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Summary

The electronic industry strives continuously to increase the performance of elec-
tronic components by adding new functionality, by making them more energy ef-
ficient or by increasing their absolute performance. This last possibility is mainly
achieved by a higher density of electrical components. In a photo-lithographic pro-
cess, this is associated with the ability of printing finer and finer details on a wafer,
without impacting the speed and the accuracy of the overall process. In industry,
this concept is expressed with a single word: yield. The higher the yield, the more
profits for the chip producer. One of the often chosen procedures to improve the
yield is through a tight control of key quantities related to the chip making process
such as dose, focus, overlay and other relevant parameters in order to ensure the
creation of a defect free device. In other words, through metrology. The root of
this word is derived from the ancient Greek and it stands for the science of measur-
ing. In the description of a target, it is often convenient to parametrize it with few
geometrical quantities that are chosen as representative of dimensions or specific
features. In the field of metrology applied to the semiconductor industry, one of the
most used test targets are periodic gratings. These objects are usually described in
terms of four quantities: height h, middle critical dimension MidCD, period (often
named pitch) p and the side wall angle SWA; this last quantity represents the angle
between the edge of a trench and the bottom of a line. Particularly, we focus our
efforts on improving the estimation of the side-wall angle. Improving the quality of
printed target relying on metrology techniques is the underlying motivation of this
dissertation and the ultimate goal behind it.

The accuracy with which the SWA can be measured is much lower compared
with what can be achieved for the other three parameters. This issue poses several
metrology problems because it delivers false information on the specific machine
that is to be tested. More specifically, an uncertainty of a couple of degrees in
the estimation of the SWA will lead to wrong edge estimations and might result
in choosing a different setting for the lithographic machine, even though it might
not be needed. This change will impact other quantities and will change the whole
behavior of the device. Hence, it is necessary to estimate this angle as precisely as
possible to continue having more reliable electrical components. In this thesis we
make an important step towards this direction.

It is important to emphasize that the complexity of the problem is enormous.
In fact, both physical and chemical processes are taking place during the target
creation, which makes it nearly impossible to have a correct model to predict its
shape. It is sometimes possible to monitor the shape of the grating profile after its
creation, which would allow us to verify the results obtained by our predictions, but
performing such a step is not realistic in a high volume manufacturing environment.
Thus, few assumptions had to be considered to make the problem treatable from

ix



x Summary

an analytical and numerical point of view. The main supposition consists in dealing
with a non-periodic structure; more specifically we studied, throughout this thesis,
a cliff-like object. Furthermore, we mostly modeled the side wall as a linear slope
without considering non-linear effects. The results published in this thesis show
that, even under these very basic hypothesis, we can reach a good estimation of
the SWA of our test structure.

The findings presented in this thesis have been obtained in the framework of
scatterometry, the branch of science in which a-priori knowledge is combined with
measurements of the scattered radiation by an object, to estimate specific proper-
ties of the object itself. This physical process is the basis of a technique developed
in the Optics Group at Delft University of Technology, called Coherent Fourier Scat-
terometry (CFS): an object is illuminated with a focused laser beam, the scattered
far field is collected and detected with a camera. This signal is subsequently com-
pared with numerical simulations in order to reconstruct certain geometrical param-
eters of the object. The two major novelties of this approach consist in the use of
coherent light - in place of the more established and well known Incoherent Fourier
Scatterometry (IFS) - along with focused illumination. In this way, one can obtain
an increased amount of a-priori knowledge by relying on the phase information as
well, which is naturally lost in the case of incoherent systems, and gather more si-
multaneous information by letting the object interact with a focused beam, thereby
probing all the incoming angles, within the numerical aperture of the objective, at
once. The basic concept of this technique is presented throughout this dissertation,
either by building a concrete CFS optical setup, or simply by considering analytically
the interaction of a target and a focused beam, under the assumption of coherent
illumination.

In this thesis we also show, in Chapter 2, how CFS can be extended to inter-
ferometric CFS (ICFS) and used to determine the scattering matrix of a grating.
In this case, the standard CFS setup is integrated with an interferometer so that
the entire information about the far field - amplitude, phase and polarisation - is
obtained. This extension of CFS can be applied to smaller objects (like subwave-
length gratings) where the reconstruction using only amplitude data is difficult. We
subsequently focus our attention on the side wall angle estimation problem, and for
this purpose we consider a cliff-like object instead of a grating. This choice is taken
for a number of reasons. First of all our aim is to have a clear understanding of
the side-wall contribution to the radiated far field: estimating this in the presence
of a periodic grating is more complicated because each trench might have different
SWAs compared to other trenches due to processing effects. Furthermore the left
and right side-wall angles of each groove might be different. Secondly, the analyt-
ical derivation becomes a little easier when dealing with a cliff. In Chapter 3, we
introduce an experimental technique which allows us to expand the input illumina-
tion - and therefore the scattered field - into different modes and monitor the ones
that are more sensitive to a SWA change. In Chapter 4 we begin the transition from
a purely experimental analysis to a completely theoretical framework. The major
part of this chapter is dedicated to the theoretical explanation of the signal forma-
tion. After having looked into possible detection techniques to improve the side-wall
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estimation, we optimize, in Chapter 5, the input illumination to reach the maximum
sensitivity to a side-wall angle change. In this case the optimum illumination, both
in phase and intensity, is calculated solving a Lagrange multiplier problem. The
results show an increased sensitivity up to 150% for very steep angles.

The findings in this dissertation are surely encouraging and promising but it is
important to stress that this is just the beginning of the journey. For example, it
is interesting to extend the results presented in this dissertation to periodic struc-
tures; furthermore, polarisation pupil shape might further increase the sensitivity
of the scattered field to the side-wall angle parameter. In this context, a larger nu-
merical aperture than the one used in this thesis should be applied, implying that
the problem should be treated with vectorial diffraction theory.

It is important to emphasize once more that boosting the performance of semi-
conductor metrology has direct impact on the quality of the chip manufacturing
process and ultimately on our daily lives.





Samenvatting

In de elektronisch industrie probeert men voortdurend de prestatie van elektroni-
sche onderdelen te verbeteren. Componenten worden verbeterd door het toevoe-
gen van functies, het verlagen van hun energieverbruik of het verbeteren van de
absolute prestatie. Dit laatste wordt doorgaans bereikt door de dichtheid van de
elektronische componenten te verhogen. Hiervoor zijn verbeterde lithografische
processen nodig, die in staat zijn met dezelfde snelheid en nauwkeurigheid nog
kleinere details op de wafers te printen. De mate waarin dit lukt wordt binnen de
lithografische industrie yield (opbrengst) genoemd, en het speelt een grote rol in
de winstgevendheid van een chip maker. Een regelmatig gebruikte methode om
de yield te verhogen, en zodoende meer defect-vrije chips te kunnen produceren,
is het nauwkeurig controleren van productieparameters, zoals bijvoorbeeld de do-
sis, focus en overlay. Met andere woorden: door het toepassen van metrologie.
De etymologische herkomst van metrologie, is het oud-Griekse woord voor de we-
tenschap van het meten. Het verbeteren van metrologie-technieken om daarmee
de kwaliteit van geprinte targets te verbeteren is het onderliggende motief en het
uiteindelijke doel van dit proefschrit. We richten ons daarbij met name op het ver-
beteren van de meting van een bijzonder lastig meetbare grootheid: de zijwands-
hoek. Een meetobject wordt doorgaans geparametriseerd met een beperkt aantal
geometrische grootheden die de dimensies of specifieke eigenschappen van het
object omschrijven. Een van de meest gebruikte test objecten voor de metrologie
in de halfgeleiderindustrie is de periodieke tralie. Dergelijke meetobjecten worden
normaal gesproken beschreven aan de hand van vier parameters: de hoogte h, de
middle critical dimension (midden kritische dimensie) MidCD, de periode p en de
hoek tussen de rand van een plateau en het dal van een lijn, de zogenaamde side
wall angle (zijwandshoek) SWA.

De SWA kan veel nauwkeuriger worden gemeten dan de andere drie parame-
ters. Huidige meettechnieken hebben een onzekerheid van enkele graden, wat kan
resulteren in een verkeerde afschatting van de locatie van een rand. Aangezien het
testobject wordt gemeten om de werking van de machine te analyseren en bij te
sturen, kan dit er toe leiden dat men de instellingen van de lithografische machine
onterecht aanpast. Dit beïnvloedt niet alleen de SWA, maar ook de andere parame-
ters van het testobject en algehele werking van de machine. Voor het produceren
van steeds betrouwbaardere elektronische componenten, is het daarom van belang
de SWA zo nauwkeurig mogelijk te meten. In dit proefschrift wordt een belangrijke
stap in die richting gezet.

Het is van belang te benadrukken dat de complexiteit van het probleem enorm
groot is. In feite vinden zowel fysische als chemische processen plaats gedurende
de vorming van het te meten object, met als gevolg dat onmogelijk over een correct
model kan worden beschikt, waarmee de vorm ervan kan worden voorspeld. Soms
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is het mogelijk de vorm van het rasterprofiel te bemonsteren, nadat dit gevormd
is, hetgeen het ons mogelijk zou maken de resultaten, die zijn verkregen met onze
voorspellingen, te verifiëren, maar zo’n stap is niet realistisch in een omgeving waar
grote hoeveelheden worden geproduceerd. Daarom moesten enkele aannames
worden gedaan om het probleem hanteerbaar te maken vanuit een analytisch en
numeriek standpunt. De belangrijkste veronderstelling bestaat hierin dat we te
maken hebben met een niet-periodieke structuur; meer in het bijzonder hebben wij
voor dit proefschrift klif-achtige objecten bestudeerd. Verder hebben wij de hoek
van de zijkant gemodelleerd als een lineaire helling, zonder daarbij niet-lineaire
effecten te beschouwen. De resultaten die in dit proefschrift worden gepubliceerd
laten zien dat wij zelfs onder deze basishypothese tot een goede schatting kunnen
komen van de SWA van onze teststructuur.

De bevindingen, die in dit proefschrift worden gepresenteerd, zijn verkregen
binnen het raamwerk van scatterometry, de tak van wetenschap waarbij a-priori
kennis wordt gecombineerd met metingen van de door een object verstrooide stra-
ling, om zo een schatting te kunnen maken van specifieke eigenschappen van het
object zelf. Dit fysische proces vormt de basis van een techniek die is ontwikkeld
in de Optische Onderzoeksgroep van de Technische Universiteit Delft, genaamd
Coherent Fourier Scatterometry (CFS): een object wordt verlicht door een gefocus-
seerde laserbundel; het verstrooide verre veld wordt verzameld en gemeten door
een camera. Vervolgens wordt dit signaal vergeleken met een numerieke simulatie,
teneinde bepaalde geometrische parameters van het object te reconstrueren. De
twee belangrijkste noviteiten van deze aanpak bestaan in het gebruik van coherent
licht – in plaats van de meer gevestigde en bekende techniek Incoherent Fourier
Scatterometry (IFS) – en in de toepassing van gefocusseerde verlichting. Op deze
wijze kan meer a-priori kennis worden verkregen, door ook gebruik te maken van
fase-informatie, die voor incoherente systemen uiteraard verloren gaat, en door
meer simultane informatie te verzamelen via interactie van het object met een ge-
focusseerde bundel, waardoor alle binnenkomende hoeken, binnen de numerieke
apertuur van het objectief, worden onderzocht. Het basisconcept van deze techniek
wordt in dit proefschrift gepresenteerd, zowel door de bouw van een concrete opti-
sche CFS opstelling, als door simpelweg analytisch de interactie tussen een object
en een gefocusseerde bundel te beschouwen, onder de aanname dat de verlichting
coherent is.

In dit proefschrift hebben we ook, in Hoofdstuk 2, de experimentele resulta-
ten laten zien waarin we CFS uitbreiden naar Interferometrische CFS (ICFS) en de
verstrooiingsmatrix van een rooster bepalen. In dit geval wordt de standaard CFS-
opstelling geïntegreerd met een interferometer zodat de volledige informatie van
het verre veld wordt verkregen: amplitude, fase en polarisatie. Deze uitbreiding
van CFS kan worden toegepast op kleinere objecten (zoals sub-golflengte roosters)
waarvoor de reconstructie moeilijk is als alleen amplitudedata gebruikt wordt. In
de volgende hoofdstukken besteden aandacht aan het probleem van de zijwands-
hoek, en hiervoor beschouwen we een klif-achtig object in plaats van een rooster.
Deze keuze was gemaakt voor een aantal redenen. Ten eerste was ons doel een
goed begrip te krijgen van de bijdrage van de zijwandshoek in het gestraalde verre
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veld: dit zou moeilijker zijn als er een periodiek rooster is omdat elk dal een andere
zijwandshoek kan hebben wegens effecten die optreden tijdens de fabricage. Bo-
vendien kunnen de linker- en rechterzijwandshoeken van elk dal anders zijn. Ten
tweede wordt de analytische afleiding een beetje makkelijker wanneer we een klif
beschouwen. In Hoofdstuk 3 introduceren we een experimentele methode die ons
toestaat de inputbelichting -en dus het verstrooide veld- te expanderen in verschil-
lende modes, en de modes te monitoren die gevoeliger zijn voor de zijwandshoek.
In Hoofdstuk 4 beginnen we de overgang van een zuiver experimentele analyse
naar een compleet theoretisch kader. Dit hoofdstuk is grotendeels toegewijd aan
een geheel theoretische beschrijving van de signaalvorming met, tegen het eind
van het hoofdstuk, een vergelijking met experimentele data. In dit geval laten
onze bevindingen zien dat het model nog niet compleet is, en dat meer details in
beschouwing genomen moeten worden om een betere match te krijgen met de
experimentele data. Nadat we naar de verschillende mogelijke detectiemethodes
hebben gekeken om de schatting van de zijwandshoek te verbeteren, optimaliseren
we in Hoofdstuk 5 de inputbelichting om de maximale gevoeligheid voor verande-
ring in de zijwandshoek te krijgen. In dit geval voeren we een geheel theoretisch
onderzoek uit, waarin we de geoptimaliseerde belichting, zowel in de fase als in de
intensiteit, berekenen door een Lagrange-multiplicator probleem op te lossen. De
resultaten laten zien dat de gevoeligheid tot 150% verhoogd kan worden voor zeer
grote hoeken.

De bevindingen in dit proefschrift zijn zeker bemoedigend en veelbelovend, maar
het belangrijk te benadrukken dat dit slechts het begin van de reis is. De resultaten
kunnen bijvoorbeeld uitgebreid worden van het zijwandshoekprobleem naar peri-
odieke structuren en polarisatie-pupilvorming. Voor de laatstgenoemde kan een
grotere numerieke apertuur gebruikt worden, wat betekent dat het probleem met
vectoriële diffractietheorie behandeld moet worden. Dit zal een belangrijke stap
zijn om het begrip van het probleem te vergroten en het zal het probleem hopelijk
meer toegankelijk maken voor onderzoekers om nieuwe ideeën te genereren over
hoe de nauwkeurigheid van de meting van de zijwandshoek verbeterd kan worden.
Het verbeteren van de precisie en de nauwkeurigheid van deze meting kan leiden
tot het fabriceren van computer-chips met hogere kwaliteit dat ons alledaagse leven
kan verbeteren.
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Introduction

People are capable, at any time in their lives, of doing what they dream of.

Paulo Coelho, The Alchemist

1
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2 1. Introduction

The continuous technological process driven by the needs of our society has
made photonics - the science and technology of light - and optics more in general,
a crucial area of scientific and industrial development. The complexity of the tech-
nological challenges we are facing requires a strong interaction between academia,
industrial and state partners in order to be competitive in different fields.

These necessities have direct impact on the scientific programs at both an Eu-
ropean and national level. As an example, photonics is included in Europe’s Key
Enabling Technologies (KETs) of the 21st Century [1]. Furthermore, roughly 8%
of the Horizon 2020 total funding - € 6.2 billion on a total of nearly € 80 billion -
have been allocated to photonics-related projects. At national level, several initia-
tives and joint research programs have been promoted to boost R&D activities in
the field of optics. As an example, the Dutch Optics Center (DOC), a TNO and TU
Delft initiative, and NanoNextNL, a large program in nanosciences involving several
universities and industrial partners, play an important part in promoting this field
of science.

In particular, this PhD project is part of one of the NanoNextNL programs, with
main subject ”Nano-inspection for next-generation lithography”. The goal of this
project was to improve current metrology tools based on optical far field light de-
tection to characterize small features on wafers with applications in, for example,
the semiconductor industry. In particular, over these four years of research, much
attention has been directed to study the interaction of light with periodic and ape-
riodic structures with, as main goal, the characterization of these structures using
the scatterometry principle under coherent light illumination.

In this dissertation we elucidate different experimental and theoretical tech-
niques, with the common goal of achieving the most distinctive signal in the far
field, caused by slight changes in the parameters of the structure to be studied.
Having sensitive inspection methods is a critical and important point given the con-
tinuing size decrease of the features on modern electrical chips.

Despite the undeniable proven success of lithography in the last 50 years, which
has allowed the semiconductor industry to follow the pace paved by Moore’s law,
the continuous miniaturization of electrical components is imposing very compli-
cated challenges to the chip manufacturing companies. Therefore, defects-free
devices can only be obtained through an optimized printing process, which entails
tuning the lithographic machines using test targets, namely optical gratings with
certain known nominal parameters that are retrieved afterwards using metrology
tools. These parameters are the grating period, height, middle critical dimension
(CD) and side wall angles (SWA). More specifically, we identified the so called side-
wall angle as the parameter that is least predicable and controllable by chip man-
ufacturing companies. If we consider a periodic grating as the main test structure
over which the lithographic machines are calibrated, the side-wall angle is simply
defined as the angle between the substrate and the slope of a groove’s edge. A
different convention is to define this angle as the angle between the normal to the
substrate and a groove’s edge, but this definition has not been adopted in this dis-
sertation. Moreover, it follows from either of these definitions that the unit cell of
a grating might have two different side-wall angles. The - in principle - straightfor-
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ward definition of this quantity hides quite several complications. To begin with, the
top and bottom parts of a single groove of a grating usually posses round edges,
possibly with different curvatures from one another. The net contributions of these
structures to the scattering process is all but simple to quantify. Secondly, the edge
itself is unlikely to be a straight line, but is instead characterized by a sort of ”wavy”
profile which is also impacting the scattered field in a very peculiar form. In this
dissertation, we purposefully decided to not consider all these effects. The main
reason behind this decision lies on the fact that we believe a more specific project
is needed to quantify the contribution of each of them.

In this work we consider - except for Chapter 2 - the paraxial optics approx-
imation, which allows us to solve many problems analytically while being able to
describe the main physical effects of the systems we considered.

As we have mentioned, many diverse effects can contribute to the scattered
field produced by a periodic grating. These effects surely play a role in the results
obtained in Chapter 2 where, as we will see, we solve the full vectorial problem
to reconstruct the scattering matrix of an object that can be described geometri-
cally by only few parameters. In this circumstance, the more a priori information
is added to the system, the easier it is to solve the inverse problem and find the
parameter combination that generates the closest far field distribution to the exper-
imental results. One of the first available option is to employ coherent illumination
and exploit the information content carried by the phase of the illuminating beam.
Inspired by this simple idea researchers at TU Delft have developed a technique
called Coherent Fourier Scatterometry.

1.1. Coherent Fourier Scatterometry
Coherent Fourier Scatterometry, CFS for short, is a technique recently developed
at TU Delft by El Gawhary et al. [2] in which a coherent focused field interacts
with a periodic object and where the scattered field is analyzed in the Fraunhofer
regime. The use of coherent illumination has made this technique quite compet-
itive and even superior to its incoherent counterpart - where incoherent light is
used to illuminate the grating - particularly in the case where the period of the
grating is such that not only its zeroth order but also the first or higher orders
overlap simultaneously in the far field. The strength of CFS lies on the possibility
to use the phase difference between the zeroth and other orders of the grating as
additional a priori information, which makes the naturally ill-posed reconstruction
problem easier to solve, given that more information is present. In this context, the
problem is defined to be ill-posed because the successful reconstruction of the grat-
ing parameters from the far field measurements may, or may not, be unique and
stable [3, 4]. Other important advantages associated with this methodology are
that it is non-destructive, it does not suffer from the Rayleigh diffraction limit and
it is easily integrable in lithographic machines. One drawback of CFS as compared
to incoherent Fourier scatterometry (IFS) is that it requires a mechanical scan of
the sample, thus making it slower than IFS. Nonetheless, it has been successfully
demonstrated in grating reconstruction [5].

The core of this technique is the diffraction phenomenon between a periodic
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grating - although extensions to aperiodic structures have been made - and an
input field. We usually speak of planar diffraction when the incoming light and the
diffracted order lie in one plane; conical diffraction refers instead to the situation
in which the diffracted orders lie on the surface of a cone. Let us consider, in the
case of planar incidence, a one-dimensional grating, periodic along the 𝑥-axis and
infinite along the 𝑦-axis, of period Λ illuminated by a plane wave of initial amplitude
𝐴 :

𝐸(𝑥, 𝑧) = 𝐴 exp [𝑖(𝑘 𝑥 + 𝑘 𝑧)] (1.1)

where the 𝑧-axis corresponds to the optical propagation axis, pointing downwards
for positive direction of propagation. Because the grating is periodic in the 𝑥 direc-
tion, we can write its reflection function as:

𝑟(𝑥) = ∑ �̂� exp 𝑖 2𝜋𝑚Λ 𝑥, (1.2)

where �̂� ’s are the Fourier coefficients of 𝑟(𝑥, 𝑦). The field above the grating can
then be expressed as:

𝑈(𝑥, 𝑧) = 𝐴 ∑ exp [𝑖 (𝑘 𝑥 + 2𝜋𝑚Λ )𝑥 + 𝑘 𝑧], (1.3)

where 𝐴 represents the amplitude of the outgoing waves. We can then conclude
that the diffracted waves, defined by the 𝑘-vector 𝑘 = (𝑘 , 0, 𝑘 ), obey the
following relationships:

𝑘 = 𝑘 + 2𝜋𝑚Λ , (1.4)

𝑘 = √𝑘 − (𝑘 ) = √𝑘 − (𝑘 + 2𝜋𝑚Λ ) . (1.5)

From these two relations we can infer that not all the diffracted orders are propa-
gating but some of them are evanescent. Furthermore, the number of propagating
orders depends on the incoming wavelength and the period of the grating.

This technique, along with the physical model upon which it is built, is the key
element to solve what is usually called the forward problem. The term emphasizes
the fact that we are computing the interaction of an input beam and an object
illuminated by it, to obtain the scattered field; therefore, we have to numerically
solve the Maxwell equations. When the structure we are dealing with is periodic in
one or two dimensions1, the Rigorous Coupled Wave Analysis algorithm is certainly
one of the most used and known.

1For completeness, the algorithm, with some modifications, can also be used for aperiodic objects. See
for instance [6, 7].
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1.2. The Rigorous Coupled Wave Analysis (RCWA)
algorithm

The importance of having efficient and accurate numerical tools for the evaluation
of Maxwell equations has grown exponentially over the last decades. Rigorous
Coupled Wave Analysis, often abbreviated as RCWA or Fourier Modal Method [8, 9],
has surely become a popular choice due to the simplicity of its implementation, as
well as its accuracy and speed. The basic RCWA algorithm is built upon periodic
boundary conditions and Flouquet’s theorem for gratings. This theorem converts
the infinite physical domain into repetition of infinite number of finite domains each
spanning the size of the periodicity of the grating. Subsequently, the original grating
profile is split into layers of rectangular stack. The duty cycle of each layer is
different from the adjacent ones, but they are all characterized by the same period,
such that the initial geometrical structure is properly mapped and represented. This
step is important to simplify the treatment of the problem into an electromagnetic
waves propagation through a finite number of flat layers, which can be solved
utilizing the continuity of tangential fields, as it is shown in Fig. 1.1.

Figure 1.1: In the RCWA method, the original grating is sliced into layers containing a rectangular
grating. The electromagnetic problem is solved into each layer. Figure from [10].

Maxwell equations are solved after the Fourier expansion of the periodic per-
mittivity 𝜖, or its inverse. The number of terms retained in this expansion affects
directly the accuracy of the algorithm. Another important concept that greatly in-
fluences the final results is the accuracy with which the staircase approximation
represents the structure to be modeled. The routine used for the numerical calcu-
lations presented in Chapter 3 is a modified version of the Fourier Modal Method
described in [11]. The version of the algorithm we use has been modified to treat
the interaction, in reflection, of a grating with a coherent focused field; this field is
expanded into plane waves and we solve the diffraction problem for each of these
waves, within the numerical aperture (NA) of the system in use. The algorithm al-
lows us to distinguish between different polarization states for the input and output
beam.

As mentioned before, the results obtained with the RCWA simulations can be
used to verify the outcome of the experimental results obtained, for instance,
through a Coherent Fourier Scatterometry setup. In short, we are trying to solve
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the inverse problem. In this configuration, starting from an experimental far field
distribution we try, by using numerical tools, to find the geometrical parameters of
the object that generated that particular distribution. This can be done by including
the RCWA kernel in a optimization algorithm. The sample under study is, in addi-
tion, characterized with standard metrology tools (AFM, SEM), and the results are
compared to what has been obtained numerically. We have seen that the confi-
dence interval of this comparison can be greatly improved if the experimental beam
used to illuminate the object is used as input for the RCWA algorithm. Because CFS
uses a coherent illumination, this implies that amplitude and phase need to be de-
termined. Hence, the use of a Shack-Hartmann wavefront sensor, which measured
phase and intensity of a light beam, is important to improve the accuracy of the
reconstruction problem.

1.3. Shack-Hartmann wavefront sensor
The previously described RCWA algorithm can greatly benefit from the accurate
knowledge of the incident field on the grating. The idea is that, by using the ex-
perimentally measured field that is interacting with the sample as input field for
the algorithm, the matching between experiment and numerical simulation will im-
prove. The amplitude and phase distribution of the input field can be measured
with a Shack-Hartmann wavefront sensor. In this sensor, the incident wavefront is
divided into many sub-domains through a 2D array of micro-lenses and focus on a
CCD detector. In case of a perfectly collimated beam, each lens element will focus
part of the incoming wavefront in a well defined position of the sensor, correspond-
ing to the center of its specific sub-domain. A partially aberrated wavefront will
instead results in misplaced foci. The software evaluates the local slope by com-
puting the local derivative obtained from the 𝑥 and 𝑦 displacement. This allows to
quantify the aberration carried by the input wavefront, which are usually expressed
in Zernike polynomials. The resolution of the reconstructed wavefront depends
on the size and the focal length of the micro-lenses. We use a Shack-Hartmann
sensor provided by Optocraft GmbH with micro-lenses of 150 𝜇𝑚 diameter and
4.62 𝜇𝑚 focal length. The CCD sensor on which the micro-lenses focus is made
of 1600 × 1200 square pixels, each of them characterized by a 7.5 𝜇𝑚 width. An
example of a Shack-Hartmann sensor is given in Fig. 1.2

1.4. Goal and outline of the thesis
The main goal of this work, as briefly explained earlier in this chapter, is to provide
tools to improve the side-wall angle estimation of aperiodic structures. It is worth
mentioning that this does not necessarily imply that the methods we discuss in this
dissertation should provide more accurate results. In fact, during these four years
of research we always considered the industrial aspects of the problem we aimed
at solving. This means that a method which delivers similar results compared to an
existing tool, in a faster and/or cheaper way represents a good alternative. Hence
different approaches, theoretical and experimental, have been explored to address
the problem of finding a better side-wall angle determination. In Chapter 2 we
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condition [23]. The field above and below the grating is expressed in Rayleigh’s
expansion. For instance, the reflected field is expressed as,

Er(r) =
∑

m

Rm exp
[
i
(
k̃yy + k̃xx− k̃zz

)]
. (1.7)

RCWA evaluates the coefficients Rm. In this thesis we use the modified routine
which uses the basic kernel of RCWA from ASML, Veldhoven, which is an imple-
mentation of the method presented in [24] (also called Fourier Modal Method).
To implement the focused spot interaction with the grating, a lens is used as a
focusing element and we work with reflected fields, where the same lens is used
for focusing and collecting the reflected light from the grating. The algorithm
distinguishes between the X (TM) and Y (TE) polarization of the incident field
above the focusing lens.

