figure 6.32a. It is also observable in Figure 6.25, where
the bar is reconstructed with moment values with a portion of it falling outside the do-
main. Close to the locations of the bar leakage, local high amplitudes are observed. This
is due to the orthogonal properties of the Legendre polynomials terminating after the
boundary and to reconstruct an image only information within the image domains is to
be considered. Hence, as the portion of the bar lying outside the domain increases, the
noise increases accordingly.

(a) Material leakage in boundary bounded bars (b) Equivalent quad region with no leakage

Figure 6.32: Leakage illustration

Thus, since the derived analytical moment equations of the bars are computed over
the entire area of the bar, the expressions can lead to inaccuracies in the boundary
bounded case. Hence, as an alternative, it is possible to use the discrete integration tech-
nique employed for the FEM elements as described in Section 6.4. The latter reduces the
included noise in the matching and hence, the distinctness of the optimal is increased to
a notable extent. This is apparent on examining Figure 6.30 and Figure 6.33. The num-
ber of minimal spikes which are in the range of magnitude of the global minimum is
significantly reduced.

It could be argued that if the latter is superior why it was not the preferred choice.
However, the former is computationally far more efficient as tabulated in Table 6.4. The
use of discrete integration requires an increasing number of function calculations as the
order of the moment increases. In comparison, the compounding length of the analyt-
ical expression for the moments as order is increased is still much quicker to execute,
therefore when a smaller number of fragments are present, the quadrilateral form can
prove to be more useful, but when the number of fragments increases, the bar form with
an increased number of sampling points can be preferred.
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Nm Numerical Analytical
3 7.6 ms 0.07 ms
4 14.5ms 0.096 ms
5 21.6 ms 1.8 ms
6 32.4 ms 2.6 ms

Table 6.4: Execution time for LM computation of Numerical-quad vs Analytical-bar formulation.

(a) No leakage boundary-bounded matching with 3x3 points.

(b) No leakage boundary-bounded matching with 5x5 points.

Figure 6.33: No leakage matching.
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6.9. ALTERNATIVE OBJECTIVE FORMULATIONS

Of the various other objectives which were investigated during the course of the project,
two candidates which could be a suitable alternative to L2E are described below. These
objectives if further developed could prove superior to the L2E.

COSINE SIMILARITY

Commonly used in large-scale data analysis, the cosine is a measure of similarity be-
tween large data sets. The cosine can be visualized by its origin in 2D/3D by the angle
between 2 unit vectors. A value of 1 implies that there is a 0-degree angle between the
vectors which implies maximum similarity(identical) and a value of -1 implies that there
is a 180-degree angle between the vectors, which implies absolute dissimilarity. The co-
sine for a multi-dimensional data array is given by (6.20).

cos(θ) = A ·B

‖A‖‖B‖ =
∑n

i=1 Ai Bi√∑n
i=1 A2

i

√∑n
i=1 B 2

i

(6.20)

The key distinction from L2E objective is the cosine similarity is a maximization for-
mulation. Otherwise, from the angle and translation study using the cosine formulation
it can be seen that the non-convexity and non-linearity is still retained. However one
superiority is visible in the Figure 6.35, where irrespective of mismatching the width of
the matching bar and the reference bar, the objective characteristics are entirely identi-
cal. This allows the cos formulation to be a capable candidate in matching cases where
the mesh is very coarse or single-pixel width cases. However, from a broader perspective
this could also lead to erroneous results in the case of TO solutions without well defined
features with stray strings of elements with ρ = 1.

(a) Angle study (b) x study

Figure 6.34: Cosine similarity angle and x position study for varying Nm .
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(a) Angle study (b) x study

Figure 6.35: Cosine similarity angle and translation study for varying width reference bars.

MAGNITUDE WEIGHTED NORM

Section 6.3 and Section 6.4 illustrated the relatively unequal contribution of moments in
a moment matrix. Thus it can be argued that the contributions for similarity measure-
ment must be proportional to their magnitudes. Naturally, a weighted norm is a possible
implementation of this principle. The weighted norm is given by Equation 6.21 and its
application in multi-bar matching is illustrated in Figure 6.36. The modified objective
is capable of enhancing convexity in smaller LM but is not significantly superior to its
unweighted counterpart.

L2E
(
L f em ,Lbar

)=
√√√√N−1∑

i=0

N−1∑
j=0

(
L f em j ,i

−Lbar j ,i

)2 ×wi , j

where, w = abs

(
L f em −min(L f em)

max(L f em)−min(L f em)

)p
(6.21)
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(a) Nm = 3

(b) Nm = 5

Figure 6.36: Magnitude weighted L2 Norm
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6.10. SUMMARY

This chapter investigates the image processing based matching of a TO solution to a set
of bars based on the initially posed hypothesis,

“Given the Legendre moments of a TO solution, and the Legendre moments of a
bar as a function of its coordinates, orientation, and dimensions, by matching the corre-
sponding moments, the equivalent/approximate positions of the bars can be identified.”

Using the L2E as an objective to measure the similarity between the moments of the
TO solution and the bars, a clear global minimal is observed where the position of the
bar and the TO solution match. Therefore, the initially posed hypothesis can be deemed
as one of merit. However, the employment of a gradient descent optimizer does not
yield a suitable identification of the bar positions due to the nature of the L2E. This is
because L2E does not distinguish between a certain magnitude of difference in LMa,b

and LMc,d due to their identical contribution to the L2E, but their influence on the un-
derlying positions of the bar itself is significant. Additionally, the interaction of multiple
bars within an open domain, leads to large number of local stationary points. Hence,
the design domain is constrained to limited regions called fragments to reduce the de-
sign space and simplify the matching to a single bar in each fragment. Using an explicit
search strategy, approximate bar positions can be swiftly identified from a limited set
of possible positions based on the L2E. Table 6.5 tabulates the essential recommenda-
tions for bar matching through the L2E based on the proposed fragment-wise bar match
(FWBM) methodology. However, the fragmenting is required to be further enhanced to
eliminate redundant locations and accommodate simpler topologies within larger frag-
ments. Additionally, the matched bars require further processing to be converted into
a load capable structures. Therefore, a more advanced fragmenting strategy, as well as
post-processing strategies, will be investigated in the subsequent chapter.

Fragment dimension : bar width 1.5 - 2.5
Recommended LM size LM3×3 to LM5×5

no. of integration points within an element for Legendre polynomial Lp (x)Lq (y) (p +1)(q +1)
no. of sampling points per edge for boundary search 5 - 9

TO. density threshold 0.15

Table 6.5: Recommended parameters for LM based bar matching.





7
FRAGMENTATION AND

POST-PROCESSING

This chapter describes the fragmentation and post-processing strategies proposed to
generate suitable solutions from the fragment-match process described in Chapter 6.
Section 7.1 describes the developed fragmentation strategies followed by Section 7.2 de-
scribing the set of post-processing operations proposed to generate an interconnected
structure from the results of the bar matching. Section 7.3 showcases the cumulative ca-
pabilities in generating desirable structures by employing the framework on case studies
from literature as well as panels from the optimized G5 galley.

111



7

112 7. FRAGMENTATION AND POST-PROCESSING

As recognized in Chapter 6, the most suitable method for the moment-based bar
matching algorithm is for it to be implemented locally and using solitary bars. Hence
in this section, a localized matching algorithm is proposed based on the boundary con-
strained search strategy, an attempt is made to convert results from topology optimiza-
tion to skeletal structures with bars of the same widths. The question arises, how the
said regions can be identified where the bars will be matched. Two such methods are
proposed, a uniform fragmentation approach and an adaptive fragmentation approach.

7.1. UNIFORM AND ADAPTIVE FRAGMENTATION

The most straightforward method to fragment an image is along the Cartesian axes. This
is the most intuitive method of dividing any domain and is very straightforward in its
implementation. But, the ideal size of the fragment itself is not uniform throughout the
domain. Since the fragment size is to remain uniform and simultaneously provide glob-
ally ideal results, this requires a fragmentation study to be conducted where the sizes
of the fragments are changed sequentially. Figure 7.17 illustrates this mismatch of frag-
ment size preference across the domain. Thus, in the scope of streamlining the matching
process, the uniform fragmentation method is not preferable.

Due to the complex topologies that can be generated in TO, the uniform fragmen-
tation strategy is a very blunt tool to identify suitable fragment sizes. It is preferable to
identify the fragments such that they satisfy requirements locally without largely varying
neighboring fragment sizes. To this extent, a Quad tree-based adaptive fragmentation
(AF) strategy is developed. Typically Quadtree based methods identify, meshing capabil-
ities based on data present, but in the case of a matching operation, the goal is to match
only where possible and to fragment only when the resulting children are suitable as
well.

Figure 7.1: Regular Quad-Tree based fragmentation.Borrowed from [111]

Typically quadtree-based meshing utilizes a rooted tree with each node comprising
of 4 children where each child represents a quadrant of the parent node/fragment. Gen-
erally, the fragmentation in each generation is decided based on the information from
the current generation. This can be information such as the number of points in the
fragment and size of the fragments etc. But in the scope of fragmentation for bar match-



7.1. UNIFORM AND ADAPTIVE FRAGMENTATION

7

113

ing, empty fragments are of no interest and any almost fully filled fragment cannot be
suitably matched. Therefore a check is required to ensure that the fragmentation of a
parent yields suitable children. Therefore two forward evaluation-based fragmentation
methodologies are developed.

7.1.1. VOLUME FRACTION LIMITED FRAGMENTATION

Since fragments possessing excess or minimal material are not relevant for matching.
The first AF strategy proposed evaluates the volume fractions of the possible children
fragments and conducts fragmentation only if the resulting fragments possess material
within the stipulated volume fractions. However, if an empty fragment is observed, the
fragmentation is performed but no further fragmentation is allowed on the empty frag-
ment. This is in an effort to discard any redundant regions. It is to be noted that, un-
like the regular quadtree, fragments are not quartered in one step. To provide the best
chance for fragmentation, the fragmentation is performed in two steps in the decreasing
order of the dimensions. If the primary direction fragmenting is deemed suitable then,
the secondary fragmentation checks 2 intermediate fragments individually for their frag-
mentation capability in the second direction. Therefore increasing the capability of frag-
mentation by yielding either 1, 2, or 4 children fragments instead of the normally 1 or 4
fragments. Therefore, the tree for a fragment P, when the direction of division is first X
and then Y is given by:

• P if v fx1, v fx2 ∈ (0, v fmi n) or v fx1, v fx2 ∈ (v fmax ,1]. Followed by:

– P if v fy1, v fy2 ∈ (0, v fmi n) or v fy1, v fy2 ∈ (v fmax ,1].

