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A B S T R A C T

Background: Patients who suffer from acetabular bone defects are often subjected to a decreased mobility and a loss of
independence. To treat these bone defects, standard hemispherical acetabular implants offer in most cases the solution.
However, when these defects are large, a custom triflange acetabular implant is needed. Although this type of implant
performs well in general, it also has some drawbacks. These include higher costs and a longer design- and development
cycle, since every implant is custom-made to the patient. In addition, it is expected that the triflange implant causes more
stress-shielding (loss in bone-mineral-density (BMD) due to insufficient loads) than the standard implant. However,
the evidence for this last statement is quite weak, since studies on both cups use different parameters,materials and
environments.
Objective: The objective of this study is to determine if the custom triflange cup causes indeed more stress-shielding
than the standard hemispherical cup. Furthermore, the goal is to find a solution for this and the other above-mentioned
drawbacks of the custom triflange cup. Therefore, the goal is to study the potential of a deformable acetabular cup,
which in theory should solve these issues of the triflange cup.
Methods: First a statistical shape model (SSM) of the human pelvis was developed to find patterns in defects of the
pelvis, which could eliminate the need for customization. Next, a Finite Element (FE) Model with a bone-remodelling
algorithm was developed to determine the difference in stress-shielding between the standard and the triflange cup.
Furthermore, a FE model of a deformable implant is developed which is pressed into multiple defected pelvises.
Finally, a machine-algoirthm is trained to predict the optimal deformable cup parameters, based on the type of defects.
Results: Several modes of deformation were found with the SSM, which were utilised in creating damaged pelvises
for the Finite Element Model. Furthermore, it was found that the custom triflange cup decreases the BMD of the pelvis
by 28.6% compared to pelvis without cup. With a deformable implant, this decrease can be reduced to 7.1%, which is
in the similair range as the standard hemispherical cup. Finally, it was found that the machine-learning algorithm can
successfully predict the optimal cup parameters, based on the type and size of defects.

1: Background
Healthy joints form an essential part of the human body
and are a prerequisite to perform everyday tasks. Unfortu-
nately, these joints can suffer from a loss in functionality
caused by degenerative diseases or accidents [1],[2],[3].
As a result, patients are subjected to a decreased mobility
and independency. which are some of the major values to
patients [4].

Fortunately, there exist multiple solutions to treat a de-
fect joint. To repair the defect, bone from the same indi-
vidual who receives the graft can be used, referred to as
autologous bone graft [5]. Autologous bone craft envolves
the same procedure, with the difference being that bone
is taken from another individual [6]. Both methods are not

widely applied yet, due to the drawbacks and the complex-
ity that comes with it. A more widely used approach is the
use of orthopedic implants, which seem to be a reliable so-
lution for damaged joints [7],[8]. Especially the hip joint is
often replaced with an acetabular cup. If the current trend
continues, it is expected that in 2030 around 572.000 total
hip replacements are needed in the United States alone [9].
Furthermore, the amount of revision-operations for hip-
implants (operations when the implant has reached the end
of its lifetime and a new implant is required) is increasing
with more than 30% from 2007 to 2013 [10]. This leads to
an expected amount of almost 100.000 hip-revision opera-
tions in the United States in 2030 [9]. One of the causes for
this increased amount of revision-operations is the longer
life-expectancy of patients. A few decades ago less revi-
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sions were needed, since the implant lasted long enough
(on average 15 years [11], [12]) to assist the patient for
the rest of his life. While the life-expectancy of patients
is increasing, the lifetime of the implants is not increasing
at a similair rate, resulting in a higher amount of revision
operations.

One of the reasons that cause this implant-failure is
loosening of the implant due to bone loss [13]. Insuffi-
cient bone may be present to fixate and stabilize the ac-
etabular implant. To prevent this from happening, bone-
loss should be minimized. With this in mind, it is im-
portant that the acetabular bone is sufficiently stimulated
with mechanical loads. If this stimulus is below a certain
value (typically strains below 1000µ-1500µ), bone-loss
will occur [14],[15]. This phenomenon is referred to as
stress-shielding and is a result of Wolffs law, which states
that bone adapts to the loading it is subjected to [16],[17].
According to this law, the opposite (bone formation) oc-
curs when the stimulus is above a certain value. This can
be observed in tennis-players, whose dominant arm often
contains thicker bone. Bone-loss on the other hand can
occur in patients with acetabular implants. The implant
shields the bone from stresses and strains, which result
in bone-absorption. To minimize this effect, an implant
material with a Young’s modulus similair to the Young’s
modulus of bone should be chosen [18]. In addition, the
shape and design of the implant can affect the strain/stress-
distribution in the pelvis [13].

Depending on the type and degree of defects in the ac-
etabulum, a suitable implant can be chosen. If the defects
are relatively small or if the cartilage is degenerated, the
common procedure is to implant an acetabular cup with
a hemispherical shape, which mimics the natural shape
of the acetabulum (figure 1). The diameter of this cup is
usually a few millimeters greater than the diameter of the
acetabulum. During surgery, the cup is hammered into the
acetabulum and deforms. This deformation generates fric-
tion forces between the acetabulum and the cup, which
stabilize the cup and keep it in place [19]. However, when
large defects are present, insufficient healthy bone is left
to allow this type of fixation. In these cases, a custom tri-
flange implant is typically the solution. Compared to the
standard cup, three flanges are added to the hemispherical
cup, which are custom-made to fit exactly the pelvis of the
patients (figure 2). Screws are used to fixate the implant
on the locations of the screws.

Although the custom triflange cup provides a good so-
lution for patients with large bone defects, it also has sev-
eral drawbacks. Since the implant is custom-made, it is
relatively expensive, compared to the standard hemispher-
ical cup. In addition, it takes more time to design and pre-
pare the implant [19]. For the standard hemispherical im-
plant, 1 design with different sizes is sufficient for all pa-
tients with small bone defects. With the triflange implant,
a new design is required for every case. Furthermore, it is
expected that the flanges carry most of the load and shield

the acetabulum from mechanical stimuli. The loads with
the standard cup are centered at the acetabulum, while the
triflange cup produces high loads on the bone which is in
contact with the flanges (figure 1 and figure 2). This could
lead to even further resorption of the remaining bone at the
acetabulum, which is obviously undesired. The standard
hemispherical cup on the other hand mimics the natural
acetabulum, thus it is expected that this causes less stress-
shielding in comparison with the triflange-implant. Sev-
eral studies indicate that this is indeed the case by report-
ing lower strains in the acetabulum in case of a triflange
implant compared to the standard hemispherical implant.
Strain values for the triflange and standard implant are
(after scaling for differences in parameters) in the range
of 250-1700µ and 400-2000µ respectively, while stress-
shielding occurs below strain values of 1000-1500µ. This
would indeed indicate that more stress-shielding occurs
with the triflange-implant [21],[22]. However, due to lim-
ited data and difference in parameter-values across stud-
ies, the evidence for this statement is quite weak.

Figure 1: The standard implant with the corresponding
load-distribution ([21])

Figure 2: The triflange implant with the corresponding
load-distribution ([25])

The need for a solution of above-mentioned drawbacks
will become even more evident in the coming years. The
costs for healthcare are increasing. In 2017 in the United
states, the healthcare costs have risen faster than the aver-
age annual income [23]. Therefore, it is important to min-
imize healthcare costs off the custom triflange-implant.
Furthermore, due to the relatively long design process for
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each cup, it can take several weeks before the implant
is ready for surgery. Finally, if the custom triflange cup
indeed causes more stress-shielding, implants could last
even less than the expected 15 years, as a result of bone-
loss. With the increasing life-expectancy of patients, it is
desired to increase the lifespan of the implants as well.
This will in turn minimize the amount of revision opera-
tions, which are often complicated and pose high risk to
the patient [24].

2: Objective
The main objective of this study is to improve the above-
mentioned disadvantages of the custom triflange acetabu-
lar implant. This objective can be split up in several sub-
objectives:

1. Develop a statistical shape model (SSM) of the
healthy and defect pelvis: A statistical shape model
is an analysis of geometrical properties of a shape
by statistical methods. Developing a SSM of the
pelvis can result in finding certain patterns among
the acetabular defects, which could minimize the
need for customization (and thus costs). This SSM
is also used to generate pelvis-shapes for the finite
element model (as highlighted in the next paragraph).

2. Develop a finite element model (FEM) of the pelvis
with both the standard cup and the custom tri-
flange cup: FEM uses partial and differential equa-
tions to solve amongst others stresses and strains.
This can be used to study the differences in strains
in the pelvis with the two types of implants, to test
the hypothesis of increased stress-shielding with the
triflange implant.

3. Implement a bone-remodelling in the FE-model
A bone-remodelling algorithm can alter the bone-
mineral density (BMD) of the pelvis based on the
received strains. This allows exact quantification of
the difference in stress-shielding between both im-
plants.

4. Validate the concept of a deformable implant as
an alternative to the custom triflange implant: A
model of a deformable acetabular implant with a de-
fect pelvis is developed to check if this design can
solve the issues that occur with the custom triflange
implant.

3: Method
The method is split-up into four main-parts, namely:

• The development of the Statistical Shape Model.

• The development of the finite element model (FEM)
of the healthy pelvis

• The development of the finite element model of the
defect pelvis (with the deformable implant)

• The implementation of the bone-remodelling-algorithms.

3.1: Development of a statistical shape model
of the human hip
Healthy and damaged pelvises were acquired in order to
built two statistical shape models (SSM), one to study the
variations among the defect pelvises and one to study the
variations among the healthy pelvises. A SSM which in-
cluded both the healthy and defect pelvises was not devel-
oped since the variations between these two classes were
too large. CT-scans of healthy pelvises were obtained from
Utrecht medical center (UMC, Utrecht, the Netherlands).
In total, CT-scans from 87 individuals were available for
segmentation, which included both males and females be-
tween the age of 42 and 79 years old who still had an intact
pelvis. From the majority of the CT-scans two pelvises, the
mirrored left pelvis and the original right pelvis were se-
lected and included in the SSM. Mirroring the left pelvis
allowed the left pelvises to be compared with the right
pelvises, in order to maximize the amount of data . Some
pelvises were not included due to the presence of an im-
plant or due to a reduced quality of the scan, which eventu-
ally lead to 155 pelvises which were included in the SSM
of healthy pelvises. Defect pelvises have been obtained in
the same manner from patients with a damaged acetab-
ulum. CT-scans from defect pelvises were obtained from
the catholic university of Leuven (KU Leuven, Leuven,
Belgium). In total, 8 CT-scans from defect pelvises were
available, which after mirroring and exclusion lead to 12
defect pelvises to be included in the SSM.