1.4 Shack-Hartmann sensor

To compute the diffracted far field of the grating and match it with the experi-
mentally obtained far fields, the knowledge of the incident electromagnetic field is
important. In order to obtain an accurate measurement of the field distribution
both amplitude and phase, we apply a wavefront measurement technique based
on the Shack-Hartmann principle (see Fig. 1.2) [25]. The device used to mea-
sure the wavefront is called Shack-Hartmann sensor (SHS). A SHS sensor consists
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Figure 1.2: Schematic of a microlens array focusing a non-distorted and distorted
wavefront on the CCD sensor.

of an array of micro-lenses, which divides the incident wavefront into many sub-
domains. Each sub-domain corresponds to the focused spot of a single micro-lens.
The divided wavefront is then focused on to a CCD detector. When the beam is
perfectly collimated then the focus spot is on the axis at the center of mass of the
micro-lens. Depending upon the location of the focused spot on the sensor, it is

Figure 1.2: Sketch of the measurement principle of a Shack-Hartmann wavefront sensor. Both the case
of a non-aberrated and aberrated wavefront are depicted. Figure from [12]

show that, by using interferometric Coherent Fourier scatterometry, it is possible
to fully reconstruct the scattering matrix of an object under investigation. In this
case we used a periodic grating as test structure, but we would like to emphasize
that our findings are generally valid for any target. The knowledge of the phase
of the far field, together with its amplitude, improves the object reconstruction, in
particular when the grating period is so small that no diffraction orders reach the
far field [13]. Chapter 3 is dedicated to the introduction of a detection technique
called Spiral mode projection; this method is quite advantageous and promising
because it can separate the contribution of different geometrical shape parameters
(for instance height and side-wall angle) through which we describe the structure
under investigation. After a theoretical description of this technique, we prove
its validity with experimental results. In Chapter 4 we describe analytically the
interaction of a focused field generated by a cylindrical lens with a cliff- and ridge-like
object. The scattered far field is measured with a CCD camera, and the difference
of the intensity measured in the left and right halves is computed; this type of
detection is called split detector configuration. Chapter 5 aims at improving the
side-wall angle detection from another perspective: instead of trying to improve
the detection branch of our system, we engineer the input field interacting with the
target such that the sensitivity to a small side-angle change is maximum. Finally,
Chapter 6 summarizes the main findings presented in this dissertation and envisions
possible future research developments and projects.
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Interferometric coherent

Fourier scatterometry

Study without desire spoils the memory,
and it retains nothing that it takes in.

Leonardo da Vinci

This chapter focuses on the determination of the full scattering matrix of a
scatterer. Particularly, given an arbitrary numerical aperture, we use fo-
cused beam coherent Fourier scatterometry to study its scattering processes.
This technique allows us to obtain the far field intensities of all scattered an-
gles, within the numerical aperture of the optical system, in one shot. The
corresponding phases of the field have been obtained with an interferometric
configuration. With this method it is possible to retrieve the maximum avail-
able information about the scatterer from scattered far field data contained
in the given numerical aperture of the system.

Parts of this chapter have been published in Applied Optics 55, 4408 (2016) [1].
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2.1. Introduction
In angular resolved scatterometry, given a certain illumination (for example: in-
cident amplitude, phase, polarization) and optical system (for example: incident
wavelength, numerical aperture), the set of all elements of the scattering matrix at
all angles that can be detected by the system contains the maximum information
about the scatterer.
In this chapter we investigate and demonstrate the limit of optical scatterometry
by determining the polarization-resolved amplitude and phase of the scattered field
using coherent visible illumination. The maximum information content is relevant
not only for the basic understanding of diffraction problems in optics, but is also
crucial for several applications in the semiconductor industry. Important examples
being chip fabrication metrology, surface inspection and defect detection.
Moreover, in optical lithography, along with the ability of printing sub-wavelength
structures, a stringent quality control of the lithographic process is often required.
Usually, periodic structures, namely gratings, are used as metrology targets. Slight
variations in dose, exposure or environmental conditions such as temperature, hu-
midity and pressure can lead to deviations of the ideal grating shape. Measurement
of the grating profiles can be done in principle with scanning electron microscopes
and/or atomic force microscopes, but optical scatterometry is the de-facto preferred
method because it is noninvasive and fast.
In optical scatterometry, the retrieval of the shape parameters of the grating is done
by matching the experimentally measured far-field scattered intensity distribution
with the expected distribution that is calculated by rigorous computations, using
for example the Rigorous Coupled-Wave Analysis (RCWA) method [2, 3]. To deter-
mine the ultimate resolution, one should gather the maximum amount of informa-
tion about the scattering matrix. There are many variants of optical scatterometry
techniques such as single incidence angle reflectometry, 2-Θ scatterometry, spec-
troscopic ellipsometry, Fourier scatterometry, interferometric Fourier scatterome-
try, and in recent years, coherent Fourier scatterometry (CFS) [4–14]. In particu-
lar, the latter can be made very fast since a focused coherent beam is used, and
the scattering information at many angles is captured in one shot. Furthermore,
when the period of the structure is such that diffracted orders overlap and the fo-
cused spot is scanned, the phase differences between these orders in CFS make
this technique more sensitive towards profile changes than incoherent Fourier scat-
terometry [15]. Nonetheless diffracted orders only overlap when the period is large
enough compared to the given numerical aperture (NA) of the focusing lens and
the illumination wavelength used. This implies that the advantage of CFS over in-
coherent scatterometry methods is limited to gratings of a certain minimum period.
To overcome this limitation, Sarathi et al. have recently proposed [16] an interfer-
ometric version of CFS, by which not only the amplitude but also the phase of the
scattering matrix elements is determined and hence an higher sensitivity towards
profile changes is achieved for arbitrary period. In interferometric CFS (ICFS), the
polarization-resolved scattered field can be retrieved not only for scattering angles
where orders overlap but for any scattering angle. ICFS utilizes a reference wave
that interferes with the far field generated by CFS to capture the phase information
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present in the zeroth order and, if they exist, in the overlapping orders. In the
latter case the difference in phase between the overlapping orders is retrieved by
scanning, as it is done for non interferometric CFS. Furthermore, by measuring all
possible orthogonal incident and scattered polarizations, one can recover the entire
complex scattering matrix, i.e., all information that can be obtained within the given
numerical aperture of the system. It is also important to notice that we use the
same lens to focus the incident wave into a spot and to project the scattered field
onto the CCD.
In this chapter we present the determination of the full scattering matrix using
ICFS. In particular, in Section 2.2 we summarize the most important aspects of the
theory. In Section 2.3 we describe the experimental details, with emphasis on the
optical set-up and the data acquisition. In Section 2.4 we discuss the comparison
with simulations and Section 2.5 contains the conclusions.

2.2. Theory
Let us begin by considering the scattering problem of a one dimensional grating. We
choose a coordinate system (𝑥, 𝑦, 𝑧) as shown in Fig. 2.1 with the 𝑧-axis coinciding
with the optical axis of the focusing system. The permittivity is a periodic function of
𝑥 and invariant along 𝑦. It is conventional to set 𝑧 = 0 at the top of the grating and
to choose 𝑧 positive in the direction of incidence (see Fig. 2.1). The incident field is
denoted as E , and the reflected field from the grating as E . Considering a grating
of thickness 𝑑, then we can express the electric fields as: E +E when 𝑧 < 0.

With Rayleigh’s method [17–19], the total field in the grating region can, for
example, be computed with the Rigorous Coupled Wave Analysis (RCWA) [2, 20,
21]. The reflected field is then obtained by subtracting the incident field from the
total field. In the half space 𝑧 < 0 the reflected field is expanded into a sum of
plane waves as follows:

E =∑[𝐸 s+ 𝐸 p] exp[𝑖(𝑘 𝑥 + 𝑘 𝑦 − 𝑘 𝑧)], 𝑧 < 0 (2.1)

where k = (𝑘 , 𝑘 , 𝑘 ) is the reflected wave vector. s and p respectively
denote the s- and p-polarisation states, i.e. the states for which the electric field is
perpendicular and parallel, respectively, to the plane of incidence. k is related to
incident wave vector k by:

𝑘 = 𝑘 + 𝑗2𝜋Λ , 𝑘 = 𝑘 , 𝑘 = −√(𝑘 ) − (𝑘 ) − (𝑘 ) (2.2)

Where Λ is the grating period. It is helpful to express the grating reflection in a
matrix form E = R (k )E , with:

R = (𝑟 𝑒 𝑟 𝑒
𝑟 𝑒 𝑟 𝑒 ) (2.3)

where, �̃� = 𝑟 𝑒 denotes the complex amplitude of the s-polarized com-
ponent of the 𝑚-th reflected order due to an incident wave with wave vector k and
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polarized parallel to the p direction. Note that when 𝑘 = 0, i.e. when the incident
plane wave is in the plane perpendicular to the grating structure, the matrix 𝑅 is
diagonal because in that case s- and p-polarisations are uncoupled. The matrix R
contains the complete set of reflection coefficients of the grating. In the inverse
diffraction problem of grating shape reconstruction [5], it is of extreme importance
to determine them as precisely as possible. Because of the ill-posedness of the
inverse diffraction problem [22], a fast and stable solution depends heavily on the
accurate measurement of these coefficients. Any intensity-based technique can at
best reveal the phase difference between different elements.
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Figure 2.1: A schematic diagram of our approach to the problem of one shot scattering matrix deter-
mination for a large number of incident angles. A. The coordinate system is attached to the
sample, with the plane chosen at the interface between the grating and the incident medium,
which is also the geometric focus plane of the objective. B. The far-field maps of the complex amplitude
of the field is projected on the CCD in the exit pupil of the objective where the coordinate system ( )
is chosen such that and are parallel to the - and -direction, respectively. C. The interface between
the half space and the grating and the interface between the grating and the substrate are
indicated by the dotted lines. Figure from [1].

By combining coherent Fourier scatterometry with temporal phase-shifting in-
terferometry, we show that it is possible to determine the complex reflection co-
efficients for many angles of incidence, in one shot. The basic idea is to use a
microscope objective to focus the incident beam onto the scattering sample, which,
in our case, is a one dimensional grating similar to what is represented in part C of
Fig. 2.1. In part B of the same figure, the far field co-ordinates (𝜉 − 𝜂) are known.
They are defined by:

𝜉 = 𝑘
𝑘

𝜂 =
𝑘
𝑘 . (2.4)
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The maximum angle which can be detected is limited by the numerical aperture
(NA) of the objective (√𝜉 + 𝜂 ≤ NA). We remark that Eq. (2.4) implies that 𝜉 and
𝜂 are parallel to the 𝑥- and 𝑦-direction, respectively.

In practice, because of the presence of the objective, there are some additional
geometric transformations to consider. If the objective is perfectly isotropic, it does
not create any additional phase difference between the s- and p-polarized compo-
nents. In that case, the incident and reflected field are related through ℛ instead
of R , where:

ℛ = 𝑓ΩR Ω . (2.5)

Where 𝑓 is a factor for energy conservation [16, 23] and Ω is the rotation of the
electric field introduced by the objective and is define as:

Ω = ( −sin𝜙 cos𝜙
− cos𝜙 − sin𝜙 ) with: 𝜙 = tan (𝜂/𝜉).

However, except R , all the other factors in Eq. (2.5) are merely geometric and do
not contain any information about the object. ℛ maps the incident pupil (before
the objective) to the outgoing pupil (after the objective) directly and therefor can
be expressed in terms of the (𝜉 − 𝜂) system. Thus, from now on, we express the
incident and outgoing fields in the (𝜉−𝜂) system as well, which respectively denotes
the field right before being incident on the objective and the field right after passing
through the objective.

In the experimental results that we are going to present, the incident state of
polarization is known and the incident field is measured by a wavefront sensor, so
that the complex amplitudes in every point of the entrance pupil are known. The
incident field is split into its (𝜉, 𝜂) components. The amplitudes of the matrix ele-
ments at a particular input/output polarization combination are directly measured
by imaging the exit pupil onto a CCD camera while the phase is obtained interfer-
ometrically by combining the field at the exit pupil with a reference beam.

2.3. Experimental realization
2.3.1. Setup
We designed and built a coherent scatterometer, along with an interferometer func-
tionality, based on temporal phase shifting interferometry. The design is basically
the one of a coherent Fourier scatterometer (see Ref. [15]) where a reference mir-
ror with a piezoelectric transducer is added to the open port of the beam-splitter.
This setup allows us to determine the scattering matrix of any object of interest.
The object under investigation is a periodic silicon on silicon square grating, de-
scribed by the parameters listed in Table 2.1. Those parameters, which have been
used as input values for the RCWA simulations, have been measured with atomic
force microscopy (grating height) and scanning electron microscopy (grating period
and MidCD). A schematic overview is shown in Fig. 2.2. The light from a He-Ne
laser (S, 𝜆 = 633𝑛𝑚) is coupled to a single mode fiber (SMF); the light exiting the
fiber is collimated (L = 20𝑐𝑚) and the desired input polarization direction is set
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Period (𝑛𝑚) height (𝑛𝑚) MidCD (𝑛𝑚) SWA (Degrees)
500 130 216 85

Table 2.1: Physical dimensions of the grating under investigation.

with a Glan-Taylor polarizer (POLin in the figure). To define the different states of
polarization, we will use the notation provided by Section 2.2. A beam-splitter (BS)
separates the beam for the sample and reference mirror arm. On the sample arm,
the polarized light is focused on the grating with a microscope objective (MO) Leitz
Wetzlar 20X infinity corrected, of numerical aperture NA = 0.4. In the reference
arm, the beam is reflected by a 𝜆/20 flat aluminum mirror controlled by a piezo
translation stage (PZT). The reflected light from the grating in the exit pupil of the
MO, as seen from the sample, is optically conjugated with the detector plane by
two lenses (L = 40𝑐𝑚 and L = 25𝑐𝑚). Before the beam is recorded by the CCD
camera, another polarizer (POLout) allows to select the output polarization. In our
scheme, output polarization (𝜉, 𝜂) means that the polarizer is parallel to the input
polarization (𝜉, 𝜂), respectively.

POL
out

POL
in

L
1

L
2

L
3CCD

PC

PZT

MO

BS

PZT

S

SMF

Figure 2.2: Schematic overview of the experimental setup. S: He-Ne laser; SMF: Single mode fiber; L1:
Collimating lens; L2,L3: Telescopic lenses; BS: nonpolarizing beamsplitter; POLin, POLout: Polarizers;
MO: Microscope objective; PZT: Piezo-electric translation stage; CCD: Data acquisition camera. Figure
from [1].

2.3.2. Data acquisition
As previously mentioned, the setup (and therefore its working principle) can be em-
ployed to quantify the scattering properties of a variety of different structures. For
the etched Silicon grating mentioned in the preceding section, input light of wave-
length 𝜆 = 633𝑛𝑚 and a MO with numerical aperture NA = 0.4, only the zeroth
order is captured by the CCD camera. Since there are no overlapping orders, the
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spot does not have to be scanned to retrieve the phase difference between overlap-
ping orders [15]. We obtain data for four input/output polarization combinations,
namely: 𝜉-𝜉, 𝜉-𝜂, 𝜂-𝜂 and 𝜂-𝜉. For each of them, intensity frames for several ax-
ial positions of the reference mirror are obtained by applying specific voltages to
the piezo translation stage. The phase of the object is then reconstructed from
the intensity data by means of the five-step phase shifting algorithm [24]. In fact,
since only the zeroth order is present, only one complex amplitude is required to
be calculated, thus the aforementioned algorithm is sufficient. When higher orders
are also present, we will need more phase steps.
In the case of phase retrieval by temporal phase shifting algorithm, there is always
an uncertainty in the piezo movement which results in an error in the intended
phase change of the reference beam. This error can be minimized either by using
phase retrieval algorithms that are less sensitive to the positioning errors and/or
by choosing the correct frame corresponding to the intended phase shift (in our
case it is 𝜋/2). We devised a correlation-based technique to minimize the error.
The method is explained in Fig. 2.3. The phase retrieval algorithm is implemented
with five intensity patterns recorded for the corresponding 𝜋/2 phase shifted ref-
erence arm of the interferometer. The correlation coefficient between the images
is computed for displacement vs voltage, which indeed gives the information about
the phase shift between the images. Five images are then chosen for the phase
retrieval. A single image recorded by the detector is an interference pattern for a
defined input and output polarization:

𝐼 = 𝐼ref + 𝐼obj + 2√𝐼ref𝐼obj cos(𝜙 ), (2.6)

where 𝐼ref and 𝐼obj indicate the beam intensities of the reference arm and the object
arm, respectively and 𝜇 = 𝜉, 𝜂 and 𝜈 = 𝜉, 𝜂. If we shift the interference pattern by
the five phase step valuesΦ = 0, 𝜋/2, 𝜋, 3𝜋/2, 2𝜋, then we have a collection of five
different measured intensities {𝐼 } with 𝑟 = 1,… , 5. Acquiring five frames in identical
input and output polarization conditions and then rearranging the intensities gives
the phase in the pupil [25]:

𝜙 , = arctan [
2(𝐼 − 𝐼 )
2𝐼 − 𝐼 − 𝐼 ] . (2.7)

To extract the five intensity maps from the experimental data, we analyze the cor-
relation 𝜌 of the captured experimental images 𝑗 with respect to the first measured
picture 𝑗 = 1:

𝜌 =
∑ , [(𝐼 (𝜉, 𝜂) − ⟨𝐼 ⟩)(𝐼 (𝜉, 𝜂) − ⟨𝐼 ⟩)]

√[∑ , (𝐼 (𝜉, 𝜂) − ⟨𝐼 ⟩) ] [∑ , (𝐼 (𝜉, 𝜂) − ⟨𝐼 ⟩) ]
, (2.8)

where 𝐼 (𝜉, 𝜂) indicates the j-th image at the pixel position (𝜉, 𝜂), whilst ⟨𝐼 ⟩ is the
average over all the pixels of the j-th image.
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Figure 2.3: Correlation function as a function of the voltage induced in the piezo transducer. We look
at the maxima and minima of the correlation curve to monitor the movement of the piezo. Only four
experimental images are shown for simplicity. Figure from [1].

Because we are recording images of an interference pattern, we expect the func-
tion 𝜌 to have a cosine-like behavior (as confirmed by the data trend in Fig. 2.3).
The five different phase steps Φ we need to consider correspond to the maxima
and minima of 𝜌 , along with points of 𝜌 = 0 when Φ = 𝜋/2, 3𝜋/2, over one
period. These points are highlighted with red marks in Fig. 2.3. In this way, by
selecting the right images from the experimental data and substituting them into
Eq. (2.7), we can retrieve the phase information we need. The obtained phase data
is unwrapped using a quality guided path algorithm [26]. More details about this
method are given in Appendix A; the interested reader should refer to [27–29] for a
more exaustive discussion. Experimental data were treated with smoothing filter to
minimize the noise influence using a gaussian kernel [28] in the windowed Fourier
transform [29].

2.4. Comparison between measurement and simu-
lation

To validate the measurements, rigorously simulated data have been obtained with
the Rigorous Coupled Wave Analysis (RCWA) method [3, 30]. As input for the
simulations we used the experimentally measured intensity and phase of the input
field, as measured in the plane before the objective (MO in Fig. 2.2). In Fig. 2.4 and
Fig. 2.5, the experimental and simulated intensities and phases of the scattered far
field are shown for three different sets of input/output polarization, namely 𝜂-𝜂, 𝜂-
𝜉, 𝜉-𝜉. In case of a not-birefringent grating we assume 𝜂-𝜉 and 𝜉-𝜂 to be identical.
Since in our example the scattered far field consists only of the zeroth order, we
immediately obtain the complex elements of the scattering matrix.

The measured far field intensities and phases show a good match between ex-
periments and simulations. The differences are attributed to extra insertion losses
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and noise that have not been taken into account in the simulations. In Fig. 2.5, the
deviation between experimental and simulated phase in the 𝜂 − 𝜉 case for normal
incidence can be attributed to the low intensity levels in the far fields used to re-
construct the phase map. Finally, we add that the ability to obtain the phase maps
defines the value of the technique for phase sensitive scatterometry. With phase
and amplitude knowledge of the scatterer, all field components (in our case, re-
flected) from the object within the numerical aperture of the optical system, except
a constant phase, are obtained.

Figure 2.4: Measured (left) and simulated (right) intensities of the far field scattered by a grating illu-
minated by a focused field for different combinations of input and output polarizations. The incident
wavelength is , the numerical aperture is NA . . The grating parameters are given in Ta-
ble 2.1. Figure from [1].
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Figure 2.5: Phase of the scattered far field retrieved from measurements (left) and from simulations
(right) for different combinations of input and output polarizations. The incident wavelength is ,
the numerical aperture is NA . . The grating parameters are given in Table 2.1. Figure from [1].
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2.5. Conclusions
In this chapter we have introduced a fast and reliable way to obtain the entire
scattering matrix of a periodic object by measuring the phase of the scattered field
from all angles within the numerical aperture of the system, using ICFS. With ICFS
one is able to extend optical scatterometry to its maximum potential. The method
presented here provides information on the scattering matrix resolved over polar-
ization for all scattering angles, which can be extended to higher diffraction orders
if they exist. Although the results presented above are for small NA (0.4) and
long wavelength (633𝑛𝑚), it can be scaled to higher NA and shorter wavelengths.
This approach is not only limited to periodic objects and thus can be applied when
scattered light from an arbitrary scatterer is used to retrieve information about it.
Because the complex scattering matrix provides all possible information, we believe
that this method can also be used to set the limits of optical scatterometry in differ-
ent applications such as object parameter retrieval, detection of (sub-wavelength)
particle contamination, defect detection and surface characterisation. Furthermore,
depending on the features that are to be retrieved, one can only select the mea-
sured data that contain the most sensitive part of the information for this feature
and discard the other data. In this way, the speed of scatterometry can be in-
creased.
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3
Side-wall angle detection

enhancement through spiral
mode projection method

I have not failed. I’ve just found 10,000 ways that won’t work.

Thomas A. Edison

This is the first of a series of three chapters in which we focus our efforts in
studying alternative ways to estimate the side-wall angle of a scatterer, more
precisely a cliff-like object. In fact, as it has been been already pointed out
in this dissertation, having a fast and precise method to measure the side-
wall angle of periodic (or non-periodic) structures is still a very challenging
problem in lithographic applications. For this reason, over the years, many
techniques have been proposed to circumvent this limitation, with the final
goal to give the most precise geometrical description of a given target. In
this chapter we aim at introducing the basis for a new method to detect the
side-wall angle in a fast and reliable way. The novelty of this work is the
use of the spiral spectrum of a light beam for side-wall angle measurements,
i.e., the light transmitted by a particular structure is projected onto properly
tailored spiral modes and only the most sensitive mode to the side wall angle
is detected and processed.

Parts of this chapter have been published in Proc. SPIE 9526, 2952607-952607-8 (2015) [1].
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3. Side-wall angle detection enhancement through spiral mode projection

method

3.1. Introduction
Nowadays, the demand for faster, smaller and lighter electronic devices sets strin-
gent requirements for nano-lithography [2]. As we have already discussed in the
previous chapter, modern electronic chips can be modeled with optical gratings,
which are often used as targets for fine-tuning of the lithographic machines. These
targets are usually described by four different shape parameters that fully charac-
terize their geometrical profile, namely MidCD (Middle Critical Dimension), side-wall
angle (SWA), height and period. The knowledge of these parameters is a key factor
to fabricate chips accordingly to the initial design; the better the error estimation
of their values, the more devices will behave as predicted. Many clever meth-
ods have been developed in recent years to increase the precision with which the
shape parameters are retrieved. An example is Coherent Fourier Scatterometry
(CFS), partially described in Chapter 2, with which it has been demonstrated [3]
that it is possible to retrieve, with very high sensitivity, the values of the aforemen-
tioned quantities. Nonetheless, regarding the side-wall angle measurement, the
uncertainty is still quite large compared to the other parameters, thereby making
conventional detection techniques not very appealing for its determination. As a
consequence, over the years, several newmethods have been designed to measure,
as precisely as possible, the SWA value [4–6]. Available techniques try to exploit
all the fundamental properties of light, e.g. the energy spectra and the energy
density of light signals, but in the past few years much attention has been given to
the study of the interaction between angular momentum and matter. It is indeed
known that angular momentum can contain not only a spin contribution, associated
to the polarization of the electromagnetic fields, but also an orbital contribution as-
sociated to the spatial profile of the light beam amplitude and phase-front [7, 8].
Furthermore, it is possible, within the paraxial regime, to decouple them [9–11]. An
important difference between the spin angular momentum and the orbital angular
momentum is that the former manifests itself in the vectorial nature of a light field
and is thus sensitive to material anisotropies; conversely, the orbital angular mo-
mentum can be associated to the topological properties of a light field and hence
it is sensitive to phase gradients and discontinuities. It is interesting to observe
that in the past years, the orbital momentum has resulted in important applica-
tions in fields that range from optical tweezers in biosciences, to microfluidics and
micromechanics [12–15].

In this chapter we describe a proof of concept of an experimental technique
that could potentially increase the precision of the SWA detection, while keeping
the experimental setup fast and non-invasive. The key point is to look at the spiral
mode of a light beam, using a technique called spiral mode projection. The potential
of this approach has already been demonstrated [16, 17] and it has also been used
to determine, with incredible precision, the height of thin nanolayers [18]. In this
technique, the target is illuminated with a beam presenting a convenient spatial
shape (amplitude and phase), the reflected (or transmitted) signal is then expanded
into spiral modes; information regarding the target can be acquired by analyzing
the corresponding spiral spectrum.

The chapter is organized as follows. In Section 3.2 we describe two possible
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ways of creating an optical beam carrying singularities, namely by an amplitude
or a phase hologram; furthermore we look at the Fraunhofer propagation of a
beam created with such an hologram. In Section 3.3 we explain the Spiral Mode
decomposition of a field and we present three different cases of illumination: a
Gaussian beam, a 𝐿𝐺 , and a 𝐿𝐺 , . For each of them we study the interaction with
a phase step characterized by a certain side-wall angle 𝛼. Section 3.4 describes,
from a numerical point of view, the mode decomposition for the case of a Gaussian
beam incident, which is chosen as the preferred type of illumination based on the
results of Section 3.3. The outcome of the numerical simulation are then compared
with experimental results in Section 3.5. Finally, Section 3.6 summarizes the most
relevant findings.

3.2. Two ways to generate a light beam with singu-
larities

3.2.1. Fork Hologram
Given that we have introduced the concept of a beam with a phase singularity [19,
20], it is also useful to remind the reader how such a light field can be generated
experimentally. A flexible way to produce modes with singularities is through the use
of computer generated holograms. The interference pattern of a simple reference
beam (plane wave) and a second one containing an optical vortex is known in
literature as fork hologram. Let us consider a plane wave of the form:

𝐸ref = 𝐸pw 𝑒 ( ), (3.1)

with an incident angle 𝜓 = arcsin 𝑘𝑘 and intensity |𝐸pw| . In the 𝑧 = 0 plane, the

interference pattern with a beam containing an optical vortex, 𝐸vor = 𝐸v, (𝑟)𝑒 ,
is given by:

𝐼 = |𝐸ref + 𝐸vor| = |𝐸 | + |𝐸v, (𝑟)| + 2ℜ [𝐸pw 𝐸v, (𝑟)] cos (𝑘 𝑥 − 𝑙𝜙) . (3.2)

If we ignore the amplitude variation of the doughnut beam and retain only the
important phase information in the form of a spatially varying transmissivity [19]:

𝑇 = 1
2 [1 + cos(𝑘 𝑥 − 𝑙𝜙)] . (3.3)

It is instructive to distinguish between two types of holograms: amplitude and phase
holograms. The former absorbs light in the dark fringes and transmits light in the
bright ones, hence the diffracted beam acquires a specific phase-front defined by
the fringe pattern. The latter type of hologram does not absorb light (in theory) but
changes the optical retardation in space, according to the printed phase pattern.
In Figs. 3.1 and 3.2 we can see two examples of phase holograms for 𝑙 = +1 and
𝑙 = +2. We discuss here the main characteristics of these two types of hologram:

• Amplitude holograms: If the intensity pattern from equation Eq. (3.2) is
directly printed on a photographic film (or display onto a spatial light modula-
tor) and illuminated by a Gaussian beam propagating along the 𝑧−axis, just
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Figure 3.1: Phase holograms obtained for . The retardation is given in the [ , ] range.
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Figure 3.2: Phase holograms obtained for . The retardation is given in the [ , ] range.
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after the hologram the field will be:

𝐸 = 𝑇𝐴 𝑒 / , (3.4)

where 𝐴 is the central amplitude, 𝑤 the spot size of the beam and 𝑇 is the
transmission function of the hologram. Substituting for T in Eq. (3.3), we find:

𝐸 = 𝐴
2 𝑒 / + 𝐴4 𝑒 / 𝑒 ( ) + 𝐴4 𝑒 / 𝑒 ( ). (3.5)

We can therefore recognize that the outgoing beam is consisting of a zero or-
der beam propagating along the axis and two (conjugate) first order diffracted
beams, each of them containing a singularity of opposite charge +𝑙 and −𝑙.
In practice, binary holograms are most frequently used, in this case the trans-
mission function of the hologram is:

𝑇 = 1
2 [1 + sign(cos(𝑘 𝑥 − 𝑙𝜙)] , (3.6)

which can be written using the formalism of Fourier series:

𝑇 = 1
2 +

1
2 ∑ 𝑔(𝑠)𝑒 ( )( ), (3.7)

with 𝑔(𝑠) = ( )
( ) .