– a tree with children the trees for Py1andPy2.

• A tree with as children the trees for Px1,Px2. With the tree of Pxi being

– Pxi if v fxi y1 , v fxi y2 ∈ (0, v fmi n) or v fxi y1 , v fxi y2 ∈ (v fmax ,1].

– A tree with as children the trees for Pxi y1 and Pxi y2 .

Additionally, the fragmentation is performed in a direction only if the dimension
of the generated fragments are larger than a stipulated amount (In this case more than
1.25 times the bar width). This is to prevent cases where the fragment sizes become
very comparable to the bar width to be matched and to provide a limit to the number
of generations in the fragmentation-tree. A flowchart is presented in Figure 7.4 to bet-
ter understand the adaptive fragmentation strategy proposed. Figure 7.2 illustrates the
volume fraction based adaptive fragmentation of the cantilever TO solution.
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Figure 7.2: Volume fraction limited adaptive fragmentation

7.1.2. REDUNDANT AREA ISOLATION

Although the volume fraction-based fragmentation is capable of preventing cases where
the volume fraction falls below the stipulated amount, it is analytical to assume that
within a fragment that possesses a small amount of material, there can exist a child frag-
ment that can contain material larger than the minimal area fraction. Therefore a purely
maximal area fraction-based AF is proposed where isolation of fragments is performed if
children fragment volume fractions violate the maximum volume fraction stipulation, if
the said fragment is empty or if the fragment size becomes comparable to the bar width
to be matched. Therefore, this method can be considered a variant of the volume frac-
tion limited fragmentation where v fmi n = 0. Figure 7.3 illustrates the redundant area
isolation based adaptive fragmentation of the cantilever TO solution. A clear difference
is noticed between Figures 7.2 and 7.3, where the latter isolates empty regions and at-
tempts to include more of the underlying topologies within smaller fragments, leading
to a larger fragment count.
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Figure 7.3: Redundant area isolation based adaptive fragmentation
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Figure 7.4: Volume fraction limited fragmentation.
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7.2. BAR POINTS POST-PROCESSING

As a consequence of the fragmentation, the ability of bars to acquire globally optimized
positions is hindered. The minimization of the matching domain has led to individual
bars acquiring locally optimized positions throughout the domain. This is not of any
structural use immediately, as although the floating bars resemble the underlying TO
solution, it is not capable of sustaining any load. Therefore, the fragment-specific bars
need to be coupled systematically and a TO congruent frame/ grillage is to be extracted.
To this extent, a set of post-matching processes and processing sequences are proposed.
Figure 7.5 represents a raw matching result.

Figure 7.5: Raw matching solutions.

7.2.1. BAR POINT MERGING

Keeping in mind that the underlying topology being matched is continually connected, it
is analytical to expect that the bars that are being matched will reflect the same. But, due
to the act of matching a continuous bar to a piece-wise intensity distribution of the FEM
TO image, leakage, and aliasing in the search, irregularities are expected. Therefore, the
endpoints of bars in adjacent fragments need to be unified if suitable and in the vicinity.
Two proposed capable methods are:

1. Common Edge merging: If the endpoints of the two bars are on the common edge
of adjacent fragments, the endpoints can be merged. This aids in achieving the
continuity of the underlying topology. Therefore any set of points lying on the
same edge will be unified at their average position. This is demonstrated in Figure
7.6a on the cantilever solution.

2. Radial cluster merging: If multiple endpoints cluster together in close proximity,
these points may be combined. This compensates for cases where due to frag-
mentation, a single point that is supposed to be an endpoint for multiple bars is
replaced by multiple points and for cases where the endpoints of two bars occur
in close proximity on the commonly extended edges of two adjacent fragments.
The merging algorithm proposed utilizes a form of the smallest circle algorithm,
where a set of closely packed points are identified and if the cluster falls within a
circle of specified radius, the points can be unified at the center of said circle. This
is demonstrated in Figure 7.6b on the cantilever solution.
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(a) Edge points merging

(b) Radial cluster merging.

Figure 7.6: Bar point merging operations

7.2.2. STRAND IDENTIFICATION AND EXTENSION

Although the endpoint merging allows for a significant reduction in the number of float-
ing bars, it can often lead to merged bar strings being left unconnected. These strings of
bars or ’Strands’ need to be coupled together suitably. To take advantage of the inherent
tendencies of the strands themselves, the connection point can be established by find-
ing the nearest endpoint of the first intersecting bar when the strand end is extended. A
radius of intersection is proposed as well, this helps to provide a working tolerance to en-
hance the capability of utilizing any inherent tendencies to intersect. This is illustrated
in Figure 7.7 and demonstrated in Figure 7.8 on the cantilever solution.

Figure 7.7: Strand extension with a radius of tolerance.
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Figure 7.8: Cantilever strand creation and extension.

7.2.3. CONTROL POINT IDENTIFICATION

Given that the underlying TO solution is generated based on a set of loading and bound-
ary conditions, it is logical to assume that these points are represented as endpoints in
the generated frame structures. Therefore a localization step to move the nearest bar
endpoint to these control points (BC and Loading points) is essential in mirroring the
essential and natural boundary conditions of the TO solution. This is demonstrated in
Figure 7.9 on the cantilever solution

Figure 7.9: Control point movement

7.2.4. STRAND SIMPLIFICATION

Given that the fragmentation and the subsequent processing yields a string of small bars,
and keeping in mind that the goal is to simplify a hard to manufacture structure, any long
string of small bars needs to be simplified into a reduced set. To this extent, a sequential
angular difference-based bar unification is implemented. The simplified strands can be
considered as individual parts. This is demonstrated in Figure 7.10 on the cantilever
solution.

Figure 7.10: Strand simplification/Part creation
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7.2.5. PROPOSED SEQUENCE AND OPERATIONAL PARAMETERS

From preliminary investigations, it can be deduced that the proposed processes are not
commutative i.e. the sequence of operations have a huge influence on the resulting
structure. Based on a preliminary investigation, a sequence for the execution of the op-
erations is proposed. This sequence proves to be the best in achieving the closest rep-
resentation of the underlying reference TO solution. Although the proposed sequence is
what will be utilized, it is to be noted that the operations themselves can be executed in
any order since they are independent. The proposed sequence post any matching is:

1. Common fragment edge merging: This process requires no tailoring of any param-
eters.

2. Radial cluster merging: Cluster merging utilizes a radius parameter that decides
the largest circle of clustering to be considered. A proposed radius is 10 - 20 % of
the fragment and is suggested to be reduced if required. (In the case of uniform
fragmentation, in the case of adaptive fragmentation, this would require tailoring)

3. strand extension: A strand identification step identifies strands as a set of con-
nected bars. A suggested step is to sort the strands in the increasing order of their
lengths (in a number of bars) and to extend them in the same. A 25-30 % extension
radius tolerance is proposed and is suggested to be minimized if possible.

4. control point movement: The Control points are both the loading and boundary
condition points and if the matching is performed over a complex structure piece-
wise, the user must provide a suitable set of control points to ensure continuity
between the sets.

5. Strand simplification: A 22.5 angular tolerance for the unification is proposed as a
starting point and can be increased based on the requirement.

Figures 7.5 to 7.10 represents the elegant transformation of the raw matching solution
into a load capable frame structure and Figure 7.11 showcases the conversion in com-
parision to the underlying TO solution.
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Figure 7.11: Post processing of bar matching results with proposed
sequence of operations. rmer g e = 0.5Rci r cumscr i be ,

(a) MBB loading condition

(b) MBB TO solution

Figure 7.12: MBB Loading condition and TO solution.

(a) Loaded knee loading condition (b) Loaded knee TO solution

Figure 7.13: Loaded knee Loading condition and TO solution.
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7.3. MODULARIZATION

The post-processing of the bar matching results forms the tail end of the moment
matching-based modularization framework. The cumulative operation of the frag-
mented bar match followed by the post-processing ideally must produce a modularized
structure identical to the underlying TO solution. This basic form of modularization
is evaluated using a set of study cases from literature [17]. The cantilever beam, the
MBB, and the loaded knee are common study cases in TO and were utilized to illustrate
the capabilities of the developed methodology. Figures 7.12 and 7.13 illustrate the load-
ing conditions and the cooresponding TO solutions for the MBB and Loaded knee. The
three cases are evaluated with UF well as AF techniques and are post-processed to pro-
duce modularized solutions. The proposed modularization framework is represented
through a flowchart in Figure7.19.

Of the two fragmentation techniques proposed, the uniform fragmentation method
is iterative which requires specification of uniform domain discretization to be employed
throughout the domain leading to a conundrum to choose the most suitable fragment
size. The act of dividing a complex topology into uniform fragments that are to be
matched with single bars is one that is assured to lead to erroneous structures if the
fragment sizes are not compatible. Figure 7.17 illustrates this phenomenon with a gen-
eral matching study conducted with varying fragment sizes for the cantilever beam and
the corresponding post-processed results in Figure 7.18. As expected, a significant set of
the studied structures lead to undesirable structures, some of which completely violate
any resemblance to the load path in the underlying TO solution. Also, in each of these
cases, the post-processing parameters must be tailored individually rather than using a
constant value throughout, which requires the uniform fragmentation technique to be
further tailored.

Although the adaptive fragmentation study requires the same post-processing pa-
rameters to be tuned, the size of the fragments themselves are more analytically decided
based on the local topology, which makes the adaptive fragmentation method consider-
ably superior. Given the bar width to be matched, the adaptive fragmentation strategy
identifies the suitable fragments in a region without affecting the neighbors, therefore
removing one of the tailoring aspects required by the uniform fragmentation strategy.
Figures 7.14, 7.15 and 7.16 illustrate the modularization of the cantilever, loaded Knee
and MBB TO solutions respectively using the AF strategy. Therefore, each of the chosen
study cases is successfully converted from an element-based TO solution to a bar-based
frame structure, therefore modularizing them. Although the module similarity is limited
to its cross-section, the ability of the fragmented matching methodology to discretize the
continuous structure is still a basic form of modularization.
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Figure 7.14: Adaptive fragmentation cantilever modularization.

Figure 7.15: Adaptive fragmentation loaded knee modularization.

Figure 7.16: Adaptive fragmentation MBB modularization.
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Figure 7.19: Modularization framework developed/proposed.

