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SUMMARY

Micro and nanomechanical sensors are indispensable in modern consumer electron-
ics, automotive and medical industries. Gas pressure sensors are currently the most
widespread membrane-based micromechanical sensors. By reducing their size, their
unit costs and energy consumption drops, making them more attractive for integration
in new applications. Reducing the size requires the membrane to be as thin as possi-
ble, but also very strong. Graphene is the perfect material for such a membrane since it
is only one atom thick but also the strongest material ever measured. This dissertation
investigates the dynamics of suspended graphene membranes for sensing applications.
These sensing applications are not restricted to pressure sensors alone, but the dynam-
ics of graphene can also be used as a sensor for other physical properties. Thus, the
topic of this thesis goes into the broader subject of the dynamics of interacting graphene
membranes.

Part I of this work describes the research methods used throughout the dissertation,
starting with the fabrication of samples and the experimental setup in chapter 3. The
resonators used in this study are graphene membranes suspended over a cavity in a thin
silicon dioxide layer. These samples are fabricated by mechanical exfoliation and trans-
ferred using a viscoelastic polymer, or we use single-layer graphene grown by chemical
vapor deposition. Two classes of samples are used: either the graphene fully covers the
circular cavity (closed drum) or there is a venting channel to the environment (open
drum). Fabry-Perot interferometry is used to detect the motion of the graphene mem-
brane, by measuring the position dependence of the laser light reflected from the sam-
ple. This position-dependence is nonlinear, which is used to develop a novel method to
calibrate the sensitivity of the instrument to the amplitude of the resonance in chapter
4, requiring only that the wavelength of the laser light is known. A blue laser is used to
modulate the temperature of the suspended graphene, actuating the motion due to ther-
mal expansion. The mechanisms that play a role in this actuation scheme are a recurring
theme throughout the dissertation.

The dynamics of 2D material resonators interacting with heat is discussed in part
II. We examine the mechanical response of both single-layer graphene (chapter 5) and
single-layer molybdenum disulfide (chapter 6) membranes to a high frequency intensity
modulation of the blue laser. We observe the effects of the diffusion of heat in the me-
chanical response, from which we can derive the thermal time constant of the system.
In the case of graphene, existing models fail to explain the value of the thermal time
constant and its diameter-dependence. A linear diameter-dependence is found, while a
quadratic dependence is expected. We propose that a combination of boundary effects
and the mesoscopic scale of phonon transport lies at the root of this observation. In the
case of MoS2, we find that the thermal time constants are consistent with the classical
theory of diffusive heat transport, allowing us to make the first estimate of the specific
heat of a 2D material.

xi



xii SUMMARY

Part III studies the nonlinear dynamics of graphene membranes. The temperature
modulation causes rapid variations of tension in the resonator, resulting in parametric
resonance. Since the restoring force for every mode is determined by the tension in the
membrane, each mode can be parametrically excited resulting in a record number of 14
mechanical modes brought into parametric resonance in a single mechanical element as
shown in chapter 7. We also show that unconventional dynamic phenomena govern the
linewidth of the mechanical response. The nonlinear resonance is also sensitive to ran-
dom fluctuations, causing the resonator to show stochastic switching between the low-
and high amplitude attractors (chapter 8). We achieve 100 times faster switching rates,
while the effective temperature of the random fluctuations is ten times lower than the
state-of-the-art in MEMS. This opens the door for detecting small signals in the audible
domain in a way that mimics nature.

Having performed all the experiments in high vacuum environments up to this point,
the graphene membranes are now introduced to a fluid environment in part IV. We first
show the squeeze-film pressure sensors, which are operated by compressing gas in a
thin cavity underneath the membrane that raises its stiffness, which is detected through
the resonance frequency. First, a proof-of-principle is shown on a multi-layer graphene
sample of 31 layer thickness in chapter 9, followed by a more extensive study on single-
layer devices in chapter 10. We show that inertia in the gas flow plays an important role
at high pressures and high frequencies by measuring the gas dependence of the squeeze-
film effect. Also, we show an actuation scheme that exploits the squeeze-film effect, by
fast temperature modulation of the gas due to the blue laser which causes the gas to
expand, which can be detected by an increase in the actuation force as a function of
pressure. After this, we show that graphene membranes that separate two gases can be
deflected by osmotic gas pressure in chapter 11. This time-dependent osmotic pressure
occurs when the two gases have different permeation rates, which can be used in future
gas sensors. The final chapter 12 of this part studies graphene membranes in water.
Using liquid-cell atomic force microscopy, we show that selectively permeable graphene
membranes can be deflected by osmotic pressure induced by a concentration gradient
of sucrose.

Part V provides an outlook and valorization. The outlook (chapter 13) shows the re-
sults of several projects that build on the research presented in the preceding parts. We
extensively discuss two methods to measure the mass of graphene, which we typically
find to be much higher than expected. Considerable steps towards CMOS integration
were taken, we show squeeze-film pressure sensors and Pirani type pressure sensors that
were fabricated in CMOS compatible processes. A method is shown that measures leak-
age through the graphene membranes at very fast timescales, building on the detection
of thermal time constants. We end the outlook by investigating the motion of graphene
membranes that are actuated by two incommensurable frequencies. The valorization
chapter 14 shows the possible practical applications that can emerge from this work.
The dissertation ends with the conclusions in chapter 15.



SAMENVATTING

Micro- en nanomechanische sensoren (MEMS-sensoren) zijn onmisbaar voor toepas-
singen in moderne consumentenelektronica-, automobiel- en medische industrieën.
Gasdruksensoren zijn de meest voorkomende MEMS-sensoren die gebruik maken van
een membraan. Door deze sensoren kleiner te maken, worden ze goedkoper en verbrui-
ken ze minder energie, waardoor ze makkelijker in nieuwe toepassingen passen. Om
druksensoren kleiner te maken is het nodig om het membraan dunner te maken, maar
daarvoor moet het materiaal sterk genoeg zijn. Grafeen is daarvoor het perfecte mate-
riaal, want het is maar 1 atoomlaag dik, maar tegelijk het sterkste materiaal dat ooit is
gemeten. Dit proefschrift onderzoekt de beweging van vrijhangende grafeen membra-
nen voor toepassing in sensoren. Deze sensor-toepassing is niet beperkt tot gasdruk-
sensoren, de dynamiek van grafeen kan ook gebruikt worden om andere fysische eigen-
schappen te onderzoeken. Dit proefschrift neemt dus een bredere belangstelling in de
beweging van grafeen membranen die een interactie ondergaan.

Deel I van dit werk beschrijft de methoden die verder in het proefschrift steeds op-
nieuw gebruikt worden, beginnend met de vervaardiging van proefstukken en de experi-
mentele opstelling in hoofdstuk 3. De mechanische resonatoren die gebruikt worden in
dit onderzoek zijn grafeen membranen, die vrij hangen boven een gaatje in een dunne
laag siliciumdioxide. Deze proefstukken worden gemaakt door mechanische exfoliatie
en een overdracht met een viscoelastisch polymeer, of we gebruiken enkellaags graf-
een dat is vervaardigd met een chemische opdamptechniek. We gebruiken twee soorten
proefstukken: of het grafeen bedekt het cirkelvormige gat volledig (een gesloten drum),
of het gat heeft een ontluchtingskanaal naar de buitenwereld (een open drum). Fabry-
Perot interferometrie wordt gebruikt om de beweging van het membraan te bepalen,
door de positieafhankelijkheid van het weerkaatste licht vanaf het proefstuk te meten.
Deze afhankelijkheid is niet-lineair, waar we gebruik van kunnen maken om de gevoelig-
heid van het instrument voor de uitwijking van het membraan te kalibreren in hoofdstuk
4, daarvoor is het alleen nodig om de golflengte van de laser te weten. Een blauwe laser
word gebruikt om de beweging aan te drijven, door op hoge frequentie het membraan
op te warmen zal deze gaan bewegen door thermische expansie. Er zijn verschillende
mechanismen die een rol spelen in dit aandrijfschema die steeds terug zullen komen in
dit proefschrift.

De beweging van tweedimensionale materialen die een interactie vertonen met warmte
wordt besproken in deel II. We onderzoeken de mechanische respons op de hoogfre-
quente intensiteitsmodulatie van de blauwe laser van enkellaags grafeen (in hoofdstuk
5) en enkellaags molybdeendisulfide (in hoofdstuk 6). We observeren de effecten van
warmtediffusie in de mechanische beweging, waaruit we de karakteristieke thermische
tijdconstante van het systeem kunnen afleiden. In het geval van grafeen, kunnen we
de waarde van deze tijdsconstante en zijn diameterafhankelijkheid niet verklaren met
bestaande modellen. We observeren een lineaire diameterafhankelijkheid, terwijl men

xiii



xiv SAMENVATTING

een kwadratische afhankelijkheid zou verwachten. We stellen voor dat een combinatie
van effecten aan de rand en de mesoscopische schaal van het transport van fononen
deze observatie kan verklaren. In het geval van molybdeendisulfide kunnen we de ge-
meten thermische tijdsconstanten goed verklaren met klassieke modellen voor diffusief
warmtetransport, dit stelt ons in staat om voor het eerst een schatting te maken van de
specifieke warmte van een tweedimensionaal materiaal.

Deel III bestudeert de niet-lineaire dynamica van grafeen membranen. De tempe-
ratuurmodulatie van de blauwe laser veroorzaakt snelle variaties in de spanning van
het materiaal, wat leidt tot het parametrische resonantie-effect. Doordat de herstel-
kracht van iedere trillingsvorm van het membraan word bepaald door de spanning in
het membraan, kan iedere trillingsvorm parametrisch aangedreven worden. Dit leidt tot
een recordaantal van 14 trillingsvormen die parametrische resonantie vertonen in een
enkel mechanisch element, zoals aangetoond in hoofdstuk 7. Hier laten we ook zien dat
ongebruikelijke fenomenen ten grondslag liggen aan de piekbreedte van de mechani-
sche resonantie. De niet-lineaire resonantie is ook gevoelig voor willekeurige fluctuaties,
waardoor de resonator stochastisch wisselt tussen de hoog- en laag amplitude attractor
(hoofdstuk 8). Deze wisselingen zijn 100 maal sneller dan in de meest geavanceerde
MEMS-technologie, terwijl de effectieve temperatuur van de fluctuaties een factor 10 la-
ger is. Dit maakt grafeen aantrekkelijk om zeer zwakke signalen te meten in het hoorbare
domein, op een manier die de natuur nabootst.

Tot dusver zijn alle experimenten in een hoogvacuüm omgeving uitgevoerd, maar
in deel IV word het membraan blootgesteld aan gassen en vloeistoffen. We laten eerst
de gasdruksensor gebaseerd op het squeeze-film (samengedrukte gasfilm) effect zien,
welke werkt door gas onder het membraan samen te drukken. Dit vergroot de stijfheid
van het systeem, wat wordt gemeten met behulp van de resonantiefrequentie. Eerst
laten we de principiële bruikbaarheid van deze sensoren zien op 31-laags grafeen in
hoofdstuk 9, gevolgd door een meer uitgebreid onderzoek op enkellaags grafeen in hoofd-
stuk 10. We laten zien dat massatraagheid in de gasstroom een grote rol speelt bij hoge
drukken en hoge trillingsfrequenties door het squeeze-film effect met verschillende gas-
sen te meten. Ook laten we een nieuw aandrijfschema zien dat gebruik maakt van het
squeeze-film effect: door het gas in de dunne film heel snel op te warmen zal dit gaan uit-
zetten, wat wordt gemeten als een onverwachte toename van de aandrijfkracht bij hoge
gasdruk. Hierna laten we in hoofdstuk 11 zien dat grafeen membranen die twee ver-
schillende gassen scheiden worden doorgebogen door osmotische gasdruk. Deze tijds-
afhankelijke druk onstaat als de twee gassen verschillende permeatiesnelheden hebben
en kan gebruikt worden in toekomstige gassensoren. Het laatste hoofdstuk (12) in dit
deel bestudeert grafeen membranen in water. Door gebruik te maken van atomaire-
krachtmicroscopie in een vloeistofcel, laten we zien dat selectief permeabele grafeen
membranen worden doorgebogen door osmotische druk, die wordt opgewekt door een
verschil in concentratie van oploste sucrose in het water.

Deel V geeft een vooruitzicht in hoofdstuk 13 en valorisatie in hoofdstuk 14. Het
vooruitzicht laat resultaten van projecten zien die verder bouwen op het onderzoek in
de voorgaande hoofdstukken. We bespreken uitgebreid twee verschillende methodes
om de massa van grafeen te meten, welke vaak veel hoger dan verwacht is. Er zijn ook
vergaande stappen naar CMOS-integratie van de sensoren genomen, we laten deze zien
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voor de squeeze-film en de Pirani druksensor. Een methode om lekkage door grafeen
op zeer snelle tijdschalen te meten word besproken. En we eindigen de vooruitblik door
te kijken naar de dynamica van grafeen membranen die door twee signalen word aan-
gedreven. Het valorisatie hoofdstuk 14 bespreekt de praktische toepassingen die uit dit
proefschrift kunnen voortkomen. Het proefschrift sluit af met de conclusies in hoofd-
stuk 15.





1
INTRODUCTION

Micromechanical sensors have become widespread in numerous applications, due to con-
tinuous effort to reduce their size, power consumption, and unit costs. An example of a
micromechanical sensor is the gas pressure sensor, recently introduced on a large scale in
mobile phones. To continue the trend of downscaling their size, the membranes of the pres-
sure sensors have to become thinner. This thesis explores the ultimate limit of membrane-
based pressure sensors by employing graphene, the strongest material ever measured but
only one atom thick. Sensing implies that the graphene membrane interacts with a phys-
ical entity, here we study how these physical entities affect the mechanical motion of the
membranes. The work focuses mainly on the effects of heat and fluid dynamics on the
mechanics of suspended graphene. In this chapter we introduce these interactions and
relevant studies performed to date. Also, we show the pressure sensor concepts proposed at
the start of the project Integrated Graphene Pressure Sensors, which resulted in this thesis.

1
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Low pressure High pressure

Reference pressureReference pressure

Substrate
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Figure 1.1: Cross section of a classical MEMS pressure sensor. The deflection of the flexible membrane is a
measure of the pressure in the environment.

I
N recent decades micro-electromechanical systems (MEMS) have become indispens-
able in the automotive, aerospace, medical and consumer electronics industry. This
development is due to the continuous effort to scale down MEMS to smaller di-

mensions. Reducing the size also leads to lower unit cost and less power consump-
tion, making them more attractive for integration into electronic devices. Consequently,
most modern mobile handsets contain multiple micro-mechanical sensors such as ac-
celerometers, gyroscopes, and gas pressure sensors to increase their functionality. Mod-
ern cars use multiple MEMS sensors such as the accelerometer of the airbag and pres-
sure sensors to monitor tire pressure. Today it is difficult to envision a world without
micro-mechanical sensors, demonstrating the truly disrupting and revolutionary char-
acter of the sensor industry.

Pressure sensors are the most widespread membrane-based MEMS, mainly due to
their recent introduction into smartphones. Current state-of-the-art sensors can count
the number of stairs the user has climbed by the change in ambient air pressure. These
sensors operate by employing a flexible membrane over a hermetically sealed cavity
that contains a well-known reference pressure (Fig. 1.1). One can determine the am-
bient pressure in the environment from the membrane’s deflection. Compared to other
MEMS, pressure sensors remain relatively large (in the order of ∼100 µm), while the in-
crease in production volume introduces a strong drive to reduce the area of pressure
sensors. However, a smaller area requires a thinner membrane to retain the sensitivity
of the sensor.

In this respect, atomically thin membranes can provide ultimate performance in
pressure sensitivity while reducing the sensor’s size. These membranes will have to with-
stand large pressure loads, therefore they require high strength. Recently, researchers
have discovered a group of such strong and atomically thin materials, known as two-
dimensional materials. Graphene is the most studied and strongest of these materials
and will be the focus of this thesis.

1.1. GRAPHENE
Graphene is a single layer of carbon atoms arranged in a flat hexagonal structure (Fig.
1.2). The first isolation and measurement of its unusual electrical properties were first
performed in 2004 [1–4]. Andre Geim and Konstantin Novoselov received the 2010 No-
bel Prize in Physics for these groundbreaking experiments. The perfect hexagonal lattice
results in remarkable electronic properties, for example, it enables electrons to travel
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Figure 1.2: The hexagonal lattice of graphene viewed from above.

long distances without disturbance. More remarkable is that the electrons behave like
they have no mass, moving at a constant velocity of one million meters per second [3, 5].
These electronic properties make graphene interesting for a new generation of transis-
tors, potentially smaller, faster, and less power-consuming compared to silicon coun-
terparts. Since graphene is 98% transparent [6], while able to conduct electricity, appli-
cations such as transparent touchscreens [7], light panels and solar cells [8] are also of
interest.

This thesis will not go into the remarkable electronic properties of graphene, but the
remarkable mechanical properties of this perfect hexagonal lattice. It is possible to freely
suspend this material since it forms wrinkles that stabilizes the structure [9]. Lee et
al. measured the breaking strength of suspended graphene and found this is 20 times
stronger than steel: to date graphene is the strongest material ever measured [10]. The
high density of the lattice makes these membranes graphene impermeable to the small-
est gas atom: helium [11]. Graphene is thus strong, thin, able to conduct electricity and
impermeable: these properties make it a perfect candidate as a membrane in gas pres-
sure sensors. With its high surface-to-mass ratio, graphene is also an attractive material
for other applications such as mass [12] and electrochemical gas sensors [13–15].

The remarkable mechanical properties of the graphene lattice result in unique phe-
nomena in heat transport through this material. Several groups have attempted to mea-
sure the thermal conductivity of graphene and, while the results can vary, researchers are
in agreement that the thermal conductivity is much higher than that of copper [16–29].
The lattice vibrations (phonons) can travel undisturbed for long distances, giving rise to
thermal conductivities that depends on the geometry of the device [23]. By exploiting the
unique properties of the lattice vibrations, researchers have implemented more exotic
devices such as thermal rectifiers [30]. The lattice waves or phonons in graphene come
in three polarizations: the in-plane longitudinal and transverse phonons; and the out-
of-plane flexural phonons. Flexural phonons travel slowly through the graphene since
the atomically flat structure has little bending rigidity. The in-plane phonons, however,
travel fast through the rigid hexagonal structure, around 100 times faster than the flexu-
ral phonons. Some researchers suggest that most of the heat is carried by flexural, rather
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than the in-plane phonons, which is unusual considering their low group velocity [31].

1.2. GRAPHENE PRESSURE SENSORS
Several researchers have studied the potential application of graphene as a pressure sen-
sor, revealing the hurdles that need to be overcome for industrial application. Bunch
et al. [11] were the first to demonstrate the potential application of graphene as a pres-
sure sensor. Using a suspended graphene membrane, they sealed a cavity and found
that upon changing the pressure in the environment, the resonance frequency of the
suspended membrane changed. The leakage rates were independent of the thickness of
the graphene flakes, leading to the conclusion that graphene is impermeable. The actual
path of leakage remains a subject of debate. The initial hypothesis states that diffusion
through the silicon dioxide substrate is to blame [11], but later research points towards
the interface between the graphene and the oxide [32]. To date, no research has demon-
strated a hermetically sealed cavity using graphene at the timescale of years, whether is
achievable remains an open question.

Five years later, Smith et al. [33, 34] demonstrated a piezoresistive pressure sensor.
It operated by suspending graphene over a sealed cavity and measuring the change in
electrical resistance as the membrane deflects under a pressure difference. This sensor
demonstrated the highest sensitivity per unit area of any piezoresistive sensor. However,
the presence of oxygen in the atmosphere and leakage affected the sensor’s performance.

Koenig et al. [35] demonstrated graphene’s feasibility as a molecular sieve, being able
to separate gas molecules based on their size. Since graphene is atomically thin and is
still able to support large pressure loads, it has the potential to demonstrate high perme-
ation fluxes through the membrane while retaining high selectivity [36, 37]. The same
holds in the case for water: extensive research looks into water purification and desali-
nation using graphene [38–41]. Considerable challenges remain for the application of
graphene as a purification membrane, such as the requirement of large areas with intact
graphene [42].

This thesis investigates the potential application of graphene as pressure or gas sen-
sors, building on the existing research. Since the hermetic sealing of graphene is a con-
siderable challenge, we focus on pressure sensors that do not require a sealed cavity. The
selective nature of the leakage through the graphene membrane is however interesting
for gas sensing applications. Such a sensor opens a pathway towards detecting gases that
are inert, by measuring the size of the particles instead. Also, the selective properties in
water are interesting to build microscale sensors since on this scale it is less challenging
to control the number and the size of the pores.

1.3. INTEGRATED GRAPHENE PRESSURE SENSORS
This thesis is part of the project Integrated Graphene Pressure Sensors (IGPS), funded by
an HTSM (High Tech Systems and Materials) proposal from the Netherlands Organisa-
tion for Scientific Research (NWO-TTW). The project aims to demonstrate CMOS inte-
grated graphene pressure sensors. Different pressure sensors were proposed at the start
of the project, based on the existing research. Figure 1.3 shows the proposed concepts
and the implementations demonstrated at this time.
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Figure 1.3: Overview of proposed sensor concepts.

• The resonant pressure sensor measures the pressure-dependent resonance frequency
of a graphene membrane. Nanopores make sure that gases enter slowly into the
cavity, but at the high resonance frequency, the membrane will compress the gas.
Compression leads to an increase in stiffness, detected from the resonance fre-
quency shift of the resonator. During the project, the design changed to exploit
the squeeze-film effect, which only requires a membrane suspended close to the
substrate and can be open to the sides, removing the need for nanopores. High-
frequency vibration is enough to trap the gas in its position by viscous forces, so
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it will be compressed [43]. This concept is the squeeze-film pressure sensor and it
overcomes the hurdle of hermetically sealing a cavity since it is open through a
venting channel. Graphene is a perfect material to build this sensor since it has a
high surface-to-mass ratio and will therefore, respond very sensitively to gas com-
pression. The sensor is first introduced in chapter 9 and the properties of the
squeeze-film gas flow are more extensively studied in chapter 10. In collabora-
tion with the Else Kooi Laboratory at TU Delft, considerable steps have been taken
to fabricate these sensors on wafer-scale using a CMOS-compatible transferless
process developed by Sten Vollebregt et al. [44]. The outlook (chapter 13) shows
results on the mechanical characterization of these sensors.

• The static pressure sensor measures the static deflection of the graphene mem-
brane subjected to a pressure difference. This is the classical sensor concept in
Fig. 1.1 that requires the cavity to be hermetically sealed. Different readout mech-
anisms can be used to measure the deflection of the drum, such as piezoresistive
[33] or capacitive [45] readout of the position. Hermetic sealing with graphene is
a considerable challenge that has seen some improvement in recent years [32, 40].
In this thesis, we do not try to resolve this problem, but rather shift the focus to-
wards the development of pressure sensors without hermetically sealed cavities, or
exploit the properties of leakage at the nanoscale to construct gas sensors. Davi-
dovikj et al. have demonstrated static capacitive readout of a single layer graphene
drum, demonstrating the feasibility of these sensors once the hermetic sealing
problem is resolved [45]. This type of readout can be useful in practical appli-
cations of the osmotic pressure sensors discussed in chapter 11 and chapter 12.

• The Pirani gauge exploits the pressure-dependence of the thermal conductance of
gas through a nanogap. Collaboration with the Else Kooi Laboratory at TU Delft
has resulted in considerable progress to fabricate these sensors in a scalable man-
ner. Similar to the squeeze-film pressure sensor it requires the membrane to be
suspended close to the substrate. The graphene membrane is then heated by pass-
ing an electrical current and since the cooling rate is pressure-dependent, the tem-
perature is as well. Since the electrical resistance of the graphene is temperature
dependent, readout of the resistance can be used to measure the pressure. The
sensor has been demonstrated to work using graphene and it was also shown by
Joost Romijn et al. that CMOS integration of these sensors is feasible [46]. Exper-
imental characterization of the pressure and gas dependence of these sensors is
shown in the outlook (chapter 13).

• The partial pressure sensor uses (sub-)nanometer pores in the suspended graphene
membrane that allows some gases to pass through while the membrane remains
impermeable to other gases. The pressure difference is then a measure of the par-
tial pressure of the gases for which the sensor is impermeable. During the course of
the project, it was found that the ideal sieving of gases is not feasible. Nevertheless,
the partial pressures of the gas can be determined as long as the permeation rate
of each gas is different. If such a device is brought out of thermodynamic equilib-
rium, the time-dependent osmotic gas pressures that occur during the relaxation
towards equilibrium contain information on the composition of the gas. These
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devices are named gas osmometers and its physical principle is demonstrated in
chapter 11.

• A graphene-based microphone was proposed at the start of the project. However,
the considerable design challenges regarding the fast sampling times required while
also obtaining a significant reduction of the size made this concept too ambi-
tious at this point. The microphone was therefore abandoned in the course of
the project.

In the course of the project, a new sensing concept was developed, namely the os-
motic pressure sensor operating in liquids. This sensor uses a graphene membrane that
is selectively permeable and seals a cavity filled with water. When the osmotic pres-
sure in the surroundings is changed, it will deflect the membrane until the hydrostatic
pressure this membrane exerts is equal to the osmotic pressure difference. The physical
principle of this concept is demonstrated in chapter 12.

1.4. CONTENTS OF THE THESIS
This thesis studies the dynamics of graphene membranes which shows an interaction
with another physical phenomenon. Understanding these interactions allows us to study
the sensing capabilities of graphene. These sensing capabilities are partly aimed to de-
velop practical industrial applications, but can also be used to sense fundamental phys-
ical phenomena or properties of the material. The broad range of interactions and phe-
nomena that these moving membranes can show, resulted in a wide range of topics that
will be discussed in this thesis.

The remainder of this work is structured as follows. First, chapter 2 explains some of
the basic principles of dynamics that form the basis of this thesis. After this, the disser-
tation is divided into 5 parts: (I) Fabrication and methods, (II) Dynamics of 2D materials
interacting with heat, (III) Nonlinear dynamics of graphene membranes, (IV) Dynamics
of graphene membranes interacting with fluids and (V) Outlook and valorization.

PART I: FABRICATION AND METHODS
First, the fabrication and measurement of suspended graphene resonators are discussed
in chapter 3. These resonators were made by mechanical exfoliation of graphite and dry
transfer or by using single layer graphene via a wet transfer process. This chapter also
discusses the experimental setup used throughout this thesis to actuate and detect the
motion of these membranes. The detection of graphene’s motion is discussed in detail
in the first experimental chapter 4, which examines the interaction between graphene’s
motion and light. This results in a new method to calibrate the amplitude of 2D material
resonators in a Fabry-Perot interferometer.

PART II: DYNAMICS OF 2D MATERIALS INTERACTING WITH HEAT
First, the mechanical motion of graphene in response to a very fast heat source is studied
in chapter 5. The unprecedented timescale of this experiment reveals the important role
that the boundary plays in heat transport through suspended graphene. It is interesting
to compare these results to a material with a much lower thermal conductivity, therefore
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the experiment was also performed on single-layer molybdenum disulfide in chapter 6.
These experiments provide the first estimates of the specific heat of 2D materials.

PART III: NONLINEAR DYNAMICS OF GRAPHENE MEMBRANES
At faster timescales, the fast temperature modulation enables the stiffness of the res-
onator to be modulated by thermal expansion. This results in a phenomenon known
as parametric resonance, which is studied in chapter 7. What is unique about these
graphene resonators is that this can happen in all the vibrational modes, enabling us
to show a record number of parametric resonances in a single mechanical element. The
next chapter 8 treats a phenomenon known as stochastic switching, which occurs due
to the fluctuations caused by the finite temperature in the environments. Such effects
are readily observed in these resonators and can be used in new sensing schemes that
mimic nature.

PART IV: DYNAMICS OF GRAPHENE MEMBRANES INTERACTING WITH FLUIDS
Having studied the dynamics of graphene membranes in high vacuum, the system is
now introduced to fluid environments. We propose several sensing schemes that exploit
the unique properties of suspended graphene membranes. The squeeze-film pressure
sensor in chapter 9 exploits the ultrahigh surface-to-mass ratio of graphene to detect gas
pressure with very high responsivity. The following chapter 10 treats the properties of the
gas flow in more detail. Next, the gas osmometer is introduced that uses selective per-
meation to sense gases in the environment (chapter 11). Finally, we study the deflection
of graphene membranes by osmotic pressure in a liquid environment in chapter 12.

PART V: OUTLOOK AND VALORIZATION
Chapter 13 provides an outlook on further research that builds on the work in this the-
sis. We discuss measurement techniques to characterize the mass of graphene, the Pi-
rani pressure sensor, gas sensors based on effusion, wafer scale fabrication of squeeze-
film pressure sensors and quasiperiodic attractors in nonlinear graphene resonators. In
chapter 14 we discuss how the research in this work can be used in practical applications.
The dissertation ends with the conclusions in chapter 15.



2
THEORY

This chapter serves as an introduction to some of the general models and concepts that
form the basis of this work. Most of the theory shown here is well-established and is the
basis for much of the data analysis in this dissertation. The harmonic oscillator and the
circular membrane resonator are first treated in detail. After this, we discuss what happens
when the resonance becomes nonlinear at large amplitudes. We also examine some special
cases of the actuation force that can actuate the membrane.

9
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Figure 2.1: The classical harmonic oscillator.

2.1. HARMONIC OSCILLATOR

T
HE classical harmonic oscillator is a model system used in many different branches
of physics. Figure 2.1 shows a schematic drawing of the simple harmonic oscilla-
tor. In this system, we consider a mass m attached to a fixed wall with a spring of

stiffness k. The mass is constrained to move only in the direction of x, which is the single
coordinate used to describe the motion of the system. The spring exerts a restoring force
F on the mass:

F =−kx (2.1)

which strives to keep the mass in position x = 0. Now we use Newton’s second law:

mẍ =−kx, (2.2)

where ẍ is the second order time derivate of x, which is the acceleration of m. A general
solution for x = A cosωt +B sinωt , substituting:

−mω2(A cosωt +B sinωt ) =−k(A cosωt +B sinωt ), (2.3)

yielding the simple expression:

ω2 = k

m
(2.4)

where ω is radial frequency. We find that by solving the equation of motion, the system
seems to have a “special” frequency, ω0 =

p
k/m. This is the resonance frequency of the

system: the system has a natural preference to vibrate at this particular frequency. This
principle is highly important in many applications, without this property clocks would
not be able to keep time and musical instruments would not exist. The graphene mem-
branes in this work also show resonance and in many instances in this work (chapters 9,
10 and 11) we use the change in resonance frequency to track changes in the stiffness of
the system.

2.2. DAMPED HARMONIC OSCILLATOR
The simple harmonic oscillator is often not a realistic case: once the system is in mo-
tion it will keep vibrating forever. In reality, we will have to account for the fact that in
each cycle some energy is dissipated, which damps out the motion. The most simple
model that is often applied to this situation is viscous dissipation, which assumes a force
proportional to the velocity ẋ of the system:

F =−cẋ. (2.5)
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Now we write the equation of motion as:

mẍ =−cẋ −kx, (2.6)

which is more convenient to write in terms of the resonance frequency ω0 and the di-
mensionless quality factor Q = ω0m

c :

ẍ + ω0

Q
ẋ +ω2

0x = 0. (2.7)

To induce motion in the system, requires some external excitation force. Here, we con-
sider the periodic actuation force F = Aeiωt , resulting in the equation:

ẍ + ω0

Q
ẋ +ω2

0x = A

m
eiωt . (2.8)

We substitute x = zeiωt , this gives the expression:

−ω2zeiωt + i
ω0ω

Q
zeiωt +ω2

0zeiωt = A

m
eiωt (2.9)

this yields the amplitude z of the resonator as a complex number:

z = A/m

ω2
0 −ω2 + iω0ω/Q

. (2.10)

Which can be expressed as the magnitude and phase:

|z| = A/m√(
ω2

0 −ω2
)2 +

(
ω0ω

Q

)2
, (2.11)

∠z =−arctan

(
ω0ω

Q
(
ω2

0 −ω2
))

. (2.12)

If we experimentally measure the resonance frequency and quality factor in this work,
we measure the resonator by sweeping the frequency of the actuation force, while keep-
ing the amplitude of the force constant. We can then fit eq. (2.11) to the experimentally
obtained response and extract the resonance frequency and quality factor. At the reso-
nance frequency, the amplitude peaks and its value is given by:

|z|ω=ω0 =
AQ

ω2
0m

, (2.13)

which can be useful if one wants to track changes in the amplitude of the force A.
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2.3. MODAL ANALYSIS
In this work, we almost exclusively study the dynamics of graphene resonators with a
circular shape, also called drum resonators. At first sight, it seems that a drum resonator
is not the same as a simple harmonic oscillator: it is a continuous body that can in prin-
ciple move in many different manners. Yet, even this continuous system has resonance
frequencies and we can simplify its dynamic behavior using its special properties at res-
onance.

Here we consider the case of a circular drum resonator. We assume that the mem-
brane is very thin and we can neglect bending rigidity, instead the restoring force of the
membrane is given by its pre-tension n0. This tension is already present in the mem-
brane even when it is in a fully flat configuration and for simplicity, we assume that this
tension is uniformly distributed over the membrane. This results in the following equa-
tion of free motion for the deflection w of the membrane in cylindrical coordinates:

∂2w

∂r 2 + 1

r 2

∂2w

∂θ2 + 1

r

∂w

∂r
= ρh

n0

∂2w

∂t 2 , (2.14)

where r is the radial coordinate from the center of the drum and θ the angular coordi-
nate. Note that the deflection is dependent on both these coordinates. To find a solution,
we use separation of variables:

w(r,θ, t ) = R(r )T (θ)τ(t ), (2.15)

now we assume an harmonic vibration for the time dependent component τ:

w(r,θ, t ) = R(r )T (θ)sinωt . (2.16)

Using the seperation constant λ2 = ω2ρh
n0

we write the equation of motion as:(
R ′′+ 1

r
R ′+λ2R

)
T + 1

r 2 R(r )T ′′ = 0 (2.17)

which can again be seperated into two ordinary differential equations using the constant
m2:

T ′′+m2T = 0 (2.18)

R ′′+ 1

r
R ′+

(
λ2 − m2

r 2

)
R = 0. (2.19)

Equation (2.18) is an harmonic equation with general solution:

T (θ) =C1,m sinmθ+C2,m cosmθ (2.20)

where m = 0,1,2, .... Equation (2.19) is a Bessel-type equation which has the general
solution:

R(r ) = Jm(λr ), (2.21)

which at the radius a of the drum yields:

Jm(λa) = 0 (2.22)
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Figure 2.2: Four mode shapes of the circular membrane with the lowest frequency. a First (or fundamental)
mode W01 corresponding to γ01 = 2.405. b Mode W11 corresponding to γ11 = 3.832. c Mode W21 correspond-
ing to γ21 = 5.135. d Mode W02 corresponding to γ02 = 5.520.

Taking γmn = λa for convenience, we find an infinite number of roots for this equation,
the lowest value is γ01 = 2.405. If we substitute this back into the definition of the seper-
ation constant, we find:

ωmn = γmn

a

√
n0

ρh
(2.23)

which are the resonance frequencies of the membrane. The consequence of the mem-
brane being a continuum system is that it now has an infinite number of resonance fre-
quencies at which the system can vibrate. The solutions of W are now given by:

W (1)
mn(r,θ) = R(r )T (θ) = Jm(γmnr /a)cosmθ (2.24)

W (2)
mn(r,θ) = Jm(γmnr /a)sinmθ. (2.25)

Note that each resonance frequency ωmn corresponds to a certain special shape of the
membrane, either W (1)

mn or W (2)
mn . These shapes are called the mode shapes of the res-

onator, the four mode shapes with the lowest frequency are shown in Fig. 2.2. W (1)
mn and

W (2)
mn are always 90 degrees apart and are called degenerate modes, since they have the

same frequency. The fact that the resonance occurs at a certain well-defined shape is
very useful, since it means that once the deflection is known in any point of the mem-
brane 1, the deflection in any other part of the membrane is also well known. This prop-
erty allows us to take a single resonance of the membrane and describe it with a single

1Except at the nodes where Wmn = 0.
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degree of freedom x, which is also known as the generalized coordinate. This reduces
the equation of motion to:

ẍ + ωmn

Qmn
ẋ +ω2

mn x = 0. (2.26)

Thus, we are able to describe each mode of resonance as a damped harmonic oscillator
with a certain resonance frequency and quality factor. Sometimes it is more convient to
write:

meffẍ + meffωmn

Qmn
ẋ +keffx = 0, (2.27)

where meff is the modal (or effective) mass of the resonance and keff the modal (or ef-
fective) stiffness. Note, that meff and keff do relate to the actual mass and stiffness of the
resonator, but their values also depends on the mode shape and the definition of the
generalized coordinate x.

2.4. NONLINEAR RESONANCE
The damped harmonic oscillator usually describes the motion of the graphene resonator
well at small amplitudes. However, at large amplitudes the equation of motion becomes
nonlinear. This situation can still be described by investigating the resonance modes
of the membrane and projecting them to a single generalized coordinate x. The most
appropriate equation of motion for a graphene membrane is the Duffing-van der Pol
equation [47]:

meffẍ + ω0

Q
ẋ +ηx2ẋ +kx +k3x3 = F cosωt , (2.28)

where µ is the damping coefficient, ν the nonlinear damping coefficient, β the reso-
nance frequency, k3 the cubic stiffness and F is the force. In the case of the graphene
membrane, the cubic stiffness k3 arises from the additional tension and geometry of the
system, which was shown by Davidovikj et al. to be [48]:

k3 = π

1.27−0.97ν−0.27ν2

Eh

a2 , (2.29)

where Eh is the 2D Youngs modulus and ν Poisson’s ratio. The nonlinear term ηx2ẋ is
known as the van der Pol-term. Several works [49–53], including this dissertation (chap-
ter 7), have found that this term is necessary to describe the motion of graphene res-
onators. However, the exact origin of nonlinear (or linear) dissipation in graphene re-
mains an open question.

The presence of nonlinear terms in the equation of motion highly impact the prop-
erties of the resonance. Figure 2.3 compares a damped linear resonance (eq. (2.11)) to
a nonlinear resonance described by eq. (2.28). In the linear case, we find the amplitude
is maximum at the resonance frequency. The width of the peak depends on the qual-
ity factor of the resonance. In the nonlinear case, the resonance frequency becomes
amplitude-dependent. In a certain frequency range, three solutions can be found of
which two are stable. The point where a stable solution meets an unstable solution is
called a saddle-node bifurcation. In an experiment, if one sweeps the frequency from
low to high one would follow the high amplitude branch until the second saddle-node
bifurcation is reached. Then the amplitude jumps down to the other stable branch. If
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Figure 2.4: a Instability diagram for the parametric oscillator. b Amplitude as a function of driving frequency
in the case of parametric resonance.

the frequency is swept backward, one would follow the lower amplitude branch until
the first saddle-node bifurcation is reached. The amplitude then jumps up to the high
amplitude branch. Nonlinear resonance peaks thus possess a characteristic hysteresis if
they are strongly driven, we also see this behavior in chapters 7 and 8. The case shown
here involves a spring hardening nonlinearity, where k3 > 0. If k3 < 0, the system shows
a spring softening nonlinearity, which makes the resonance bend toward lower instead
of higher frequencies.

2.5. PARAMETRIC RESONANCE
Another important type of resonance is parametric resonance. Parametric resonance
does not involve a direct external excitation force, but a modulation of one of the pa-
rameters of the resonator such as stiffness or mass. A unique property of this type of
resonance is that the modulation does not have to occur at the resonance frequency of
the system to induce resonance. If the system is parametrically driven at 2ω0/n, where
n is a positive integer, parametric resonance can occur. For parametric resonance to
occur, the drive has to exceed a certain driving level to overcome the linear dissipation
force in the resonator. Figure 2.4b shows a typical parametric response described by the
equation of motion:

meffẍ + ω0

Q
ẋ +ηx2ẋ + (k +δcosωt )x +k3x3 = 0. (2.30)

Above the threshold of the modulation δ, the zero amplitude solution becomes unsta-
ble and the resonance occurs. This unstable zero amplitude branch meets the stable
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amplitude branch at the period doubling bifurcations, which derives its name because
the mechanical response is at half the frequency of the drive. Figure 2.4a plots the pe-
riod doubling bifurcations as function of δ, showing where the instability occurs. The
threshold of the instability depends on the dissipation, a resonator with high quality
factor shows parametric resonance at lower driving levels. Note that the instability dia-
gram in Fig. 2.4a only depends on the linear terms in eq. 2.30, because the instability
is reached from a flat configuration of the membrane. The mechanical response in Fig.
2.4b bends towards higher frequencies due to the spring hardening nonlinearity and one
saddle-node bifurcation is found. This saddle-node bifurcation depends strongly on the
nonlinear dissipation and only little on the linear dissipation [47]. Note that there are
now two unstable branches in the amplitude, one is the unstable solution between the
period doubling bifurcation, the other between the saddle-node and the second period
doubling bifurcation is due to the Duffing nonlinearity. Sweeping the frequency forward
and backward results in hysteresis, similar to the case of the nonlinear resonance.