Therefore the output field is composed by an infinite number of orders, each
of them carrying a vortex with topological charge 𝑙(2𝑠 + 1) and propagating
at the angle:

𝜙 = sin ((2𝑠 + 1)𝑘𝑘 ) . (3.8)

• Phase hologram: In the case of a phase hologram, the transmission func-
tion becomes:

𝑡(𝑥, 𝑦) = 𝑒 [ ( )], (3.9)

where 𝑎 is the phase depth of the hologram. If we rewrite this equation as
follows:

𝑡(𝑥, 𝑦) = 𝑒 𝑒 ( ), (3.10)

we can use the expansion:

𝑒 ( ) = ∑ 𝐽 (ℎ)𝑒 , (3.11)
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to represent the complex exponential function; the term 𝐽 (ℎ) represents the
Bessel function of order 𝑚. Inserting Eq. (3.11) into Eq. (3.10) we obtain:

𝑡(𝑥, 𝑦) = 𝑒 ∑ 𝐽 (𝑎2) 𝑒
( )

= 𝑒 ∑ 𝑖 𝐽 (𝑎2) 𝑒
( ). (3.12)

Eq. (3.12) shows that, for a sinusoidal phase hologram, all orders of beam
diffraction are present. Each of them has a topological charge 𝑙 = 𝑚𝑙 (where
𝑙 was the initial value of the vortex beam used to create the hologram) and
travels at an angle:

𝛼 = sin (𝑚 𝑘
𝑘 ) . (3.13)

3.2.2. Kummer beams
In the literature it is widely claimed that pure azimuthal Laguerre-Gaussian beams
𝐿𝐺 , can be created with amplitude (or phase) modulating devices like fork holo-
grams and spiral phase plates; nevertheless, this is not entirely true [21]. In this
section we therefore deal with the mathematical problem of deriving the exact so-
lution for the far-field diffraction pattern produced by a fork hologram, when it is
illuminated by a Gaussian beam.

Let us consider a reference frame with cylindrical coordinates (𝜌, 𝜑, 𝑧) such that
the 𝑧 = 0 plane coincides with the fork hologram plane. We also make the as-
sumption that the Gaussian beam illuminates the fork hologram in such a way that
its waist lies in the grating plane. In this conditions, the complex amplitude of the
Gaussian beam at 𝑧 = 0 assumes the form:

𝑈 (𝜌, 𝜙, 𝑧 = 0) = 𝑒 . (3.14)

As we already know from the previous sections, the net contribution of the fork
hologram is just a phase modulation 𝑒 , where 𝑙 depends on the diffracted order
observed. Nevertheless, to be consistent with Maxwell equations, the outgoing field
will have the form:

𝑈 (𝜌, 𝜙) = 𝐴 (𝜌)𝑒 𝑒 . (3.15)

The far field observed at a distance 𝑧 from the fork hologram is given by:

𝑈 (𝑟, 𝜃, 𝑧 ) = 𝑒 ( )

𝑖 𝜆 𝑧 ∬𝑈 (𝜌, 𝜙)𝑒 ⋅ 𝜌𝑑𝜌𝑑𝜙, (3.16)
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inserting Eq. (3.15) we get:

𝑈 (𝑟, 𝜃, 𝑧 ) = 𝑒 ( )

𝑖 𝜆 𝑧 ∫ 𝐴 (𝜌)𝑒 𝜌𝑑𝜌∫ 𝑒 [ ( )]𝑑𝜙.
(3.17)

Using one of the integral representations of the Bessel functions of the first kind:

𝐽 (𝑡) = 1
2𝜋 ∫ 𝑒± ( )𝑑𝛾, (3.18)

and the substitution 𝜙 − 𝜃 = 𝜓 − 𝜋/2, it follows that:

∫ 𝑒 ( ( ) )𝑑𝜓 = 2𝜋(−𝑖) 𝑒 𝐽 (𝑘 𝜌 𝑟𝑧 ) , (3.19)

which brings us:

𝑈 (𝑟, 𝜃, 𝑧 ) = (−1) 𝑒
( )

𝑖 𝜆 𝑧 𝑒 ∫ 𝐴 (𝜌)𝐽 (𝑘 𝜌 𝑟𝑧 ) 𝑒 𝜌𝑑𝜌. (3.20)

For simplicity, let us consider the following dependance for the amplitude of the
outgoing beam: 𝐴 (𝜌) = 𝜌. The integral in the rightmost part of Eq. (3.20) can
therefore be evaluated using the gamma function Γ and the confluent hypergeo-
metric Kummer function M1:

∫ 𝐽 (𝑐𝑡) 𝑒 𝑡 𝑑𝑡 = 𝑐 𝑝 ( )/ 2 Γ [(𝛼 + 𝜈)/2]
Γ (𝜈 + 1) 𝑀 (𝛼 + 𝜈2 , 𝜈 + 1,− 𝑐4 𝑝) ,

(3.21)
therefore, substituting 𝜈 = 𝑙, 𝑐 = , 𝑝 = and 𝛼 = 3 we obtain:

𝑈 (𝑟, 𝜃, 𝑧 ) = 𝑤 (−1) 𝑒
( )

𝑖 𝜆 𝑧
Γ [(3 + 𝑙)/2]
Γ (𝑙 + 1) (𝑘𝑟𝑤2𝑧 ) ×

𝑒 𝑀(3 + 𝑙2 , 𝑙 + 1,−𝑘 𝑟 𝑤4𝑧 ) . (3.22)

With the substitution:

𝑤 = 𝜆 𝑧
𝜋𝑤 , (3.23)

this last equation can be rearranged and the form:

𝑈 (𝑟, 𝜃, 𝑧 ) = 𝐴 (𝑟, 𝑧 ) ( 𝑟
𝑤 ) 𝑒 𝑀 (3 + 𝑙2 , 𝑙 + 1,− 𝑟

𝑤 ) . (3.24)

1A.P. Prudnikov, Yu.A. Brychkov, O.I. Marichev, Integrals and Series: Special Functions, Nauka, Moscow,
1983: equation 2.12.9.3
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Another equivalent way to express the far field diffraction pattern of a Gaussian
beam behind a fork hologram is to use a superposition of two Bessel function. In
particular2:

∫ 𝐽 (𝑐𝑡) 𝑒 𝑡 𝑑𝑡 = 𝑐 √𝜋
8𝑝 / 𝑒 [𝐼( )/ (

𝑐
8 𝑝) − 𝐼( )/ (

𝑐
8 𝑝)] , (3.25)

where 𝐼 is the 𝑚 -order modified Bessel function. This is valid when 𝛼 = 2.
Therefore, the far field becomes:

𝑈 (𝑟, 𝜃, 𝑧 ) = 𝐴 (𝑟, 𝑧 ) 1
8𝜋√𝜋

𝑧
𝑘 𝑤

𝑟
𝑤 𝑒 ×

𝑒 [𝐼 ( 𝑟
2𝑤 ) − 𝐼 ( 𝑟

2𝑤 )] , (3.26)

where for 𝑤 is still given by Eq. (3.23).

3.3. Laguerre-Gaussian mode expansion
After this brief introduction on beams carrying phase singularities and how it is
possible to create them, we concentrate our attention on how a light field can be
expanded in terms of Laguerre-Gaussian (𝐿𝐺) beams [22–24]. This type of beams
are described, at their waist, by the following profile:

𝐿𝐺 , (𝑟, 𝜃) = √
2𝑝!

𝜋(𝑝 + |𝑚|)!
1
𝑤 (𝑟√2𝑤 )

| |

𝐿| | (2 𝑟𝑤 ) 𝑒
( )

𝑒( ) (3.27)

where the symbol 𝐿| | stands for the Laguerre polynomials and 𝑤 is the waist size.
The amplitude and phase profile of these beams is characterized by two integer
numbers, usually labeled as 𝑝 and 𝑚. The former can take any non-negative value
and determines the radial shape (and therefore the node number) of the beam
distribution; the latter, which can take any integer number, describes the azimuthal
phase dependence of the mode. When 𝑚 ≠ 0, the LG modes contain optical
vortices, with topological charge, or winding number, given by 𝑚 itself. We notice
that in the case 𝑝 = 𝑚 = 0 the light profile is nothing but the simple Gaussian
beam. Figures 3.3 and 3.4 show an example of 𝐿𝐺 , and 𝐿𝐺 , , respectively. The
Laguerre-Gaussian functions are a complete orthonormal set of functions; in fact
we can introduce the following inner product for the Laguerre polynomials:

∫ 𝐿 (𝑥)𝐿 (𝑥)𝑑𝜇(𝑥) = Γ(𝑚 + 𝛼 + 1)
𝑚! 𝛿 , with 𝑑𝜇(𝑥) = 𝑥 𝑒 𝑑𝑥 (3.28)

by defining the functions 𝜓 (𝑥) = 𝑥 / 𝑒 / 𝐿 (𝑥) and 𝜓 (𝑥) = 𝑥 / 𝑒 / 𝐿 (𝑥)
we get:

∫ 𝜓 (𝑥)𝜓∗ (𝑥)𝑑𝑥 ∈ 𝐿 (ℝ) . (3.29)

2See note 1 page 29
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Figure 3.3: Intensity profile of a Laguerre-Gaussian beam with and
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Figure 3.4: Intensity profile of a Laguerre-Gaussian beam with and
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It is easy to see that if 𝑥 = 2 𝑟 /𝑤 and 𝛼 = |𝑚| the function 𝜓 (𝑥) represents
exactly the Laguerre-Gaussian modes. This property allows us to expand any field
as a vector state in that basis:

𝑓(𝑟, 𝜃) =∑
,
𝑐 , 𝐿𝐺 , (𝑟, 𝜃), (3.30)

where:

𝑐 , = ∫ ∫ 𝑓(𝑟, 𝜃) 𝐿𝐺∗, (𝑟, 𝜃)𝑟𝑑𝑟𝑑𝜃. (3.31)

In this way, we can look at the spiral decomposition of any given input field and,
for instance, observe its change after the interaction with a sample. By looking at
how each individual mode gets modified by the presence of an object, we can infer,
and therefore quantify, important properties that define it.

More specifically it is possible to project a generic field 𝑓(𝑟, 𝜃) into spiral har-
monics exp (𝑖𝑚𝜃) using a rather simple expression; this accounts for the weight of
all the 𝐿𝐺 modes with identical azimuthal number 𝑚, independently of the radial
number 𝑝:

𝑓(𝑟, 𝜃) = 1
√2𝜋

∑ 𝑎 (𝑟) exp (𝑖𝑚𝜃), (3.32)

where:

𝑎 (𝑟) = 1
√2𝜋

∫ 𝑓(𝑟, 𝜃) exp (−𝑖𝑚𝜃) 𝑑𝜃, (3.33)

(𝑟, 𝜃) are coordinates in the transverse plane and 𝑎 (𝑟) describes the radial de-
pendence associated with every spiral mode.

In this chapter we focus on the analysis, in the limit of paraxial optics, of the
interaction between a phase object and an input beam; this means that such a
target will mainly act on the overall phase of the beam which is interacting with it,
leaving its amplitude almost unchanged. The scatterer, in our model, is a step with
a specific height and side-wall angle (SWA) that has been studied both theoretically
and experimentally. The goal of our study is to prove that the we can infer the
height and side-wall angle of the structure under study by exploiting the spiral mode
change during the interaction between the light and the scatterer. The procedure
we apply is similar to a previous work [17], although in our case the detection of the
zeroth order mode is used to estimate a specific parameter, namely the side-wall
angle.

In the next subsections we will analyze how different Laguerre-Gaussian modes
interact with a cliff-like object, characterized by a side-wall angle 𝛼. This object is
assumed to be a pure phase target, hence the amplitude profile of the incoming
beam is left untouched. We will look at the energy content, after the interac-
tion with the aforementioned object, of three different topological charges, namely
𝐿𝐺 , , 𝐿𝐺 , , 𝐿𝐺 , . This analysis is necessary to find out which input mode is more
sensitive to a small side-wall angle change. The height of the object under study
was designed to give a phase change of 𝜋 across the step in reflection, therefore
its height must be 𝜆/4.
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3.3.1. Gaussian beam incidence
We begin by considering a Gaussian beam impinging on a phase step target which
can be modeled by the following equation:

𝜙 (𝑥) = ℎ
2 [1 + erf (𝑡 √𝜋

𝑥
ℎ)] , (3.34)

where the symbol erf represents the Gaussian Error Function defined by:

erf(𝑥) = 2
√𝜋

∫ 𝑒 𝑑𝑠, (3.35)

ℎ and 𝑡 represent the height of the step and a direct link to the slope of this function,
respectively. In fact, the first derivative of this function is given by 𝑡 exp (−𝑥 ),
hence its slope - in other words, the side-wall angle - varies with the parameter 𝑡
in a neighboring region of zero. To visualize this function, a plot of 𝜙 (𝑥) is given in
Fig. 3.5 for several values of the parameter 𝑡, which can be translated into different
slope angle values.

	  Figure 3.5: Plot of the function ( ) given by Eq. 3.34 for different values of , which can be translated
into different slope angle values.

The expression of the energy content (weight) carried by a generic mode 𝑚 is:

𝑃 = 𝑐
∑ 𝑐 , (3.36)

in which:

𝑐 = |∫ 𝑎 (𝑟)𝑟𝑑𝑟| , (3.37)
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Figure 3.6: Mode power as function of the edge position normalized to the waist of the beam for a
perfect ∘ edge at the center of the beam, for a phase shift.

and 𝑎 (𝑟) is given by Eq. (3.33). The weight of the first three modes, corresponding
to 𝑚 = 0, 1, −1, are plotted in Fig. 3.6; it can be readily seen that the zeroth
order mode presents the biggest change in intensity when we scan the sample
in a direction perpendicular to the beam; we therefore believe it is more practical
to monitor the signal corresponding to this mode. The net effect of the cliff is
evident if we graphically compare the mode expansion before (Fig. 3.7) and after
(Fig. 3.8) the interaction with the cliff; by doing so we also notice that only the low
order modes are worth monitoring because the higher orders are too small to be
detected.

When the side-wall angle we are interested in is not 90∘ but has a (smaller) value
close to it, the signal - energy content - we need to be able to detect is quite small,
on the order of 10 or less. Fig. 3.9 shows the difference between 𝑃 values when
𝛼 = 90∘ and when 𝛼 = 87∘; this gives us an idea of the detection sensitivity that is
needed in order to capture an angle difference of 3∘. Although many experimental
techniques nowadays available are able to resolve an angle difference of 3∘, this
could be easily detectable in our case as well, since the difference is only 10 .
Nevertheless, when the side-wall angle differs only by a few tenth of a degree, the
value of 𝑃 decreases by orders of magnitude.

As stated previously, the main scope of the spiral mode detection is to obtain
an increase in the sensitivity of the side-wall angle measurements for values close
to 90∘. For this reason, an interesting case would be if one considers a side-wall
angle of 89∘, due to the extreme difficulty in the determination of the slope value
in this case. If the detection system is designed to detect the intensity differences
of the 𝑚 = +1 and/or 𝑚 = −1 orders coming from the fork grating, it should be
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Figure 3.7: Spiral mode expansion of a purely Gaussian beam corresponding to , .
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Figure 3.8: Spiral mode expansion for a Gaussian beam after the interaction with a perfect ∘ cliff.
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Figure 3.9: Energy content difference between the spiral mode expansion of a Gaussian beam scattered
by a perfect ∘ cliff and a ∘ slope.

possible, according to Fig. 3.10, to distinguish an angle difference of 1∘.

3.3.2. 𝐿𝐺 , beam incidence
It is worth trying other types of illumination, to verify whether this could bring any
benefit, or not, to the side-wall angle detection. Particularly, we studied two differ-
ent beams, namely the 𝐿𝐺 , and 𝐿𝐺 , modes. As we expected, different modes
are now excited, as can be seen in Fig. 3.11 when the SWA is 89∘. Nevertheless,
even though other modes are now present in the decomposition, Figure 3.12 shows
that the Gaussian beam is still a better candidate to detected small angle variations
since in the present case the coupling coefficient is an order of magnitude smaller
than in the case of 𝐿𝐺 , illumination.

3.3.3. 𝐿𝐺 , beam incidence
In this section we consider an input Laguerre-Gaussian beam with a radial number
𝑝 = 1 and topological charge 𝑚 = 1. A 𝜋 phase shift across its center will excite
the spiral modes with 𝑚 = −1 and 𝑚 = +1, but they are now centered on 𝑝 = +1
instead of 𝑝 = 0. The difference between the spiral expansion of a 𝐿𝐺 , which
interacts with a perfect step, and the expansion of the same beam after interacting
with a cliff with 89∘ slope, brings us the result depicted in Figure 3.13. Again, this
is not as good as what is presented in figure 3.10, where the maximum of the
coupling coefficient is approximately 1 ⋅ 10 .

We have demonstrated, throughout Section 3.3, that by means of the mode
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Figure 3.10: Energy content difference between the spiral mode expansion of a Gaussian beam scattered
by a perfect ∘ cliff and a ∘ slope.
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Figure 3.11: Spiral mode expansion of a LG , beam after the interaction with a cliff characterized by a
SWA of ∘.
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Figure 3.12: Energy content difference between the spiral mode expansion of a , beam scattered
by a perfect ∘ cliff and a ∘ slope.
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Figure 3.13: Spiral mode expansion of a LG , beam after the interaction with a cliff characterized by a
SWA of ∘.
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expansion technique we can be sensitive to very small side-wall angle variations,
up to one degree. We have seen that any beam can be expanded in terms of spiral
modes and hence the energy content of each mode before and after the interac-
tion with a scattering object can be estimated. Furthermore, we have seen that
illuminating the object under study with different type of beams leads to different
expansions. Among the different illumination modes that have been tested, the
Gaussian beam is the best choice for high sensitivity to the side-wall angle change.

3.4. Simulation
In Section 3.3 we have seen how a field can be expanded into LG modes and
how three different modes interact with a cliff-like object characterized by a certain
side-wall angle 𝛼. We have determined that, in this specific case, an input beam
with a Gaussian profile is the most suitable choice. Thus in this section we focus
mainly on the interaction between a Gaussian field and a phase step object. In
this circumstance, the height of the sample is designed to give a phase shift of
𝜋 in transmission. We then detect the 𝑚 = 0 mode of the beam scattered by
the sample. Ideally, the target will be made of a substrate, on top of which we
deposit a layer of a desired material that covers part of the sample; its height
will be chosen accordingly to the phase change we want to imprint in the incoming
beam. Nonetheless, fabrication processes always give a trade-off with the designed
parameters we hope to achieve. As a result, the coated layer will not present a
sharp and abrupt profile, but rather a smoother contour with round edges and an
unknown side-wall angle. This behavior can be taken into account theoretically
by modeling the target with Eq. (3.34). Based on this equation and the behavior
we just described, the transmission function of the target can be defined with the
following equation:

𝑇(𝑟, 𝜃, 𝑥 ) ∶= {𝛽 exp [𝑖𝑘𝜙 (𝑥)], if 𝑟 cos (𝜃) > 𝑥
1, if 𝑟 cos (𝜃) ⩽ 𝑥 , (3.38)

where 𝛽 is the modulus of the transmittance of the object and 𝑥 corresponds to
the position of the edge of the sample. We immediately notice that, to get a phase
shift of 𝜋 in transmission, the optical path difference between the portion of the
beam that goes through the step and its surroundings should be 𝜆/2, with 𝜆 being
the wavelength in air. In the case where the input Gaussian beam is represented
by the function 𝐿𝐺 , (𝑟, 𝜃), the beam that exits the target is given by 𝑈(𝑟, 𝜃, 𝑥 ) =
𝐿𝐺 , (𝑟, 𝜃)𝑇(𝑟, 𝜃, 𝑥 ). Subsequently, using Eqs. (3.32) and (3.33), we can compute
the spiral mode expansion. In particular, the expression for the radial dependence
is:

𝑎 (𝑟) = 1
√2𝜋

∫ 𝐿𝐺 , (𝑟, 𝜃)𝑇(𝑟, 𝜃, 𝑥 ) exp (−𝑖𝑚𝜃) 𝑑𝜃 . (3.39)

This coefficient is then substituted into Eq. (3.37) in order to obtain the energy con-
tent carried by the mode𝑚. Fig. 3.15 shows a plot of 𝑐 (obtained by Eqs. (3.37)) as
a function of the sample position with respect to the beam. The beam is scanned or-
thogonally to the sample and, for every position, the intensity is detected; a sketch
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of this procedure is given in Fig. 3.14 for clarification. Fig. 3.15 shows a plot of |𝑎 |

Figure 3.14: Sketch of the scanning procedure performed during data acquisition.

as a function of the sample position. The plotted intensity profile is obtained with the

Figure 3.15: Plot of (given by Eqs. 3.37) as a function of the position of the target with respect to
the beam.

following input parameters 𝛽 = 0.94, ℎ = 304𝑛𝑚 and 𝑡 = 0.0029 → SWA = 0.16∘.
Furthermore, the 𝑥-axis is to the waist value. The curve is not symmetric around
the center because of the presence of the 𝛽 coefficient in one of the two sides of
the transmission function 𝑇(𝑟, 𝜃, 𝑥 ). The model developed in this section will be
used as best fit for the experimental data.

3.5. Experiment and discussion
The following step consists in verifying experimentally the numerical results ob-
tained with the simulations. We therefore have built an experimental setup to test
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the predictions given by the numerical analysis for the case of a Gaussian input
beam. A schematic representation of the optical setup is given in Fig. 3.16. A He-
Ne laser illuminates a sample made of a glass substrate with a coated area which
covers approximately one half of the total available surface; the material used in this
process is silicon nitride (refractive index of 2.01 at 633𝑛𝑚) and the layer thickness
is 304𝑛𝑚. The specimen is mounted on a translation stage that allows to scan the
sample in a direction perpendicular to the cliff. The sample is optically conjugated
to a fiber collimator by means of a 4𝑓 system (lenses L and L ), in which either
lenses have a focal length of 10 𝑐𝑚. Subsequently, a single mode fiber sends the
signal to a photodetector that is connected to a low noise current amplifier. The
amplifier is needed because of the very low intensity value of the signal when half
of the Gaussian input beam experiences a 𝜋 phase shift. The amplifier is then con-
nected to an oscilloscope (not represented in the figure) to monitor the voltage.
The exact position of the conjugated plane between the sample and the fiber col-

Figure 3.16: Sketch of the experimental setup. The source is a He:Ne laser, which directly illuminares
the sample; L and L make a 4-f system with . A Thorlabs collimator couples the light into
a single mode fiber. The fiber is then connected to a photodiode and subsequently to an amplifier that
helps to enhance the signal. The sample used is made of a glass substrate with a silicon nitride coating.

limator is crucial; in fact, since the whole detection scheme is based on the phase
change that the input beam experiences while interacting with the object, we need
to be sure that no extra phase changes are introduced by propagation effects. The
profile of the step sample has been also measured independently with a profilome-
ter, and the obtained data has been fit with Eq. (3.34), as it is shown in Fig. 3.17,
obtaining the following set of parameters ℎ = 290𝑛𝑚, 𝑡 = 0.0029 → SWA = 0.17∘.

As represented in the sketch of the experimental setup, the beam is coupled
to a single mode fiber after the interaction with the sample, and hence we have
to project it onto the Gaussian mode of the fiber. We used two identical fiber
collimators to shine light onto the target and couple it into the SMF; this allows us
to assume that the beam width does not change significantly over the propagation
distance and gives us the normalization constant 𝑁 = 2/𝜋𝑤 . The detected power
is therefore given by:

𝑃 = | 2𝑤 𝜋 ∫ 𝑎 (𝑟)𝑟𝑑𝑟| . (3.40)
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Figure 3.17: Profilometer data and best fit of the target under investigation.

The optimized parameters are obtained by fitting the acquired data with this equa-
tion, the parameters starting guess is derived by fitting the profilometer data with
the sample model (Eq. 3.34). The accuracy of the best fit is influenced both by the
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Figure 3.18: Plot of the obtained experimental data and best fit, along with theoretical prediction using
the parameters given by the best fit.

experimental data and the profilometer data. The red line in Fig. 3.18 represents
the profile obtained by moving the sample in a direction orthogonal to the beam
propagation (𝑦 direction). As we can see, the edges are the most problematic part;
they are characterized by intensity oscillations and, particularly for positive values
of the edge position, the behavior does not resemble the best fit. Possible explana-
tions for this discrepancy might be found in the fact that the laser has some intensity
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fluctuations. Moreover, the alignment of the optical components is of great impor-
tance, especially the coupling of the beam into the single mode fiber. In addition,
the sample coated surface was mainly designed to give an overall 𝜋 phase shift in
transition for a large beam illuminating it, not for side-wall angle measurements,
therefore irregularities in the coating might be the cause of the different behavior
between experiment and theory for positive values of the edge position. Table 3.1
summarizes all the measured and fitted values, i.e. height measurement made
with an ellipsometer, height and side-wall angle made with a profilometer. Only
the height value obtained from the profilometer fit is very different from the others,
nevertheless, looking at Fig. 3.17, we notice that the asymptotic value seems to be
close to 300𝑛𝑚. Furthermore, the presence of noise affects the accuracy of the fit.

Table 3.1: Best fit parameters from the profilometer and measured data.

Profilometer fit Experimental fit Ellipsometer

ℎ (𝑛𝑚) 290 ± 2 308 ± 93 304

SWA (Degree) 0.170 ± 0.007 0.16 ± 0.13 N. A.

3.6. Conclusions
In this chapter we have presented a simple and intuitive experimental setup to mea-
sure the side-wall angle of a target, consisting of a phase jump designed to give
a 𝜋 phase shift in transmission. By means of the Spiral Mode expansion we could
identify the field which has the greatest sensitivity to the side-wall angle change
of a phase object. The Gaussian profile delivers the highest sensitivity to the SWA
when ℎ = 𝜆/2. This is not a limiting factor to this work, as the use of a Spatial Light
Modulator could easily restore the designed phase change value in transmission,
even when the height of the sample under study is strictly not ℎ = 𝜆/2. We have
theoretically modeled the sample to account for round edges, which are usually
formed during fabrication processes, thus implementing a more realistic analysis.
For the case of a shallow profile, we were able to determine with good accuracy
the value of the side-wall angle by fitting the experimental data with the predic-
tions given by the theoretical model. Successful implementation of this concept for
the determination of extremely sharp side-wall angles, might have important and
noticeable applications in the field of surface metrology. Furthermore, we would
like to emphasize that a properly shaped complex amplitude distribution of the in-
put field could be used in the presence of a different, and perhaps more complex,
target. This can be done with the use of a programmable Spatial Light Modulator,
which could for example be part of an optimization procedure where the most sen-
sitive input field for a given target profile is employed.
In the next two chapters we will introduce two other ways to infer the side-wall an-
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gle of a cliff-like structure; in both cases we follow a purely theoretical approach to
compute the scattered far field. In Chapter 4 we aim at increasing the sensitivity to-
wards small SWA changes by implementing a different detection technique, namely
a split detection configuration. In Chapter 5 we implement a different strategy: we
try to boost the side-wall angle sensitivity by relying on beam shaping techniques.
More specifically, by using the Lagrange multipliers rule, we solve an optimization
problem to compute the amplitude and phase of the beam interacting with a cliff-like
sample to obtain the highest sensitivity to a small side-wall angle change.
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4
Using far field data to

determine steep side wall
angles: analytical analysis

Nothing in life is to be feared, it is only to be understood.
Now is the time to understand more, so that we may fear less.

Marie Curie

In the previous chapter we have introduced the concept of spiral mode projec-
tion as a new possibility to measure the side-wall angle of cliff-like objects.
In this chapter, we address the same problem differently. More precisely,
we analytically describe the physical problem of the interaction between the
structure under study and an incoming focused field. If we restrict ourselves
to the scalar optics approximation and we consider an isolated structure de-
scribed by a cliff or a ridge, the scattering problem description is entirely
analytical. This is of great help in understanding how the side-wall angle
influences the far field distribution and with what sensitivity we can retrieve
the value of this angle.