7.4. G5 PANEL MODULARIZATION

The G5 galley is comprised of a set of interconnected panels in the 3D space and in con-
trast the moment matching framework developed is rooted in 2D. This limitation can be
overcome by suitably separating the panels beforehand, and each panel can be modular-
ized individually. Once suitably modularized the panels can be reconstructed to obtain
the G5 galley as a whole. Figure 7.20 depicts the result of the modularization for one
such panel (39)1. The AF strategy employed shows promise in its ability to identify suit-
able fragment distribution in the domain and the corresponding bar matches when the
post-processed result in a structure which largely resembles the underlying TO solution.
Most of the major branches of the TO solution are well duplicated in a discretized form.

1The TO results utilized here are those belonging to the solution for the compliance minimization with 30%
volume fraction
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(a) TO Solution (b) Bar match

Figure 7.20: Panel 39 fragmented,post-processed solution.

(a) Low volume fraction panel 25%. (b) high volume fraction panel 50%.

Figure 7.21: Volume fraction influence on the modularization of TO solutions using the moment based frame-
work.

Although the framework developed is designed with a goal to modularize any TO so-
lution, the application of the complex topologies obtained in the G5 galley panels yields
some of the shortcomings of the methodology. Within Figure 7.20, the AF-based bar
match has been able to capture to a large extent the optimized load paths of the TO so-
lution. However, on closer inspection, the resulting modularized panel does not include
some of the noticeable connection points as well as connecting members. Although this
absence of members does not play a significant role visually, a direct application of the
design loads onto the modularized panel assembly would display entirely different load
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paths than those optimized for in the TO solution. This erroneous approximation of
the TO solution is aggravated as the volume fraction of the material in the domain is
increased. Figure 7.21 illustrates the modularized result obtained from 2 other panels
in the G5 galley, one with 25% volume fraction and one with close to 50% volume frac-
tion. The former indicates an excellent translation of the TO solution into a frame-based
structure, whereas the latter panel indicates a comparatively poor approximation. The
cause for erroneous matches can be possibly accounted for by 2 factors: post-processing
parameters and the effect of fragmentation.

The post-processing strategy developed is in essence a set of approximation func-
tions that attempt to utilize information from the fragment wise bar match to realize
suitable structures. However, these parameters are highly subjective in their efficacy and
require to be tuned/tailored to yield suitable solutions. Therefore, in general for an ac-
ceptable modularization, these parameters need to be investigated thoroughly for each
fragmentation application. The parameters proposed in Section 7.2, can be used as a
starting point and have proven to be capable for the 3 case studies from literature, yet
they were proven insufficient for the topologies of the optimized G5 panels. Therefore,
for complex topologies, the tailoring of these parameters becomes much more impor-
tant.

However, an underlying misappropriation of the TO solution caused due to frag-
mentation cannot be entirely negated by the tuning parameters. As described in Section
6.5, the L2E objective is highly nonlinear, therefore requiring fragmentation of the TO
solution and the adoption of a localized matching strategy. As a consequence, both the
developed UF and AF strategies function over rectangular fragments arranged side to
side. However, the complex TO solutions obtained are not constrained to shapes aligned
at 0 or 90 degrees. Therefore, the matching is performed with an inherent assumption
that the TO features cross over only at the fragment edges and that multiple features
do not coalesce within a certain fragment. This limits the suitable topologies to those
of low volume fractions since, as the volume fraction increases, feature sizes increase
and the coalescence of features begins to occur within the fragments. The AF strategy
although aims to alleviate this problem, by choosing the fragment sizes carefully based
on the localized topologies, the fragment size itself is still limited, i.e, for a rectangular
domain of size X and Y in the x and y direction, the fragments can be of size X /2n and
Y /2n and these fragments can only achieve a certain limited set of positions within the
domain, as the neighboring fragments themselves are decided based on their own local
topologies and as a whole, all the individual fragments must globally reconstruct the ini-
tial domain of dimension X and Y. This can lead to unconnected bars for the matching
of TO features crossing over at the corners of fragments. Also, in cases where the frag-
ment sizes are smaller than the feature in the TO solution, stray bars can be introduced.
The tailoring parameters such as the minimum and maximum volume fractions and the
post-processing strategies in Section 7.2 aim to avoid and compensate for these effects.
However, such complexities cannot be entirely eliminated. The results of the G5 panels
represent the negative effect of these remaining intricacies which are a byproduct of the
fragmentation approach.
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(a) Compatible (b) Incompatible

Figure 7.22: Compatible and incompatible fragments. The AF strategy produces only compatible fragments

with the dimensions limited to w
2n , h

2m with domain dimensions w,h.

Nonetheless, the modularization framework developed offers a preliminary strategy
to translate TO solutions as well as provides an avenue for further processing.

7.5. PARAMETRIZATION AND SECONDARY DESIGN OPPORTUNI-
TIES

The developed framework aims to describe the monolithic TO solution as an assembly
of sub-structures/modules in this case bars of uniform width and varying lengths. As
a consequence of the framework developed the modularized structures are described
parametrically through a set of bars, points, and their coordinates. This computational
strategy allows the obtained result to be directly translated to suit truss/frame-based op-
timization problems. Therefore, by using the simplified model of the structure addi-
tional requirements can be investigated.

As mentioned in Chapter 4, the galley self-weight itself was omitted from the load-
ing during TO. The parametric solution obtained offers an opportunity for the omitted
requirement to be reintroduced and compensated for. Additionally, the parametrization
offers the scope for other design requirements and limitations to be considered such as:

1. Stress constraints: The optimized load path identified through TO is to some ex-
tent retained when modularized. However, the strengths of the beam elements
require consideration as well. Through the simplified model obtained, a straight-
forward continuous or discrete sizing optimization can be performed to identify a
capable set of profiles and sizes for the individual truss/frame elements.

2. Natural frequency considerations: Once modularized the stiffness of the structure
can show large variation due to the change in form from a continuous structure.
Therefore the natural frequency of the structure can vary to a large extent. This
effect is further aggravated if rather than using the same material as optimized for,
the optimized load path is reconstructed with alternate materials such as com-
posites. Therefore, natural frequency analysis can be conducted on the structure
to adapt the obtained structure to the requirements as well as compensate for ma-
terial choice.
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3. Stability considerations: The TO framework employs a linear FEM model to opti-
mize the given structures. However, as the volume fraction constraints reduce and
the obtained topologies approach slender members the resulting structures in-
evitably present non-linearity. Therefore, phenomena such as buckling which are
entirely omitted in the design considerations increase in importance. The modu-
larization framework provides an alternative to Non-linear FEM-based TO to ad-
dress such effects through a simplified truss/frame model of the slender structures
generated.

Additionally, from a manufacturing perspective, the use of the simplified model al-
lows for studies to be considered similar to those discussed in Sections 5.1 and 5.2. One
of the critical influences of modularization is its influence on performance. Within the
scope of TO, a study on how the size of TO features influences the performance involves
a large number of optimization routines to be conducted. However, through the modu-
larization strategy employed, a much simpler post-analysis can be conducted using the
simplified structural model to assess the influence of the module sizes. This offers a
stage for more complex analysis as well. With the structure optimized for the given load-
ing, the effect of the number of design variables on weight and cost can be conducted to
extract break-even recommendations to obtain high-performing modular structures fit
for mass production.2

Therefore, the moment-based modularization strategy although in its infancy is ca-
pable of being developed into a suitable strategy for utilizing TO-generated solutions.
Few of the key limitations remain to be investigated; However, the formulated frame-
work is deemed suitable by the Author to represent the outcomes of the current project.

7.6. SUMMARY

To summarize, based on the fragment boundary search strategy proposed in Chapter
6, this chapter proposes two fragmentation strategies that can be employed for 2D TO
solutions. Following this, a set of post-processing operations are proposed which best
embody the augmentations required for the extraction of load-capable structures from
the fragment wise bar match. The bar matching, the fragmentation strategies, and the
post-processing operations are encompassed within a framework that accepts TO solu-
tions from Abaqus and operates on the results in Python to return a truss/frame-based
modularized design in a parametric form. The framework is assessed on TO case studies
from literature and to conclude, employed on a limited set of panels from the G5 TO so-
lution. To conclude, a few of the limitations and possibilities offered by the framework
are briefly commented on.

2Appendix includes a preliminary study conducted by the Author in the effort of demonstrating such a post-
analysis with the simplified model obtained from the developed framework.
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CONCLUSIONS AND

RECOMMENDATIONS

Drawing attention to the first research goal posed in the introduction:

Can topology optimization be employed on a galley structure? If yes, how can
a suitable/practical structure be generated?

In order to find an answer, firstly a literature survey was performed where the com-
putational framework for TO and the numerical implementations of the various design
constraints were reviewed. A brief analysis of the current design strategy was conducted
to interpret the structural requirements of the galley to be implemented into the TO
framework. Utilizing the information from the Literature survey, the certification and
operational requirements of the chosen G5 galley were translated into suitable objectives
and constraints for TO. Based on the required resolution and capabilities of available TO
tools identified in the literature survey, ABAQUS-TOSCA was chosen for employment.
The direct TO result using the chosen objectives and constraints yielded impractical so-
lutions with localized elimination of material. Additional geometric constraints were
found to counteract the localized material elimination and generate a pragmatic galley
solution.

Thus, to answer the first research question: Yes, the G5 galley can be topology op-
timized. By suitably modifying the loads to be compatible with the TO formulation
and additional geometric constraints, a practical galley structure can be generated us-
ing TO. Through the use of the resource and reaction force constraints, a structure of
equal weight to the current solution as well as a structure capable of being interfaced
with the aircraft was generated. The metal galley generated showcases a skeletal archi-
tecture comprised of slender members extending from the interface locations.

131
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The successful solution to the first research goal allowed the project to proceed to
the second research goal.

How can a topology optimized galley be suitably modularized into simple
modules?

To understand the benefits modularization offers the literature survey additionally
investigated the performance and cost influence offered by modularization. The com-
mon methods in the literature for feature extraction in TO were studied to identify meth-
ods that could be capable of modularizing the galley TO solution. A scarcity was noticed
within the literature for methods to truly modularize TO structures.

An analogous nature was observed between the modularization of TO and the act of
shape matching in image processing. Therefore, a novel image moment matching ap-
proach was proposed for investigation. The hypothetical moment matching approach
offered the ability to identify modules within TO solutions similar to identifying shapes
in digital images. Therefore, the initial investigation included an assessment of the abil-
ity of moment matching to provide the suitable positions of bar modules within TO
solutions. However, as a consequence of the non-linearities presented by the chosen
objective, the global bar matching resulted in the settling of bars at local optimal. To
overcome this problem, the bar matching optimizer was augmented to be constrained
within fragments of the initial domain, and thereafter the initial global matching process
was converted to a fragment-wise matching process. In the interest of generating com-
patible matches as well as reducing the solution space, the optimizer was simplified to
a fragment boundary search operation with a brute force search for the optima within a
limited set of bar positions.