2.6. FREQUENCY-DEPENDENT FORCING
Ideally, the harmonic oscillator is driven by a force that has a constant amplitude as a
function of frequency. However, at very high frequencies diffusive effects can cause this
force to become frequency dependent. One specific case that is extensively studied in
this work is opto-thermal actuation, where the force becomes frequency dependent due
to the thermal diffusivity of the system. In general, the graphene membrane will show
a delayed response in its deflection with a certain time delay τ. This time-delay can be
described by a function h(t − t ′) that leads to the following formulation for the force:

F (t ) =
∫ t

0

(
∂Fph

∂t ′

)
h(t − t ′)dt ′. (2.31)

where Fph is a photo-induced force (which can be photo-thermal, radiation pressure or
radiometric pressure) that is exerted on the compliant graphene membrane. This force
can be inserted into the equation of motion for the mechanical resonator:

mẍ + mω0

Qmn
ẋ +mω2

0x =
∫ t

0

(
∂Fph

∂t ′

)
h(t − t ′)dt ′, (2.32)

m is the modal mass. Using the properties of Laplace transforms for convolutions and
assuming Fph is an harmonic function: Fph = εcosωt , we can now write eq. 2.32 in the
frequency domain:

−ω2mxω+ iωmζxω+K xω = iωεhω (2.33)

Note that if we examine the system far below its resonance frequency and assume damp-
ing is small, we can approximate the equation of motion and immediately find the am-
plitude x:

xω = iω
ε

k
hω. (2.34)

Thus, it is possible to directly find the delay function hω from a measurement of the
complex amplitude below the resonance frequency. Usually we simplify the analysis by



2.7. THERMAL MOTION

2

17

taking a single relaxation time approximation for h(t ):

h(t ) = 1−e−t/τ, (2.35)

which has the Laplace transform:

hω = 1

iω(1+ iωτ)
. (2.36)

This gives for the low frequency complex amplitude of the system:

R(xω) = ε

k(1+ω2τ2)
, (2.37)

I (xω) =− εωτ

k(1+ω2τ2)
. (2.38)

In chapter 5 and chapter 6 we use this equation to find the thermal time constant τ,
where the delayed force arises from the diffusion of heat. We will also show a case in
chapter 10 where gas pressure actuates the membrane, and the same theory can be ap-
plied to find the pressure relaxation time, or leak time, of the cavity. A more complex
situation where hω is determined by both a thermal time constant and a pressure relax-
ation time is shown in the outlook (chapter 13).

2.7. THERMAL MOTION
Any mechanical resonator at a finite temperature experiences thermal motion due to
the fluctuations in the environment. This fluctuating force Fth can be added into the
equation of motion of the harmonic oscillator:

ẍ + ω0

Q
ẋ +ω2

0x = Fth

meff
. (2.39)

We know from eq. (2.11) that the solution to the equation of motion is:

〈|x|〉 = Fω
meff

1√(
ω2

0 −ω2
)2 +

(
ω0ω

Q

)2
, (2.40)

where 〈|x|〉 is now the Fourier transform of the time averaged amplitude and Fω is also
the Fourier transform of the time averaged force. It is more convenient however to ex-
press the resonator’s amplitude as its one-sided power spectral density Sxx :

Sxx = SF F

m2
eff

[
(ω2 −ω2

0)2 + (ωω0/Q)2
] (2.41)

where SF F is the PSD of the thermal force, using the equipartition theorem [54] this can
be expressed as:

SF F = 4kB Tωnmeff

Q
. (2.42)
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which results in the expression:

Sxx = 4kB Tωn

meff
[
(ω2 −ω2

0)2 + (ωω0/Q)2
] . (2.43)

Measurements of the PSD are used in micromechanical resonators to calibrate the am-
plitude, which works provided that the temperature and effective mass of the resonance
are well known. This method is known as thermomechanical calibration. We use an
adapted version of this method to find the mass or temperature of the resonator with a
well-known amplitude in chapter 8 and in the outlook in chapter 13.
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3
FABRICATION AND MEASUREMENT

OF SUSPENDED GRAPHENE

RESONATORS

This chapter describes the fabrication procedures used in this thesis to make graphene res-
onators and shows the setup that actuates and reads out the motion of the membranes. It
shows the technique to make cavities in the chips over which graphene will be suspended.
Then it proceeds into the fabrication techniques to make graphene suspended over cavities
with a venting channel to the environment. Finally, the interferometer setup for actuating
and readout of the motion of the resonators is presented.

21



3

22 3. FABRICATION AND MEASUREMENT OF SUSPENDED GRAPHENE RESONATORS

a b

c d

Silicon dioxide (285 nm)

Silicon substrate
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Cavity

Figure 3.1: Fabrication of substrates with cavities. a Silicon substrate with a 285 nm layer of thermally grown
silicon dioxide. b A layer of electron beam resist is spin-coated, exposed and developed. c Reactive ion etching
into the silicon dioxide layer creates the cavity. d The resist is stripped and the cavity is finished.

3.1. FABRICATION

F
ABRICATION of graphene resonators starts with the substrate, which contains cav-
ities over which the graphene is suspended. These substrates consist of a silicon
chip with a layer of approximately 285 nm thermally grown silicon dioxide (Fig.

3.1a). This provides a thin optical layer that enhances the visibility of thin flakes of
graphene on top of the substrate [55]. In order to create cavities in the silicon dioxide
layer, the chips are spin-coated with a resist which is patterned using electron beam (e-
beam) lithography (Fig. 3.1b). After development of the resist, the silicon dioxide layer
is etched using reactive ion etching (Fig. 3.1c). This dry etching process results in cavi-
ties with high aspect ratios and well-defined dimensions after removal of the resist (Fig.
3.1d).

E-beam lithography allows the shape and size of the cavity to be easily varied, hence
in this work, two types of cavities were employed. The first is a simple circular cavity
which is completely sealed once the graphene is transferred on top, as shown in Fig. 3.1.
The second type of cavities are dumbbell shaped: they consist of two circular cavities
connected with a channel as shown in Figs. 3.2 and 3.3. The idea behind these cavities
is to cover one side of the dumbbell with a suspended graphene membrane, while the
other side remains open to the environment. In this manner, the channel that connects
the dumbbell forms a venting channel which ensures that the gas pressure in the cavity
is always equal to the pressure in its environment.

3.1.1. MECHANICAL EXFOLIATION AND DETERMINISTIC TRANSFER

Exfoliation of graphene crystals is a powerful and simple tool to create atomically thin
membranes for research purposes. Using blue Nitto tape, thin pieces of graphite are
exfoliated from a natural graphite crystal. This is transferred on a viscoelastic, optically
transparent PDMS stamp [56]. Using optical microscopy, the flakes are examined for
thickness and size, until a suitable flake of single-layer or few-layer graphene is found.



3.1. FABRICATION

3

23

a b

c d

fe

Dumbbell-shaped
cavity

PDMS stamp
with graphene 
flake

Suspended
resonator

Venting
channel

Figure 3.2: Fabrication of resonators with a venting channel from exfoliated graphene. a Cavities are etched
into the silicon dioxide layer using the process in Fig 3.1. b Graphene is exfoliated on a dry stamp and posi-
tioned above the substrate. c The stamp is brought in contact with the substrate and slowly released. d After
peeling off the PDMS the flake is transferred to the substrate. The positioning allows us to cover only half of the
dumbbell, creating a resonator with a venting channel. e Optical microscope image of a graphene flake used
in chapter 9, which has suspended resonators with a venting channel but also closed drums. f Optical image
of a graphene flake over a large number of closed cavities, used in chapter 11.

The stamp is then flipped upside down and mounted on an XYZ stage above the target
chip containing the cavities (Fig. 3.2b). An optical microscope is used to align the flake at
the correct position, for example, to cover one side of a dumbbell cavity. Once the correct
position is found, the stamp is brought into contact with the substrate and then slowly
released (Fig. 3.2c). Due to the viscoelastic properties of the stamp, the slow release
will cause the flake to adhere to the substrate, rather than the PDMS stamp. After the
release of the stamp, the graphene flake forms a suspended resonator over the cavity
(Fig. 3.2d). Figure 3.2e shows a flake transferred over dumbbell-shaped cavities such
that a venting channel is formed, along with a few circular closed drums, this sample was
used in chapter 9. Figure 3.2f shows another sample containing many closed resonators
which was used in chapter 11.

3.1.2. SINGLE-LAYER GRAPHENE RESONATORS

Single-layer graphene resonators are difficult to exfoliate and transfer using the deter-
ministic transfer method, due to their delicate nature. Mechanical exfoliation can also
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a b

dc
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Figure 3.3: Fabrication of single-layer graphene resonators. a Substrate with cavities fabricated using the
method in Fig 3.1. b A large sheet of single-layer CVD graphene is transferred on top of the sample using a
protective polymer. c The polymer is dissolved and subsequently dried using critical point drying. d Resonator
with one side of the dumbbell broken, creating a resonator with a venting channel on the other side. e Scan-
ning electron microscope (SEM) image of a successfully fabricated resonator. The top side of the dumbbell is
broken while the bottom is intact and suspended. f Another example of a successfully fabricated resonator,
where the bottom part is broken while the top part is intact.

only create a few suspended resonators at a time, meaning that costly time is required to
fabricate these resonators. In order to solve these problems, graphene grown by chemi-
cal vapor deposition was used to fabricate devices. Transfer of a large sheet of graphene
to create suspended structures is not straightforward since it is desired to transfer over
dumbbell shaped cavities and create a venting channel.

This requirement resulted in the transfer process shown in fig. 3.3. A large sheet of
single-layer graphene is transferred on top of the substrate with the help of a protective
polymer (Fig. 3.3b). This polymer is dissolved and subsequently the sample is dried by
critical point drying (CPD) using liquid carbon dioxide, to prevent that this suspended
graphene resonator collapses and adheres to the substrate (Fig. 3.3c). The idea behind
this process is that the dumbbell-shaped cavities are fully covered with graphene, how-
ever, the fluid forces in this process will break the weakest part of the dumbbell. After
CPD, on the other side of the dumbbell, there will be a suspended graphene resonator
(Fig. 3.3d). This process worked with reasonable yield for drum diameters between 2 to
7 µm. Figures 3.3e and f shows scanning electron microscope images of two resonators
where this process successfully yielded a suspended drum on one side of the dumbbell
while the other side is broken.
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Figure 3.4: Illustration showing the most important components of the experimental setup.

3.2. EXPERIMENTAL SETUP
With the fabrication of suspended graphene samples complete, we need an experimen-
tal setup to measure and actuate their motion. An illustration of the experimental setup
is shown in Fig. 3.4. A red helium neon laser is used for the readout of the motion. This is
performed using Fabry-Perot interferometry, in which the substrate acts as a back mirror
and the suspended graphene sheet as a moving mirror. The resulting optical cavity has a
very low finesse due to the low optical reflectivity of graphene, nevertheless the reflected
intensity is a clear function of the membranes position and can be used to measure the
membrane’s deflection. The readout of the membrane’s motion is nonlinear which can
be exploited to calibrate the amplitude of the resonator as shown in chapter 4.

Next, a means of actuating the membrane is required. To this end, a blue diode laser
is brought into the optical path. This diode laser is modulated at high frequencies by
applying an alternating current. The blue laser light provides a periodically changing
heat flux to the membrane, which will be actuated due to the thermal expansion. Sev-
eral clues on how this exactly results in mechanical motion were found in chapters 5,
6, 7 and 10. The membrane’s motion can be detected using different machines. Mostly
a vector network analyzer (VNA) is employed, which measures the transmission from
the diode laser modulation to the signal detected by the photodiode. This transmis-
sion measurement gives the amplitude and phase of the signal as function of frequency.
The VNA has the ability to perform frequency conversion measurements, allowing us to
drive the resonator at a certain frequency and detect the motion at a different frequency,
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this is mainly used in chapters 4 and 7. Frequency conversions measurements have the
drawback that they do not detect the phase of the signal. The Brownian motion of the
thermally driven resonator can also be measured by directly connecting a spectrum an-
alyzer at the output port of the photodetector. Besides the VNA and lock-in amplifier,
a waveform generator can be employed for the actuation signal, which was used as a
generator of random fluctuations to raise the effective temperature of the resonator in
chapter 8.

To perform measurements as function of gas pressure in the chamber, we use a dual-
valve PID pressure controller. This controller is rigidly connected to the vacuum cham-
ber and a voltage setpoint is used as a reference. The controller is connected to a vac-
uum pump and to a gas supply. Different gases are available to use in the experiment,
non flammable gases are chosen because of safety reasons and to prevent damage to
the samples. If experiments are performed in high vacuum, the pressure controller is no
longer used and the chamber is directly connected to a turbomolecular vacuum pump.



4
AMPLITUDE CALIBRATION BY

NONLINEAR OPTICAL

TRANSDUCTION

Contactless characterization of mechanical resonances using Fabry-Perot interferometry
is a powerful tool to study the mechanical and dynamical properties of atomically thin
membranes. However, amplitude calibration is often not performed, or only possible by
making assumptions on the device parameters such as its mass or the temperature. In
this work, we demonstrate a calibration technique that directly measures the oscillation
amplitude by detecting higher harmonics that arise from nonlinearities in the optical
transduction. Employing this technique, we calibrate the resonance amplitude of two-
dimensional nanomechanical resonators, without requiring knowledge of their mechan-
ical properties, actuation force, geometric distances or the laser intensity.

Parts of this chapter have been published in Applied Physics Letters 111 (25), 253104 (2017) [57].
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T
HERE is an enormous interest to study the dynamics of 2D material resonators be-
cause of their sensitivity to the surrounding environment, paving the way towards
gas (chapter 11) [35, 58] and pressure sensors (chapters 9, 10 and 13) [11, 59].

Additionally, the intricate thermal (chapters 5, 6) [60, 61], optical [62] and mechanical
properties [63] (chapter 7) of these materials are of interest as well. The analysis of the
linear frequency response of suspended 2D membranes usually provides information on
their pre-tension n0 through the resonance frequency f0 and on their energy dissipation
rate through the quality factor Q. Besides f0 and Q, it is often desirable to calibrate the
amplitude of the resonant motion. This enables force sensing and also allows for deter-
mination of the mass, Young’s modulus [63] and the thermal properties [60]. However,
current calibration techniques assume that the temperature or the mass are well known,
which is difficult to justify for 2D material membranes.

Readout of the dynamic displacement of 2D resonators is usually performed by the
following two methods: (i) transconductance measurements [12, 64–66], where motion
is detected via a gate-induced conductance modulation or (ii) laser interferometry [49,
64, 67–70], where a Fabry-Perot cavity is formed between the resonator and a fixed mir-
ror so that the motion of the resonator modulates the intensity of the reflected light.
Thermomechanical calibration of the amplitude relies on the equipartition theorem [54]
(chapter 2). This method is widely used for calibrating cantilevers for atomic force mi-
croscopy [54] and has recently been applied to few-layer graphene resonators [63, 67].
When applied to single-layer 2D materials, however, thermomechanical calibration has
the drawback that one has to assume that both the temperature and modal mass are
known. The mass can be significantly affected by impurities and polymer contamina-
tion [12] (chapter 13), therefore resulting in considerable errors in the calibration of the
motion amplitude of the membrane.

At high amplitudes, the assumption of a linear transduction coefficient breaks down,
since the output signal is no longer proportional to the displacement. In Fabry-Perot in-
terferometry, this happens because the intensity of the reflected light is a periodic func-
tion of the membrane’s position. This nonlinear relation between membrane position
and the intensity of the reflected light is well-known [55, 71–76] and manifests itself in
the frequency domain by higher harmonic generation at integer multiples of the driving
frequency f .

Here, we use heterodyne detection to measure these higher harmonics and derive
mathematical expressions that relate their intensity ratios to the motion amplitude. We
show that using only three harmonics we can deduce both the resonant amplitude and
the position of the resonator, i.e. the cavity depth. This procedure provides an alternative
for the thermomechanical amplitude calibration method, but is instead independent of
the mass and temperature of the resonator and only requires the wavelength of the light
to be known.

4.1. MATHEMATICAL DERIVATIONS
We now use optical theory to show how these higher harmonics can be used to deter-
mine the motion amplitude and average position. Figure 4.1a shows a cross-section of
the graphene device suspended over the cavity. The reflected intensity I (x) of the red
laser light (red solid curve in Fig. 4.1b) is a periodic function of the membrane position,
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Figure 4.1: a Cross section of the suspended graphene device. b The reflected intensity detected by the pho-
todetector (solid red line) as a function of membrane distance from the cavity (eq. 4.2), which deviates from
the linear approximation when the amplitude becomes large compared to the wavelength.

therefore it can be described by a Fourier series:

I (x) = A0

2
+

N∑
n=1

An sin

(
4πn(g +x)

λ
+φn

)
, (4.1)

where An are constants, g is the average distance between the membrane and the bot-
tom of the cavity, x the membrane’s deflection and λ the wavelength of the light used for
the readout. If the membrane is thin enough and the reflectivity of the back mirror is suf-
ficiently high, the reflected intensity I as a function of distance from the cavity bottom
can be approximated by a single term in the series:

I (t ) = A+B cos

(
4π

g +x(t )

λ

)
, (4.2)

where A and B are constants. For small amplitudes a linear approximation can be used
for eq. 4.2, however for large amplitudes this approximation breaks down and a Taylor
expansion with more orders is necessary to accurately describe the amplitude (Fig. 4.1b).
Performing the series expansion up to m = 4 gives for the intensity I (x):

I (x) = A+B cos
(
γg

)−Bγsin
(
γg

)
x

−Bγ2 cos
(
γg

) x2

2
+Bγ3 sin

(
γg

) x3

6
+Bγ4 cos(γg )

x4

24
+O(5), (4.3)

whereγ= 4π/λ. Using this Taylor series expansion, for a sinusoidal motion of the graphene
membrane x(t ) = δsin(ωt ) the detected optical modulation amplitudes can be expressed
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Figure 4.2: Explanation of the calibration procedure. a The amplitude δ of the membrane versus the ratio
I3ω/I1ω. From the measurement of this ratio the amplitude can be directly determined from Eq. 4.8. b Average
position g versus the ratio I2ω/I1ω from Eq. 4.10, with a known amplitude of δ. From the measured ratio, the
gap size can be determined. However a rough initial guess of this gap size is required to choose the correct
value of n in Eq. 4.10.

by the series I (t ) =∑
m

Imω sinmωt where m = 1,2,3...:

I1ω =−Bγδsin
(
γg

)+ 1

8
Bδ3γ3 sin

(
γg

)
, (4.4)

I2ω = 1

4
Bδ2γ2 cos

(
γg

)− 1

48
Bγ4δ4 cos(γg ), (4.5)

I3ω =− 1

24
Bδ3γ3 sin

(
γg

)
, (4.6)

I4ω = 1

192
Bγ4δ4 cos(γg ). (4.7)

Note, that I1ω contains a term linearly proportional to δ, but also a term proportional to
δ3, which causes deviations from linear response in the conventional homodyne Fabry-
Perot readout. Using the ratio between the harmonics I3ω/I1ω an expression is obtained
that is independent of A and B :

δ= 2
p

6I3ω/I1ω√
γ2 −3I3ω/I1ωγ2

. (4.8)

With this equation the amplitude δ can be determined directly from the measured ratio
I3ω/I1ω and the wavelength of the light λ, since γ= 4π/λ, as is shown in Fig. 4.2a. Alter-
natively, the amplitude δ can also be obtained from the ratio I4ω/I2ω, which can be more
accurate when sin(γg ) is small:

δ∗ = 4
p

3I4ω/I2ω√
4γ2I4ω/I2ω+γ2

. (4.9)

Once the amplitude δ is determined from eq. 4.8, the ratio I2ω/I1ω can now be used
to obtain the average position g :

g = 1

γ

(
πn +arctan

(
12δγ−δ3γ3

(6δ2γ2 −48)I2ω/I1ω

))
where n = 0,1,2,3... (4.10)
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Figure 4.3: a Detection of 5 harmonics of the parametrically driven fundamental mode for a 5 µm circular
drum. The fifth harmonic has a magnitude smaller than the noise floor; the lower harmonics are readily de-
tected. Dashed lines indicate the window in which the analysis was performed. b Amplitude extracted from
the data using eq. 4.8. c Average position extracted from the data using eq. 4.10. d Transduction coefficientp
α, the change in root mean square voltage per meter of the amplitude of motion. e Estimated error in the

response by assuming that the transduction is linear.

The procedure to obtain g from this equation is shown in Fig. 4.2b. Note, that the value
of g needs to be roughly known from the fabrication process, with an accuracy better
than λ/4, to determine the value of n in eq. 4.10. Since the fabricated depth of the
cavities is 300 nm, n = 2 gives the correct average position in our case (Fig. 4.2b). Other
ratios between even and odd harmonics, such as I3ω/I2ω, yield similar expressions for g :

g32 = 1

γ

(
πn +arctan

(
(12−δ2γ2)I3ω/I2ω

−2δγ

))
, (4.11)

g41 = 1

γ

(
πn +arctan

(
δ3γ3

(24δ2γ2 −192)I4ω/I1ω

))
, (4.12)

g43 = 1

γ

(
πn +arctan

(
− δγ

8I4ω/I3ω

))
. (4.13)

4.2. RESULTS
We now experimentally demonstrate the method for a 5-micron diameter, single-layer
graphene drum (the fabrication is shown in chapter 3). Using the Fabry-Perot interfer-
ometer from chapter 3, we detect the harmonics due to nonlinear transduction. The
intensity modulated laser heats the drum, this causes a tension modulation in the mem-
brane by thermal expansion. Since the spring constant of the membrane is proportional
to the tension, this modulation results in a parametric excitation of the drum resonances
if the modulation frequency is twice the resonance frequency. Parametric driving was
chosen because it resulted in larger amplitudes than direct driving, which increased the
accuracy of the calibration method. Further investigations into parametric resonance
can be found in chapter 7. Parametric excitation was achieved by setting the frequency
fext of the excitation port of the VNA to twice the primary frequency fp : fext = 2 fp . By



4

32 4. AMPLITUDE CALIBRATION BY NONLINEAR OPTICAL TRANSDUCTION

15 16 17 18 19
Primary frequency (MHz)

0

10

20

30

40

50

60

A
m

pl
itu

de
 (n

m
) Assuming linear

transduction

Accounting for nonlinear
transduction

Excitation frequency (MHz)
30 32 34 36 38

Figure 4.4: Measured amplitude assuming nonlinear transduction and the corrected signal taking nonlinear
transduction into account.

scanning fp across the mechanical fundamental resonance frequency f0, the drum is
brought into parametric resonance. To detect the first, second, third, fourth and fifth
harmonic the frequency of the analyzer port was set to fa = fp , 2 fp , 3 fp , 4 fp and 5 fp

respectively. The resulting signal amplitudes are shown in Fig. 4.3a. In the frequency
window indicated by dashed vertical lines in Fig. 4.3a, four harmonics are clearly above
the noise level and the calibration procedure can be applied. The data-points are aver-
aged within this frequency window to reduce the error due to measurement noise.

First, we determine the amplitude of oscillation δ for all the frequencies in the win-
dow using eq. 4.8 (Fig. 4.3b). A remarkably large amplitude is detected, close to 100 times
the thickness of the graphene membrane (0.335 nm), which increases with frequency as
expected. Now that the amplitude is known, Eq. 4.10 is used to find the equilibrium
position shown in Fig. 4.3c. An average position of g = 304.9 nm is calculated with a
standard error (SDE) of 0.16 nm. The transduction coefficient

p
α is deduced from the

relation I1ω ≈p
αδ, by taking the detected root mean square voltage I1ω at the VNA and

dividing it by the amplitude δ from Fig. 4.3b. The resulting
p
α ≈ −Bγsin(γg ) within

the frequency window is shown in Fig. 4.3d. We find
p
α = (8.8±0.1)×104V/m. As ex-

pected, the average position g and the transduction coefficient
p
α are independent of

excitation frequency or membrane amplitude.

4.3. CORRECTING THE ERROR DUE TO NONLINEAR TRANSDUC-
TION

The calibration method can also be used to correct for the effects of nonlinear transduc-
tion, improving the high-amplitude accuracy of the interferometer. As discussed above,
the expression for I1ω (eq. 4.4) contains a term proportional to δ3, which can be used to
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estimate the relative error ε due to nonlinear transduction, from eq. 4.4:

I1ωp
α

= δ
(
1− 1

8
δ2γ2

)
≡ δ(1−ε), (4.14)

where ε = 1
8δ

2γ2 [63]. For small ε, the amplitude δ can now be derived from the uncor-
rected amplitude I1ω/

p
α:

δ=
(
1+ 1

8

(
I1ωp
α

)2

γ2
)

I1ωp
α

, (4.15)

with a known value of
p
α from the calibration, δ can be found from the measurement

of I1ω. Since
p
α is constant this correction also works outside the frequency window

where the calibration is performed. To illustrate the error in the graphene membrane
amplitude, we apply this correction to a different drum in Fig. 4.4, which exhibits large
motion amplitudes. In this case, the maximum amplitude gets underestimated by more
than 10%. This correction is thus important to take into account when measuring the
motion of resonators with large amplitudes.

4.3.1. EXTENDED ANALYSIS

Figure 4.5 shows the results of the extended analysis. Using I4ω
I2ω

we find a slightly higher
amplitude (Fig. 4.5a). As shown section 4.4 this can be largely contributed to the error
made by taking only the first term in the Fourier series in eq. 4.2. The differences in
the detected average postion all fall within 2% of each other. The resulting transduction
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coefficient found by using I4ω
I2ω

, is about 10% lower then the coefficient found by using I3ω
I1ω

(Fig. 4.5c).
From the extended analysis, we find that the systemic error due to the simplification

of the transduction coefficient
p
α is lower than 10%. This is considerably smaller than

existing techniques that require the mass to be known since the mass can show devia-
tions as high as 600% [12] in literature. The results presented in the outlook chapter of
this dissertation (chapter 13), suggests even larger uncertainty in the mass.

4.4. NUMERICAL ROUTINE FOR MORE ACCURATE OPTICAL MOD-
ELS

The presented method is applicable not only for thin 2D material resonators but also for
other nanomechanical systems in Fabry-Perot cavities, such as nanowires [77], provided
that they are thin enough for eq. 4.2 to remain valid. The method could also be extended
to thicker membranes, however since eq. 4.2 does not hold anymore in that case, the
mathematics becomes rather complex and requires numerical routines. In this section,
we demonstrate a numerical routine that can be used to calibrate any resonator in a
Fabry-Perot interferometer, as long as its optical properties are well known and the mo-
tion can be considered harmonic. This numerical method no longer required to use the
simple expression in eq. 4.2, but works with any arbitrary position-dependent intensity
I (x).

4.4.1. OPTIMIZATION ROUTINE
Suppose we have a resonator with a well-known position dependence of the reflected
laser light intensity I (x). Assuming the membrane shows harmonic motion, a time de-
pendent reflected intensity can be numerically evaluated for one period of the oscilla-
tion. The harmonic components that arise due to nonlinear optical transduction can
then immediately be evaluated by expressing I (t ) as a Fourier series:

IN (t ) =
N∑

n=−N
cneiωnt , (4.16)

where N is an integer number for each harmonic and cn the Fourier coefficient. The
Fourier coefficient can directly be determined from one period of I (t ):

cn = ω

2π

2π/ω∫
0

I (t )e−iωnt dt . (4.17)

These coefficients depend on the value of δ and g , if these are equal to the experimental
value the following relation should hold: cn ∝ Inω, where Inω is the experimentally mea-
sured intensity. This allows us to build an optimization routine for δ and g that match
the experimentally observed ratio’s between the harmonics to the numerically evaluated
Fourier coefficients. This routine attempts to find the optimal values of δ and g to mini-
mize the objective function f (δ, g ):

f (δ, g ) = |I1ω|
|I3ω|

( |c3|
|c1|

− |I3ω|
|I1ω|

)2

+ |I1ω|
|I2ω|

( |c2|
|c1|

− |I2ω|
|I1ω|

)2

, (4.18)



4.4. NUMERICAL ROUTINE FOR MORE ACCURATE OPTICAL MODELS

4

35

subject to constraints on g to prevent the effect of local minima that arise due to the
periodicity of I (x).

4.4.2. BENCHMARK
Without expressing I as a single term in the Fourier series, the relative reflected intensity
of the laser light as function of position of the membrane is given by:

I =
∣∣∣∣ r1ei (Φ1+Φ2) + r2e−i (Φ1−Φ2) + r3e−i (Φ1+Φ2) + r1r2r3ei (Φ1−Φ2)

ei (Φ1+Φ2) + r1r2e−i (Φ1−Φ2) + r1r3e−i (Φ1+Φ2) + r2r3ei (Φ1−Φ2)

∣∣∣∣2

, (4.19)

where:
r1 = n0 −n1

n0 +n1
, (4.20)

r2 = n1 −n0

n1 +n0
, (4.21)

r3 = n0 −n3

n0 +n3
, (4.22)

Φ1 = 2πn1d1

λ
, (4.23)

Φ2 = 2πn0d2

λ
= 2πn0(g +δsin(ωt ))

λ
, (4.24)

here n0 is the refractive index of vacuum, n1 the refective index of the resonator, n3 the
refractive index of the back reflector, d1 the resonator thickness and d2 the distance be-
tween the resonator and the membrane. It can be shown that for for very thin mem-
branes where Φ1 ¿Φ2, eq. 4.19 reduces to the cosine function (eq. 4.2). Equation 4.19
is substituted in eq. 4.17 and numerically evaluated for n = 1,2,3 for different values of
g and δ. A thrust-region alogrithm is used to evaluate eq. 4.18 for different values of δ
and g until the ratio of Fourier coefficients match the experimentally measured intensity
ratios.

Figure 4.6 shows the results from the numerical routine compared to the analytical
result from the simplified optical model in eq. 4.2. We test both the objective function in
eq. 4.18, which we call the odd objective function and we test:

f (δ, g ) = |I2ω|
|I4ω|

( |c4|
|c2|

− |I4ω|
|I2ω|

)2

+ |I1ω|
|I2ω|

( |c2|
|c1|

− |I2ω|
|I1ω|

)2

, (4.25)

which we call the even objective function. Both objective functions show local minima
are present close to the global minima in the parameter space of δ, g . The local minima
are shown in Figs. 4.6a - c and the global minima are shown in Figs. 4.6d-f. The de-
viations from the simplified model are expected to grow as higher order harmonics are
employed and we indeed find that the even harmonics in the global minimum results
in a larger disparity with the numerical routine. The numerical routine corrects for this
error and places the amplitude closer to the one found by taking the odd ratio. Both
minima of the objective functions are close to each other, which is a consequency of the
lack of phase information in the measurement. To resolve this problem, the experimen-
tal setup could be adapted to yield phase information. Another approach can make use
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Figure 4.6: Comparison between the numerical routine and the simplified analytical solution. a Amplitude
as function of frequency, showing the results from the numerical routine compared to the analytical approxi-
mation. b Average position as function of the frequency. c Transduction coefficient as function of frequency,

of the fact that the incorrect minima of eqs. 4.18 and 4.25 yield different δ, g , but the
correct minima closely match. The objective function:

f (δ, g ) = |I1ω|
|I3ω|

( |c3|
|c1|

− |I3ω|
|I1ω|

)2

+ |I2ω|
|I4ω|

( |c4|
|c2|

− |I4ω|
|I2ω|

)2

+ |I1ω|
|I2ω|

( |c2|
|c1|

− |I2ω|
|I1ω|

)2

, (4.26)

should perform better in that respect, provided that a proper algorithm for a global min-
imum search is used.

4.5. DISCUSSION
Another source of error that should be considered is due to the finite spot size of the
laser. The amplitude measured by this technique should be regarded as an average over
the spot size. In our case, the spot size of the laser is estimated to be 1 µm. Assuming
that the laser is aligned in the center of the drum and that the system is vibrating with
the fundamental mode shape, we estimate the error due to the finite spot size to be 2%
compared to the maximum deflection. While this is small for the 5 µm drum diameter
used here, this error can grow significantly for smaller drums. For example, a 2-micron
diameter drum would result in an error of 12%.

It is interesting to point out that the transition from high to low amplitude in Fig. 4.3a
does not occur at exactly the same frequency. This is attributed to the effects of fluctua-
tions on the nonlinear response of the membrane, discussed in detail in chapter 8. Due
to these fluctuations, there is always a finite chance that the resonator will jump down
from the high amplitude solution before reaching its saddle-node bifurcation. Since the
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harmonics I3ω and I4ω were detected with a lower bandwidth to reduce the noise, the
probability of such a premature jump to occur is higher. This has no effect on the results
of the analysis since the amplitude follows the same backbone in each measurement.
The effect is easily accounted for by choosing an appropriate frequency window for the
analysis.

4.6. CONCLUSION
We demonstrate a technique that directly determines the amplitude and average posi-
tion of suspended single-layer graphene resonators in a Fabry-Perot interferometer. This
technique takes advantage of the nonlinear transduction of the membrane motion by
detecting the higher harmonics that arise due to optical nonlinearities. The technique
can be used to calibrate the motion without any assumptions or knowledge of the mass,
the mechanical properties, the actuation force and the intensity of the laser power. Only
knowledge of the wavelength of the light is required, thus providing a powerful means to-
wards fully contactless characterization of the mechanical properties of atomically thin
membranes.
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5
TRANSIENT THERMAL

CHARACTERIZATION OF

SUSPENDED GRAPHENE

The thermal response of graphene is expected to be extremely fast due to its low heat ca-
pacity and high thermal conductivity. In this work, the thermal response of suspended
single-layer graphene membranes is investigated by characterization of their mechanical
motion in response to a high-frequency modulated laser. A characteristic delay time τ be-
tween the optical intensity and mechanical motion is observed, which is attributed to the
time required to raise the temperature of the membrane. We find, however, that the mea-
sured time constants are significantly larger than the predicted ones based on values of the
specific heat and thermal conductivity. The measurements provide a noninvasive way to
characterize thermal properties of suspended atomically thin membranes, providing in-
formation that can be hard to obtain by other means. In order to explain the discrepancy
between measured and modeled τ, we propose two models. The first model takes a ther-
mal boundary resistance at the edge of the graphene drum into account, which explains
the thermal time constant for a boundary conductance of 30±20 MW/(m2·K). The second
model takes into account the scattering at the boundary and suggests that the measured τ
can be solely attributed to the flexural phonons.

Parts of this chapter have been published in Physical Review B 96, 165421 (2017) [60] and an article in prepa-
ration [78].
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T
HE high surface-to-mass ratio of graphene should make the cooling of this ma-
terial extremely sensitive to the environment, which can be exploited in the Pi-
rani pressure sensor concept proposed in chapter 1. To predict the feasibility of

such sensors requires an understanding of the thermal transport through the material,
which has recently attracted major attention due to its unusual properties [79, 80]. Ex-
tremely high thermal conductivities have been demonstrated up to 5000 W/(m·K), well
exceeding the thermal conductivity of graphite [16, 17]. These measurements were per-
formed by Raman spectroscopy, that uses the temperature dependence of the phonon
frequency [81]. By measuring the thermal resistance R, which is the local temperature
increase∆T per unit of heat flux∆Q, one can employ analytical models of the heat trans-
port to extract the thermal conductivity of graphene k. This method allowed the demon-
stration that the thermal conductivity decreases when the number of graphene layers is
increased from 2 to 4 [82]. The method has been subsequently improved, for example
by better calibration of absorbed laser power [18] or removing parallel conduction paths
through the air [19]. Also, the amplitude ratio between Stokes and anti-Stokes signals
has been exploited [22] as an alternative to the shift in phonon frequency. As an alter-
native to Raman measurements, electrical heaters [23], pump-probe methods [83, 84],
scanning thermal microscopy [85] and temperature sensors [86] have been used to study
heat transport in graphene, demonstrating length dependence of the thermal conduc-
tivity [23] and a reduced thermal conductivity when graphene is supported on silicon
dioxide rather than freely suspended [86]. Different groups have demonstrated a large
variety in thermal conductivity of pristine graphene between 2000 to 5000 W/(m·K) ex-
perimentally [16–29] and between 100 to 8000 W/(m·K) theoretically [28], making the
thermal conductance of graphene a debated subject.

Besides these steady-state studies of the thermal properties of graphene, it is of in-
terest to study its time-dependent thermal properties. The thermal response time of
graphene is expected to be one of the fastest known, due to its low heat capacitance
and high thermal conductivity. To obtain this response time, one needs to measure
small temperature fluctuations in suspended graphene at frequencies in the MHz range.
However, since the suspended integration of temperature sensors poses problems and
optical techniques for temperature measurement in suspended graphene, like Raman
spectroscopy, do not offer the temperature resolution and frequency bandwidth, direct
high-frequency temperature measurement in suspended graphene is difficult.

In this work, it is therefore proposed to use the thermomechanical response of sus-
pended graphene to characterize its thermal properties at MHz frequencies. This method
was previously used by Metzger et al. [87] to determine the thermal time constant τ
of silicon cantilevers. Similarly, it is found that the mechanical motion of suspended
graphene is delayed by a characteristic thermal time constant τwith respect to the intensity-
modulation of the laser that opto-thermally actuates the membrane. This is attributed to
the time necessary for heat to diffuse through the system. The optomechanics thus pro-
vides a tool for studying the dynamic thermal properties of 2D materials. Interestingly, it
is found that the measured values of τ are much higher than those expected based on lit-
erature values for the thermal conductivity k, specific heat cp and density ρ of graphene.
Models and measurements of drums of different diameters and on different substrates
are analyzed in order to account for the large value of τ. Two models are proposed that
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Figure 5.1: Measurement method to determine the characteristic thermal time of suspended graphene res-
onators. a Block diagram showing how the deflection signal is transduced using opto-thermal actuation. b
Illustration showing how the optical power is transduced into mechanical motion of the drum.

can explain this effect. The first model assumes a large thermal boundary resistance at
the edge of the drum. The second model evaluates the boundary scattering due to side-
wall adhesion and proposes that the measured τ can be solely attributed to the flexural
phonons, while the much faster thermal time of in-plane phonons is obscured in the
mechanical resonances.

5.1. OPTOMECHANICAL DELAY
Here we identify the potential source of the time delay between the modulation of the
blue laser and the mechanical response in the measurement setup. The block diagram
in Fig. 5.1a identifies the elements and processes that play a role in actuation and detec-
tion of the membrane’s motion and Fig. 5.1b provides a schematic illustration of these
processes in the suspended drum. The modulated intensity of the blue laser is absorbed
in the graphene, generating a virtually instantaneous heating power since photoexcited
carriers in graphene lose their energy to phonons on timescales of a few picoseconds
[88]. The generated heat will increase the temperature of the membrane and flow toward
the substrate, resulting in a time-dependent temperature increase of the membrane,
where the temperature is delayed with respect to the heating power. The temperature
increase causes thermal expansion forces that deflect the membrane. At frequencies far
below the resonance frequency, the motion will be in-phase with the thermal expansion
force, especially since the quality factor of the resonator is typically higher than 100 re-
sulting in a narrow bandwidth of the resonance. The intensity modulation of the red
laser due to the interference effect that is used to detect the motion can be regarded as
instantaneous and will not cause a delay. The measurements are corrected for other de-
lays, related to delays in the instruments (VNA, photodiode) and light path delays, using
a calibration procedure discussed in the Appendix A2.

It is thus concluded that in the frequency range below the mechanical resonance,
the delay between optical actuation and deflection in Fig. 5.1 is nearly completely due
to the delay between heating power and temperature. A thermal system with a single
time constant τ, driven by an ac heating power Pac e iωt can be described by the heat
equation:

d∆T

dt
+ 1

τ
∆T = Pac

C
e iωt , (5.1)

where ∆T is the temperature difference with respect to the steady-state temperature, C
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Figure 5.2: Cross section of a dumbbell on the two types of substrates used in this chapter. One is labeled the
oxide substrate which is fabricated as shown in chapter 3, the other sample has 5 nm of chrome and 40 nm of
gold evaporated on top (before graphene transfer) and is labeled the gold substrate.
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is the thermal capacitance and τ = RC is the thermal RC product. At frequencies sig-
nificantly below the mechanical resonance frequency, the thermal expansion induced
amplitude z = α∆T is proportional to temperature by an effective thermal expansion
coefficient α. Solution of the heat equation gives:

zωe iωt =αRPac
e iωt

iωτ+1
. (5.2)

Which is the form of the frequency-dependent force equation derived in chapter 2. This
equation will be used to fit the experimental data, with the parameters B =αRPac and τ.

5.2. RESULTS
The measurements are performed on suspended single-layer graphene membranes with
a venting channel, the fabrication is shown in chapter 3. We use two types of substrates
as shown in Fig. 5.2, one is labeled the oxide substrate and the other is labeled the gold
substrate. The large difference in thermal properties allows one to determine the influ-
ence of the substrate on the measurements. An example of the measured magnitude
and phase of the deflection for a resonator with a diameter of 5 µm on a cavity in silicon
dioxide is shown in Figs. 5.3a and b respectively. In the 0.1 to 10 MHz range, the response
is frequency dependent with a decrease in magnitude as the frequency increases. Also,
a phase delay is observed that increases as a function of frequency. Note, that the mea-
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Figure 5.4: Measured characteristic times compared for different diameters. Dashed lines are fits to the data
in order to examine the scaling behavior of τ. a τ for single layer graphene suspended on a silicon dioxide
substrate, showing that both τ and the spread in τ increase with diameter. b τ for single layer graphene drums
suspended on a gold coated substrate.

sured phase at low frequencies is not 0, but 180 degrees. This is attributed to the small
offset in the deflection that the graphene membrane has, in some membranes this was
reversed in sign (indicated by 0 degrees phase at low frequencies), one example is shown
in chapter 10. Figure 5.3c shows a measurement result which is split into a real and an
imaginary part. The imaginary part of the amplitude zω can be fit by eq. 5.2, resulting in
a value of characteristic delay time of τ= 159 ns, with a clearly observable maximum at
radial frequency ω= 1/τ. The real part of eq. 5.2, with the same B and τ, is shown in Fig.
5.3c showing a small offset with respect to the data which is analyzed further in section
5.6. The same effect causes the difference between the model and the magnitude and
phase of the amplitude response (see Fig. 5.3a, b).