Parts of this chapter have been published in Journal of Optics 20, 065601 (2018) [1].
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4.1. Introduction
One of the most challenging problems in optical lithography is the metrology of
printed structures and features. In order to have electronic circuits that meet the
design specification, it is necessary to fabricate appropritate test targets that are
employed to tune the lithographic machines. Certain features contained in these
targets are directly measured or indirectly retrieved and are used to tune dose,
exposure time, alignment and other relevant parameters of the photo-lithographic
process [2, 3]. Quantifying the value of the so called side-wall angle with high
precision is currently one of the most difficult tasks of this methodology. In the
past years, several different techniques such as atomic force microscopy (AFM)
and scanning electron microscopy (SEM) have been used. In their standard con-
figuration, these measuring tools have several drawbacks, namely difficulties to
measure steep side-walls for AFM and sample damage for electron microscopy.
Numerous developments [4–7] have been proposed to improve the performance of
these systems, reaching measurements accuracies of the order of 1∘. Nonetheless,
optical techniques using light are still the preferred choice because of their ease
of implementation and measurement speed, along with the important property of
being non-destructive. A known technique for this purpose is optical scatterome-
try [8–12]. Within this technique, the test structure is described by a few shape
parameters such as height (ℎ), middle critical dimension (MidCD) and side-wall an-
gle (SWA) that are retrieved by solving an inverse problem using the measured
scattered light intensities as data and combining them with a priori knowledge of
the system. In order to recover and use the phase information contained in the
scattered light, which is lost when using incoherent illumination, Coherent Fourier
Scatterometry (CFS) has been introduced, where a focused spot is used to scan
the sample [13–15]. This technique uses the extra phase information contained in
the overlapping diffracted orders in the far field that are not present in incoherent
Fourier scatterometry. As a consequence, CFS has higher sensitivity than tradi-
tional incoherent scatterometry, but nevertheless, also for CFS, the SWA remains
the most challenging parameter to retrieve. Recently, CFS combined with interfer-
ometry has been proposed to determine asymmetries in the side wall angles of a
grating [16, 17].

The need for a more accurate (but perhaps also easier to implement) SWA es-
timation method has been the main driver towards the design of a new technique
that could help bridge the gap with the current approaches. In this chapter we
present an idea we believe could benefit the SWA estimation problem. More specif-
ically, we conceptualize an experimental setup based on the Scatterometry principle
and a split detection configuration. We do not provide neither a real setup nor ex-
perimental results, but we treat in depth the theoretical foundation and provide
simulation results to prove its validity.

In this chapter we investigate two different structures, described by a cliff- and
a ridge-like shape, and determine their side-wall angles. The interaction between
the incoming light and the sample will cause phase and amplitude changes in the
far field which can be detected using a split detection scheme. When the side-wall
angle is very steep, it is quite challenging to estimate its value as the far field for
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a side-wall angle of 88∘ and the one for an angle of 89∘, for instance, differ only
slightly. With the implementation of a split detection scheme we aim at detecting
more easily these differences.

Specifically, we theoretically calculate the electric field - under the approximation
of scalar diffraction theory - that is reflected from a cliff or a ridge-like structure
having steep side wall angles, when the structure is illuminated by a focused field.
The choice of scalar diffraction theory is helpful in keeping the entire derivation
analytical without impacting considerably the accuracy of the results. For instance,
we are able to detect, in the case of a ridge-like sample, asymmetries between the
left and right angles. The purely analytical derivation of the scattered field allows us
to have a fast and reliable method to analyze the physical problem. Furthermore,
we assume that the structure acts as a phase object. Similarly with what has
been done by Hermosa and coworkers [18], we start our analysis in the quadrature
configuration condition; this implies that the height of the sample should be such
that the condition ℎ = 𝜆/4 is satisfied, which means that, in reflection, the light
undergoes a 𝜋 phase shift. Afterwards, the case for other heights is also treated.

The chapter is organized as follows. In Section 4.2 we state the definition of the
problem and introduce the reflection functions describing the split- and ridge-like
shape structure. Sections 4.3 and 4.4 are dedicated to the theoretical derivation of
the far-field intensity pattern resulting from the interaction between a focused beam
and the phase objects we are considering. Section 4.5 contains the conclusions.

4.2. Problem definition
We begin by considering a cliff shape structure, which is fully characterized by a
SWA 𝛼 and height ℎ, centered in a (𝑥, 𝑦, 𝑧) reference system as shown in Fig. 4.1.
The structure is invariant with respect to the 𝑦-coordinate and the slope is given by
the function 𝑔 (𝑥) defined as:

𝑧 = 𝑔 (𝑥) ∶= {
0, if 𝑥 ⩽ −𝑏
𝑥 tan𝛼 + , if − 𝑏 < 𝑥 < +𝑏
ℎ, if 𝑥 ⩾ +𝑏

. (4.1)

It should be noted that the structure extends infinitely along the 𝑥 axis as 𝑥 goes
to ±∞. This assumption was made to simplify the mathematical derivation, since
considering a finite object would add an additional parameter to the derivation.

Throughout the mathematical derivation, we will use 𝛼 and ℎ as variables to
describe the cliff. Its projection 𝑏 on the horizontal axis can be directly obtained
from the formula:

𝑏 = ℎ
2 tan𝛼 where 0 < 𝛼 < 𝜋

2 . (4.2)

In varying the slope, the height ℎ will be kept constant. This implies that 𝑏 changes
with 𝛼 as shown in Eq. (4.2). The structure given by the function 𝑔 (𝑥) represents
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Figure 4.1: Sketch of a cliff-like object.

a pure phase object. Hence its reflection function becomes:

𝑟 (𝑥) = 𝑟 {
exp (2𝑖𝑘ℎ), if 𝑥 ⩽ −𝑏
exp [2𝑖𝑘 ( − 𝑥 tan𝛼)], if − 𝑏 < 𝑥 < +𝑏
1, if 𝑥 ⩾ +𝑏

, (4.3)

where 𝑘 = 2𝜋/𝜆 is the wave number and 𝑟 is the reflection coefficient of the surface.
This coefficient can be a complex number with |𝑟| ≤ 1 but we shall subsequently
simply take 𝑟 = 1. The superscript ”C” indicates that the reflection function de-
scribes a cliff.

We also analyze a second structure, described by a ridge-like shape. In this
case, besides the height ℎ, we differentiate between two possible side-wall angles,
describing the left and right walls of the ridge, which we label as 𝛼 and 𝛼 . As we
did in the case of the cliff, we center the structure in a (𝑥, 𝑦, 𝑧) reference system
as shown in Fig. 4.2, and once gain the structure is invariant with respect to the
𝑦-coordinate.
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Figure 4.2: Sketch of a cliff-like object.

Within this system, the reflection function of the ridge becomes:

𝑟 , (𝑥) = 𝑟

⎧
⎪

⎨
⎪
⎩

exp (2𝑖𝑘ℎ), if 𝑥 ⩽ −𝑤/2
exp {𝑖𝑘 [2ℎ − (2𝑥 + 𝑤) tan𝛼 ]}, if − 𝑤/2 < 𝑥 < −𝑏
1, if − 𝑏 ⩽ 𝑥 ⩽ +𝑏
exp {𝑖𝑘 [2ℎ + (2𝑥 − 𝑤) tan𝛼 ]}, if + 𝑏 < 𝑥 < +𝑤/2
exp (2𝑖𝑘ℎ), if 𝑥 ⩾ +𝑤/2

, (4.4)

where, as in the case of the cliff, 𝑘 = 2𝜋/𝜆 is the wave number and 𝑟 is the reflection
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coefficient of the surface. The superscript ”R” indicates that the reflection function
describes a ridge.

4.3. Analytical calculation
Our aim is to calculate analytically the scattered far field generated by the two
structures examined in this work, whose reflection functions are given by Eqs. (4.3)
and (4.4)1. We do this by considering a 4-𝑓 system configuration defined by two
cylindrical lenses with radius 𝑎 and focal length 𝑓. Mathematically both of them can
be represented by the window function 1[ , ](𝑥). In the scalar theory, the focal
distribution of a plane wave focused by a diffraction limited cylindrical lens is:

𝑈 (𝑥) = √ 1
𝜆𝑓 𝑒 2𝑎 sinc (2𝑎𝑥𝜆𝑓 ) , (4.5)

where we define:

sinc(𝜒) ∶= {
( ) if 𝜒 ≠ 0

1, if 𝜒 = 0 . (4.6)

Within the approximations of physical optics, the interaction between the focused
field 𝑈 and the cliff can be represented by multiplying the incoming field 𝑈 (𝑥) by
the reflection function 𝑟 of the cliff :

𝑈 (𝑥) = 𝑈 (𝑥)𝑟 (𝑥) (4.7)

The scattered field in the exit pupil of the lens is given by:

𝑈 (𝜉) = √ 1
𝜆𝑓 𝑒 ∫ 𝑈 (𝑥)𝑟 (𝑥)𝑒 𝑑𝑥 (4.8)

where 𝜉 is the coordinate in the exit pupil.
It is worth pointing out that in Eq. (4.8), the structure is considered to be at

a fixed location. Nevertheless, from an experimental point of view, it is important
to know how the far field signal changes as the sample is scanned parallel to the
𝑥-direction in Figs. 4.1 and 4.2. In the following subsection, we explicitly state
the expression of 𝑈 (𝜉) for a positive translation 𝑑, i.e. for 𝑥 > 0. The case
of negative translation and the calculation of 𝑈 (𝜉) for the ridge case can be
obtained with similar derivations to the ones listed in Appendix B.

4.3.1. Positive translation
Let us consider a positive translation 𝑑 with the assumption that−𝑏+𝑑 = −(𝑏−𝑑) <
0. If we substitute the expressions of the reflection function 𝑟 (𝑥−𝑑) and the input
focal field 𝑈 (𝑥) into Eq. (4.8), we have to consider the following integrals:

𝑈 (𝜉) = 2𝑎
𝜆𝑓 𝑒

( )∫ sin(𝑘𝑎𝑥/𝑓)
𝑘𝑎𝑥/𝑓 𝑒 𝑑𝑥, (4.9)

1A comparison of our results with the rigorous vectorial theory is given in Appendix C.
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𝑈 , (𝜉) =
2𝑎
𝜆𝑓 𝑒

( )∫ sin(𝑘𝑎𝑥/𝑓)
𝑘𝑎𝑥/𝑓 𝑒 ( )𝑑𝑥, (4.10)

𝑈 (𝜉) = 2𝑎
𝜆𝑓 𝑒 ∫ sin(𝑘𝑎𝑥/𝑓)

𝑘𝑎𝑥/𝑓 𝑒 𝑑𝑥. (4.11)

by using the results from Eqs. (B.9), (B.11), (B.14) and (B.15), we have:

𝑈 (𝜉) = 𝑒 ( )

𝜆𝑘 {𝜋 + 𝑖 Ci [𝑐 𝑘𝑓 (𝑎 + 𝜉)] − 𝑖 Ci [𝑐
𝑘
𝑓 (𝑎 − 𝜉)] − Si [𝑐

𝑘
𝑓 (𝑎 + 𝜉)]

− Si [𝑐 𝑘𝑓 (𝑎 − 𝜉)]}, (4.12)

where we defined 𝑐 = 𝑏−𝑑 for a more compact notation. We remind the reader that
𝑑 is an arbitrary translation in the positive 𝑥 direction and that 𝑏 can be obtained
from Eq. (4.2).

The solution of Eq. (4.11) is given by:

𝑈 (𝜉) = 𝑒
𝜆𝑘 {𝜋 + 𝑖 Ci [𝑐 𝑘𝑓 (𝑎 − 𝜉)] − 𝑖 Ci [𝑐

𝑘
𝑓 (𝑎 + 𝜉)] − Si [𝑐

𝑘
𝑓 (𝑎 + 𝜉)]

− Si [𝑐 𝑘𝑓 (𝑎 − 𝜉)]}, (4.13)

where 𝑐 = 𝑏+𝑑. To calculate 𝑈 , (𝜉) we need to sum the integrals (B.5) and (B.10)
reported in Appendix B, with integration intervals Ω = 𝑥 ∶ −𝑏 + 𝑑 < 𝑥 < 0 and Ω =
{𝑥 ∶ 0 < 𝑥 < 𝑏 + 𝑑}. We remind that in this case we have chosen 𝑑 such that
−𝑏 + 𝑑 < 0. Finally, for 𝑈 , (𝜉) we have:

𝑈 , (𝜉) =
𝑒 ( )

𝜆𝑘 { − 𝑖 Ci [𝑐 𝑘𝑓 (𝑎 − 𝜉 )] + 𝑖 Ci [𝑐
𝑘
𝑓 (𝑎 + 𝜉 )]

+ Si [𝑐 𝑘𝑓 (𝑎 + 𝜉 )] + Si [𝑐
𝑘
𝑓 (𝑎 − 𝜉 )]

− 𝑖 Ci [𝑐 𝑘𝑓 (𝑎 + 𝜉 )] + 𝑖 Ci [𝑐
𝑘
𝑓 (𝑎 − 𝜉 )]

+ Si [𝑐 𝑘𝑓 (𝑎 + 𝜉 )] + Si [𝑐
𝑘
𝑓 (𝑎 − 𝜉 )]}. (4.14)

where 𝜉 = 2𝑓 tan𝛼 + 𝜉. The total scattered field in the exit pupil is the sum of
these three contributions:

𝑈 (𝜉) = 𝑈 (𝜉) + 𝑈 , (𝜉) + 𝑈 (𝜉). (4.15)

4.3.2. Ridge case
The calculation of the full scattered field for the ridge case is very similar to the one
of the slope; we substitute the expressions of the reflection function 𝑟 , (𝑥 − 𝑑)
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and the input focal field 𝑈 (𝑥) into Eq. (4.8), where we assume that the translation
𝑑 is such that −𝑏 + 𝑑 < 0. The calculation can be split into five different integrals
that can be computed analytically.

𝑈 , (𝜉) = 2𝑎
𝜆𝑓 𝑒

( )∫
/ sin(𝑘𝑎𝑥/𝑓)

𝑘𝑎𝑥/𝑓 𝑒 𝑑𝑥, (4.16)

𝑈 ,
, (𝜉) =

2𝑎
𝜆𝑓 𝑒

[ ( ) ]∫
/

sin(𝑘𝑎𝑥/𝑓)
𝑘𝑎𝑥/𝑓 𝑒 ( )𝑑𝑥,

(4.17)

𝑈 , (𝜉) = 2𝑎
𝜆𝑓 𝑒 ∫ sin(𝑘𝑎𝑥/𝑓)

𝑘𝑎𝑥/𝑓 𝑒 𝑑𝑥, (4.18)

𝑈 ,
, (𝜉) =

2𝑎
𝜆𝑓 𝑒

[ ( ) ]∫
/ sin(𝑘𝑎𝑥/𝑓)

𝑘𝑎𝑥/𝑓 𝑒 ( )𝑑𝑥,

(4.19)

𝑈 , (𝜉) = 2𝑎
𝜆𝑓 𝑒

( )∫
/

sin(𝑘𝑎𝑥/𝑓)
𝑘𝑎𝑥/𝑓 𝑒 𝑑𝑥, (4.20)

where the superscript R indicates that the expressions are for a ridge-like shaped
structure. By means of the calculations shown in Appendix B, we get:

𝑈 , (𝜉) = 𝑒 ( )

𝜆𝑘 {𝜋 + 𝑖 Ci [𝑐 𝑘𝑓 (𝑎 + 𝜉)] − 𝑖 Ci [𝑐
𝑘
𝑓 (𝑎 − 𝜉)] − Si [𝑐

𝑘
𝑓 (𝑎 + 𝜉)]

− Si [𝑐 𝑘𝑓 (𝑎 − 𝜉)]}, (4.21)

with 𝑐 = 𝑤/2 − 𝑑.

𝑈 ,
, (𝜉) =

𝑒 [ ( ) ]

𝜆𝑘 { − 𝑖 Ci [𝑐 𝑘𝑓 (𝑎 − 𝜉 )] + 𝑖 Ci [𝑐
𝑘
𝑓 (𝑎 + 𝜉 )]

− Si [𝑐 𝑘𝑓 (𝑎 + 𝜉 )] − Si [𝑐
𝑘
𝑓 (𝑎 − 𝜉 )]

− 𝑖 Ci [𝑐 𝑘𝑓 (𝑎 + 𝜉 )] + 𝑖 Ci [𝑐
𝑘
𝑓 (𝑎 − 𝜉 )]

+ Si [𝑐 𝑘𝑓 (𝑎 + 𝜉 )] + Si [𝑐
𝑘
𝑓 (𝑎 − 𝜉 )]},

(4.22)
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where 𝜉 = 2𝑓 tan𝛼 + 𝜉 and 𝑐 = 𝑏 − 𝑑.

𝑈 , (𝜉) = 𝑒
𝜆𝑘 { − 𝑖 Ci [𝑐 𝑘𝑓 (𝑎 − 𝜉)] + 𝑖 Ci [𝑐

𝑘
𝑓 (𝑎 + 𝜉)] + Si [𝑐

𝑘
𝑓 (𝑎 + 𝜉)]

+ Si [𝑐 𝑘𝑓 (𝑎 − 𝜉)] − 𝑖 Ci [𝑐
𝑘
𝑓 (𝑎 + 𝜉)] + 𝑖 Ci [𝑐

𝑘
𝑓 (𝑎 − 𝜉)]

+ Si [𝑐 𝑘𝑓 (𝑎 + 𝜉)] + Si [𝑐
𝑘
𝑓 (𝑎 − 𝜉)]}, (4.23)

where 𝑐 = 𝑏 + 𝑑.

𝑈 ,
, (𝜉) =

𝑒 [ ( ) ]

𝜆𝑘 { − 𝑖 Ci [𝑐 𝑘𝑓 (𝑎 − 𝜉 )] + 𝑖 Ci [𝑐
𝑘
𝑓 (𝑎 + 𝜉 )]

+ Si [𝑐 𝑘𝑓 (𝑎 + 𝜉 )] + Si [𝑐
𝑘
𝑓 (𝑎 − 𝜉 )]

− 𝑖 Ci [𝑐 𝑘𝑓 (𝑎 + 𝜉 )] + 𝑖 Ci [𝑐
𝑘
𝑓 (𝑎 − 𝜉 )]

− Si [𝑐 𝑘𝑓 (𝑎 + 𝜉 )] − Si [𝑐
𝑘
𝑓 (𝑎 − 𝜉 )]},

(4.24)

where 𝜉 = 𝜉 − 2𝑓 tan𝛼 and 𝑐 = 𝑤/2 + 𝑑.

𝑈 , (𝜉) = 𝑒 ( )

𝜆𝑘 {𝜋 + 𝑖 Ci [𝑐 𝑘𝑓 (𝑎 − 𝜉)] − 𝑖 Ci [𝑐
𝑘
𝑓 (𝑎 + 𝜉)] − Si [𝑐

𝑘
𝑓 (𝑎 + 𝜉)]

− Si [𝑐 𝑘𝑓 (𝑎 − 𝜉)]}, (4.25)

The total scattered field in the exit pupil is the sum of the five different contributions:

𝑈 , (𝜉) = 𝑈 , (𝜉) + 𝑈 ,
, (𝜉) + 𝑈 , (𝜉) + 𝑈 ,

, (𝜉) + 𝑈 , (𝜉). (4.26)

4.3.3. Split detection calculation
When the side-wall angle becomes very steep, the sensitivity associated with it
decreases because the spot size is much larger than the interval on the 𝑥-axis in
which the coordinate 𝑧 changes from 0 to ℎ. Thus the structure appears as a sudden
jump. We introduce a split detector configuration to monitor the far field of the
sample under study. More specifically, we divide the far field intensity distribution
𝐼 (𝜉) = |𝑈 (𝜉)| in two parts, a left one for negative values of the coordinate of
the exit pupil 𝜉 and a right one for positive values of 𝜉. Subsequently, we integrate
each part and subtract one from the other. We can express this detection scheme
mathematically as:

𝐺 = ∫ 𝐼 (𝜉)𝑑𝜉 − ∫ 𝐼 (𝜉)𝑑𝜉 (4.27)
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where 𝑎 = NA𝑓. We expect that the behavior of 𝐺 will be particularly influenced
by the side-wall angles, the NA of the system and, in the case of the ridge, also by
the width of the structure.

4.4. Simulation results
In this section we present the results obtained from the theoretical analysis de-
scribed in Section 4.32. All plots are normalized to the total detected power carried
by the far field when there is no structure, i.e. the substrate is flat. Nevertheless,
depending on whether we plot the scattered intensity given by the absolute square
of Eq. (4.15) (Eq. (4.26) in case we are analyzing a ridge), or the split detector
signal given by Eq. (4.27), the normalization constant changes. In the former case,
the normalization constant 𝐼 (𝜉) is given by:

𝐼 (𝜉) = |√ 1
𝜆𝑓 𝑒 ∫ 𝑈 (𝑥)𝑒 𝑑𝑥| = |𝑒 rect ( 𝜉2𝑎)| , (4.28)

where the rect function is defined as:

rect(𝜒) ∶= {
0 if |𝜒| >

if |𝜒| =
1, if |𝜒| <

. (4.29)

In the latter case, i.e., when we deal with a split detector signal, the plotted quan-
tity 𝐺 corresponds to the split-detector signal 𝐺 divided by the sum of the
intensities of the two halves, i.e. by the total scattered intensity in the pupil:

𝐺 = 𝐺
∫ 𝐼 (𝜉)𝑑𝜉 + ∫ 𝐼 (𝜉)𝑑𝜉

=
∫ 𝐼 (𝜉)𝑑𝜉 − ∫ 𝐼 (𝜉)𝑑𝜉
∫ 𝐼 (𝜉)𝑑𝜉 + ∫ 𝐼 (𝜉)𝑑𝜉

, (4.30)

where 𝑎 = NA𝑓. Furthermore, all the calculations are performed for 𝜆 = 633𝑛𝑚
and we normalize the translation distance of the target by the wavelength 𝜆.

First of all, we study how the on-axis intensity - note that since the lens is
cylindrical, this corresponds to a row of pixels in 𝜉 = 0 and parallel to the 𝑦-axis
- changes when the angle of the slope of the cliff reaches values close to 90∘,
for a numerical aperture of NA ≤ 0.6. For NA < 0.6, the scalar model regime is
valid. The height of the structure is kept fixed at 𝜆/4. This condition is known as
the quadrature condition, and allows us to have the highest signal contrast. It is
important to emphasize that fixing this condition does not limit the generality and
importance of our results, as the analytical results of the previous sections are valid
for any height.

In Fig. 4.3 we plot the values of 𝐼 (𝜉 = 0) for different SWA in the range
87∘ ≤ 𝛼 ≤ 90∘, for NA = 0.4 and NA = 0.6. Here the normalization constant is
𝐼 (𝜉 = 0), given by Eq. (4.28). The phase object is a cliff with hright ℎ = 𝜆/4 which
2In Appendix C we compared the results derived in this chapter with rigorous vectorial simulations.
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Figure 4.3: On-axis intensity, normalized by ( ), for a cliff-like object with / when ∘
∘.

is kept fixed symmetrically to the beam propagation axis 𝑧, as shown in Fig. 4.1. We
notice that the signal decreases quite rapidly when the side-wall angle increases,
reaching normalised intensities values of the order of 10 -10 , which can still be
measured [19, 20]. Note that a smaller focus spot (obtained by a higher NA) will
result in higher sensitivity.

Figure 4.4 shows the signal of the on-axis intensity 𝐼 (𝜉 = 0), normalized by
𝐼 (𝜉 = 0) (Eq. 4.28), for NA = 0.6 in the case of slope with height ℎ = 𝜆/4 and
side-wall angle SWA = 80∘, when the sample is moved from negative to positive
translation values with respect to the center of the reference system (𝑥, 𝑧) shown
in Fig. 4.1. The intensity oscillations are caused by the profile of the focus spot that
is probing the structure, Eq. (4.5). When the structure is in the central position,
the right and left halves of the beam have a phase difference close to 𝜋 which
results, in the far field, in a beam profile similar to that of an Hermite-Gaussian
function. It is important to emphasize that the center of the far field intensity of
such profile is zero only when the SWA is exactly 90∘ for the case of the quadrature
condition. Moreover, for large translation values, both positive and negative, the
intensity profile slowly approaches 1, as expected. In fact, given that the structure
under study is simply a phase object, when the incident spot is very far off center
it will not be influenced by the presence of the structure, thus the scattered field
will resemble the one obtained by a flat layer. Hence, because we are normalizing
the results by the power of the scattered field in the absence of the structure, we
expect the ratio to approach one when the sample is shifted by several wavelengths
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Figure 4.4: On-axis far-field intensity ( ), normalized by ( ), for a cliff sample with
/ and ∘ translated with respect to the beam for the case of numerical aperture 0.6.

Inset: zoomed plot for ≃ . Note that because the SWA is not 90 degrees, the signal does not go to
zero.

with respect to the focused beam.
In Fig. 4.5 we plot the split detector signal 𝐺 given by Eq. (4.30), when a cliff

structure of height ℎ = 𝜆/4 and side-wall angle SWA = 87∘ is translated. We remind
that this signal has been obtained by calculating the full far field intensity (taking into
account a finite numerical aperture of NA = 0.6), integrating the left and right halves
of the profile and subtracting them, according to Eq. (4.27), and then dividing this
difference by the sum of the intensities of the two halves, i.e. by the total scattered
intensity in the pupil. The profile of the signal can be explained by considering the
way the sample and the incoming light interact. Suppose the structure moves from
negative to positive values of 𝑥. The reflected spot is first a sinc function but, when
the sample is close enough to influence the reflected beam, part of the latter has
a 𝜋 phase shift, therefore its shape (in the far field region) starts to resemble an
Hermite-Gaussian function with one half having bigger magnitude than the other.
Subsequently, when the sample is centered, both halves have almost the same
magnitude (they are identical only when SWA = 90∘) therefore their difference
is quite close to zero. When the sample moves away from the beam, the whole
process is repeated with the exception that the magnitude of the two halves is
inverted and their difference has now an opposite sign compared to the previous
scenario. The 𝑥-coordinate of the extrema in the split-detector signal gets closer to
zero for tighter spots, as intuitively expected. Moreover, when the structure is not
close to the beam, the split detector signal tends to zero.

Figure 4.6 shows the difference between normalized split detector signals 𝐺
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Figure 4.5: Split detector signal for a cliff-like object with / and ∘ for a numerical
aperture of 0.6.

for two cliff-like structures with height ℎ = 𝜆/4 but characterized by different angles,
more precisely SWA = 87∘ and SWA = 89∘, when the NA = 0.6. The biggest
difference is close to 𝑥 = 0, since for SWA = 87∘ the focused spot is still sensitive
to the slope but when SWA = 89∘ it is perceived as a sudden jump from 0 to ℎ.

Figure 4.7 shows the on-axis far-field intensity profile 𝐼 (𝜉), normalized by
𝐼 (𝜉) (Eq. 4.28), for a ridge sample with SWA = SWA = 80∘, width 𝑤 = 2𝜇𝑚 and
height ℎ = 𝜆/4 when NA = 0.6. The trend of the signal is changed as compared to
Fig. 4.4, but some features are similar. In particular, when the width of the ridge is
large compared to the spot size, the spot perceives each slope almost independently
from the other, thus the profile of the on-axis far-field intensity signal resembles
more the one in Fig. 4.4. Conversely, when the width is comparable to the spot
size, the focused field will be influenced by both slopes at once, therefore the profile
will approach the one of Fig. 4.5.

In Fig. 4.8 we plot the split detector signal 𝐺 given by Eq. (4.30), for the
case of a ridge with a width 𝑤 = 2𝜇𝑚 (defined at the bottom of the ridge, i.e.
when 𝑧 = 0), height ℎ = 𝜆/4 and with identical left and right side-wall angles and
equal to 87∘. The profile of the split detector signal has now changed considerably
compared to the cliff case. When the structured is centered, the detected signal is
close to zero as the spot is simply reflected from the surface at 𝑦 = ℎ. Moreover,
when SWA = SWA the sample is completely symmetric with respect to the 𝑦-
axis and therefore the difference between the left and right half should be zero.
Furthermore, the signal presents two full positive/negative oscillations, since two
side-wall angles are scanned.
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Figure 4.6: Difference between normalized split-detector signals generated by two cliff structures
with / , ∘ and ∘ respectively, for a numerical aperture of 0.6.

Figure 4.7: On-axis intensity ( ), normalized by ( ) (Eq. 4.28), for a ridge-like sample with
∘, width and a numerical aperture of 0.6. Inset: zoomed plot for

≃ . Note that because the SWA is not 90 degrees, the signal does not go to zero.
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Figure 4.8: Split detector signal of a ridge with width , height / and identical
left and right side wall angles of ∘. The numerical aperture is 0.6.

Figure 4.9 shows the difference in split detector signal for two ridge-like samples
characterized by a width of w = 2𝜇𝑚 and a height height ℎ = 𝜆/4 with different
side-wall angles between them. One is characterized by SWA = SWA = 89∘
and the other one by SWA = SWA = 87∘. The largest difference appears, as
expected, in the location of the two edges.