In order for the fragment boundary search to be employed, the TO solution domain
is required to be suitably fragmented. Therefore, a uniform and an adaptive fragmen-
tation strategy were formulated. The UF strategy follows a straightforward division of
the entire domain into uniformly sized fragments but proves to be rather crude in im-
plementation. The AF strategy was developed based on the standard quad-tree meshing
strategy with additional tailoring in the context of TO. A set of post-processing meth-
ods and the corresponding sequence of operation was developed for the generation of
load-capable modular structure based on the fragment-wise bar matching solution. The
unified pipeline of the topology optimization process followed by the moment matching
and post-processing forms the modularization framework developed in this thesis. This
framework was successfully employed on 3 TO solutions recreated from literature and in
each case a truss/frame-like structure was successfully generated.

Subsequently, the modularization framework was employed on the optimized galley
panels. It was observed that the moment matching method was successful in achieving
a partial skeletal similarity within the low volume fraction G5 panels. However, a no-
ticeable amount of inconsistency was observed. Panels with low volume fractions could
be modularized whereas the panels with material more than roughly 50% of the domain
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yielded sub-par results. This most likely could be the consequence of the fragmentation
approach as well as the choice of the tailoring parameters.

8.1. FINAL RECOMMENDATIONS

Owing to the maiden implementation of topology optimization on galleys and the novel
nature of the moment matching principle, the topology optimization formulations in-
spected and the optimization strategies employed for the moment matching were largely
limited. Given the investigations performed and observations obtained during this the-
sis, the work can be expanded and alternative strategies can be considered. This section
presents the Author’s recommendations for further exploration as well as any following
related works.

As the preliminary goal of the thesis was the investigation of modularization strate-
gies, a largely straightforward strategy is applied for the galley optimization. The pro-
posed TO formulation is capable of producing solutions, yet it remains rather blunt in
its implementation of multiple load cases. The choice of compliance summation as the
objective allows in providing equal importance to all the load cases. However, an al-
ternative to this methodology could be a weighted summation which can incorporate
the importance or critically of each load case through said weights and could allow for
neutralizing of redundant load cases and improve the convergence of the optimization.

The key necessity to generate viable solutions required the inclusion of geometric
constraints within the framework. Within this work, due to the mesh size chosen, a max-
imum geometric constraint was found to be the most compatible form of the constraint.
The choice of mesh size was primarily due to the computational limitations. However,
if the mesh were to be further refined, a well-posed geometry constraint can be imple-
mented which can allow for more well-defined topologies to be generated. The imple-
mentation of more strict geometry constraints also allows for a more suitable choice of
bar dimensions for modularization further down the pipeline.

The moment matching principle utilized in this work had been previously investi-
gated in the context of image comparison, however, it had never been investigated for its
capability for image approximation through secondary elements. Therefore, much of the
observations found in this work form a possible foundation for future work. Although
the usage of the L2E as the objective allows for the identification of global optimal, its
non-convex and non-linear nature led to considerable constraints on the optimization
strategy. However, the utilization of other optimization strategies could offer an alterna-
tive to access the global optima without significant constraints. Meta-heuristic methods
such as simulated annealing or Genetic algorithms can be preliminary alternatives for
further investigation. In regards to Genetic algorithms, a preliminary ground structure-
based L2E optimization using GA was demonstrated by the author and its results are
available within Appendix A. Additionally, the current work investigated modularization
only through the use of bar/beam-based modules. However, the moment matching is
principle is universal in its capability of comparing shapes, i.e, rather than single bars
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elements such as triangular frames and curved beams could be used to modularize a
TO solution. Future works can also investigate alternative objectives such as the cosine
similarity, magnitude weighted norms and image reconstruction error.

The Fragmentation strategy investigated and developed in this thesis has been lim-
ited to rectangular shapes. Even the AF strategy, though more flexible than the uniform
fragmentation, still remains a product of the Quad-tree-based meshing. The inherently
perpendicular edges of the fragments have been shown to be problematic in the case
of complex TO solutions. A possible alternative to be investigated is the use of general-
ized quadrilateral-based fragmentation similar to free-form quad meshing. By limiting
to convex quadrilaterals, the fragment-wise matching can be performed through remap-
ping of the Legendre domain. This strategy naturally provides more flexibility in com-
parison to the adaptive fragmentation strategy used.

The post-processing steps required for tailoring the matched solution into modu-
larized frame structures requires some attention as well. In this work, a preliminary se-
quence of operations is provided. However, this sequence has proven to fail in the case
of complex TO solutions. One possible strategy is to identify features which can dictate
the sequence of operations rather than using fixed operational sequence. This could also
be performed by monitoring the matched solution after every post processing sequence
to quantify if the proceeding direction is preferable or not.

Finally, a key motivation for this work of modularization of TO structures was to
study its influence on its cost and performance. As a byproduct of the modularization, a
parametrized model is created which defines the structure as an assembly of modules. In
this work, the TO solution is obtained as an assembly of bar/beams and is parametrized
as a function of the coordinates of the endpoints of each bar and the connectivity of each
of the modules. This parametrization approach can be used as a preliminary model to
evaluate the influence on manufacturing costs as well as performance. Through the fi-
nally obtained reduced model a novel technique is obtained to assess the performance
and cost implications of designs obtained from topology optimization. A preliminary 2D
form of this is depicted in A to study the weight, stress, and natural frequency implica-
tions of the variety of dimensions in a cantilever frame.
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APPENDIX

This chapter presents some additional points of discussion and results pertaining to the
thesis performed. This includes manufacturing considerations for the optimized galley,
stiffness implications of the choice of a metal frame and numerical refinement consid-
erations for bar matching.

A.1. METAL G5 MANUFACTURING CONSIDERATIONS

The G5 TO solution obtained is starkly contrasting with the current product. Although
the TO solution retains the basic architecture of the original galley itself, the TO solution
comprises slender branches of materials spreading throughout all the panels. This very
feature symbolizes the key motivator to investigate truss/frame based modularization
strategies. However, the alteration of design from a panel based design requires suitable
augmentation of the manufacturing strategy to obtain a functional galley. The key factor
to be considered is the largely empty panel regions. The low volume fraction of material
is an unavoidable byproduct of using metal as the design material for TO and the unsaid
requirement of any new design to be on a par with the previous designs, specifically
for the weight to be the same as before. However, for a functional galley, flat operating
surfaces and completely covered panels are necessary. This can be addressed through a
thin covering skin. This design strategy was employed by AIRBUS to cover the frame like
partition wall as illustrated by Figure A.1 and is a proven design strategy in electronics
design to cover internal parts with thin moulded plastic panels.
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Figure A.2: Bionic Partition manufacturing and assembly [5].

Figure A.1: Skin covered frame structure

From a modularization perspective, the manufacturing of the individual modules
and the adjoining assembly requires addressing as well. AIRBUS achieved the manufac-
turing requirement through additive manufacturing [2] of the individual elements and
assembly through custom screw joints as illustrated in Figure A.2. However, as addressed
in Chapter 5 the use of additive manufacturing is limited to custom products.

From a modularization perspective, the individual modules are essentially simpli-
fied and can be replaced with simple metal rods or hollow sections. Through the use of
identical section/profile throughout the structure the manufacturing task is reduced to
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Figure A.3: Spherical ball joints and ball socket joints used in space frame construction [63]

cutting the rods/pipes to the required lengths. This allows for highly simplified certifica-
tion as well as provides scope for automation. A common method employed to construct
frame assemblies is through the use of spherical ball joints and ball and socket joints as
illustrated in Figure A.3.

A.2. STIFFNESS OF FRAME BASED PANELS

The typically galley structure is comprised of composite sandwhich panels. This can
largely be attributed to their excellent stiffness to weight ratio. From a material stiffness
perspective, most of the structural stiffness for sandwhich panels lie in the composite
plies of the skin. The composite skin of the panels provide flexural stiffness due to their
excellent in-plane properties. This leads to most of the stress profile being localized at
the skins during any out of plane loading. In comparison, isotropic metal panels provide
equal stiffness contribution throughout the width of the panel. The replacement of the
sandwhich panels with the metal frames can be visualized as the relocation of the stress
from the narrow skin regions to a distribution across the width of the metal frames. It is
interesting to note that this strategy completely opposes the choice to use composites.
However, if the individual modules and fragments can be optimized further, the capabil-
ity of such a frame structure can exceed the performance of the composite counterpart.
This was illustrated by the metal frame based partition wall as illustrated in Figure 5.11.
Therefore, once the modularization is performed with uniform width bars as proposed
in Chapter 7 the performance can be enhanced using alternative frame sections with the
same frame architecture. Although in the case of the bionic partition, this was achieved
through additively manufactured frame elements, the use of standard profiles is more of
prudent strategy from a cost efficiency and modularity perspective.

A.3. P-REFINEMENT OF NUMERICAL MOMENT CALCULATION

As prescribed in Section 6.4, the Legendre moments of the TO solution are calculated
through an element-wise summation of the Gaussian quadrature based discrete integral.
Although from the orthogonal frame of reference, the choice of the order of the Gaussian
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quadrature can be made based on the order of the polynomial function along the re-
spective axis, the S4 elements are in general arbitrary quadrilaterals and not rectangles
with edges parallel to the coordinate axis. To offer a recommendation on the number of
terms, a p refinement study is performed to study the LM of a bar calculated numerically
using the L2E in comparison to the analytically calculated LM of a reference bar . Figure
A.4 illustrates the L2E for varying size LM of varying integral point resolutions (p × p).
Due to the misalignment of the resolution direction of the integral points and the prin-
cipal axis along which the Legendre moments are defined, the integration scheme to be
employed is to be at least a single order higher than the order of Ln .

Figure A.4: Influence of L2E comparing numerical LM of a rotating bar and analytical LM of a reference bar
(D[0,1,0,1] B[0.217,0.217,0.783,0.783]).

A.4. H-REFINEMENT IN FRAGMENTATION

The h refinement of the fragmentation is analogous to h refinement in finite element
mesh. In general as the mesh is refined, the structural response display convergent prop-
erties. Similarly, as the fragment sizes are reduced, more finer and complex topologies
can be incorporated and the resulting modularized result must theoretically exhibit a
convergent behavior. This phenomenon was studied by varying the refinement of a uni-
form fragmentation FWBM for the Loaded Knee TO solution. Although the use of finer
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fragments results in leakage issues as the dimensions of the fragment approach the width
of the bar, Figure A.5 illustrates a near convergent phenomena for the compliance as
the discretization in either directions increases. It is to be noted that this phenomenon
is highly dependant on the post-processing parameters employed. In the investigated
case a constant set of post processing parameters were utilized whereas a general rec-
ommendation is to tailor the parameters for each case. Therefore, as a recommendation
for further study, a tailoring algorithm can be developed to identify these parameters for
each case.