We repeat the measurements on drums of different diameters on two different sub-
strates. One substrate is the silicon dioxide fabricated as shown in chapter 3, the second
substrate is identical to the first, but with an additional 5 nm chrome and 40 nm gold
layer on top. Values of τ as a function of diameter for both the silicon dioxide and the
gold coated substrate are plotted in Figs. 5.4a, b, respectively. Each point in the graph
indicates a different drum resonator. A trend is observed where τ increases as a function
of diameter. Furthermore, it is observed in Fig. 5.4 that there is a large variation in the
value of τ for drums with the same radius. Repeated measurements of τ on the same
device yields an estimated error of 8% and the scatter observed here is therefore due
to device-to-device variations. Possible causes of the scatter will be discussed further
below.

5.3. MODELS FOR THE THERMAL TIME CONSTANT
The measured time constants in this work are significantly larger than expected based
on the intrinsic properties of graphene. For example, Barton et al. [62] use an expression
that estimates the time constant based on the thermal properties of graphene:

τ= a2ρcp

2k
, (5.3)
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where a is the membrane radius, ρ the density of graphene, cp specific heat and k the
thermal conductivity. Using approximate values cp = 600 J/(kg·K) (calculated in the Ap-
pendix A4), k = 2500 W/(m·K) and ρ = 2300 kg/m3 we obtain τ = 0.3 ns for a 2 micron
drum and τ = 2 ns for a 5 micron drum. The observed values of τ range between 25 to
250 ns, which is one to two orders of magnitude larger than those predicted by eq. 5.3.
Even if the most extreme values for cp and k are used, eq. 5.3 gives a lower τ than mea-
sured. The theoretical limit for cp is given by the Petit-Dulong law (cp = 2100 J/kg/K),
and the lowest experimental literature value for k is 600 W/(m·K) [22]. Indeed a fit with
a quadratic dependence on the radius to the values of τ in Fig. 5.4 gives k = 36 W/(m·K)
for graphene on silicon dioxide and k = 66 W/(m·K) on gold. It thus appears that eq. 5.3
cannot account for the experimental τ.

We first consider the possibility that the thermal conduction is limited by the sub-
strate that supports the graphene resonator. In order to investigate this, we compare
the results obtained on gold-coated and uncoated substrates. It is found that the τ on
the different substrates are similar (Figs. 5.4a-b), despite the much higher thermal con-
ductivity of the gold-coated substrate. We investigate the substrate effects further using
finite element simulations (see Appendix A3) of the system. These simulations predict
no diameter dependence of the value of τ in the uncoated sample, while the gold-coated
sample should be in agreement with eq. 5.3. From this disparity between the experi-
ments, it is thus concluded that substrate effects are not responsible for the observed
values of τ.

It is well known that a thermal resistance can be present at the interface between
two solids [89–94]. This effect is called interfacial thermal (or Kapitza) resistance and is
caused by differences in the phonon velocities, which leads to scattering that limits the
phonon transport across the interface. Several works have predicted interfacial resis-
tances in graphene using molecular dynamics simulations [95, 96]. Between suspended
and supported graphene a value of the boundary conductance of 2×1010 W/(K·m2) was
reported [96]. Also, grain boundaries in graphene have been shown to cause an inter-
facial thermal resistance [97]. Below we argue that an interfacial thermal resistance
between supported and suspended graphene could account for the unexpectedly long
thermal delay times we measured.

5.4. THERMAL INTERFACE RESISTANCE MODEL
The boundary resistance will cause the formation of a temperature discontinuity at the
interface between suspended and supported graphene that can be modeled by Fourier’s
law [90]:

QB = Tsus −Tsup

RB
≡GB (Tsus −Tsup), (5.4)

where QB is the boundary heat flux, Tsus the temperature in the suspended part of the
graphene and Tsup temperature of the supported part. RB is the thermal boundary re-
sistance and GB is the thermal boundary conductance. In order to estimate GB we use a
thermal RC model, where the thermal time τ is given by de product of the heat capacity
of suspended graphene C and the thermal resistance R. It is assumed that R is domi-
nated by the interfacial thermal resistance RB , such that τ becomes independent of k of
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graphene:

C = cpρhgπa2, (5.5)

R = (GB hg 2πa)−1, (5.6)

where hg is the thickness of single layer graphene. Combining both expressions yields
for the thermal time τ:

τ= ρcp a

2GB
. (5.7)

This model thus predicts a linear dependence between τ and a, which is clearly different
from eq. 5.3. A linear fit to the data yields good agreement for graphene on gold (Fig.
5.4b). In the case of graphene on silicon dioxide (Fig. 5.4a), a weighted linear fit to the
lower values of τ produces better results, due to the large scatter in the 4 and 5 micron
diameter drums. The slopes of the weighted fit on silicon dioxide and the fit on gold
yields nearly identical slopes within 5% of each other. Furthermore, the linear fits all fall
within the error determined by the spread in τ, while the quadratic fit predicts too low
values of τ for small diameters. From the slope of the linear fits, we estimate that the
boundary conductance lies near GB = 24 MW/(m2·K).

To obtain a more accurate values of GB , we use eq. 5.7 and derive the thermal bound-
ary conductance (GB = ρcp a/2τ) from the measurements of τ for each individual device
as shown in Figs. 5.5a-c. This shows that the value of the thermal boundary conductance
lies around 30 MW/(m2·K). For the purpose of extracting GB the derived value cp = 600
J/(kg·K) is used and a density ρ = 2300 kg/m3. Equation 5.7 has been verified using fi-
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nite element simulations that include a thermal boundary conductance, confirming the
validity of neglecting the heat conductance k (see Appendix A3).

In order to relate the derived value of GB to the phonon transmission probability
across the interface, the following expression is derived using the derivations in the Ap-
pendix A4:

τ= ρcp a

2GB
= a

2

1

c2
1l

+ 1

c2
1t

+ πħ2

3ζ(3)Auc k2
B T 2

w̄1l

c1l
+ w̄1t

c1t
+ πħ2w̄1z c1z

ζ(3)Auc k2
B T 2

(5.8)

Here c1 j is the velocity of the j -th phonon mode, j = z for the flexural (ZA), j = l for lon-
gitudinal (LA) and j = t for the transverse (TA) mode. The number 1 corresponds to the
suspended material. w̄1 j is the integrated transmission probability (the sum over each
possible angle of incidence) of phonons over the interface, kB is Boltzmann constant,
T is temperature, ħ the reduced Planck’s constant and Auc is the area of the unit cell of
graphene.

By using eq. 5.8, an average phonon transmission probability w̄ is plotted in Figs.
5.5d-f corresponding to the boundary conductances in Figs. 5.5a-c. The average phonon
transmission probability is found to be w̄ = 0.3±0.2 %. Potential mechanisms that limit
w̄ are discussed below.

5.4.1. DISCUSSION ON THERMAL INTERFACE RESISTANCE
It is worth discussing whether the model proposed in eq. 5.8 can account for the con-
siderable scatter in the value of τ observed in the measurements in Fig. 5.4. Equation
5.8 shows that potential causes are differences in the phonon velocity c1 j or in the trans-
mission probability w1 j . Temperature variations only affect the flexural phonons and
are therefore expected to give a too small contribution to account for the observed scat-
ter. Device to device variations in the transmission probability w1 j due to boundary
roughness [98] and kinks [99] in the graphene due to sidewall adhesion [11] might play a
role. The thermal conductance over kinks can be modeled and will be discussed further
below. In addition to geometrical mechanisms that can cause phonon velocity varia-
tions between devices, like wrinkling [29], contamination [100] and the presence of grain
boundaries [101] are potentially of influence. Since these mechanisms might also affect
the tension in the membranes, the correlation between τ and the resonance frequency
is studied (see Appendix A1), however, no significant correlation is found. It is thus not
possible to identify the microscopic mechanism that causes the scatter in τ directly from
these measurements.

The tendency of the scatter in τ to increase with diameter is in accordance with eq.
5.8, since τ is linearly proportional to the radius a. A notable exception to this trend
is the 7-micron drums, which show significantly lower spread. Possibly this is due to a
selective mechanism, due to which large wrinkled drums are eliminated by collapsing
on the cavity bottom [76]. In order to reduce the scatter in τ, further work on fabrication
methods (e.g. transfer, growth) is needed to improve the uniformity of suspended CVD
graphene drums. Once the scatter is reduced, variations in device geometry can be used
to further investigate the scaling laws that govern thermal time constants in graphene.
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This can also shed light on the role of interfacial thermal resistance and its relation to
microscopic thermal mechanisms.

5.5. GEOMETRIC PHONON MISMATCH MODEL
In this section, we discuss a possible mechanism that might account for the experimen-
tal observations in this work. We examine the effect of sidewall adhesion on phonon
transport in graphene. For this purpose, a mechanical model was developed that evalu-
ates the phonon scattering on a sharp kink and calculates the transmission probabilities
which can be substituted in eq. 5.8. We assume that due to the sidewall adhesion, a sharp
kink is formed with an angle β of 90 degrees. Figure 5.6 shows all the possible modes in
which an incident phonon can scatter: reflection as LA, TA or ZA phonon or transmis-
sion as LA, TA and ZA phonons. To find the transmission probability for each phonon
mode requires solving of 6 equations simultaneously: 3 for the continuity of deflection
and 3 for the continuity of stress as shown in the Appendix A5.

Figure 5.7 shows the angular dependent transmission probability w1 j (θ0) for all the
three phonon modes, assuming an initial tension of 0.03 N/m and Lame parameters
λ = 15.55 J/m2 and µ = 103.89 J/m2 [102]. We assume for simplicity that both the sus-
pended and supported graphene have the same elastic parameters and tension, thus
only observing the effects of the kink. LA phonons are mostly affected at small incident
angles because they can only transmit into ZA phonons which are significantly mis-
matched in velocity. At larger incident angles, efficient transmission into TA phonons
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becomes possible, raising the transmission probability. Incident TA phonons can fully
transmit at shallow incident angles, indeed from the continuity of deflection the kink
should not see any effect at θ0 = 0. Near θ0 = 40◦ we observe a sharp feature, which cor-
responds to the critical angle where TA phonons can no longer be transmitted into LA
phonons. The incoming ZA phonon shows a remarkably low transmission, due to the
large velocity differences between in-plane and out-of-plane phonons (c1l = 17.0 km/s,
c1t = 11.6 km/s and c1z = 0.2 km/s for the elastic parameters used in this section). From
continuity of deflection, flexural phonons can only transmit into in-plane phonons. The
low velocity of the flexural phonons compared to the in-plane phonons causes total in-
ternal reflection at very small incident angles close to θ0 = 1◦. Evaluating the integrated
transmission probability (assuming the incoming phonon distribution is uniform) yields
w̄1l = 54.56%, w̄1t = 48.15% and w̄1z = 0.073%.

We can use these transmission probabilities to find the thermal boundary conduc-
tance at the edge of the drum, which is derived in the Appendix A4:

GB = 3ζ(3)k3
B T 2

πħ2hg

(
w̄1l

c1l
+ w̄1t

c1t
+ πħ2w̄1z c1z

k2
B T 2ζ(3)Auc

)
. (5.9)

We find GB = 5.3 GW/(m2· K), which is orders of magnitude higher than what was found
in the experiments. Mainly the large contribution from the LA and TA phonons to the
heat transport makes it impossible for the continuum model to explain our results.

5.5.1. PHONON ENERGY EXHANGE
An explanation for the experimental results might be found if we do not consider the
graphene membrane as a thermal material with a single specific heat and conductivity.
Several works suggest the interaction between the in-plane phonons and out-of-plane
phonons is very low and the mean free paths of the phonons are very long [31, 103–
106], even at room temperature. Considering the very different phonon velocities in
graphene and the large differences in the boundary transmission probability found for
each phonon mode above, one will have to consider that each phonon mode gains en-
ergy at completely different timescales. In this subsection, we thus assume that the
LA, TA, and ZA phonons are different thermal baths on the suspended graphene drum,
which can each exchange energy through boundary scattering or with the heat sink to
the environment.

The energy per unit volume is denoted by U j for each mode j . For each phonon
mode, the rate of change of energy on the suspended graphene drum is equal to the sum
of the fluxes of heat leaving the membrane:

V
dU j

dt
=∑

j
Qi j→qr . (5.10)

Where V is the total volume of the suspended drum and Qi j→qr the heat flux of mode
j on domain i to mode r on domain q . We assume that for all phonon modes, the flux
of heat is limited by scattering at the boundary, thus ignoring the effects of anharmonic
scattering on the suspended graphene membrane. At the boundary, phonons can re-
flect which either keeps the energy in the same mode or to one of the other modes. An-
other possibility is that the phonon transmits to the environment, which is the supported
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graphene, but phonons also come from the environment onto the suspended graphene.
Taking all these effects into account, we write the heat flux for each process as:

Qi j→qr =Ui j ci j w̄i j→qr (5.11)

For the phonons coming from the environment (heat sink), it is more convenient to ex-
press the heat flux in terms of the environmental temperature Tenv. We sum the contri-
bution for each phonon mode on the suspended graphene j (see Appendix A4):

Q2→1 j = 2

a

ζ(3)k3
B T 3

env

πħ2hg
×

(
w̄2l→1 j

c2l
+ w̄2t→1 j

c2t
+ πħ2w̄2z→1 j c1z

k2
B Tenvζ(3)Auc

)
(5.12)

Now we can sum all the contributions and write 3 equations for U j using eq. 5.10:

dU

dt
= R ·U+T ·U+S+q (5.13)

where U is a vector containing all the energies on the suspended drum:

U =
U1l

U1t

U1z

 , (5.14)

and R is the boundary reflection matrix:

R =− 2

a

w̄1l→1t c1l + w̄1l→1z c1l −w̄1t→1l c1t −w̄1z→1l c1z

−w̄1l→1t c1l w̄1t→1l c1t + w̄1t→1z c1t −w̄1z→1t c1z

−w̄1l→1z c1l −w̄1t→1z c1t w̄1z→1l c1z + w̄1z→1t c1z

 ,

(5.15)
T is the boundary transmission matrix:

T =− 2

a

w̄1l→2l2t2z c1l 0 0
0 w̄1t→2l2t2z c1t 0
0 0 w̄1z→2l2t2z c1z

 , (5.16)

S is the heat sink:

S = 2

a

ζ(3)k3
B T 3

env

πħ2hg


w̄2l→1l

c2l
+ w̄2t→1l

c2t
+ πħ2w̄2z→1l c1z

k2
B Tenvζ(3)Auc

w̄2l→1t
c2l

+ w̄2t→1t
c2t

+ πħ2w̄2z→1t c1z

k2
B Tenvζ(3)Auc

w̄2l→1z
c2l

+ w̄2t→1z
c2t

+ πħ2w̄2z→1z c1z

k2
B Tenvζ(3)Auc

 , (5.17)

and q is the heat flux on the membrane:

q =
q1l

q1t

q1z

 (5.18)
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Figure 5.8: a Change in phonon energies U as function of time in response to a step in q1l = 1×1011 W/m3 at
t = 0. b Mechanical strain as function of time in response to a step in q1l . c Mechanical force as function of
frequency for a forcing function q1l = Aeiωt .

We can calculate all the transmission probabilities using the model in Appendix A5,
assuming β = 90 degrees. With known transmission probabilities and phonons veloc-
ities, 5.13 is first solved with q = 0 and Teff = 293.15K to find the initial conditions for
U. Since the primary source of the heat flux from the laser is the generation of longi-
tudinal phonons due to Normal electron-phonon scattering at a time scale less than 1
ps [107–109], we assume a heat flux of q1l = 1×1011 W/m3 at t ≥ 0, q1l = 0 at t < 0 and
q1t = q1z = 0 at all times. Figure 5.8a shows the change in phonon energies as function
of time. Note, that the flexural phonons have a two orders of magnitude longer thermal-
ization time.

Next, we use the following expression to estimate the time-dependent strain in the
membrane [103]:

dε

dT
=− 1

4V0B

(
dUl

dT
γl +

dUt

dT
γt + dUz

dT
γz

)
. (5.19)

Since we are only interested in the time-dependence of the strain, we approximate the
mechanical response as:

∆ε∝−∆Ulγl −∆Utγt −∆Uzγz (5.20)

we take the Grunheisen parameters γl ≈ 1.4, γt ≈ 0.6 and γz ≈ −3. Figure 5.8b shows
the time-dependent strain due to the step in the heat flux. Note that first, the strain is
negative (compressive strain) and later becomes positive (tensile strain). The positive
strain is in agreement with the negative thermal expansion coefficient of graphene and
is due to the large negative Grunheisen parameter of the ZA phonons.

To compare this model to the experiment, we calculate the delay function hw from
the impulse response. This is calculated by differentiating the step response in Fig. 5.8b
and calculating the Fourier transform. Figure 5.8c shows the real and imaginary part
of the mechanical strain, which is proportional to the actuation force of a mechanical
resonator. The frequency dependence closely resembles the experimentally obtained
amplitude in experiments on single-layer graphene. Note, that the model predicts that
the thermal expansion coefficient becomes positive at high frequencies. This is because
at these high frequencies flexural phonons don’t have time to thermalize and no longer
play a role in expanding the lattice, the in-plane phonons with a positive Grunheisen
parameter thus dominate the thermal expansion.
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Figure 5.9: Dominant processes that lead to the measured mechanical response below the resonance fre-
quency according to the geometric phonon mismatch model.

5.5.2. DISCUSSION ON GEOMETRIC PHONON MISMATCH

The geometric phonon mismatch model thus proposes that the measurements of the
thermal time constant in this chapter can be attributed to the flexural phonons, which
thermalize at a much slower rate due to boundary effects. We thus propose that the di-
agram in Fig. 5.1 has to be adapted. Figure 5.9 shows the dominant processes that lead
to the thermomechanical response at the frequencies below the resonance frequency
according to the geometric phonon mismatch model. The blue laser absorption leads
to (virtually instantaneous) generation of LA phonons. Scattering at the boundary leads
to a much slower generation of ZA phonons, which cause a large mechanical response.
At higher frequencies the diagram in Fig. 5.9 becomes more complex, as the in-plane
phonons start to dominate the response and lead to a positive thermal expansion co-
efficient. The transient heat flow of these in-plane phonons occurs at such fast time
scales that it is obscured in these experiments since it is much faster than one period
of the resonance. More advanced modeling is necessary to determine whether this sce-
nario is realistic, the anharmonic scattering of phonons opens additional pathways for
the phonon baths to exchange energy [20, 31] and these could affect the timescales of
the phonon energy exchange. Singh et al. have shown that the conversion of LA/LO
phonon into ZA phonons is also a bottleneck in the thermal system [108]. Thus, another
explanation might be that the measured τ is due to this conversion process, more so-
phisticated modeling is necessary whether this scenario is consistent with the diameter
dependence of τ in this work. From the experimental side, pump-probe measurements
or time-resolved Raman spectroscopy could help to gain more insight into whether the
thermal expansion is time-dependent. Especially a transition from negative to positive
strain would be a strong indication that the flexural phonons exchange energy at much
longer timescales than the in-plane phonons.

5.6. DISCUSSION
Besides the models proposed here, other scenarios also deserve further investigation.
Polymer contamination is a serious candidate for the higher values of τ found in this
work, in chapter 13 we find that the mass of the resonance is likely much higher than
expected. Polymers typically have a specific heat cp with is twice as high as graphene,
but half the density and they have a very low thermal conductivity. The thermal con-
ductivity of graphene itself is also reduced due to higher phonon scattering rates. The
specific heat and thermal conductivity of the polymer can be added to the equation for
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the transient heat transport. AFM characterization of the graphene shown in Appendix
A6 finds a thickness of around 1.2 nm, this would increase the heat capacity by a factor
of around 3.5 if it can be attributed to polymer contamination. From eq. 5.3, using a
k = 600 W/(m·K) and ρcp 3.5 times the theoretical value we find τ = 25 ns for a 5 mi-
cron diameter drum. This is closer to the experimental values, but it cannot account
for the diameter dependence measured in this work. For example, a 2-micron diameter
drum would have a 4 ns time constant, the experimentally observed τ is more than 5
times higher. This estimation and the observed diameter dependence makes polymer
contamination an unlikely explanation for the experimental observations.

Other researchers have not pointed towards a thermal conductance that is limited
by boundary effects. The geometric phonon mismatch model can account for this fact
since it predicts that only the flexural phonons are significantly affected by the bound-
ary. However, to exclude that something in our graphene or substrate is affecting the
conductance measurement we performed a Raman spectroscopy measurement in Ap-
pendix A6. We found a G-peak shift as function of 488 nm wavelength incident laser
power of -0.63 cm−1/mW for a 2 micron diameter drum, Balandin et al. measured -1.29
cm−1/mW on a 3 micron long bridge with the same oxide substrate thickness and trench
depth [16]. Considering the fact that our sample is smaller, a somewhat smaller shift in
phonon frequency is expected. We can thus conclude that our system is, in principle,
representative of the other suspended graphene membranes published in the literature.
We did not attempt to convert the measured phonon frequencies to temperature and
extract the thermal conductivity for several reasons. First, the Raman measurement was
performed in air, while the thermomechanical method was performed in a high vac-
uum making any measured conductance not representative of the thermal properties of
graphene [19]. Second, calibration of the absorbed laser power and measuring the spot
size is rather cumbersome [18], while knowing the spot size exactly is important to ex-
tract the conductance of the system. Third, we currently cannot identify which of the
models in this work should be applied in order to relate Raman measurements (which
is a spot measurement) to the optomechanical measurement of τ (which is sensitive to
thermal expansion in the entire drum).

5.6.1. OFFSET IN THE REAL PART OF THE RESPONSE

We now discuss the offset that is observed in the real part in Fig. 5.3c. When the imagi-
nary part is fitted using eq. 5.2, a difference remains between the real part that is mea-
sured and the one predicted by this fit, which is observed in all of the 201 resonators
studied in this chapter. Previously this was attributed to optical crosstalk of the blue
laser, which should always be in phase, resulting in a positive difference between the
model and measurement as shown in Fig.5.3c. However, if the phase of the motion at
low frequencies is reversed, the offset also changes in sign as shown in Fig. 5.10a. Exam-
ining the response of all the drums in this study, there is no exception to this observation
as shown in Fig. 5.10b. Optical cross-talk is excluded as a possible cause of this effect,
since this should always be in phase with the modulation and thus result in a positive
difference between the measured and modeled real part.

The offset thus originates from the motion of the membrane, which implies that a
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Figure 5.10: Offset of the real part of the response. a Real and imaginary part of the amplitude of a resonator
with a diameter of 4 µm. b Comparison between the extremum in the imaginary part and the offset in the real
part, defined as the average difference in amplitude between model and measurement in the frequency range
where the imaginary part was fitted.

second force is present that actuates the membrane. Adding this second force to eq. 5.2:

zωe iωt =C1
e iωt

iωτ1 +1
+C2

e iωt

iωτ2 +1
, (5.21)

where C1 and C2 are constants and τ1, τ2 are thermal time constants. To explain the
offset observed in this work, τ2 ¿ τ1 and C1 has the opposite sign of C2, which results
in a more-or-less constant offset in the real part at low frequencies. The second force
opposes the one that causes the slow time constant τ1, which is the one observed in this
work.

The observation of this second force is in accordance with the model proposed in
section 5.5.1. Flexural phonons result in negative thermal expansion from their nega-
tive Grunheisen parameter but heat up slowly due to boundary effects. The in-plane
phonons heat up much faster, as they have a very low thermal resistance and result in
a positive thermal expansion from their positive Grunheisen parameter. Using eq. 5.20
these effects are in superposition, both occurring at the same time and thus resulting
in the two distinct forces as proposed in eq. 5.21. The observation of these two distinct
forces makes the boundary resistance model proposed in section 5.4 unlikely, as only
one force with a single time constant should be observed.

5.7. CONCLUSION
To summarize, a dynamic optomechanical method to measure transient heat transport
in suspended graphene is demonstrated. The method does not require electrical con-
tacts, which allows high-throughput characterization of arrays of devices. The method
is used to characterize the thermal time τ of many graphene membranes. It is found
that τ is a function of diameter and its value is much larger than expected based on
existing models. Measurements on gold-coated and uncoated silicon dioxide samples
show similar results, showing that τ cannot be attributed to the substrate. A potential
cause for the large values of τ is the presence of an interfacial thermal resistance between
the suspended and supported graphene. From the measurements we determine that a
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thermal boundary conductance with values of 30±20 MW/(m2·K) can account for the
measurements, corresponding to a low phonon transmission probability on the order of
0.3%. A model is proposed that no longer assumes a single value of the specific heat of
graphene: the in-plane phonons and out-of-plane phonons should be regarded as sepa-
rate heat baths due to the low phonon scattering rate. The kink due to sidewall adhesion
at the edge of the graphene drum then poses a large thermal resistance for the flexural
phonons and their relaxation time is possibly the one observed in the experiments.
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APPENDIX

A1: CORRELATION BETWEEN THE RESONANCE FREQUENCY AND τ
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Figure 5.11: a Scatter plot between resonance frequency and τ for the uncoated sample. b Gold-coated sample
(one data point with τ= 410 ns, 6 micron diameter and f = 13.6 MHz not shown here).

Figure 5.11 shows scatter plots between the resonance frequency and characteristic
thermal time τ extracted from the measurements. Since both the resonance frequency
and characteristic thermal time are correlated to diameter, correlations between the two
variables should only be determined for the same diameter. We found low correlations
close to zero with outliers at -0.24 for the 6-micron diameter drums on gold and 0.14 for
the 5-micron diameter drums on gold. The low correlations and the low agreement be-
tween different diameters suggest that transient thermal transport is not strongly related
to the strain present in the graphene resonators.

A2: CALIBRATION PROCEDURE
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Figure 5.12: Magnitude and phase of the photo-diode signal obtained when the blue laser is directly aimed at
the photo-diode.

In order to correct the intrinsic phase shifts in our measurement setup, we directly
point the blue laser to the photodiode to obtain an calibration curve for our system (Fig.
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5.12). This can be corrected by deconvolution of the measured response with this cal-
ibration curve, which is done by expressing the blue laser modulation parameters as a
frequency-dependent phasor εω. Since the calibration was taken at discrete frequen-
cies, a cubic interpolation was used to make sure the frequencies match the ones from
the measurement that needs to be corrected. Now one can deconvolve the measured
frequency response function fω using:

| fω,corr| = | fω|
|εω|

, (5.22)

∠ fω,corr =∠ fω−∠εω, (5.23)

where fω,corr is the corrected frequency response function of our measurement.

A3: FINITE ELEMENT SIMULATIONS OF GRAPHENE ON A SILICON DIOXIDE

SUBSTRATE
In order to examine the impact of the silicon dioxide substrate on the heat transport,
we use COMSOL Multiphysics to model the graphene on top of the cavity and esti-
mate the delay function h(t ). A simulation result of h(t )/Plaser, where Plaser is the in-
cident laser power (assuming 2.3% absorption of optical power), can be seen in Fig.
5.13. This simulation predicts that the heat transport is more complex than expected.
A very fast increase in temperature is observed with a time constant that is in the order
of 0.5 ns. This is followed by a much slower exponential increase in temperature, which
can be fitted with a single exponential to obtain a time constant of 32.6 ns. The fast
time constant should not be observed in our measurement, since the cut-off frequency
2πωc,fast = 1/τfast ≈ 320 MHz is much larger than the bandwidth in our measurements.
The slow time constant can be observed in our measurement since the cut-off is in a
measurable frequency range and lower than the resonance frequency. This could be the
thermal relaxation time found in the measurements.

Figure 5.14 shows h(t ) for different material parameters. From Fig. 5.14a we con-
clude that changes in the thermal conductivity or specific heat of the graphene mem-
brane affect the fast time constant τfast, the slow time constant τslow remains unchanged.
We conclude that the observed time constant τ in our measurements does not depend
on the properties of graphene itself. For the thermal contact resistance between the
graphene and silicon dioxide interface shown in Fig. 5.14b, we draw the same conclu-
sion.

Figure 5.14c shows a different situation; if the thermal properties of the silicon diox-
ide layer are changed, the fast time constant remains unchanged. However, the slow
time constant changes a lot, from 32 ns to 66 ns if the thermal conductivity is changed
from 1.4 W/m/K to 0.7 W/m/K. Therefore, we conclude that the slow time constant in
the simulation depends only on the properties of the substrate. Due to the poor thermal
properties of this layer, it takes much longer to reach thermal equilibrium than expected
if only the graphene itself is considered. Figure 5.14d shows the diameter dependence
on h(t ), again the slow time constant is hardly affected, therefore this model does not ac-
count for the diameter dependence in our measurement. Since the slow time constant
modeled here only depends on the properties of the substrate, it should significantly
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Figure 5.13: a Average temperature of the graphene membrane as function of time obtained by COMSOL,
simulating a graphene membrane (ρ = 2100 kg/m3, C = 700 J/kg/K, k = 2500 W/m/K and thickness 0.335
nm) on top of silicon dioxide (ρ = 2200 kg/m3, C = 730 J/kg/K, k = 1.4 W/m/K and thickness 300 nm) with a
thermal conductance hT = 8.33×107 W/m2/K between the graphene and the oxide. b Simulated oxide layer
and drum with diameter in thermal equilibrium and 1 mW of laser power. The simulation suggests significant
temperature increase outside the drum.

change value when the silicon dioxide is replaced with gold. Since the values simulated
here are not diameter dependent, this model shows that the experimental observations
cannot be explained by the thermal properties of the substrate.

Figure 5.15 shows a simulation with identical parameters as in Fig. 5.13 with the
addition of a limited thermal boundary conductance GB = 40 MW/(m2· K). The inter-
facial thermal resistance dominates the heat transport in this situation as illustrated by
the uniform temperature in the drum. The materials outside the drum do not raise in
temperature significantly. This validates the simple model in the main part of this work,
where only the boundary conductance is considered.

A4: INTERFACIAL THERMAL RESISTANCE IN 2D MATERIALS
The interfacial thermal resistance RB can be determined by using the heat flux:

RB = A∆T

Q
, (5.24)

where A is the cross-sectional area of the boundary, ∆T the temperature difference and
Q the heat flux. The first step in determining the interfacial resistance is thus to deter-
mine the heat flux that crosses the interface. The heat flux that crosses from interface 1
to interface 2 can be expressed by [92, 113]:

Q1→2 =Uνw̄ , (5.25)

where U is the total energy per unit volume of the heat carriers, ν the velocity at which
they propagate and w̄ the probability that the heat carriers transmit over the interface.
In the calculation of thermal interfacial resistance, the difficulty lies in calculating the
transmission probability w̄ , while the calculation of energy and propagation velocity is
quite straightforward.
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Figure 5.14: a h(t ) for different thermal conductivities of graphene. It can be seen that τfast shows some vari-
ation, but the slow thermal time constant does not change significantly. The fits of τslow are between 31.9 ns
and 32.7 ns. b h(t ) for different thermal conductivities of the silicon dioxide layer. τslow is highly affected by
this value: changing the value from 1.4 W/m/K to 0.7 W/m/K doubles τslow to 66 ns. c h(t ) for different ther-
mal contact resistances. First two values are within ranges typically observed in literature [110]. τslow is again
hardly affected, with values between 31.6 ns and 31.9 ns. The last value is an extreme example that is much
lower than found in the literature. [18, 110–112] d h(t ) for different drum diameters, here only the fast time
constant shows large variations, but the slow time constant is not significantly affected.

Our approach is thus, to calculate the energy and velocity and use that to estimate
the value of w̄ from the measurement. In order to do this, it is assumed that the heat in
graphene is carried by phonons and that all the heat is carrier by three acoustic phonon
polarizations, the longitudinal (LA), transverse (TA) and flexural (ZA). The LA and TA
branch are far below the Debye temperature of 2100 K due to their large velocities, but
the ZA branch will be fully thermalized since its Debye temperature is at 50 K [114]. The
contribution to the heat flux of each polarization can be added to obtain:

Q1→2 =
∑

j
U jν j w̄ j , (5.26)

and the total heat flux becomes:

Q1→2 −Q2→1 =
∑

j
U1 jν1 j w̄1 j −

∑
j

U2 jν2 j w̄2 j , (5.27)

the index i j now describes the material (i = 1 for suspended, i = 2 for supported graphene)
and phonon mode j .
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Figure 5.15: Simulation with a boundary conductance GB = 40 MW/(m2· K) between suspended and sup-
ported graphene. a h(t ) showing a single exponential function. b Temperature profile of the drums, showing
that the temperature is uniform and the materials outside the drum do not change temperature significantly.

To calculate the energy Ui j , we start from the Bose-Einstein distribution to find the
average phonon number 〈n(ω)〉 at a fixed frequency ω:

〈n(ω)〉 = 1

eħω/kB T −1
, (5.28)

where ħ is the reduced Plack’s constant, kB the Boltzmann constant and T temperature.
The energy carried by each phonon is ħω, therefore we can write the average energy
〈E(ω)〉 that phonons have at this frequency:

〈E(ω)〉 = ħω〈n〉 = ħω
eħω/kB T −1

. (5.29)

The number of states (density of states D(ω)) that is accessible to the system between
the frequencies ω and ω+dω is defined by:

dNi j = Di j (ω)dω (5.30)

and this makes the total energy Vij in the system:

Vi j =
∫ ∞

0
dωDi j (ω)〈E(ω)〉 =

∫ ∞

0
dωDi j (ω)

ħω
eħω/kB T −1

. (5.31)

Next, one has to know for the density of states, how many modes are available in the
momentum space. In a 2-dimensional crystal, if we know the size of the system A, the
uncertainty in momentum is (2πħ)2/A and the number of modes available to the system
becomes:

N = A
∫

d2p

(2πħ)2 = A
∫

d2k

(2π)2 , (5.32)

where one can integrate over circles with circumference 2πk to obtain:

N = A
∫

kdk

2π
. (5.33)
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Using dN = D(ω)dω we obtain for the total energy in the system:

dVi j (ω)dω= A
kdk

2π

ħω
eħω/kB T −1

, (5.34)

which is divided by the total volume of the system to obtain for Ui j :

dUi j (ω)dω= kdk

2πhg

ħω
eħω/kB T −1

, (5.35)

to perform the integration, it is necessary to use the dispersion relation that relates the
frequency to the wavenumber. Since the flexural phonons have different properties than
the transverse and longitudinal phonon, these will have to be analyzed separately in the
sections below.

LONGITUDINAL AND TRANVERSE MODES

For the longitudinal and transverse acoustic phonons, we can write the linear dispersion
relationship:

ω= ci j k, (5.36)

where ci j is the propagation velocity of the phonons, since ν = dω
dk = ci j . Substitution

into eq. 5.35 gives:

dUi j (ω)dω= ħω2dω

2πc2
i j hg

1

eħω/kB T −1
, (5.37)

Using this, we can write for the heat flux over an interface of area A from material 1 to
material 2:

Q1→2, j = AU1 jν1 j w̄1 j =
∫ ωD

0

Aw̄1 jħω2dω

2πc1 j hg

1

eħω/kB T −1
. (5.38)

To solve the frequency integral, we assume kB T ¿ ħωD and using a coordinate trans-
form x =ħω/kB T :

Q1→2, j =
∫ ∞

0

Aw̄1 j k3
B T 3

1

2πħ2c1 j hg

x2dx

ex −1
(5.39)

We assume that the transmission probability frequency-independent. This results in:

Q1→2, j =
Aζ(3)w̄1 j k3

B T 3
1

πħ2c1 j hg
(5.40)

and for the heat flux from material 2 to material 1:

Q2→1, j = AU2 jν2 j w̄2 j =
Aζ(3)w̄2 j k3

B T 3
2

πħ2c2 j hg
. (5.41)
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FLEXURAL MODE

When strain is present in a 2D lattice, the dispersion of the flexural phonons can be writ-
ten as [115]:

ω2 = s2
i z k4 + c2

i z k2 (5.42)

which has 4 solutions for k, however implying the conditions si z > 0, ci z > 0, k > 0 and
enforcing that k must be a real number, we only have one solution:

k = 1p
2

√√√√√√
c4

i z +4s2
i zω

2

s2
i z

− c2
i z

s2
i z

, (5.43)

this can be substituted in eq. 5.35 to obtain:

dUi z (ω)dω= ħω2dω

2πhg

√
c4

i z +4s2
i zω

2

1

eħω/kB T −1
(5.44)

Note, that this equation converges either to the expression for linear dispersion if c4
i z À

4si zω
2 or to the expression for quadratic dispersion if c4

i z ¿ 4s2
i zω

2. The propagation
velocity becomes:

ν= dω

dk
=

d
√

s2
i z k4 + c2

i z k2

dk
= c2

i z k +2s2
i z k3√

c2
i z k2 + s2

i z k4
= c2

i z +2s2
i z k2√

c2
i z + s2

i z k2
(5.45)

substituting eq. 5.43 gives:

νi z =
p

2
√

c4
i z +4s2

i zω
2√

c2
i z +

√
c4

i z +4s2
i zω

2

, (5.46)

which in the limit case of purely quadratic dispersion ci z = 0 becomes νi z = 2
p
ωsi z and

in the case of linear dispersion si z = 0 becomes νi z = ci z .