3.1.1: Image segmentation

Both healthy and defect pelvises were segmented from
their corresponding CT scan by the use of the segmen-
tation software Mimics 14 (Materialise Leuven, Belgium).
Thresholding was performed by using the default Hounds-
Field units values for Bone (CT) as provided by Mim-
ics, which corresponded to values between 226 and 1799.
Morphology operations were performed to close holes in
the bone. Other bone regions connnected to the pelvis were
disconnected by erasing connecting pixels, followed by a
region-growing operation. Finally, the pelvises were smoothed
with a factor of 0.8 to eliminate sharp edges.

3.1.2: Cutting operation

Due to the fact that patient-orientations in the CT-scanner
were not identical, some pelvises contained more informa-
tion then others, as can be seen in figure 3. In order to be
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Figure 3: A difference in content between two (healthy)
pelvises, caused by nonidentical orientations of the

patients in the scanner

able to construct a SSM, this difference had to be elimi-
nated. To achieve this, a cutting operation was performed.
Since the global coordinate system was different for ev-
ery case, a cutting plane was defined based on anatomical
landmarks on the pelvis. First, three landmarks were cho-
sen to define an initial plane in 3D-space (figure 4). The

Figure 4: The initial landmarks in blue with their
corresponding plane (top) and the landmarks with their

corresponding plane after the rotation-operation (bottom).

selected landmarks were chosen in such a way that in the
majority of the pelvises these regions could be identified,
i.e. that this part of the pelvis was captured by the CT-
scanner, in order to minimize the exclusion of pelvises.
The selected landmarks consisted of the anterior inferior
iliac spines (AIIS) on both side of the pelvises and the in-
ferior pubis (INFP) [26].

In order to optimize the accuracy of the selection of
landmarks, a curvature analysis was done in Meshlab (method
= PCA)[27], as can be seen in figure 5. The selected land-
marks describe the initial plane, which is not suited for
cutting the pelvis since it will cut through the acetabulum,
an important aspect of this SSM. To solve this issue, the
plane was rotated with -96 degrees around the axis formed
between the two AIIS landmarks, see figure 4. This can be
described by a rotation matrix:

INFPnew =

R(1) +R(2) +R(3)
R(4) +R(5) +R(6)
R(7) +R(8) +R(9)

 (1)

where

R(1) =(a ∗ (v2 + w2)− u ∗ (b ∗ v + c ∗ w − u ∗ x− v∗
y − w ∗ z)) ∗ (1− cos(θ)),

R(2) =x ∗ cos(θ),
R(3) =(−c ∗ v + b ∗ w − w ∗ y + v ∗ z) ∗ sin(θ),

R(4) =(b ∗ (u2 + w2)− v ∗ (a ∗ u+ c ∗ w − u ∗ x− v∗
y − w ∗ z)) ∗ (1− cos(θ)),

R(5) =y ∗ cos(θ),
R(6) =(c ∗ u− a ∗ w + w ∗ x− u ∗ z) ∗ sin(θ)

R(7) =(c ∗ (u2 + v2)− w ∗ (a ∗ u+ b ∗ v − u ∗ x− v∗
y − w ∗ z)) ∗ (1− cos(θ)),

R(8) =z ∗ cos(theta),

R(9) =(−b ∗ u+ a ∗ v − v ∗ x+ u ∗ y) ∗ sin(θ),

θ =The angle of rotation in radians (-1.6755 radians)
a, b, c =The x,y and z-coordinate of the left AIIS landmark,

respectively
u, v, w =The x,y and z component of the vector which

represent the rotation axis (normalized), respectively
x, y, z =The x,y and z coordinate of INFP before rotation,

respectively
INFPnew =The x,y and z coordinate of the new (rotated) INFP

After the rotation-operation only the coordinates of
landmark INFP changed, since both AISS landmarks were
located on the axis of rotation. With these three landmarks,
a new plane is defined and the normal-vector is calculated.
A Matlab script (MATLAB Release 2017b, The MathWorks,
Inc) was written to speed up the described process (Ap-
pendix A). Finally, the pelvises were cut in Blender based
on the orientation and location of the cutting plane.

3.1.3: Generating the reference shape

To be able to compare and align the cut pelvises, a refer-
ence shape has to be selected. Once this reference shape
has been defined, the alignment and registration processes
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Figure 5: A curvature analysis to increase the accuracy of
hand-picking landmarks.

can start. However, if one pelvis is selected as the ref-
erence shape, bias towards this selection could be intro-
duced. To prevent this bias, a method is used where the ref-
erence shape is formed based on multiple iterations[28], as
can be seen in figure 6. Initially, one of the training sam-
ples is chosen as the reference shape. Next, a small portion
of the samples is selected and the SSM is built. The mean
of the generated model is selected as the reference shape
for the next step. This process is repeated until the differ-
ence between the reference shape from the previous step
and the new generated reference shape is smaller than a
predefined value, i.e. a steady state has been reached. Once
this criteria has been met, this final reference shape is used
during the building of the SSM.

3.1.4: Alignment of the samples

Due to the different orientations of the pelvises in the CT-
scanner, variations in translation and rotation had to be
eliminated in order to be able to determine the variance
in shape and size. This objective can be described by a
minimization problem, namely minimizing the distance
between the generated reference shape and each sample.
To do so, samples were first aligned by hand-picked land-
marks, both on the reference shape and the new sample.
For this procedure, a minimum of three landmarks is re-
quired to define the orientation in 3D-space. However, four
landmarks were selected to minimize the error as a result
of visual handpicking of the landmarks. The selected land-
marks included the caudal margin of the pubic symphysis,
the cranial margin of the pubic symphysis, the point along
the obturator margin at the minimum breadth of the is-
chium and the most cranial point on the acetabular rim
adjacent to the lateral iliac border [29]. This first step is
done in Meshlab, where the total euclidean distance be-
tween every landmark on the new sample and their cor-
responding landmark on the reference is minimized. Af-
ter the pre-allignment has been completed for every sam-
ple, alignment is performed based on uniformly selected
points from the mesh cloud. Each point on the new sam-
ple is associated with the closest point on the reference

shape. By applying both rotation and translation the new
sample is transformed, according to the Procrustes analy-
sis [30]. Multiple iterations are performed, until the differ-
ence between the new sample and the reference does not
decrease anymore. After the alignment-phase, it was evi-
dent that there was still variation between pelvises at the
location of the cut. This is most likely caused by minor
errors while picking the landmarks for the cutting plane.
In order to prevent modes of deviation at the cutting area,
one final cut was made through all the aligned pelvises at
the same coordinates in 3D-space.

3.1.5: Registration

The process of registration consists of registering corre-
sponding points between the reference shape and the sam-
ples. This can be described by a deformation process be-
tween the reference shape and the samples. Based on these
deformations (which are modelled as a Gaussian Proces)
an optimization problem can be defined [31]:

u = argµεFminD[ΓD, IT , u] + µR(u) (2)

Here ΓD represent the reference surface, IT describes the
sample image and u is the transformation from the refer-
ence surface to the sample surface as a result of deforma-
tions F . Finally, R is a regularizer and D is a similarity
transform.

3.1.6: Model evaluation

The principal component analysis [32] can now be used to
define the main shape variations. From the covariance ma-
trix, the eigenvectors and eigenvalues can be calculated,
which correspond to the modes of variations and the amount
of variance of these modes respectively. With this model,
it is possible to describe in theory every shape with:

x = x+ Φb (3)

Here, the shape of a pelvis x can be described by the mean
shape of the pelvises (x) plus the eigenvector matrix (Φ)
multiplied with the vector of shape parameters (b).

To evaluate the accuracy of the model, the following
aspects were calculated:

1. Model generality: How well can the model predict
a pelvis which was not included in the training set.
This is evaluated by leaving one pelvis out of the
training and use that as input for the model [33].
The squared error between this output (Xi) and the
actual pelvis (X ′i) is then calculated:

G(M) =
1

n

n∑
i=1

|Xi(M)−X ′i|2 (4)
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2. Model specificity: To what extent is the output (Xi)
similar to the samples in the training set (X ′i) [28]:

S(M) =
1

n

n∑
i=1

|Xi(M)−X ′i|2 (5)

Figure 6: The iterative procedure to select the reference
shape of the SSM

3.2: Development of the Finite Element Model
for the healthy pelvis
To study the effect of several implant-designs on the stress
distribution in the pelvis, a finite element model was de-
veloped in Abaqus. First, a standard analysis was run with
a single loading-step, to get an idea on the load distribution
in every case. Next, two bone remodelling algorithm were
derived, validated and implemented to study the BMD af-
ter +- 1 year. This gives a indication of the relative stress-
shielding between implants.

The healthy pelvis is analysed without implant, with a
standard implant and with a custom-triflange implant.

3.2.1: Development of the FE components

A pelvis with an average shape was taken from the avail-
able samples. The first step was to ream the acetabulum
by means of a virutal surgery. This was done in order to
mimic the reality, where a portion of the cortical bone
in the acetabulum is removed during preparation for the
implant. This can have a significant effect on the stress-
distribution. A approach was followed where boolean op-
erations between a sphere and the pelvis (substraction of
the sphere from the pelvis) were performed. Reaming was
sequentially increased by 1mm untill the cancellous bone
was visible [36] [37].

A standard hemispherical cup was modelled with a di-
ameter equivalent to the final reaming size (58mm) and
with a thickness of 4mm [38]. The custom triflange im-
plant was modelled by adding 3 customized flanges to
this cup in 3Matic (Materialise Leuven, Belgium). Models
with added liner and femoral head were also developed, to

study the effect of these components. The liner was mod-
elled as a hemisphere with an outside diameter equiva-
lent to the inner diameter of the cup and with a thickness
of 6mm [39]. The femoral head was then modelled as a
sphere flattened on one side, with a diameter equivalent
the the inner diameter of the liner.