Figure A.5: Influence of h refinement in fragmentation on Compliance of final structure.

A.5. POST-ANALYSIS OF PARAMETRIZED SOLUTION

A byproduct of the image moment based modularization framework is a parametrized
model comprised of simple elements described by their positions and their connectiv-
ity. In the current work, these simple elements are the truss/beam elements. Once the
modularization is completed through the FWBM and the following post processing, the
resulting structure is a much simplified frame structure as compared to the quad ele-
ment based TO solution. This allows the resulting parametrized model to be further
analyzed or optimized for attributes not included in the TO definition such as nonlinear
behavior, failure mode etc. The parametrized model also allows for simplified cost and
weight trade off analysis to be conducted to identify the number of variety of beam cross
sections required to reduce cost as well as maintain performance. To this extent Figure
A.6 illustrates a post analysis conducted to study the maximum stress, natural frequency
and weight of the parametrized cantilever beam.
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(a) Modularized/Parametrized TO solution of cantilever beam

(b) Maximum stress, Natural frequency and weight as a function of inplane
bar width w and out of plane depth h.

Figure A.6: post analysis of parametrized cantilever beam TO solution.

A.6. ALTERNATIVE OPTIMIZATION STRATEGIES

During the current thesis, the author’s investigation is limited to the use of the gradient
descent optimizer for the moment matching. However, due to the large non-linearities
of the objective itself Meta-heuristic methods such as Genetic algorithms (GA) could be
employed instead. A preliminary investigation conducted to optimize the L2E given a
certain ground structure using Genetic Algorithms shows promise. The results in Figure
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A.7 illustrates the solution obtained using a GA for a very simple ground structure. Al-
though the solution is not perfect, the usage of alternative optimization strategies can be
recommended for future investigations.

Figure A.7: Moment matching using Genetic algorithm
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The analytical expressions for the bar moments were obtained using symbolic integra-
tion through Sympy[79] . The functions to evaluate the moments are further hastened
through precompilation protocolos provided by Cython[16]. For a given bar of length:
L, width: W, centre positions: x0, y0, and orientation theta the expressions for the mo-
ments in LM5×5 is given here.

143



 LM_(0,0) = 0.25*L*W
 LM_(0,1) = 0.75*L*W*y0
 LM_(0,2) = L*W*(0.15625*L**2*sin(theta)**2 + 0.15625*W**2*cos(theta)**2 + 
1.875*y0**2 - 0.625)
 LM_(0,3) = L*W*y0*(1.09375*L**2*sin(theta)**2 + 1.09375*W**2*cos(theta)**2 + 
4.375*y0**2 - 2.625)
 LM_(0,4) = L*W*(0.4921875*L**4*sin(theta)**4 + L**2*(1.640625*W**2*cos(theta)**2 +
19.6875*y0**2 - 2.8125)*sin(theta)**2 + 0.4921875*W**4*cos(theta)**4 + 
19.6875*W**2*y0**2*cos(theta)**2 - 2.8125*W**2*cos(theta)**2 + 39.375*y0**4 - 
33.75*y0**2 + 3.375)/4
 LM_(1,0) = 0.75*L*W*x0
 LM_(1,1) = L*W*(0.09375*L**2*sin(2*theta) - 0.09375*W**2*sin(2*theta) + 
2.25*x0*y0)
 LM_(1,2) = L*W*(L**2*(-0.9375*x0*cos(2*theta) + 0.9375*x0 + 1.875*y0*sin(2*theta))
+ 1.875*W**2*x0*cos(theta)**2 - 1.875*W**2*y0*sin(2*theta) + 22.5*x0*y0**2 - 
7.5*x0)/4
 LM_(1,3) = L*W*(0.1640625*L**4*sin(2*theta) - 0.08203125*L**4*sin(4*theta) + 
0.2734375*L**2*W**2*sin(4*theta) - 6.5625*L**2*x0*y0*cos(2*theta) + 
6.5625*L**2*x0*y0 + 6.5625*L**2*y0**2*sin(2*theta) - 1.3125*L**2*sin(2*theta) - 
0.1640625*W**4*sin(2*theta) - 0.08203125*W**4*sin(4*theta) + 
6.5625*W**2*x0*y0*cos(2*theta) + 6.5625*W**2*x0*y0 - 6.5625*W**2*y0**2*sin(2*theta)
+ 1.3125*W**2*sin(2*theta) + 52.5*x0*y0**3 - 31.5*x0*y0)/4
 LM_(1,4) = L*W*(1.4765625*L**4*x0*(1 - cos(2*theta))**2 + 
5.90625*L**4*y0*sin(2*theta) - 2.953125*L**4*y0*sin(4*theta) - 
4.921875*L**2*W**2*x0*(1 - cos(2*theta))**2 - 9.84375*L**2*W**2*x0*cos(2*theta) + 
9.84375*L**2*W**2*x0 + 9.84375*L**2*W**2*y0*sin(4*theta) - 
118.125*L**2*x0*y0**2*cos(2*theta) + 118.125*L**2*x0*y0**2 + 
16.875*L**2*x0*cos(2*theta) - 16.875*L**2*x0 + 78.75*L**2*y0**3*sin(2*theta) - 
33.75*L**2*y0*sin(2*theta) + 1.4765625*W**4*x0*(1 - cos(2*theta))**2 + 
5.90625*W**4*x0*cos(2*theta) - 5.90625*W**4*y0*sin(2*theta) - 
2.953125*W**4*y0*sin(4*theta) + 118.125*W**2*x0*y0**2*cos(2*theta) + 
118.125*W**2*x0*y0**2 - 16.875*W**2*x0*cos(2*theta) - 16.875*W**2*x0 - 
78.75*W**2*y0**3*sin(2*theta) + 33.75*W**2*y0*sin(2*theta) + 472.5*x0*y0**4 - 
405.0*x0*y0**2 + 40.5*x0)/16
 LM_(2,0) = L*W*(0.15625*L**2*cos(theta)**2 + 0.15625*W**2*sin(theta)**2 + 
1.875*x0**2 - 0.625)
 LM_(2,1) = L*W*(L**2*(1.875*x0*sin(2*theta) + 0.9375*y0*cos(2*theta) + 0.9375*y0) 
- 1.875*W**2*x0*sin(2*theta) + 1.875*W**2*y0*sin(theta)**2 + 22.5*x0**2*y0 - 
7.5*y0)/4
 LM_(2,2) = L*W*(0.087890625*L**4*(1 - cos(4*theta)) + L**2*(0.5859375*W**2*(1 - 
cos(2*theta))**2 + 1.171875*W**2*cos(2*theta) - 0.78125*W**2 - 
2.34375*x0**2*cos(2*theta) + 2.34375*x0**2 + 9.375*x0*y0*sin(2*theta) + 
2.34375*y0**2*cos(2*theta) + 2.34375*y0**2 - 1.5625) + 0.087890625*W**4*(1 - 
cos(4*theta)) + 4.6875*W**2*x0**2*cos(theta)**2 - 9.375*W**2*x0*y0*sin(2*theta) + 
4.6875*W**2*y0**2*sin(theta)**2 - 1.5625*W**2*sin(theta)**2 - 
1.5625*W**2*cos(theta)**2 + 56.25*x0**2*y0**2 - 18.75*x0**2 - 18.75*y0**2 + 6.25)/4
 LM_(2,3) = L*W*(L**4*(13.125*x0*sin(theta) + 
19.6875*y0*cos(theta))*sin(theta)**2*cos(theta) + 
L**2*(5.46875*W**2*x0*sin(4*theta) + 16.40625*W**2*y0*(1 - cos(2*theta))**2 + 
32.8125*W**2*y0*cos(2*theta) - 21.875*W**2*y0 - 65.625*x0**2*y0*cos(2*theta) + 