In the case of a cliff structure, the simulated profiles plotted so far are not
symmetric with respect to the 𝑦-axis. More precisely, when the shape parameters
of the structure under study differ from, for instance, 𝛼 = 90∘ and ℎ = 𝜆/4, the
maximum and minimum values of the split detector signal 𝐺 are not symmetric.
It is then convenient to define a visibility 𝒱 given by:

𝒱 = |max (𝐺 ) | − |min (𝐺 ) |
|max (𝐺 ) | + |min (𝐺 ) | , (4.31)

where max(⋅) and min(⋅) represent the global maximum and minimum of the signal
𝐺 , thus making the visibility 𝒱 a scalar-valued quantity for a given SWA 𝛼 and
height ℎ of the slope. This is nothing but the ”contrast” of the extrema values.
Particularly, Fig. 4.10 shows a plot of 𝒱 for a cliff as a function of the side-wall
angle in the range 70∘ < 𝛼 < 90∘ and height in the range 148𝑛𝑚 < ℎ < 168𝑛𝑚.
It is clear that both the height and side-wall angle of the sample have a strong
influence in the profile of the differential signal. If the height is known with good
accuracy (determined for example using other known methods such as profilom-
etry), then the small difference in the visibility will reveal the side wall angle with
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Figure 4.9: Difference in the normalized split detector signals from two ridge structures: one
with ∘ and and the other with ∘ when both are characterized
by a width of and a height / . The numerical aperture is 0.6.
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Figure 4.10: Plot of the visibility 𝒱 as a function of the side-wall angle and height of the slope. The
numerical aperture is . .



4

62
4. Using far field data to determine steep side wall angles: analytical

analysis

precision. The height of the cliff or ridge structure can be determined, for example,
using other known methods such as atomic force microscopy (AFM), which reaches
measurements sensitivity up to a couple of nanometers. Figure 4.10 shows that
there are many curves along which the values of the visibility are comparable. As
a consequence, it is impossible to uniquely determine both height and SWA from
these plots. This is also confirmed by Fig. 4.11, where we plot the contour lines
of max (𝐺 ) (continuous lines) and |min (𝐺 ) | (dash-dot lines). As one can
see, there are multiple points in which the contour lines intersects, making it im-
possible to unambiguously determine side-wall angle and height. Figure 4.11 also
shows that an uncertainty of few nanometers in the height determination will im-
pact the side wall angle estimation by roughly 2∘. Nevertheless, if the height of
the structure under study is known - for example from independent measurements
performed on an atomic force microscope - it is possible to accurately estimate the
side-wall angle.

Contour plot of max(G
α

norm
) and |min(G

α

norm
)|
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Figure 4.11: Contour plot of ( ) (continuous lines) and | ( ) | (dash-dot lines). Side-
wall angle and height cannot be uniquely determined from this plot.

Lastly, we look at how the theoretical model presented in this manuscript can
be extended to the case of a ridge characterized by non-identical left and right side
wall angles. As we have already mentioned previously, we assume the height of
the ridge to have been determined by independent methods such as AFM or SEM.

The possibility to retrieve the values of the side wall angles strictly depends
on the relative dimensions between the diameter of the illuminating spot and the
width of the ridge. Particularly, as shown in Figure 4.12, we look at how the split
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Figure 4.12: Split detector signal of a ridge with height , ∘ and
∘ for different values of width . , . , . . The numerical aperture is 0.6.

detector signal 𝐺 varies for different ridge width values. More specifically, we
consider a ridge with height ℎ = 170𝑛𝑚, SWA = 85∘ and SWA = 86∘ for dif-
ferent values of width 𝑤 = 0.9 𝜇𝑚, 1.5 𝜇𝑚, 2.5 𝜇𝑚. The focusing NA is 0.6, which
creates a focused spot with a diameter of roughly 840𝑛𝑚. In the case in which
the ridge width is larger than the diameter of the illuminating spot, represented by
the case 𝑤 = 2.5 𝜇𝑚 in Figure 4.12, the two side wall angles can be treated as two
independent slopes; hence, we can compute the visibility 𝒱 using Equation (4.31)
for each of the two edges separately and find the respective values of the side-wall
angles. Therefore, if the values of the left and right SWA are different, they can still
be retrieved with the analytical method presented in this paper. When the ridge
width begins to be comparable to the diameter of the illuminating spot, as for the
cases 𝑤 = 0.9 𝜇𝑚 and 𝑤 = 1.5 𝜇𝑚 in Figure 4.12, and the left and right SWA are
not identical, the visibility plot alone cannot be used to retrieve their values. It is
not possible to independently treat the two edges because there will be interac-
tion between their scattered fields. In this case, we believe the theoretical model
described and presented in this manuscript can be used to fit the measured signal
𝐺 with the values of the two SWAs as free parameters. If, instead, the width
is much smaller compared to the diameter of the illuminating spot, the structure
cannot be described with the scalar theory, making the model not accurate any-
more. In this case, a vectorial treatment of the problem becomes necessary. The
detection system can still be based on a split detection configuration, but the SWA
reconstruction will be much more elaborated.
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4.5. Conclusion
In this chapter we have studied a method to determine the side-wall angle of two
distinct structures: a cliff- and a ridge-like shape, modeled as phase objects. This is
not a restrictive assumption as our findings can be extended to multilayer geome-
tries as well. If, for instance, the substrates consists of a stack of various flat layers,
we can include its complex reflection coefficient in the reflection function. Thus, in
Eqs. (4.3) and (4.4), we can consider a value of the complex reflection coefficient
𝑟 different from 1. Nevertheless, we stress that due to the way the differential
detection is defined and implemented, the substrate contribution is eliminated.

We describe mathematically the interaction of these structures with a focused
field obtained by a cylindrical lens, under the assumption of scalar theory. We
assume the scattered field to be collected by the same lens and we calculate the
far-field intensity profile. More precisely, we derive an analytical expression for the
scattered field in the exit pupil of a 4𝑓 configuration. Furthermore, we model a
split detection system by dividing the intensity profile in two halves, integrating
them and the subtracting one from the other. Our findings show that the proposed
method can be a good and sensitive alternative to estimate the side-wall angle and
height of the sample. We believe that these structures can constitute an alternative
to gratings and other kind of test objects, to tune the lithographic machines and
characterize their performance.

References
[1] L. Cisotto, S. F. Pereira, and H. P. Urbach, Analytical calculation on the de-

termination of steep side wall angles from far field measurements, Journal of
Optics 20, 065601 (2018).

[2] C. Edwards, A. Arbabi, G. Popescu, and L. L. Goddard, Optically monitoring
and controlling nanoscale topography during semiconductor etching, Light Sci
Appl 1, e30 (2012).

[3] E. Vogel, Technology and metrology of new electronic materials and devices,
Nat Nano 2, 25 (2007).

[4] K. Murayama, S. Gonda, H. Koyanagi, T. Terasawa, and S. Hosaka, Side-
wall measurement using tilt-scanning method in atomic force microscope,
Japanese Journal of Applied Physics 45, 5423 (2006).

[5] G. Dai, K. Hahm, F. Scholze, M.-A. Henn, H. Gross, J. Fluegge, and H. Bosse,
Measurements of cd and sidewall profile of euv photomask structures using
cd-afm and tilting-afm, Measurement Science and Technology 25, 044002
(2014).

[6] J. Garnaes, P.-E. Hansen, N. Agersnap, J. Holm, F. Borsetto, and A. Kühle, Pro-
files of a high-aspect-ratio grating determined by spectroscopic scatterometry
and atomic-force microscopy, Appl. Opt. 45, 3201 (2006).

http://stacks.iop.org/2040-8986/20/i=6/a=065601
http://stacks.iop.org/2040-8986/20/i=6/a=065601
http://dx.doi.org/10.1038/lsa.2012.30 http://www.nature.com/lsa/journal/v1/n9/suppinfo/lsa201230s1.html
http://dx.doi.org/10.1038/lsa.2012.30 http://www.nature.com/lsa/journal/v1/n9/suppinfo/lsa201230s1.html
http://dx.doi.org/10.1038/nnano.2006.142
http://stacks.iop.org/1347-4065/45/i=6S/a=5423
http://stacks.iop.org/0957-0233/25/i=4/a=044002
http://stacks.iop.org/0957-0233/25/i=4/a=044002
http://dx.doi.org/ 10.1364/AO.45.003201


References

4

65

[7] P. R. Bingham, J. R. Price, K. W. Tobin, Jr., T. P. Karnowski, M. H. Bennett,
E. H. Bogardus, and M. Bishop, Sidewall structure estimation from cd-sem
for lithographic process control, in Process and Materials Characterization and
Diagnostics in IC Manufacturing, Vol. 5041 (2003) pp. 115–126.

[8] A. Faridian, V. F. Paz, K. Frenner, G. Pedrini, A. D. Boef, and W. Osten, Phase-
sensitive structured illumination to detect nanosized asymmetries in silicon
trenches, Journal of Micro/Nanolithography, MEMS, and MOEMS 14, 021104
(2015).

[9] M. Wurm, F. Pilarski, and B. Bodermann, A new flexible scatterometer for
critical dimension metrology, Review of Scientific Instruments 81 (2010),
http://dx.doi.org/10.1063/1.3280160.

[10] M. Wurm, S. Bonifer, B. Bodermann, and M. Gerhard, Comparison of far
field characterisation of does with a goniometric duv-scatterometer and a ccd-
based system, Journal of the European Optical Society - Rapid publications 6
(2011).

[11] B. Den, A. Bleeker, D. Van, M. Dusa, A. Kiers, P. Luehrmann, H. Pelle-
mans, D. Van, C. Grouwstra, and K. Van, Method and apparatus for angular-
resolved spectroscopic lithography characterisation, (2006), eP Patent App.
EP20,050,254,994.

[12] T. G. Brown, M. A. Alonso, A. Vella, M. J. Theisen, S. T. Head, S. R. Gillmer, and
J. D. Ellis, Focused beam scatterometry for deep subwavelength metrology, in
Three-Dimensional and Multidimensional Microscopy: Image Acquisition and
Processing XXI, Vol. 8949 (2014) pp. 89490Y–89490Y–7.

[13] O. El Gawhary, N. Kumar, S. F. Pereira, W. M. J. Coene, and H. P. Urbach, Per-
formance analysis of coherent optical scatterometry, Applied Physics B 105,
775 (2011).

[14] N. Kumar, O. el Gawhary, S. Roy, S. F. Pereira, and H. P. Urbach, Phase retrieval
between overlapping orders in coherent fourier scatterometry using scanning,
Journal of the European Optical Society - Rapid publications 8 (2013).

[15] S. Roy, N. Kumar, S. F. Pereira, and H. P. Urbach, Interferometric coherent
fourier scatterometry: a method for obtaining high sensitivity in the optical
inverse-grating problem, Journal of Optics 15, 075707 (2013).

[16] M. L. Gödecke, S. Peterhänsel, K. Frenner, and W. Osten, Measurement
of asymmetric side wall angles by coherent scanning fourier scatterometry,
(2016) pp. 97780G–97780G–7.

[17] M. L. Gödecke, S. Peterhänsel, K. Frenner, and W. Osten, Robust determi-
nation of asymmetric side wall angles by means of coherent scanning fourier
scatterometry, (2016) pp. 98900M–98900M–8.

http://dx.doi.org/10.1117/12.485229
http://dx.doi.org/10.1117/12.485229
http://dx.doi.org/ 10.1117/1.JMM.14.2.021104
http://dx.doi.org/ 10.1117/1.JMM.14.2.021104
http://dx.doi.org/ http://dx.doi.org/10.1063/1.3280160
http://dx.doi.org/ http://dx.doi.org/10.1063/1.3280160
http://www.jeos.org/index.php/jeos_rp/article/view/11015s
http://www.jeos.org/index.php/jeos_rp/article/view/11015s
https://www.google.com/patents/EP1628164A3?cl=en
https://www.google.com/patents/EP1628164A3?cl=en
http://dx.doi.org/10.1117/12.2045651
http://dx.doi.org/10.1117/12.2045651
http://dx.doi.org/10.1007/s00340-011-4794-7
http://dx.doi.org/10.1007/s00340-011-4794-7
http://www.jeos.org/index.php/jeos_rp/article/view/13048
http://dx.doi.org/10.1088/2040-8978/15/7/075707


4

66 References

[18] N. Hermosa, C. Rosales-Guzmán, S. F. Pereira, and J. P. Torres, Nanostep
height measurement via spatial mode projection, Opt. Lett. 39, 299 (2014).

[19] C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai,
J. X. Kang, and X. S. Xie, Label-free biomedical imaging with high sensitiv-
ity by stimulated raman scattering microscopy, Science 322, 1857 (2008),
http://science.sciencemag.org/content/322/5909/1857.full.pdf .

[20] B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R.
Holtom, and X. S. Xie, Video-rate molecular imaging in vivo
with stimulated raman scattering, Science 330, 1368 (2010),
http://science.sciencemag.org/content/330/6009/1368.full.pdf .

http://dx.doi.org/ 10.1364/OL.39.000299
http://dx.doi.org/10.1126/science.1165758
http://arxiv.org/abs/http://science.sciencemag.org/content/322/5909/1857.full.pdf
http://dx.doi.org/10.1126/science.1197236
http://arxiv.org/abs/http://science.sciencemag.org/content/330/6009/1368.full.pdf


5
Side-wall angle detection

enhancement through
illumination optimisation

The good thing about science is that it’s true whether or not you believe in it.

Neil deGrasse Tyson

In the previous chapter we have investigated how a detection system based
on a split detection scheme can be used to improve the sensitivity to the SWA.
In this chapter, we aim at further improving the sensitivity to a small SWA
change, by theoretically calculating the optimum probing beam for a given
structure. Using scalar diffraction theory and a cliff-like structure modeled
as a phase object, we find the optimum amplitude and phase profile of the
input beam which delivers the highest sensitivity to the side-wall angle.

Parts of this chapter have been published in in J. Opt. Soc. Am. A 34, 1 (2017) [1].
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5.1. Introduction
In the previous chapters we have followed a rather simple approach to be able to
measure the side-wall angle of a cliff-like object. In this chapter we formulate a
purely theoretical description of the same problem to find the most sensitive beam
to a small change in the side-wall angle (SWA).

In fact, as we have seen previously, the SWA is a quite elusive parameter and
it is rather challenging to measure its value with high precision (for example tenth
or hundredth of a degree). In the past years, different techniques, such as atomic
force microscopy (AFM) [2–4] and scanning electron microscopy (SEM) [5] have
been employed to the study of this problem. These tools are limited by several draw-
backs, namely difficulties to measure steep side-walls for AFM and sample damage
for electron microscopy. Therefore, optical techniques using light, which are non-
destructive and fast, are usually preferred. Optical scatterometry is a known tech-
nique for this purpose [6–10] and it has been successfully used in semiconductor
industry. The core of this technique is to be able to describe a test structure with a
number of shape parameters, such as middle critical dimension (MidCD) and side-
wall angle (SWA), that are retrieved by solving an inverse problem using measured
scattered light intensities as data, in combination with a priori knowledge of the
manufactoring process and the experimental system in use. Recently Coherent
Fourier Scatterometry (CFS), in which a coherent focused spot is used to scan the
sample, was introduced to use phase information of the scattered light [11–13].
As we seen in Chapter 2, this technique allows us to exploit the phase of the scat-
tered beam, which yields a complete reconstruction of the scattering matrix of the
structure under investigation [14]. Because of the possibility to use the whole in-
formation carried by the outgoing beam, CFS has higher sensitivity than traditional
incoherent scatterometry. But also for CFS, the SWA is the parameter that is most
difficult to retrieve.

A possible way to tackle this probem is to properly shape the input beam to
maximize its interaction with the structure under study and therefore maximize the
sensitivity to small deviation of the side-wall angle from the nominal value. Hence,
the topic addressed in this chapter is the optimization of the complex amplitude
of the incident spot to maximize the sensitivity of the side-wall detection. In fact,
phase and amplitude control of light opens many new applications in the field of
optics and it is almost becoming a requirement to be able to fullfill the more and
more demanding precision requisites. In astronomy, for example, it is important to
modulate light to remove aberrations introduced by very different optical systems
such as telescopes or the atmosphere [15, 16]. In biology, particles are studied
by trapping them with a properly modulated beam [17–19]. Another innovative
application of beam shaping is the focusing of light onto strongly scattering materi-
als [20–22]. Furthermore, recent developments aim at simultaneosly controlling all
states of light, namely amplitude, phase and polarization. The increasing adoption
and capabilities of Spatial Light Modulators (SLMs) are the main driving force of this
branch of optics; in fact, it has been claimed that beams with position dependent
amplitude, phase and polarization can be realized with only one SLM [23, 24].

As we have already pointed out earlier, the approach followed in this chapter
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differs from the previous one. Rather than solely rely on a detection configuration
which can be more sensitive to a SWA change, we concentrate on the illumination
properties of the incident light beam on the structure. Therefore, the aim of the
work detailed in this chapter is to study the optimization of a focused illumination
to maximize the sensitivity of SWA detection in the case of a cliff-like structure,
which acts as a phase object. To do so, we consider a cylindrical lens with low
numerical aperture (NA) so that scalar diffraction theory can be used to compute the
cylindrical focused field and we detect the total reflected intensity. The illumination
is optimized such that the change of reflected total intensity, with change of SWA,
is maximum. The assumptions made allow a rather straightforward mathematical
approach to find the optimum illumination in almost closed form. The optimum
solutions are as such of interest but can also be used as initial guess in a more
rigorous optimization problem based on Maxwell’s equations.

The chapter is organized as follows. In Section 5.2 we formalize the optimiza-
tion problem used to calculate the optimum field for a given side-wall angle. In
Section 5.3 we introduce and formalize a possible solution to the optimization prob-
lem in which we compute the total reflected intensity from the structure we are
interested in analyzing. This Section is further divided into five subsections where
we formalized the optimization problem as a Lagrange multiplier problem (Sub-
Sec. 5.3.1), we compute the kernel 𝒦 of the integral operator (SubSec. 5.3.2) and
we present a mathematical derivation to reach a close formula for the kernel 𝒦
in the limit NA → 0 (SubSec. 5.3.3). Subsection 5.3.4 deals with the discretiza-
tion techniques we employ to solve the optimization problem numerically, whereas
subsection 5.3.5 contains the main results provided by the optimization algorithm,
which are compared to the case of a plane wave illumination.
In Section 5.4 we propose an alternative method to solve the optimization problem,
based on a split detection configuration. We decided to follow the same structure
as done for the previous method, to ease the understanding of the two techniques
and the similarities/differences of the mathematical derivation. Therefore subsec-
tion 5.4.1 introduces the optimization problem as a Lagrange multiplier problem
whereas subsection 5.4.3 explains the computation of the kernel 𝒦 in the case split
detector configuration. In subsection 5.4.4 we explain the retrieval of the side-wall
angle using the optimized incident field calculated from the most sensitive method
among the two different solutions we have analyzed. Section 5.5 contains the con-
clusions of the main findings for the two configurations. Mathematical derivations
regarding the Fourier transform of the reflection function of the object we consid-
ered are presented in Appendix D.

5.2. The optimization problem
The structure we consider is identical to the one that has been detailed out in
the preceding chapters. Nevertheless, it is useful to recall its definition and key
quantities.

The object under study has a cliff-like shape and it is characterized by a SWA 𝛼
and height ℎ. We center it in a (𝑥, 𝑦, 𝑧) reference system as shown in Figure 5.1,
such that the structure is invariant with respect to the 𝑦-coordinate and the slope
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is given by the function 𝑔 (𝑥):

𝑧 = 𝑔 (𝑥) ∶= {
0, if 𝑥 ⩽−
𝑥 tan(𝛼) + , if − < 𝑥 <
ℎ, if 𝑥 ⩾

(5.1)

h
h/2

+a/2-a/2 x

z

α

Figure 5.1: The height and side-wall angle are the parameters that can vary. The quantity is
automatically derived from the other two variables with Eq. (5.2).

We decided, without loss of generality, to use 𝛼 and ℎ as variables to describe
the cliff. Hence, the projection of the slope over the 𝑥 axis, namely the horizontal
length 𝑎, can be directly obtained from the formula:

𝑎 = ℎ
tan(𝛼) 0 < 𝛼 < 𝜋

2 . (5.2)

Furthermore, we will vary the SWA 𝛼 for a fixed value of ℎ. This implies that 𝑎
changes with 𝛼 as shown in Eq. (5.2). We intentionally extended the definition
of the structure to −∞ and +∞; this assumption complicates the mathematical
derivation, forcing us to invoke distribution theory, but simplifies the problem by
removing an additional constraint. The structure given by the function 𝑔 (𝑥) repre-
sents a pure phase object, hence the reflection function of the structure becomes:

𝑟 (𝑥) = 𝑟 {
exp (2𝑖𝑘ℎ), if 𝑥 ⩽−
exp [2𝑖𝑘 ( − 𝑥 tan(𝛼))], if − < 𝑥 <
1, if 𝑥 ⩾

(5.3)

where 𝑘 = 2𝜋/𝜆 is the wave number and 𝑟 is the reflection coefficient of the surface.
This coefficient can be a complex number with |𝑟| ≤ 1 but we shall subsequently
simply take 𝑟 = 1.

Let 𝑈 (𝑥) be a cylindrical focused field incident on the sample. The reflected
field 𝑈 (𝑥), under the assumption of scalar theory, is assumed to be given by:

𝑈 (𝑥) = 𝑈 (𝑥)𝑟 (𝑥). (5.4)



5.2. The optimization problem

5

71

Suppose that the focused field 𝑈 (𝑥) is generated by a cylindrical microscope ob-
jective of numerical aperture NA. With the term ”cylindrical microscope”, or lens,
we mean an objective which is independent of the 𝑦-coordinate; such a system
transforms a plane wave in a field that is focused along the 𝑥-direction, but is inde-
pendent of the 𝑦-coordinate. If we think of an experimental configuration in which
the reflected light is collected by the same objective, the total intensity captured
by the detector is simply the absolute square of the Fourier transform ℱ of the
reflected field 𝑈 (𝑥):

𝐼out(𝜉) = |ℱ(𝑈 )(𝜉)| = |ℱ(𝑈 𝑟 )(𝜉)| |𝜉| ≤ NA
𝜆 , (5.5)

where 𝜉 is the spatial frequency. We can write:

ℱ(𝑈 𝑟 )(𝜉) = [ℱ(𝑈 ) ∗ ℱ(𝑟 )] (𝜉) = [𝐴 ∗ ℱ(𝑟 )] (𝜉), (5.6)

where the convolution operation is expressed by the symbol ∗ and, in the last step
of Eq. (5.6), we have written 𝐴 (𝜉) for ℱ(𝑈 )(𝜉), i.e. for the complex amplitudes of
the expansion of plane waves of the incident field. Throughout the mathematical
derivation, 𝐴 (𝜉) represents the incident pupil field corresponding to the spatial
frequency 𝜉.

There are several possibilities to optimize the input illumination. One of the
most immediate relies on the total detected reflected intensity, more specifically
one could maximize the absolute value of the derivative of this quantity as function
of the SWA. Mathematically this suggests we have to look for a maximum of the
functional:

𝑄(𝐴 ) = | 𝑑𝑑𝛼 ∫
NA

NA
|𝐴 ∗ ℱ(𝑟 )| 𝑑𝜉| . (5.7)

Details regarding the theoretical derivation and the results obtained for this con-
figuration are discussed in the Section 5.3. However, it is important to mention
at this stage that the total reflected intensity turns out to be not very sensitive to
change of SWA, even in the optimized case. Therefore we looked for alternative
techniques, and hence functionals, that could enhance the SWA sensitivity even
further. As we have seen in Chapter 4, a split detector configuration proves to be
a sensitive approach to detect small side-wall angle deviations. This measurement
scheme gives much higher maximum sensitivity while it is still very fast, which is
important in applications. We hence maximize the change of this difference when
the SWA changes. In mathematical terms, we define the functional:

𝐺(𝐴 ) = ∫
NA 𝑑
𝑑𝛼 𝐼

out(𝜉)𝑑𝜉 − ∫
NA

𝑑
𝑑𝛼 𝐼

out(𝜉)𝑑𝜉

= (∫
NA

−∫
NA
) 𝑑𝑑𝛼 |𝐴 ∗ ℱ(𝑟 )| 𝑑𝜉

= 2ℜ(∫
NA

−∫
NA
)𝐴 ∗ 𝑑ℱ(𝑟 )𝑑𝛼 𝐴 ∗ ℱ(𝑟 ) 𝑑𝜉, (5.8)
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and try to find the pupil field 𝐴 for which the absolute value |𝐺(𝐴 )| is maximum
under the constraint that the focused power is given (normalized):

𝑃(𝐴 ) = ∫
NA

NA
𝐴 (𝜉)𝐴 (𝜉) 𝑑𝜉 = 1. (5.9)

The complex conjugate is indicated with an horizontal bar on top of a mathematical
symbol. Note that when the SWA is changed, the function 𝐺(𝐴 ) can decrease or
increase. It does not matter for our purpose which is the case because we simply
want to maximize the change with SWA.

5.3. Total reflected intensity
We begin by considering the functional expressed by Eq. (5.7). As we have already
mention in Section 5.2, this is probably the most straightforward choice to begin
with. In this section and in the subsections to follow, we present the main mathe-
matical derivation and the results obtained in this configuration. It is important to
rewrite Eq. (5.7), as it is the starting point of our derivation:

𝑄(𝐴 ) = | 𝑑𝑑𝛼 ∫
NA

NA
|𝐴 ∗ ℱ(𝑟 )| 𝑑𝜉| , (5.10)

where the symbol ∗ expresses the convolution operation. Thus, the convolution
between 𝐴 and ℱ (𝑟 ) can be written as:

𝐴 ∗ ℱ(𝑟 )(𝜉) = ∫
NA

NA
𝐴 (𝜉 )ℱ(𝑟 )(𝜉 − 𝜉 )𝑑𝜉 . (5.11)

Moreover, because the integration region does not depend on the SWA 𝛼, we can
write:

𝑄(𝐴 ) = |∫
NA

NA

𝑑
𝑑𝛼 |𝐴 ∗ ℱ(𝑟 )| (𝜉)𝑑𝜉| (5.12a)

= |2ℜ∫
NA

NA
(𝐴 ∗ 𝑑ℱ(𝑟 )𝑑𝛼 ) (𝐴 ∗ ℱ(𝑟 )) 𝑑𝜉| . (5.12b)

We remind the reader that the complex conjugate is indicated with an horizontal
bar on top of a mathematical symbol.