3.2.2: Material parameters

Components of the implant were modelled with homo-
geneous, linear-elastic and isotropic material properties.
The bone of the pelvis was modelled as heterogeneous,
linear-elastic and isotropic. The Young’s-modulus for cor-
tical bone (E > 13028) is defined as [40]:

E = 23440 ∗ (1− p)5.74 (6)

In addition, this relation can be formed for cancellous
bone (E < 13028) [40]:

E = 14927 ∗ (1− p)1.33 (7)

Here, p represents the porosity of bone (a value be-
tween 0 and 1) and E represents the Young’s modulus in
Mpa. This porosity is defined as [41]:

p =
BMD −BMDmax

Pv −BMDmax
(8)

Here, p represents the bone-porosity (between 0 and
1), BMD is the bone mineral density (g/cm3), BMDmax is
the maximum bone mineral density (g/cm3) and Pv is the
density of the voids (g/cm3). The chosen value for Pv is
0. The remaining variables are defined as [42]:

BMD = 0.001 ∗HU (9)

BMDmax = 0.001 ∗HUmax (10)

Here, HU and HUmax represent the measured Hounds-
field Unit for each pixel and the maximum Houndsfield
unit measured in the CT-scan respectively. These values
can be determined directly from Mimics.

Material constants for the cup were derived by taking
the average of multiple values reported in literature [43,
44, 45, 46, 47, 48, 49, 50, 51]. The same was done for
the liner [43, 52, 53, 54, 55, 56, 57] and the femoral head
[55, 56]. Computed values can be seen in table 1.

3.2.3: External loads

To study the stress distribution in the pelvis, three loading
scenarios were included in the model. To be able to pre-
dict bone remodelling in an accurate manner, it is neces-
sary to include both high-magnitude forces with a low fre-
quency and low-magnitude forces with a high frequency
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Table 1: Material properties of the Finitie
Element-components

Component Material
used

Youngs
Modulus
(Mpa)

Possion’s
ratio [-]

Density
(g/cmˆ3)

Cup Titanium 110,000 0.3 4.43
Liner UHMWPE 1,200 0.4 0.93

Femur
Cobalt-
chrome

420,000 0.3 8.5

Pelvis Bone
Based on
uquation

0.3
Based on
equation

[47].With this in mind, the chosen loading scenarios in-
cluded walking, stair-climbing and stumbling. To imple-
ment a bone remodelling-algorithm, it is therefore neces-
sary to determine both the magnitude and the frequency
of each load. For the walking scenario, the magnitude is
based on a low-magnitude force occurring during the walk-
ing cycle, which is measured with instrumented implants
[58]. The same is done for stair-climbing and stumbling
[59]. The amount of cycles for each loading scenario is
adapted from literature [60]. The magnitude and frequency
of each scenario can be seen in table 2. Forces were ap-
plied to the acetabulum as a evenly distributed static pres-
sure, with the direction orthogonal to the surface. For the
cases with implants, the load was applied in the same man-
ner, except the load was applied to the titanium cup. The
chosen surface for the pressure consisted out of the area
which was in contact with the femoral head for load trans-
mission. This contact area was different for each scenario.
An estimation of the contact area for each scenario was
made based on literature [61]. The chosen areas can be
seen in figure 7.

In addition to the hip contact forces, muscle forces
were also included in the model. It was evident that with-
out muscle forces the predicted BMD’s after bone remod-
elling were too high, as a result of absence of strain in
certain areas. Therefore 20 muscle forces were included
in the bone-remodelling model, as can be seen in table
3. The magnitude of muscle forces during walking were
taken from literature [63]. The direction and attachment
site of each muscle was determined by studying the mus-
cle fiber direction and attachment area at Biodigital [62],
as can be seen in figure 8. Since limited data on mus-
cle forces during stair-climbing and stumbling was avail-
able, it was assumed that the muscle-forces increased re-
spectively with a factor 3 and 8 with respect to walking-
scenario. This assumption was made based on the some-
what similair scale for the acetabular forces occuring dur-
ing the different scenarios. It should be noted that muscle
forces are only included in the bone-remodelling model
and not in the single-load cases.

Table 2: Magnitude and frequency of forces for each
loading scenario

Scenario Magnitude of force (N) Frequency (cycles/day)

Walking 625 3000
Stair-climbing 1876 112
Stumbling 5000 1

Table 3: Magnitude of muscle forces during walking.
Magnitudes of the resulting and directional forces are
shown, both for the total muscle force and the muscle

force per node.

Muscle
Muscle force
total and per
node

Total force
split-up in
3 directions

Node force
split-up in
3 directions

Gluteus
medius

Total: 600N
189 nodes
3.16N/node

x: 424 N
y: 0 N
z: -424 N

x: 2.2 N
y: 0 N
z: -2.2 N

Gluteus
minimus

Total: 60N
30 nodes
2N/node

x: 42 N
y: 0 N
z: -42 N

x: 1.4 N
y: 0 N
z: -1.4 N

Tensor
fascia
latea

Total: 150N
25 nodes
6N/node

x: 60 N
y: 60 N
z: -125 N

x: 2.4 N
y: 2.4 N
z: -5 N

Iliacus
Total: 300N
121 nodes
2.4N/node

x: -150 N
y: -150 N
z: -125 N

x: -1.2 N
y: -1.2 N
z: -1.8 N

Psoas
minor

Total: 300N
52 nodes
6N/node

x: 0 N
y: -120 N
z: 280 N

x: 0 N
y: -2.4 N
z: 5.6 N

Gracilis
Total: 150N
52 nodes
3N/node

x: 0 N
y: 32 N
z: -160 N

x: 0 N
y: 0.6 N
z: -3 N

Sartorius
Total: 150N
37 nodes
4N/node

x: -75 N
y: -30 N
z: -127.6 N

x: -2 N
y: -0.8 N
z: -3.4 N

Semi-
membranosus

Total: 60N
189 nodes
3.2N/node

x: 42 N
y: 0 N
z: -42 N

x: 1.4 N
y: 0 N
z: -1.4N

Semi-
tendinosus

Total: 400N
75 nodes
5.2N/node

x: 0 N
y: 0 N
z: -400 N

x: 0 N
y: 0 N
z: -5.2 N

Biceps femoris
longus

Total: 200N
36 nodes
5.6N/node

x: 0 N
y: 0 N
z: -200 N

x: 0 N
y: 0 N
z: -5.6 N

Adductor longus
Total: 150N
49 nodes
3N/node

x: 0 N
y: -40 N
z: -150 N

x: 0 N
y: -0.8 N
z: 3 N

Adductor magnus
Total:250N
84 nodes
3N/node

x:0 N
y: 0 N
z: -250 N

x: 0 N
y: 0 N
z: -3 N

Adductor brevis
Total: 200N
35 nodes
6N/node

x: 0 N
y: 140 N
z: -140 N

x: 0 N
y: 4.2 N
z: -4.2 N

Obturator
externus

Total: 200N
109 nodes
2N/node

x: 42 N
y: 0 N
z: -42 N

x: 1.4 N
y: 1.4 N
z: 0 N

Pectineus
Total: 200N
78 nodes
2.6N/node

x: 138 N
y: 0 N
z: -132 N

x: 1.8 N
y: 0 N
z: -2 N

Obturator
internus

Total: 150N
70 nodes
2N/node

x: 100 N
y: 100 N
z: 0 N

x: 1 N
y: 1 N
z: 0 N

Quadratus
femoris

Total: 200N
51 nodes
4N/node

x: 200 N
y: 0 N
z: 0 N

x: 4 N
y: 0 N
z: 0 N

Superior
gemellus

Total: 150N
31 nodes
6N/node

x: 150 N
y: 0 N
z: 0 N

x: 6 N
y: 0 N
z: 0 N

Inferior
gemellus

Total: 150N
31 nodes
6N/node

x: 150 N
y: 0 N
z: 0 N

x: 6 N
y: 0 N
z: 0 N

Rectus femoris
Total: 200N
40 nodes
5N/node

x: 0 N
y: 0 N
z: -200 N

x: 0 N
y: 0 N
z: -5 N
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Figure 7: The area of the applied pressure in the
acetabulum. Purple = area for walking, Red = area for

stair-climbing and Orange = area for stumbling

Figure 8: Anatomy study to determine the muscle fiber
direction and attachment area. Images used from

biodigital [62]

3.2.4: Meshing the model

To determine the optimal amount of elements for the model,
multiple iterations were performed by changing the ele-
ment size, with the objective to minimize the amount of

distorted elements. Due to the fact that the material prop-
erties of the pelvis depended on the Houndsfield-unit, the
pelvis had to be meshed in 3-Matic and exported as an
orphan-mesh to Abaqus. This allowed only the use of tet4
and tet10 elements, which are first-order tetahedral ele-
ments. It is shown that for these type of simulations, it
is better to use hexagonal elements in combination with a
quadratic formulation, to prevent locking [64]. Since chang-
ing the element type was not an option, the mesh of the
pelvis was refined. Although it is more effective to in-
crease the order of the mesh rather than refining the mesh
[64], it was found that with the refined mesh it was possi-
ble to obtain accurate results.

Both the standard hemispherical cup and the triflange
cup were meshed in the same manner as the pelvis. The
mesh for these components was even finer, which is a re-
quirement for the master-slave interface between the pelvis
and the implant, as highlighted in the next section. An
overview of the amount of nodes and elements for each
component is given in table 4. From the 125.592 elements
on the pelvis, 6858 (5,5%) were distorted. In total, the
FE-model consisted out of 644.172 elements and 669.577
nodes.

Table 4: Mesh-attributes of the FE-model

Component Type of
elements

Amount
of elements

Amount of
nodes

Pelvis
C3D4 (first-
order tet)

125.592 33.360

Hemispherical
cup

C3D4 (first-
order tet)

248.134 45.679

Triflange
cup

C3D4 (first-
order tet)

64.328 19.824

Liner
C310M (quad-
dratic tet)

115.059 170.641

Femoral head
C310M (quad-
dratic tet)

91.059 400.073

Total - 644.172 669.577

3.2.5: Boundary and interface conditions

To fix the model in 3D-space, boundary conditions are
required that prevent translation and rotation. To mimic
the reality, two boundary conditions were applied to the
pelvis, which both use the encastre formulation (U1 = U2
= U3 = UR1 = UR2 = UR3 = 0), which prevent rota-
tion and translation in every direction. The first boundary
condition acted on the pubic symphysis, while the second
acted on the cutting area near the sacroiliac joint [52].