EFFECT OF STRAIN ON FLEXURAL PHONONS

The analysis can be simplified by assuming either high or low strains, which should fol-
low from our experiments. It can be seen, that the condition:

2kB Tsi z

ħ À c2 (5.47)

allows us to use descibe the heat transport of the ZA branch by a quadratic dispersion
without strain, while the condition:

2kB Tsi z

ħ ¿ c2 (5.48)
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allows one to use a linear dispersion for the ZA branch. From the resonance frequencies
in our experiments, we can estimate the strain present in the drum resonators:

ε= ρhω2a2

Eh2.40482 , (5.49)

assuming ρh = 7.7×10−7 kg/m2 and Eh = 340 N/m, we find the lowest observed strain
εlow = 1.026×10−5 and the highest observed strain εhigh = 1.71×10−4. Expressions for
coefficients si z and ci z are given by Lifshitz [115]:

si z =
√
κ

ρ
(5.50)

where κ is the bending rigidity, which is κ= 1×10−19 J for single-layer graphene, and:

ci z =
√

2u
λ+µ
ρ

(5.51)

where u is the dilatation and λ, µ are the Lame parameters. Now we can calculate the
coefficients for the lowest strain:

4k2
B T 2s2

i z

ħ2 = 2.6828×105, (5.52)

c4
i z = 1.3683×108 (5.53)

from which we conclude that for each drum measured in this work the condition in eq.
5.48 holds. Due to the low velocities the Debye temperature of the flexural phonons is
much lower than the in-plane phonons. Therefore, we have to write the heat flux as:

Q1→2,z =
∫ ωD

0

Aw̄1zħω2dω

2πc1z hg

1

eħω/kB T −1
=

∫ θ/T

0

Aw̄1z k3
B T 3dx

2πc1zħ2hg

x2

ex −1
, (5.54)

where θ is the Debye temperature, since we are above the Debye temperature ex ≈ 1+x:

Q1→2,z =
∫ θ/T

0

Aw̄1z k3
B T 3xdx

2πc1zħ2hg
= Aw̄1z k3

B T

4πc1zħ2hg
θ2, (5.55)

the total number of states in the system is:

N = Ag

∫ ωD

0

ωdω

2πc2
1z

= Ag
ω2

D

4πc2
1z

(5.56)

the Debye temperature becomes:

θ = ħωD

kB
= ħ

kB

√
4πc2N

πa2 , (5.57)
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here N /πa2 is the number of states per unit square, which is limited by the area of the
unit cell Auc = 5×10−20 m2. The heat flux from the ZA mode now becomes:

Q1→2 = Aw̄1z kB T c1z

hg Auc
(5.58)

and the total heat flux now becomes:

Qtot =
ζ(3)Ak3

B T 3
1

πħ2hg

(
w̄1l

c1l
+ w̄1t

c1t

)
+ Aw̄1z kB T1c1z

hg Auc

−ζ(3)Ak3
B T 3

2

πħ2hg

(
w̄2l

c2l
+ w̄2t

c2t

)
− Aw̄2z kB T2c2z

hg Auc

= ζ(3)Ak3
B T 3

1

πħ2hg

(
w̄1l

c1l
+ w̄1t

c1t
+ πħ2w̄1z c1z

k2
B T 2

1 ζ(3)Auc

)

−ζ(3)Ak3
B T 3

2

πħ2hg

(
w̄2l

c2l
+ w̄2t

c2t
+ πħ2w̄2z c2z

k2
B T 2

2 ζ(3)Auc

)
(5.59)

The condition Qtot = 0 has to apply if T1 = T2, this implies that:

w̄1l

c1l
+ w̄1t

c1t
+ πħ2w̄1z c1z

k2
B T 2ζ(3)Auc

= w̄2l

c2l
+ w̄2t

c2t
+ πħ2w̄2z c2z

k2
B T 2ζ(3)Auc

(5.60)

which makes the heat flux:

Qtot =
ζ(3)Ak3

B (T 3
1 −T 3

2 )

πħ2hg

(
w̄1l

c1l
+ w̄1t

c1t
+ πħ2w̄1z c1z

k2
B T 2

1 ζ(3)Auc

)
(5.61)

This can be linearized for small temperature differences ∆T to obtain:

Qtot =
3ζ(3)Ak3

B T 2∆T

πħ2hg

(
w̄1l

c1l
+ w̄1t

c1t
+ πħ2w̄1z c1z

k2
B T 2ζ(3)Auc

)
(5.62)

and the boundary resistance is directly obtained from eq. 5.24:

RB = πħ2hg

3ζ(3)k3
B T 2

(
w̄1l

c1l
+ w̄1t

c1t
+ πħ2w̄1z c1z

k2
B T 2ζ(3)Auc

)−1

(5.63)

SPECIFIC HEAT
We can also calculate the specific heat cp by starting from equation 5.37:

dUi j (ω)dω= ħω2dω

2πc2
i j hg

1

eħω/kB T −1
, (5.64)

U1 j =
∫ ωD

0

ħω2dω

2πc2
i j hg

1

eħω/kB T −1
=

∫ ∞

0

x2k3
B T 3dx

2πc2
i jħ2hg

1

ex −1
= ζ(3)k3

B T 3

πc2
i jħ2hg

, (5.65)
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Figure 5.16: Phonon incident on the kinked boundary and the six possibilites for reflection or transmission.

which is valid for the LA and TA branches. For the ZA phonons we have to take the high
temperature limit:

U1z =
∫ θ/T

0

x2k3
B T 3dx

2πc2
i jħ2hg

1

ex −1
, (5.66)

using ex ≈ 1+x:

U1z =
∫ θ/T

0

xk3
B T 3dx

2πc2
i jħ2hg

= k3
B T

4πc2
1zħ2hg

θ2, (5.67)

now by substituting:

θ1z = ħ
kB

√
4πc2

1z

Auc
, (5.68)

the energy density becomes:

U1z = kB T

hg Auc
(5.69)

U1 =
∑

j
U1 j =

ζ(3)k3
B T 3

πħ2hg

(
1

c2
1l

+ 1

c2
1t

)
+ kB T

hg Auc
, (5.70)

Now we find:

ρcp = dU

dT
= 3ζ(3)k3

B T 2

πħ2hg

(
1

c2
1l

+ 1

c2
1t

)
+ kB

hg Auc
, (5.71)

cp = 3ζ(3)k3
B T 2

πρħ2hg

(
1

c2
1l

+ 1

c2
1t

+ πħ2

3ζ(3)Auc k2
B T 2

)
(5.72)
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A5: GEOMETRIC PHONON MISMATCH
Here we discuss the model to calculate the transmission coefficients wi j over an inter-
face in graphene formed by a geometrical deformation. Figure 5.16 shows the basic pa-
rameters of the model. We assume the graphene membrane has a kink with an angle
β and a phonon with deflection u0i is incident on the interface with an angle θ0. If the
phonon group velocity ci j is known, we can find the angles of reflection and refraction
with respect to the normal using Snell’s law:

sinθi j =
ci j

c0 j
sinθ0 j (5.73)

CONTINUITY RELATIONS
We first enforce continuity of deflection in each direction on the interface, this yields:

• In x direction:

u0l sinθ0l +u0t cosθ0t +u1l sinθ1l +u1t cosθ1t −u2l sinθ2l −u2t cosθ2t = 0 (5.74)

• In y direction:

u0l cosθ0l −u0t sinθ0t −u1l cosθ1l +u1t sinθ1t

−u2l cosθ2l cosβ+u2t sinθ2t cosβ+u2z sinβ= 0 (5.75)

• In z direction:

u0z +u1z −u2l cosθ2l sinβ+u2t sinθ2t sinβ−u2z cosβ= 0 (5.76)

CONTINUITY OF STRESS
Continuity of stress implies that the sum of all stresses is equal on both sides of the in-
terface: Σn1 = Σn2. For the flexural phonons, we assume that the disturbances in the
tension are small and the out-of-plane deflections w only rotate the stress component
out-of-plane. For the in-plane phonons, we only take into account the disturbance in
the tension δn and ignore constant pre-tension n, since the velocity of these phonons
are not altered by the tension, but governed by their Lame parameters µi and λi . The
continuity of stress equations at the kinked boundary are:

• In x direction:
Σδn1,x y =Σδn2,x′y ′ (5.77)

• In y direction:

Σδn1,y y = n̄2,y ′y ′
dw

dy ′ sinβ+Σδn2,y ′y ′ cosβ+ n̄2,x′y ′
dw

dx ′ sinβ (5.78)

• In z direction:

n̄1,y y
dw

dy
+ n̄1,x y

dw

dx
=Σδn2,y ′y ′ sinβ+ n̄2,y ′y ′

dw

dy ′ cosβ+ n̄2x′y ′
dw

dx ′ cosβ (5.79)
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Writing down the stress components of each individual wave as function of their de-
flection, following the same procedure as Kolsky [116], we obtain 3 equations for the
continuity of stress:

• In x direction:

2µ1
u0lωsinθ0l cosθ0l

c0l
+µ1

u0tωcos2θ0t

c0t
−2µ1

u1lωcosθ1l sinθ1l

c1l

−µ1
u1tωcos2θ1t

c1t
−2µ2

u2lωsinθ2l cosθ2l

c2l
−µ2

u2tωcos2θ2t

c2t
= 0 (5.80)

• In y direction:

2µ1
u0lωcos2θ0l

c0l
+λ1

u0lω

c0l
−2µ1

u0tωcosθ0t sinθ0t

c0t

+2µ1
u1lωcos2θ0l

c1l
+λ1

u1lω

c1l
−2µ1

u1tωcosθ1t sinθ1t

c1t

+n̄2,y ′y ′u2z
ωcosθ2z

c2z
sinβ−2µ2

u2lωcos2θ2l

c2l
cosβ−λ2

u2lω

c2l
cosβ

+2µ2
u2tωcosθ2t sinθ2t

c2t
cosβ= 0 (5.81)

• In z direction:

u0z n̄1,y y
ωcosθ0z

c0z
−u1z n̄1,y y

ωcosθ1z

c1z
−2µ2 sinβ

u2lωcos2θ2l

c2l

−λ2 sinβ
u2lω

c2l
+2µ2 sinβ

u2tωcosθ2t sinθ2t

c2t
−u2z n̄2,y ′y ′

ωcosθ2z

c2z
cosβ= 0 (5.82)

Note that we have ignored the shear stress components in these equations for simplicity.
We can solve the 6 equations for continuity of deflection and stress simultaneously for
each incident mode, assuming u0 j = 1. From these amplitudes of the transmitted and
reflected waves, we can calculate the energy flux of each wave Si j leaving the boundary:

Si j

S0 j
= ci j |ui j |2Re(cosθi j )

ci j cosθ0 j
(5.83)

the transmission probability w1 j for each incoming mode j can now be evaluated as:

w1 j = S2l

S0 j
+ S2t

S0 j
+ S2l

S0 j
. (5.84)

With the transmission coefficients known, we can evaluate the thermal boundary resis-
tance in Eq. 5.63.
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Figure 5.17: a Tapping mode AFM scan of a very large collapsed drum on the bottom of the cavity. b Step
heights of the single layer graphene, the average thickness is 1.3 nm.
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A6: GRAPHENE CHARACTERIZATION
Figure 5.17a shows a tapping mode atomic force microscopy scan of the graphene col-
lapsed on the bottom of a large cavity. Several lines were taken along the flake to mea-
sure its thickness, as shown in Fig. 5.17b. These result in an average thickness of 1.3
nm. We further characterize the graphene using Raman spectroscopy as shown in Fig.
5.18. We use three different wavelengths which show spectra consistent with single layer
graphene. Figure 5.18a shows the spectra at the highest available laser power. We find a
very low intensity of the D-peak at all wavelengths. The G-peak shift as function of 488
nm wavelength incident laser power was found to be -0.63 cm−1/mW, consistent with
other experimental observations (Fig. 5.18b).





6
TRANSIENT THERMAL

CHARACTERIZATION OF

SUSPENDED MONOLAYER MOS2

We measure the thermal time constants of suspended single layer molybdenum disulfide
drums by their thermomechanical response to a high-frequency modulated laser. From
this measurement the thermal diffusivity of single layer MoS2 is found to be 1.14×10−5

m2/s on average. Using a model for the thermal time constants and a model assuming
continuum heat transport, we extract thermal conductivities at room temperature be-
tween 10 to 40 W/(m·K). Significant device-to-device variation in the thermal diffusivity is
observed. Based on statistical analysis we conclude that these variations in thermal diffu-
sivity are caused by microscopic defects that have a large impact on phonon scattering but
do not affect the resonance frequency and damping of the membrane’s lowest eigenmode.
By combining the experimental thermal diffusivity with literature values of the thermal
conductivity, a method is presented to determine the specific heat of suspended 2D mate-
rials, which is estimated to be 255 ± 104 J/(kg·K) for single layer MoS2.

Parts of this chapter are published as a preprint on Arxiv (arXiv:1806.10769) [61].
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T
HE distinct electronic [117–119] and mechanical [68, 120] properties of atomically
thin molybdenum disulfide opens up possibilities for novel nanoscale electronic
[121] and opto-electronic [122–124] devices. The large and tunable Seebeck co-

efficient of single-layer MoS2 makes this material interesting for on-chip thermopower
generation and thermal waste energy harvesting [125]. Since the power efficiency of
these devices depends on the thermal conductivity, it is of interest to study the trans-
port of heat in single-layer MoS2. Several theoretical works have found values of the
thermal conductivity k of single layer MoS2 ranging between k = 1.35 up to 83 W/(m·K)
[126–130]. By exploiting the temperature-dependent phonon frequency shifts in Raman
spectroscopy [131], several experimental works have measured the thermal conductivity
of single-layer MoS2. Experimental values of k = 34.5 and 84 W/(m·K) of exfoliated single
layer MoS2 have been reported [132, 133], while single-layer MoS2 grown by chemical
vapor deposition was found to show a significantly lower thermal conductivity of 13.3
W/(m·K) [134].

Here, we thermally characterize suspended single-layer MoS2 drum resonators by
measuring their thermal time constants. This was achieved by measuring the frequency-
dependent vibration amplitude in response to sinusoidally varying heat flux delivered
by a modulated diode laser, similar to the characterization of single-layer graphene in
chapter 5 [60]. Since these are frequency-based measurements, the result is to first or-
der independent of the absorbed laser power, which greatly facilitates calibration com-
pared to Raman spectroscopy based methods. With respect to prior studies of thermal
transport in single-layer MoS2 [132–134] the current work determines the thermal con-
ductivity of this 2D material using a different method, which helps to resolve the large
controversy between the previously obtained values of this parameter. In addition, the
study obtains the transient thermal time constant of the material, which is closely related
to the phonon dynamics and thermalization, but can also provide information on ther-
momechanical dissipation mechanisms in 2D materials [135]. Furthermore, the method
allows one to study relations between the mechanical and thermal properties of the ma-
terial. From measurements of the thermal time constant τ, we find the thermal diffusiv-
ity of MoS2 to be on average 1.05×10−5 m2/s for 5 µm diameter drums and 1.29×10−5

m2/s for 8 µm drums. Assuming a specific heat value of 373 J/(kg·K), this corresponds to
k = 19.8 W/(m·K) and k = 24.7 W/(m·K).

6.1. EXPERIMENTAL SETUP
We use a substrate with many circular cavities to perform the experiment, similar to the
ones used for the graphene devices in chapter 3. The fabrication starts with a silicon
chip with 285 nm of silicon dioxide. Circular cavities of approximately 300 nm deep
and with a diameter of 8 and 5 microns are etched in the oxide layer. Many single layer
MoS2 flakes grown by chemical vapor deposition are transferred over the substrate by a
dry transfer method using PMMA as a transfer polymer [136–138] to create suspended
drum resonators. After transfer, the sample was annealed in vacuum with argon gas
at a temperature of 340 ◦C for 6 hours to reduce polymer contamination. An optical
image of several devices is shown in Fig. 6.1b. The Raman and photoluminescence (PL)
spectra of the suspended MoS2 flakes are shown in Figs. 6.1c and d, data was taken
on suspended drums to prevent the effects of substrate doping [124, 139, 140]. These
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Figure 6.1: a Typical experimental result of the real (in-phase) and imaginary (out-of-phase part) of the ampli-
tude of the mechanical response of the drum. The imaginary part of the amplitude was fitted to Eq. 5.2 to find
the thermal time constant. At lower frequencies, a feature due to electrical crosstalk becomes visible due to the
low optical gain during the experiment (see Appendix A2). At higher frequencies, the fundamental resonance
is clearly visible. b Optical image of the device showing a single-layer MoS2 sheet on top of the substrate and
several suspended drums. c Raman spectrum of the suspended MoS2. d Photoluminescence spectrum of the
suspended MoS2. The A0 peak position is found at 1.89 eV.

measurements ensure that the MoS2 flakes are single-layer, since no indirect transition
is observed in the PL spectrum (Fig. 6.1d) [140]. In the Raman spectra (Fig. 6.1c) the
E1

2g peak is found at 384.9 cm−1 and the A1g peak at 404.5 cm−1, also in accordance with

single-layer MoS2 [141]. Furthermore, the positions of both the E1
2g Raman peak and PL

A0 (1.89 eV) suggests that no large strains (> 1%) are induced by the transfer [138]. More
details on the CVD growth and transfer can be found in ref. [137]. The samples are kept
in an atmosphere with a maximum pressure of 1×10−6 mbar for two weeks before and
during the experiment to ensure all gas has escaped from the cavity.

The setup to actuate the motion of the membranes and read out their motion is
shown in chapter 3. During the measurement of the parasitic phase shifts a blue laser
power of 2.35 mW with a sinusoidal AC-power modulation of 1 mW was used, but during
experimental characterization, a neutral density filter reduced the optical power (mea-
sured before the objective) of the blue laser to 0.10 mW to prevent damage to the sam-
ple. The red laser power to probe the mechanical motion was set at 0.17 mW. A beam
expander with a pinhole after the red laser ensures a Gaussian beam with an estimated
waist diameter of 671 nm for the red laser spot in the focal point of the objective. The
blue laser diode is coupled to a single-mode fiber, also resulting in a Gaussian beam with
a waist diameter of 569 nm. Both lasers were aligned to the center of the drums during
the experiments.



6

74 6. TRANSIENT THERMAL CHARACTERIZATION OF SUSPENDED MONOLAYER MOS2

0

200

400

600

800

1000
τ 

(n
s)

MoS2 Data
Mean (trimmed)
α = 4.44 x 10-5 m2/s
α = 1.23 x 10-5 m2/s

0 6 8
Diameter (µm)

a

Thermal Diffusivity α (x10-5 m2/s)

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

0 1 2

c

Thermal conductivity k (W/mK)

42 0.5 1.5

10 20 30 400

0 100 200 300 400 500
0

2

4

6

D
en

si
ty

 (x
10

-3
)

Thermal time constant τ (ns)

b
5 micron

8 micron

Figure 6.2: a Thermal time constants as function of diameter. Predictions using eq. 6.6 are plotted with several
values of k obtained from literature: k = 23.3 W/(m· K) corresponding to α = 1.23×10−5 m2/s, [127] and
84 W/(m·K) to α = 4.44×10−5 m2/s. [133] b Density plot of the thermal time constant for both diameter,
drums with extremely large values of τ and low resonance frequency were excluded. c CDF (cumulative density
function) of the thermal conductivity k estimated from the values of τ using cp = 373.5 J/(kg·K) and ρ = 5060

kg/m3.

6.2. DATA ANALYSIS

Figure 6.1a shows the real and imaginary part of the experimentally obtained frequency
response from a MoS2 drum with a diameter of 8 µm. It follows from eq. 5.2 (chapter 5)
that the imaginary part of the response function has a maximum amplitude at ωτ = 1.
This maximum is indeed observed at a cut-off frequency ofωc = 2π×800 kHz in Fig. 6.1d,
which is far below the membrane’s lowest resonance frequency such that the relation
zω = A∆T is valid. By fitting the imaginary part using eq. 5.2 the thermal time constant
of the membrane is determined to be τ = 1/ωc = 227 ns. The resonance peaks were
analyzed by fitting a harmonic oscillator model to the data (chapter 2), from which the
resonance frequency and quality factor are found. Although both the real and imaginary
part of the response function fit well to eq. 5.2, deviations around 300 kHz are observed
which are attributed to electrical cross-talk, most likely due to capacitive coupling to
the optical table containing the experimental setup. Because the laser powers are low
in these experiments to prevent damage to the drums, the total optical signal on the
photodiode is very low, making the system very susceptible to parasitic crosstalk. In the
Appendix A2, we show additional experiments on single-layer graphene that shows that
at higher laser powers the feature disappears. The low-frequency data was excluded for
the fit in order to prevent cross-talk from affecting the value of τ.

6.3. RESULTS

Frequency response fits as shown in Fig. 6.1a are obtained on a total of 32 single layer
MoS2 drums with a 5 micron diameter and 18 drums with a 8 µm diameter. Figure 6.2a
shows the experimentally obtained values from all the drums as function of drum size
and Fig. 6.2b shows a density plot for both diameters. Significant spread in the value of
τ is found, even for drums of the same diameter. To exclude large effects of outliers, we
only analyzed 80% of the samples with value τ closest to the mean and find τ̄ = 126 ns
for the 5 micron diameter drums and τ̄= 253 ns for the 8 micron drums.
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Aubin derived an expression for the thermal time constant for a uniformly heated
circular drum [142, 143]:

τ= a2ρcp

µ2k
, (6.1)

where a is the drum radius, ρ the density, cp the specific heat at constant pressure and
k the thermal conductivity of the material. For a uniformly heated drum, µ = 2.4048 is
the first root of the Bessel function J0(x) (chapter 2). However, in the experiments the
membrane is heated by a focused laser spot in the center of the drum. We therefore use
a numerical COMSOL model that adapts the value of µ by taking a point heat source in
the center of the membrane (see Appendix A1). The measurement of the temperature
is taken as the average temperature over the surface over the drum, since we expect the
mechanical response to depend on the temperature field in the entire drum. From the
simulations it was found that µ2 = 5.0 is an accurate representation of the experiments.
This should predict the value of k with an error less than 10% as long as 15 < k < 100
W/(m·K) and assuming that cp = 373.5 J/(kg·K) (See Appendix A1). Using Eq. 6.6 we can
estimate the thermal diffusivity of MoS2 α= k/ρcp :

α= a2

5τ
. (6.2)

This expression was used to estimate the thermal diffusivity for each drum as shown in
Fig. 6.2c. We find the diffusivity is slightly diameter-dependent with an average diffu-
sivity ᾱ = 1.05×10−5 m2/s for the 5 micron drums and ᾱ = 1.29×10−5 m2/s for the 8
micron drums.

Based on known values of cp and ρ of molybdenum disulfide at room temperature
(cp = 373.5 J/(kg·K) and ρ = 5060 kg/m3) we can estimate k = a2ρcp /(5τ) from exper-
imental values of τ. Fig. 6.2c shows the cumulative density function (CDF) calculated
for each drum. We find a mean of k, k̄ = 19.8 W/(m· K) with a standard deviation of 9.3
W/(m· K) for the 5 micron drums and for the 8 µm drums we find k̄ = 24.7 W/(m·K) with
standard deviation σk = 8.4 W/(m· K). We thus observe a considerable spread between
devices. Moreover, most of the values of k found here are smaller compared to previ-
ous observations in literature that used exfoliated MoS2 devices [132, 133], but are larger
than CVD MoS2 values [134].

6.3.1. COMPARISON TO THE RESONANT PROPERTIES
The transient mechanical characterization allows one to study whether the mechanical
properties of the suspended drums are correlated to the thermal properties. This might
be expected since the acoustic phonon velocities can be tension dependent, which would
result in a correlation between the resonance frequency and the thermal diffusivity. Also,
mechanical damping in MoS2 due to defects could cause increased phonon scattering,
which would lead to a lower thermal conductivity for drums with a low mechanical Q.

To study this, the resonance peaks were fitted by a harmonic oscillator model (chap-
ter 2) to extract the resonance frequency and the quality factor. The distribution of all
the resonance frequencies is shown in Fig. 6.3a and the quality factors are shown in Fig.
6.3c. We first investigate whether the thermal diffusivity is affected by strain in the res-
onator. The fundamental resonance frequency f of a circular drum resonator is given by
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(chapter 2):

f = 2.4048

2πa

√
n0

ρh
, (6.3)

where h = 0.615nm is the thickness of the drum and n0 the tension in the membrane.
From this, we deduce that f 2a2 ∝ n0 if ρh is the same for each drum. Figure 6.3b shows
a scatter plot of f 2a2 versus the thermal diffusivity for each drum. The strain was esti-
mated using the expression:

ε≈ n0

E2D
= 4π2 f 2a2ρh

2.40482E2D
, (6.4)

where we assume the membrane has the ideal mass and the 2D Young’s modulus was
taken as 160 N/m [137, 144]. No meaningful correlation between tension and the ther-
mal diffusivity could be uncovered in Fig. 6.3b.

We further investigate whether the mechanical dissipation is related to the heat trans-
port properties of these drums by examining the correlations to the quality factor. Fig-
ure 6.3d shows a scatter plot of the quality factor of resonance versus the thermal time
constant. No significant correlation between the thermal time constant and the quality
factor of resonance is found from the experimental data. The quality factor is nearly in-
dependent of diameter as shown in Fig. 6.3c, we find Q̄ = 26.0 with standard deviation
10.4 for the 5 µm drums and Q̄ = 24.3 with standard deviation σQ = 10.3 for the 8 µm
drums.
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6.3.2. PHONON RELAXATION TIME AND MEAN FREE PATH
The thermal conductivity can be expressed as k ≈ ρcp vλ, [79] where v and λ are appro-
priately averaged phonon group velocity and mean free path, respectively. Substituting
this expression in eq. 6.6 gives:

τ= a2

5vλ
= a2

5v2τph
, (6.5)

where τph =λ/v is the phonon relaxation time. We take the averaged velocity as v ≈ 300
m/s based on calculations from several theoretical works [127, 145, 146] and use Eq. 6.5
to estimate τph and λ. For the 5 micron drums we find an average phonon relaxation
time and mean free path of 116 ps and 34.9 nm, respectively. For the 8 micron drums we
find 143 ps and 43.2 nm. For both cases we again find device-to-device variations due to
the spread in the measured values of τ.

6.4. DISCUSSION

6.4.1. COMPARISON TO SINGLE-LAYER GRAPHENE
In Fig. 6.4 we compare the experimentally obtained values of τ with experimentally ob-
tained values of single-layer graphene (data from previous work in chapter 5) for drums
with a 5 µm diameter. From the CDF in Fig. 6.4a it can be seen that both materials have a
thermal time constant with the same order of magnitude. This is striking because even in
the worst case scenario (CVD graphene with a lot of defects, k ≈ 600 W/(m·K)) graphene
should have a thermal diffusivity at least ten times higher than MoS2. In this previous
work on single-layer graphene we attributed the anomalous diameter-dependence of τ
to boundary effects that were limiting the heat transport. Since we only measured two
diameters in this work, we cannot use diameter dependence to draw conclusions. Nev-
ertheless, the values of τ on MoS2 are in good agreement with the theory of diffusive
heat transport. This can be seen by comparing the measured values of τ to the theoreti-
cal predictions from literature as shown in Fig. 6.2a. Any effects of a thermal boundary
resistance based on the measurements on MoS2 are too small to be discerned. Molyb-
denum disulfide has a much lower thermal conductivity than graphene, which means
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that the intrinsic thermal resistance is more important than thermal resistance at the
boundary of the drum, if such a resistance is present at all in the case of MoS2.

It is interesting to study the sign of the phase in Fig. 12.2c: at low frequencies, the
response is out-of-phase with the optical drive. We found that all the drums in this work
show an out-of-phase response at low frequencies, in the case of graphene in chapter
5, we also found such a preference [60] where only a handful of graphene drums show
an opposite phase. The opto-thermal drive works by modulation of the tension in the
membrane [147] and some initial out-of-plane deflection is necessary in order for this
to result in out-of-plane motion (chapter 7). Whether this deflection is up or down, de-
termines the phase of the low-frequency response. Both graphene and MoS2 thus have
a preferred initial deflection. However, to determine whether this is up or down requires
further characterization of the optical properties of the cavity, that determines the sign
of dI /dx, the derivative of diode intensity I with respect to membrane position x [57]
(chapter 4).

6.4.2. RELATION BETWEEN MECHANICAL AND THERMAL PROPERTIES

We could not uncover any meaningful correlation between strain and the thermal dif-
fusivity from the experimental data. The spread in the strain between the devices es-
timated from the resonance frequency is no more than 0.4%, which should result in a
spread in the thermal conductivity of approximately 3% [148]. The measured device-
to-device spread is significantly larger and strain-dependence is thus not the cause of
the observed variations. It should be considered however that the value of f 2a2 could
actually show spread between devices due to variations in the mass due to contamina-
tion. Since contamination might affect the properties of 2D materials, atomic force mi-
croscopy measurements were performed to estimate the amount of residues as shown
in the Appendix A3. We find a layer of contamination approximately 1 nm thick, indicat-
ing that the mass is underestimated and the variations in strain are actually larger than
shown in Fig. 6.3b. Upon removing the contamination using contact-mode atomic force
microscopy (AFM) [149], we find the thermal time constant increases significantly by ap-
proximately 20%. This systematic error is considerably lower that the device-to-device
spread in the thermal diffusivity observed in this work which suggest that the effect of
contamination on the measured values of τ is small.

6.4.3. DEVICE-TO-DEVICE SPREAD

The observed device-to-device variations in τmight be attributed to variations in micro-
scopic (point defects) and macroscopic imperfections between devices, that could alter
the phonon relaxation times between devices explaining our result in Fig. 6.2c. From cal-
culations from the literature [145] using the Boltzmann transport equation for phonons,
we would expect a mean free path of 316.5 nm for naturally occurring MoS2. The signif-
icantly shorter mean free paths (∼20 to 60 nm) found here might be related to our use of
CVD MoS2 rather than pristine exfoliated samples. Additional defects can increase the
phonon scattering rate, lowering the phonon relaxation time and the mean free path.
Also, the contamination on the samples found in the Appendix A3 might be of influence,
as was found in the case of graphene [150]. However, we show in the Appendix A3 that
removing the contamination did not significantly reduce the device-to-device spread,
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which suggests that its effect on τ is small. Most of the drums show a higher value of k
than previous observations on CVD-grown MoS2 [134], which could be related to differ-
ences in quality of the sample. The value of the mean free path shows that λ << a, this
supports our notion that heat transport can be described by continuum models in these
devices.

6.4.4. SPECIFIC HEAT

Given the arguments above, the significant spread in τ is most likely related to the scat-
tering mechanisms. However, we cannot fully exclude the possibility that the heat ca-
pacity of the drums is responsible for the spread in τ. Little is known about potential
mechanisms that can affect the specific heat of single-layered two-dimensional mate-
rials due to the lack of experimental data. However, the specific heat is most likely not
very different from the bulk material since the number of vibrational degrees of freedom
is the same. Also, the weak temperature dependence of the value of cp is expected since
the experiments are performed above the Debye temperature, therefore most degrees of
freedom in the lattice are thermalized.

What we can conclude is that some of the literature values of k are impossible to have
occurred in our measurements, since they would violate the Petit-Dulong limit (cp =
468.8 J/(kg·K)). The fastest 5-micron diameter drum has τ = 61 ns, which means that
there is a limit on the thermal conductivity: k ≤ 48 W/(m·K). For the fastest 8-micron
diameter drum, τ= 138 ns and it is impossible that the thermal conductivity of this drum
exceeded 55 W/(m·K). Therefore, the highest reported value of k = 84 W/(m·K), [133]
cannot have occurred in the drums used in this study. Also, the reported value of k =
34.5 W/(m·K), [132] would implicate that the Petit-Dulong limit is violated in most of the
devices.

The most representative study, since it uses both CVD MoS2 and conducted the ex-
periment in vacuum, is k = 13.3± 1.4 W/(m·K) [134]. Using this value, we can use the
experimentally obtained values of τ to estimate the specific heat of MoS2. For the 5 mi-
cron drums, we find cp = 278± 118 J/(kg·K) and for the 8 micron drums we find cp =
215±73 J/(kg·K). The errors represent the standard deviation due to the large device-to-
device spread, nevertheless this analysis suggests that most of the devices have a specific
heat that is significantly lower than the bulk value. Future work can combine the tran-
sient characterization with existing methods, such as Raman spectroscopy or electrical
heaters, to extract the thermal resistance R. In that case, the heat capacity C can be de-
rived and provide more accurate measurements on the specific heat of 2D materials. The
transient characterization thus provides a means to perform calorimetry on suspended
2D materials.

6.5. CONCLUSION
We measured the thermal time constants of suspended monolayer molybdenum disul-
fide drums. In contrast to previous measurements on single-layer graphene, we find
that the values of τ are in agreement with the classical Fourier theory of heat transport.
From the values of τ we can estimate the thermal conductivity to be between 10 and 40
W/(m·K), which is lower than previous measurements on exfoliated MoS2 but in agree-
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ment with measurements on CVD-grown MoS2. Significant device-to-device variation
in thermal time constants is observed. This variation is not correlated to the resonance
frequency or Q-factor of the membranes, which shows that mechanisms that determine
the macroscopic damping are probably not responsible for the observed spread. We
therefore conclude that the variations in thermal diffusivity are caused by microscopic
defects that have a large impact on phonon scattering, but do not affect the resonance
frequency and damping of the membrane’s lowest eigenmode. The method can be used
to estimate the specific heat of single layer MoS2, with our results suggesting its value
might be lower than the bulk value. Future work can combine this technique with exist-
ing thermal conductivity measurements to perform calorimetry on suspended 2D ma-
terials, enabling one to determine whether the specific heat of 2D materials is equal to
its bulk value.
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APPENDIX

A1: COMSOL MODEL
Here we show the COMSOL model used to derive the expression for τ used in the main
section of this chapter. An analytic expression was derived for the thermal time constant
τ in the case of a uniformly heated circular disk [142]:

τ= a2ρcp

µ2k
, (6.6)

where a is the drum radius, ρ the density, cp the specific heat, k the thermal conduc-
tivity the material and µ = 2.4048 is the first root of the Bessel function J0(x). Since the
experiment uses a laser spot with a size that is much smaller than the drum diameter
to heat the drum, equation 6.6 needs to be modified in order to accurately describe the
time constant of the system. Our approach is to choose a fixed value of the specific heat
cp = 373.5 J/(kg·K) and vary both a and k to find a new value of µ that will enable us to
accurately determine the value of k or the thermal diffusivity α from the experiment.

Point heat source

Thin conductive 
layer

Fixed temperature

Tmax

Tmin

a b

Figure 6.5: a Schematic drawing of the simulation. b Temperature profile at the end of the simulation for a 5
micron diameter drum.

Figure 6.5 shows the setup of the COMSOL simulation in order to find the thermal
time constant τ. A simple circular domain was defined and the heat tranport is simu-
lated using the “heat transport in thin shells” module. A point source in the center was
used to simulate the heat flux and the boundaries of the domain were kept at a fixed
temperature.

In order to find the time constant τ, a time-dependent simulation was performed
that simulates the response to a step function in the heat source. The resulting time
dependent temperature increase was calculated by taking the average over the entire
domain. This results in the time-dependent traces shown in Fig. 6.6. For each trace, the
time constant is found by fitting:

T (t ) = T0 +Tend exp(−t/τ). (6.7)

The diameter-dependence is simulated using a range of values of k, we selected a
suitable range by selecting values found in literature. It is found that for the range be-
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Figure 6.6: Simulated temperature as function of time, from which τ can be derived for different diameters.
The temperature is calculated using the average value over the drum surface.
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tween 10 < k < 100 we find values of µ2 ≈ 5.0. This model is shown as solid lines in Fig.
6.7. We find that µ2 = 5.0 yields good agreement at the higher values of k. Low values
of k results in larger deviations at larger diameters, which can also be attributed to the
a2 dependence of τ. From this model, we find that the value of τ with µ2 = 5.0 should
produce the correct value of k orαwithin 10% error as long as 15 < k < 100 W/(m·K) and
2a ≤ 8 µm.
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Figure 6.8: Additional measurements on single-layer graphene to identify electrical crosstalk. The left figure
shows a measurement with exactly the same blue and red laser powers as the experiments with MoS2. On the
right, the neutral density filter behind the blue laser was changed to change the power to 0.3 mW. The electrical
cross-talk feature between 100 kHz and 1 MHz diminishes due to the higher optical gain.

A2: ADDITIONAL DISCUSSION ON CROSSTALK

Here we discuss the identification of the electrical cross-talk in the experiments. In Fig.
6.8 we measure a single layer graphene resonator since these drums do not break at
higher laser powers. The left figure shows the frequency response at the same DC laser
powers and modulation current as used in the experiments with MoS2. The electrical
crosstalk is more prominently visible since the MoS2 drums show a much stronger am-
plitude of the signal compared to graphene. Increasing the laser power by a factor of 3
by changing the neutral density filter after the blue laser, gives the frequency response
to the right. This shows that the feature between 100 kHz and 1MHz almost fully disap-
pears, from which we conclude that this feature cannot be attributed to the mechanical
motion of the drum. Most likely capacitive coupling of the diode laser and photodetec-
tor components to the optical table is the cause of this crosstalk. We also found that this
feature changes in frequency and amplitude if the mantles of the RF-cables are directly
grounded to the table. Our measurement of the parasitic phase shifts in the system can-
not correct for this effect, because it involves a parallel path to the optical path. Increas-
ing the optical power would reduce this effect, but results in failure of the MoS2 drums.
However, the MoS2 drums show a much larger signal compared to graphene at the same
laser powers, meaning that the magnitude of electrical cross-talk is already less in these
drums and the effect is easily accounted for by selecting proper frequency windows for
fitting.

A3: AFM CHARACTERIZATION OF CONTAMINATION

In order to characterize contamination of the sample which can influence the experi-
mental results, we use mechanical cleaning by contact mode AFM [149]. A 2 by 2 microns
area was scanned with a velocity of 8µm/s, after which the area was inspected by tapping
mode AFM as shown in Fig. 6.9a. A square of contamination can be seen around the area
that was scanned using contact mode AFM. Inside the square, we find a mean roughness
Ra = 0.73nm and outside the square we find Ra = 1.76 nm. The reduction of roughness is
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Figure 6.9: Characterization of contamination using mechanical cleaning in an atomic force microscope
(AFM). a Height scan obtained by tapping mode AFM of the 2 by 2 microns area scanned by contact-mode
AFM. The white dashed line indicates the trace taken to estimate the height of the contamination. b Phase
channel of the tapping mode scan, this shows more clearly than the height channel that the scanned area has
reduced roughness, indicating that the scanned area has indeed been cleaned. c Height profile to estimate the
thickness of the contamination, we find the height difference between the cleaned part and the sample to be
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Figure 6.10: Characterization of the drums after mechanical cleaning using contact-mode AFM. a Optical im-
age of the flake using differential interference contrast microscopy, showing contamination towards the sides
of the scanning area. Image was obtained using the raw camera output and automatic enhancement of the
contrast in Adobe Photoshop. b Gradient of the height channel in the horizontal direction obtained in tapping-
mode AFM on drum 14 after cleaning. c Scanning electron microsope image of drum 14, the scanned area
appears somewhat brighter and contamination on the borders of the contact mode scanning area is visible. d
Phase channel of the tapping mode AFM. A significant difference in phase is detected in the area scanned by
contact mode.

more visible in the phase channel shown in Fig. 6.9b. The reduction of roughness inside
the square is an indication that we indeed cleaned the sample. Comparing the heights
inside and outside the square in Fig. 6.9c, we find that the contaminants form a layer
approximately 1 nm thick.

To order to study the effect of the contaminants on the transient heat transport of the
drums, we attempted to clean 14 drums on the same single layer MoS2 flake shown in
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Figure 6.11: Thermal characterization before and after mechanical cleaning of suspended drums. a Optical
image of the flake with the numbers corresponding to table 6.1. b Cumulative probability of the thermal time
constant before and after mechanical cleaning. c Histogram of the increase in thermal time constant.

Fig. 6.11a. On the suspended drums, a soft cantilever was used for contact-mode AFM to
prevent breaking of the suspended drums. After scanning, a stiffer cantilever was used
to inspect the area with tapping-mode AFM. Figure 6.10a shows an optical image of the
flake after mechanical cleaning, close to the drums the contamination at the borders of
the scanning area is visible, but no significant change in optical contrast is observed.
In scanning electron microscopy in Fig. 6.10c a slight change in contrast is observed,
as the cleaned area is slightly brighter. Tapping mode AFM of the drums reveals that
some contamination remains after the scan as shown in Figs. 6.10b and d. Although the
scan settings are the same as the smaller test area in Fig. 6.9, more residue is visible in
the phase channel. This could be due to the large height variations, because the drums
are deflected downwards by approximately 200 nm due to air pressure in the environ-
ment. Nevertheless, a significant portion of the contamination should be removed as
evidenced by the pileup of contamination at the sides (Figs. 6.10a and b), the contrast in
the electron microscopy (Fig. 6.10c) and the phase channel in Fig. 6.10d.

Due to the low permeability of the drums there is no significant air leakage during the
AFM scan, allowing us to immediately measure the thermal time constants after cleaning
the sample while the cavity remains in vacuum. The thermal time constants before and
after cleaning are shown in Table 6.1, the corresponding drum numbers are labeled in
Fig. 6.11a. Taking the cumulative probability in Fig. 6.11b, we find a significant increase
of the mean of the time constants by 26 ns on average (Fig. 6.11c). The device-to-device
spread did not decrease significantly, as the standard deviations are similar. The con-
tamination of the drums thus induces a systematic error of approximately 20% in single
layer drums with a 5 micron diameter, this is however relatively small compared to the
device-to-device spread observed in this work.
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Table 6.1: Thermal time constants of the single layer MoS2 drums in Fig. 6.11a before and after mechanical
cleaning using contact mode AFM. (*Drum broken during AFM)

Drum τ before cleaning (ns) τ after cleaning (ns) ∆τ (ns)

1 108 -*
2 120 133 13,2
3 154 152 -1,5
4 145 175 30,9
5 133 165 32,4
6 161 150*
7 142 176 33,9
8 143 176 33,2
9 87 117 30,5
10 136 163 27,5
11 131 139 8,1
12 127 147 19,5
13 120 143 22,7
14 119 180 61,2
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7
MULTI-MODE PARAMETRIC

RESONANCE IN GRAPHENE

MEMBRANES

In the field of nanomechanics, parametric excitations are of interest since they can greatly
enhance sensing capabilities and eliminate cross-talk. Above a certain threshold of the
parametric pump, the mechanical resonator can be brought into parametric resonance.
Here we demonstrate parametric resonance of suspended single-layer graphene membranes
by an efficient opto-thermal drive that modulates the intrinsic spring constant. With a
large amplitude of the optical drive, a record number of 14 mechanical modes can be
brought into parametric resonance by modulating a single parameter: the pretension.
A detailed analysis of the parametric resonance allows us to study nonlinear dissipation
mechanisms, nonlinear dynamics and loss tangent of graphene resonators. It is found that
a van der Pol term is indispensable to describe dissipation in graphene at high amplitudes.

Parts of this chapter have been published in Scientific Reports 8, 9366 (2018) [60].
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T
HE history of parametric oscillations dates back to the 19th century and the ob-
servation of surface waves in the famous singing wineglass experiment of Michael
Faraday [151]. A mechanical system can be parametrically excited when its stiff-

ness is modulated at a frequency of 2ω0/n, whereω0 is the system’s resonance frequency
and n an integer [152]. Above a certain modulation amplitude, the system becomes un-
stable and exhibits parametric resonance. The advent of micro and nano engineering
brought to life new ideas for exploiting parametric excitation for enhancing force and
mass sensitivity [152–157], effective quality factor [158], and signal to noise ratio [153]
of tiny resonators. To date, many sensors, including gyroscopes [159–161], mass sensors
[156, 157] and even mechanical memories [162–165] employ parametric excitation for
improved performance.

Resonators employing two-dimensional materials such as graphene or molybdenum
disulfide have attracted considerable interest in the scientific community [12, 64, 68, 69].
They are promising candidates for various sensing applications (chapters 9 to 14) [11,
33, 35, 58, 59, 166] due to their ultra-high surface to mass ratio, combined with their
high strength [10]. The quality factor of resonance is relatively low in these resonators
[49, 64, 68] compared to other nano-electromechanical systems, limiting their accuracy
as a resonant sensing element. It is thus of interest to apply parametric amplification
schemes to raise their effective quality factor and improve their performance. Several
groups have successfully demonstrated such an amplification scheme by applying an
electrostatic spring force to the membrane and modulating its strength [167, 168]. It
is well known that above a certain critical force of this parametric pump, the device will
become unstable and exhibit parametric resonance [47, 152, 169]. Although such behav-
ior has been previously observed, we demonstrate that parametric resonance holds im-
portant information about the nonlinear damping of graphene that has been a subject
of strong debate in the community [49–53]. In addition, we show that such resonance
opens a new window for investigating new nonlinear dynamic phenomena in graphene
membranes that have not been observed before and cannot be explained by classical
continuum models.