65.625*x0**2*y0 + 131.25*x0*y0**2*sin(2*theta) - 26.25*x0*sin(2*theta) + 
21.875*y0**3*cos(2*theta) + 21.875*y0**3 + 8.75*y0*cos(2*theta) - 35.0*y0) - 
13.125*W**4*x0*sin(theta)*cos(theta)**3 + 2.4609375*W**4*y0*(1 - cos(4*theta)) + 
131.25*W**2*x0**2*y0*cos(theta)**2 - 131.25*W**2*x0*y0**2*sin(2*theta) + 
26.25*W**2*x0*sin(2*theta) + 43.75*W**2*y0**3*sin(theta)**2 - 
26.25*W**2*y0*sin(theta)**2 - 43.75*W**2*y0*cos(theta)**2 + 525.0*x0**2*y0**3 - 
315.0*x0**2*y0 - 175.0*y0**3 + 105.0*y0)/16
 LM_(2,4) = L*W*(2.63671875*L**6*sin(theta)**4*cos(theta)**2 + 
L**4*(4.6142578125*W**2*(1 - cos(2*theta))**2 + 12.3046875*W**2*cos(2*theta) - 
4.921875*W**2 - 7.3828125*x0**2*cos(2*theta) + 7.3828125*x0**2 + 
59.0625*x0*y0*sin(2*theta) + 44.296875*y0**2*cos(2*theta) + 44.296875*y0**2 - 
3.8671875*cos(2*theta) - 8.7890625)*sin(theta)**2 + L**2*(-2.30712890625*W**4*(1 - 
cos(2*theta))**3 + 7.6904296875*W**4*(1 - cos(2*theta))**2 + 
6.767578125*W**4*cos(2*theta) - 5.537109375*W**4 - 12.3046875*W**2*x0**2*(1 - 
cos(2*theta))**2 - 24.609375*W**2*x0**2*cos(2*theta) + 24.609375*W**2*x0**2 + 
49.21875*W**2*x0*y0*sin(4*theta) + 73.828125*W**2*y0**2*(1 - cos(2*theta))**2 + 
147.65625*W**2*y0**2*cos(2*theta) - 98.4375*W**2*y0**2 - 6.4453125*W**2*(1 - 
cos(2*theta))**2 - 12.890625*W**2*cos(2*theta) + 5.859375*W**2 - 
295.3125*x0**2*y0**2*cos(2*theta) + 295.3125*x0**2*y0**2 + 
42.1875*x0**2*cos(2*theta) - 42.1875*x0**2 + 393.75*x0*y0**3*sin(2*theta) - 
168.75*x0*y0*sin(2*theta) + 49.21875*y0**4*cos(2*theta) + 49.21875*y0**4 + 
56.25*y0*2*cos(2*theta) - 140.625*y0**2 - 9.84375*cos(2*theta) + 18.28125) + 
2.63671875*W**6*sin(theta)**2*cos(theta)**4 + 14.765625*W**4*x0**2*cos(theta)**4 - 
118.125*W**4*x0*y0*sin(theta)*cos(theta)**3 + 11.07421875*W**4*y0**2*(1 - 
cos(4*theta)) - 1.58203125*W**4*(1 - cos(4*theta)) - 4.921875*W**4*cos(theta)**4 + 
590.625*W**2*x0**2*y0**2*cos(theta)**2 - 84.375*W**2*x0**2*cos(theta)**2 - 
393.75*W**2*x0*y0**3*sin(2*theta) + 168.75*W**2*x0*y0*sin(2*theta) + 
98.4375*W**2*y0**4*sin(theta)**2 - 84.375*W**2*y0**2*sin(theta)**2 - 
196.875*W**2*y0**2*cos(theta)**2 + 8.4375*W**2*sin(theta)**2 + 
28.125*W**2*cos(theta)**2 + 1181.25*x0**2*y0**4 - 1012.5*x0**2*y0**2 + 101.25*x0**2
- 393.75*y0**4 + 337.5*y0**2 - 33.75)/16
 LM_(3,0) = L*W*x0*(1.09375*L**2*cos(theta)**2 + 1.09375*W**2*sin(theta)**2 + 
4.375*x0**2 - 2.625)
 LM_(3,1) = L*W*(0.1640625*L**4*sin(2*theta) + 0.08203125*L**4*sin(4*theta) - 
0.2734375*L**2*W**2*sin(4*theta) + 6.5625*L**2*x0**2*sin(2*theta) + 
6.5625*L**2*x0*y0*cos(2*theta) + 6.5625*L**2*x0*y0 - 1.3125*L**2*sin(2*theta) - 
0.1640625*W**4*sin(2*theta) + 0.08203125*W**4*sin(4*theta) - 
6.5625*W**2*x0**2*sin(2*theta) - 6.5625*W**2*x0*y0*cos(2*theta) + 6.5625*W**2*x0*y0
+ 1.3125*W**2*sin(2*theta) + 52.5*x0**3*y0 - 31.5*x0*y0)/4
 LM_(3,2) = L*W*(L**4*(19.6875*x0*sin(theta) + 
13.125*y0*cos(theta))*sin(theta)*cos(theta)**2 + L**2*(16.40625*W**2*x0*(1 - 
cos(2*theta))**2 + 32.8125*W**2*x0*cos(2*theta) - 21.875*W**2*x0 - 
5.46875*W**2*y0*sin(4*theta) - 21.875*x0**3*cos(2*theta) + 21.875*x0**3 + 
131.25*x0**2*y0*sin(2*theta) + 65.625*x0*y0**2*cos(2*theta) + 65.625*x0*y0**2 - 
8.75*x0*cos(2*theta) - 35.0*x0 - 26.25*y0*sin(2*theta)) + 2.4609375*W**4*x0*(1 - 
cos(4*theta)) - 13.125*W**4*y0*sin(theta)**3*cos(theta) + 
43.75*W**2*x0**3*cos(theta)**2 - 131.25*W**2*x0**2*y0*sin(2*theta) + 
131.25*W**2*x0*y0**2*sin(theta)**2 - 43.75*W**2*x0*sin(theta)**2 - 
26.25*W**2*x0*cos(theta)**2 + 26.25*W**2*y0*sin(2*theta) + 525.0*x0**3*y0**2 - 
175.0*x0**3 - 315.0*x0*y0**2 + 105.0*x0)/16



 LM_(3,3) = L*W*(2.734375*L**6*sin(theta)**3*cos(theta)**3 + 
L**4*(4.78515625*W**2*(1 - cos(2*theta))**2 + 9.5703125*W**2*cos(2*theta) - 
5.7421875*W**2 - 22.96875*x0**2*cos(2*theta) + 22.96875*x0**2 + 
68.90625*x0*y0*sin(2*theta) + 22.96875*y0**2*cos(2*theta) + 22.96875*y0**2 - 
9.1875)*sin(theta)*cos(theta) + L**2*(-0.95703125*W**4*(1 - 
cos(2*theta))**2*sin(2*theta) + 1.07666015625*W**4*sin(2*theta) - 
0.95703125*W**4*sin(4*theta) - 0.35888671875*W**4*sin(6*theta) + 
19.140625*W**2*x0**2*sin(4*theta) + 114.84375*W**2*x0*y0*(1 - cos(2*theta))**2 + 
229.6875*W**2*x0*y0*cos(2*theta) - 153.125*W**2*x0*y0 - 
19.140625*W**2*y0**2*sin(4*theta) - 153.125*x0**3*y0*cos(2*theta) + 
153.125*x0**3*y0 + 459.375*x0**2*y0**2*sin(2*theta) - 91.875*x0**2*sin(2*theta) + 
153.125*x0*y0**3*cos(2*theta) + 153.125*x0*y0**3 - 183.75*x0*y0 - 
91.875*y0**2*sin(2*theta) + 18.375*sin(2*theta)) - 
2.734375*W**6*sin(theta)**3*cos(theta)**3 - 
45.9375*W**4*x0**2*sin(theta)*cos(theta)**3 + 17.2265625*W**4*x0*y0*(1 - 
cos(4*theta)) - 45.9375*W**4*y0**2*sin(theta)**3*cos(theta) + 
9.1875*W**4*sin(theta)**3*cos(theta) + 9.1875*W**4*sin(theta)*cos(theta)**3 + 
306.25*W**2*x0**3*y0*cos(theta)**2 - 459.375*W**2*x0**2*y0**2*sin(2*theta) + 
91.875*W**2*x0**2*sin(2*theta) + 306.25*W**2*x0*y0**3*sin(theta)**2 - 
183.75*W**2*x0*y0*sin(theta)**2 - 183.75*W**2*x0*y0*cos(theta)**2 + 
91.875*W**2*y0**2*sin(2*theta) - 18.375*W**2*sin(2*theta) + 1225.0*x0**3*y0**3 - 
735.0*x0**3*y0 - 735.0*x0*y0**3 + 441.0*x0*y0)/16
 LM_(3,4) = L*W*(L**6*(73.828125*x0*sin(theta) + 
98.4375*y0*cos(theta))*sin(theta)**3*cos(theta)**2 + 
L**4*(516.796875*W**2*x0*sin(theta)**5 - 689.0625*W**2*x0*sin(theta)**3 + 
206.71875*W**2*x0*sin(theta) + 137.8125*W**2*y0*sin(theta)**4*cos(theta) + 
551.25*W**2*y0*cos(theta)**5 - 413.4375*W**2*y0*cos(theta)**3 + 
137.8125*x0**3*sin(theta)**3 - 1653.75*x0**2*y0*cos(theta)**3 + 
1653.75*x0**2*y0*cos(theta) - 2480.625*x0*y0**2*sin(theta)**3 + 
2480.625*x0*y0**2*sin(theta) + 271.6875*x0*sin(theta)**3 - 354.375*x0*sin(theta) + 
551.25*y0**3*cos(theta)**3 + 94.5*y0*cos(theta)**3 - 
330.75*y0*cos(theta))*sin(theta) + L**2*(-64.599609375*W**4*x0*(1 - 
cos(2*theta))**3 + 215.33203125*W**4*x0*(1 - cos(2*theta))**2 + 
189.4921875*W**4*x0*cos(2*theta) - 155.0390625*W**4*x0 - 34.453125*W**4*y0*(1 - 
cos(2*theta))**2*sin(2*theta) + 38.759765625*W**4*y0*sin(2*theta) - 
34.453125*W**4*y0*sin(4*theta) - 12.919921875*W**4*y0*sin(6*theta) - 
114.84375*W**2*x0**3*(1 - cos(2*theta))**2 - 229.6875*W**2*x0**3*cos(2*theta) + 
229.6875*W**2*x0**3 + 689.0625*W**2*x0**2*y0*sin(4*theta) + 
2067.1875*W**2*x0*y0**2*(1 - cos(2*theta))**2 + 4134.375*W**2*x0*y0**2*cos(2*theta)
- 2756.25*W**2*x0*y0**2 - 226.40625*W**2*x0*(1 - cos(2*theta))**2 - 
452.8125*W**2*x0*cos(2*theta) + 255.9375*W**2*x0 - 229.6875*W**2*y0**3*sin(4*theta)
- 39.375*W**2*y0*sin(4*theta) - 2756.25*x0**3*y0**2*cos(2*theta) + 
2756.25*x0**3*y0**2 + 393.75*x0**3*cos(2*theta) - 393.75*x0**3 + 
5512.5*x0**2*y0**3*sin(2*theta) - 2362.5*x0**2*y0*sin(2*theta) + 
1378.125*x0*y0**4*cos(2*theta) + 1378.125*x0*y0**4 + 472.5*x0*y0**2*cos(2*theta) - 
2835.0*x0*y0**2 - 118.125*x0*cos(2*theta) + 354.375*x0 - 1102.5*y0**3*sin(2*theta) 
+ 472.5*y0*sin(2*theta)) + 73.828125*W**6*x0*sin(theta)**2*cos(theta)**4 - 
98.4375*W**6*y0*sin(theta)**3*cos(theta)**3 + 137.8125*W**4*x0**3*cos(theta)**4 - 
1653.75*W**4*x0**2*y0*sin(theta)*cos(theta)**3 + 310.078125*W**4*x0*y0**2*(1 - 
cos(4*theta)) - 44.296875*W**4*x0*(1 - cos(4*theta)) - 