In addition to the fixation of the pelvis, interface con-
ditions need to be defined between the components of the
model. Three interfaces can be indetified, namely:
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• The bone-implant interface

• The implant-liner interface

• The liner-femoral head interface

Two scenarios were evaluated, one case with all in-
terfaces glued [43] together and one case where all inter-
faces are node-tyed [56]. This is done in order to deter-
mine which scenario gives a more realistic result.

3.3: Development of the Finite Element Model
for the defect pelvis
A FE-model of a defect pelvis was developed to study the
potential of a deformable implant. First, a 3D model was
evaluated with an implant which had the exact shape of
the defect, to study the stress-shielding effects compared
to the triflange-implant. This was done by the use of the
bone-remodelling algorithms. Next, a 2D model was built
to determine if it is achievable to acquire this level of de-
formation with the deformable implant.

3.3.1: Development of the FE components

The defect pelvis was acquired by taking the average healthy
pelvis and applying the defects from the statistical shape
model of the defect pelvis. The stress-shielding of this
defect pelvis was determined with both the triflange and
the deformed implant by using the bone-remodelling algo-
ritms. Both implants were developed with computer-aided
design. The defect pelvis with the defect-shaped implant
can be seen in figure 9.

Figure 9: The damaged pelvis and the defect-shaped
implant

Next, to determine if this amount of deformation can
be acquired with the deformable cup, several deformable
acetabular cups were developed, which were pressed into
multiple damaged pelvises. The deformable cup was mod-
elled as a 2mm solid titanium layer on the inside with a
unit cell structure-layer on the outside (rhombic dodeca-
hedron unit-cells with 90% porosity). To reduce compu-
tational power, this unite-cell structure was modelled as
a solid section with material properties of the unit-cell (

figure 10). The interference fit (the difference in radius
between the acetabulum and the acetabular cup) and the
thickness of the unit-cell layer were varied. Cups with
a thickness of 9, 12 and 15mm and a interference-fit of
0,1,2 and 3mm were evaluated. Combining these param-
eters resulted in 12 different designs for the deformable
cup. These cups were pressed into pelvises with different
types of defects. The procedure of pressing the cups in-
wards was performed by an undeformable hammer.

Figure 10: The actual implant design for the deformable
cup (left) and the simplification (right). Grey displays the

stiff titanium and blue the porous deformable part.

The parameters in the next sections describe the prop-
erties of the deformable cup-model. The model-parameters
of the defect-shaped implant are identical to the model-
properties of the healthy pelvis.

3.3.2: Material parameters

For the model with the deformable cup, the solid layer was
modelled as titanium (table 1). The rhombic dodecahedron
unit-cell layer material-properties were based on experi-
mental results (figure 11), which defined both elasticity
(E=114 Mpa) and plasticity. The Poisson’s ratio from the
experimental results was higher than the theoretical value
of 0.45/0.5, due to the printing process. In the FE-model,
this maximum theoretical value was used nevertheless.

Figure 11: Experimental material properties for the
porous structure

3.3.3: External loads

The deformable cups were pressed into the acetabulum
based on four displacement-based loads. The amount of
displacement increased with each load, resulting in dis-
placements of 9, 10, 11 and 12mm. This approach is simi-
lar to the procedure for pressing in standard hemispherical
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cups (figure12 [65]). Note that in this study increased dis-
placement is used instead of increasing force.

Figure 12: Four increasing loads are used to hammer the
acetabular cup into the pelvis [65]

3.3.4: Meshing the model

The components are meshed with 2D-elements. The spec-
ification and amount of elements for each components are
displayed in table 5.

Table 5: Mesh-attributes of the deformable cup FE-model

Component Type of
elements

Amount
of elements

Amount of
nodes

Pelvis
R2D2 (Linear-
line)

222 224

Deformable
cup

CPS4R (quad-
rilateral)

7.772 8.070

Hammer
R2D2 (Linear-
line)

333 332

Total - 8.327 8.626

3.3.5: Boundary and interface conditions

The pelvis was fixated on the whole outer surface, which
prevented movement in all directions. The same boundary
condition applied to the hammer, except that movement in
the y-direction was allowed. The cup was unconstrained
and was free to move in all direction. However, a friction-
based interaction property was defined between the cup
and the pelvis, with a friction coefficient of µ = 0.3.

3.3.6: Performance evaluation

To asses the feasibility of the deformable cup, four vari-
ables are measured for each design, namely:

• The gap distance, Gd: The remaining distance be-
tween the deformed cup and the pelvis after the 4th
loading cycle measures how well the implant is de-
formed into the defect.

• The pull-out force, Fo: The force required to pull
the implant out of the acetabulum is an indication of
the implant stability.

• The stress at the bone-interface, Sb: The stress
at the acetabulum should be minimized in order to
prevent further bone damage.

• The push-in force, Fi: The force required to push
the implant in the acetabulum. It is desired to keep
this as low as possible to allow convenient surgery.

Based on these parameters, a performance function
can be constructed. It can be seen that all above-mentioned
variables should be minimized, except for Fo. This perfor-
mance function can then be formulated as:

P = a∗(1−Gd)+b∗Fo+c∗(1−Sb)+d∗(1−Fi) (11)

Here, Gd, Fo, Sb and Fi are the above-described pa-
rameters, divided by the maximum value found, resulting
in values between 0 and 1. The parameters a, b, c and d are
relative weighting scores, equal to 0.4, 0.3, 0.2 and 0.1 re-
spectively. This results in a performance P, which can take
values between 0 (poor) and 1 (excellent).

Finally, the damaged pelvises are categorized based on
the size and shape of the defects. A machine learning al-
gorithm is trained that can predict which deformable cup
is most suitable for each pelvis, based on the defects. A
Nearest neighbour predictor is used with the amount of
neighbours n=1. The defect pelvises are classified based
on the largest depth (D)/Length (L) ratio of the defect and
the horizontal overlay (Oh), see figure 13. The horizontal
overlay is defined as the summed gap depth in the hor-
izontal direction, which prevents the cup from springing
back after deformation. The training and test set size for
the machine-learning algorithm is 18 and 3 respectively.

Figure 13: Classification of bone defects
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3.4: The development of the bone-adaptation
model
To predict the amount of stress-shielding with the differ-
ent implant-designs, two bone-remodelling algorithms are
implemented. The algorithms adapt the Young’s modulus
of the pelvis based on the strain in each element.

3.4.1: Implementation of the bone-adaptions models

Since the bone-remodelling algorithms adapt the Young’s
modulus, while the objective is to derive the BMD, a rela-
tion between these variables is needed. For this, the equa-
tions as specified in the material parameters section are
used. Combining these equations and filling in the param-
eters gives the final relation between Young’s modulus and
BMD for cortical bone (E > 13028):

BMD = 0.8 +
E

(
1

5.74
)

23440
(

1

5.74
)

∗ −0.8 (12)

and for cancellous bone (E < 13028):

BMD = 0.8 +
E

(
1

1.33
)

14927
(

1

1.33
)

∗ −0.8 (13)

Here,E represents the Young’s modulus (Mpa) andBMD
the bone-mineral-density (g/cm3). In this study two bone-
remodelling algorithms are implemented, each with a dif-
ferent concept. The first model (model A) utilizes a rel-
atively simple concept.The equations of this model are
adapted from literature [66]. A stimulus signal (w) is de-
fined as a function of strain and loading rate (lr, amount of
loading cycles per day (frequency)):

w = rl ∗ strainm (14)

Here, m is a variable determining the relative weight-
ing between loading rate and strain. The total stimulus sig-
nal is determined by summing the stimulus signals from
every load case (walking, stumbling and stair-climbing). If
the stimulus signal is higher than the equilibrium-stimulus,
the Young’s-modulus increases linearly. This continues un-
til a Youngs-modulus is reached which produces a stimu-
lus signal equal to the equilibirum-stimulus and a steady-
state is reached (i.e. the stimulus signal lies within the
”deadzone”). The opposite occurs when the stimulus sig-
nal is lower than the equilibrium stimulus. This concept
is shown in figure 14. An overview of the model can be
seen in figure 15, with parameter values shown in table 6.
The model is implemented in FORTRAN as an UMAT-
subroutine (User-Defined-Material-Model) which is then
linked to Abaqus. The UMAT-subroutine of model A can
be found in appendix B.

Figure 14: Concept of the first bone remodelling
algorithm (model A). Image adapted from literature [67]

Table 6: Parameters used in bone-remodelling model A

Parameter Symbol Value

Loading rate stair-climbing rl1 300

Loading rate stumbling rl2 1

Loading rate walking rl3 3000

Relative strain weight m 4 [66]

Time-step (effects value of B) dt 8

Remodelling coefficient (1 day)
Remodelling coefficient (8 days)

B
B

50.000 [66]
400.000

Width of lazy zone (one-sided) s 0.00025

Equilibirum stimulus wzero 0.0025

The second bone-remodelling model (model B) relies
on a more complex principle which involves additional
remodelling processes compared to model A. The equa-
tions for model B are adapted from literature [68]. Just
like model A, model B also decreases the Young’s modu-
lus when the strain stimulus is below an equilibrium stim-
ulus. However, there are two major differences between
the models, namely:

• Damage: Whereas model A shows an increase in
Young’s modulus when the stimulus signal is far
above the equilibirum stimulus, model B introduces
a decrease in Young’s modulus due to damage. This
damage-induced decrease in Young’s modulus in-
creases proportionally with the difference between
the stimulus and the equilibrium stimulus.