In this work, it is demonstrated that opto-thermal tension modulated single-layer
graphene is an ideal system to study parametric resonance. These resonators were fab-
ricated from chemical vapor deposited graphene as shown in chapter 3. Despite the rela-
tively low Q-factor of the graphene resonances (<1000), it is shown that a record number
of 14 modes can be brought into parametric resonance [152, 163]. The origin of the ef-
fectivity of graphene for parametric resonance is the large tension modulation that can
be achieved by opto-thermal means [58, 68], which is related to the large Young’s mod-
ulus of graphene. Understanding parametric resonance is of fundamental interest, but
also provides an interesting alternative to direct excitation in future applications, that
could reduce noise and facilitate large amplitude driving in resonators and oscillators.
The parametrically excited nonlinear mechanical response is analyzed and a model is
proposed that can simulate both parametric and directly driven responses. This nonlin-
ear Duffing response, caused by the direct drive, has previously been studied to obtain
the stiffness properties of graphene devices [63, 170]. In this work, we focus the analysis
on dissipation mechanisms in graphene. Period doubling bifurcations are almost fully
governed by the linear dissipation terms, while the saddle-node bifurcation of the para-
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Figure 7.1: Multi-mode response of parametrically driven graphene resonators. a Waterfall plot of the multi-
mode response at different driving amplitudes. Each mode appears at different driving levels due to variations
in quality factor and effective driving force between them. The scale bar indicates the root mean square value
(RMS) of Vac,out and the labels on the right indicate the RMS driving amplitude Vac,in. b Waterfall plot for a
different drum, showing more mechanical modes and modal interactions. c Forward and backward frequency
sweep at the highest parametric driving amplitude for the drum in Fig. 7.1b, revealing 14 distinct mechanical
modes in parametric resonance.

metric resonance is fully governed by nonlinear dissipation terms [47]. From this analy-
sis, we can conclude that nonlinear damping in graphene can be accurately described by
a dissipation term of the van der Pol type. Comparing this to the cubic stiffness term al-
lows us to extract the mechanical loss tangent of graphene which is orders of magnitude
larger than expected. Tracking the period doubling bifurcations shows that the region
of instability is asymmetric. This unexpected deviation from the theoretical response
suggests that unconventional dynamic phenomena govern the linewidth of graphene
resonators.

7.1. MULTI-MODE NONLINEAR RESONANCE
In Fig. 7.1a, the blue laser is driven at 2 f , while detecting the photodiode signal at f .
When increasing the blue laser driving voltage Vac,in a remarkable effect is observed.
One-by-one, the parametric resonances of graphene appear, up to 7 different modes.
Each mode reaches resonance at a different threshold driving amplitude Vac,in, due to
differences in quality factor and the frequency dependence of the parametric driving
parameter δ [60]. The experiment is repeated on a different drum in Fig. 7.1b. In-
terestingly, in this case, an overlap between parametric resonances is observed at high
driving levels. When the overlap occurs, a direct transition between the high-amplitude
solution of two adjacent parametric resonances is observed, e.g. at Vac,in = 382.7 mV
(RMS) between the second and third resonance. Interestingly, in some cases also tran-
sitions between the high-amplitude and low-amplitude solutions are observed, e.g. at
Vac,in = 489.6 mV (RMS) between the same 2 modes. This pseudorandom process is
attributed to a strong dependence of the basin of attractions of the parametric high-
amplitude and low-amplitude solutions on the initial conditions [171]. Hence, the am-
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ward frequency sweeps. a, Direct drive with the frequency swept forwards. b Parametric drive with the fre-
quency swept forwards. Below a driving threshold near Vac,in ≈ 0.11 mV (RMS) no mechanical response is
observed. c, Direct drive with the frequency swept backward. d, Parametric drive with the frequency swept
backward.

plitude can fall into two stable solutions: either the high amplitude solution of the third
mode or the zero amplitude solution of the third mode which is also observed at higher
driving amplitudes (Vac,in = 576.2 and 707.1 mV (RMS)).

Due to the overlap of parametric resonances in this drum, some resonances are skipped
and not all resonances are found by sweeping from low to high frequency. Instead, when
sweeping the frequency backward as shown in Fig. 7.1c, as many as 14 parametric reso-
nances are observed in this system. To our knowledge, this is the largest number of para-
metrically excited modes in a single mechanical element, as previously only 7 modes
could be excited in cryogenic environments [163].

For a more detailed analysis of the physics, we focus on the frequency response of
the fundamental mode to both direct and parametric drives. Figure 7.2 shows direct and
parametric resonance of the fundamental mode as a function of driving level, on a dif-
ferent drum than Fig. 7.1. The VNA is configured to detect the directly driven frequency
response (Fig. 7.2a,c). Sweeping the frequency forward (Fig. 7.2a) and backward (Fig.
7.2b) results in a hysteresis, that grows as the driving level is increased. This is typical for
the geometric nonlinearity of the Duffing-type resonator, where the stiffness becomes
larger at high amplitudes. In order to detect the parametric resonance, the VNA was
configured in a heterodyne scheme at which Vac,out is detected at half of the driving fre-
quency Vac,in. Similar to the directly driven case, a hysteresis occurs between the forward
(Fig. 7.2b) and backward (Fig. 7.2d) sweeps in frequency. Below an RMS drive amplitude
of 0.11 mV, no response is observed. To show that the parametric resonance shows two
stable phases of resonance separated by 180 degrees [162], we performed an additional
measurement which is shown in the Appendix A2.
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Figure 7.3: Comparison of experimental mechanical responses to theory. a, Directly driven response at 7.1 and
250.9 mV RMS driving voltage and the fit obtained from eq. 7.1. b, Parametric response and fit at 250.9 mV RMS
driving voltage and the fit from eq. 7.1. c, Directly driven response at 446.2 mV RMS driving level, the fit from
eq. 7.1 shows a disagreement with the backward sweep, highlighted by black arrows. d, Parametric response
at 446.2 mV (RMS). Black arrows highlight the disagreement between eq. 7.1 and experiment. e, Parametric
resonance instability map for the fundamental mode of drum 2, compared to the prediction from eq. 7.1. f,
Parametric resonance instability map for the fundamental mode of drum 1 (Fig. 7.1).

Figure 7.3a-d shows both directly and parametrically driven responses at different
driving levels. In order to eludicate the effect of nonlinearities on the observed mechan-
ical responses, a single degree-of-freedom model is derived that describes the motion
of the resonator (see Appendix A4) and this is fitted to the response curves in Fig. 7.3a-
d (see Appendix A1, A5). The model is a combination of the Duffing, van der Pol and
Matthieu-Hill equation also used in other works [47, 51, 172, 173]:

ẍ +µẋ +νx2ẋ + (β+δcosωt )x +γx3 = F cosωt , (7.1)

where x is the displacement (which is approximately proportional to Vac,out), µ is the
damping coefficient, ν the nonlinear damping coefficient, β the linear stiffness coeffi-
cient, γ the nonlinear stiffness coefficient, δcosωt the parametric driving and F cosωt
the direct driving term. By setting γ = 0 and ν = 0 one can fit the response at low drive



7

94 7. MULTI-MODE PARAMETRIC RESONANCE IN GRAPHENE MEMBRANES

level (Fig. 7.3a) and obtain an initial value for µ, β and F . Initially fitting at high driv-
ing levels was attempted by setting ν = 0, however it is found that such a model cannot
account for the observed parametric response: nonlinear damping is indispensable to
describe the maximum amplitude. Next, γ, ν and F are used as fitting parameters to de-
scribe the nonlinear response (Fig. 7.3a-d). Numerical values for the fit parameters are
provided in the Appendix A1.

Figure 7.3 compares the fitted model and the experimental data for the directly- and
parametrically driven fundamental resonance. This shows excellent agreement at lower
driving levels (Fig. 7.3a). We note that the fitting parameters µ, ν, β and γ are the same
in the direct and parametric response within the error of the fitting procedure (see Ap-
pendix A1) and that both δ and F are very nearly proportional to driving voltage VAC,in.
It is however observed that the region of instability (Figs. 7.3e, f) is narrower in our ex-
periments than what is expected from eq. 7.1.

7.2. REGION OF INSTABILITY
The asymmetry aroundω0 observed in the region of instability (Fig 7.3) is a surprising re-
sult: such an asymmetry should not arise for the equation of motion (eq. 7.1) used in the
analysis. Something similar is observed in the directly driven response, where the lower
saddle-node bifurcation in the downward frequency sweep is always found at a lower
frequency than simulated (Fig. 7.3c) at high driving levels. Possibly, this indicates that
the forcing terms are nonlinear [174]. However, we find that both forcing terms δ and F
extracted from the fits are linear with the applied modulation amplitude and the forward
frequency sweeps are well-described by this model (see Appendix A1). The observed de-
viations (e.g. in Fig. 7.3) can therefore not be explained by forcing nonlinearities.

The asymmetry and apparent decrease in resonance linewidth (Fig. 7.3) thus suggest
that a more unconventional dissipation model should be considered, including further
terms to describe the amplitude-dependence of the dissipation. Similar deviations from
conventional dissipation models have been previously found in multi-layered graphene
resonators [53], where it was concluded that the van-der-Pol term νx2ẋ does not de-
scribe the nonlinear damping. Here we conclude that the van-der-Pol term is generally
in agreement with the experiments, since it describes the saddle-node bifurcation of the
parametric resonances well, however additional dissipation terms might be needed to
account for the asymmetry and narrowing of the parametric stability region (Fig. 7.3e,f).

7.3. MECHANICAL LOSS TANGENT
The fit to the nonlinear response of the membrane allows us to extract a number for
the Duffing (γ) and van-der-Pol terms (ν) in our resonators. As shown in the Appendix
A6, the mechanical loss tangent of graphene tanδl at the resonance frequency can be
determined from the ratio of these terms, tanδl = ν/γ. From the values of the fits we
obtain tanδl = 0.34 for drum 2 and tanδl = 0.15 for drum 3. The values of these loss
tangents are in the same range as found by Jinkins et al.[175]. The obtained values for
the loss tangent are relatively high for a crystalline material as graphene, therefore the
observed nonlinear damping is not likely due to the intrinsic material properties but to
other effects, such as sidewall adhesion [176] or unzipping of wrinkles [177].
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7.4. PARAMETRIC AMPLIFICATION
Here we investigate the effects of the parametric drive at low driving levels (δ < δt ) by
examining the parametric amplification of the directly driven resonance. To measure
parametric amplification, it is required to simultaneously drive the system at f and 2 f
(where f is near the resonance frequency f0). This is realized by splitting the driving
circuit connected to the diode laser into two parts. One path provides a small direct drive
that excites the primary resonance of the membrane in the linear regime. The second
path contains a frequency doubler, amplifier, and phase shifter to enable parametric
driving with controllable phase and gain with respect to the direct drive. A harmonic
oscillator model is fitted to the response to extract the amplitude and the effective quality
factor. The relation between amplitude gain G , parametric drive amplitude δ and phase
shift φ of the direct drive is given by [153, 158]:

G(δ,φ) =
[

cos2φ

(1+δ/δt )2 + sin2φ

(1−δ/δt )2

]1/2

. (7.2)

First, the amplification effect as function of parametric pumping amplitude in Fig.
7.4a was examined by keeping the phase φ fixed at φ = -45 degrees. Increasing the am-
plitude of parametric drive increases the amplitude at resonance by a factor of 3-4 (Fig.
7.4b) and the effective quality factor of resonance by almost a factor of 3 (Fig. 7.4c).
Figure 7.4d shows that shifting the phase of the parametric drive significantly changes
the amplitude of harmonic resonance. Figure 7.4e-f shows that the gain G and effective
Q-factor Qeff depend strongly on the phase of the parametric drive with respect to the
direct drive. Fits of the data in Fig. 7.4b, e show that the drive and phase-dependence of
the parametric amplification is in accordance with theory.

7.5. DISCUSSION
Here we discuss the efficiency of the tension modulation for parametric excitation of the
graphene membrane. The tension modulation∆n0(t ) is given by∆n0 =αE2D∆T /(1−ν),
where α is the thermal expansion coefficient, E2D the 2D Young’s modulus,ν the Poisson
ratio and ∆T the temperature modulation. Using approximate values from literature
[10, 178], one finds that ∆n0(t ) ≈ 0.003∆T Nm−1K−1, which means that a temperature
modulation of 1 K already results in a tension modulation of the order of the intrinsic
pre-tension n0 (estimated to be between 0.003 N/m and 0.03 N/m [60]) of the graphene
membranes studied here. One can define the relative shift of the resonance frequency
per unit of temperature as a figure of merit for the efficiency of the opto-thermal para-

metric drive: 1
fres

∆ fres
∆T = 0.1 to 1 K−1. This estimated value for graphene is 500-5000 times

larger than in other optically excited oscillators [179]. From the fits in Fig. 7.3 we obtain

an value of δ
β = ∆ f 2

res

f 2
res

= 0.0225 in drum 1 and δ
β = 0.0193. Using the approximative val-

ues above, we estimate the temperature modulation ∆T lies between 0.13 K and 1.5 K.
These moderate temperature modulations illustrate that the parametric driving scheme
for graphene membranes is a very efficient method for reaching parametric resonance.
It should be noted however, that the model proposed in chapter 5 implies a frequency-
dependent α, implying that these temperature modulations could be underestimated.
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Figure 7.4: Parametric amplification in graphene: direct driven resonance with a sub-threshold (δ< δt) para-
metric drive. a, Transmission function of the direct drive as function of parametric drive. b, Amplitude of
resonance obtained from a fit to a harmonic oscillator model as function of parametric drive, the red line is
a fit to the theoretical behavior predicted by eq. 7.2. c, Effective quality factor, obtained from a fit to a har-
monic oscillator model, as function of parametric drive. d, Transmission funciton as function of phase shift φ.
e Amplitude of resonance as function of phase φ, the red line is a fit using eq. 7.2. f, Effective quality factor as
function of phase φ.

Multi-mode parametric oscillators are interesting for applications where accurate
frequency tracking of multiple modes is necessary. We list here three potential appli-
cations. (1) Radio receivers in the MHz range where multiple radio channels need to
be monitored and received simultaneously to maximize data rates, or to allow seam-
less switching between channels without having to tune the channel [180]. (2) Inertial
imaging [181], where accurate tracking of multiple resonances allows one to determine
the mass, location and shape of a particle on top of a resonator, which has applications
in biotechnology [182]. (3) Parametric oscillators can also be used to build a binary in-
formation and computation system [163], where information is stored in the phase of
the resonator. Multi-mode resonators have the potential of enabling parallel processing
and data storage. The high resonance frequencies and relatively low Q of the graphene
membranes can increase computation speed.

A unique feature of the demonstrated graphene system is that all of these modes can
be simultaneously parametrically amplified via tension modulation. The use of para-
metric amplification, therefore, has the advantage that no feedback loops or special fil-
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ters or actuation schemes are needed to select the desired resonance mode. Moreover,
parametric amplification effectively results in an amplitude dependent gain, which can
be used to generate higher output signals than with a constant gain. Moreover, since the
driving frequency is double the readout frequency, parametric driving is less sensitive to
cross-talk that is often hampering resolving signal detection in directly driven resonators
[152].

7.6. CONCLUSIONS
In conclusion, we report on multi-mode parametric resonance and amplification in sin-
gle layer graphene resonators by an opto-thermal tension modulation technique. It
is demonstrated that the tension-dominated restoring force results in parametric exci-
tation of multiple resonance modes in the system when the system is opto-thermally
driven. The parametrically and directly driven resonances are compared to a single
degree-of-freedom model based on the Duffing, van der Pol and Matthieu equations,
with good agreement at low driving levels. This allows simultaneous determination of
nonlinear stiffness and damping coefficients and results in a high-frequency determina-
tion of graphene’s mechanical loss tangent. Graphene resonators are thus an interesting
platform to study parametric excitations and their utilization for sensors with improved
performance.
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APPENDIX

A1: COMPLETE DATASETS FOR THE ANALYSIS OF MECHANICAL NONLINEAR-
ITIES

Figure 7.3 in the main text shows the fitting of the nonlinear mechanical response of the
resonator (drum 3). In this section the remainder of this analysis is presented and the
complete dataset from the fundamental mode of drum 1 is shown (Figs. 7.1a, 7.2, 7.3f).
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Figure 7.5: Remainder of the dataset presented in Figs. 7.2 and 7.3a-e.

Table 7.1: Values obtained from the fits on the response from drum 3 in Fig. 7.5 and Figs. 7.3a-e in the main
text

Direct drive Parametric drive

RMS Drive (mV) µ/β ν/β γ/β F /β × 10−5 µ/β ν/β γ/β δ/β × 10−2

250.9 0.0045 70 225 8 0.0045 76 215 1.06
281.5 0.0045 72 220 9.2 0.0045 76 220 1.22
354.4 0.0045 74 230 11.7 0.0045 79 225 1.6
397.6 0.0045 76 230 14.2 0.0046 80 225 1.8
446.2 0.0045 76 230 15.5 0.0046 80 225 1.93
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DATASET OF DRUM 1
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Figure 7.6: Analysis of directly driven response of the fundamental mode of drum 1 (Figs. 7.1a, 7.2, 7.3f).

Table 7.2: Values obtained from the fits on the response from drum 1 in Figs. 7.6, 7.7 and Figs. 2a, 3, 4f.

Direct drive Parametric drive

RMS Drive (mV) µ/β ν/β γ/β F /β× 10−5 µ/β ν/β γ/β δ/β × 10−2

149.4 0.0030 36 250 1.42 0.0030 36 250 0.74
167.7 0.0030 37 245 1.6 0.0030 36 220 1.01
188.1 0.0030 37 245 2.0 0.0030 34 225 1.18
211.1 0.0030 37 245 2.5 0.0030 34 225 1.31
236.9 0.0030 37 250 2.8 0.0030 33 225 1.46
265.8 0.0030 36 250 3.3 0.0030 34 225 1.81
298.2 0.0030 35 250 3.9 0.0030 35 225 2.05
334.6 0.0030 35 250 4.5 0.0030 35 225 2.25
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Figure 7.7: Analysis of parametrically driven response of the fundamental mode of drum 1 (Figs. 7.1a, 7.2, 7.3f).
The horizontal axis indicates the frequency at the analyzer port of the VNA, the frequency at the actuation port
was doubled.
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Figure 7.8: Additional experiment of parametric resonance. Parametric excitation was achieved using the fre-
quency doubler (as shown in Fig. 1 in the main text) instead of the frequency conversion on the vector network
analyzer. a Amplitude of the response at two different driving powers and b the phase of these responses. The
phase shows two stable phases separated by 180 degrees as expected.

A2: ADDITIONAL EXPERIMENT SHOWING TWO STABLE PHASES
The frequency conversion option on the vector network analyzer loses information on
the phase at which the resonator is oscillating. To show that the parametrically excited
resonance has two stable phases separated by 180 degrees, the experiment was repeated
by using a frequency doubler in the circuit used for the parametric amplification experi-
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ment. Using this, the VNA is not required to perform a frequency conversion and phase
information is preserved. This results in the mechanical responses shown in Fig. 7.8.

A3: ADDITIONAL DISCUSSION: THE MECHANISM FOR DIRECT

AND PARAMETRIC DRIVING
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Figure 7.9: Explanation of the actuation mechanisms of the opto-thermal drive. For an illustration of the mech-
anism, it is assumed the membrane motion follows the force adiabatically (phase delays are omitted). A blue
membrane represents low temperature and a red membrane represents high temperature. a Parametric ex-
citation, this is due to the pre-tension modulation of the membrane. Each time the tension is maximum the
membrane passes through its equilibrium position, leading to a period doubling. This mechanism activates
the resonance if the driving frequency is twice the resonance frequency. b Direct excitation, which exists due
to a small initial deviation from equilibrium. This mechanism does not cause period doubling, but instead, it
activates the resonance if the driving frequency is equal to the resonance frequency.

Opto-thermal driving leads to two mechanisms that can excite the resonance in the
graphene resonators. Parametric drive (Fig. 7.9a) occurs due to the modulation of pre-
tension n0(t ) in the membrane via laser heating and thermal expansion since the stiff-
ness term for the out-of-plane deflection field w of the membrane is determined by the
pre-tension. Parametric driving will only activate the parametric resonance if the mod-
ulation of the blue laser is near twice the mechanical resonance frequency.

As demonstrated in the main text (Figs. 7.2, 7.3), the experiments also show a direct
driving component. This can be explained [173] by assuming a small initial membrane
displacement w0 from equilibrium (Fig. 7.9b). In graphene resonators rippling, wall
adhesion or out-of-plane crumples could lie at the root of such an initial displacement.
In chapter 10 we show an experiment that confirms that out-of-plane deviations are the
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root cause of direct drive.
In order to analyze the data, we will derive the equations of motion (eq. 7.12) using a

Lagrangian approach by including this initial deflection field. In this manner, the equa-
tions are reduced to a single-degree-of-freedom (s-dof) model that can be used to fit the
data, significantly simplifying the analysis. The derivation of this s-dof model is shown
below in section A4.

A4: EQUATIONS OF MOTION
A Lagrangian approach is used to obtain equations of motion of an opto-thermally ex-
cited monolayer graphene membrane. In this respect, the potential energy of the ther-
mally actuated circular membrane is obtained as [183]:

U =
∫ 2π

0

∫ R

0

h

2

(
σr r (εr r −α∆T )+σθθ(εθθ−α∆T )+τrθγrθ

)
r dr dθ, (7.3)

where h is the thickness, R is the radius, α is the thermal expansion coefficient, and ∆T
is the temperature change in the membrane. Moreover, σr r , σθθ , τrθ , are the Kirchhoff
stresses that can be obtained as follows:

σr r = E

1−ν2 (εr r +νεθθ−α(1+ν)∆T ),

σθθ =
E

1−ν2 (εθθ+νεr r −α(1+ν)∆T ),

τrθ =
E

2(1+ν)
γrθ,

(7.4)

in which εr r , εθθ, and γrθ are the Green strains and are derived as:
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(7.5)

where u, v and w are the radial, tangential and transverse displacements, respectively.
Moreover, w0 is the deviation of the membrane from flat configuration, E is the Young’s
modulus and ν is the Poisson’s ratio.

The temperature difference ∆T can be obtained by solving the following heat con-
duction equation:

∂∆T

∂t̃
+ ∆T

τ
= Pabs cos(ωt̃ )

Ct
, (7.6)

in which Pabs is the power absorbed by the membrane, τ is the thermal time constant
[60], Ct is the thermal capacitance, and t̃ represents the time variable.
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For a membrane with fixed edges u and w shall vanish at r = R. Moreover, u should
be zero at r = 0 for continuity and symmetry. Furthermore, assuming only axisymmetric
vibrations (v = 0 and ∂u/∂θ = ∂v/∂θ = ∂w/∂θ = 0), the solution can be approximated as
[63]:

w = x(t̃ )J0

(
α0

r

R

)
, (7.7)

u = u0r + r (R − r )
N̄∑

k=1
qk (t̃ )r k−1. (7.8)

Here it should be noted that for axisymmetric vibrations the shear strain γrθ would be-
come zero. In equation (7.7), x(t̃ ) is the generalized coordinate associated with the fun-
damental mode of vibration. Furthermore, in equation (7.8), qk (t̃ )’s are the generalized
coordinates associated with the radial motion. Moreover, J0 is the zeroth order Bessel
function of the first kind and α0 = 2.40483. In addition, N̄ is the number of necessary
terms in the expansion of radial displacement and u0 is the initial displacement due to
pre-tension n0 that is obtained from the initial stress σ0 = n0/h as follows :

u0 = σ0(1−ν)

E
. (7.9)

The kinetic energy of the membrane neglecting in-plane inertia, is given by:

T = 1

2
ρh

∫ 2π

0

∫ R

0

(∂w

∂t̃

)2
r dr dθ. (7.10)

The Lagrange equations of motion are given by:

d

d t

(∂T

∂q̇

)
− ∂T

∂q
+ ∂U

∂q
= 0, (7.11)

and q=[x(t̃ ),qk ( t̃ )], k = 1, . . . , N̄ is the vector containing all the generalized coordinates.
Equation (7.11) leads to a system of nonlinear equations comprising of a single differen-
tial equation associated with the generalized coordinate x(t̃ ) and N̄ algebraic equations
in terms of qk (t̃ ) . By solving the N̄ algebraic equations it is possible to determine qk (t̃ )
in terms of x(t̃ ) [63]. This will reduce the N̄ +1 set of nonlinear equations to the following
Duffing-Matthieu-Hill equation:

mẍ + c1ẋ + c2x2ẋ + [k1 +Fp cos(ωt̃ )]x +k2x2 +k3x3 = Fd cos(ωt̃ ), (7.12)

where ˙(•) represents derivative with respect to time t̃ and m is the mass. c1 and c2 are the
linear viscous damping coefficient and nonlinear material damping coefficient, respec-
tively [47, 184]. They are added to the equation of motion explicitly to introduce dissipa-
tion. k1 represents the linear stiffness term dominated by the pre-tension n0 and Fp is
the amplitude of parametric drive resulting from temperature variation ∆T . Moreover,
k2 represents the quadratic nonlinear stiffness coefficient due to imperfection w0 and
k3 denotes the cubic nonlinear stiffness coefficient arising from geometric nonlinearity.
Finally, Fd is the amplitude of direct drive term due to the presence of imperfection w0,
and ω is the excitation frequency. Indeed for a flat membrane, k2 = Fd = 0.
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A5: NUMERICAL SIMULATIONS
In order to perform the numerical simulations, equation (7.12) is normalized with re-
spect to the mass m of the membrane and the fundamental frequency (t = t̃ω0) as fol-
lows:

ẍ +µẋ +νx2ẋ + [β+δcos(Ωt )]x +γ2x2 +γ3x3 = F cos(Ωt ), (7.13)

where β = 1 due to the normalization. Introducing an effective stiffness nonlinearity γ,

whose value is given by γ=
(
γ3 − 10γ2

2
9

)
[185], equation (7.13) is reduced to:

ẍ +µẋ +νx2ẋ + [β+δcos(Ωt )]x +γx3 = F cos(Ωt ), (7.14)

where the normalized coefficients are given in table 7.3.

Definition Normalized parameter

˙(•) = d(•)
d t Scaled time derivative

Ω= ω
ω0

Non-dimensional excitation frequency

µ= c1
2mω0

Scaled linear damping coefficient

ν= c2
mω0

Scaled nonlinear damping coefficient

β= k1

mω2
0
= 1 Scaled linear stiffness coefficient

δ= Fp

mω2
0

Scaled parametric excitation amplitude

γ2 = k2

mω2
0

Scaled nonlinear quadratic stiffness coefficient

γ3 = k3

mω2
0

Scaled nonlinear cubic stiffness coefficient

γ= γ3 − 10γ2
2

9 Scaled effective nonlinear stiffness coefficient

F = Fd

mω2
0

Scaled direct excitation amplitude

Table 7.3: Normalized parameter definitions

Here it should be noted that, mass m of the single layer graphene membrane is un-
known. Without the exact mass value, optical transduction factors present between the
voltage signal measured by the VNA during the experiment and the actual motion of
the membrane in physical units cannot be calibrated. Thus, the normalized coefficients
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shown in table 7.3 include a linear transduction factor ’κ’ for the oscillation amplitude
(x = κV1), η for the parametric drive amplitude (Fp = ηV2) and λ for the direct drive am-
plitude (Fd =λV3). Where V1,V2 and V3 are voltage signals measured in the experiment.

Finally, the equation (7.14) is simulated using a pseudo-arclength continuation and
collocation technique [186] to detect bifurcations and obtain periodic solutions. The
simulations are performed as follows:

1. The bifurcation analysis is carried out with the coefficient F as the first contin-
uation parameter and is incremented to the desired value in order to match the
experimental direct response.

2. Once the desired value of F is obtained, the parametric drive amplitude δ is used
as the second continuation parameter and a value is chosen to replicate the exper-
imental parametric response.

3. After reaching the desired δ value, the analysis is continued with the frequency ra-
tioΩ as the final continuation parameter. This value is spanned around the spec-
tral neighborhood ofΩ= 1 andΩ= 2 in order to obtain the direct and parametric
response curves.

A6: MECHANICAL LOSS TANGENT OF GRAPHENE
In ref. [63] it is shown that the Duffing term γ is proportional to the Young’s modulus E :

γ=C E , (7.15)

where C is a constant. In case of material damping, a complex Young’s modulus can be
introduced: E = E ′ + i E ′′ and the nonlinear stifness term γx3 near the resonance fre-
quency ω0, for x = x0e−iω0t becomes:

C E x3 =C E ′x3 +C E ′′ x2

ω0
ẋ = γx3 +νx2ẋ. (7.16)

From this equation it can be seen that the loss tangent tanδl = E ′′/E ′ [187] can be calcu-
lated by the ratio ν/γ if the resonator is vibrating near its resonance frequency:

tanδl =
ν

γ
. (7.17)





8
HIGH-FREQUENCY STOCHASTIC

SWITCHING OF GRAPHENE DRUM

RESONATORS

Stochastic switching between the two bistable states of a strongly driven mechanical res-
onator enables detection of a weak signal based on probability distributions, in a manner
that mimics biological systems. However, even resonators at the microscale require a large
amount of fluctuation power to achieve a switching rate in the order of a few Hertz. Here,
we employ graphene membrane resonators of atomic thickness to achieve 100 times faster
switching rates than current state-of-the-art, while the effective temperature of the fluctu-
ations can be ten times lower. This shows that these membranes are potentially useful to
transduce weak signals in the audible frequency domain.

Parts of this chapter consists of an article in preparation [188].
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S
TOCHASTIC switching is the process by which a system transitions randomly be-
tween two stable states, mediated by the fluctuations in the environment. This
phenomenon has been observed in a variety of physical and biological systems

[189–196]. Mechanical resonators that are strongly driven can show stochastic switch-
ing between two stable attractors [197–199]. This can potentially improve the transduc-
tion of small signals in a manner that mimics nature, by the stochastic resonance phe-
nomenon [200–204]. Despite the high resonance frequencies achieved by scaling down
the resonators to the micro- or nanoscale regime, the switching rate is often quite low,
in the order of 1 to 10 Hz. Furthermore, high fluctuation power, far above the fluctua-
tions present at room temperature needs to be applied to achieve stochastic switching.
Extending this frequency range to the kHz regime, while lowering the fluctuation power,
opens the door for new applications in the audible domain. Mechanical resonators con-
sisting of an atomically thin membrane are ideal candidates to raise the switching rate.
Their low mass ensures an ultrahigh resonance frequency while at the same time can
be easily brought in the nonlinear regime. Graphene is a single layer of carbon atoms
with excellent mechanical properties. Several works have demonstrated graphene res-
onators [12, 69], showing nonlinear behavior [48, 147] and several practical applications
such as pressure [11, 33, 51, 59] and gas sensors [35, 58]. Due to the low mass, resonance
frequencies are typically found in the 10-100 MHz range, which should allow stochastic
switching to occur at higher frequencies. The lower mass and low stiffness by virtue of
the membranes thinness allows this to be achieved at lower fluctuation levels.

Here we demonstrate stochastic switching in strongly driven single-layer graphene
drum resonators. Using an optical drive and readout, we bring the resonator into the
bistable regime. By artificially adding random fluctuations to the drive, the effective tem-
perature of the fluctuations is increased. We observe that the switching rate is increased
with an effective temperature dependence that follows Kramer’s law. Switching rates as
high as 1.2 kHz are observed at effective temperatures of 63×103K, which is a two order
of magnitude increase in switching rate at an order of magnitude lower effective tem-
peratures than the state-of-the-art reported in the literature. Thus demonstrating the
potential of graphene membranes to transduce signals in the audible frequency range.

8.1. PREPARING BISTABLE STATE AND CALIBRATION
In this chapter, we use the single layer graphene samples with a 5-micron diameter and
the experimental setup from chapter 3. In order to prepare the resonator in a bistable
state, the system is driven in the nonlinear regime as shown in Fig. 8.2a. The frequency is
swept forward and backward to reveal the hysteretic behavior of the device. The bistable
system is now created by choosing the drive frequency to be in the center between the
two saddle-node bifurcations. The resonator is artificially heated by adding random fluc-
tuations through the arbitrary waveform generator. In order to relate this to an effective
temperature, the Brownian motion of the device is measured as a function of fluctua-
tion power (Fig. 8.2b). From a Lorentzian fit, the mean square amplitude of the device is
derived which we use to define the effective temperature Teff (chapter 2) [54]:

Teff =
meffω

2〈a2(t )〉
kB

(8.1)
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Figure 8.1: a Frequency sweeps at high modulation power, showing the Duffing response and the bistable
region. During measurements, the frequency is fixed in the center of the bistable region, which is found by
finding the jumps in amplitude associated with the saddle-node bifurcation (SN). b Mean square amplitude of
resonance as a function of applied fluctuation power, this graph is used as calibration to extract the effective
temperature.

This effective temperature is a means to express the fluctuation level in an intuitive man-
ner.

Since the amplitude is calibrated the mean square amplitude at low fluctuation pow-
ers (where Teff ≈ T ) can also be used to determine the modal mass meff of the resonance.
From equipartition theorem [54]:

meff =
kB T

ω2〈a2(t )〉 (8.2)

we find meff = 1.85 fg. With the known modal mass, we can use the frequency response
in Fig. 8.1d to find the equation of motion. By fitting this frequency response we find the
(dimensionless) equation of motion:

ẍ +2ζẋ +x +αx3 =λcosωF t (8.3)

with ζ= 0.0006 the damping coefficient, corresponding to a quality factor of 833,α= 200
the cubic stiffness coefficient and λ = 3×10−5. The natural frequency of the resonance
is 13.92 MHz. The equation uses the generalized coordinate x(t ) which represents the
deflection of the membrane’s center and uses scaled variables to introduce only the rel-
evant combinations of the parameters (see Appendix A1).

8.2. RESULTS
During the experiment the system is driven at a fixed driving frequency ωF centered be-
tween the saddle node bifurcations, while the amplitude and phase of the resonator are
probed as function of time using the VNA. There are two signal sources driving the sys-
tem: the fixed driving frequency and the random fluctuations provided by the arbitrary
waveform generator. At a fluctuation power of approximately 25×103K the stochastic
switching events are observed as shown in Fig. 8.2a. The amplitude x(t ) is split into the
in-phase (P ) and out-of-phase (Q) part (x(t ) = P (t )cosωF t +Q(t )sinωF t ) as shown in
Fig. 8.2b, which reveals the two stable configurations of the resonator. Increasing the
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Figure 8.2: Experimental results showing stochastic switching of the nonlinear resonator. a Amplitude as func-
tion of time for an effective temperature Teff = 25×103 K, showing a total of 8 fluctuation-induced transitions.
b Amplitude in the P-Q space for Teff = 25×103 K, each point is one sample of the measurement in Fig. a. c
Transition rate as function of effective temperature, fitted with Kramer’s law (eq. 8.4), two sets of consecutive
measurements are shown to check for consistency. d Amplitude as function of time for an effective tempera-
ture Teff = 65×103 K, showing a total of 502 transitions. e Amplitude in the P-Q space for Teff = 65×103 K. f
Residence time distribution for Teff = 65×103, a Poisson distribution (eq. 8.5) is fitted to the data and gives a
transition time τk = 0.83 ms, corresponding to a transition rate rk = 1.2 kHz.

fluctuation power results in more and more switching events as shown in Fig. 8.2d at
65×103K. Also broadening the stable attractors somewhat as shown in Fig. 8.2e. Fig-
ure 8.2c shows the experimentally observed switching rate as function of the fluctuation
power expressed in Teff. The experiment was repeated twice to check whether effects of
slow frequency drift or other instabilities are affecting the experimental result, however
both measurements show the same trend. From measurements on other mechanical
systems, we expect the switching rate between the stable attractors to follow Kramer’s
law [189, 195, 204]:

rk = A exp

( −∆E

kB Teff

)
(8.4)

where rk is the transition rate, ∆E is an effective energy barrier, kB Boltzmann constant
and A a parameter used for fitting. Fitting eq. 8.4 to the experimentally observed transi-
tion rate in Fig. 8.2b shows good agreement with the experimental result. From the fit,
we obtain an effective energy barrier of 2.95 aJ.

To further investigate the transition dynamics of the system, we plot the residence
time distribution of two separate measurements at 65×103K as shown in Fig. 8.2d. The
residence time distribution should follow a Poisson distribution:

N (τ) = B

τk
exp

(−τ
τk

)
= Brk exp(−τrk ) (8.5)

which is used to fit to the experimental data. From the fit, we find that the transition
time τk = 0.83 ms, which corresponds to a transition rate of 1.20 kHz. This is close to the
experimentally obtained value of 1.15 kHz.
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Figure 8.3: Simulations of stochastic switching of the nonlinear resonator in close agreement with the exper-
iments in Fig. 8.2. a Time evolution of the stochastic system (σ = 0.000057, ∆t = 15). Realization of 0.45 s of
the system. A Histogram of the distribution of the solution is shown on the right; b Density histogram of the
solution for the long-term realization of the system. Darker regions refer to states with more probable occur-
rence. c Distribution chart of the switching rate as function of the imposed random fluctuations σ. The upper
and lower fences are linked to the 75% and 25% quantile by the vertical whisker lines. d Time evolution of the
stochastic system (σ= 0.000086, ∆t = 15). e Density histogram of the solution for the long-term realization of
the system. f Top view of the quasi-potential for excitation frequency ωF = 1.0063.

8.3. SIMULATIONS
In order to further understand the dynamic behavior of the device, equation (8.3) is used
to perform numerical simulations of the system in the presence of fluctuations to com-
pare to the experimental results. We analyze the dynamics of the nonlinear oscillator
using the method of averaging [198, 205]. This method describes the change of the vi-
bration amplitude in time from the fast oscillating coordinates to the slow variables (see
Appendix A1 for further details). Averaging is appropriate since the quality factor is high
and the transition rate is much lower than the resonance frequency.

First, a linear stability analysis is performed for the deterministic system. The eigen-
values of the linearized systems predict two stable equilibria separated by an unstable
equilibrium (a saddle). The original model is perturbed by adding a Gaussian white noise
process, dW (t ), that is a normally distributed random variable with mean zero and vari-
ance d t . Its intensity will be referred as σ, which was matched to the experiments by
evaluating the mean square amplitude due to the fluctuations 〈x2〉 from the simulations
and matching them to the experimentally measured mean square amplitude in Fig. 8.1b.
The stochastic switching behavior obtained via numerical integration of the stochastic
differential equations is shown in Figure 8.3.

We simulate a time evolution of the system as shown in Fig. 8.3a, matching the time
and effective temperature of the fluctuations of the experiment in Fig. 8.2a. From these
simulations, it seems that the large amplitude solution is the most probable state for the
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low-fluctuation configuration because the system resides more in the basin of attraction
of this stable point (histogram in Fig. 8.3a). Fig. 8.3d, which corresponds to the measure-
ment in Fig. 8.2d, shows a massive number of transitions for the resonator with a more
equal residence time distribution in the two separate states. The numerical prediction is
in qualitative agreement with the switching density illustrated in Figs. 8.2a and d.

The standard linear stability analysis has only a limited utility since the effect of the
fluctuations change the dynamics, along with the probability in a specific steady-state
solution. Further insight should be provided by the potential function V , but this cannot
be defined for our system in slow variables since it is a non-gradient system. Neverthe-
less, we can obtain useful information by means of the quasi-potential function calcu-
lated by solving the Hamilton-Jacobi equation associated with the equations for P and
Q. Details about the quasi-potential and its computation are given in the Appendix A2.
In contrast with the linear stability analysis, the quasi-potential gives the qualitative pic-
ture of the realizations of the system, i.e. with the quasi-potential surface shape in the
proximity of the fixed points of the system, this is reported in Fig. 8.3f.

Both Fig. 8.3a and d highlight wide oscillations around the low-amplitude stable
equilibrium, in contrast to a more confined motion around the high-amplitude equi-
librium state. Indeed the quasi-potential well associated with the low-amplitude state
has a more broad shape allowing for larger cycling before the transition. The density di-
agrams of the solution for the long-term (0.45 s) realization of the system are reported in
Fig. 8.3b, c and e.

At low-fluctuation levels (Fig. 8.3b) the cloud spread is limited and the switching
paths are concentrated in crossing the saddle. The direction of the trajectories is in full
accordance with the rotation of the orbits predicted by the stability analysis. Figure 8.3e
illustrates a comb of paths used by the system to revert its states. Moreover, it shows a
vast distribution spread in the phase-space, mainly due to abundant in-well cycling. Fi-
nally, the switching rate as a function of the intensity of the additive Gaussian noise is
reported in Fig. 8.3e. For the case of Teff = 65×103 K, corresponding to σ= 0.000086, the
estimated transition rate is 1.05 kHz, consistent with the experimental findings.

8.4. CONCLUSION
In conclusion, we have shown stochastic switching on the order of kHz in graphene
drum resonators. The switching rate is two orders of magnitude higher, while the ef-
fective temperature of the fluctuations is one order of magnitude lower than in state of
the art MEMS devices. The dynamical behavior and the shape of the cycling paths are
qualitatively explained by the shape of the potential wells around the two meta-stable
equilibria. Future work can focus on design optimization to achieve even higher switch-
ing rates, this could enable detection of very weak audio signals by stochastic resonance.
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APPENDIX

A1: EQUATIONS OF MOTION

THE DETERMINISTIC SKELETON

The single degree of freedom system considered to model the drum is:

mq̈ + cq̇ +k1q +k3q3 = f cosΩFτ. (8.6)

that in dimensionless coordinates is

ẍ +2ζẋ +x +αx3 =λcosωF t . (8.7)

where
t =ω0τ,
x = q/a,
2ζ= c/

(
ω0me f f

)
,

α= a2k3/
(
ω0

2me f f
)

,
λ= f /

(
aω0

2me f f
)

,
ωF =ΩF /ω0.