82.6875*W**4*x0*cos(theta)**4 - 551.25*W**4*y0**3*sin(theta)**3*cos(theta) + 
236.25*W**4*y0*sin(theta)**3*cos(theta) + 330.75*W**4*y0*sin(theta)*cos(theta)**3 +
5512.5*W**2*x0**3*y0**2*cos(theta)**2 - 787.5*W**2*x0**3*cos(theta)**2 - 
5512.5*W**2*x0**2*y0**3*sin(2*theta) + 2362.5*W**2*x0**2*y0*sin(2*theta) + 
2756.25*W**2*x0*y0**4*sin(theta)**2 - 2362.5*W**2*x0*y0**2*sin(theta)**2 - 
3307.5*W**2*x0*y0**2*cos(theta)**2 + 236.25*W**2*x0*sin(theta)**2 + 
472.5*W**2*x0*cos(theta)**2 + 1102.5*W**2*y0**3*sin(2*theta) - 
472.5*W**2*y0*sin(2*theta) + 11025.0*x0**3*y0**4 - 9450.0*x0**3*y0**2 + 945.0*x0**3
- 6615.0*x0*y0**4 + 5670.0*x0*y0**2 - 567.0*x0)/64
 LM_(4,0) = L*W*(0.4921875*L**4*cos(theta)**4 + L**2*(1.640625*W**2*sin(theta)**2 +
19.6875*x0**2 - 2.8125)*cos(theta)**2 + 0.4921875*W**4*sin(theta)**4 + 
19.6875*W**2*x0**2*sin(theta)**2 - 2.8125*W**2*sin(theta)**2 + 39.375*x0**4 - 
33.75*x0**2 + 3.375)/4
 LM_(4,1) = L*W*(5.90625*L**4*x0*sin(2*theta) + 2.953125*L**4*x0*sin(4*theta) + 
1.4765625*L**4*y0*(1 - cos(2*theta))**2 + 5.90625*L**4*y0*cos(2*theta) - 
9.84375*L**2*W**2*x0*sin(4*theta) - 4.921875*L**2*W**2*y0*(1 - cos(2*theta))**2 - 
9.84375*L**2*W**2*y0*cos(2*theta) + 9.84375*L**2*W**2*y0 + 
78.75*L**2*x0**3*sin(2*theta) + 118.125*L**2*x0**2*y0*cos(2*theta) + 
118.125*L**2*x0**2*y0 - 33.75*L**2*x0*sin(2*theta) - 16.875*L**2*y0*cos(2*theta) - 
16.875*L**2*y0 - 5.90625*W**4*x0*sin(2*theta) + 2.953125*W**4*x0*sin(4*theta) + 
1.4765625*W**4*y0*(1 - cos(2*theta))**2 - 78.75*W**2*x0**3*sin(2*theta) - 
118.125*W**2*x0**2*y0*cos(2*theta) + 118.125*W**2*x0**2*y0 + 
33.75*W**2*x0*sin(2*theta) + 16.875*W**2*y0*cos(2*theta) - 16.875*W**2*y0 + 
472.5*x0**4*y0 - 405.0*x0**2*y0 + 40.5*y0)/16
 LM_(4,2) = L*W*(2.63671875*L**6*sin(theta)**2*cos(theta)**4 + 
L**4*(4.6142578125*W**2*(1 - cos(2*theta))**2 + 6.15234375*W**2*cos(2*theta) - 
4.921875*W**2 - 44.296875*x0**2*cos(2*theta) + 44.296875*x0**2 + 
59.0625*x0*y0*sin(2*theta) + 7.3828125*y0**2*cos(2*theta) + 7.3828125*y0**2 + 
3.8671875*cos(2*theta) - 8.7890625)*cos(theta)**2 + L**2*(2.30712890625*W**4*(1 - 
cos(2*theta))**3 - 6.15234375*W**4*(1 - cos(2*theta))**2 - 
3.69140625*W**4*cos(2*theta) + 3.69140625*W**4 + 73.828125*W**2*x0**2*(1 - 
cos(2*theta))**2 + 147.65625*W**2*x0**2*cos(2*theta) - 98.4375*W**2*x0**2 - 
49.21875*W**2*x0*y0*sin(4*theta) - 12.3046875*W**2*y0**2*(1 - cos(2*theta))**2 - 
24.609375*W**2*y0**2*cos(2*theta) + 24.609375*W**2*y0**2 - 6.4453125*W**2*(1 - 
cos(2*theta))**2 - 12.890625*W**2*cos(2*theta) + 5.859375*W**2 - 
49.21875*x0**4*cos(2*theta) + 49.21875*x0**4 + 393.75*x0**3*y0*sin(2*theta) + 
295.3125*x0**2*y0**2*cos(2*theta) + 295.3125*x0**2*y0**2 - 56.25*x0**2*cos(2*theta)
- 140.625*x0**2 - 168.75*x0*y0*sin(2*theta) - 42.1875*y0**2*cos(2*theta) - 
42.1875*y0**2 + 9.84375*cos(2*theta) + 18.28125) + 
2.63671875*W**6*sin(theta)**4*cos(theta)**2 + 11.07421875*W**4*x0**2*(1 - 
cos(4*theta)) - 118.125*W**4*x0*y0*sin(theta)**3*cos(theta) + 
14.765625*W**4*y0**2*sin(theta)**4 - 1.58203125*W**4*(1 - cos(4*theta)) - 
4.921875*W**4*sin(theta)**4 + 98.4375*W**2*x0**4*cos(theta)**2 - 
393.75*W**2*x0**3*y0*sin(2*theta) + 590.625*W**2*x0**2*y0**2*sin(theta)**2 - 
196.875*W**2*x0**2*sin(theta)**2 - 84.375*W**2*x0**2*cos(theta)**2 + 
168.75*W**2*x0*y0*sin(2*theta) - 84.375*W**2*y0**2*sin(theta)**2 + 
28.125*W**2*sin(theta)**2 + 8.4375*W**2*cos(theta)**2 + 1181.25*x0**4*y0**2 - 
393.75*x0**4 - 1012.5*x0**2*y0**2 + 337.5*x0**2 + 101.25*y0**2 - 33.75)/16
 LM_(4,3) = L*W*(L**6*(98.4375*x0*sin(theta) + 
73.828125*y0*cos(theta))*sin(theta)**2*cos(theta)**3 + 



L**4*(689.0625*W**2*x0*sin(theta)**5 - 689.0625*W**2*x0*sin(theta)**3 + 
137.8125*W**2*x0*sin(theta) + 206.71875*W**2*y0*sin(theta)**4*cos(theta) + 
310.078125*W**2*y0*cos(theta)**5 - 275.625*W**2*y0*cos(theta)**3 + 
551.25*x0**3*sin(theta)**3 - 2480.625*x0**2*y0*cos(theta)**3 + 
2480.625*x0**2*y0*cos(theta) - 1653.75*x0*y0**2*sin(theta)**3 + 
1653.75*x0*y0**2*sin(theta) + 94.5*x0*sin(theta)**3 - 330.75*x0*sin(theta) + 
137.8125*y0**3*cos(theta)**3 + 271.6875*y0*cos(theta)**3 - 
354.375*y0*cos(theta))*cos(theta) + L**2*(-34.453125*W**4*x0*(1 - 
cos(2*theta))**2*sin(2*theta) + 38.759765625*W**4*x0*sin(2*theta) - 
34.453125*W**4*x0*sin(4*theta) - 12.919921875*W**4*x0*sin(6*theta) + 
64.599609375*W**4*y0*(1 - cos(2*theta))**3 - 172.265625*W**4*y0*(1 - 
cos(2*theta))**2 - 103.359375*W**4*y0*cos(2*theta) + 103.359375*W**4*y0 + 
229.6875*W**2*x0**3*sin(4*theta) + 2067.1875*W**2*x0**2*y0*(1 - cos(2*theta))**2 + 
4134.375*W**2*x0**2*y0*cos(2*theta) - 2756.25*W**2*x0**2*y0 - 
689.0625*W**2*x0*y0**2*sin(4*theta) + 39.375*W**2*x0*sin(4*theta) - 
114.84375*W**2*y0**3*(1 - cos(2*theta))**2 - 229.6875*W**2*y0**3*cos(2*theta) + 
229.6875*W**2*y0**3 - 226.40625*W**2*y0*(1 - cos(2*theta))**2 - 
452.8125*W**2*y0*cos(2*theta) + 255.9375*W**2*y0 - 1378.125*x0**4*y0*cos(2*theta) +
1378.125*x0**4*y0 + 5512.5*x0**3*y0**2*sin(2*theta) - 1102.5*x0**3*sin(2*theta) + 
2756.25*x0**2*y0**3*cos(2*theta) + 2756.25*x0**2*y0**3 - 
472.5*x0**2*y0*cos(2*theta) - 2835.0*x0**2*y0 - 2362.5*x0*y0**2*sin(2*theta) + 
472.5*x0*sin(2*theta) - 393.75*y0**3*cos(2*theta) - 393.75*y0**3 + 
118.125*y0*cos(2*theta) + 354.375*y0) - 98.4375*W**6*x0*sin(theta)**3*cos(theta)**3
+ 73.828125*W**6*y0*sin(theta)**4*cos(theta)**2 - 
551.25*W**4*x0**3*sin(theta)*cos(theta)**3 + 310.078125*W**4*x0**2*y0*(1 - 
cos(4*theta)) - 1653.75*W**4*x0*y0**2*sin(theta)**3*cos(theta) + 
330.75*W**4*x0*sin(theta)**3*cos(theta) + 236.25*W**4*x0*sin(theta)*cos(theta)**3 +
137.8125*W**4*y0**3*sin(theta)**4 - 44.296875*W**4*y0*(1 - cos(4*theta)) - 
82.6875*W**4*y0*sin(theta)**4 + 2756.25*W**2*x0**4*y0*cos(theta)**2 - 
5512.5*W**2*x0**3*y0**2*sin(2*theta) + 1102.5*W**2*x0**3*sin(2*theta) + 
5512.5*W**2*x0**2*y0**3*sin(theta)**2 - 3307.5*W**2*x0**2*y0*sin(theta)**2 - 
2362.5*W**2*x0**2*y0*cos(theta)**2 + 2362.5*W**2*x0*y0**2*sin(2*theta) - 
472.5*W**2*x0*sin(2*theta) - 787.5*W**2*y0**3*sin(theta)**2 + 
472.5*W**2*y0*sin(theta)**2 + 236.25*W**2*y0*cos(theta)**2 + 11025.0*x0**4*y0**3 - 
6615.0*x0**4*y0 - 9450.0*x0**2*y0**3 + 5670.0*x0**2*y0 + 945.0*y0**3 - 567.0*y0)/64
 LM_(4,4) = L*W*(0.0105142593383789*L**8*cos(2*theta)**4 - 
0.0210285186767578*L**8*cos(2*theta)**2 + 0.0105142593383789*L**8 - 
0.126171112060547*L**6*W**2*cos(2*theta)**4 + 
0.144195556640625*L**6*W**2*cos(2*theta)**2 - 0.0180244445800781*L**6*W**2 + 
0.648880004882813*L**6*x0**2*cos(2*theta)**3 - 
0.648880004882813*L**6*x0**2*cos(2*theta)**2 - 
0.648880004882813*L**6*x0**2*cos(2*theta) + 0.648880004882813*L**6*x0**2 + 
1.29776000976563*L**6*x0*y0*sin(2*theta) - 
0.432586669921875*L**6*x0*y0*sin(6*theta) - 
0.648880004882813*L**6*y0**2*cos(2*theta)**3 - 
0.648880004882813*L**6*y0**2*cos(2*theta)**2 + 
0.648880004882813*L**6*y0**2*cos(2*theta) + 0.648880004882813*L**6*y0**2 + 
0.185394287109375*L**6*cos(2*theta)**2 - 0.185394287109375*L**6 + 
0.264959335327148*L**4*W**4*cos(2*theta)**4 - 
0.227108001708984*L**4*W**4*cos(2*theta)**2 + 0.0227108001708984*L**4*W**4 - 