• Activation frequency: The stimulus signal in model
B is also dependent on the strain. However, also
other factors effect the stimulus signal, namely the
amount of bone-resorbing/bone-refilling cells and
the amount of bone which is formed/absorbed per
cell. These factors in turn depend on the strain and
which phase of the remodelling cycle is currently
active (refilling/resorbing/reversal phase). Therefore,
model B mimics the underlying principle of the bone.
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Figure 15: Bone remodelling model A

An overview of model B can be seen in figure 16, 17
and 18. Due to complexity the overview is split-up
in 3 images. C1 and C2 show the cuts of the model,
i.e. the regions where the separate images are con-
nected to each other. Again, a FORTRAN subrou-
tine was written and implemented in the Abaqus
model by linking. The FORTRAN file of model B
can be found in appendix C. The parameter values
of model B can be seen in table 7, 8 and 9. Table 7
shows the state variables (which change every iter-
ation/step), table 8 shows constant variables, which
remain unchanged in every step and table 9 shows
variables which directly on the Young’s modulus.
Parameter values were adapted from literature [68],

although several changes where necessary due to
different subjects and environments. Loading rates
were changed in order to mimic the chosen load-
ing scenarios. Additionally, a time increment of 8
days was chosen to minimize simulation time. The
equilibrium-stimulus was determined by trial and
error.

Figure 16: Bone remodelling model B, part 1: The
remodelling section

Both models are evaluated to give insight in the per-
formance of bone-density prediction models and to see
what the advantages/disadvantages are of using a complex
model over a relatively simple model. In addition, model
B is included since it takes into account a damage factor.
It is expected that implants will not only result in areas
which are insufficiently loaded, but also in areas which
will experience higher loads than without implants, due to
the uneven stress distribution. By taking the damage fac-
tor into account, this decrease in Young’s modulus due to
high loading-patterns can be studied.
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Figure 17: Bone remodelling model B, part 2: The
removal and addition of bone

Figure 18: Bone remodelling model B, part 3: The
activation frequency is calculated

Table 7: State variables of model B, which change every
step

Parameter Symbol Initial value

Porosity p 0.044321 [-]

Strain during stair-
climbing

e1 0 [-]

Strain during stumbling e2 0 [-]

Strain during walking e3 0 [-]

Mechanical stimulus Phi 0 [strain/day]

Damage D 0.366 [mm/mm2 ]

Amount of bone-
forming cells

nf fa0*tf [-]

Amount of bone-
removing cells

nr fa0*tr [-]

Activation frequency fa 0.00670 [BMU/
mm2 /day]

Activation frequency
of the past days

fa-past -

Table 8: Constant parameters of model B, do not change
each step

Parameter Symbol Value

Loading-rate stair-climbing rl1 300 [-]

Loading-rate stumbling rl2 1 [-]

Loading-rate walking rl3 3000 [-]

Damage removal specifity factor fs 5 [-]

Time step dt 8 [days/step]

Maximum activation frequency famax1 0.50 [BMU/mm2 /day]

Maximum activation frequency
for disuse famax2 1.15 [BMU/mm2 /day]

Maximum specific surface area samax 4.1905 [-]

Activation frequency at equilibrium fa0 0.00670 [BMU/mm2 /day]

Radius for area calculation rc 0.095 [mm]

Radius for area calculation rh 0.020 [mm]

Damage rate exponent q 4 [-]

Damage in equilibirum D0 0.0366294 [mm/mm2 ]

Damage rate coefficient Kd 1088 [mm/mm2 ]

Activation frequency dose-response
coefficient Kr -1.6 [-]

Activation frequency dose-response
coefficient Kb 65Eˆ9 [-]

Activation frequency dose-response
coefficient Kc 16E-9 [-]

Duration of resorptive phase of
the remodelling cycle tr 3 [days]

Duration of reversal phase of
the remodelling cycle ti 1 [days]

Duration of refilling phase of
the remodelling cycle tf 8 [days]

Total time of the remodelling cycle trif 12 [days]

Equilibirum stimulus Phi0 32E-9 [-]

Initial porosity Phc 0.04432 [-]
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Table 9: Parameters of model B which depend on the
Young’s modulus/porosity

Dependent
variable Symbol Value

Young’s modulus E
- depends on E,
see overview-

Specific surface area Sa
Sa = ((((28.8*p-101)*p+134)
*p-93.9)*p+32.3)*p [-]

Area for bone-
formation/absorption Area1

Area1 = π ∗ rh2IFp<0.20

Area1 = 0.5 * π ∗ rc2IFp>0.20

Area for bone-
formation/absorption Area2

Area2 = π ∗ (rc2 − rh2)IFp<0.20

Area2 = 0.5 * π ∗ rc2IFp>0.20

4.1.2: Modification of bone-remodelling model B

Model B utilises a remodelling algorithm which mimics
the complex underlying principle of bone. However, the
properties of each element are only determined by the stim-
ulus signal for that particular element. It is expected that
bone properties are influenced by multiple sensors (osteo-
cytes), where sensors that are closer contribute more than
sensors which are far away [69]. To implement this in the
model, the stimulus signal of the surrounding elements are
taken into account. The amount of surrounding elements
that contribute is determined by k1 and k2 for a 2D exam-
ple (figure 19).

Figure 19: The stimulus signals (grey) that contribute to
the adaptation of the blue element is determined by the

k-values

In 3D, the scenario can be expanded with one extra
parameter, k3. In this study, k1, k2 and k3 are identical,
to obtain a square surrounding box. Once the contributing
elements have been selected (by choosing k1,k2 and k3),
the amount of contribution of each element is determined
by following an exponentially decaying function with in-
creasing distance [70]. This amount of contribution can be
calculated with:

Ci(x) = e−d(x)/D (15)

Here, C represents the contribution of element i to a cer-
tain location x, d is the distance between the element and
this location and D determines the rate of spatial decay.

The distance between each element and the location is
measured as the euclidean distance:

d(x) =
√
k12 + k22 (16)

It should be noted that with a finer mesh, the actual dis-
tance (in mm) decreases if the k-values remain constant,
since k1 and k2 are defined in terms of amount of ele-
ments. To account for this effect, the k-values are scaled
with a factor which depends on the mesh refinement.

In theory, the rate of spatial decay could be chosen in
such a way that all elements will contribute to a certain
location, with the elements the furthest away contributing
for a very small negligible amount. However, including
all elements for every location will result in larger compu-
tational time, since every stimulus signal will consist out
of thousands of values. Looping over all of these values
results in longer simulations and is not preferred. There-
fore, the approach of selecting elements with k1, k2 and
k3 is combined with the equation of spatial decay: The
amount of elements that are contributing are determined
based on the k-values. Of these contributing elements, the
equation of spatial decay is applied. Note that this is only
done for bone-remodelling model B. For model A, the
change in properties is only determined by the stimulus
signal of that particular element. This is done in order to
keep model A relatively simple, to allow studying the dif-
ferences between a simple and complex bone-remodelling
model. The optimal values of k are determined during the
validation step, as highlighted in the next section.

4.1.3: Validation of the bone-remodelling models

In order to determine how well the models predict the
BMD-values of the bone, two validation steps are per-
formed: (1) Comparing model-predictions with real val-
ues (from Mimics) and (2) comparing model-results with
other bone-remodelling models from literature.

For the first validation, real BMD-values from the pelvis
are extracted from Mimics at multiple locations. BMD-
values are calculated by using the Houndsfield Unit from
Mimics [40]:

Papp = 0.001 ∗HU (17)

Here, HU represents the grey-value which can be ob-
tained from Mimics. To obtain the BMD-values of the
model, a homogeneous initial Young’s modulus of 18070
Mpa is applied to the pelvic FE-model without implant.
The bone-remodelling algorithm is run until a steady-state
has been reached, i.e. the change in BMD is less than 0.05
over a time-span of 20 days. Then, the BMD-values of
the model and the real values are compared and an error-
function can be defined:

Err =

n∑
i=1

|BMDreal −BMDpred| (18)

Here, Err is the total error between the model predic-
tion and the actual values, i is the element number and
BMDpred and BMDreal are the predicted and real BMD-
values of the pelvic bone respectively. The objective is to
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minimize this error function. This is done by running mul-
tiple bone remodelling simulations with different values
for the equilibrium stimulus. By trial and error, the opti-
mal value is then found.

The second validation consists of running the models
on a simple 2D square. Then, the patterns are compared
to a bone-remodelling model which is trained with neural
networks with a forward approach [71]. This model has
high correlations with the reality. Consequently, if in this
study similair BMD-patterns are found, it is an indication
of good performance. To do so, two types of loadings are
used, which is similair to the method of the model from lit-
erature (figure 20). The magnitudes of the forces are iden-
tical aswell and are specified in table 10.

Figure 20: A simple 2D square is subjected to two loads
and the BMD is altered with the bone-remodelling

algoirthms

Table 10: Values for the forces during the second
validation

Fl F2 F3 F4 F5 T

Force (N/mm2) 4.8 4.6 2.4 3.0 10 3.5

The parameters of both models are varied and by trial
and error the optimal values are found during these valida-
tion steps. These optimal values are then used in the other
simulations.

4: Results
Results are split-up in 5 sections, namely:

• Results from the statistical shape model.

• Results of the healthy pelvis FE-model for the single-
step load cases.

• Results of the validation of the bone-remodelling al-
gorithms.

• Results of pelvis BMD-values with the standard, tri-
flange and deformed implant after bone remodelling.

• Results of the deformable implant.

4.1: Results from the Statistical shape model
(SSM)
This section displays the main modes of deviation for both
the statistical shape model of the healthy pelvises and the
defect pelvises. In addition, performance of the models is
shown to asses the quality of the model-predictions.

4.1.1: The SSM of the healthy pelvises

For the healthy pelvises a total of 154 deviation-modes
were found. However, the majority of these modes de-
scribe minor differences (such as small pits and bumps at
the surface), which are not considered as a mode of inter-
est. The modes were ranked from high to low, based on
amount of deviation. The six main modes are considered
here for analysis, which are displayed in figure 21. The
first and third column show the pelvis shape for -3 and +3
times the standard deviation respectively (-3 SD and +3
SD). The column in between shows the mean shape of the
pelvis. Red arrows describe the major differences between
the 2 extreme shapes. In addition, the deformation-vectors
are calculated for each mode and shown in the last column.
These vectors are calculated by subtracting every cloud
point of the -3 SD shape from the corresponding cloud
point on the +3 SD shape. As a result, 2 points which are
far apart (large deformation) result in a large vector. These
vectors are then coloured based on size, where red shows
the largest vectors.