(8.8)

Here, the solution is assumed to have the form

x = p (t )cosωF t +q (t )sinωF t (8.9)

in which p (t ) and q (t ) are slowly varying functions of time. Furthermore, the solution if
subject to the condition [205]

ṗ (t )cosωF t + q̇ (t )sinωF t = 0. (8.10)

Following the method of averaging [198], we substitute eq. (8.9) with its corresponding
time derivatives into eq. (8.7). By using eq. (8.10), we obtain

ṗ = ω0
2 −ωF

2

2ωF
q −Γp + 3

8

γ

ωF
q

(
p2 +q2)

q̇ =−ω0
2 −ωF

2

2ωF
p −Γq − 3

8

γ

ωF
p

(
p2 +q2)+ F

2ωF
.

(8.11)

STOCHASTIC DIFFERENTIAL SYSTEM

The deterministic skeleton of the system shows 3 equilibria: e A = {0.00246073,−0.000508264},
eB = {−0.00600831,−0.00778412} and eS = {0.00613994,−0.00527489}. A linear stability
analysis tells us that e A and eB are the stable equilibria, whereas eS is a saddle point. The
real part of the eigenvalues of the Jacobian for the stable equilibrium is the same for both
the stable equilibrium points (−0.00012±0.00376934i for e A , −0.00012±0.0053184i for
eB , −0.00461927 and 0.00221927 for eS ) suggesting an equal stability.

The deterministic system of eqs. (8.11) is then perturbed by a Gaussian white noise
processes with intensity σ1 and σ2 in the equations for ṗ and q̇ , respectively. To em-
phasize that the dynamic of the system is now a stochastic process, and not anymore a
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Figure 8.4: Stream plot for the deterministic vector field of the model in eq. (8.11). Unstable and stable equi-
librium points are reported with white and gray disks, respectively. and stable equilibria are gray disks. Blue
lines and arrows show the direction of trajectories ωF = 1.0063.

deterministic fuction of time, the notation is switched from p (t ) to P (t ) and from q (t )
to Q (t ). The system of stochastic differential equations (SDE) with additive fluctuations
is: 

dP =
(
ω0

2 −ωF
2

2ωF
Q −ΓP + 3

8

γ

ωF
Q

(
P 2 +Q2))d t +σ1dW1

dQ =
(
−ω0

2 −ωF
2

2ωF
P −ΓQ − 3

8

γ

ωF
P

(
P 2 +Q2)+ F

2ωF

)
d t +σ2dW2

(8.12)

in which W1(t ) and W2(t ) are independent Wiener processes, normally distributed ran-
dom variables with mean zero and variance dt. The change in notation is needed since
SDE differ from the deterministic DE. Neither W nor the state variables P and Q are
nowhere differentiable. For the integration of Eqs.(8.12), the Itô scheme will be employed
[206].

A2: QUASI-POTENTIAL
A generic n-dimensional system of stochastic differential equations considering the ef-
fect of additive fluctuations can be written as:

dX = f (X)d t +σdW (8.13)

where X = (X1, ..., Xn)T is a vector of state variables, W = (W1, ...,Wn)T is a vector of n in-
dependent Wiener processes, f is the deterministic skeleton of the system and, finally,σ
is the fluctuation intensity. The state variables in the deterministic system are indicated
with lowercase notation, i.e. x = (x1, ..., xn)T . The vector field f , for every x specify the
direction in which the deterministic trajectory moves.
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If n = 1 eq. (8.13) reduces to:

d X =−U ′ (X )d t +σdW (8.14)

in which U is the potential function (or potential). Furthermore, the function is re-
lated to specific characteristics of the stochastic process. In the stochastic process (8.14),
the probability density function p(x, t ) related to the random variable X , describing the
probability that X (t ) = x obeys a Fokker–Planck equation:

∂p (x, t )

∂t
= ∂

∂x

(
U ′ (x) p (x, t )

)+ σ2

2

∂2p (x, t )

∂x2 . (8.15)

The steady state solution is such that
∂p (x, t )

∂t
= 0. The steady state probability distribu-

tion ps (x) is readily obtained by:

ps = 1∫ ∞
0 e−2U /σ

e
−

2U

σ (8.16)

The steady state solution shows that the probability is maximized (more likely states for
the system) in the minima valleys of the potential.

For the case n = 2 in eq. (8.13) we still have the Fokker-Plank equation:

∂p

∂t
=−∂

(
f1p

)
∂x2

− ∂
(

f2p
)

∂x2
+ σ2

2

(
∂2p

∂x2
1

+ ∂2p

∂x2
2

)
. (8.17)

Conversely to the gradient example, in this case there is no function playing the same
role as U . However it is possible to assume the presence of a function V (x), with x =
(x1, x2), able to describe the steady state solution of the system:

ps (x) = ke
−

2(x)

σ . (8.18)

If σ is small we can approximate V by a function V0 that satisfies the Hamilton-Jacobi
equation [207]:

∇V0 ·∇V0 + f ·∇V0 = 0 (8.19)

in which f = (
f1, f2

)
. The function V0 is a useful analog of the potential of gradient sys-

tems. It specifies a 2D surface in which all the trajectories move downhill in the absence
of perturbations. In details, it is the component −∇V0 leading to the downhill move-
ment. However, being f x the deterministic skeleton causing the trajectories to move all
around the landscape, we can write the decomposition of f as

f =Q (x)−∇V0 (8.20)

in which Q is the so-called the circulatory component. Since V0 is the solution of eq.
(8.20), Q ·∇V0 = 0, thus Q and ∇V0 are perpendicular. Without additional external forces
Q creates the circulation of trajectories around levels of V0.
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The function V0 is a scalar multiple of the Freidlin-Wentzell quasi-potential, it gen-
eralizes the potential function to n-dimensional non-gradient systems. Although the
definition of the Freidlin-Wentzell quasi-potential is Φ= 2V0, in this paper V0 is used to
avoid the inconvenient generated by the Freidlin-Wentzell definition. Indeed, the func-
tions Φ and V0 measure the same properties, and one can be immediately related to the
other.
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9
GRAPHENE SQUEEZE-FILM

PRESSURE SENSORS

The operating principle of squeeze-film pressure sensors is based on the pressure depen-
dence of a membrane’s resonance frequency, caused by the compression of the surrounding
gas which changes the resonator stiffness. To realize such sensors, not only strong and flex-
ible membranes are required, but also minimization of the membrane’s mass is essential
to maximize responsivity. Here, we demonstrate the use of a few-layer graphene mem-
brane as a squeeze-film pressure sensor. A clear pressure dependence of the membrane’s
resonant frequency is observed, with a frequency shift of 4 MHz between 8 and 1000 mbar.
The sensor shows a reproducible response and no hysteresis. The measured responsivity of
the device is 9000 Hz/mbar, which is a factor 45 higher than state-of-the-art MEMS-based
squeeze-film pressure sensors while using a factor of 25 smaller membrane area.

Parts of this chapter have been published in Nano Letters 16 (1), 568–571 (2016) [59]
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G
RAPHENE has the highest surface-to-mass ratio and lowest bending rigidity of
all impermeable membranes [11]. These properties make graphene a suitable
material for nanomechanical sensors. Currently, pressure sensors are the most

widespread membrane-based mechanical sensors and are present in most modern mo-
bile handsets. Commercial microelectromechanical system (MEMS) based pressure sen-
sors feature membranes of several hundreds of nanometers in thickness. Replacing
these by thin graphene membranes would allow an increase in responsivity and a size
reduction by orders of magnitude. In order to exploit these advantages, several studies
[11, 33, 208, 209] have demonstrated the feasibility of sensing pressure changes with a
graphene membrane suspended over a reference cavity at pressure pref. When the am-
bient pressure (pamb) changes, the pressure difference (pamb −pref) causes a deflection
of the membrane. This has been directly detected by atomic force microscopy (AFM)
and via a tension-induced change in the membrane’s resonance frequency [11]. Also the
change in piezoresistance [33] has been used to detect the change in pressure. However,
the drawback of these pressure-difference based sensing methods is that they require a
stable reference pressure pref over the ∼10 years lifetime of the sensor, posing extreme
demands on the hermeticity of the reference cavity. Even though graphene sealed cavi-
ties were shown to have leak time constants of many hours [11], at this stage, it is unclear
whether these can ever be increased to timescales of years. It is therefore of interest to
develop pressure sensors that do not rely on the presence of an impermeable reference
cavity.

In this work, we demonstrate the feasibility of using graphene as a squeeze-film pres-
sure sensor. The sensor consists of a membrane that covers a gas cavity. The main dif-
ference with conventional pressure sensors is the presence of an open venting chan-
nel that maintains the average pressure inside the cavity equal to the ambient pressure.
Squeeze-film pressure sensors operate by compressing gas in the cavity that is at ambi-
ent pressure pamb. When the compression is performed at a high frequency, the gas fails
to escape its effective position because of the viscous forces [43]. The added stiffness due
to the compression of the gas is a function of pressure. For isothermal compression, this
will change the resonance frequency ( fres) of the resonator according to:

f 2
res = f 2

0 + pamb

4π2g0ρh
. (9.1)

Here, fres is the membrane’s resonance frequency at pressure pamb, f0 the resonance
frequency in vacuum, g0 the gap size between the membrane and the substrate that lies
underneath the membrane and ρh the mass per unit square (see Appendix A2). Note,
that the smaller the mass per unit square ρh, the larger the frequency shift. The low
mass density of graphene thus makes it a perfect material for this type of sensor.

As is shown in the Appendix A2, at high enough frequencies eq. 9.1 is independent of
mode-shape, thickness and boundary conditions of the membrane. The independence
of the boundary conditions shows that the venting channel has no influence on the re-
sponsivity (R = d fres/dpamb) of the device. Several works have demonstrated MEMS-
based squeeze-film pressure sensors with responsivities of up to 200 Hz/mbar [210–213].
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Figure 9.1: a Optical image of the graphene flake transferred on dumbbell and circular shaped holes in a SiO2
substrate. The diameter of the drums is 5 µm and the thickness of the oxide 400 nm. Open and closed drums
used in the study are highlighted and the trace used for atomic force microscopy (AFM) to measure the flake
thickness is indicated. b Height profile from AFM, showing that the membrane is 10.5 ± 0.7 nm thick.

9.1. SAMPLE
We use an exfoliated few-layer graphene (FLG) flake that is suspended over dumbbell
shaped holes using a dry stamping method [56, 68, 214] (chapter 3). The dumbbells have
a diameter of 5 µm and are etched into a 400 nm SiO2 layer on a silicon substrate (Fig.
9.1a). The thickness of the flake after the transfer is measured to be about 10.5 nm using
atomic force microscopy (Fig. 9.1b). The stamping method allows accurate placement
of the flake such that it covers half of the dumbbell shape, thus creating a graphene-
based squeeze-film pressure sensor with a lateral venting channel. To demonstrate the
importance of the venting channel for the sensor response, several sealed (closed) drums
are created with the same flake.

9.2. RESULTS
The pressure-dependent resonance frequency of the sensor is studied by ramping the
pressure upward and downward at a constant rate. During the pressure ramp, the VNA
continuously measures frequency spectra from 5-30 MHz at a rate of about 1 sweep every
2 seconds. Figure 9.2 shows these frequency spectra at 4 different pressures. At 8 mbar
4 resonance modes are visible. At higher pressures, the frequency of the fundamen-
tal mode increases while its Q-factor decreases. A damped harmonic oscillator model
(chapter 2) is fitted (red lines) to the data to extract the resonance frequency and quality
factor as a function of pressure. The total frequency shift between 8 mbar and 1000 mbar
is 4 MHz.

Figure 9.3a shows the frequency spectra taken during a pressure ramp in a contour
plot. The frequencies of the first, third and fourth resonance modes increase as a func-
tion of pressure in close agreement (black dashed lines) with eq. 9.1. The intensity of
the second mode vanishes above ∼50 mbar; therefore it is not possible to compare its
response to eq. 9.1. For all modes, the intensity decreases rapidly with pressure. The
resonance frequency is plotted versus pressure in Fig. 9.3b for a measurement at a ramp
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Figure 9.2: Frequency spectra (blue) obtained from the VNA at different pressures. A damped harmonic oscil-
lator model is fitted (red) to the fundamental mode to determine its resonance frequency and Q-factor.

rate of 3.3 mbar/s. This measurement demonstrates the reproducibility of the sensor,
showing no hysteresis as the pressure readings during upward and downward sweep are
equal within the inaccuracy of the measurement. Equation 9.1 is plotted (dashed black
line) in Fig. 9.3b using the measured f0 and no additional fit parameters. The theoretical
curve is in close agreement with experimental data up to pressures of 200 mbar. Above
200 mbar, the measured resonance frequency deviates from eq. 9.1. This indicates that
the assumptions underlying this equation cannot account anymore for the resonance
frequency behavior at these higher pressures and will be investigated further in chap-
ter 10.

The quality factor is determined from the harmonic oscillator fits (Fig. 9.2) and plot-
ted in Fig. 9.3c. Three regimes can be distinguished: at pressures lower than 100 mbar,
the quality factor drops as a function of pressure, approximately proportional to 1/pamb.
It is predicted by Bao et. al. [215] that the quality factor scales with 1/pamb in the free
molecular flow regime. Between 100 and 500 mbar the quality factor appears to be more
or less constant. Above 500 mbar the Q-factor reduces further approximately propor-
tional to 1/pamb. More sophisticated modeling is needed to explain the behavior of qual-
ity factor as a function of pressure.

9.2.1. MEASUREMENTS WITH DIFFERENT GASES

In this section measurement results are presented with different gases, these measure-
ments will show whether compression in these systems is isothermal or adiabatic. Ac-
cording to Andrews et al. [212] the response of frequency versus pressure for the case of
adiabatic compression is given by:

ω2 =ω2
0 +γ

pamb

g0ρh
, (9.2)
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Figure 9.3: Pressure dependent resonances. a Contour graph of the VNA frequency spectra versus pres-
sure at a ramp rate of 0.55 mbar/s. Dashed black lines are plotted using eq. 9.1 with g0 = 400 nm and
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reproducibility of the frequency response. c Quality factors from an up (+) and down (×) pressure sweep at a
rate of 0.55 mbar/s. To reduce the amount of data, the mean of the pressure and average of the quality factor
for 10 data points was taken.
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Figure 9.4: Frequency response for nitrogen, argon and carbon dioxide in the chamber. Solid lines are mod-
els for isothermal compression (γ = 1) and adiabatic compression for argon (γ = 1.3), nitrogen (γ = 1.4) and
carbon dioxide (γ= 1.67).

where γ is the adiabatic index. For monatomic ideal gases such as argon, γ = 1.3, for a
diatomic gas such as nitrogen, γ= 1.4 and for a collinear molecule such as carbon diox-
ide γ = 1.67. For isothermal processes one can use γ = 1 independent on the gas used,
which makes eq. 9.2 equal to eq. 9.1. In order to examine whether the compression in
graphene-based squeeze-film sensors is adiabatic or isothermal, pressure sweeps were
performed on the same open drum as Fig. 9.3 using three gases with different adiabatic
indexes (Fig. 9.4). This measurement shows that compression in graphene squeeze-film
pressure sensors is isothermal, since no significant change in stiffness is observed with
different gases. This suggests that the thermal time constant of the thin film of gas is
short compared to the period of oscillation.
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Figure 9.5: Frequency response of a closed drum as a function of pressure.

9.2.2. MEASUREMENTS ON A CLOSED DRUM

To compare the response of the open drums with those of closed drums, measurements
were performed on a drum without venting channel on the same flake with an equal
diameter (see Fig. 9.1). The pressure was ramped up and down at a rate of 0.55 mbar/s.
The frequency response is strikingly different from the ones observed in open drums,
with a clear hysteresis caused by gas leakage of the cavity. As shown in Fig. 9.7, the
frequency shifts observed are around 85 MHz, much larger than for the squeeze-film
effect. It is concluded that these shifts are tension-induced by the pressure difference
over the membrane, in agreement with observations by Bunch et. al. [11].

9.3. DISCUSSION

From the data in Fig. 9.3b it is possible to estimate the responsivity of the device: at low
pressures the responsivity is approximately 9000 Hz/mbar while at atmospheric pressure
it is 1000 Hz/mbar. The highest reported responsivity in squeeze-film MEMS pressure
sensors is 200 Hz/mbar [211]. The responsivity of the graphene-based sensor is thus
a factor of ∼5-45 larger than that of a MEMS sensor. At the same time the area of the
graphene sensor is a factor 25 smaller. It should be noted however that a hermetically
sealed cavity exhibits a larger resonance shift, which means that if a hermetically sealed
cavity becomes feasible, it should be an attractive concept for a graphene-based pressure
sensor.

Based on eq. 9.1, further improvement of the demonstrated squeeze-film pressure
sensor concept is possible by reducing the thickness of the membranes. It is estimated
that using a single-layer graphene resonator will increase the frequency response by a
factor of 5.6. However, the quality factor reduces for thinner membranes. Therefore
the trade-off between responsivity and quality factor might result in a larger optimum
thickness. A reduction of the gap size g0 can enable a further increase of the responsivity.
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9.4. CONCLUSION
A graphene squeeze-film pressure sensor has been demonstrated that does not need
an impermeable reference cavity at a stable reference pressure. Reproducible sensor
response is demonstrated and a 4 MHz resonance frequency shift between 8 and 1000
mbar is measured. The resonance frequency closely follows the squeeze-film model up
to 200 mbar, but at higher pressures, deviations from the model are observed that re-
quire further theoretical study. In comparison with MEMS-based squeeze-film sensors,
the responsivity of the sensor is a factor 5-45 larger with factor 25 smaller area. A fur-
ther increase of the responsivity can be obtained using thinner membranes and reduc-
ing the gap size. In comparison to other graphene-based pressure sensing concept, the
squeeze-film pressure sensor has the advantage that it does not rely on an impermeable
reference cavity at constant pressure. Therefore, it provides a promising route towards
size reduction and sensitivity improvements of pressure sensors.
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Figure 9.6: a Frequency response of a measurement taken with a sweep rate of 0.55 mbar/s; the quality factors
from this measurement are shown in fig. 9.3c. b Quality factors from a measurement taken with a different
ramp rate of 3.3 mbar/s, the frequencies are shown in fig. 9.3b in the article.

APPENDIX

A1: ADDITIONAL MEASUREMENT RESULTS CORRESPONDING TO FIG. 9.3
Additional graphs are presented corresponding to the measurement data shown in Fig.
9.3. Figure 9.6a shows the frequencies corresponding to the quality factors in Fig. 9.3c,
with the pressure ramping at 0.55 mbar/s. Drift is observed, which we attribute to move-
ments in the measurement setup, which change the position of the laser spot on the
membrane in the course of the one-hour measurement. This modifies the way the sub-
strate thermally expands, thereby changing the tension in the membrane. The drift ob-
served in Fig. 9.6a is therefore an expected inaccuracy of the measurement. The data
fits (dashed lines) are produced using eq. 9.1 with f0 = 12.3 MHz and f0 = 12.7 MHz to
correct for the drift.

Figure 9.6b shows the quality factors corresponding to Fig. 9.3b. The pressure was
ramped at a rate of 3.3 mbar/s. The data is in good agreement with Fig. 9.3c.

MEASUREMENT ON OPEN DRUM 2
In this section, measurement results are presented on a different open drum on the same
flake (see Fig. 9.1). It is found that the response is very similar as is shown in Fig. 9.7. The
pressure was changed in logarithmic steps between 3 and 1000 mbar, both upwards and
downwards. The total duration of the measurement was 900 seconds. The frequency
response is very similar to the other open drum, within the inaccuracy of the measure-
ment. The quality factor shows a slightly different slope than the other open drum.

A2: SQUEEZE-FILM EFFECT IN THE HIGH-FREQUENCY LIMIT
In this section eq. (9.1) from is derived using the equations of motion for a piston and
a membrane combined with Boyle’s law of an infinitesimal part of the gas film. For the
derivation of this equation, it is assumed that the compression frequency is so high that
the gas effectively has no time to allow for significant lateral gas flow within 1 period.
The validity of this assumption is investigated using the linearized Reynolds equation in
the second part of this section. In the entire analysis, only the gas dynamics in the thin
gas film underneath the membrane is considered.
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Figure 9.7: Frequency response and quality factor for another open drum on the same flake (see Fig. 9.1a).
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Figure 9.8: Infinitesimal part of the fluid film beneath the resonator and cross section of the sensor.

DERIVATION OF FREQUENCY-PRESSURE RELATION FOR A PISTON
In this section eq. 9.1 is derived, first for a piston followed by the derivation for a mem-
brane. Assuming ideal compression in the squeeze-film, Boyle’s law can be applied to an
infinitesimal part of the film (Fig. 9.8):

pambV1 = p2V2, (9.3)

pambg0dxdy = p2(g0 +w)dxdy, (9.4)

pambg0 = p2(g0 +w), (9.5)

by substituting p2 = pamb −∆p:

pambw =∆pg0 +∆pw. (9.6)

Assuming ∆p << pamb and w << g0 we obtain the following expression:

∆p = pamb

g0
w, (9.7)

which gives the pressure field, which is in turn proportional to the deflection field. This
result is equivalent to the one that was obtained by Bao and Yang for a squeeze-film
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between two rigid plates[43]. The equation of motion for a piston can then be written
as[216]:

ρh
d2w

dt 2 =−∆p =−pamb

g0
w. (9.8)

For which one can directly obtain the resonance frequency:

d2w

dt 2 + pamb

g0ρh
w = 0. (9.9)

This is the equation for a harmonic oscillator with frequency:

ω2 = pamb

g0ρh
, (9.10)

which gives the pressure response ∆ω=√
pamb/g0ρh.

DERIVATION OF THE FREQUENCY-PRESSURE RELATION FOR A FLEXIBLE MEMBRANE

In this section we derive the frequency pressure relation for a membrane that has both
tension (or compression) n0 and bending rigidity D . This analysis shows that the re-
sponse of the frequency is equal to the situation of a piston. The equation of motion is
given by [216]:

ρh
∂2w

∂t 2 +D∇4w −n0∇2w =−pamb

g0
w. (9.11)

Equation 9.11 can be solved by separation of variables:

w(x, y, t ) =W (x, y)T (t ), (9.12)

ρh

D

1

T

d2T

dt 2 + pamb

g0D
= n0

D

∇2W

W
− ∇4W

W
=λ4, (9.13)

with λ as the separation variable. From eq. 9.13 one can obtain the time-dependent
equations which will be used to calculate the eigenfrequency:

d2T

dt 2 +
(

pamb

g0ρh
+λ4 D

ρh

)
T = 0. (9.14)

This equation describes an harmonic oscillator:

d2T

d2t
+ω2T = 0, (9.15)

which means that the resonance frequencies become:

ω2 = pamb

g0ρh
+λ4 D

ρh
. (9.16)
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If the frequency in vacuum (pamb = 0) is written as ω0, the resonance frequency as func-
tion of pressure can be written as:

ω2 =ω2
0 +

pamb

g0ρh
. (9.17)

The result is consistent with the one obtained by Andrews et al. [210] for a square plate
and equal to the pressure response of a piston since ∆ω2 = pamb/(g0ρh). Note, that the
shape, boundary conditions, thickness and tension do influenceω0, but not the pressure
response. Only the mass of the membrane and gap size influence the pressure response.
This is a useful property, since the behavior of the sensor can be predicted by measuring
the gap size, flake thickness and frequency at vacuum, which simplifies the analysis of
the measurement.

From eq. 9.13 a useful identity can derived that will be used in the next section:(
∇4 − n0

D
∇2 −λ4

)
W = 0, (9.18)(∇2 +α2)(∇2 −

(n0

D
+α2

))
W = 0, (9.19)

α2 =−∇2W

W
and

n0

D
+α2 = ∇2W

W
. (9.20)

Note, that as a result of the separation of variables the ratio ∇2W
W becomes a constant

that is no longer dependent on position. In eqs. 9.13 and 9.20, the relation between the
constants α and λ is:

λ2 =α2
√

n0

D
+α2. (9.21)

For circular plates we can write:

α= γmn

a
, (9.22)

where γmn is the root of the frequency relation [217], which depends on the boundary
conditions and mode-shape of the diaphragm. a is the radius of the diaphragm.

A3: FREQUENCY RANGE FOR COMPRESSION IN SQUEEZE-FILM SENSORS
In the derivation of the pressure response of the sensor (eq. 9.17) it is assumed that
the gas is compressed at very high frequency. In this section we derive the minimal fre-
quency at which this assumption is valid. For this purpose, the linear Reynolds equation
is written as [43]:

pamb∇2p − 12µ

g 2
0

∂p

∂t
= 12µpamb

g 3
0

∂g

∂t
. (9.23)

Use g = g0 +w and substitute eq. 9.7:

p2
amb

g0
∇2w + 12µpamb

g 3
0

∂w

∂t
= 12µpamb

g 3
0

∂w

∂t
. (9.24)
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Figure 9.9: Measured resonance frequencies compared to the cut-off frequency (eq. 9.26).

The left and right side become equal when the following condition applies:

p2
amb

g0
∇2w << 12µpamb

g 3
0

∂w

∂t
. (9.25)

Since w is assumed to undergo harmonic motion, one can write w = CW (x, y)sinωt ,

where C is the amplitude and W (x, y) the mode-shape. Using ∇2W
W = −γ2

mn
a2 from the

previous section, we can write for circular diaphragms:

ω>>ωc =
pambg 2

0γ
2
mn

12µa2 . (9.26)

The frequency from Fig. 9.6a (upwards sweep) is plotted in Fig. 9.9 and compared to eq.
9.26. The measured frequency is much higher than the cut-off frequency, which shows
that eq. 9.17 should be valid. Since the mean free path of the gas molecules is of the
same order as the dimensions of our device, it is no longer valid to use the bulk viscosity
(µ0). Instead, the model proposed by Veijola [218] is used to approximately correct the
viscosity (µeff) with the formula:

µeff =
µ0

1+9.638Kn1.159 , (9.27)

where Kn is the Knudsen number defined as the ratio between the mean free path and
the gap size. Note, that this model loses its validity at pressures lower than approximately
30 mbar, since the mean free path becomes of the same order as the diameter of the cav-
ity. More sophisticated modeling is necessary to determine a more appropriate effective
viscosity for this situation.
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SQUEEZE-FILM EFFECT ON SINGLE

LAYER GRAPHENE RESONATORS:
INERTIAL EFFECTS AND GAS

ACTUATION

Vibrating graphene membranes present an excellent opportunity for sensing because of
their very high surface-to-mass ratio combined with their ultimate strength. Suspending
these membranes over a thin film of gas is a promising concept for a pressure sensor using
the squeeze-film effect. Development of such sensors requires an understanding of their
pressure-dependent stiffness and dissipation, but also requires a feasible actuation mech-
anism. Here we study the effects of a squeezed film of gas coupled to a single layer graphene
resonator. The squeeze-film stiffness effect is found to significantly decrease when the
Reynolds number is near 1, resulting in undesired gas dependence of the resonance fre-
quency. We also show that an optical drive can be used to modulate the temperature in
the squeeze-film of the gas, resulting in a high-frequency pressure modulation. This pro-
vides a high actuation force compared to the force in a vacuum environment and shows
that thermal actuation can be very efficient in graphene squeeze-film pressure sensors.

Parts of this chapter consists of an article in preparation [219].
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T
HE hexagonal structure of graphene gives rise to unique electronic properties,
which has attracted considerable interest in the scientific community [2]. More-
over, the strong bonds between the carbon atoms make this material one of the

strongest materials ever measured [10, 220]. Combined with its ultrahigh surface-to-
mass ratio by virtue of its thinness, makes this material very interesting for various sens-
ing applications such as pressure and gas sensors [11, 35, 44, 58, 59]. Graphene pressure
sensors using the squeeze-film effect have been proposed, since they promise high re-
sponsivity, while at the same time significantly reducing the sensor area [44, 59] (chapter
9). These sensors compress the gas in a shallow cavity underneath the vibrating mem-
brane, raising the stiffness of the system. For pressure sensor operation, it is required
that this stiffness effect is independent of the composition of the gas. Since the quality
factor of resonance limits the pressure range in which these sensors can operate, it is also
of interest to study the pressure and gas dependence of the quality factor. While several
studies have shown pressure-dependence of 2D material resonators in air or a few gases
[59, 209], there is no systematic study showing the gas dependence of the squeeze-film
effect with a diverse range of gases. This needs further investigation as the resonance
frequency and dimensions of the device are orders of magnitude different from MEMS
squeeze-film pressure sensors [59, 211, 213], which might have a severe impact on the
sensor performance.

Here we study the squeeze-film effect on single-layered graphene resonators by mea-
suring the pressure and gas dependence of the resonance frequency and quality fac-
tor. We use opto-thermally actuated drum resonators with a diameter of 5 microns
suspended over a 300 nm deep cavity with a venting channel to the environment. The
fabrication of these devices and the setup to actuate and detect their motion is shown
in chapter 3. The squeeze-film effect arises due to the high-frequency motion of the
graphene resonator, which compresses the thin layer of gas in the cavity [43, 59, 210–
213, 221]. Ideally, the pressure-dependent resonance frequency ω of the membrane is
described by:

ω2 =ω2
0 +

p

g0ρh
(10.1)

where ω0 is the resonance frequency in a vacuum environment, p the pressure, g0 the
distance between the moving membrane and fixed substrate and ρh the membrane’s
mass per unit square (see chapter 9 for the derivation).

Equation 10.1 predicts a linear dependence on stiffness as a function of pressure,
which is gas-independent. We find however in the experiments that the stiffness increase
is sublinear. This deviation occurs when the Reynolds number is near 1, which makes
inertial forces in the gas flow important and affects the compressibility of the squeeze-
film. The quality factor of resonance is very low at high pressures, between 1 and 3, with
weak gas dependence and little effect from the inertia forces. Finally, we show that the
opto-thermal drive results in a high-frequency temperature and pressure modulation in
the squeezed-film of gas, which actuates the membrane. We find that the actuation force
at 1000 mbar is three times higher than the force in a vacuum environment. This shows
that thermal modulation is an efficient actuation mechanism for graphene squeeze-film
pressure sensors.
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Figure 10.1: Squeeze-film stiffness as function of pressure and gas. a, b Dimensionless stiffness∆ as function of
gas pressure for eight different gases. The linear behavior line in both figures is obtained by fitting a polynomial
to the helium response and plotting only the linear part. c∆ as function of Reynolds number. Black are connect
the different gases at certain fixed pressures, which ideally should be constant but instead shows a deviation
for Re > 1.

10.1. RESULTS
Figures 10.1a,b show the dimensionless squeeze-film stiffness ∆ as function of pressure
for eight different gases. ∆ is defined based on eq. 10.1:

∆= (ω2 −ω2
0)
ρhg0

Pref
, (10.2)

where Pref is a reference pressure chosen to be 1000 mbar, ρh is assumed to be 7.7×10−7

kg/m2 and g0 is assumed to be 300 nm. For all gases, the stiffness increases as a function
of gas pressure as expected from eq. 10.1. The solid black lines in Figs. 10.1a,b are
obtained by fitting a second order polynomial to the ∆ of helium and plotting only the
linear part. Ideally one expects linear behavior from ∆ as a function of pressure. It is
observed, however, that for all gases in this drum ∆ is sublinear. While for all the gases
∆matches closely up to 100 mbar, at higher pressure significant deviations between the
gases are observed. Denser gases tend to show larger deviations in ∆ as the pressure is
increased, suggesting that the density of the gas is the root cause of the effect.

To study this further, ∆ is plotted as a function of the Reynolds number Re certain at
constant pressures, as shown in Fig. 10.1c. The Reynolds number is defined as:

Re = ωρg g 2
0

µ
(10.3)

where ρg is the density of the gas and µ the viscosity. The Reynolds number compares
the inertial forces to the viscous forces in the squeeze-film gas flow. When Re ¿ 1, in-
ertial forces are negligible and eq. 10.1 should be valid provided that the resonance fre-
quency is high enough. Plotting the dimensionless stiffness as a function of Reynolds
number in Fig. 10.1c shows that at low pressures (approximately p < 100 mbar) ∆ is
close to constant within the accuracy of the measurement. This corresponds to a ∆ that
only depends on pressure, as expected from eq. 10.1. Significant gas dependence of ∆
occurs at high pressures approximately when Re > 1. This represents the regime where
inertial forces are affecting the squeeze-film effect in this drum since stiffness depends
on the gas density.
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Figure 10.3: Simulations of resonance frequency and quality factor for a representative squeeze-film pressure
sensor. a Dimensionless frequency shift, showing a clear deviation for sulfur hexafluoride. b Quality factor of
resonance.

The quality factor as a function of gas pressure is shown in Fig. 10.2a,b. For all
gases, the quality factor decreases as a function of pressure due to the viscous dissipation
forces, with a similar slope on a logarithmic scale. Throughout the pressure range stud-
ied here, low-density gases tend to show less dissipation than high-density gases. The
quality factor changes with less than an order of magnitude as a function of molecular
weight of the gases, which means that the impact on the functionality as a squeeze-film
pressure sensor is relatively low. The inertial forces do not introduce a clear effect when
Re > 1. However, the low values of the quality factor limit the pressure range in which
these devices could operate as a pressure sensor.

10.2. SIMULATIONS OF INERTIAL EFFECTS
To understand the effect of the gas flow on the membrane’s resonance properties, more
sophisticated methods are needed in order to investigate whether eq. 10.1 is valid. Sev-
eral assumptions lie behind this equation, it is, for example, assumed that the resonance
frequency is sufficiently high for compression. Furthermore, inertia effects are ignored
and rarefied gas effects are not included. The mean free path of nitrogen is 70 nm at 1000
mbar and the cavity depth is 300 nm, therefore rarefied gas dynamics should play a large
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role in this system.

Two approaches were used to check whether eq. 10.1 is valid. First, finite element
simulations were performed by solving the compressible unsteady Stokes equation for
the gas together with Navier’s equation for the solid membrane using the eigenfrequency
solver of COMSOL Multiphysics [222, 223]. An axisymmetric slice of the drum is con-
sidered in this continuum model (see Appendix A3). No-slip boundaries were imple-
mented, meaning that this model includes inertia effects but no rarefied gas effects.

To obtain more certainty regarding the effects of rarefaction, an additional set of sim-
ulations were performed using the frequency-domain Monte Carlo method [224, 225].
This approach solves the Boltzmann Transport Equation (BTE), therefore it should pro-
vide more accurate results for low gas pressures. Since the mass of the membranes stud-
ied here is not certain due to contamination, we simulate a different device with 31 layers
graphene, a gap size of 400 nm and a diameter of 5 micron from chapter 9. The simula-
tions were benchmarked against these results as shown in the Appendix A3.

10.2.1. SIMULATION RESULTS

Figure 10.3 shows the dimensionless frequency shift and the quality factor from simu-
lations of the device in chapter 9. In agreement with the experiments performed here
we find that the continuum simulations predict a density dependence of the stiffness
(Fig. 10.3a). In particular sulfur hexafluoride shows a clear deviation from the other
gases. The deviation of all the gases around 200 mbar was also observed experimentally
in chapter 9 [59]. But since only helium, nitrogen and carbon dioxide were studied, the
gas dependence could not be clearly observed. In the benchmark in Appendix A3 we
qualitatively compare the experimental results from chapter 9 to the simulations.

The simulated quality factor as a function of pressure in Fig. 10.3 shows a similar
weak gas dependence as a function of molecular weight. At high pressures, however, the
simulations suggest that the quality factor could increase as a function of pressure. This
behavior has not yet been observed in experiments due to the limited pressure range
that could be achieved. The BTE simulations show a significantly larger quality factor
since slip flow is included in this model.

10.3. GAS ACTUATION
While performing these measurements we observe an unusual pressure-dependence of
the amplitude of the resonator, as shown in Fig. 10.4 for the case of a neon atmosphere.
At the red dashed line in Fig. 10.4a-b it is observed that the magnitude of the response
is diminished and the motion changes phase by 180 degrees. From the amplitude A,
resonance frequency ω and quality factor Q, we can estimate the actuation force on the
resonator: F ∝ Aω2/Q, which is normalized to yield F = 1 at the lowest pressure. Fig.
10.4c, shows that F shows a minimum around 200 mbar and then increases again as
the pressure increases. The force even exceeds three times the force in vacuum at 1000
mbar. This result is unexpected since the force is coming from the thermal actuation of
the membrane. Since the conductance is expected to increase as a function of pressure
due to heat conduction through the gas, the temperature modulation should be lower at
higher pressures. Consequently, it is expected that the force decreases monotonically as
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Figure 10.4: Pressure dependence of the mechanical response in a neon environment. a Magnitude of the
transmitted signal as a function of pressure. The red dashed line marks the zero magnitudes as a guide to the
eye. b Phase of the transmitted signal as a function of pressure, the red dashed line indicates the phase shift
of 180 degrees, which coincides with the zero magnitudes. c The actuation force with respect to the force in
vacuum extracted from the fundamental resonance.

a function of pressure.

This effect can be explained if we assume that the gas in the squeeze-film is tempera-
ture modulated along with the membrane. Due to this temperature modulation, the gas
will expand which in turn results in pressure modulation. If the resonance frequency is
much higher than the inverse of the pressure relaxation time τP of the cavity ω¿ 1/τP ,
this pressure will actuate the membrane. We will measure τp to confirm this condition
is met as shown below. There are thus two distinct forces arising from the opto-thermal
drive: (1) the thermal expansion force in the membrane and (2) the pressure modulation
in the cavity.

The thermal expansion force can only actuate the membrane if we assume that the
membrane has some out-of-plane static deflection w0, which can be induced by the
wrinkles or other imperfections in the graphene membrane. If w0 is positive, the me-
chanical response is in-phase with the drive at low frequencies, while if w0 is negative,
the mechanical response will be 180 degrees out of phase with the optical drive. This
mechanism is confirmed by applying a pressure difference over a membrane without a
venting channel as shown in the Appendix A2. In this particular case, the membrane has
a positive w0, which means that an increase in temperature results in a downward net
force on the membrane. The gas expansion will, however, result in a net upwards force
as the temperature increases. These mechanisms are competing and around 200 mbar
both forces exactly cancel out, resulting in zero motion. As the pressure is increased fur-
ther, the gas expansion force dominates and the mechanical response is out-of-phase
compared to vacuum.

Further information on this mechanism can be found by examining the mechani-
cal response below the resonance frequency, to study the frequency-dependence of the
actuation force. As the blue laser heats up the membrane periodically we find that the
amplitude responds with a typical time delay τ≈ 70 ns, due to the time necessary for the
heat to diffuse through the membrane (see chapters 5 and 6) [60]. At frequencies below
the resonance frequency, we can approximate this response by:

zω = APacR

iωτ+1
= APacR

1− iωτ

1+ω2τ2 . (10.4)
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In Fig. 10.5a-f the real and imaginary part of the response are shown for different pres-
sures. We use only the imaginary part to find the time constant as the real part might be
affected by optical cross-talk. We observe a decreasing amplitude until the response is
almost flat at 257.7 mbar (Fig. 10.5d). As the pressure is increased, real and imaginary
part change their sign and the amplitude increases as a function of pressure.

Extracting the thermal time constant as a function of pressure in Fig. 10.5g, reveals
that the time constants in the high- and low-pressure regimes are different. At low pres-
sures, the thermal time constant is decreasing as a function of pressure. This decrease is
indicative of the Pirani effect, making conduction of heat in the gap pressure-dependent.
The additional conduction path decreases the time necessary to heat up the membrane,
thus decreasing τ. The distinct difference in time constant in the high-pressure regime
suggests that the underlying mechanism behind the actuation is indeed different from
the low-pressure regime because we would expect a monotonic decrease of τ as a func-
tion of pressure. Therefore, the time constant in the high-pressure regime is most likely
the pressure relaxation time of the cavity τp . Note that the two different values of the
time constants explain why the minimum in amplitude is not found at a fixed pressure
but is both pressure- and frequency-dependent as shown by the red dashed line in Fig.
10.4.

10.4. DISCUSSION
We observe that at high pressures the dimensionless stiffness becomes gas dependent
and is correlated to the density of the gas. Figure 10.1c shows that this occurs if the
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Reynolds number is close to 1. Most of the previously studied devices [59, 211, 213] op-
erate in the regime where Re ¿ 1, which means that the Navier Stokes equation reduces
to the Reynolds equation that neglects the inertial forces of the gas [43]. Neglecting the
inertial forces results in eq. 10.1, if the frequency is sufficiently high. The measurements
in Fig. 10.5g verify that the resonance frequency is sufficiently high since ωÀ 1

τp
. We

thus conclude that inertial forces cannot be neglected and this explains why eq. 10.1
fails to accurately describe the resonance frequency of the system. This is supported by
the continuum simulations which show similar effects as observed in the experiments.

The gas dependence of the frequency response has an important consequence on
the application of these membranes as pressure sensors. A squeeze film pressure sensor
is ideally only sensitive to the pressure according to eq. 10.1. Our results suggest that
the gas dependence is reduced if the Reynolds number Re ¿ 1. To obtain pressure sen-
sor functionality around a pressure of 1000 mbar, the gap size of the sensor should be
reduced since Re ∝ g 2

0 if the pressure dependence of ω is small. Including the pressure
dependence of ω and assuming the intrinsic stiffness of the device is small: Re ∝ g 3/2

0 .
In the Appendix A1, we show a second drum with a 4-micron diameter. This drum

shows significantly higher gas-dependence of the dimensionless stiffness, which can
be attributed to the higher vacuum resonance frequency since ω0 ∝ a−1. This yields
a higher Reynolds number and explains the larger deviations. Also, we observe that gas-
dependent deviations start at a lower Reynolds number around 0.1. This suggests that
a different dimensionless number might be more appropriate. For Re ¿ 1 the squeeze-
number σ is often employed [43] (chapter 9):

σ= 12µωa2

Pa g 2
0

, (10.5)

but this cannot be employed in this case since the Reynolds number is too high. Adapt-
ing the squeeze-number to include inertial effects in the gas flow could be more insight-
ful to accurately predict deviations from eq. 10.1 and include any size dependence of the
drum.