5.3.1. The Lagrange mutliplier rule
A useful tool to find a solution to the optimization problem is provided by the La-
grange multiplier rule for inequality constraints [25] (also known as Kuhn-Tucker’s
theorem). If 𝐴 are the plane wave amplitudes of the optimum incident field, then
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according to this theorem there is a Lagrange multiplier Λ such that the following
equation is satisfied for all complex 𝐵 :

𝛿𝑄(𝐴 )(𝐵 ) − Λ𝛿𝑃(𝐴 )(𝐵 ) = 0 (5.13)

where 𝛿𝑄(𝐴 )(𝐵 ) and 𝛿𝑃(𝐴 )(𝐵 ) are the Gateaux derivatives of the functionals
𝑄(𝐴 ) and 𝑃(𝐴 ) in the direction of 𝐵 . We have:

𝛿𝑄(𝐴 )(𝐵 ) = 2ℜ∫
NA

NA
[𝐴 ∗ ℱ(𝑟 ) 𝐵 ∗ 𝑑ℱ(𝑟 )𝑑𝛼 + 𝐴 ∗ 𝑑ℱ(𝑟 )𝑑𝛼 𝐵 ∗ ℱ(𝑟 )] 𝑑𝜉

(5.14)
given that we have to compute the real part of the integral in the right hand side of
Eq. (5.14), we took the complex conjugate of the second addendum. It is possible
to simplify Eq. (5.14) by writing explicitly the convolution terms, hence:

𝛿𝑄(𝐴 )(𝐵 ) = 2ℜ{∫
NA

NA
[𝐴 ∗ ℱ(𝑟 )] (𝜉)∫

NA

NA

𝑑ℱ(𝑟 )(𝜉 − 𝜉 )
𝑑𝛼 𝐵 (𝜉 )𝑑𝜉 𝑑𝜉

+ ∫
NA

NA
[𝐴 ∗ 𝑑ℱ(𝑟 )𝑑𝛼 ] (𝜉)∫

NA

NA
ℱ(𝑟 )(𝜉 − 𝜉 )𝐵 (𝜉 ) 𝑑𝜉 𝑑𝜉}

= 2ℜ{∫
NA

NA
[∫

NA

NA

𝑑ℱ(𝑟 )(𝜉 − 𝜉)
𝑑𝛼 [𝐴 ∗ ℱ(𝑟 )] (𝜉 )𝑑𝜉

+ ∫
NA

NA
ℱ(𝑟 )(𝜉 − 𝜉) [𝐴 ∗ 𝑑ℱ(𝑟 )𝑑𝛼 ] (𝜉 )𝑑𝜉 ]𝐵 (𝜉) 𝑑𝜉}

= 2ℜ{∫
NA

NA
[∫

NA

NA

𝑑ℱ(𝑟 )(𝜉 − 𝜉)
𝑑𝛼 ∫

NA

NA
𝐴 (𝜉 )ℱ(𝑟 )(𝜉 − 𝜉 )𝑑𝜉 𝑑𝜉

+ ∫
NA

NA
ℱ(𝑟 )(𝜉 − 𝜉)∫

NA

NA
𝐴 (𝜉 ) 𝑑ℱ(𝑟 )(𝜉 − 𝜉 )𝑑𝛼 𝑑𝜉 𝑑𝜉 ]

⋅ 𝐵 (𝜉) 𝑑𝜉}

= 2ℜ{∫
NA

NA
∫

NA

NA
[∫

NA

NA

𝑑ℱ(𝑟 )(𝜉 − 𝜉)
𝑑𝛼 ℱ(𝑟 )(𝜉 − 𝜉 )𝑑𝜉

+ ∫
NA

NA
ℱ(𝑟 )(𝜉 − 𝜉) 𝑑ℱ(𝑟 )(𝜉 − 𝜉 )

𝑑𝛼 𝑑𝜉 ]𝐴 (𝜉 )𝑑𝜉 𝐵 (𝜉) 𝑑𝜉}

= 2ℜ∫
NA

NA
∫

NA

NA
𝒦(𝜉, 𝜉 )𝐴 (𝜉 )𝑑𝜉 𝐵 (𝜉) 𝑑𝜉, (5.15)



5

74
5. Side-wall angle detection enhancement through illumination

optimisation

where the kernel𝒦 has been written as the sum of two main contributions in which
one is the complex conjugate of the other:

𝒦(𝜉, 𝜉 ) = ℋ(𝜉, 𝜉 ) +ℋ(𝜉 , 𝜉), (5.16)

with:

ℋ(𝜉, 𝜉 ) = ∫
NA

NA

𝑑ℱ(𝑟 )(𝜉 − 𝜉)
𝑑𝛼 ℱ(𝑟 )(𝜉 − 𝜉 )𝑑𝜉 . (5.17)

The Gateaux derivative of the power 𝑃 is much easier to calculate and it is given
by the following formula:

𝛿𝑃(𝐴 )(𝐵 ) = 2ℜ∫
NA

NA
𝐴 (𝜉)𝐵 (𝜉) 𝑑𝜉. (5.18)

Equation (5.13) can now be written as:

2ℜ∫
NA

NA
[∫

NA

NA
𝒦(𝜉, 𝜉 )𝐴 (𝜉 )𝑑𝜉 − Λ𝐴 (𝜉)] 𝐵 (𝜉) 𝑑𝜉 = 0 ∀𝐵 ∈ ℂ, (5.19)

as we mention at the beginning of this Section, Eq. (5.19) has to be satisfied for all
complex 𝐵 , which allows us to write it as an in-homogeneous Fredholm equation
of the first kind:

∫
NA

NA
𝒦(𝜉, 𝜉 )𝐴 (𝜉 )𝑑𝜉 = Λ𝐴 (𝜉) (5.20)

Note that:
𝛿𝑄(𝐴 )(𝐴 ) = 2𝑄(𝐴 ), 𝛿𝑃(𝐴 )(𝐴 ) = 2𝑃(𝐴 ) (5.21)

thus Eq. (5.13) gives, with 𝐵 = 𝐴 and for a unit power:

𝑄(𝐴 ) = Λ. (5.22)

We therefore conclude that the solution of our optimization problem is the eigen-
function 𝐴 corresponding to the eigenvalue for which |Λ| is maximum.

5.3.2. Computation of the kernel 𝒦
As discussed in Section 5.2, we want to find the optimized field which entails the
highest sensitivity to the SWA change in the case of a cliff-like geometrical object,
that acts as a phase object. Moreover, we found that the optimized field can be
obtained by solving an integral equation with kernel𝒦, Eqs. (5.16) and (5.17), that
includes the Fourier transform of the reflection function 𝑟 and its derivative with
respect to the side-wall angle. In this section, we reach a more explicit form for
the kernel 𝒦 which will help us to retrieve, under certain assumptions, an analytic
solution of Eq. (5.20).
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As shown in Appendix D, the Fourier transform of the reflection function defined
by Eq. (5.3) is given by the distribution:

ℱ(𝑟 )(𝜉) = exp (𝑖𝑘ℎ)[−
sin(𝑘ℎ+𝜋ℎ )

𝜋 PV(1𝜉 )

+ 𝛿(𝜉) cos(𝑘ℎ) +
sin(𝑘ℎ+𝜋ℎ )
𝑘 tan 𝛼 + 𝜋𝜉 ], (5.23)

where 𝛿(𝜉) is the Dirac’s delta function and PV indicates the distribution given by
the Cauchy Principal Value, i.e. for any smooth test function 𝜙(𝜉) we have:

PV(1𝜉 ) 𝜙(𝜉) = lim
→

∫
ℜ⧵[ , ]

𝜙(𝜉)
𝜉 𝑑𝜉 (5.24a)

= ∫ 𝜙(𝜉) − 𝜙(−𝜉)
𝜉 𝑑𝜉. (5.24b)

The 𝛿 distribution and the Cauchy Principal Value integral correspond to the specular
reflected part of the total reflected field. The specular reflected part is relatively
large due to the fact that in our model the structure extends from −∞ < 𝑥 < ∞.
The derivative with respect to 𝛼 of the just calculated Fourier transform is given by:

𝑑ℱ(𝑟 )(𝜉)
𝑑𝛼 =exp (𝑖𝑘ℎ)[

𝑘ℎcos(𝑘ℎ+𝜋ℎ )
𝑘 sin 𝛼 + sin(2𝛼)

−
𝑘sin(𝑘ℎ+𝜋ℎ )

𝑘 sin 𝛼 + 𝜋 𝜉 cos 𝛼 + 𝑘𝜋𝜉 sin(2𝛼)]. (5.25)

Note that both the right-hand sides of Eqs. (5.23) and (5.25) are real except for the
factor exp (𝑖𝑘ℎ) which multiplies all terms, but it can be factor out of the integral in
Eq. (5.20) since it does not depend on the variable 𝜉. Therefore 𝒦 is a real valued
function. Moreover, from the definition of 𝒦 we can infer that 𝒦(𝜉, 𝜉 ) = 𝒦(𝜉 , 𝜉).
Thus the integral operator is self-adjoint and therefore there exist an orthogonal
basis of 𝐿 (ℝ) of eigenfunctions and all eigenvalues are real.

When calculating a close expression for Eq. (5.17), we need to pay particular
attention to the Cauchy Principal value integral in the Fourier transform of the tar-
get reflection function. Using the Eqs. (5.23), (5.24b) and (5.25), we can write
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Eq. (5.17) as:

ℋ(𝜉, 𝜉 ) = −exp (𝑖𝑘ℎ)𝜋 PV∫
NA

NA

sin(𝑘ℎ+𝜋ℎ ( ))
𝜉 − 𝜉

𝑑ℱ(𝑟 )(𝜉 − 𝜉)
𝑑𝛼 𝑑𝜉

+ exp (𝑖𝑘ℎ) cos(𝑘ℎ)∫
NA

NA

𝑑ℱ(𝑟 )(𝜉 − 𝜉)
𝑑𝛼 𝛿(𝜉 − 𝜉 )𝑑𝜉

+ exp (𝑖𝑘ℎ)∫
NA

NA

𝑑ℱ(𝑟 )(𝜉 − 𝜉)
𝑑𝛼

sin(𝑘ℎ+𝜋ℎ ( ))
𝑘 tan 𝛼 + 𝜋(𝜉 − 𝜉 ) 𝑑𝜉

= −exp (𝑖𝑘ℎ)𝜋 PV∫
NA

NA

sin(𝑘ℎ+𝜋ℎ ( ))
𝜉 − 𝜉

𝑑ℱ(𝑟 )(𝜉 − 𝜉)
𝑑𝛼 𝑑𝜉

+ exp (𝑖𝑘ℎ) cos(𝑘ℎ)𝑑ℱ(𝑟 )(𝜉 − 𝜉)𝑑𝛼

+ exp (𝑖𝑘ℎ)∫
NA

NA

𝑑ℱ(𝑟 )(𝜉 − 𝜉)
𝑑𝛼

sin(𝑘ℎ+𝜋ℎ ( ))
𝑘 tan 𝛼 + 𝜋(𝜉 − 𝜉 ) 𝑑𝜉

(5.26)

As mentioned before, the Cauchy Principal Value integral requires particular care.
It is therefore convenient to introduce a function 𝑤(𝜉 ) defined as:

𝑤(𝜉 ) ∶= sin [𝑘ℎ + 𝜋ℎ(𝜉 − 𝜉 )
tan 𝛼 ] 𝑑ℱ(𝑟 )(𝜉 − 𝜉)

𝑑𝛼 (5.27)
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The PV integral ca now be written as:

𝐼PV = −
exp (𝑖𝑘ℎ)

𝜋 PV∫
NA

NA

𝑤(𝜉 )
𝜉 − 𝜉 𝑑𝜉

= −exp (𝑖𝑘ℎ)𝜋 [∫
NA

NA

𝑤(𝜉 ) − 𝑤(𝜉 )
𝜉 − 𝜉 𝑑𝜉 + 𝑤(𝜉 )PV∫

NA

NA

1
𝜉 − 𝜉 𝑑𝜉 ]

= −exp (𝑖𝑘ℎ)𝜋 [∫
NA

NA

𝑤(𝜉 ) − 𝑤(𝜉 )
𝜉 − 𝜉 𝑑𝜉

+ 𝑤(𝜉 ) lim
→
(∫

NA
+∫

NA

) 1
𝜉 − 𝜉 𝑑𝜉 ]

= −exp (𝑖𝑘ℎ)𝜋 [∫
NA

NA

𝑤(𝜉 ) − 𝑤(𝜉 )
𝜉 − 𝜉 𝑑𝜉

+ 𝑤(𝜉 ) lim
→
{[ln |𝜉 − 𝜉 |] NA + [ln |𝜉 − 𝜉 |]

NA

}]

= −exp (𝑖𝑘ℎ)𝜋 [∫
NA

NA

𝑤(𝜉 ) − 𝑤(𝜉 )
𝜉 − 𝜉 𝑑𝜉 + 𝑤(𝜉 ) ln |

NA − 𝜉
NA + 𝜉

|]. (5.28)

Note that for 𝜉 = 𝜉 :

𝑤(𝜉 )| = sin (𝑘ℎ) 𝑑ℱ(𝑟 )(𝜉 − 𝜉)𝑑𝛼 . (5.29)

The final form for the term ℋ(𝜉, 𝜉 ) can be written as:

ℋ(𝜉, 𝜉 ) = − exp (𝑖𝑘ℎ)𝜋 ∫
NA

NA

𝑤(𝜉 ) − 𝑤(𝜉 )
𝜉 − 𝜉 𝑑𝜉

+ exp (𝑖𝑘ℎ) cos(𝑘ℎ)𝑑ℱ(𝑟 )(𝜉 − 𝜉)𝑑𝛼

− exp (𝑖𝑘ℎ)𝜋 ln |
NA − 𝜉
NA + 𝜉

| sin (𝑘ℎ) 𝑑ℱ(𝑟 )(𝜉 − 𝜉)𝑑𝛼

+ exp (𝑖𝑘ℎ)∫
NA

NA

𝑑ℱ(𝑟 )(𝜉 − 𝜉)
𝑑𝛼

sin(𝑘ℎ+𝜋ℎ ( ))
𝑘 tan 𝛼 + 𝜋(𝜉 − 𝜉 ) 𝑑𝜉 . (5.30)

In the next section we will see that, by substituting for Eq. (5.30) into Eqs. (5.17)
and thus (5.16), it is possible to calculate an analytic form of the optimum field
𝐴 (𝜉) for the limit case NA → 0.
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5.3.3. Limit NA → 0

In this Section we calculate an analytic solution for the optimum field 𝐴 (𝜉) by
considering the limit case NA → 0. This is important because it constitutes the
reference data to verify the computational model we need to build in order to solve
Eq. (5.20). In fact, for very small values of the numerical aperture of the system, the
computational model needs to converge to the analytic one. The first integrand in
the right hand-side of Eq. (5.30) is 𝒪(|𝜉 −𝜉 |) ≤ max |𝜉 |, |𝜉 |. Since |𝜉 |, |𝜉 | < NA

the integrand is 𝒪(NA) and hence the integral is 𝒪((NA) ). The last term of

Eq. (5.30) is instead 𝒪(NA), therefore the dominant terms of ℋ(𝜉, 𝜉 ) are:

ℋ(𝜉, 𝜉 ) ≈ exp (𝑖𝑘ℎ) cos(𝑘ℎ)𝑑ℱ(𝑟 )(𝜉 − 𝜉)𝑑𝛼 − exp (𝑖𝑘ℎ)𝜋 ln |
NA − 𝜉
NA + 𝜉

|

× sin (𝑘ℎ) 𝑑ℱ(𝑟 )(𝜉 − 𝜉)𝑑𝛼 (5.31)

Hence the kernel 𝒦 can be approximated with the expression:

𝒦(𝜉, 𝜉 ) = ℋ(𝜉, 𝜉 ) +ℋ(𝜉 , 𝜉)

≈ cos(𝑘ℎ) [exp (𝑖𝑘ℎ)𝑑ℱ(𝑟 )(𝜉 − 𝜉)𝑑𝛼 + exp (−𝑖𝑘ℎ)𝑑ℱ(𝑟 )(𝜉 − 𝜉 )𝑑𝛼 ]

− exp (𝑖𝑘ℎ)𝜋 ln |
NA − 𝜉
NA + 𝜉

| sin (𝑘ℎ) 𝑑ℱ(𝑟 )(𝜉 − 𝜉)𝑑𝛼

− exp (−𝑖𝑘ℎ)𝜋 ln |
NA − 𝜉
NA + 𝜉

| sin (𝑘ℎ) 𝑑ℱ(𝑟 )(𝜉 − 𝜉 )𝑑𝛼 .

(5.32)
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Substituting Eq. (5.32) into the left hand side integral of Eq. (5.20) yields:

𝐼𝒦 = ∫
NA

NA
𝒦(𝜉, 𝜉 )𝐴 (𝜉 )𝑑𝜉

≈ − exp (𝑖𝑘ℎ)𝜋 sin (𝑘ℎ)∫
NA

NA
ln |

NA − 𝜉
NA + 𝜉

| 𝑑ℱ(𝑟 )(𝜉 − 𝜉)𝑑𝛼 𝐴 (𝜉 )𝑑𝜉

− exp (−𝑖𝑘ℎ)𝜋 ln |
NA − 𝜉
NA + 𝜉

| sin (𝑘ℎ)∫
NA

NA

𝑑ℱ(𝑟 )(𝜉 − 𝜉 )
𝑑𝛼 𝐴 (𝜉 )𝑑𝜉

+ cos(𝑘ℎ)∫
NA

NA
[exp (𝑖𝑘ℎ)𝑑ℱ(𝑟 )(𝜉 − 𝜉)𝑑𝛼

+ exp (−𝑖𝑘ℎ)𝑑ℱ(𝑟 )(𝜉 − 𝜉 )𝑑𝛼 ]𝐴 (𝜉 )𝑑𝜉

(5.33)

At this point, we take the limit NA → 0:

𝐼𝒦 ≈−
exp (−𝑖𝑘ℎ)

𝜋 ln |
NA − 𝜉
NA + 𝜉

| sin (𝑘ℎ) 2NA𝜆
𝑑ℱ(𝑟 )(𝜉)

𝑑𝛼 𝐴 (0) (5.34a)

exp (𝑖𝑘ℎ)
𝜋 sin (𝑘ℎ)∫

NA

NA
ln |

NA − 𝜉
NA + 𝜉

| 𝑑ℱ(𝑟 )(−𝜉)𝑑𝛼 𝐴 (0)𝑑𝜉 (5.34b)

+ 2NA cos(𝑘ℎ)𝜆 [exp (𝑖𝑘ℎ)𝑑ℱ(𝑟 )(−𝜉)𝑑𝛼 + exp (−𝑖𝑘ℎ)𝑑ℱ(𝑟 )(𝜉)𝑑𝛼 ]𝐴 (0)

(5.34c)

we notice that the integral in Eq. (5.34b) vanishes given that the integrand is an
odd function of 𝜉 , the other integrals can instead be evaluated analytically. It is
thus possible to write the integral 𝐼𝒦 as:

𝐼𝒦 ≈ −
exp (−𝑖𝑘ℎ)

𝜋
2NA
𝜆 ln |

NA − 𝜉
NA + 𝜉

| sin (𝑘ℎ) 𝑑ℱ(𝑟 )(𝜉)𝑑𝛼 𝐴 (0)

+ 2NA cos(𝑘ℎ)𝜆 [exp (𝑖𝑘ℎ)𝑑ℱ(𝑟 )(−𝜉)𝑑𝛼 + exp (−𝑖𝑘ℎ)𝑑ℱ(𝑟 )(𝜉)𝑑𝛼 ]𝐴 (0) (5.35)
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This result can be substituted into Eq. (5.20) to reach an approximate expression
for the Lagrange multiplier problem when NA → 0:

2 NA
𝜆 𝐴 (0){cos(𝑘ℎ) [exp (𝑖𝑘ℎ)

𝑑ℱ(𝑟 )(−𝜉)
𝑑𝛼 + exp (−𝑖𝑘ℎ)𝑑ℱ(𝑟 )(𝜉)𝑑𝛼 ]

− exp (−𝑖𝑘ℎ)𝜋 ln |
NA − 𝜉
NA + 𝜉

| sin (𝑘ℎ) 𝑑ℱ(𝑟 )(𝜉)𝑑𝛼 } = Λ𝐴 (𝜉) (5.36)

The eigenvalue Λ of the optimization problem can be analytically computed if
we take 𝜉 = 0 in Eq. (5.36) and substituting the expression for the derivative with
respect to 𝛼 of the reflection function (Eq. (5.25)):

Λ = 2 NA
𝜆 cos(𝑘ℎ) [exp (𝑖𝑘ℎ)𝑑ℱ(𝑟 )(0)𝑑𝛼 + exp (−𝑖𝑘ℎ)𝑑ℱ(𝑟 )(0)𝑑𝛼 ]

= 4 NA
𝜆 cos(𝑘ℎ) [ℎ cos(ℎ𝑘)sin 𝛼 − sin(ℎ𝑘)𝑘 sin 𝛼 ]

= 4 NA
𝜆
ℎ𝑘 cos (ℎ𝑘) − cos(𝑘ℎ) sin(ℎ𝑘)

𝑘 sin 𝛼 (5.37a)

The formula for the eigenvalue Λ can be substituted into Eq. (5.36) to find a close
expression of the eigenfunction 𝐴 (𝜉):

𝐴 (𝜉) = 2 NA𝜆
𝐴 (0)
Λ {cos(𝑘ℎ) [exp (𝑖𝑘ℎ)𝑑ℱ(𝑟 )(−𝜉)𝑑𝛼 + exp (−𝑖𝑘ℎ)𝑑ℱ(𝑟 )(𝜉)𝑑𝛼 ]+

− exp (−𝑖𝑘ℎ)𝜋 ln |
NA − 𝜉
NA + 𝜉

| sin (𝑘ℎ) 𝑑ℱ(𝑟 )(𝜉)𝑑𝛼 } (5.38)

At last, the expression for 𝐴 (0) can be found from the constraint imposed to the
total available power:

∫
NA

NA
|𝐴 (𝜉)| 𝑑𝜉 = 1 (5.39)

which gives us:

𝐴 (0) = 𝜆
2NA

Λ

√∫
NA

NA |𝑇(𝜉)| 𝑑𝜉

(5.40)

where:

𝑇(𝜉) = cos(𝑘ℎ) [exp (𝑖𝑘ℎ)𝑑ℱ(𝑟 )(−𝜉)𝑑𝛼 + exp (−𝑖𝑘ℎ)𝑑ℱ(𝑟 )(𝜉)𝑑𝛼 ]

− exp (−𝑖𝑘ℎ)𝜋 ln |
NA − 𝜉
NA + 𝜉

| sin (𝑘ℎ) 𝑑ℱ(𝑟 )(𝜉)𝑑𝛼 (5.41)



5.3. Total reflected intensity

5

81

NOTE: Looking at the expressions we have just obtained, we notice that in the
case NA → 0, 𝐴 (𝜉) is independent of 𝛼. The maximum sensitivity that can be
achieved for a given 𝛼 is given by:

Λ = 𝛿𝑄(𝐴 )(𝐴 )
𝛿𝑃(𝐴 )(𝐴 ) =

𝑄(𝐴 )
𝑃(𝐴 ) = 𝑄(𝐴 ) = max𝑄(𝐴 ) (5.42)

Hence:

max𝑄(𝐴 ) = Λ = 4 NA𝜆
ℎ𝑘 cos (ℎ𝑘) − cos(𝑘ℎ) sin(ℎ𝑘)

𝑘 sin 𝛼 (5.43)

this implies that the optimum sensitivity is a monotonically decreasing function of
the slope angle 𝛼.

5.3.4. Discretization
In this subsection we briefly discuss the discretization technique used to compute
the kernel 𝒦 and Eq. (5.20). This is based on the Nyström method, which means
that we will transform the integral equation we need to solve into a matrix eigen-
value equation. Setting 𝜉 = NA 𝜉 = 𝛽𝜉 we get:

𝛽∫ 𝒦(𝜉, 𝛽𝜉 )𝐴 (𝛽𝜉 )𝑑𝜉 = Λ𝐴 (𝜉) (5.44)

which is still an inhomogeneous Fredholm equation of the first kind, with eigenvalue
Λ = Λ/𝛽. Since the integration interval runs from −1 to 1, we can apply the
Gaussian quadrature rule; hence we discretize the variable 𝜉 into 𝑁 points −1 <
𝜉 < 𝜉 < … < 𝜉 = 1 with Gaussian weight 𝑤 corresponding to 𝜉 to obtain:

∑𝑤 𝒦(𝜉, 𝛽𝜉 )𝐴 (𝛽𝜉 ) = Λ 𝐴 (𝜉) (5.45)

To proceed, we discretize the variable 𝜉 into 𝑁 points as well, therefore:

∑𝑤 𝒦(𝜉 , 𝛽𝜉 )𝐴 (𝛽𝜉 ) = Λ 𝐴 (𝜉 ) 𝑚 = 1, 2, … , 𝑁 (5.46)

The system given by Eq. (5.46) can be written in matrix form by setting K =
𝒦(𝜉 , 𝛽𝜉 ), w = diag(𝑤 ,… ,𝑤 ) and Ai = [𝐴 (𝜉 ), 𝐴 (𝜉 ), … , 𝐴 (𝜉 )] . Hence we
need to solve the matrix eigenvalue problem

KwAi = Λ Ai (5.47)

which, when solved, yields 𝑁 eigenvalues Λ , 𝑚 = 1, 2, … ,𝑁, and the associated
eigenfunctions 𝐴 .
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5.3.5. Computation of the optimized field
In this section we look at the behavior of the optimized field 𝐴 (𝜉) for some values
of the slope angle 𝛼, the height ℎ and the numerical aperture NA of the system.
Furthermore, we compare the sensitivity of the optimized field with that of a plane
wave. In this way we can analyze the performance of a properly shaped beam with
the most used and general type of illumination. For the optimum input field, the
sensitivity is simply given by the strongest positive (or strongest negative) eigen-
value Λ, whereas for a plane wave illumination we need to calculate the sensitivity
𝑄(𝐴 ) from Eq. (5.8), by substituting for 𝐴 (𝜉) the expression of a plane wave. We
have:

𝑄(𝐴PW) =
1
2 𝛿𝑄(𝐴PW)(𝐴PW)

= |𝐴 | ℜ∫
NA

NA
∫

NA

NA
𝒦(𝜉, 𝜉 )𝑑𝜉 𝑑𝜉 (5.48)

where 𝐴 represents the amplitude of the plane wave. Hence, it is possible to calcu-
late the sensitivity of the plane wave case by simply integrating the kernel 𝒦(𝜉, 𝜉 ).
The amplitude 𝐴 of the plane wave has to be normalized to 1 using Eq. (5.9), which
gives |𝐴 | = 𝜆/(2NA). All the plots we present have been obtained by considering
the input illumination in the visible part of the spectrum (𝜆 = 633𝑛𝑚).

Figure 5.2 shows the profiles of the optimized input field as a function of the
coordinate 𝜉 (normalized to 1), for 𝛼 = 22∘, 44∘, 66∘, 88∘, ℎ = 𝜆/3 and NA = 0.3. As
we already pointed out in Section 5.3.2, the kernel 𝒦(𝜉, 𝜉 ) of the eigenvalue equa-
tion we need to solve is real valued and symmetric, therefore the eigenfunctions
are real valued and the phase of the optimized beam is thus 0 or 𝜋. The profile of
the eigenvector 𝐴 (𝜉) differs strongly from a plane wave illumination, with most of
the energy concentrated into the high order components. In Figure 5.3 the opti-
mum solution is plotted for 𝛼 = 85∘, ℎ = 𝜆/5 and NA = 0.01, 0.1, 0.5. In this case,
changing the numerical aperture of the system does not influence much the profile
of the solution.

In Figure 5.4, we plot the ratio between the sensitivity corresponding to the
optimum field and the one related to a plane wave illumination is plotted against
the variation of the slope angle 13∘ ≤ 𝛼 ≤ 89∘, for NA = 0.4 and ℎ = 𝜆/3. In this
configuration, using the optimized solution provides only a small gain compared to
the more standard plane wave incidence.

It is important to point out that it is critical to find both the strongest positive and
most negative eigenvalues of the system; in fact, we are interested in calculating
the input field which gives the steepest change in the reflected intensity. Hence its
value could also diminish, thus the eigenvector associated to the strongest minimum
could also be an acceptable solution of our system. This hypothesis is confirmed
by Figure 5.5. Without any loss of generality, we chose to plot the values of the
minimum and maximum eigenvalues for NA = 0.3 and ℎ = 𝜆/5, in this case we ob-
serve that the best solution is actually given by the strongest minimum eigenvalue.
Therefore it is important to calculate and find both solutions.
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Figure 5.6 compares the calculated value of the optimum field obtained from
the numerical calculations with the analytic formula given by Eq. (5.38). For small
values of the numerical aperture of the system, i.e. NA → 0, the eigenvalue of the
optimum solution is given by Eq. (5.38), and the sensitivity for the plane wave case
can be computed by taking the limit NA → 0 in Eq. (5.48). We have:

𝑄(𝐴PW) = |𝐴 | ℜ∫
NA

NA
∫

NA

NA
𝒦(𝜉, 𝜉 )𝑑𝜉 𝑑𝜉

= 𝜆
2NA4(

NA
𝜆 ) 𝒦(0, 0)

= 4NA𝜆
ℎ𝑘 cos(ℎ𝑘) − sin(ℎ𝑘)

𝑘 sin 𝛼 cos(𝑘ℎ) (5.49)

that is exactly the same expression reported in Eq. (5.43) and, as we can notice,
the output of the two methods agrees perfectly.

Normalized ξ
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

O
p

ti
m

u
m

 f
ie

ld
 (

a
.u

.)

-140

-120

-100

-80

-60

-40

-20

0

20

40

60

α=22
°

α=44
°

α=66
°

α=88
°

Plane wave case

Figure 5.2: Plot of the optimum field as a function of for different side-wall angles. The numerical
aperture NA . and height / of the cliff are fixed. The optimum field changes when the slope
angle changes.
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Figure 5.3: Plot of the optimum field as a function of for different numerical apertures. The side-wall
angle and height / of the cliff are fixed. Changing the value of the numerical aperture
of the system influences the behavior of the optimum field, nevertheless the difference between the
NA . case and NA . is barely noticeable.
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Figure 5.4: Plot of the sensitivity ratio as a function of SWA . The numerical aperture NA . and
height / of the cliff are fixed. An optimized field (compare to a plane wave illumination) is much
more sensitive to the side-wall angle of a cliff-like structure, given a fixed numerical aperture of the
input pupil.
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Figure 5.5: Plot of the eigenvalues as a function of SWA . The numerical aperture NA . and
height / of the cliff are fixed. It is important to compute both the maximum eigenvalue and the
minimum one, because the latter can also represent the best solution to the problem.