The fist mode displays the deviation around the pu-
bic symphysis and the pubic arch. The distance and shape
between the obturator formamen and the pubic symph-
ysis shows a notable deviation, together with the shape
of the pubic symphysis itself. The second mode shows
the inward pulling of the ilium-body, which in turn af-
fects the anterior iliac spine and the greater sciatic notch.
Mode 3 displays the deformation of the ischial tuberos-
ity and spine. This mode can therefore affect the slender-
ness of the pelvis, giving either a more compact and short
pelvis or a more slender and long pelvis. Mode 4 displays
a somewhat similair effect for the ischial ramus. This area
can be thin and tall or more bulky and short. For mode 5,
the focus is on the anterior inferior spine. The long axis
of this spine can point more towards the medial side or
towards the lateral side. Next, mode 6 describes the devi-
ation of the superior pubic ramus. The transition from the
acetabulum can be more bulky or more smooth, which in
turn affects the thickness of the acetabular rim.

Since the acetabulum is one of the focus-points of this
study, the modes that describe the deviation at this area
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are also included, see figure 22. It should be noted that
these modes are mode 18,19 and 20. Therefore, the devia-
tion described by these modes is minimal compared to the
first six modes. The first mode of the acetabulum (mode
18) describes the deviation at the transition of the acetab-
ular fossa and the lunate surface, towards the medial site.
This transition can either be more towards the posterior
site or towards the anterior site, affecting the relative size
between the acetabular fossa and the lunate surface. Mode
19 describes an identical behaviour on the lateral side of
the acetabular fossa. Next, mode 20 describes the thick-
ness or difference in height between the lunate surface and
the acetabular fossa.

(a) -3 SD (b) Mean (c) +3 SD (d) Vectors

Figure 21: The six main modes of deformation for the
healthy pelvises

4.1.2: The SSM of the defect pelvises

For the defect pelvises, a substantial amount of deviation
was seen for the modes, see figure 23. It is expected that
these results are not very accurate due to the limitation of

(a) -3 SD (b) Mean (c) +3 SD (d) Vectors

Figure 22: The modes of deformation at the acetabulum
(mode 18,19 and 20)

samples, However, the relative deviation can give a gen-
eral idea on the shape of the defect pelvises. The first mode
describes the general orientation of the 2 defects in the
acetabulum. These can either have a horizontal or verti-
cal orientation. Mode 2 focuses on the inferior part of the
actabulum, which can either lie along the horizontal line
or can be tilted with an angle. Next, mode 3 describes the
shape of the acetabular rim at the dorsal area, which can be
either relatively straight or curved. Mode 4 represents the
defect at the ischial ramus. A notch can be found in this
area, resulting in a thinner ischial ramus which is pushed
down a little. For mode 5, the anterior inferior spine can
either have a slender shape or more bulky, which in turn
affects the acetabular rim-thickness. The last mode (mode
6) describes the degree of the acetabulum which is pushed
inwards. This in turn affects the disruption of the hemi-
spherical shape of the acetabulum.

4.1.3: Performance results

The generalization ability of the SSM for the healthy pelvis
is calculated with different amount of modes (figure 24).
It can be seen that a higher amount of modes results in a
lower error. This is due to the fact that with more modes
the statistical model is able to represent the pelvis which
was left out in a more accurate manner.

The model specificity, which measures the validity of
the constructed shapes, increases with the amount of modes
(figure 25a). The increase is relatively modest, but be-
comes more clear when averaging over neighbouring points
(figure 25b). A higher amount of modes results in shapes
which are deviating from the training shapes to a greater
extent and thus less valid shapes.
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(a) -3 SD (b) Mean (c) +3 SD (d) Vectors

Figure 23: The six main modes of deformation for the
defect pelvises

Figure 24: Generality of the SSM (healthy pelvis)

(a) Not averaged

(b) Averaged

Figure 25: Specificity of the SSM (healthy pelvis)

4.2: Results of the Healthy pelvis FE-model
for the single-step load cases
The results in this section display the stresses and strains
after a single step, i.e. a static load is used for each sce-
nario and the bone-remodelling algorithm is not applied
here.

4.2.1: Pelvis without implant

The strains and stresses for each loading case of the pelvis
without implant can be seen in figure 26. It can be seen
that the stresses and strains increase linearly with the ap-
plied pressure, e.g. a pressure with a magnitude of twice
as high results in stresses and strains twice as high. In ad-
dition, it becomes evident that during walking, the strains
are relatively evenly distributed over the acetabulum. Dur-
ing stair-climbing and stumbling, a less evenly strain dis-
tributed can be noticed, causes by the non-uniform contact
areas.

4.2.2: The standard cup

The FE-model of the standard cup was simulated with and
without the liner and femoral head. It was found that these
2 components have a minimal effect on the stress/strain-
distribution at the pelvis-cup area. In addition, it was found
that the glueing-interface resulted in unrealistic high stresses,
most likely caused by the distorted elements. These find-
ings led to the decision to perform the simulations without
the liner and femoral head and with node-tying as inter-
face condition. Figure 27 shows the stresses and strains in
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(a) Stress during walking (b) Strain during walking

(c) Stress during
stair-climbing

(d) Strain during
stair-climbing

(e) Stress during stumbling (f) Strain during stumbling

Figure 26: Stresses and strains of the pelvis (without
implant) during different loading cases

the pelvis (with standard cup implanted) during the three
different loading scenario’s. Figure 28 shows the corre-
sponding results for the standard implant. The orientations
of the cups are identical to their corresponding pelvises
in figure 27. It can be seen that the strains in the pelvis
have a lower magnitude than in the case without implant,
indicating that the standard implant shows signs of stress-
shielding. The amount of this effect can be determined by
the bone-remodelling algorithm as shown in the next sec-
tions. However, it should be noted that the strain is still
quite evenly distributed, comparable to the pelvis without
implant. The stress and strain in the implant show a sim-
ilair distribution as in the pelvis and remain far under the
damage criterion for the material.

4.2.3: The triflange cup

Similar to the pelvis with standard implant, the pelvis with
triflange implant was also modelled with and without the
liner and femoral head, In addition, the 2 interface condi-
tions (node-tying and glueing) were both evaluated. The
same results regarding the effect of these additional com-
ponents and the interface-options were found as in the
case with the standard implant. Therefore, this led to the

(a) Stress during walking (b) Strain during walking

(c) Stress during
stair-climbing

(d) Strain during
stair-climbing

(e) Stress during stumbling (f) Strain during stumbling

Figure 27: Stresses and strains of the pelvis (with
standard cup implant) during different loading cases

decision to perform the simulations without the liner and
femoral head and with node-tying as interface condition.
Figure 29 shows the stresses and strains in the pelvis (with
triflange cup implanted) during the three different loading
scenario’s. Figure 30 shows the corresponding results for
the triflange implant. The orientations of the cups are iden-
tical to their corresponding pelvises in figure 29.

Looking at the hemispherical part of the triflange im-
plant, it can be seen that the strain/stress distribution is
similair to the standard cup. The magnitude in this area is
lower for the triflange implant, which is most likely caused
by the additional flanges. High stress-concentrations are
found at these flanges, in particular the most cranial flange.
Analyzing the strains in the pelvis with triflange implant
shows that the magnitudes are lower than the pelvis with-
out implant and the pelvis with standard implant. Again,
this is an indication that more stress-shielding occurs with
the triflange implant compared to the situation without im-
plant and the standard implant. In addition to the lower
magnitude, it can be seen that the strain in the pelvis is less
evenly distributed compared to the other two scenarios.
This effect is most likely caused by the flanges, which al-
ter the natural hemispherical shape of the acetabular area.
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(a) Stress during walking (b) Strain during walking

(c) Stress during
stair-climbing

(d) Strain during
stair-climbing

(e) Stress during stumbling (f) Strain during stumbling

Figure 28: Stresses and strains of the standard cup during
different loading cases

(a) Stress during walking (b) Strain during walking

(c) Stress during
stair-climbing

(d) Strain during
stair-climbing

(e) Stress during stumbling (f) Strain during stumbling

Figure 29: Stresses and strains of the pelvis (with
triflange cup implant) during different loading cases

(a) Stress during walking (b) Strain during walking

(c) Stress during
stair-climbing

(d) Strain during
stair-climbing

(e) Stress during stumbling (f) Strain during stumbling

Figure 30: Stresses and strains of the triflange cup during
different loading cases

4.3: Validation of the bone-remodelling algo-
rithms
This sections displays the results of the two validation
steps for both bone-remodelling models, which is an in-
dication of the accuracy.

4.3.1: Comparing predictions with real values

For the first validation, the bone-remodelling algorithms
were validated by performing a simulation of a pelvis with-
out implant. An initial homogeneous Youngs’s modulus
was applied to the whole pelvis. It was found that after +-
1 year (320 days) a steady-state was reached for the BMD,
i.e. adjustments of the BMD stayed within the pre-defined
boundary ( figure 31).

Once the simulation was finished, BMD-values of the
FE-model were obtained at different z-coordinates (heights)
in the acetabulum. In addition, the acetabulum was split-
up in four slices (figure 32). In each slide, 3 evenly-spaced
BMD-values were obtained. Averaging these 3 values re-
sulted in the mean BMD of each slice at a certain height.
The percentual error of both models is constructed (fig-
ure 33). A boxplot displaying the BMD-values for both
models, together with the actual values (from Mimics) is
presented in figure 34. It can be seen that model A predicts
the BMD overall in an accurate manner, but has some ex-
treme errors for certain areas. Model B on the other hand
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Figure 31: A steady state for all elements is reached after
320 days

Figure 32: Top-view of the pelvis with the corresponding
slices with dots representing the measurement-locations

predicts the overall BMD in a more robust manner com-
pared to model A. The average percentage error for model
A and B are 14% (+-28) and 24% (+-24) respectively.

(a) Error of model A

(b) Error of model B

Figure 33: Error of both bone-remodelling models (in %)

Furthermore, it becomes evident that for slice 1 and
4 the models can calculate the BMD quite well. For slice
3, the results are less accurate but still in the same range.
For slice 2 however, both models deliver values which are

(a) Slice 1

(b) Slice 2

(c) Slice 3

(d) Slice 4

Figure 34: Boxplot of real BMD-values of the pelvis
along with the predictions of the model. *A and *B

indicate a statistical difference (p<0.05) between the real
values and predicted values from model A or B

respectively

substantially off compared to the actual values. This is es-
pecially present in the higher areas.