It should be noted that we should expect that ∆ = 1 at 1000 mbar, since we used
a reference pressure of 1000 mbar and a reference mass ρh of single-layer graphene.
However, we measured a significantly lower stiffness effect for all gases. It is thus very
likely, that the mass of these membranes is significantly higher, where a mass increase
with a factor of 25 would agree with our experimental results. Different works have mea-
sured the mass of single-layer graphene and in almost all cases it is significantly higher
than its theoretical value [11, 12, 62, 226, 227]. We also find strong indications that the
mass of these resonators is significantly higher in the outlook, although 25 times higher
seems too much to be explained by the preliminary measurements in chapter 13. High-
temperature annealing of the graphene was attempted to solve this problem, but this
results in failure of the suspended drums.

The increased mass of the membranes reduces the frequency shift, but reducing
the mass ρh will probably not result in the ultra-high frequency shift promised by eq.
10.1. Because of the high resonance frequency that should occur at high pressures, the
Reynolds number will be very high. This will result in the lower stiffness and gas depen-
dence observed in this work. Therefore, the optimal design of a graphene squeeze-film
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pressure sensor should use multi-layer graphene, to ensure that ω is not too high and
that Re ¿ 1 in the desired pressure range. In that respect, multi-layer graphene pressure
sensors could be closer to an optimal solution such as the wafer scale fabricated sensors
in chapter 13 [44]. Also, the tunable gap size of those sensors can be very useful to re-
duce inertial effects on the gas flow, since the Reynolds number reduces with a smaller
gap size.

10.5. CONCLUSION
We measure the effects of a thin layer of gas underneath a single layer graphene res-
onator. Due to the squeeze-film effect, the stiffness of the resonator increases as a func-
tion of pressure. This stiffness increase is linear and gas-independent at low pressures.
At high pressure above ∼100 mbar, the stiffness becomes sublinear as a function of pres-
sure and gas dependent. Gases with a high molecular mass show a lower stiffness effect
at high Reynolds numbers. The quality factor decreases strongly as a function of pressure
and shows a weak gas dependence. Gases with a low molecular mass show the highest
quality factor. Finally, we show that the squeeze-film effect can be used to actuate the
resonator by high-frequency modulation of the pressure in the gas film. Depending on
the configuration of the membrane, this force can counteract the thermal actuation of
the membrane and result in a stagnated motion at a certain pressure. Future work will
focus on characterizing, understanding and reducing the apparent higher mass of the
single layer graphene resonator. Also, further optimization of multilayer graphene sen-
sors can be performed to minimize inertial effects in the gas flow.
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Figure 10.6: Results on a different drum with a diameter of 4 micron. a,b Pressure-dependent dimensionless
stiffness for 8 different gases. c Dimensionless stiffness as function of Reynolds number, black lines indicate
certain constant pressures. d-e Quality factor of the fundamental resonance as function of pressure for 8 dif-
ferent gases. f Quality factor as function of Reynolds number, solid black lines indicate certain fixed pressures.

APPENDIX

A1: ADDITIONAL MEASUREMENTS

Figure 10.6 shows the pressure and gas dependence of the dimensionless stiffness of a 4
micron diameter drum. We observe in Figs. 10.6a and b that the dimensionless stiffness
is gas dependent and the gases with high molecular mass show low compression. The
stiffness of SF6 is significantly lower even at lower pressures. Plotting the dimensionless
stiffness as function of the Reynolds number shows that the transition occurs at lower
Reynolds number, as discussed above. The quality factor of resonance in Fig. 10.6d-e
shows similar behavior and values as the 5 micron drum. No significant deviations of
the quality factor are found once the Reynolds number is close to 1 (Fig. 10.6f).

A2: PHASE-DEPENDENCE OF THE MECHANICAL RESPONSE ON THE INITIAL

DEFLECTION

To show that the thermal actuation depends on the up-or-down configuration of the
membrane, we perform an experiment on a closed drum. Figure 10.7a shows the com-
plex amplitude of the membrane without pressure difference, due to the imperfections
in the membrane it is effectively deflected upward. Immediately after pressure is in-
creased to 200 mbar, the complex amplitude has changed sign (Fig. 10.7b), which cor-
responds to a 180 degrees phase shift. Due to leakage, the pressure difference over the
drum decreases, which is observed as a gradual decrease in amplitude in Figs. 10.7c-
d. The membrane passes through a flat configuration in Fig. 10.7e, where we observe
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Figure 10.7: Measurement with a pressure difference over a 5-micron diameter closed drum to show that the
thermal actuation depends on the configuration of the membrane. The insets show the configuration of the
membrane, each subfigure corresponds to a different time.

that the signal almost completely disappears. After a few seconds, in Fig. 10.7f the sig-
nal reappears with opposite sign. Gradually the amplitude of signal further increases
when the pressure difference decreases further (Fig. 10.7g). After a long time, the low-
frequency response is close to the original amplitude, but the resonance is damped due
to the gas that has permeated into the cavity (Fig. 10.7h). These measurements confirm
the mechanism for direct actuation discussed in chapter 7.

A3: SIMULATIONS
Figure 10.8 shows the simulations of the 31 layer graphene drum from chapter 9, we use
this sample as the mass of this membrane is well known. We consider an axisymmet-
ric domain around the center of the membrane (Fig. 10.8c) and calculate the resonance
frequency and quality factor of the fundamental mode. In the experiments a deviation
from eq. 10.1 was observed above 200 mbar. Both the continuum and the BTE model
correctly predict this deviation as shown in Fig. 10.8a. The quality factor shows reason-
able agreement with the experiments (Fig. 10.8b).
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Figure 10.8: Benchmark of the 3 theoretical models and experimental results on multilayer graphene. a Reso-
nance frequency as a function of pressure for a ∼31 layered device [59] with a 5-micron diameter in a nitrogen
environment. b Quality factor as a function of pressure for the ∼31 layer device. c Schematic of the domain
used for numerical simulations. For both the Navier-Stokes (NS) and Boltzmann Transport Equation (BTE)
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fully enclosed. For each of the pressures shown in a-d, the bounds on the exterior domain, R, and G , were
increased until a consistent frequency and quality factor was achieved. In the case of the BTE simulations,
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11
GAS OSMOMETERS

We show that graphene membranes that separate two gases at identical pressure are de-
flected by osmotic pressure. The osmotic pressure is a consequence of differences in gas
permeation rates into a few-layer graphene enclosed cavity. The deflection of the mem-
brane is detected by measuring the tension-induced resonance frequency with an interfer-
ometric technique. Using a calibration measurement of the relationship between the res-
onance frequency and pressure, the time-dependent osmotic pressure on the graphene is
extracted. The time-dependent osmotic pressure for different combinations of gases shows
large differences that can be accounted for by a model based on the different gas perme-
ation rates. In this way, a graphene-membrane based gas osmometer with a responsivity
of ∼60 kHz/mbar and nanoscale dimensions is demonstrated.

Parts of this chapter have been published in 2D Materials 4 (1), 011002 (2017) [58].
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Figure 11.1: a Schematics of a graphene-based osmometer. b Optical image of the graphene resonators pre-
sented in this study in Fig. 11.5. c Optical image of the graphene resonators presented in Fig. 11.6. d Atomic
force microscopy (AFM) trace corresponding to Fig. 11.1b, showing that the graphene resonator has a thick-
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G
RAPHENE in its pristine form is impermeable to gases [11]. However, when pris-
tine graphene is suspended over cavities in silicon dioxide, non-zero permeation
rates between the cavity and the environment have been measured [11]. The

permeation rate was found to depend on the type of gas even in pristine samples [35]
and graphene enclosed cavities can, therefore, be selectively-permeable. The leakage
between the cavity and its environment can be attributed to slow permeation through
the silicon dioxide layer [11, 228] or along the graphene-oxide interface. In addition,
selectivity has also been measured in thinly layered graphene membranes [229].

When a selectively-permeable membrane separates different gases, osmotic gas flow
causes a pressure difference across the membrane which is defined as the osmotic pres-
sure [230]. The high Young’s modulus [10] and low bending rigidity of graphene cause
a large pressure-induced frequency shift and deflection, which is beneficial for several
types of pressure sensors [33, 59, 231]. In this work, we combine the selective leak rates
that graphene-sealed cavities can exhibit with the excellent responsivity that suspended
graphene membranes show when subjected to a pressure difference. We use graphene
enclosed cavities which are selectively permeable to demonstrate osmotic pressure sens-
ing for several combinations of gases, creating a nanoscale osmometer. Due to osmosis
between the cavity and environment, it is observed that a pressure difference builds up
over the membrane, even though the pressure on both sides is equal at the start of the
experiment. This shows that these systems respond to changes in gas composition in
the environment.

11.1. FABRICATION AND CALIBRATION OF OSMOMETERS
Graphene membranes are suspended over cavities etched in thermally grown silicon
dioxide. A schematic device cross-section is shown in Fig. 11.1a. A few-layer graphene
flake with varying thickness is exfoliated from natural graphite. The flake is transferred
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Figure 11.2: Laser interferometer setup (left-hand side of the figure) used to detect the resonance frequency
and the vacuum chamber with the most important components for flushing the system at constant pressure
(right-hand side of the figure).

by a deterministic dry-transfer method [56] to enclose cavities with a diameter of 3 µm
(Fig. 11.1b–e, see also chapter 3 for the fabrication method). It is found that such a de-
vice creates a selectively permeable system, without any further processing necessary.

The pressure difference across the membrane can be determined using the mem-
brane’s resonance frequency [11, 35, 59], measured by the interferometric setup shown
in Fig. 11.2a [67, 68]. A modulated blue laser provides opto-thermal actuation, while
a red laser is used for interferometric readout of the deflection. A vector network ana-
lyzer (VNA) probes the mechanical frequency response of the membrane (Fig. 11.2b).
The sample is mounted in a vacuum chamber with optical access and a dual valve pres-
sure controller is used to keep the pressure in the chamber (pext) constant throughout
the experiment. A line to the vacuum pump is connected to the chamber with a flush
valve. The gas in the chamber is changed by switching the gas supply line and opening
the flush valve. A needle valve restricts the flow to minimize pressure drops between the
controller and the chamber. This prevents membrane deflections due to changes in pext.

Previous methods to extract the pressure difference from the resonance frequency of
the membrane rely on the knowledge of the mechanical properties as mass and Young’s
modulus and the application of equations governing the membrane behavior [11]. These
are difficult to obtain experimentally. Instead, we determine the pressure difference over
the membrane by a calibration procedure (Fig. 11.3) from which the relation between
pressure difference and the resonance frequency is directly determined. The procedure
works as follows; first, the membrane is kept in pext = 0 until the pressure difference is re-
laxed, which gives the first calibration point (green hexagon in Fig. 11.3c). By increasing
the pressure in the chamber rapidly, the membrane will deflect downwards and there-
fore the pressure difference becomes negative. The immediate change in resonance fre-
quency gives a calibration point at negative pressure (Fig. 11.3, point A). Due to the gas
leakage, the pressure over the membrane will equilibrate, the frequency is measured at
this point to quantify the squeeze-film effect (see Appendix A2). After this, the cham-
ber is rapidly evacuated to pext = 0. Since the membrane will deflect upwards in that
case, a calibration point for positive pressure difference is obtained (Fig. 11.3, point
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Figure 11.3: Calibration method to extract the relation between pressure difference and frequency. This fig-
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frequency versus time when the external pressure is varied as shown in figure b. c The calibration curve for
drum 3 resulting from the calibration procedure; the hexagon represents the calibration point of the relaxed
membrane at a pressure difference of zero and pext = 0.

B). By repeating this procedure for different pressures, the relation between frequency
and pressure difference is obtained as shown in Fig. 11.3c. Using this relation the time-
dependent osmotic pressure can be determined in the experiments, without having to
rely on knowledge of the mechanical properties of the graphene membrane itself.

It is important to note that from Fig. 11.3c, it is observed that the minimum in fre-
quency does not correspond to a pressure difference of zero, but is shifted towards neg-
ative pressure differences and is around -100 mbar in this case. This is not in agreement
with the conventional theory which predicts a symmetric response around ∆p = 0. The
cause of this effect is unknown, however, we take advantage of this since it allows us to
distinguish between positive and negative pressure differences as shown in section 11.3.
From the calibration curve, it is further concluded that this graphene-based osmome-
ter has an average responsivity of approximately 60 kHz/mbar over the entire pressure
range.

11.2. EXPERIMENTAL PROCEDURE
In the experiment, the gas outside the cavity is changed, while the pressure outside
the cavity pext is kept constant. Deflections of the membrane due to external pressure
changes are avoided and changes in the pressure difference ∆p = pint − pext across the
membrane should be attributed to changes in the internal pressure pint.

Figure 11.4a shows the measurement procedure for studying the time dependent os-
motic pressure across the membrane. The sample is kept for a long time (at least 1.5
hours) at a constant pressure in gas 1 (red), such that the internal and external pres-
sure equalize pext = pint (Fig. 11.4a1). The external gas 1 is replaced by gas 2 (green
molecules) while keeping the pressure pext constant (Fig. 11.4a2,3). This replacement is
done rapidly to ensure that gas 1 remains present in the cavity at the same partial pres-
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sure as gas 2 in the vacuum chamber (p1,int = p2,ext). If the leak rate of gas 2 is higher
than that of gas 1, gas 2 has a higher flux into the cavity than gas 1 flows out of it. Since
the pressure inside the cavity is the sum of the partial pressures of gas 1 and 2, a positive
pressure difference ∆p arises that is the osmotic pressure (Fig. 11.4a4). Subsequently,
gas 1 will leak out of the cavity at a slower rate (Fig. 11.4a5) until gas 1 fully disappears
and the pressure difference returns to zero ∆p ≈ 0 (Fig. 11.4a6).

In a subsequent measurement gas 2 can be replaced by gas 1 in a similar manner
which leads to the sequence shown in Fig. 11.4d. The main difference is that in this
case a negative pressure difference ∆p arises. Since the gas leakage has an exponential
time dependence (see Appendix A5) the pressure difference versus time ∆p(t ) can be
expressed by the partial pressure differences (∆p1 and ∆p2) for each gas as a function
of time: ∆p1 = p0e−t/τ1 and ∆p2 = −p0e−t/τ2 . Combining these equations gives for the
total pressure difference:

∆p(t ) =∆p1 +∆p2 = p0(e−t/τ1 −e−t/τ2 ), (11.1)

where p0 is the constant pressure in the environment, τ1,2 are the leak-time constants
inversely proportional to the permeability of gas 1 and gas 2, respectively. The expected
time dependence of the osmotic pressure ∆p between two gases 1 and 2 with leak rates
τ2 and τ1 as described by eq. (11.1) is depicted in Fig. 11.4b,c.
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Figure 11.5: Measurement of the osmotic pressure between argon and nitrogen for drum 3 (Fig. 11.1b). a)
Intensity plot of the frequency response function when nitrogen is replaced by argon in the chamber. White
points show the extracted resonance frequency obtained from the fits. b) Osmotic pressure extracted from
the experiment in Fig. 11.5a, fitted by a time-shifted version of eq. (11.1). c) Intensity plot of the reverse
experiment, where argon gas was replaced by nitrogen. d) Extracted osmotic pressure from the experiment in
Fig. 11.5c. The fit from Fig. 11.5b is plotted with opposite sign.

11.3. RESULTS

Figure 11.5 shows the results of an experiment where nitrogen gas was replaced with
argon gas and vice versa, at a constant chamber pressure of pext = 1000 mbar. The res-
onance frequency is found by fitting the data to the frequency response function (Fig.
11.2b), which in turn yields the time-dependent resonance frequency. To extract the os-
motic pressure from the experiment, we use the frequency-pressure difference relation
shown in Fig. 11.3c.

Figure 11.5a,c show the intensity plots of the frequency response function as func-
tion of time. White points indicate the resonance frequencies determined by the fits.
The strong difference between the two curves is a consequence of the shifted calibration
curve, which allows us to distinguish between positive and negative osmotic pressure.
Therefore, from Fig. 11.5a we can conclude that argon was permeating into the cavity
faster than nitrogen could escape, creating a positive pressure difference. In Fig. 11.5c,
the frequency passes through a minimum twice; a clear indication that a negative pres-
sure difference has formed over the membrane. In this case, argon was escaping the
cavity faster than nitrogen could enter. From the time-dependent resonance frequency
and the calibration curve in Fig. 11.3c, the time-dependent osmotic pressure can be ex-
tracted as shown in Fig. 11.5b,d. Equation 11.1 (adapted to include a time shift between
the start of the measurement and the gas being replaced) is fitted against the data in
Fig. 11.5b to extract the leak time-constants of the gases [232]: τN2 = 19 s and τAr = 8 s.
The osmotic pressure as a function of time from this fit is plotted in Fig. 11.5d in good
correspondence to the measurement result of the reversed experiment. This agreement
between both experiments demonstrates that the osmotic pressure reverses sign when
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Figure 11.6: a) Measurement sequences as in Fig. 11.4a for 6 different gas combinations on a 5 nm thick drum
(Drum 1) measured at 500 mbar. b Leak time constants τ extracted for 4 different gases using the fits in Fig.
11.6a using two different 5 nm thick drums. Drum 2 is measured at 1000 mbar. An optical image of both drums
is shown in Fig. 11.1c. c) Normalized leak rates calculated from the leak time constants in Fig. 11.6b.

interchanging the gases in the experiment.
Figure 11.6a shows the experimental osmotic pressure versus time for different gas

combinations, extracted using the same method as in Fig. 11.5 but on a different drum.
Experiments were carried out with helium, argon, carbon dioxide and nitrogen gas. Equa-
tion 11.1 is fitted to all the 6 osmotic pressure curves to extract the leak time constants
as shown in Fig. 11.6b. A factor of 10 difference is observed in the leak time constant
of helium compared to that of nitrogen gas. Also, the time constant of nitrogen is higher
in these samples than the thinner sample shown in Fig. 11.5. Besides thickness, the
presence of crystal defects and wrinkles might be responsible for the observed leak rate
differences.

11.4. DISCUSSION
It is important to note that the presented experiments cannot determine the exact leak-
age path of the gas molecules into the graphene cavity, although the results do allow to
exclude some possible causes. If pores are present that are much larger than the molecu-
lar size, Graham’s law for effusion predicts leakage rates to be proportional to the square
root of the molecular mass (τ1/τ2 ∝

p
M1/M2). However, it is observed that carbon diox-

ide and helium have almost the same leak rate, despite their large difference in molecu-
lar mass. On the other hand, carbon dioxide has a larger mass than nitrogen, but a lower
leak rate, again inconsistent with Graham’s law for effusion. From this, we conclude that
in this study the leakage is not dominated by effusion through pores slightly larger than
or comparable to the molecular size of the gases. For example, permeation across pores
much larger than the gas molecular dimension but smaller than the gas mean free path
has been investigated by Celebi et al. [37], who found that Graham’s law does hold true
in that case.
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Looking at the leak rates for the different gases in Fig. 11.6b, it is found that they
follow the order of the kinetic diameters d of the gases: (dHe = 260 pm, dCO2 = 330 pm,
dAr = 340 pm, dN2 = 364 pm). Thus, gases with a kinetic diameter larger than ∼330 pm
have a lower leak rate than gases with a kinetic diameter smaller than ∼330 pm as shown
in Fig. 11.6c. This kind of selectivity in leak rates is similar to the one observed by Koenig
et. al. [35] in pristine graphene, although the leak rates observed here are higher. Other
research [229] suggests transport could take place between the layers, also resulting in
selective gas transport.

If the gas selectivity of the graphene enclosed cavities can be understood and engi-
neered to a larger degree, for example by creating pores of controlled size [35, 38, 40,
233, 234], multiple semi-permeable membranes can be used for gas analysis. This can
be achieved by filling these systems with a known gas and subsequently monitoring their
time-dependent osmotic pressure while exposing them to an unknown gas mixture.

In this work, we show results of graphene drums fabricated from natural graphite.
These samples showed relatively high lake rates, which allowed repeating the experi-
ment with different gases in a reasonable time span of a few hours. However, in the Ap-
pendix A1, we show that we can also measure osmosis between cavities sealed by 31 lay-
ers of graphene (sample from chapter 9) and in cavities sealed by single-layer graphene
grown by chemical vapor deposition. These samples also show selective leakage without
any processing necessary, demonstrating that our method can be widely applied.

11.5. CONCLUSION
We have demonstrated osmotic pressure sensing with graphene enclosed cavities. The
osmotic pressure is a consequence of differences in the molecular leakage rate, which
reduces with increasing kinetic diameter, resulting in a spontaneous flux of gas against
the pressure gradient. Due to the high flexibility and Young’s modulus of graphene, the
responsivity of the graphene osmometer is as high as 60 kHz/mbar. We show that these
systems are thus able to detect changes in gas composition in its environment, even
when the pressure in this environment is kept constant.
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APPENDIX

A1: MEASUREMENTS OF OSMOTIC PRESSURE WITH SINGLE-LAYER GRAPHENE

AND KISH-GRAPHITE
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Figure 11.7: Experimental results showing osmosis in a 31-layer KISH graphene sample. Because of the large
time-scale of leakage, the experiment was not repeated with all the gases.

The results presented in the main text show three drums resonators fabricated from
natural graphite. These could be calibrated easily since their relatively high leak-rate
made it possible to perform the calibration and repeat the measurement with different
gases in a reasonable timescale. Here we want to point out that the time-dependent
osmotic pressure is an effect that could be reproduced in many graphene-sealed cavities.
In Fig. 11.7, we show results on a sample that consists of 31 layers of graphene exfoliated
from KISH graphite.

In addition, we show results of single-layer graphene membranes (Fig. 11.8), how-
ever, these samples are significantly affected by drift. This makes it hard to calibrate and
determine the pressure difference during the experiment. In addition, single-layered
graphene membranes are more susceptible to the squeeze-film effect. From the data,
it is clear that the system shows a selectivity between carbon dioxide and helium. This
is already different from the case of natural multi-layer graphene, where no selectivity
between these gases is observed.

A2: SQUEEZE FILM EFFECT

Due to the squeeze film effect, it is expected that the resonance frequency is also a func-
tion of the pressure pint inside the cavity [59], even at ∆p = 0. To examine this effect, the
calibration procedure can be used. When a certain pressure step is applied, we wait long
enough for the pressure difference to become close to zero. This gives the calibration
curve for the squeeze film effect as shown in Fig. 11.9 for drum 3. These curves show
that the frequency shifts cannot fully be attributed to pressure differences ∆p that in-
duces tension to the membrane but are also partly caused by the squeeze film effect that
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Figure 11.8: Experimental result showing osmosis with carbon dioxide being replaced with helium. The 4 µm
diameter cavity is sealed with single-layer graphene grown by chemical vapor deposition.
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Figure 11.9: Gas and pressure dependence of the frequency at a pressure difference of zero for drum 3.

A3: FULL RAW DATASET OF DRUM 3 IN THE MAIN TEXT
Figure 11.10 shows the full dataset of the drum presented in Fig. 4 in the main text.
This was measured using the calibration procedure, by taking the frequency when the
membrane is fully relaxed (∆p = 0). This gives the result shown in Fig. 11.9.

A4: FULL RAW DATASETS OF DRUM 1 AND 2 IN THE MAIN TEXT
Figure 11.11 shows the full raw dataset for drum 1 in the main text and Fig. 11.12 for
drum 2. For both experiments, the figures on the top right show negative pressurer dif-
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Figure 11.10: Full raw dataset corresponding to the drum in Fig. 11.5 in the main text, measurements between
argon and nitrogen are presented in the main text.

ference while the bottom left figures show positive pressure difference. The nomencla-
ture ”Gas 1 to Gas 2” means that Gas 1 is initially in the chamber and cavity and the gas
in the chamber is replaced by Gas 2.

A5: MATHEMATICAL DERIVATIONS

Dalton’s law states that for a mixture of gases the total pressure ptot is equal to the sum
of the partial pressures of the individual components:

ptot = p1 +p2, (11.2)

where p1 is the partial pressure of gas 1 and p2 the partial pressure of gas 2. This al-
lows us to calculate the pressure inside the cavity. Leakage between the cavity and the
environment can be modelled using the equation:

d∆pi

dt
=− 1

τi
∆pi , (11.3)

where ∆pi the partial pressure difference of gas i over the membrane and τi represents
the leak time constant of that gas.

If it is assumed that the mixture of gases is ideal, according to eq. 11.2 we can also
describe the permeation by the partial pressure differences between the cavity and sur-
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Figure 11.11: Full raw dataset for drum 1 in the main text, measurement was performed at constant 500 mbar
chamber pressure.

roundings. Therefore we can write:

d∆p1

dt
=− 1

τ1
∆p1, (11.4)

d∆p2

dt
=− 1

τ2
∆p2. (11.5)

These equations have the following solutions:

∆p1(t ) = k1e−t/τ1 = p1,int −p1,ext, (11.6)

∆p2(t ) = k2e−t/τ2 = p2,int −p2,ext. (11.7)

Now we assume the initial conditions of the experiment. At t = 0 the cavity is filled with
pure gas 1 and the outside with pure gas 2 at pressure p0. Substituting t = 0 into both
solutions gives that ∆p1(0) = k1 = p0 and ∆p2(0) = k2 =−p0. Adding the partial pressure
differences over the membrane according to eq. 11.2 gives the total pressure difference
as function of time:

∆p(t ) = p0e−t/τ1 −p0e−t/τ2 = p0(e−t/τ1 −e−t/τ2 ) (11.8)

We use eqs. 11.4–11.5 to calculate the normalized leak rate 1
∆pi

dni
dt . This indicates the

number of moles ni of gas that passes through the membrane every second for a certain
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partial pressure difference . By assuming that the volume V is constant we obtain the
expression:

1

∆pi

d∆pi

dt
=− 1

τi
, (11.9)

1

∆pi

∂ni

∂t
= 1

τi

V

RT
, (11.10)

where R is the universal gas constant and T the absolute temperature (293.15 K). This is
used to calculate the normalized leak rate in Fig. 11.6c in the main text.





12
SUSPENDED GRAPHENE

DEFLECTED BY OSMOTIC PRESSURE

Semi-permeable graphene membranes are of considerable interest for water purification
and energy generation. Here, we demonstrate that a graphene membrane sealing a cavity
with a volume of only a few femtoliters can be deflected by osmotic pressure. Using atomic
force microscopy in water we can detect the exponentially time-dependent deflection that
occurs once the sucrose concentration in the environment is changed. Thus demonstrating
that the osmotic pressure of a sucrose concentration gradient can be detected by monitor-
ing the deflection of graphene membranes.

Parts of this chapter consists of an article in preparation [235].
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I
MPLANTABLE glucose sensors for continuous monitoring of blood sugar levels for di-
abetes patients is a long-sought goal [236, 237]. One development in this direction
is the use of micro-electromechanical systems as osmotic pressure sensors. These

combine a piezoresistive pressure sensor with a semi-permeable membrane to detect
the osmotic pressure from the surrounding environment, from which the glucose level
of the patient can be determined [238]. Such a design has the major advantage that it
can operate without the use of enzymes, which are highly sensitive but also susceptible
to environmental instabilities such as temperature, humidity, pH-level, ionic detergents,
and toxic chemicals [239, 240]. However, the requirement of a separate semi-permeable
membrane and pressure sensor makes the implementation of these devices complex
and the device itself is relatively large: in the order of millimeters. In addition, obtaining
high selectivities of glucose remains challenging in this type of sensor.

Here, we propose an implementation of the osmotic pressure sensor using graphene-
sealed femtolitre cavities. Graphene is a single layer of carbon atoms strongly bonded in
a hexagonal lattice [2], with superior chemical stability [241]. The ability of graphene
to support subnanometer pores while retaining its high mechanical strength [220, 242],
makes it a very promising material for a selectively permeable membrane with high
throughput. This has attracted considerable attention for macro-scale applications such
as water purification [39–41, 233, 234, 243–247] and gas separation [36, 37, 229, 248].
On the microscale, selective permeation has been proposed for gas sensing applica-
tions [35]. Osmotic gas pressure sensors based on semi-permeable graphene-sealed
cavities have been proposed in chapter 11, that can determine the gas composition in
their environment [58]. In this concept, the graphene membrane is used as both the
semi-permeable membrane and the pressure sensor element. The realization of such a
concept in liquids can result in a compact and cost-effective osmotic pressure sensor.
With the ability to tune pores to realize different selectivities, in particular towards ionic
solution [38, 233, 249], the applications could reach far beyond glucose monitoring.

By employing atomic force microscopy in a liquid cell, we demonstrate the feasibility
of experiments to characterize the deflection of a graphene membrane fully submerged
in water. We show that suspended graphene membranes sealing a cavity can be de-
flected by osmotic pressure, caused by a concentration difference of sucrose in solution
between the cavity and its surroundings. The results thus provide a viable route for the
development of osmotic pressure sensors to analyze the concentration of solutes in liq-
uids.

12.1. EXPERIMENTAL SETUP
We demonstrate the detection of osmotic pressure using cavities sealed with single-layer
graphene grown by chemical vapor deposition. The steps taken for sample preparation
are shown in Fig. 12.1. Fabrication starts with a silicon chip with a layer of 300 nm of
thermally grown silicon dioxide. Circular cavities were patterned using electron beam
lithography and etched in the oxide layer using reactive ion etching. A sheet of single-
layer graphene grown by chemical vapor deposition (CVD) was transferred over the chip,
protected by a water-soluble polymer. This polymer is dissolved in water, after which the
sample is never dried. The sample is stored in deionized water for at least three weeks
before the experiment was started, in order to allow the water to permeate into the cav-
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Figure 12.1: Illustration of the steps taken to prepare the sample for the experiment.
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Figure 12.2: Measurement setup to detect the deflection due to osmotic pressure over the graphene membrane.

ities and to let the gas in the cavity permeate out and dissolve in the water. This simple
approach indeed resulted in cavities filled with water in two out of the four samples that
were fabricated, even when the graphene membrane completely seals the cavity. No
effort was made to create pores in the graphene since we found that this fabrication pro-
cess already resulted in a selectively permeable system.

The deflection of the membranes is measured using atomic force microscopy in a
liquid cell shown in Fig. 12.2. The sample is carefully removed from the container before
the experiment, making sure that a droplet of water remains on the center part of the
chip and the cavities remain fully submerged under water. The sample is moved to an
atomic-force microscope with a flexible silicon-rubber liquid cell. The chip forms the
bottom of the liquid cell, while the rubber encapsulation of the liquid cell ensures the
chip remains fully emerged in water during the experiment. The AFM scans over the
surface until a suspended graphene drum is found that fully covers the cavity. The liquid
cell is accessible by two flexible tubes, which can be used to flush the cell with a solution.
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Π

∆Phydr

Φwater

nmem

a b

Figure 12.3: Illustration of the forces on the membrane: a immediately after increasing the sugar concentration
in the environment and b in thermodynamic equilibrium.

A syringe with a sucrose solution of a well-known concentration is connected to one of
the tubes and the system is carefully flushed with the solution to change the osmotic
pressure in the environment. If care is taken during this step, the AFM can remain in
contact with the substrate and continue scanning, although there will be some mechan-
ical disturbance visible in the scan. After flushing, the AFM continues to scan the drum
in order to measure the deflection due to osmotic pressure.

We expect that the graphene-sealed cavity will be permeable to water due to the
very small kinetic diameter (2 angstrom) of water particles, which allows it to permeate
through several possible mechanisms. The first possibility is through the small intrin-
sic defects in the CVD-graphene sheet, second is the wrinkles of the graphene on top of
the silicon dioxide and third through the SiO2-graphene interface. Sucrose in a water
solution has a kinetic diameter of 9 angstroms [250], causing it to diffuse much slower
through these (sub)nanometre-scale defects in the graphene. If the graphene-sealed
cavity is fully impermeable to the sucrose-particles and fully permeable for the water
particles, the concentration inside the cavity will remain zero and the osmotic pressure
is given by van ‘t Hoff’s law [230]:

Π= kB T cs , (12.1)

where kB is Boltzmann constant, T is temperature and cs the concentration of sucrose
in the liquid cell environment.

To explain what happens during the experiment, we consider the system being in the
water for a long time. Figure 12.3a shows the forces on the membrane immediately after
the environment is flushed with a solution. The solutes cause an osmotic pressure on
the membrane pushing it downwards. However, the water in the cavity is incompress-
ible, causing it to build a compressive hydraulic pressure in the cavity exactly equal to the
osmotic pressure. The fluid in the environment has no hydraulic pressure, thus there is a
difference in pressure ∆Phydr between the water inside the cavity and outside the cavity.
This hydraulic pressure difference drives the flux of waterΦwater from the cavity through
the possible pathways between the cavity and the environment. This reduces the vol-
ume of the cavity, causing the membrane to deflect downwards thereby tensioning the
membrane. The tension in the membrane nmem causes a force upwards that exactly
compensates for the loss of hydraulic pressure in the cavity. The system finally reaches
thermodynamic equilibrium when the hydraulic pressure difference is exactly zero and
the upwards force due to the tension in the membrane exactly compensates for the to-
tal force induced by the osmotic pressure difference (Fig. 12.3b). Note that throughout
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Figure 12.4: Time-dependent deflection of a 3.4-micron diameter graphene drum subjected to 10 kPa of os-
motic pressure. a Height scans of the drum at different times, flushing with a sucrose solution withΠ= 0.1 bar
starts at t = −2 min and ends at t = 0 min. b Deflection distribution for all the scans in the experiment, only
the part of the distribution with deflection less than 10 nm is used to calculate the average drum deflection.
c Average deflection of the membrane as a function of time. A model with an exponential time constant (eq.
12.2) is fitted to the experimental data.

this entire process the system was out of thermodynamic equilibrium, but remained in
mechanical equilibrium.

12.2. RESULTS
Figure 12.4a shows the height profile of a 3.4-micron diameter drum during the exper-
iment. At t = −5 minutes the chip has been in DI-water for three weeks. Flushing with
a sucrose solution (Π = 0.1 bar) starts at t = −2 min and ends at t = 0 min, during the
flushing the AFM tip remains in contact with the substrate, but a significant amount a
mechanical disturbance is present and these scans are therefore omitted. The first scan
after the flush ends at t = 3 mins, the difference between this scan and the scan at t =−5
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Figure 12.5: Experimental result on a different drum. a Height scan of the drum before flushing (the colorbar
is the same as b). b Height scan 12 minutes after flushing the liquid cell with a sugar solution (Π= 0.25 bar)). c
Height distribution before and after flushing.

min is small. Over time the membrane steadily deflects downwards as expected for os-
motic pressure. It can be seen that the deflection is not uniform, suggesting that the ten-
sion distribution in this membrane is not uniform, similar to what was found in other
works [67].

The height maps were used to calculate the average deflection of the drum over time
as shown in Figure 12.4b,c. All height maps were corrected for tilt using the substrate
next to the drum, whose height was set to zero. A histogram of the deflection distri-
bution (Fig. 12.4b) reveals a peak near 0 nm that can be attributed to the silicon oxide
surface. Even in the initial scan without osmotic pressure difference, the membrane is
already deflected downwards, mainly due to ∼19 nm of sidewall adhesion at the edge of
the drum. The average deflection of the membrane is therefore calculated by integrat-
ing the histogram using only the deflections below -10 nm since these deflections can
be attributed to the suspended graphene drum. The non-uniformity of the drum deflec-
tion is prominently visible in the histogram: as the hydrostatic pressure over the drum
increases, multiple peaks start to appear in the deflection distribution.

Figure 12.4c shows the calculated average deflection of the drum as function of time.
In agreement with Figs. 12.4a-b the average deflection shows the membrane is grad-
ually moving down over time, indicating that water permeates out of the cavity due to
the osmotic pressure as expected. Since the water permeation is a diffusive process, an
exponential time-dependency of the average deflection is expected. The average deflec-
tion δ as function of time t is therefore fitted with an exponential function:

δ= δend + Ae−t/τ, (12.2)

where δend is the equilibrium position of the membrane under osmotic pressure, A the
difference between initial and end position, and τ the leak time constant. The fit is in
reasonable agreement with the experiment and we find δend = −40 nm, A = 21 nm and
τ= 1.8×103 s.

12.2.1. RESULTS ON A DIFFERENT DRUM
Figure 12.5 shows the experimental results on a second 3.4-micron drum. This drum
shows clear wrinkles over the surface of the drum, which remain after flushing. The
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membrane is slightly deflected upwards in Fig. 12.5a and shows the expected down-
wards movement after flushing (Fig. 12.5b), which can also be deduced from the height
distribution in Fig. 12.5c. Time-dependent deflection was not studied in this drum, be-
cause the AFM lost contact with the substrate during the flushing. Figure 12.5b shows
the first scan after re-approaching the surface. No significant change in deflection was
detected after this scan, indicating that this drum permeates significantly faster than the
drum in Fig. 12.4 and already reached equilibrium, perhaps due to additional perme-
ation channels induced by the wrinkles. The average deflection is not calculated in this
drum since the drum is initially deflected upwards and due to the wrinkles. This made it
impossible to define a threshold and separate the substrate from the drum in the height
distribution (Fig. 12.5c).

12.2.2. COMPARISON TO THEORY
It is interesting to compare the measured deflections to the expected deflection based
on membrane theory. For the drum in Fig. 12.4 the total change in average deflection
δavg due to the osmotic pressure difference is δavg = A = 21 nm. To see whether this is
reasonable, we compare this result to well to the expected deflection from theory. The
relation between the pressure difference over the membraneΠ and the center deflection
δ0 is [11, 143]:

Π= 4n0δ0

a2 + 8Ehδ3
0

3a4(1−ν)
, (12.3)

where E is the Youngs modulus, h is the thickness, n0 the pretension, a the radius and ν
the Poisson ratio. Ignoring the pretension, we can write for the average deflection of the
membrane (δ0 = 3δaverage):

δaverage =
(
Πa4(1−ν)

72Eh

)1/3

, (12.4)

now taking the membrane radius a = 1.7 µm, Eh = 340 N/m and ν = 0.165 we expect
δaverage = 14.2 nm. We measure a larger average deflection of 21 nm, thus the membrane
is more compliant than expected from theory. Assuming Eh = 100 N/m yields the correct
average deflection difference of 21 nm. A lower Youngs modulus has been observed in
other works [48, 251, 252]. It should however be considered that our deflection shape
deviates a lot from the ideal spherical blister, which is likely to impact our result as well.

For the drum in Fig. 12.5 we expect from eq. 12.4 an average deflection of δaverage =
19 nm assuming Eh = 340 N/m. While we cannot exactly calculate the average deflection
in Figure 12.5c, we can estimate that this corresponds more to the maximum deflection
of the membrane and the average deflection should be significantly less than 19 nm.
Thus, in contrast to the drum in Fig. 12.4, the drum in Fig. 12.5 is less compliant than ex-
pected from theory. This may be attributed to the wrinkles that are prominently present
in this membrane, which acts as scaffolds to increase the stiffness.

12.3. DISCUSSION
We have demonstrated the mechanical characterization of suspended graphene mem-
branes fully submerged in water. While the deflection of the membrane due to osmotic
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pressure could be readily detected, it proved challenging to repeat the experiment with
different concentrations. The main limitation is the formation of bubbles when syringes
containing the solution are exchanged. If these bubbles reach the substrate with the sus-
pended graphene structures, the water meniscus causes the AFM tip to lose contact with
the substrate and causes rupture of graphene drums. In order to fully test the potential
of these systems as osmotic pressure sensors, the setup needs to be improved to prevent
bubble formation. Alternatively, the membranes itself could be made more robust by
employing few-layer graphene membranes instead of single-layer graphene. The latter
could also be important to improve sensor reliability in commercial applications. Future
work can address these issues and the concentration-dependence of the deflection can
be studied.

The drawback of current osmotic pressure sensors is the limited selectivity of the
device to the solutes in the surrounding. Therefore, current MEMS implementations
of the osmotic pressure sensors employ enzymes to improve selectivity, but this makes
the sensor highly sensitive to environmental factors such as temperature, pH-level, and
toxic chemicals. Graphene presents an exciting opportunity as several works have shown
that selectivity between ionic solutes can be achieved by tuning the pore sizes in the
membrane [38, 233, 249]. By employing several drums in parallel with different pores,
one could achieve better glucose selectivity by using one membrane with larger holes to
measure the ionic contribution to the osmotic pressure. Introducing pores will certainly
improve the response time of the device, which is currently in the order of hours or tens
of minutes, but should be in the order of seconds for commercial applications. Efforts to
achieve a more homogeneous tension-distribution in the membrane will help to achieve
a more uniform response from device-to-device.

While liquid-cell AFM has proven to be a suitable method for the readout of the
membrane’s deflection, commercial sensor applications require on-chip electrical read-
out of the deflection. Readout of the resonance frequency, which was highly sensitive
in gas osmometers [58], is not an option in liquids due to the large dissipation forces.
Static capacitive readout of single graphene drums has recently been demonstrated in
graphene pressure sensors [45] and could work in this system if the cavity remains free
of ionic solutes.