4.54216003417969*L**4*W**2*x0**2*cos(2*theta)**3 + 
1.51405334472656*L**4*W**2*x0**2*cos(2*theta)**2 + 
3.33091735839844*L**4*W**2*x0**2*cos(2*theta) - 0.302810668945313*L**4*W**2*x0**2 +
4.844970703125*L**4*W**2*x0*y0*sin(2*theta)*cos(2*theta)**2 - 
9.68994140625*L**4*W**2*x0*y0*sin(2*theta)*cos(2*theta) - 
0.605621337890625*L**4*W**2*x0*y0*sin(2*theta) + 
4.844970703125*L**4*W**2*x0*y0*sin(4*theta) + 
1.81686401367188*L**4*W**2*x0*y0*sin(6*theta) + 
4.54216003417969*L**4*W**2*y0**2*cos(2*theta)**3 + 
1.51405334472657*L**4*W**2*y0**2*cos(2*theta)**2 - 
3.33091735839844*L**4*W**2*y0**2*cos(2*theta) - 0.302810668945307*L**4*W**2*y0**2 -
0.432586669921875*L**4*W**2*cos(2*theta)**2 - 
1.11022302462516e-16*L**4*W**2*cos(2*theta) + 0.0865173339843751*L**4*W**2 + 
1.21124267578125*L**4*x0**4*cos(2*theta)**2 - 
2.4224853515625*L**4*x0**4*cos(2*theta) + 1.21124267578125*L**4*x0**4 + 
19.3798828125*L**4*x0**3*y0*sin(2*theta) - 9.68994140625*L**4*x0**3*y0*sin(4*theta)
- 43.604736328125*L**4*x0**2*y0**2*cos(2*theta)**2 + 
43.604736328125*L**4*x0**2*y0**2 + 5.1910400390625*L**4*x0**2*cos(2*theta)**2 + 
2.076416015625*L**4*x0**2*cos(2*theta) - 7.2674560546875*L**4*x0**2 + 
19.3798828125*L**4*x0*y0**3*sin(2*theta) + 9.68994140625*L**4*x0*y0**3*sin(4*theta)
- 16.611328125*L**4*x0*y0*sin(2*theta) + 
1.21124267578125*L**4*y0**4*cos(2*theta)**2 + 
2.4224853515625*L**4*y0**4*cos(2*theta) + 1.21124267578125*L**4*y0**4 + 
5.1910400390625*L**4*y0**2*cos(2*theta)**2 - 2.076416015625*L**4*y0**2*cos(2*theta)
- 7.2674560546875*L**4*y0**2 - 0.6822509765625*L**4*cos(2*theta)**2 + 
1.0975341796875*L**4 - 0.126171112060547*L**2*W**6*cos(2*theta)**4 + 
0.144195556640625*L**2*W**6*cos(2*theta)**2 - 0.0180244445800781*L**2*W**6 + 
4.54216003417969*L**2*W**4*x0**2*cos(2*theta)**3 + 
1.51405334472656*L**2*W**4*x0**2*cos(2*theta)**2 - 
3.33091735839844*L**2*W**4*x0**2*cos(2*theta) - 0.302810668945313*L**2*W**4*x0**2 -
4.844970703125*L**2*W**4*x0*y0*sin(2*theta)*cos(2*theta)**2 + 
9.68994140625*L**2*W**4*x0*y0*sin(2*theta)*cos(2*theta) + 
0.605621337890625*L**2*W**4*x0*y0*sin(2*theta) - 
4.844970703125*L**2*W**4*x0*y0*sin(4*theta) - 
1.81686401367188*L**2*W**4*x0*y0*sin(6*theta) - 
4.54216003417969*L**2*W**4*y0**2*cos(2*theta)**3 + 
1.51405334472656*L**2*W**4*y0**2*cos(2*theta)**2 + 
3.33091735839844*L**2*W**4*y0**2*cos(2*theta) - 0.302810668945313*L**2*W**4*y0**2 -
0.432586669921875*L**2*W**4*cos(2*theta)**2 + 0.0865173339843751*L**2*W**4 - 
4.0374755859375*L**2*W**2*x0**4*cos(2*theta)**2 + 4.0374755859375*L**2*W**2*x0**4 +
32.2998046875*L**2*W**2*x0**3*y0*sin(4*theta) + 
145.34912109375*L**2*W**2*x0**2*y0**2*cos(2*theta)**2 - 
48.44970703125*L**2*W**2*x0**2*y0**2 - 
17.303466796875*L**2*W**2*x0**2*cos(2*theta)**2 + 3.460693359375*L**2*W**2*x0**2 - 
32.2998046875*L**2*W**2*x0*y0**3*sin(4*theta) - 
4.0374755859375*L**2*W**2*y0**4*cos(2*theta)**2 + 4.0374755859375*L**2*W**2*y0**4 -
17.303466796875*L**2*W**2*y0**2*cos(2*theta)**2 + 3.460693359375*L**2*W**2*y0**2 + 
2.274169921875*L**2*W**2*cos(2*theta)**2 - 0.296630859375*L**2*W**2 - 
96.8994140625*L**2*x0**4*y0**2*cos(2*theta) + 96.8994140625*L**2*x0**4*y0**2 + 
13.8427734375*L**2*x0**4*cos(2*theta) - 13.8427734375*L**2*x0**4 + 



258.3984375*L**2*x0**3*y0**3*sin(2*theta) - 110.7421875*L**2*x0**3*y0*sin(2*theta) 
+ 96.8994140625*L**2*x0**2*y0**4*cos(2*theta) + 96.8994140625*L**2*x0**2*y0**4 - 
166.11328125*L**2*x0**2*y0**2 - 3.5595703125*L**2*x0**2*cos(2*theta) + 
20.1708984375*L**2*x0**2 - 110.7421875*L**2*x0*y0**3*sin(2*theta) + 
47.4609375*L**2*x0*y0*sin(2*theta) - 13.8427734375*L**2*y0**4*cos(2*theta) - 
13.8427734375*L**2*y0**4 + 3.5595703125*L**2*y0**2*cos(2*theta) + 
20.1708984375*L**2*y0**2 - 2.373046875*L**2 + 
0.0105142593383789*W**8*cos(2*theta)**4 - 0.0210285186767578*W**8*cos(2*theta)**2 +
0.0105142593383789*W**8 - 0.648880004882813*W**6*x0**2*cos(2*theta)**3 - 
0.648880004882813*W**6*x0**2*cos(2*theta)**2 + 
0.648880004882813*W**6*x0**2*cos(2*theta) + 0.648880004882813*W**6*x0**2 - 
1.29776000976563*W**6*x0*y0*sin(2*theta) + 
0.432586669921875*W**6*x0*y0*sin(6*theta) + 
0.648880004882813*W**6*y0**2*cos(2*theta)**3 - 
0.648880004882813*W**6*y0**2*cos(2*theta)**2 - 
0.648880004882813*W**6*y0**2*cos(2*theta) + 0.648880004882813*W**6*y0**2 + 
0.185394287109375*W**6*cos(2*theta)**2 - 0.185394287109375*W**6 + 
1.21124267578125*W**4*x0**4*cos(2*theta)**2 + 
2.4224853515625*W**4*x0**4*cos(2*theta) + 1.21124267578125*W**4*x0**4 - 
19.3798828125*W**4*x0**3*y0*sin(2*theta) - 9.68994140625*W**4*x0**3*y0*sin(4*theta)
- 43.604736328125*W**4*x0**2*y0**2*cos(2*theta)**2 + 
43.604736328125*W**4*x0**2*y0**2 + 5.1910400390625*W**4*x0**2*cos(2*theta)**2 - 
2.076416015625*W**4*x0**2*cos(2*theta) - 7.2674560546875*W**4*x0**2 - 
19.3798828125*W**4*x0*y0**3*sin(2*theta) + 9.68994140625*W**4*x0*y0**3*sin(4*theta)
+ 16.611328125*W**4*x0*y0*sin(2*theta) + 
1.21124267578125*W**4*y0**4*cos(2*theta)**2 - 
2.4224853515625*W**4*y0**4*cos(2*theta) + 1.21124267578125*W**4*y0**4 + 
5.1910400390625*W**4*y0**2*cos(2*theta)**2 + 2.076416015625*W**4*y0**2*cos(2*theta)
- 7.2674560546875*W**4*y0**2 - 0.6822509765625*W**4*cos(2*theta)**2 + 
1.0975341796875*W**4 + 96.8994140625*W**2*x0**4*y0**2*cos(2*theta) + 
96.8994140625*W**2*x0**4*y0**2 - 13.8427734375*W**2*x0**4*cos(2*theta) - 
13.8427734375*W**2*x0**4 - 258.3984375*W**2*x0**3*y0**3*sin(2*theta) + 
110.7421875*W**2*x0**3*y0*sin(2*theta) - 
96.8994140625*W**2*x0**2*y0**4*cos(2*theta) + 96.8994140625*W**2*x0**2*y0**4 - 
166.11328125*W**2*x0**2*y0**2 + 3.5595703125*W**2*x0**2*cos(2*theta) + 
20.1708984375*W**2*x0**2 + 110.7421875*W**2*x0*y0**3*sin(2*theta) - 
47.4609375*W**2*x0*y0*sin(2*theta) + 13.8427734375*W**2*y0**4*cos(2*theta) - 
13.8427734375*W**2*y0**4 - 3.5595703125*W**2*y0**2*cos(2*theta) + 
20.1708984375*W**2*y0**2 - 2.373046875*W**2 + 387.59765625*x0**4*y0**4 - 
332.2265625*x0**4*y0**2 + 33.22265625*x0**4 - 332.2265625*x0**2*y0**4 + 
284.765625*x0**2*y0**2 - 28.4765625*x0**2 + 33.22265625*y0**4 - 28.4765625*y0**2 + 
2.84765625)
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