Overall, both models show with the selected param-
eters sufficiently accurate results. An unpaired t-test was
performed to determine if the difference between model-
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predictions and real values were statistically different. Out
of the 30 measurements, only 2 values for model A and 3
values for model B are statistically different from the real
values from Mimics (p<0.05), indicated with a star in fig-
ure 34.

4.3.2: Comparing predictions with literature

Here, the results of the 2D block model are compared with
the literature. In figure 35 , the results are shown for the
case with the most correspondece.

(a) Result from
literature [71]

(b) Result with
model A

(c) Result with
model B

Figure 35: BMD-patterns of both models compared with
literature)

For this, the chosen k-values were chosen as 20 ele-
ments. With a element size of 0.005mm, this corresponds
to k-values of 0.1mm. For model B, the value of D (which
determines the rate of spatial decay) was chosen as 0.050.
It can be seen that overall somewhat similair patterns can
be seen , with two oval areas of low BMD-values sur-
rounded by an area of higher BMD and again a low BMD
in the top-right corner. It can be seen that with lower val-
ues of D and k, less correspondence is observed (fig 36).
Note that the result of model A didn’t change, since by
default the result of every element is only determined by
the stimulus signal of that particular element.

(a) Result from model B
D=0.001

(b) Result from literature
with D=0.001

Figure 36: BMD-patterns with a low value of D)

4.4: Prediction of BMD-values of pelvises with
implants
BMD-values of the pelvis were predicted for a healthy
pelvis with standard and triflange implant and for a defect

pelvis with triflange and deformed implant. In this stage,
k-values were chosen as 0, since the computational effort
was too large otherwise. Furthermore, larger k-values re-
sulted in less accurate results.

4.4.1: Healthy pelvis with standard and triflange im-
plant

After validation of the models, simulations were performed
to predict the BMD-values of the pelvis with the standard
and triflange implant. The exact same parameters were
used for every scenario (no implant, standard implant and
triflange implant). This was done in order to ensure that
BMD-differences were purely caused by an altered strain-
magnitude and strain-distribution. Figure 37 displays the
BMD-distribution for each model and each scenario.

(a) Model A without implant (b) Model B without implant

(c) Model A with standard
implant

(d) Model B with standard
implant

(e) Model A with triflange
implant

(f) Model B with triflange
implant

Figure 37: BMD-distribution in the pelvis

It can be seen that the BMD-values for model B are
significantly higher than for model A, even in the case
without implant. Although the magnitudes are different
between both models, it can be seen that the pattern of the
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stress-shielding is somewhat similair. In addition, it can be
seen that both models show an overall decrease in BMD
between the case without implant and the case with stan-
dard implant. Similarly, a decrease in BMD is seen for the
case with triflange-implant compared to the other 2 cases.

To quantify amount of stress-shielding, BMD-values
were obtained at each slice and height. The approach was
similair to the measurements during model-validation. Fig-
ure 38 and 39 display the average change in BMD (in % )
for each location, compared to the pelvis without implant.

(a) Slice 1

(b) Slice 2

(c) Slice 3

(d) Slice 4

Figure 38: Model A: Predictions in change of BMD with
respect to the pelvis without implant. *tr, *ts and *rs
indicate a significant difference between triflange-no

implant, triflange-standard implant and standard
implant-no implant respectively.

(a) Slice 1

(b) Slice 2

(c) Slice 3

(d) Slice 4

Figure 39: Model B: Predictions in change of BMD with
respect to the pelvis without implant. *tr, *ts and *rs
indicate a significant difference between triflange-no

implant, triflange-standard implant and standard
implant-no implant respectively.

For model A it can be seen that the decrease in BMD
for the cases with implants is quite similair for every slice.
Especially at the lower z-heights (z=965mm and z=970mm)
a steep decrease in BMD is found for the triflange-implant.
For model B, the decrease in BMD is substantially more
with both implants at slice 1,2 and 4.

The average BMD-value of each case is calculated, as
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can be seen in table 11. Taking all values into account for
model A, it can be seen that the average BMD of a pelvis
without implant is 0.56. With a standard implant, this av-
erage BMD decreases with 8.9% to a value of 0.51, which
is not a significant decrease (p=0.1706, p<0.05 for sig-
nificance). With a triflange implant, the BMD decreases
with 28.6% with respect to the case with no implant, re-
sulting in a value of 0.40. This decrease is significant with
respect to the case without implant (p=0.0074) and with
respect to the case with standard implant (p=<0.001). Do-
ing the same for model B gives for the case without im-
plant an average BMD of 0.52. With a standard implant,
this BMD decreases with 25.0% to a value of 0.39, which
is a significant decrease (p<0.001). With a triflange im-
plant, the BMD decreases with 55.8% with respect to the
case with no implant, resulting in a value of 0.23. This
decrease is significant with respect to the case without im-
plant (p=<001) and with respect to the case with standard
implant (p=<0.001).

Table 11: Average BMD-values for the healthy pelvis

Average-BMD-
values (g/cm3)

Without
implant

Standard-
implant

Triflange-
implant

Model A 0.56 0.51 0.40
Model B 0.52 0.39 0.23

4.4.2:Defect pelvis with triflange and deformed implant

For the defect pelvis, the BMD is calculated after 320 days
for both the case with the triflange implant and the de-
formed implant. Since it was found that for the healthy
pelvis model B underestimates the BMD-values, only model
A was used for the defect pelvis, to save computational
time. The BMD-values are displayed in figure 40.

(a) Triflange implant (b) Deformed implant

Figure 40: BMD-values for the damaged pelvis

By applying the same procedure as during the validation-
step, BMD-values are obtained at multiple locations. Av-
eraging these values results in the mean BMD for both
cases, which are shown in table 12. It can be seen that
the triflange implant results in similair BMD-values as the

healthy pelvis with triflange implant. Moreover, the de-
formed implant shows BMD-values which are very sim-
ilar to the standard cup in the healthy pelvis. This indi-
cates that the deformed implant can minimize the stress-
shielding, reducing it to the amount of stress-shielding
which occurs with the standard implant.

Table 12: Average BMD-values for the damaged pelvis

Average-BMD-
values (g/cm3)

Without
implant

Deformable-
implant

Triflange-
implant

Model A 0.56 0.52 0.39

4.5: The deformable implant
This sections displays the performance results and machine-
learning algoritm of the deformable implant.

4.5.1: Performance results

In total, 18 pelvises with different types of defects were
evaluated. For each pelvis, analyses were performed with
multiple deformable cups, which varied in thickness and
interference fit. For two pelvises, the deformation process
of the best-performing cup is shown (figure 41).

(a) Load 1 pelvis L (b) Load 1 pelvis R

(c) Load 2 pelvis L (d) Load 2 pelvis R

(e) Load 3 pelvis L (f) Load 3 pelvis R

(g) Load 4 pelvis L (h) Load 4 pelvis R

Figure 41: Deformation after each load
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It can be seen that one pelvis contains a lot of dam-
age (pelvis R) and one pelvis (pelvis L) contains a min-
imal amount of damage. Furthermore, the performance
(and the four subvariables) were measured for each type of
deformable cup. Figure 42 displays these measurements,
which are the results of the same pelvises as displayed in
figure 41 (i.e. pelvis L and R).

(a) Gap-distance pelvis L (b) Gap-distance pelvis R

(c) Pull-out force pelvis L (d) Pull-out force pelvis R

(e) Bone-stress pelvis L (f) Bone-stress pelvis R

(g) Push-in force pelvis L (h) Push-in force pelvis R

(i) Performance pelvis L (j) Performance pelvis R

Figure 42: Performance parameters

An important finding is that the optimal performance
of the deformable cup is different for each case. For pelvis
L, the optimal cup has a thickness of 12mm and an inter-
ference fit of 2mmm, while for pelvis R this is a thickness
of 15mm and an interference fit of 1mm. This indicates

that a deformable cup with varying parameters is needed
for different type of defects.

4.5.2: Machine-learning algorithm

The machine learning algorithm was trained to select the
optimal cup based on the defects in the pelvis. The training
data together with the optimal cup is shown in figure 43a

(a) Training data

(b) Training data with classification boundaries

(c) Classification of test data

Figure 43: Nearest neighbour classifier to determine the
optimal cup based on the bone defects

It can be seen that based on the parameters of the de-
fect, a different optimal cup can be found. In total, six dif-
ferent cup designs are available. The nearest neighbour al-
gorithm is trained based on the available training points.
The boundary of each class is shown in figure 43b. The
results of the FE-models of the training data is displayed
in appendix D.

Finally, to test if the classification is correct, the test
data was utilised. The 3 new points were added to the
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machine-learning algorithm, which then predicted the op-
timal cup based on the parameters (figure 43c).

With the predicted optimal cup for the test data, Finite-
element analysis was performed. It can indeed be seen that
with this predicted optimal cup, favourable results can be
obtained (figure 44). A good contact between bone and
implant is obtained at the interface. The cup deforms into
the defects in all cases. Based on this, it can be seen that
the classifier makes a good prediction of the optimal cup.
A pattern can be seen where a larger horizontal overlay
and a larger d/l ratio require a cup with a smaller interfence
fit and a thicker deformable layer respectively.