Normalized ξ

-1 -0.5 0 0.5 1
-2

-1.5

-1

-0.5

0

0.5

1
Comparison between theoretical and simulated field

Theory

Simulation

Figure 5.6: Comparison between theoretical and simulated field as a function of SWA . The numerical
aperture NA . and height / of the cliff are fixed. When we consider the case NA → , there
is a perfect agreement between simulation and theory.
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5.4. Split detector case
In the previous section we saw that, if the optimize field is calculate though the
function given by Eq. (5.7), the gain in sensitivity is not as high as expected. There-
fore, we looked into other methods that might be more beneficial for the side-wall
estimation. In particular, the sensitivity to the side-wall angle variation is greatly
enhanced if we consider a split detector configuration. In this type of detection
scheme, the sensor area is divided into two identical halves which are separately
integrated and whose difference is monitored over several sample positions per-
pendicular to the beam propagation direction. In the following subsections, we will
detail the mathematical derivation and the main results concerning this method.

5.4.1. The Lagrange mutliplier rule
In Section 5.3.1 we have introduced the Lagrange multiplier rule for inequality con-
straints [25] to solve the optimization problem; once again, we make use of this rule
in this case as well. We remind the reader that, if 𝐴 are the plane wave amplitudes
of the optimum incident field, then according to this theorem there is a Lagrange
multiplier Λ such that the following equation is satisfied for all complex 𝐵 :

𝛿𝐺(𝐴 )(𝐵 ) − Λ𝛿𝑃(𝐴 )(𝐵 ) = 0, (5.50)

where 𝛿𝐺(𝐴 )(𝐵 ) and 𝛿𝑃(𝐴 )(𝐵 ) are the Gateaux derivatives of the functionals
𝐺(𝐴 ) and 𝑃(𝐴 ) in the direction of 𝐵 . We have:

𝛿𝐺(𝐴 )(𝐵 ) = 2ℜ{∫
NA

[𝐴 ∗ 𝑑ℱ(𝑟 )𝑑𝛼 𝐵 ∗ ℱ(𝑟 )

+ 𝐴 ∗ ℱ(𝑟 )𝐵 ∗ 𝑑ℱ(𝑟 )𝑑𝛼 ] 𝑑𝜉

− ∫
NA
[𝐴 ∗ 𝑑ℱ(𝑟 )𝑑𝛼 𝐵 ∗ ℱ(𝑟 )

+ 𝐴 ∗ ℱ(𝑟 )𝐵 ∗ 𝑑ℱ(𝑟 )𝑑𝛼 ] 𝑑𝜉}.

(5.51)

Let us focus on the first integral in the right-hand side of Eq. (5.51):

𝑇 (𝐴 )(𝐵 ) = 2ℜ∫
NA

[𝐴 ∗ 𝑑ℱ(𝑟 )𝑑𝛼 𝐵 ∗ ℱ(𝑟 )

+ 𝐴 ∗ ℱ(𝑟 )𝐵 ∗ 𝑑ℱ(𝑟 )𝑑𝛼 ] 𝑑𝜉 (5.52)
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We have:

𝑇 (𝐴 )(𝐵 ) = 2ℜ{∫
NA

𝐴 ∗ 𝑑ℱ(𝑟 )𝑑𝛼 (𝜉)∫
NA

NA
𝐵 (𝜉 )

× ℱ(𝑟 )(𝜉 − 𝜉 ) 𝑑𝜉 𝑑𝜉 + ∫
NA

𝐴 ∗ ℱ(𝑟 )(𝜉)

× ∫
NA

NA

𝑑ℱ(𝑟 )(𝜉 − 𝜉 )
𝑑𝛼 𝐵 (𝜉 ) 𝑑𝜉 𝑑𝜉}

(5.53)

after some algebra we find:

𝑇 (𝐴 )(𝐵 ) = ∫
NA

NA
∫

NA

NA
𝒦 (𝜉, 𝜉 )𝐴 (𝜉 )𝑑𝜉 𝐵 (𝜉) 𝑑𝜉 (5.54)

where the Kernel 𝒦 (𝜉, 𝜉 ) is given by:

𝒦 (𝜉, 𝜉 ) = ∫
NA

[𝑑ℱ(𝑟 )(𝜉 − 𝜉 )
𝑑𝛼 ℱ(𝑟 )(𝜉 − 𝜉)

+ 𝑑ℱ(𝑟 )(𝜉 − 𝜉)
𝑑𝛼 ℱ(𝑟 )(𝜉 − 𝜉 )]𝑑𝜉 . (5.55)

We apply a similar computation to the second integral in the right-hand side of
Eq. (5.51):

𝑇 (𝐴 )(𝐵 ) = 2ℜ∫
NA
[𝐴 ∗ 𝑑ℱ(𝑟 )𝑑𝛼 𝐵 ∗ ℱ(𝑟 )

+ 𝐴 ∗ ℱ(𝑟 )𝐵 ∗ 𝑑ℱ(𝑟 )𝑑𝛼 ] 𝑑𝜉 (5.56)

and obtain:

𝑇 (𝐴 )(𝐵 ) = 2ℜ∫
NA

NA
∫

NA

NA
𝒦 (𝜉, 𝜉 )𝐴 (𝜉 )𝑑𝜉 𝐵 (𝜉) 𝑑𝜉 (5.57)

where:

𝒦 (𝜉 , 𝜉 ) = ∫
NA
[𝑑ℱ(𝑟 )(𝜉 − 𝜉 )

𝑑𝛼 ℱ(𝑟 )(𝜉 − 𝜉)

+ 𝑑ℱ(𝑟 )(𝜉 − 𝜉)
𝑑𝛼 ℱ(𝑟 )(𝜉 − 𝜉 )]𝑑𝜉 . (5.58)
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Note that 𝒦 is formally identical to 𝒦 in Eq. (5.55), provided we change the
integration limits. Hence the functional 𝛿𝐺(𝐴 )(𝐵 ) can be written as:

𝛿𝐺(𝐴 )(𝐵 ) = 𝑇 (𝐴 )(𝐵 ) − 𝑇 (𝐴 )(𝐵 )

= 2ℜ∫
NA

NA
∫

NA

NA
𝒦(𝜉, 𝜉 )𝐴 (𝜉 )𝑑𝜉 𝐵 (𝜉) 𝑑𝜉 (5.59)

with:
𝒦(𝜉, 𝜉 ) = 𝒦 (𝜉, 𝜉 ) − 𝒦 (𝜉, 𝜉 ) , (5.60)

Note that since 𝐺(𝐴 ) = 1/2 𝛿𝐺(𝐴 )(𝐴 ), Eq. (5.59) implies:

𝐺(𝐴 ) = ℜ∫
NA

NA
∫

NA

NA
𝒦(𝜉, 𝜉 )𝐴 (𝜉)𝐴 (𝜉 ) 𝑑𝜉 𝑑𝜉 (5.61)

and this holds for any pupil field 𝐴 (not only the optimum one).
The Gateaux derivative of the power 𝑃(𝐴 ) in the direction of 𝐵 is given by:

𝛿𝑃(𝐴 )(𝐵 ) = 2ℜ∫
NA

NA
𝐴 (𝜉)𝐵 (𝜉) 𝑑𝜉. (5.62)

Since 𝐵 is an arbitrary complex valued pupil field, Eqs. (5.50), (5.59) and (5.62)
imply:

∫
NA

NA
𝒦(𝜉, 𝜉 )𝐴 (𝜉 )𝑑𝜉 − Λ𝐴 (𝜉) = 0. (5.63)

Hence the optimum field 𝐴 (𝜉) is eigenfunction, with eigenvalue Λ, of the integral
operator with kernel 𝒦. As we did in Section 5.3.1, we can conclude that the
solution of our optimization problem is the eigenfunction 𝐴 corresponding to the
eigenvalue for which |Λ| is maximum, based on the following equations.

𝛿𝐺(𝐴 )(𝐴 ) = 2𝐺(𝐴 ), 𝛿𝑃(𝐴 )(𝐴 ) = 2𝑃(𝐴 ) (5.64)

thus Eq. (5.50) gives, with 𝐵 = 𝐴 and for a unit power:

𝐺(𝐴 ) = Λ. (5.65)

5.4.2. Computation of the kernel 𝒦
The derivation of the optimum filed for the split detection case is quite similar to
what we have already done when we have considered the optimization problem
based on the total reflected intensity. This means that we need to substitute the
expressions of the Fourier transform of the reflection function and its derivative with



5.4. Split detector case

5

89

respect to the side wall angel 𝛼 into the definitions of 𝒦 and 𝒦 :

ℱ(𝑟 )(𝜉) = exp (𝑖𝑘ℎ)[−
sin(𝑘ℎ+𝜋ℎ )

𝜋 PV(1𝜉 )

+ 𝛿(𝜉) cos(𝑘ℎ) +
sin(𝑘ℎ+𝜋ℎ )
𝑘 tan 𝛼 + 𝜋𝜉 ] (5.66)

𝑑ℱ(𝑟 )(𝜉)
𝑑𝛼 =exp (𝑖𝑘ℎ)[

𝑘ℎcos(𝑘ℎ+𝜋ℎ )
𝑘 sin 𝛼 + sin(2𝛼)

−
𝑘sin(𝑘ℎ+𝜋ℎ )

𝑘 sin 𝛼 + 𝜋 𝜉 cos 𝛼 + 𝑘𝜋𝜉 sin(2𝛼)] (5.67)

We would like to emphasize once again that both the right-hand sides of Eqs. (5.66)
and (5.67) are real except for the factor exp (𝑖𝑘ℎ) which multiplies all terms. There-
fore, 𝒦 and 𝒦 are real valued functions and hence the kernel 𝒦 is also real.
Hence all the eigenvalues must be real. Furthermore, we can write 𝒦 (𝜉, 𝜉 ) (and
so 𝒦 (𝜉, 𝜉 )) as:

𝒦 (𝜉, 𝜉 ) = ℋ(𝜉, 𝜉 ) +ℋ(𝜉 , 𝜉) (5.68)

with:

ℋ(𝜉, 𝜉 ) = ∫
NA 𝑑ℱ(𝑟 )(𝜉 − 𝜉)

𝑑𝛼 ℱ(𝑟 )(𝜉 − 𝜉 )𝑑𝜉 (5.69)

We can calculate ℋ(𝜉, 𝜉 ) by substituting the expressions for ℱ(𝑟 ) and 𝑑ℱ(𝑟 )/𝑑𝛼
given by Eqs. (5.66) and (5.67):

ℋ(𝜉, 𝜉 ) = −exp (𝑖𝑘ℎ)𝜋 PV∫
NA 1
𝜉 − 𝜉 sin[𝑘ℎ + 𝜋ℎ

(𝜉 − 𝜉 )
tan 𝛼 ] 𝑑ℱ(𝑟 )(𝜉 − 𝜉)

𝑑𝛼 𝑑𝜉

+ exp (𝑖𝑘ℎ) cos(𝑘ℎ) 𝑑ℱ(𝑟 )(𝜉 − 𝜉)𝑑𝛼

+ exp (𝑖𝑘ℎ)∫
NA 𝑑ℱ(𝑟 )(𝜉 − 𝜉)

𝑑𝛼
sin[𝑘ℎ+𝜋ℎ ( ) ]
𝑘 tan 𝛼 + 𝜋(𝜉 − 𝜉 ) 𝑑𝜉 . (5.70)

The Cauchy Principal Value integral in the right-hand side of Eq. (5.70) requires
careful examination. To calculate it, we define a new function 𝑤(𝜉 ) containing
part of the integrand:

𝑤(𝜉 ) = sin [𝑘ℎ + 𝜋ℎ(𝜉 − 𝜉 )
tan 𝛼 ] 𝑑ℱ(𝑟 )(𝜉 − 𝜉)

𝑑𝛼 (5.71)
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The Cauchy Principal Value integral can now be written as:

𝐼 (𝜉 ) = −exp (𝑖𝑘ℎ)𝜋 PV∫
NA 𝑤(𝜉 )
𝜉 − 𝜉 𝑑𝜉

= − exp (𝑖𝑘ℎ)𝜋 lim
→
[(∫ +∫

NA

) 𝑤(𝜉 ) − 𝑤(𝜉 )𝜉 − 𝜉 𝑑𝜉

+ 𝑤(𝜉 )(∫ +∫
NA

) 1
𝜉 − 𝜉 𝑑𝜉 ]

= − exp (𝑖𝑘ℎ)𝜋 [∫
NA 𝑤(𝜉 ) − 𝑤(𝜉 )

𝜉 − 𝜉 𝑑𝜉

+ 𝑤(𝜉 ) lim
→
(∫ +∫

NA

) 1
𝜉 − 𝜉 𝑑𝜉 ]

= −exp (𝑖𝑘ℎ)𝜋 [∫
NA 𝑤(𝜉 ) − 𝑤(𝜉 )

𝜉 − 𝜉 𝑑𝜉 + 𝑤(𝜉 ) ln |
NA − 𝜉
𝜉 |]. (5.72)

Note that, in the last step of Eq. (5.72), the first integral is a regular integral because
𝑤 is a smooth function. Finally, we get for ℋ(𝜉, 𝜉 ):

ℋ(𝜉, 𝜉 ) = − exp (𝑖𝑘ℎ)𝜋 ∫
NA 𝑤(𝜉 ) − 𝑤(𝜉 )

𝜉 − 𝜉 𝑑𝜉

− exp (𝑖𝑘ℎ)𝜋 ln |
NA − 𝜉
𝜉 | sin (𝑘ℎ) 𝑑ℱ(𝑟 )(𝜉 − 𝜉)𝑑𝛼

+ exp (𝑖𝑘ℎ) cos(𝑘ℎ)𝑑ℱ(𝑟 )(𝜉 − 𝜉)𝑑𝛼

+ exp (𝑖𝑘ℎ)∫
NA 𝑑ℱ(𝑟 )(𝜉 − 𝜉)

𝑑𝛼
sin[𝑘ℎ+𝜋ℎ ( ) ]
𝑘 tan 𝛼 + 𝜋(𝜉 − 𝜉 ) 𝑑𝜉 , (5.73)

Note that for 𝜉 = 𝜉 :

𝑤(𝜉 )| = sin (𝑘ℎ) 𝑑ℱ(𝑟 )(𝜉 − 𝜉)𝑑𝛼 . (5.74)

It follows from Eq. (5.73) that ℋ, and also 𝒦 , is a smooth real function. The
Kernel 𝒦 is numerically computed using Gauss-Lagrange quadrature integration
method as discussed in Section 5.3.4.

5.4.3. Computation of the optimized field
In this section, we will study the optimized pupil field 𝐴 (𝜉) for some values of the
slope angle 𝛼, the height ℎ, the numerical aperture NA of the system and for unit
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power in the beam. Furthermore, we will compare the sensitivity for a change of
SWA for the optimum pupil field with that of a plane wave. In the optimized case,
the maximum sensitivity is given by the maximum of the absolute value of the eigen-
values, whereas for a plane wave 𝐴PW, using the same split detector configuration,
the sensitivity follows from Eq. (5.61) as:

𝐺(𝐴PW) = |𝐴 | ℜ∫
NA

NA
∫

NA

NA
𝒦(𝜉, 𝜉 )𝑑𝜉 𝑑𝜉 (5.75)

where the amplitude 𝐴 of the plane wave must be chosen such that the power is
unity, i.e. |𝐴 | = 𝜆/(2NA). The sensitivity for the plane wave case is then simply
proportional to the double integral of the kernel𝒦(𝜉, 𝜉 ). It is important to point out
that it is critical to find both the strongest positive and most negative eigenvalues
because we are interested in finding the input field which gives the steepest change
in the reflected intensity. Hence its most negative eigenvalue could also diminish
when the SWA increases, thus the associated eigenvector could yield the optimum
pupil field. Decisive is what eigenvalue has maximum absolute value.

All the plots have been obtained by considering the input illumination in the
visible part of the spectrum (𝜆 = 633𝑛𝑚), but other optical regimes can be investi-
gated. Since the kernel 𝒦 and the eigenvalues are real, it follows from Eq. (5.63)
that the optimum pupil field can be taken to be real and its phase is thus 0 or 𝜋 in
all pupil points.

Figure 5.7 shows the profiles of the absolute value of the optimized pupil field,
along with a plane wave of amplitude 𝐴 , as a function of the coordinate 𝜉 (nor-
malized to 1 by the factor 𝜆/NA), for SWA = 10∘, 20∘, 40∘, 60∘, 89∘, ℎ = 𝜆/3 and
NA = 0.4. We can readily see that the profile of the optimum 𝐴 (𝜉) differs strongly
from a plane wave, with most of the energy concentrated in the center of the pupil.
In the case 𝛼 = 10∘, the optimum solution undergoes a phase change, indicated
with the labels ”(0)” and ”(𝜋)”, near 𝜉 = 0.65. This is also the only case in which the
phase changes sign within the pupil. The profile becomes less and less asymmetric
around zero when the slope angle increases, but still little asymmetries arise for
positive values of 𝜉. We also notice that the solutions for 𝛼 = 60∘ and 𝛼 = 89∘ are
basically overlapping each other, thereby suggesting a decrease in the sensitivity
when the side-wall angle is very steep. Furthermore, the absolute value of the
amplitude of the optimize field tends to strong positive values when 𝑥 = 0; this
result is a consequence of our detection scheme, where we divide the detector in
two halves and we subtract one from the other. In Figure 5.8, the absolute value
of the optimum solution is plotted for 𝛼 = 85∘, ℎ = 𝜆/3 and NA = 0.25 and 0.4.
Changing the numerical aperture of the system has a stronger impact on the so-
lution than changing the SWA, particularly when the angle gets very steep, when
the NA is fixed (Figure 5.7). The overall trend of the absolute value of the optimum
field is the same for each numerical aperture but the rate at which each solution
approaches strong positive values is different.

In Figure 5.9, the ratio of the optimum sensitivity 𝐺(𝐴 ) over the corresponding
value 𝐺(𝐴PW) for the plane wave case, is plotted for different values of the SWA
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Figure 5.7: The absolute value of the optimized pupil field is plotted for several values of the slope angle
, when NA . and / . For the case ∘, we emphasize the phase change along the pupil.

As a comparison, the amplitude of a plane wave normalized by √ /( NA) is also plotted.
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in a range from 20∘ to 90∘ and for a fixed NA = 0.4, ℎ = 𝜆/3 and 𝜆/4. The gain
in sensitivity decreases with increasing angles, nevertheless, by shaping the input
pupil field, sensitivity of the SWA detection can be increased by more than 150%
compared to the plane wave illumination case. Furthermore, we notice that when
the side-wall angle gets very steep, changing the height of the sample, i.e. the
phase retardation, does not influence the gain in sensitivity.

We have verified how this amplitude profile could be implemented in a com-
mercial Spatial Light Modulator (SLM) characterized by a fill factor of 90%, a pixel
size of 8.1𝜇𝑚 and a dynamic range of 256 gray levels coded in a 8 bit signal. We
did this by comparing the sensitivity to the SWA obtained from the optimum field
𝐴 with the one calculated from the approximated field generated by a SLM, for
the same values of numerical aperture and height, i.e. NA = 0.4 and ℎ = 𝜆/3.
The difference between the sensitivities of the theoretical optimum field and the
approximated field that can be realized by a SLM is less than 2%. Therefore the
optimum solution we calculated can be implemented experimentally with commer-
cially available liquid crystal on silicon (LCOS) devices, with a good approximation.

Slope angle α (degrees)

20 30 40 50 60 70 80 90

G
(A

i )/
G

(A
i P

W
)

1.5

1.55

1.6

1.65

1.7

1.75

1.8

h = λ /3

h = λ /4

Figure 5.9: Ratio of the optimum sensitivity ( ) and the one associated to a plane wave illumination
( PW) as a function of the SWA , when NA . , / and / . For high slope angles the

increase in sensitivity is more than %.

Figure 5.10 shows the absolute value of the optimized focused spot, along
with the profile of a focused plane wave, for a cliff structure with ℎ = 𝜆/3 and
an objective with numerical aperture NA = 0.4, with different slope angles 𝛼 =
10∘, 20∘, 40∘, 60∘, 89∘. In this case, each curve has been normalized such that the
power is unity. The focused spot obtained by the optimum pupil field 𝐴 contains
much more energy into the external lobes, compare to the focused plane wave
case, as expected from the profile of the pupil field itself. In Figure 5.11, another
example of the absolute value of the optimized focused spot is shown, but in this
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case ℎ = 𝜆/4.
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Figure 5.10: Comparison between the absolute values of a focused plane wave and the focused optimum
pupil field opt ℱ( ) when NA . and / .

5.4.4. Determination of the SWA using the optimized input
field

In this section we describe how the side-wall angle can be determined starting from
the optimum field profile. First of all, it is important to remind that it is possible
to have prior knowledge on the side-wall angle, for example in the case of test
patterns, the SWA that is to be realized is known. Moreover, Fig. 5.9 shows that,
when dealing with steep values of side-wall angle, which are common in the semi-
conductor industry and lithographic applications, the profile of the sensitivity is flat.
The consequence of this trend is that it is less important to know the exact value
of the slope angle for the optimization process.

Let 𝐴 ̃ be the optimized incident field corresponding to the assumed angle �̃�.
For a SWA 𝛼 close to �̃�, the reflected intensity when the incident field is 𝐴 ̃ :

𝐼out(𝜉) = |[𝐴 ̃ ∗ ℱ(𝑟 )] (𝜉)| . (5.76)

The measured signal is the difference of the total intensities measured by the two
halves of the detector and by comparing this measured signal to the theoretical
one, we determine the slope angle 𝛼. The error 𝜎 in the determination of the
angle is:

𝜎 = Error in the measured signal
𝐺 (𝐴 ̃ )

(5.77)

where 𝐺 (𝐴 ̃ ) is the sensitivity for detecting 𝛼 while using the illumination that is
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Figure 5.11: Comparison between the absolute values of a focused plane wave and the focused optimum
pupil field opt ℱ( ) when NA . and / .

optimum for �̃�:

𝐺 (𝐴 ̃ ) = ∫
NA 𝑑
𝑑𝛼 |[𝐴 ̃ ∗ ℱ(𝑟 )] (𝜉)| 𝑑𝜉

− ∫
NA

𝑑
𝑑𝛼 |[𝐴 ̃ ∗ ℱ(𝑟 )] (𝜉)| 𝑑𝜉

= 2ℜ(∫
NA

−∫
NA
)𝐴 ̃ ∗

𝑑ℱ(𝑟 )
𝑑𝛼 𝐴 ̃ ∗ ℱ(𝑟 ) 𝑑𝜉 (5.78)

where the Fourier transform of the reflection function, along with its derivative, are
given by Eqs. (5.66) and (5.67). Let 𝛼min(�̃�) < �̃� < 𝛼max(�̃�) be such that for all
𝛼min(�̃�) ≤ 𝛼 ≤ 𝛼max(�̃�):

|𝐺 (𝐴 ̃ ) − 𝐺 (𝐴 )|
𝐺 (𝐴 ) < 0.1. (5.79)

In Fig. 5.12 we plot 𝛼min(�̃�), 𝛼max(�̃�) for 40∘ ≤ �̃� ≤ 90∘, for ℎ = 𝜆/4 and ℎ = 𝜆/3,
when NA = 0.4. When the optimum field 𝐴 ̃ is used as input beam to investigate
a cliff with SWA 𝛼 ≠ �̃�, the length of the interval in which the sensitivity differs
less than 10% from the optimum one, increases for higher slope angles. In fact,
as mentioned earlier in this section, the profile of the optimum sensitivity (Fig. 5.9)
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is flat when the slope angle is very steep, therefore it is not necessary to use the
optimum illumination of the exact slope angle. To achieve high sensitivity it suffices
to be able to guess the side wall angle with sufficient accuracy and use the optimum
illumination of that guess. Furthermore, we can notice that if we illuminate a cliff-
like sample with the optimum beam calculated for �̃�, it is possible to determine a
side-wall angle of 72∘ for both the different heights considered. The value of 𝛼max
reaches a maximum when �̃� = 72∘ for ℎ = 𝜆/4 and �̃� = 70∘ in the case of ℎ = 𝜆/3,
after this point the sensitivity of the detection differs always less than 10% of that
of the optimum, when the optimum illumination is used.
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Figure 5.12: For every ̃ on the horizontal axis, the lower and upper bound of the interval of slope
angles are shown for which the sensitivity of the detection differs less than % of that of the optimum
one when the optimum illumination of ̃ is used.

5.5. Conclusion
In this chapter we determine, for a cliff-like structure modeled as a phase object
and using scalar theory, the amplitude and phase of a focused beam which gives
the highest sensitivity to the change of the side-wall angle when using a split de-
tector. The problem is formulated mathematically as an optimization problem for
the field in the pupil of a cylindrical lens. We investigated two different function-
als that are to be maximized. On the one hand we maximize the derivative with
respect to the side-wall angle 𝛼 of the total reflected intensity of the object under
study. On the other hand, we maximize the derivative with respect to the SWA 𝛼
of the difference in scattered light intensities as measured by a split detector. In
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both cases, the constraint on the pupil field is that the power in the incident beam
is fixed. The optimum pupil field is shown to be the eigenfunction of an integral
operator corresponding to the eigenvalue with largest absolute value. This problem
is solved by standard numerical methods. Our results show that only in the latter
case - maximize the derivative with respect to the SWA 𝛼 of the difference in scat-
tered light intensities as measured by a split detector - the optimum sensitivity is
substantially higher compared to when a plane wave focused by a cylindrical lens is
used as illumination. The split detector configuration, where we consider the differ-
ence between the intensities measured by the two halves of the detector, entails a
much higher optimum sensitivity than by detecting the total reflected light, without
sacrificing acquisition speed. Although our results are based on rather restrictive
assumptions of scalar theory and phase object, the optimum fields derived may be
used as starting values in more rigorous optimization problems which use Maxwell’s
equations to describe the interaction of the illumination with the structure.
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6
Conclusion

In this dissertation we describe possible new ways to determine the side-wall an-
gle of a cliff-like object with optical techniques. We address this problem both
theoretically and experimentally. The methods we developed are all relying on
the scatterometry principles under a coherent light source illumination. Coherent
Fourier Scatterometry (CFS) is the common technique that connects all the chap-
ters, whether it is explicitly use to retrieve the scattering properties of an object - as
in Chapter 2 - or when its strong features and understanding apply to new targets,
as in Chapters 3, 4 and 5.

In Chapter 2 we introduce the concept of CFS and use it to determine the scat-
tering matrix of a periodic structure, i.e. a grating. More specifically we use a sub-
wavelength grating - with period 𝑝 = 500𝑛𝑚 and input wavelength 𝜆 = 633𝑛𝑚 -
and detect the far field distribution for different input and output polarization states.
These field distributions are obtained by modifying the standard CFS configuration
with an interferometer, such that we could obtain the phase information content
of the scattered field. The experimental far fields are then compared to the sim-
ulated ones obtained via the Rigorous Couple Waved Analysis (RCWA) method. It
is important to emphasize that, in order to improve the matching between the ex-
periment and simulation, we employ the measured beam profile as input for the
rigorous electromagnetic simulations. Our finding proves that, with an interfero-
metric CFS setup, we can retrieve the scattering matrix of any object under study,
without being restricted to the periodicity assumption.

In Chapters 3 to 5 we concentrate on an aperiodic structure represented by a
cliff-like object. This choice was primarily made to consider physical effects coming
only from the side-wall angle (SWA) variation. This assumption helps us greatly
in understanding how the scattered far field changes only due to angle differences
and hollows us to keep the mathematical derivation of the scattering problem fully
analytical if, in addition, we operate in the scalar optics regime. The reader might
find these assumptions too stringent but we argue that it is often the case when
beginning to study something new; the bottom-up approach guarantees a gradual
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understanding of the details.
The concept of spiral mode detection is introduced in Chapter 3 as a mean to

enhance the SWA measurement. This method relies on the scattered field expan-
sion into spiral modes and, by applying the same technique on the input beam, we
can detect which mode has changed the most due to a non-perfect (smaller than
90∘) SWA. We prove that, in the presence of a Gaussian input beam, detecting the
scattered 0 order delivers the highest sensitivity to the side-wall angle change.
Furthermore, we briefly explore how the sample acts on different input beams and,
in each case, we provide the spiral mode expansion to highlight how every single
mode is modified. From an experimental point of view, the scattered field can be
decomposed into individual modes with the use of a fork hologram; for this reason
we also provide the analytical description of the interaction of such an object with
a Gaussian beam, which is surely among the most common beam configurations.

In Chapter 4 we tackle the problem with a different approach. Starting from the
usual CFS configuration in which a focused coherent beam is incident on a sample
and the scattered far field is detected, we modify the detection branch introducing
a split detection configuration. In this case, we monitor the signal given by the
difference of the left and right halves of the spot versus the scanning direction
of the structure under consideration. The signal given by a cliff-like object with a
perfect 90∘ SWA can be compared with a sample characterized by a smaller angle,
their differential response can give us indications on the SWA value.