12.4. CONCLUSION
We demonstrate that graphene membranes that seal a cavity are deflected by osmotic
pressure induced by a sucrose solution. This deflection is characterized by atomic force
microscopy in water, providing the first mechanical characterization of graphene in a
liquid environment. When the concentration of sucrose in the surroundings is changed,
the membrane deflects downwards with an exponential time-dependency due to the
osmotic pressure difference. Future directions can focus on improvements in the mea-
surement setup to reduce bubble formation, tuning the selectivity of permeation by fab-
ricating nanopores, achieving a more uniform tension distribution in the membrane and
on-chip electronic readout strategies of the sensor.
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13
OUTLOOK

This chapter gives a brief overview of continued projects and research that builds on the
work in this thesis. First, we discuss the efforts to characterize the mass of graphene. After
this, the progress on the wafer-scale integration of squeeze-film pressure sensors is shown,
followed by the Pirani pressure sensor and the effusion-based gas sensor. The last section
of this chapter shows continued work on the nonlinear dynamics by showing the initial
results on quasiperiodic attractors in nonlinear graphene resonators.
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13.1. CHARACTERIZING THE MASS OF GRAPHENE RESONATORS

I
N chapter 10 we find that the frequency shift due to the squeeze-film effect is much
lower than expected, for which the most simple explanation is that the mass of the
resonator is much higher than expected. Previous works have estimated the mass

by applying a large out-of-plane load to the membrane and tracking its resonance fre-
quency [11, 12, 62, 226, 227], in almost all cases it was found that the mass of the mem-
brane is significantly higher than the theoretical mass of graphene (ρh = 7.7×10−7kg/m2).
The experimental result on the squeeze-film pressure sensors in chapter 10 shows the
need to characterize the mass of the single-layer graphene resonators for sensor appli-
cations.

13.1.1. LARGE DEFLECTION METHOD
Most works apply a large out-of-plane force to the graphene membrane and use the fol-
lowing theory to compare the experimental results to the frequency shift, for a circular
membrane:

ω0 = γ0

a

√
n0 +n(δ0)

ρh
, (13.1)

where n(δ0) is the additional tension due to the out-of-plane deflection δ0 and n0 the
pre-tension. From the experimental frequency shift one can then derive the mass if one
can apply a model for n(δ0). For the first mode of a circular membrane subject to gas
pressure ∆p and assuming the deflection shape has a constant curvature:

ω0 = 2.4048

a

√
n0

ρh
+ 2Ehδ2

0

3a2(1−ν)ρh
(13.2)

Where δ0 is the new static position due to the pressure, E is the Young’s modulus and ν
the Poisson ratio. δ0 can be related to ∆p using:

∆p = 4n0δ0

a2 + 8Ehδ3
0

3a4(1−ν)
. (13.3)

While simply adding the tension seems reasonable at first in eq. (13.1), we have to con-
sider that the system is nonlinear. The derivation above essentially linearized the prob-
lem aroundδ0 = 0. However to find the resonance frequency, one should linearize around
the new static equilibrium position of the membrane. Doing this while assuming con-
stant curvature results in [254]:

ω0 = 2.4048

a

√
n0

ρh
+ 2Ehδ2

0

a2(1−ν)ρh
. (13.4)

Note, that incorrectly taking into account the nonlinearities in the system results in a un-
derestimation of the mass by a factor of 3. Similar underestimations have been made by
using an electrostatic gate. Further drawbacks of this method is that the force and elastic
properties of the membrane have to be well-known, which means additional character-
ization is necessary. We thus prefer to develop a different method to find the mass of the
resonators to solve these problems.

Parts of section 13.1 consists of an article in preparation [253].
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Figure 13.1: Comparison of the squeeze-film effect of resonators with a known mass to several theoretical
models. 4 different single-layer graphene resonators are shown all with a diameter of 5 microns in a helium
environment.

13.1.2. THERMOMECHANICAL METHOD
Due to the venting channel in the squeeze-film pressure sensors, no gas pressure differ-
ence can be applied and no electrostatic gate is present, this means that we cannot use
the large out-of-plane deflection method. However, the calibration technique proposed
in chapter 4 allows us to measure the mass of these resonators. By first measuring the
transduction coefficient of the system to convert the voltage of the signal to meters, we
can perform a second measurement to measure the Brownian motion of the system. Us-
ing equipartition theorem we can relate the measured mean-square amplitude 〈δ2(t )〉 to
the effective mass of the system [54] (chapter 2):

meff =
kB T

ω2〈δ2(t )〉 , (13.5)

where meff is the modal mass of the resonator, kB the Boltzmann constant and T the
temperature. Once the meff is known, it can be converted to the actual mass of the res-
onator using m = meff

0.2695 from which the mass-per-unit square is known using the known
area of the resonator.

To test the thermomechanical method we also measure the squeeze-film effect to
see if there are correlations between the frequency shift and the measured mass. Fig-
ure 13.1 shows the experimental resonance frequency and quality factor as a function of
pressure for 4 different drums. We compare these results to numerical simulations that
use the measured mass as an input. It is striking that for the drums in Figs. 13.1a and
c the Boltzmann transport equation (BTE) is close, even predicting the lower frequency
shift at high pressures due to inertia in the gas flow in Fig. 13.1c. In the other cases how-
ever (Figs. 13.1b, d) the BTE predicts a higher frequency, but the continuum model with
free-slip boundary condition matches up at low pressures. However, there is no phys-
ical reason why this model should apply to this system and we expect BTE to be more
accurate.

Thus in some cases, we can match the mass measured by thermomechanical cal-
ibration to the measured frequency shift due to the squeeze-film effect, but not in all
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cases. Considering that the thermomechanical method assumes a mode-shape, but the
squeeze-film effect is in principle independent of the mode shape, this is most likely the
cause of the deviation. While we did not characterize any mode shapes in this work,
the drums used in chapter 12 (made from identical graphene with an identical transfer
method used for the drums here) reveal deflection shapes that suggest that the funda-
mental mode shape can deviate significantly. The method should be refined by verifying
the relation m = meff

0.2695 by measurement of the mode-shape of the drum, for example by
using the technique of Davidovikj et al. [67].

13.2. CHARACTERIZING THE MASS OF GRAPHENE USING QUARTZ

CRYSTAL MICROBALANCES
Fabrication of graphene devices on wafer scale often requires a transfer of sheets of
single-layer graphene grown by chemical vapor deposition, usually requiring a support
polymer. It is inevitable that this introduces some transfer contamination on top of
the graphene, significantly impacting the device’s electronic or dynamical properties.
A standardized test to determine the amount of contamination on top of graphene is
therefore of high interest to the community. However, with current popular character-
ization techniques such as Raman spectroscopy, optical microscopy, and atomic force
microscopy it is difficult to quantify the amount of contamination on top of graphene.

To solve this problem we employ quartz crystal microbalances to directly determine
the mass of graphene. The quartz crystal microbalance consists of a piezoelectric quartz
crystal that can be brought into resonance by applying an oscillating voltage. This is a
widely popular tool in thin film deposition and biochemical applications. By transfer-
ring the graphene on top of such crystals, the measurement is no longer sensitive to the
mechanical properties of the graphene and thus facilitates a direct measurement of the
mass.

Figure 13.2 shows the experimental protocol and setup to detect the mass of graphene.
We use oxygen plasma to etch away the graphene since the quartz and gold electrodes
of the QCM are not affected by this plasma. Continuous monitoring of the resonance
frequency allows one to determine the mass that is being removed and extract the etch
rate.

13.2.1. RESULTS
Figure 13.3a shows the frequency shift measured on a clean crystal, which only under-
went the procedure to clean the crystal before the transfer. Nevertheless, we observe that
a mass approximately equal to a monolayer of graphene was removed from the crys-
tal. Figure 13.3b shows the frequency shift during etching of the dummy sample. The
dummy sample was exposed to the transfer procedure but no actual graphene was trans-
ferred. The crystal was not fully etched at the end of the experiment, but an additional 4
equivalent monolayers of graphene mass has been removed in a second experiment.

Figure 13.3c shows the frequency shift during etching of a crystal covered with sin-
gle layer graphene. A mass that is equivalent to almost 8 monolayers of graphene is re-

Parts of section 13.2 consists of an article in preparation [255] and have been published in the Master thesis of
Mick Hsu [256].



13.2. CHARACTERIZING THE MASS OF GRAPHENE USING QUARTZ CRYSTAL

MICROBALANCES

13

171

Oscillator
circuit

+

-

10 001 234. 56 Hz

Frequency Counter

23.02 oC 
Multimeter

Inductively coupled
plasma chamber

Temperature
sensor

QCM

Top
electrode

Bottom
electrode KF40 flange

Shift 
in fres

Frequency 

A
m

pl
itu

de
 

3: QCM with graphene removed

1: Single layer CVD graphene on
    top of QCM

2: Remove graphene in O2 plasma

1
2

3

a b
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Clean crystal
4 W, 50 µbar, 20 SCCM

Dummy transfer
4 W, 50 µbar, 20 SCCM

Single layer graphene
4 W, 50 µbar, 20 SCCM

Stacked double layer,
33 W, 4 µbar, 20 SCCM

Figure 13.3: Measured frequency shift as a function of etching time for 4 different quartz crystal microbalances.
a Uncoated quartz crystal that was only exposed to the cleaning procedure. b Dummy sample which was
exposed to the transfer-polymer but no actual graphene was transferred. c Crystal containing a sheet of single-
layer graphene on one of the electrodes, graphene was not fully etched but significantly damaged as confirmed
by Raman. d Crystal with two single-layer graphene sheets stacked on top of each other to form double-layer
graphene.

moved, suggesting that significant contamination is present on the sample. The etch rate
is similar to the one found on the dummy sample, which could indicate that the transfer-
polymer is indeed the cause of the contamination. During subsequent Raman spec-
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troscopy measurements we found that the graphene was not completely removed but
considerably damaged. This shows that the etching of graphene is significantly slower
than the contaminants.

Figure 13.3d shows the results of a crystal covered with double-layer graphene, cre-
ated by stacking two single-layer graphene sheets on top of each other using the same
transfer method. For this measurement, higher plasma powers were used with lower
pressures to ensure the graphene is fully etched. A striking observation is that the etch-
ing slows down twice during the experiments. This could be due to the slower etching
of the graphene layer. First, the sample etches fast due to the polymer, then slows down
as it etches the graphene layer, speeds up again to etch away the contaminants between
the layers, slows down on the second layer and finally etches away the remaining residue
slowly until the crystal is fully clean. Further measurements are necessary to confirm this
mechanism, stacking more layers of graphene could be very useful to confirm this effect.
These results are described in more detail in the MSc thesis of Mick Hsu [256].

13.3. WAFER SCALE FABRICATION OF SQUEEZE-FILM PRESSURE

SENSORS
Mechanical exfoliation of the transfer of large sheet of CVD single layer graphene pro-
vides us with a means to fabricate prototypes of graphene resonators, well suited for
scientific research. However, these fabrication techniques are not suitable for industrial
application due to their limited yield of devices. To solve this problem, the transferless
process was developed by Sten Vollebregt et al. [44] which allows for large scale produc-
tion of graphene resonators in a process with is compatible with existing CMOS tech-
nologies.

The fabrication process of these resonators is shown in Fig. 13.4. Transferless pro-
duction of suspended graphene resonators starts with a silicon wafer with a layer of 90
nm thermally grown silicon dioxide. Molybdenum is sputtered on the wafer and subse-
quently dry-etched to the shape of the graphene resonator (Fig. 13.4a). This molybde-
num acts as the catalyst during the growth of graphene by chemical vapour deposition
(Fig. 13.4b). After graphene growth, electrical contacts consisting of 5 nm chromium
and 100 nm gold are patterned, which act as electrical contacts and clamps to keep the
graphene suspended (Fig. 13.4c). Finally, the molybdenum is etched using a peroxide
solution and subsequently dried using critical point drying to prevent the collapse of the
graphene membrane (Fig. 13.4d).

13.3.1. MECHANICAL CHARACTERIZATION
The mechanical characterization revealed a problem with the current design of the squeeze-
film pressure sensor. The pressure-dependent resonance frequency reported in [44] re-
veals a frequency shift that corresponds to a ρh of 100 nm of gold, from which it is con-
cluded that the suspended part of the gold is moving. To find whether any mode can
be attributed to the suspended graphene, we investigate the mechanical response of the

Parts of section 13.3 have been published in the proceedings of the 19th International Conference on Solid-
State Sensors, Actuators and Microsystems (IEEE-TRANSDUCERS), 770-773 (2017) [44] and the MSc thesis of
Manvika Singh [257].
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a b

c d

e

Molybdenum
Few-layer 
graphene

Gold contacts Suspended
resonator

Figure 13.4: Transferless process to produce graphene resonators on wafer-scale. a Molybdenum is deposited
and patterned in the shape of the graphene resonator. b Multilayer graphene is grown on the molybdenum
catalyst by chemical vapor deposition. c Gold contacts are patterned on top of the chip using lift-off. d The
molybdenum is etched and subsequently dried using critical point drying to create a suspended resonator. e
Scanning electron microscope image of a suspended graphene resonator.

modes at high driving power. We find at high frequencies near 130 MHz one mode that
shows strong nonlinear behavior (Fig. 13.5a), while the other modes show only little
nonlinearity (Fig. 13.5b).

Since the graphene is much thinner than the gold clamps, we conclude that this non-
linear response can be attributed to the motion of graphene. However, its resonance
frequency is so high that the squeeze-film response is too low for any pressure sensing
applications. To solve this problem, in future work it should be attempted to reduce the
movement of the clamps and uncouple this motion from the motion of the graphene
resonator. This can be achieved by increasing the thickness of the clamps, as doubling
the thickness would increase the stiffness by a factor of 8. Furthermore, a lower den-
sity material such as aluminium can be employed to raise the resonance frequency of
the clamps. If the resonance frequency of the clamps is sufficiently high, it can uncou-
ple the graphene resonator and reveal its low-frequency modes. In that case, the system
could perform very well as a squeeze-film pressure sensor, as the multi-layer graphene
combined with a low gap-size should ensure the Reynolds number of the gas flow much
smaller than one as discussed in chapter 10. The fabrication and mechanical charac-
terization of these sensors are shown in more detail in the MSc thesis of Manvika Singh
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Figure 13.5: Resonant behavior of the graphene resonator with moving gold clamps. a Resonance at high
frequencies showing nonlinear behavior. b A low-frequency resonance showing only weak nonlinearities at
the same driving level.

[257].

13.4. PIRANI PRESSURE SENSORS
Pirani pressure sensors operate by exploiting the pressure-dependent thermal conduc-
tance of gas in a nanogap [260]. The pressure is usually deduced from the temperature-
dependent electrical resistance of a suspended bridge which is heated by an electrical
current. Pirani pressure sensors are an attractive concept because they require no her-
metic cavity, moving parts or accurate detection of the deflection. Reducing the size and
power consumption of Pirani sensors requires a material with a high surface to mass
ratio and which has a temperature dependent resistance, for which graphene is a good
candidate. Figure 13.6a shows an scanning electron microscope image of a suspended
graphene bridge. The graphene was fabricated by the transferless process in (Fig. 13.4),
but the graphene was made to collapse on the silicon dioxide substrate by under-etching
before depositing the gold clamps. The cavity was later under-etched in silicon dioxide
(600 nm) using wet etching to ensure the graphene is suspended.

The relative change in electrical resistance as a function of gas pressure for sus-
pended and non-suspended devices is shown in Fig. 13.6b. A clear pressure depen-
dence of the suspended devices is visible, while the non-suspended devices show no
pressure dependence. Thus demonstrating that the heat is indeed conducted through
the nanogap and demonstrating the Pirani effect. Since the pressure-dependence of the
thermal conductance through the nanogap depends on the mean free path of the gas,
we expect a gas-dependence of the electrical resistance. Figure 13.7 shows the change

Parts of section 13.4 have been accepted for publication in the proceedings of the 13th International Confer-
ence on Nano/Micro Engineered and Molecular Systems (IEEE-NEMS) [258], the MSc thesis of Joost Romijn
[46] and an article in preparation [259].
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a b

Figure 13.6: a Scanning electron microscope image of a Pirani pressure sensor consisting of a graphene bridge
suspended over a cavity etched in silicon dioxide. b Resistance change as a function of pressure for bridges
that are suspended and non-suspended bridges that are supported by the silicon dioxide.
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Figure 13.7: Change of the electrical resistance of the graphene Pirani pressure sensor as a function of pressure
for different gases.

in electrical resistance for different gases. Indeed the response is found to be gas depen-
dent, which could be applied in future gas sensing concepts. Considerable efforts have
been made by Joost Romijn [261] to fabricate and integrate these sensors in a CMOS-
compatible process.
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Figure 13.8: Atomic force microscopy of a porous single-layer graphene drum.

13.5. EFFUSION GAS SENSORS
The concept behind the frequency-dependent actuation force (chapters 2, 5, 6 and 10)
can be extended to extract both the pressure-dependent thermal time constant and leak
time constant of a graphene resonator. If both these time constants can be measured si-
multaneously, it could be an interesting concept to measure gas composition and pres-
sure. To test this idea, we use the graphene drums in Fig. 13.8, which were bombarded
with X e23+ ions at the SME beamline of GANIL (Caen, France) [263]. These introduce
large defects and small pores, making the graphene drums permeable. Since the size of
the defects is in the order of the mean free path of the gas, we expect that Graham’s law
for permeation holds:

τ1/τ2 ∝
√

M1/M2, (13.6)

where τi is the leak time constant of gas i and Mi is the molar mass. For a graphene
drum with both a leak time and a thermal time the complex amplitude can be described
by:

zω = αRP AC

iωτth +1
+ (1−βγ)RP AC

iωτg as +1

+ αβγRP ACτg as ∗ iω

−ω2τthτg as + iωτth + iωτg as +1
,

(13.7)

of which the imaginary part can be used to fit to the measured mechanical response as
shown in Fig. 13.9a. The frequency at the extrema of this response roughly correspond
to the leak time constant and the thermal time constant. From a seperate measurement
in vacuum it can be determined that the time constant between 1 and 10 MHz is the
thermal time constant while the one between 0.1 and 1 MHz is the leak time constant.
The leak time constant depends strongly on the type of gas used as shown in Fig. 13.9a.
If we plot these leak times versus the square root of the mass in Fig. 13.9b, we find that at
low pressures there is excellent agreement with Graham’s law. Deviations from Graham’s
law occur at high pressures because most of the mean free path of most of the gases
becomes shorter than the gap size of the large defect in Fig. 13.8, making viscous effects
more important.

Parts of section 13.5 have been published in the MSc thesis of Irek Rosłoń [262].
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Figure 13.9: Mechanical delay times in a nanoporous graphene drums. a Imaginary part of the mechanical
response as function of frequency for different gases. b Permeation time constant versus the square root of the
molar mass of the gas. c Thermal time constant versus the effective thermal conductivity of the gas.

We also observe pressure-dependence of the thermal time constant, which can be
related to the effective thermal conductivity keff of the gas. For this one can use a phe-
nomenological model from literature [264]:

keff

k
= 1

1+ C T
pg0

, (13.8)

where k is the thermal conductivity of the gas, C = 7.6×10−5, p the gas pressure and g0

the gap size between membrane and substrate. Figure 13.9c shows that the thermal time
constant τth and the effective thermal conductivity are indeed correlated, however the
change in τth is relatively small. Combined with the deviations in the measured thermal
time constant makes it difficult to show a strong correlation between these quantities.
More details on these experiments and mathematical derivations can be found in the
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phase-shift of 240 degrees is added to the experimental data in order to correct for the additional phase shifts
in the electronic and optical components. Distinct features appear around the low-amplitude attractor and
the high-amplitude attractor is displaced in P-Q-space at high noise levels.

MSc thesis of Irek Rosłoń [262].

13.6. STOCHASTIC EFFECTS IN NONLINEAR GRAPHENE RESONATORS

DRIVEN BY TWO INCOMMENSURATE FREQUENCIES
The directly driven Duffing resonator has two stable attractors, which can be described
as points in the P-Q space as shown in chapter 8. However, this assumes the system
is driven by a single frequency near the resonance frequency. If two incommensurable
frequencies are applied to the system, the complexity of the dynamic behavior increases
dramatically. One example of this is stochastic resonance when Kramer’s rate (chapter
8) matches with the frequency (much lower than the resonance frequency) of a small
signal that drives the system, it achieves an optimum switching rate that can be used to
amplify signals [189, 195, 204]. When we study graphene membranes and slowly modu-
late them, however, we find that the complexity of the dynamics increases dramatically

Parts of section 13.6 have been published in the proceedings of the EUROMECH Colloquium 603: Dynamics
of Micro and Nanosystems [265] and consists of an article in preparation [266].



13.6. STOCHASTIC EFFECTS IN NONLINEAR GRAPHENE RESONATORS DRIVEN BY TWO

INCOMMENSURATE FREQUENCIES

13

179

and we cannot regard the system as having two stable attractors.
To study the effects of slow modulation, we repeat the experiment in chapter 8 and

only add a slow drive to the system. Figure 13.10 shows the P-Q space at 4 different noise
levels in the case of no modulation, 10 kHz modulation and the 5 kHz modulation. When
no modulation is applied, the system resends most of its time in either one of the stable
attractors since the switching rate is low. The position of the high-amplitude attractor
is found to be somewhat dependent on the noise level applied to the system. Also, the
spread around both attractors is increased, due to the stronger fluctuation amplitude.

When slow modulation is applied to the system, several effects are observed in Fig.
13.10. An intriguing spiraling pattern is observed with a feature encircling the low am-
plitude attractor. Compared to the case without modulation, spread around the low am-
plitude attractor has significantly increased. The high amplitude attractor is displaced
more than in the case without modulation. To understand the meaning of these signa-
tures, the transition dynamics of the system is studied in more detail.

Figure 13.11a shows the first 2 ms of a time trace of the magnitude of the amplitude
at Teff = 329K . Transitions from the low to high amplitude and vice versa are observed.
Besides this, cycles are visible where the system departs from the low amplitude attrac-
tor, reaches a higher amplitude in between the two attractors and immediately transi-
tions back to the low amplitude attractor. By taking the up-and-downwards rising slope
of both the transitions and the cycles, we can visualize the paths in P-Q space. Fig-
ure 13.11b shows the transitions from the low to high amplitude and vice versa. A clear
difference between the escape paths from the low amplitude attractor and the high am-
plitude attractor is found. From this analysis, it becomes clear that the feature encircling
the low amplitude attractor in Fig. 13.10 is the escape path from the high to low ampli-
tude attractor. No signatures of such oscillations could be uncovered for transitions to
the high amplitude attractor, if they exist they are obscured by fluctuations.

Simulating the system without noise using the method of averaging shows that the
observed behavior is most likely due to the slow drive modulating the resonance fre-
quency rather than directly driving the system. In chapter 7 we have shown that the
blue laser is very efficient to modulate the resonance frequency due to the thermal ex-
pansion which modulates the tension. The simulations show that we can no longer de-
scribe the system by having two stable attractors. Increasing the low-frequency drive in
Fig. 13.11d shows that the two attractors described as points in the P-Q space become
a quasi-periodic attractor. This quasi-periodic motion is due to the incommensurable
frequencies driving the system. A direct overlap between the experiments and the sim-
ulations in Fig. 13.11e finds reasonable agreement with the model and the experiments.
These simulations suggest that further experiments should be performed on the system
without raising the noise level, but rather increasing the amplitude of the slow drive to
more accurately measure the behavior of the quasi-periodic attractor.
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Figure 13.11: Switching behavior of a nonlinear graphene resonator under a slow (10 kHz) modulation. a The
first 2 ms of the time trace at noise level Teff = 329 K with a 10 kHz modulation, indicating a few examples of
cycles and transitions that were manually selected to examine their paths in P-Q space. These were separated
into the rising and falling slope to see the differences in the path. b Transitions from the low to high amplitude
attractor (Up transitions) and from the high to low amplitude attractor plotted in P-Q-space. c Cycles of the
resonator departing from the low amplitude attractor and immediately transitioning back. Cycles were divided
into groups to construct this graph, cycles reaching a maximum amplitude between 19 and ∼30 nm and cycles
reaching an amplitude between 14 and 19 nm. d Evolution of the quasiperiodic motion with respect to the
amplitude of the laser power modulation ωslow. The cycling encountered in the experiment is highlighted in
yellow. e Experimental time-trace represented in the in-phase (P ) and out-of-phase component (Q). A phase-
shift is added to the experimental data in order to correct for the additional phase shifts in the electronic and
optical components. The quasiperiodic attractor is overlapped to the clouds of points.
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VALORIZATION: TOWARDS

PRACTICAL IMPLEMENTATIONS

This chapter discusses how the results in this thesis can be used in practical applications.
We discuss the standardized characterization of the mass of graphene using quartz crystal
microbalances. This is followed by a section on the graphene pressure sensors, discussing
the squeeze-film pressure sensor and the Pirani pressure sensor. We further discuss how the
studies on selectively permeable graphene systems could be converted into viable sensor
concepts and their applications. Finally, we discuss how the studies of heat transport and
the boundary effects in graphene membrane could be an opportunity for infrared sensors
and phononic waveguides.
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14.1. STANDARDIZED CHARACTERIZATION OF THE MASS OF

GRAPHENE

C
ONTROL of the mass of graphene membranes is crucial to their application as a
resonant sensor. During the course of this thesis, extensive characterization has
been performed on the single layer graphene used in this study. Significant con-

tamination was revealed on top of the graphene using the quartz crystal microbalance
(QCM) technique, which could not be uncovered using popular characterization tech-
niques, such as Raman, optical, scanning electron and atomic force microscopy.

In the current standard for 2D materials (ISO/TS 80004-13:2017), the characteriza-
tion techniques would likely not perform very well in uncovering transfer residue and
other surface contamination. The Quartz Crystal Microbalance technique can be imple-
mented in the graphene standard, as this technique is not only able to qualitatively show
the presence of contamination but is also able to quantify it in a very accurate manner.
Especially the presence of transfer residue, which is on top of the 2D material, can be
accurately shown using the QCM.

14.2. GRAPHENE PRESSURE SENSORS
This thesis focused on pressure sensors that do not require a hermetically sealed cav-
ity to operate. Such sensors still achieve very high responsivity by exploiting the very
high surface-to-mass ratio of 2D materials. Hermetic sealing at timescales in the order
of decades has to date not been demonstrated. Even if this hermetic sealing could be
achieved, it would likely involve expensive and complicated processes, which will add to
the costs of the sensor. Furthermore, the sensor would show a nonlinear response, which
means that many calibration points are necessary depending on the pressure range of
the sensor. Calibration presents a significant portion of the cost of a sensor, and the
number of calibration points should be as low as possible.

14.2.1. SQUEEZE-FILM PRESSURE SENSORS
Squeeze-film pressure sensors are in principle relatively straightforward to implement
since they only require that the membrane is suspended close to the substrate. The size
of the venting channel in principle does not affect its operation. Also, the lower range
of the pressure that can be measured is only limited by the accuracy of the frequency
measurement, meaning that in principle the sensor can operate in high vacuum envi-
ronments as well. If the mass and gap size can be well-controlled, only the resonance
frequency in vacuum has to be calibrated in order to account for the pre-tension. If
not, the sensor requires 2 calibration points, assuming the sensor operates in the low
Reynolds number regime. Fabrication is quite simple as it only requires two lithography
steps if the transferless method of production is used (chapter 13) [44]. Furthermore,
this fabrication could be implemented in the BiCMOS-process including the readout
circuitry as shown for the Pirani pressure sensor (chapter 13) [261]. These advantages
make this sensor concept very cost-effective once the challenges regarding the design
are solved.

This thesis has shown several effects that affect the sensor’s response which can serve
as a guide to design a squeeze-film pressure sensor with optimal performance. The most
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straightforward effect is that graphene resonator can show a significantly higher mass
than expected due to contamination. However, we have also shown that the inertial
forces in the gas flow become important at high resonance frequencies. This is an im-
portant design consideration for these membranes, and it is more reasonable to use a
heavier multi-layer graphene membrane than a single-layer of graphene to reduce the
resonance frequency at high pressures. Furthermore, the gap size should be made as
small as possible, which will also help to achieve low inertial forces and better gas com-
pression. To operate as a sensor in atmospheric conditions, the quality factor of the
resonance should be raised in order to allow the sensor to operate in an oscillator cir-
cuit. This remains one of the bigger challenges in the design of a squeeze-film pressure
sensor for industrial applications.

14.2.2. PIRANI PRESSURE SENSORS

The Pirani pressure sensors shown in this work might not be as responsive as the squeeze-
film pressure sensor, but the ease of their readout through the electrical resistance is a
big advantage. This allowed us to show for the first time that graphene sensors can be
integrated into the BiCMOS fabrication process [261], which is a big step forward in the
implementation of graphene sensors in the industry. It also makes graphene Pirani pres-
sure sensors very interesting candidates to be implemented in any silicon-based sensor
or electronic circuit that requires the vacuum in their package to be monitored. A draw-
back of the Pirani sensors is that a lot of calibration points are necessary due to the non-
linearity of the Pirani effect.

During our study of the single-layer squeeze-film effect (chapter 10, Fig. 10.5) and
the effusion gas sensors (chapter 13, Fig. 13.9), it was found that the relative change of
the thermal time constant is significantly higher than the relative change in the electrical
resistance measured in the Pirani sensors. This shows that the thermomechanical low-
frequency response of a squeeze-film pressure sensor can be used as a Pirani pressure
sensor. The low heat capacity of single-layer graphene contributes to the large change
in thermal time constant. Thus we can propose a new type of thermomechanical Pirani
pressure sensor based on this work, that measures the thermal time constant from the
mechanical motion instead of the electrical resistance.

14.3. GRAPHENE SENSORS BASED ON SELECTIVE PERMEABIL-
ITY

In this thesis, several sensor concepts are proposed that work on selective permeability.
Sensors based on selective permeability have the major advantage that they do not rely
on chemical reactions, reducing their sensitivity to environmental disturbances such
as temperature, PH-level or humidity. Graphene is especially powerful for this type of
sensor, since (sub)nanometer pores can be induced in the material, while the mem-
brane is still able to sustain large pressure loads. Furthermore, the large deflections that
graphene can sustain allow it to be used as a pressure transducer as well. This means that
graphene enables significant simplification of the fabrication process since the graphene
acts as both the selectively permeable membrane and the pressure sensing element. In
this section, we discuss how the physical effects related to selective permeability can be
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Figure 14.1: Practical implementation of the gas osmometer. a Operating principle, 1: The cavity and the
surroundings contain a mixture of gases, the composition inside and outside the cavity is the same. 2: An elec-
trostatic gate applies a step voltage, pulling the membrane down and reducing the volume. This compresses
the gas in the cavity, making the partial pressures of both gases higher than the environment. 3: The gas with
small leak time will escape the cavity until the partial pressure is equilibrated. 4: The gas with the slower time
constant permeates out until its partial pressure is equal, equilibrium is reached once both gases have the
same partial pressures as in the environment. b Expected deflection as function of time for this device. For
illustration, the step is applied at t = 1×10−6 s and the leak times of the gases are 1×10−4 and 1×10−6s.

applied in a practical sensing concept.

14.3.1. GAS OSMOMETERS

The gas osmometers in chapter 11 operate by bringing the system out of thermody-
namic equilibrium and observing the relaxation process towards equilibrium. This was
achieved by keeping the system in a well-known environment, such that the partial pres-
sure inside the cavity is well known. By flushing the chamber with a different gas at con-
stant pressures, the composition of the gas in the environment is changed and the sys-
tem is out of equilibrium. The relaxation towards equilibrium results in a time-dependent
osmotic pressure due to the different leak time constants that can be detected. The gas
can be identified based on its leak time constant.

The experimental procedure in chapter 11 is not suitable for a practical application
since the well-known environment requires a supply of reference gas to be present near
the sensor. This removes all the advantages of scaling down the sensor to such a small
size and requires a complicated control system to be built around the sensor. To solve
this problem, a different strategy is proposed to bring the system out of equilibrium and
monitor its relaxation towards equilibrium as shown in Fig. 14.1. The system is kept in
the environment of which the composition needs to be determined long enough to make
sure the gas composition in the cavity is equal to the environment. An electrostatic gate
can be used to pull on the graphene membrane, reducing the volume of the cavity and
compressing the gas. Now the partial pressure of both gases is higher than the environ-
ment, the system is therefore out of thermodynamic equilibrium. Gas will escape from
the cavity with its characteristic leak time constant, resulting in a time-dependent de-
flection that is characteristic for the composition of the gas (Fig. 14.1b). This concept
does not require a well-known reference gas and can continuously operate this cycle in
order to determine the composition of the gas in the environment.
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Figure 14.2: Reference values for osmotically active substances in human blood, with osmotic pressure on the
horizontal axis versus the (estimated) kinetic diameter of the substance in water.

14.3.2. EFFUSION GAS SENSOR

The effusion gas sensor, shown in section 13.5, provides an alternative to the gas os-
mometer. Effusion is simply a consequence of the larger pores size and the larger size
makes it simpler to fabricate in a reproducible manner using existing lithography based
technology. The main advantage of this concept, however, is its ability to detect very fast
leak time constants by examing the frequency-dependence of the actuation force. Since
the readout is performed in a homodyne detection scheme while the membrane oper-
ates at high frequencies, reducing the noise level is easier than the quasi-static readout
of the position in the gas-osmometer.

14.3.3. LIQUID OSMOMETERS

The graphene osmometers operating in liquids are mainly interesting for biomedical
applications. One particular application is the detection of glucose concentration in
blood for diabetes patients as discussed in chapter 12. Current sensors use enzymes
to measure the blood sugar levels, but these are highly sensitive to environmental insta-
bilities such as temperature, humidity, pH-level, ionic detergents, and toxic chemicals
[239, 240]. If these factors lead to a false blood sugar reading, it poses a serious threat
to the patients’ health. It is therefore of interest to develop glucose sensors that do not
require enzymes to operate.

Many works have reported on fabricating pores with controllable pore size in graphene
and other 2D materials and have shown that this leads to tunable selectivities of perme-
ation [35, 38, 233, 249, 267, 268]. With the controllable pore size of 2D materials is might
be possible to sense the osmotic pressure from glucose in blood without the use of en-
zymes. Figure 14.2 shows the osmotic pressure (reference values) from different species
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in blood with the kinetic diameter of the species on the vertical axis. The kinetic diam-
eter gives a rough idea of the sieving capability of a pore, but it should be noted that
this can very significantly. From Fig. 14.2, selective detection of the glucose concentra-
tion is possible if two osmotic pressure sensors are employed. The first osmometer has
pored such that it is completely impermeable to species larger than ∼2 nm, but com-
pletely permeable to species smaller than ∼2 nm. The second osmometer would ideally
be completely impermeable to species larger than ∼0.7 nm but completely permeable
to species with a smaller size. If such a system can be realized it would be possible to
derive the glucose concentration from the difference in osmotic pressure between both
devices.

14.4. APPLICATIONS FOR HEAT TRANSPORT IN GRAPHENE
One explanation for the long thermal time constants measured in single layer graphene
is a large thermal resistance at the edge of suspended graphene. Further measurements
are required to verify whether this model is correct. However, if heat transport in graphene
is indeed limited by the boundaries, it would provide an interesting opportunity for the
application of suspended graphene membranes as bolometers. Since they have a large
thermal resistance at the edge, but a very low heat capacity, it would show a fast and high
response. This could be useful to construct cheaper and faster infrared camera’s.

The geometric phonon mismatch model in chapter 5 suggests that flexural phonons
will almost always show total internal reflection when incident on a 90-degree kinked
boundary. Combined with the low scattering rate of flexural phonons this might make
suspended graphene interesting as a flexural phonon waveguide. Recently phonon waveg-
uides to create all phononic NEMS circuits have been proposed [269]. The very low angle
at which total internal reflection occurs should allow graphene flexural phonon waveg-
uides to make very sharp bends, which helps to reduce the area footprint of the waveg-
uide. Furthermore, the implementation of such a waveguide is quite straightforward,
since only a channel (with sharp sidewalls) needs to be etched in the substrate. Transfer
of graphene will immediately induce the sidewall adhesion on the edge of the channel,
resulting in the kink that gives these waveguides their favorable boundary conditions.
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CONCLUSIONS

The central theme around this thesis is around the mechanical motion of graphene mem-
branes and how this motion interacts with its environment. In this chapter, we summarize
the conclusions of this work and its implications. We present these in separate sections for
each interaction that a moving graphene membrane can show.
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15.1. THE INTERACTION BETWEEN MOTION AND LIGHT
First, we study the interaction between light and motion in chapter 4. In a Fabry-Perot
interferometer, the transduction of the motion is nonlinear. This gives rise to harmonics
in the signal that can be exploited to calibrate the amplitude, only requiring a good un-
derstanding of the optical properties of the membrane and the wavelength of the light.
This can be done analytically for thin membranes, while more advanced optical models
and numerical techniques can be applied to calibrate multi-layer and strongly absorbing
materials.

The method is quite powerful, as it enables us to measure the mass of individual
graphene resonators by combining the nonlinear transduction method with the thermo-
mechanical method in chapter 13. This also lies at the foundation of chapter 8, where
we extract the full equation of motion experimentally, enabling us to make sophisticated
models of graphene membranes showing nonlinear behavior. This technique allows re-
searchers to find every mechanical property of a suspended drum relevant for its dy-
namical behavior in a fully contactless manner.

The interaction between graphene and light is largely based on optical absorption.
This implies that the lasers are heating the graphene membrane, which brings us to the
next interaction.

15.2. THE INTERACTION BETWEEN MOTION AND HEAT
Graphene and other 2D materials interact with heat on many levels and plays a central
role in the experiments performed in chapters 5 to 8 and 10. The lumped element model
with a single characteristic time constant proposed chapter 5 was the cornerstone to the
data analysis in chapters 5 and 6 and to a lesser extend in chapter 10.

Chapter 5 presents measurements of the thermal time constants of graphene, which
we find to be two orders of magnitude higher than predicted by theory. The diame-
ter dependence of the thermal time constant suggests that the edge of the suspended
graphene drum plays a large role in transient heat transport. More sophisticated models
suggest that the measured time constant can be attributed to the low scattering rate be-
tween different acoustic phonon modes, causing the flexural phonons to heat up much
slower than the in-plane phonons due to boundary effects. Chapter 6 presents the same
transient thermal characterization on a different material: single-layer MoS2. This mate-
rial shows a much lower thermal conductivity and shows thermal time constants within
the range expected from the theory. These measurements allow us to estimate the spe-
cific heat of a 2D material for the first time, found to be 255 ± 104 J/(kg·K) for single-layer
MoS2.

15.3. NONLINEAR DYNAMICS
The temperature modulation of the membrane induced by the laser causes a modulation
of the tension in the single layer graphene membrane. This is a very efficient mechanism
to induce parametric resonance as shown in chapter 7, where we achieved a record num-
ber of 14 modes that can be brought into parametric resonance. A detailed analysis of
the parametric resonance allows us to study nonlinear dissipation mechanisms, nonlin-
ear dynamics and loss tangent of graphene resonators. This holds important clues to
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how the energy in these resonators is dissipated to the environment.

Due to the finite temperature of the membrane, fluctuations are present in the envi-
ronment that affect its motion. When the membrane is driven into the nonlinear regime,
these fluctuations can cause the motion to switch between the two stable attractors. This
stochastic switching effect is studied in chapter 8 and shows that it occurs with much
higher frequencies and at much lower temperatures than state-of-the-art MEMS res-
onators. This can potentially be applied to transduce signals in the audible regime in
a manner that mimics nature.

15.4. THE INTERACTION BETWEEN MOVING GRAPHENE AND FLU-
IDS

With the interaction between heat and the mechanics of graphene membranes well un-
derstood, the thesis continues by studying the mechanics in a fluidic environment. In
chapter 9 we demonstrate the use of a few-layer graphene membrane as a squeeze-film
pressure sensor. Due to the squeeze-film effect, the resonance frequency shifts as a func-
tion of gas pressure, resulting in a responsivity that is a factor 45 higher than state-of-the-
art MEMS while using 25 times smaller membrane area. The study of these sensors is
continued on single-layer devices in chapter 10, with an extensive investigation into the
gas dependence on stiffness and dissipation in these sensors. At high Reynolds num-
bers, the squeeze-film stiffness reduces due to inertial effects in the gas flow. We also
show that thermal modulation of the squeeze-film can be used as an efficient actua-
tion mechanism to excite the resonator’s motion at high gas pressures, connecting the
squeeze-film effect to the work in chapter 5. In chapter 13, we also show that pressure-
dependent heat transport can be used to build graphene Pirani pressure sensors.

For squeeze-film pressure sensors it is crucial to understand the mass of the sus-
pended graphene, which led to the development of several methods shown in the out-
look chapter 13. For reliable mass measurements, no knowledge of the mechanical prop-
erties of the membrane should be required, this makes the quartz crystal microbalance
approach the most promising.

The following chapter 11 continues the study of gas-graphene interactions by inves-
tigating the effects related to selective gas permeation. Due to selective permeation, a
large osmotic pressure difference can form over the membrane if the composition of
gases in the environment is changed. The characteristic leak times associated with this
process can be used in future applications to determine the composition of gases in the
environment. A possible implementation for such a sensor is proposed in the valoriza-
tion chapter 14. Leak times at very short timescales can be detected using the methods
for transient heat transport in chapters 5 and 6, this is shown in chapter 10 where the leak
time of a squeeze-film pressure sensor is detected or the effusion gas sensor proposed in
chapter 13.

The selective permeation properties in gases extend to liquids, which is studied in
chapter 12. By using atomic force microscopy in a liquid cell, we show that graphene
membranes exposed to a concentration gradient of sucrose in water are deflected by
osmotic pressure. This is an interesting concept for biomedical sensors since it does not
require enzymes to operate, while the unit costs are potentially low since the graphene
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is both the semi-permeable membrane and the pressure sensor (chapter 14).
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