(a) Test 1: Thickness 9
interference 2 before

deformation

(b) Test 1: Thickness 9
interference 2 after

deformation

(c) Test 2: Thickness 12
interference 1 before

deformation

(d) Test 2: Thickness 12
interference 1 after

deformation

(e) Test 3: Thickness 15
interference 1 before

deformation

(f) Test 3: Thickness 15
interference 1 after

deformation

Figure 44: FE-results of test data

5: Discussion

5.1: Main findings
The statistical shape model of the healthy pelvis provides
main modes of deviation that describe the thickness and
shape at multiple locations. Overall, the deviation for each
mode is quite subtle, which generates promising and re-
alistic shapes. The six main modes occur at expected lo-
cations, namely at transitions from one bone area to an-
other. The deviation at the acetabulum is relatively low,
which is expected since the size-aspect is corrected for.
However, for the first mode it can be seen that the devia-
tion is amplified as a result of the cutting process at this
area, which generated higher variations than in reality. In

a next iteration, it is recommended to make a universal cut
at this area, to eliminate this contribution to the variation.
The statistical shape model of the defect pelvis provides
main modes which are more concentrated around one area,
namely the defects in the acetabulum. This is expected,
since large variations are located here. However, the gen-
erated shapes are quite unrealistic and inaccurate. It is ex-
pected that this is the result of a very low amount of data
in combination with a huge amount of deviation. To ob-
tain accurate results in further research, it is recommended
to obtain more data with pelvises that are somewhat less
damaged, in order to minimize the amount of variation.
Another option is to develop a SSM of pelvises which have
somewhat the same type of defect, to minimize variation.
It might also be wise to develop a model of only males
or only females, since some differences in pelvic shapes
exist between these groups. Comparing results with liter-
ature is difficult since most studies on SSM of the pelvis
include the whole pelvis and find main modes on loca-
tions which are not included in this model [72],[73],[74].
However, most modes on areas which are included in this
model show correspondence with literature. Only mode 1
is significantly different (due to the cutting, as explained
earlier) and mode 20 is more excessive compared to liter-
ature, which might be caused by the settings during im-
age segmentation from the CT-scans. The generality and
specify of the healthy model are similair or even better
than other models [72]. The behaviour of generality and
specificity as a function of modes is as expected: More
modes allow the model to create more complex shapes,
while more modes also create shapes with less correspon-
dence to the training shapes.

With the finite element model, the stresses and strains
for the healthy pelvis depend on the loading scenario and
type of implant, with values up till 9 Mpa and 0.009 are
found respectively. The distribution of the loads are de-
pendent on the type of loading scenario. The most im-
portant finding is that the strains and stresses decrease
with a standard implant, compared to the pelvis without
implant. With a triflange implant, these values decrease
even further. This indicates that a higher amount of stress-
shielding occurs with the triflange implant compared to
the standard implant, which is in agreement with the hy-
pothesis and literature [21] [25]. The results seem reliable,
since the stresses do not exceed the yield strength, but do
stimulate the pelvis with a realistic amount of stress. For
a next step, it can be useful to perform the analysis of the
triflange implant with screws. For now, a single simula-
tion with screws was done, to validate that the screws do
not influence the results significantly. However, this has
not been adapted to the full analysis for now.

The bone remodelling algorithms that were implemented
provided results which are in correspondence with the real
pelvis from mimics. Model A and B provided in only 2
and 3 measurements (out of 30) a statistical difference
with values from Mimics, respectively. However, for the
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predicted BMD-values with the implants, model B showed
values which are most likely too low, since these values
would result in serious problems for the patient. It is ex-
pected that during validation, the parameters of model B
were fitted for one case and do not perform well yet for
other cases. Furthermore, due to computational limitations
the k-values were set to 0 while the optimal value during
validation of the 2D cube was determined as 15, which
could cause the inaccuracy of the results. The patterns for
this cube are different that the results from literature, but
overall the same components can be identified. Further-
more, the model from literature is constantly optimized
with neural networks, while for the models in this study
this is limited to trial and error. For a next iteration, it is
therefore recommended to implement an optimization of
the bone-remodelling models. Model A shows more accu-
rate results than model B. However, it is believed that this
is not necessary due to model A being better than model B,
but that model A is more prone to finding the correct pa-
rameters due to the relative simplicity of the model. There-
fore, the results of model A are for now considered to be
more accurate.

The predicted BMD-values for the healthy pelvis are
lower with a standard implant than for a pelvis without
implant. With a triflange implant, these BMD-values are
even lower. From this it can be concluded that the tri-
flange implant causes indeed more stress-shielding than
the standard implant. This is in agreement with the hy-
pothesis and literature [21] [25]. The decrease in BMD for
the standard hemispherical cup is in this study a bit lower
than the experimental measures from literature, where in
some areas decreases up till 40% are reported [75]. How-
ever, the 40 % reported in literature is an = outlier and
for most areas the values do show correspondence. For
the custom triflange cup, limited data is available on the
amount of BMD reduction. This makes it difficult to vali-
date the results from this study. Most studies focus on the
perfomance and HIP-scores, but do not specify the amount
of bone absorption. However, it is mentioned that with a
triflange implant bone-resorption is initiated for almost all
patients [76].

The deformable implant minimizes the stress-shielding
and performs on this aspect just as well as the standard
cup. This is in agreement with literature, since a good con-
nection between bone and implant is required to minimize
stress-shielding [56]. For the deformable implant, it can
be seen that the performance depends on parameters such
as the amount of interference and the thickness. The gap
distance after deformation is quite low, which shows that
the cup is capable of deforming into the defect and provide
a solid transition between pelvis and implant. The pull-in
force and stress at the bone-interface stay within tolera-
ble values. Only the pull-out force is lower than expected,
taking values up till 110N. For standard cups, this value is
around 77N-800N [65]. This relatively low value indicates
that the cup is somewhat stable in the acetabulum, but a

higher value is desired. However, it is expected that in real-
ity the pull-out force might be higher, since the sharp unit-
cell structure can penetrate the bone, which generates a
higher pull-out force. In the simulation, the bone was mod-
elled as incompressible and the sharp unit cell-structure
was modelled as a solid section, which could lead to a
pull-out force which is lower than expected. Therefore, it
is important to test this experimentally and compare these
to the FE-model results. An important finding is that for
different types of defects, a different deformable cup pro-
vides the optimal solution. The machine learning algo-
rithm provides a good solution, since it can determine the
best cup based on the type of defects. After testing the al-
gorithm, this method is proven to be a good approach. A
pattern can be seen where defects with a larger d/l ratio
require a cup with a thicker deformable layer. This can
be explained by the fact that for more deformation, more
material is needed to cover the defect. Moreover, defects
with a smaller d/l ratio require a thin deformable layer,
since with a thick layer not enough plastic deformation
is initiated (i.e. there is too much material and too little
deformation), causing spring-back and thus a less stable
cup. In addition, pelvises with a low amount of horizontal
overlay require a larger amount of interference. A larger
interference fit initiates more deformation and thus a bet-
ter fixation, which is desired if there is not sufficient hor-
izontal overlay in the pelvis which prevents the cup from
being pulled out of the acetabulum. With a lot of horizon-
tal overlay however a low interference is desired, since de-
formation of the cup should not occur until it has reached
the location of the defect.

Nevertheless, bigger test and training sets can be a
good step for a next study, to further improve the algo-
rithm. In addition, more parameters for classification of
the defects can be used. However, this drastically increases
the amount of computational time, which is why for now
the amount of parameters is limited to two.

5.2: Evidence
The amount of evidence is considered to be sufficient for
the majority of the results. Overall, most results that were
found are either compared with experimental results, vali-
dated during a validation step, or compared to other stud-
ies as discussed in the previous paragraph. This provides
sufficient evidence for the findings. However, there are
some results which are not in agreement with previous
studies and are thus considered as inaccurate with insuf-
ficient amount of evidence. This applies to the SSM of
the defect pelvis, some modes of the SSM of the healthy
pelvis and bone remodelling model B, as highlighted in
the previous section. Furthermore, the deformable cup is a
new concept, which makes it difficult to compare to liter-
ature. Therefore, it is important that these results are com-
pared with experimental results.
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5.3: Limitations
The two greatest limitations during this study are directly
related to the lack of evidence for above-mentioned as-
pects. First, the inaccuracy of the results of bone remod-
elling model B is caused by incorrect parameter-values.
This in turn is the result of limited computational time.
To find the optimal parameters, an optimization problem
should be included. However, this iterative process requires
lots of simulations. With each simulation taking more than
20 hours to complete, this is for now not achievable. In the
future, it can be worthwhile to optimize and simplify the
FE-model, to reduce computational time per run. Then, a
neural network algorithm can be implemented to find the
optimal parameter values, which will then result in more
accurate and realistic results. Second, the inaccurate re-
sults of the statistical shape model of the defect pelvis
are caused by insufficient data. Unfortunately, a limited
amount of defect pelvises were available. For a future study,
the sample size should be increased. Preferably, the amount
of variation at the defect should also be smaller, to allow a
more accurate alignment procedure.

6: Conclusion
At first glance the custom triflange cup appears to be a
convenient solution for pelvises with large bone defects.
However, the implant has some drawbacks, namely the
high costs and the time-consuming design-process that come
with it. [19]. In addition, it was expected that the triflange
implant causes more stress-shielding than a standard im-
plant. In this study it was proven that the triflange implant
causes indeed more stress-shielding than the standard cup.
The triflange implant decreases the BMD of the pelvis
with 28.6% compared to a pelvis with the standard im-
plant, while this is only around 8.9% with a standard im-
plant. To overcome the above-mentioned drawbacks, the
potential of a deformable implant for large bone-defects
was evaluated. It is shown that a defect pelvis with a de-
formable implant can reduce the stress-shielding to the
same level as a healthy pelvis with the standard hemi-
spherical cup (namely only a decrease in BMD of +- 7% ).
Furthermore, it is shown that the deformable cup is able to
deform into multiple type of defects and obtain a sufficient
initial stability. The machine-learning algorithm that was
developed performs quite well and can predict the optimal
cup parameters based on the defects in the pelvis. More-
over, it was shown that the statistical shape model of a
pelvis can contribute to finding patterns in defects, which
could eliminate the need for a customized implant.

Overall, it can be concluded that the the combination
of above-mentioned aspects can potentially provide a good
alternative solution for pelvises with large defects. The
concept of the deformable cup together with the Statis-
tical shape model provides solutions for the drawbacks of

the triflange custom cup, which is shown in figure 45.

Figure 45: Overview of findings

However, more data of defect pelvises is required in
order to obtain accurate modes of deviation. Furthermore,
it is important to validate all results experimentally, since
this study is limited to (FE-) models. After these results
have indeed been validated by performing experimental
results, it is believed that the deformable cup can achieve
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a longer implant-life as a result of minimization of the
stress-shielding. Furthermore, elimination of the customiza-
tion aspect is believed to be beneficial, since it saves time
and costs. With the rising costs of healthcare, this is an
important advantage [23].
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