The idea of shaping the input beam (as explored in Chapter 3) and the split
detector (introduced in Chapter 5) are combined in a theoretical analysis on the
optimization of the input beam. Here we employ the Lagrange multiplier rule to find
the input field distribution (amplitude and phase) that delivers the highest sensitivity
in the side-wall angle detection. More specifically, we maximize the change of the
differential signal coming from the difference of the left and right halves of the
spot, due to a small change in side-wall angle. Furthermore, we also investigate
the possibility of monitoring the change of the full scattered field caused by a small
change in SWA. The former method proves to be much more sensitive to small
angle changes, with an increased sensitivity of 150% compared to the standard
case of a plane wave illumination. The results show that for the type of structure
that was chosen, only the amplitude of the incoming field is largely modified, while
the phase is simply jumping between 0 and 2𝜋. Despite the initial assumption of
scalar optics, this algorithm can also be extended to the vectorial theory. In that
case, the solution provided in this chapter can act as initial guess for the input field,
to be inserted into a Maxwell solver, with the aim of reducing the computational
time and reaching an optimum solution.

6.1. Future work
As it was already highlighted throughout this dissertation, a big improvement can
still be achieved in the field of side-wall angle metrology. This thesis aims at being
the first step towards a complete understanding on how this geometrical parameter
influences the far field distribution of the scattered field, but much is still to be
covered. In this section, we discuss possible research topics that could be of great
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interest in this field.

6.1.1. Extension of the presented techniques
The techniques presented in this thesis are all applied to a cliff-like structure, but
they should be extended to periodic objects as well. The semiconductor industry
relies deeply on gratings for target quality assessment, hence any method that
aims at being adopted by industrial partners should be able to cope with periodic
structures as well. Furthermore, it is necessary to avoid the assumption of scalar
optics in favor of the more general vector theory. The reason behind this statement
is that, in recent years, the characteristic dimensions of chip components have
shrunk considerably, reaching values well below the common wavelength employed
in metrology. Hence, scalar optics will not be able to provide the correct physical
answer when sub-wavelenght structures are present.

6.1.2. Pupil Engineering in SWA metrology
Semiconductors manufacturers are always optimizing devices to increase their per-
formance and lifetime. This poses several challenges to metrology since hardware
tools need to be flexible to adapt seemlessly to the continuous and rapid change of
the target under study. Furthermore, metrologists have often very little knowledge
about the materials that are part of a microchip, thereby making techniques like re-
construction very difficult to operate. We introduce a very general way to treat the
problem, which requires no knowledge of the structure under study. By considering
an approach similar to what has been implemented by Mosk and coworkers [1, 2],
we aim at calculating the optimum illumination (amplitude and phase) that is most
sensitive towards a side-wall angle change of a grating. We solve the light-grating
interaction rigorously with the help of a Maxwell solver, which allows us to take
different input/output polarization combinations into account.

• We first compute, with RCWA, the scattered field generated by a grating il-
luminated perpendicularly by a coherent source. We do that for two grating
configurations that differ, for example, by 0.1∘ on the left side-wall angle.

• We subsequently compute the sensitivity coefficient [3] owing to these two
different configuration.

• We then modify the phase of a 3 × 3 group of pixels in the input phase and
compute again the sensitivity coefficient.

• The ratio between the newly obtained sensitivity coefficient is then compared
to the previous one. If the ratio is bigger than one, we obtain an improved
sensitivity and the value of the 3 × 3 pixels is stored. Otherwise, the current
value is discarded in favor of the initial value.

By repeating this operation for all the pixels in the input field, a new phase
map, optimized for high sensitivity in the SWA response, is achieved. Despite the
apparent simplicity of the procedure, many questions need to be addressed. We
list a few:
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1. What is the best numerical strategy for choosing the group of pixels that need
to be modified?

2. Does the initial choice influence the result?

3. How different initial amplitude distributions and polarization states influence
the scattered far field?

4. Can the algorithm be made fast enough to support a real time optimization?

5. What is the dependency of a given solution towards the parameter space?

These are just few of the important questions that such a research topic should
address, but surely many more will raise during analysis and investigations.
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A
Unwrapping algorithm and

smoothing filter

In Chapter 2 we acquired interferometric data to be able to measure both the scat-
tered amplitude and phase of a grating. Particularly, by substituting into Eq. (2.7)
five interferometric images, taken at specific shifts, we can retrieve the phase in-
formation. The phase obtained in this way will be wrapped around 2𝜋; hence, in
order to retrieve the true scattered phase, a good unwrapping algorithm is neces-
sary to get the continuous phase values out of the wrapped ones. In literature, it is
possible to find a wide range of numerical techniques to be employed to solve this
problem, with emphasis on different characteristics like accuracy, speed or com-
putational effort. We decided to implement a solution developed at the General
Research Institute (GERI) at Liverpool John Moores University (LJMU).

Experimental measurements are always affected by noise of any kind. In our
case this strongly influences the quality and reliability of the phase unwrapping
process. Well-defined and separated fringes will be the ideal situation to work with;
therefore, data is often processed with a smoothing filter before the unwrapping
algorithm is applied. In this work, we employed a technique known as windowed
Fourier transform (WFT). Let us consider an input signal 𝑓(𝑥, 𝑦) where (𝑥, 𝑦) are
spatial coordinates, the windowed Fourier transform, and its inverse, are a pair of
transforms as:

𝑆𝑓(𝑢, 𝑣, 𝜉, 𝜂) = ∫ ∫ 𝑓(𝑥, 𝑦)𝑔∗ , , , (𝑥, 𝑦)𝑑𝑥𝑑𝑦, (A.1)

𝑓(𝑥, 𝑦) = 1
4𝜋 ∫ ∫ ∫ ∫ 𝑆𝑓(𝑢, 𝑣, 𝜉, 𝜂)𝑔 , , , (𝑥, 𝑦)𝑑𝜉𝑑𝜂𝑑𝑢𝑑𝑣, (A.2)

where (𝑢, 𝑣) are spatial coordinates, (𝜉, 𝜂) are frequency coordinates, whereas the
complex conjugation operator is represented by the symbol ∗. As we can see from
Eq. (A.1), the input signal is decomposed onto a WFT basis resulting in a four
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dimensional spectrum 𝑆𝑓(𝑢, 𝑣, 𝜉, 𝜂). Such a basis is formed by windowed Fourier
elements of the form:

𝑔 , , , (𝑥, 𝑦) = 𝑔(𝑥 − 𝑢, 𝑦 − 𝑣) exp 𝑖(𝜉𝑥 + 𝜂𝑦), (A.3)

where 𝑔 is a windowed function such as:

𝑔(𝑥, 𝑦) = 1
√𝜋𝜎 𝜎

exp [−12 (
𝑥
𝜎 + 𝑦𝜎 )]. (A.4)

There exits a strong similarity between the actual Fourier transform and the
WFT. In the former case, the spectrum has an infinite spatial extension whereas,
in the latter case, the spectrum has a limited spatial extension due to the pres-
ence of a window function. In our analysis, a Gaussian function acts as a window;
in such a configuration, WFT is also known as Gabor transform. The Windowed
Fourier Transform is a very efficient technique to reduce the noise of fringe pat-
terns. Specifically, we obtain the WFT spectrum of the signal we want to analyse;
subsequently we can set a threshold to eliminate the coefficients of the transform
that are characterized by a small amplitude, as they represent noise. By applying
the inverse transform we can obtain a smooth image.

As we previously mentioned, the filtering operation is necessary to improve the
quality of the unwrapping problem. The algorithm implemented falls in the category
of the quality guided path algorithm; more precisely, it is based on sorting by relia-
bility, following a non-continuous path. In this approach, the highest-quality pixels,
with the highest reliability, are unwrapped first and the lowest-quality pixels, that
have the lowest-reliability values, are unwrapped last to prevent error propagation.
Hence, the choice of a good reliability function is a key component of the algorithm.
In this case, a second order derivative is implemented. This is performed by con-
sidering a pixel (𝑖, 𝑗) along with its orthogonal and diagonal neighbors in a 3 × 3
window:

𝐷(𝑖, 𝑗) = √𝐻 (𝑖, 𝑗) + 𝑉 (𝑖, 𝑗) + 𝐷 (𝑖, 𝑗) + 𝐷 (𝑖, 𝑗) (A.5)

where:

𝐻(𝑖, 𝑗) = 𝛾 [𝜙(𝑖 − 1, 𝑗) − 𝜙(𝑖, 𝑗)] − 𝛾 [𝜙(𝑖, 𝑗) − 𝜙(𝑖 + 1, 𝑗)]
𝑉(𝑖, 𝑗) = 𝛾 [𝜙(𝑖, 𝑗 − 1) − 𝜙(𝑖, 𝑗)] − 𝛾 [𝜙(𝑖, 𝑗) − 𝜙(𝑖, 𝑗 + 1)]
𝐷 (𝑖, 𝑗) = 𝛾 [𝜙(𝑖 − 1, 𝑗 − 1) − 𝜙(𝑖, 𝑗)] − 𝛾 [𝜙(𝑖, 𝑗) − 𝜙(𝑖 + 1, 𝑗 + 1)]
𝐷 (𝑖, 𝑗) = 𝛾 [𝜙(𝑖 − 1, 𝑗 + 1) − 𝜙(𝑖, 𝑗)] − 𝛾 [𝜙(𝑖, 𝑗) − 𝜙(𝑖 + 1, 𝑗 − 1)] (A.6)

where 𝛾(⋅) represents an unwrapping operation to remove any 2𝜋 discontinuities
between two consecutive pixels and 𝜙(𝑖, 𝑗) represents the phase function at a par-
ticular pixel. The value of the second derivative can be calculated for all the pixels
in the image except the borders, where it is set to infinity to guarantee that those
pixels are unwrapped last. The reliability function is defined as the inverse of the
second derivative 𝐷(𝑖, 𝑗). Hence the lower the second derivative (lower degree of
concavity/convexity) the more reliable a pixel is.
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An unwrapping path algorithm is defined relative to the reliability of the edges,
which can be divided into horizontal and vertical edges. The reliability of a particular
edge is calculated by computing the difference between the reliability of adjacent
pixels. After that, the edge with the highest reliability value is computed first; the
algorithms proceeds then to unwrap all the pixels in a descending order.

To increase computational speed, the algorithm is implemented in C program-
ming language and subsequently called from Matlab using the mex (Matlab exe-
cutable) dynamically linked subroutine functionality.





B
A useful integral derivation

In this appendix we present a method that allows us to analytically compute an
integral close to the one in 4.8. In what follows, 𝑐 is arbitrary. From [1] we have
that:

∫ sin 𝑡
𝑡 𝑑𝑡 = Si(𝑧), (B.1)

∫ cos(𝑡) − 1
𝑡 𝑑𝑡 = Ci(𝑧) − 𝛾 − log |𝑧|, 𝑧 ≥ 0. (B.2)

Hence, for 𝑧 ≥ 0 it holds:

∫ exp (𝑖𝑡) − 1
𝑡 𝑑𝑡 = ∫ cos(𝑡) + 𝑖 sin(𝑡) − 1

𝑡 𝑑𝑡 = Ci(𝑧)−𝛾− log |𝑧|+ 𝑖 Si(𝑧), (B.3)

∫ exp (𝑖𝑡) − 1
𝑡 𝑑𝑡 = −∫ exp (−𝑖𝑡) − 1

𝑡 𝑑𝑡 = −Ci(𝑧) + 𝛾 + log |𝑧| + 𝑖 Si(𝑧). (B.4)
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Thus, for 𝑐 ≥ 0:

𝐹 (𝜉) = ∫ sin(𝑘𝑎𝑥/𝑓)
𝑘𝑎𝑥/𝑓 𝑒 𝑑𝑥 (B.5)

= 𝑓
2𝑘𝑎𝑖 ∫

exp [𝑖𝑥 (𝑎 − 𝜉)] − exp [−𝑖𝑥 (𝑎 + 𝜉)]
𝑥 𝑑𝑥 (B.6)

= 𝑓
2𝑘𝑎𝑖 ∫

exp [𝑖𝑥 (𝑎 − 𝜉)] − 1
𝑥 𝑑𝑥 − 𝑓

2𝑘𝑎𝑖 ∫
exp [−𝑖𝑥 (𝑎 + 𝜉)] − 1

𝑥 𝑑𝑥
(B.7)

= 𝑓
2𝑘𝑎𝑖 ∫

( ) 𝑒 − 1
𝑠 𝑑𝑠 − 𝑓

2𝑘𝑎𝑖 ∫
( ) 𝑒 − 1

𝑠 𝑑𝑠 (B.8)

= 𝑓
2𝑘𝑎{𝑖 Ci [𝑐

𝑘
𝑓 (𝑎 + 𝜉)] + Si [𝑐

𝑘
𝑓 (𝑎 − 𝜉)] − 𝑖 Ci [𝑐

𝑘
𝑓 (𝑎 − 𝜉)]

+ Si [𝑐 𝑘𝑓 (𝑎 + 𝜉)] + 𝑖 ln |
𝑎 − 𝜉
𝑎 + 𝜉 |}. (B.9)

Where Ci(𝑥) and Si(𝑥) are the cosine and sine integrals. With a similar procedure,
it is possible to derive (𝑐 ≥ 0):

𝐺 (𝜉) = ∫ sin(𝑘𝑎𝑥/𝑓)
𝑘𝑎𝑥/𝑓 𝑒 𝑑𝑥 = ∫ sin(𝑘𝑎𝑥/𝑓)

𝑘𝑎𝑥/𝑓 𝑒 𝑑𝑥 (B.10)

= 𝐹 (−𝜉) = 𝐹∗(𝜉)

= 𝑓
2𝑘𝑎{𝑖 Ci [𝑐

𝑘
𝑓 (𝑎 − 𝜉)] + Si [𝑐

𝑘
𝑓 (𝑎 − 𝜉)] − 𝑖 Ci [𝑐

𝑘
𝑓 (𝑎 + 𝜉)]

+ Si [𝑐 𝑘𝑓 (𝑎 + 𝜉)] − 𝑖 ln |
𝑎 − 𝜉
𝑎 + 𝜉 |}. (B.11)

where the symbol ∗ indicates the complex conjugate. Since:

lim
→

Si(𝑧) = 𝜋
2 , lim

→
Ci(𝑧) = 0, (B.12)

we have:
lim
→

Si(𝑧) = − lim
→

Si(𝑧) = −𝜋2 , lim
→

Ci(𝑧) = 0, (B.13)

therefore, for |𝜉| < 𝑎, it holds:

lim
→
𝐹 (𝜉) = 𝑓

2𝑘𝑎 (𝜋 + 𝑖 ln |
𝑎 − 𝜉
𝑎 + 𝜉 |) , (B.14)

lim
→
𝐺 (𝜉) = lim

→
𝐹∗(𝜉) = 𝑓

2𝑘𝑎 (𝜋 − 𝑖 ln |
𝑎 − 𝜉
𝑎 + 𝜉 |) . (B.15)
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C
Rigorous far field calculation

In this appendix we compute the rigorous electromagnetic interaction of a ridge
and a focused spot in order to validate the results generated with the scalar model
presented in Chapter 4. In the vectorial simulation the scattered far field has been
calculated using an in-house tool based on the Finite Element Method (FEM) [1].
Let us begin by mentioning the core equations of the FEM algorithm.

In the case of time harmonic electromagnetic fields, Maxwell’s equations take
the form:

∇ ⋅ 𝜖𝜖 E = 𝜌 (C.1)
∇ ×E = 𝑖𝜔𝜇𝜇 H (C.2)

∇ ⋅ 𝜇𝜇 H = 0 (C.3)
∇ ×H = JS + 𝜎E− 𝑖𝜔𝜖𝜖 E, (C.4)

where 𝜖 is the electric permittivity of vacuum, 𝜖 is the permittivity of the medium
in which we seek a solution, 𝜌 is the free electric charge density, JS is the source
current density, 𝜇 is the magnetic permeability of vacuum, 𝜇 is the magnetic per-
meability of the medium and finally 𝜎E represents the induced conduction current
density, written in terms of the electric conductivity of the medium. By taking the
curl of Eqs. (C.2) and (C.4), we can reduce the above equations to the following
two:

∇ × 𝜇 (∇ ×E) − 𝑘 𝜖E = 𝑖𝜔𝜇 JS (C.5)
∇ × 𝜖 (∇ ×H) − 𝑘 𝜇H = ∇ × 𝜖 J. (C.6)

where we define J = JS + 𝜎E. At an interface between two media, Eqs. (C.5)
and (C.6) are solved subject to two boundary conditions:

1. Continuity of tangential components of the fields.

2. Discontinuity of normal components of the fields
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Mathematically, these two boundary conditions can be written as:

�̂� ⋅ (D −D ) = 𝜌surf (C.7)
�̂� ⋅ (B −B ) = 0 (C.8)
�̂� × (E −E ) = 0 (C.9)

�̂� × (H −H ) = Jsurf, (C.10)

where �̂� is the outward normal at the interface from the two media (labeled as 1 and
2), 𝜌surf and Jsurf are the charge and current densities of the surface. Furthermore,
we introduce the electric displacement D and the magnetic induction B, that can
be expressed as D = 𝜖 𝜖E and B = 𝜇 𝜇H. In a FEM algorithm, we assume an
approximate solution of Eqs. (C.5) and (C.6), which obeys the boundary conditions
given by Eqs (C.7) - (C.10). The accuracy of this solution is subsequently improved
by minimizing the residuals obtained from the fit of the approximate solution.

In Chapter 4 we analytically compute the scattered far field by a ridge-like struc-
ture within the scalar regime. The ridge is centered in a (𝑥, 𝑦, 𝑧) reference system as
shown in Fig. C.1, it is invariant with respect to the 𝑦-coordinate and it is described
by the function 𝑝 , (𝑥) defined as:

𝑧 = 𝑝 , (𝑥) ∶=

⎧
⎪

⎨
⎪
⎩

0, if 𝑥 ⩽ −𝑤/2
𝑥 tan 𝛼 + , if − 𝑤/2 < 𝑥 < −𝑏
ℎ, if − 𝑏 ⩽ 𝑥 ⩽ +𝑏
−𝑥 tan𝛼 + , if + 𝑏 < 𝑥 < +𝑤/2
0, if 𝑥 ⩾ +𝑤/2

. (C.11)

In the scalar simulation we use the side wall angles 𝛼 , 𝛼 , the height ℎ and the
width 𝑤 as variables to describe the ridge, hence mathematical expressions for 𝑏
and 𝑏 are given by the formulas:

𝑏 = ℎ
2 tan𝛼 , 𝑏 = ℎ

2 tan𝛼 where 0 < 𝛼 , 𝛼 < 𝜋
2 . (C.12)
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Figure C.1: Sketch of a cliff-like object.

Moreover, we assume that the structure described by the function 𝑝 , (𝑥)
represents a pure phase object, which is characterized by the following reflection
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function:

𝑟 , (𝑥) = 𝑟

⎧
⎪

⎨
⎪
⎩

exp (2𝑖𝑘ℎ), if 𝑥 ⩽ −𝑤/2
exp {𝑖𝑘 [2ℎ − (2𝑥 + 𝑤) tan𝛼 ]}, if − 𝑤/2 < 𝑥 < −𝑏
1, if − 𝑏 ⩽ 𝑥 ⩽ +𝑏
exp {𝑖𝑘 [2ℎ + (2𝑥 − 𝑤) tan𝛼 ]}, if + 𝑏 < 𝑥 < +𝑤/2
exp (2𝑖𝑘ℎ), if 𝑥 ⩾ +𝑤/2

, (C.13)

where 𝑘 = 2𝜋/𝜆 is the wave number and 𝑟 is the reflection coefficient of the surface.
This coefficient can be a complex number with |𝑟| ≤ 1 but we shall subsequently
simply take 𝑟 = 1. For the comparison between scalar and vectorial theory we
consider a ridge with perfectly straight side-wall angles, meaning that the left and
right side wall angles are: 𝛼 = 𝛼 = 90∘. The height of the ridge is ℎ = 170𝑛𝑚
and the width is 𝑤 = 2𝜇𝑚.

The structure interacts with a focused field generated by a cylindrical lens with
numerical aperture NA = 0.6. With the term cylindrical lens we mean an objec-
tive which is independent of the 𝑦-coordinate; such a system transforms a plane
wave in a field that is focused along the 𝑥-direction, but is independent of the 𝑦-
coordinate. In the vectorial case, the focused field at the focal plane, for the case
of TE polarization, can be computed using the following expression [2]:

𝐸 (𝑥) = ∫ cos / 𝜃 exp [𝑖𝑘𝑥 sin 𝜃] 𝑑𝜃 (C.14)

where 𝛼 = arcsin(NA) is the semi-aperture of the lens. The factor cos / 𝜃 is the
aplanatic apodization factor for a slit system, where 𝜃 is the angle between a ray
and the optical axis. A simple sketch of the computational domain used in the
vectorial simulation, with the relative reference system, is given in Fig. C.2.

Figure C.2: The computational domain of the rigorous vectorial simulation extends from to
in and from to in . The ridge has width and height
.

It is important to mention that in the rigorous calculations we consider a sub-
strate, with the ridge on top of it, made of silicon (Si). For this material we
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use a refractive index (at 𝜆 = 632.8 𝑛𝑚) 𝑛 = 3.8827 with extinction coefficient
𝑘 = 0.019626 [3]. Furthermore, we note that when considering the TE polarization
case, only the 𝐸 component is non-zero; i.e., the depolarization effects normally
found in tight focusing are not present in this case. The TM component, however,
does present depolarization effects, i.e. a longitudinal component (𝐸 ). Thus in
order to compare with the scalar theory, we consider only the TE polarization.

In Fig. C.3 we show the absolute value of the scattered near field for the case of
TE polarization, namely along the 𝑦-direction. Because the ridge width we consid-
ered is bigger than the diameter of the focal spot, the field is mostly reflected by the
structure and it is only weakly influenced by the presence of the two abrupt edges.
We note that, in the case of TE polarization, the spot generated by a cylindrical lens
does not differ significantly from the 𝑥-profile of the spot generated by a spherical
lens. Thus, in view of some computational problems affecting our in-house soft-
ware tool regarding the generation and handling of the correct 2D focused spot,
which could not be solved before the finalization of this dissertation, we decided to
use the 𝑥-profile of a 3D focused spot to generate the data of Fig. C.3.

Abs. value of scattered near-field, TE polarisation

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
x-axis (µm)

-200

-100

0

100

200

300

400

500

z
-a

x
is

 (
n

m
)

0.05

0.1

0.15

0.2

0.25

Figure C.3: Absolute value of the scattered near field for TE polarisation, the ridge has width
and height .

After obtaining the near filed distribution in the TE polarization case, we also
calculate the scattered far field by means of a Fourier Transform from the near-field
distribution. This is internally calculated with the in-house, FEM-based, tool we
introduced at the beginning of this appendix. In Fig. C.4, we plot a comparison of
the scattered far field computed using the scalar approximation and the rigorous
simulations. As we can see, there is good agreement between these two cases. This
implies that, even within the scalar approximation and the description of the ridge
as a phase object, the results presented in Chapter 4 are a good model to describe
the interaction between the focused and the structure for the case of relatively low
numerical aperture.

The results of Fig. C.4 are normalized to the total detected power carried by the



References

C

121

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
Numerical aperture

0

1

2

3

4

5

6

7

8

9
×10

-3 Absolute value of scattered far field Ex

Vector theory
Scalar theory

Figure C.4: Scattered far-field comparison between the rigorous and scalar simulations.

far field when there is no structure, i.e. the substrate is flat. For the vectorial case
this implies running two simulations, with and without the presence of the ridge.
In the latter case, we integrate the scattered far-field within the detection NA such
that we obtain a single scalar number we will use as normalisation. In the scalar
case, we can write the focused spot generated by a plane wave of unit power as:

𝑈 (𝑥) = √ 1
𝜆𝑓 𝑒 2𝑎 sinc (2𝑎𝑥𝜆𝑓 ) , (C.15)

hence, the power carried by the scattered far field when the substrate is flat can
be expressed as:

𝐼 (𝜉) = |√ 1
𝜆𝑓 𝑒 ∫ 𝑈 (𝑥)𝑒 𝑑𝑥| = |𝑒 rect ( 𝜉2𝑎)| . (C.16)

Hence, given that in Chapter 4 we have considered an input field with unitary
amplitude and the structure is supposed to act as a phase object, the scattered
far-field in the case of a simple reflection from a flat profile is also unitary. The total
detected power is the integral within the detection NA of the scattered far-field.
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D
Fourier Transform of the
object reflection function

In this appendix, we give more details about the derivation of Eq. (5.66), while
Eq. (5.67) is readily obtained simply by differentiation with respect to the SWA 𝛼.
Given that 𝑟 (𝑥) is a piece-wise defined function (Eq. (5.3)), we can write its Fourier
transform as:

ℱ(𝑟 )(𝜉) = exp(2𝑖𝑘ℎ)∫ 1 exp(−2𝜋𝑖𝜉𝑥) 𝑑𝑥 (D.1)

+∫ exp [2𝑖𝑘 (ℎ2 − 𝑥 tan(𝛼))] exp(−2𝜋𝑖𝜉𝑥) 𝑑𝑥

+ ∫ 1 exp(−2𝜋𝑖𝜉𝑥) 𝑑𝑥,

where the first integral should be interpreted as the Fourier transform of the function
that is one in the interval ] − ∞,−𝑎/2[ and zero otherwise, with a similar interpre-
tation for the third integral. The second integral in the right-hand side of Eq. (D.1)
can be easily calculated:

exp(𝑖𝑘ℎ)∫
/

/
exp[−2𝑖(𝑘 tan(𝛼) + 𝜋𝜉)𝑥] 𝑑𝑥 (D.2)

= 𝑎 exp(𝑖𝑘ℎ) sinc (𝑎2𝜆 tan𝛼 + 𝑎𝜉) ,

where the sinc function is defined as sinc(𝑥) = sin(𝜋𝑥)/(𝜋𝑥). To be able to solve
the first and the third integrals, we use distribution theory. Let us rewrite the third
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integral as:

∫ 1[ / , ](𝑥) exp(−2𝜋𝑖𝜉𝑥) 𝑑𝑥 = ℱ (1[ / , ]) (𝜉). (D.3)

We have:

ℱ(1[ / , ](𝑥))(𝜉) = ℱ [1[ , ] (𝑥 −
𝑎
2)] (𝜉) (D.4)

= exp(−𝜋𝑖𝜉𝑎)ℱ(1[ , ](𝑥))(𝜉).

Since :

ℱ ( 𝑑𝑑𝑥 1[ , ]) (𝜉) = ℱ(𝛿) = 1, (D.5)

we have:

ℱ(1[ , ])(𝜉) =
1
2𝜋𝑖𝜉 + 𝑏 𝛿(𝜉), (D.6)

where 𝑏 is a constant that still needs to be determined and where the first term
is to be interpreted as a distribution defined in the sense of the Cauchy Principal
Value. To determine 𝑏 we use the following relations:

ℱ(1[ , ])(𝜉) + ℱ(1[ , ])(𝜉) = 𝛿(𝜉), (D.7)

ℱ(1[ , ])(𝜉) + ℱ(1[ , ])(𝜉)∗ = 2𝛿(𝜉)ℜ(𝑏), (D.8)

ℱ(1[ , ])(𝜉)∗ = ℱ(1[ , ])(𝜉), (D.9)

hence 𝑏 = 1/2, which gives us:

ℱ(1[ / , ])(𝜉) = exp(−𝜋𝑖𝜉𝑎) [
1
2𝜋𝑖𝜉 +

𝛿(𝜉)
2 ] . (D.10)

Everything derived so far applies to the first integral of Eq. (D.1) as well, with the
proper change of sign. Hence we have:

ℱ(1[ , / ])(𝜉) = exp(2𝑖𝑘ℎ + 𝜋𝑖𝜉𝑎) (
𝑖
2𝜋𝜉 +

𝛿(𝜉)
2 ) . (D.11)

Finally, the Fourier transform of the reflection function 𝑟 , is given by:

ℱ(𝑟 )(𝜉) = exp(𝑖𝑘ℎ)[−sin
(𝑘ℎ + 𝑎𝜋𝜉)
𝜋 PV(1𝜉 ) (D.12)

+ 𝛿(𝜉) cos(𝑘ℎ) + 𝑎 sinc (𝑘ℎ + 𝑎𝜉𝜋)],
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in the last equation, the 𝛼 dependence is hidden inside the variable 𝑎. To make the
dependence on 𝛼 more explicit we use Eq. (5.2) to rewrite (D.12) as:

ℱ(𝑟 )(𝜉) = exp(𝑖𝑘ℎ)[−
sin(𝑘ℎ+𝜋ℎ )

𝜋 PV(1𝜉 ) (D.13)

+ 𝛿(𝜉) cos(𝑘ℎ) +
sin(𝑘ℎ+𝜋ℎ )
𝑘 tan 𝛼 + 𝜋𝜉 ].

Taking the derivative with respect to 𝛼 of Eq. (D.13) will lead us to expression
we used in Eq. (5.67).
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