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Abstract
The Maven ecosystem relies heavily on dependen-
cies to provide functionality, but the relationships
between these dependencies are not well under-
stood. This paper introduces the concept of de-
pendency families, where a group of dependencies
are owned by the same entity and designed to be
used together. We develop a method to detect these
families using a combination of structural and sta-
tistical techniques, and apply it to the Maven Cen-
tral repository. Our analysis reveals insights into
the structure and trends of dependency families, in-
cluding their size distribution, usage patterns, and
version homogeneity. Specifically, we find that
most families are composed of a small core of fre-
quently used dependencies alongside many supple-
mental ones; that releases without code changes are
surprisingly prevalent; and that while many depen-
dencies in a family share version numbering, this is
not consistent enough for developers to always rely
on. Our findings have implications for develop-
ers, maintainers, and users of dependencies in the
Maven ecosystem.

1 Introduction
Modern software often reuses functionality provided by exist-
ing software libraries instead of building everything from the
ground up. The management of these libraries (dependen-
cies) on which certain software depends can be done through
a build automation tool. Apache Maven is one of the main
build automation tools used for software development in Java
[7], and as such, presents a large and interesting dataset from
which insights into development practices and trends can be
gleaned, which might also be representative of the wider Java
ecosystem.

A key characteristic of Java dependencies is their special-
ization, wherein a single dependency is often scoped to a
small subset of functionality. These specialized dependencies
are designed to be co-used with a subset of other specialized
dependencies, with the goal of providing all the functional-
ity needed for a specific use case while minimizing the total
amount of code being included and, therefore, minimizing the
amount of unused code in downstream software. [9]

These collections of specialized dependencies that provide
complementing functionality are termed ”dependency fami-
lies” in this paper. Dependency families are an interesting
subject of study as they are a key aspect of Java’s approach
to dependencies, but are absent or less widespread in many
other programming languages that often favor feature flags in
a single dependency [3].

As an example, consider org.apache.lucene>lucene
-core, org.apache.lucene>lucene-queryparser, and
org.apache.lucene>lucene-queries. All of these de-
pendencies provide additional tightly-coupled lucene-related
functionality, and would therefore belong to the same family,
but a downstream user can chose to only depend on the subset
of them that is actually needed.

Dependency families are an unstudied facet of the Java
ecosystem. Furthermore, very little structural analysis has
been performed on entire repositories of Java dependencies,
with the maximal extent being the generation and usage of
dependency graphs [5] [1], without analysis of trends present
in this data. Additionally, while prior work has suggested
how best to handle dependency management at the individ-
ual package level [8], there is little guidance or tooling sup-
port for developers grappling with families of interrelated de-
pendencies. As such, this paper will shed light on depen-
dency families within the Maven ecosystem, their structural
features, trends pertaining to them, and how developers can
best leverage them.

The results of this research are pertinent to maintainers and
developers of dependencies, as trends present among families
could inform best practices that reflect the general consen-
sus of the ecosystem, but are currently informal and unwrit-
ten. Additionally, it is valuable for downstream dependency
users, as it will explain patterns they can generally expect
their dependencies to follow, as well as things to look out
for. Furthermore, demonstrating the crucial role that depen-
dency families play within the Maven ecosystem could facil-
itate and guide lobbying for the development of new func-
tionality within Maven that will help facilitate the use and
development of dependency families, benefiting the ecosys-
tem as a whole. Finally, provided with this paper is an up-to-
date dataset that improves on that provided by Benelallam et
al. [1] and Jamie at al. [5], which can be used by other re-
searchers to fill the gap in structural insights about the Maven
ecosystem.

This paper attempts to answer the following questions.

1. How can we detect which dependencies belong to the
same dependency family?

2. What are some common patterns among dependency
families?

(a) How are dependency family sizes distributed, and
how much of the Maven ecosystem to they account
for?

(b) How is the frequency of use of individual depen-
dencies in any family distributed?

(c) How often are versions out-of-sync and how fre-
quently are releases without code changes pub-
lished to keep their versions in sync?

Question 2(a) serves to identify the pervasiveness of de-
pendency families, justifying the importance of other re-
sults. Question 2(b) evaluates whether dependency families
are well-specialized, and could indicate how effort should be
prioritized by maintainers of dependency families. Question
2(c) answers whether developers can rely on dependencies
being in-sync, and could justify the improvement of Maven’s
handling of identical releases.

The paper is split into three overarching sections. Section
3 focuses on the dataset and how it was obtained, 4 discusses
the detection of dependency families, while section 5 is about
the common patterns among dependency families. Each sec-
tion has methdology, results, and when applicable, discussion
subsections.
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2 Definitions of Terms
• Artifact: A software package which can have multiple

distinct versions. Artifacts are identified by the follow-
ing:

– Group ID: The organization that owns the artifact
in reverse DNS notation, used as a namespace.

– Artifact ID: The name of the specific software
package in a format that is both machine- and
human-readable.

• Dependency: A reference to a different artifact that is
required by an artifact.

• Dependency Family: A group of dependencies owned
by a single entity that are designed to be used together
to provide additional related functionality.
For example, all dependencies with a group ID prefixed
by the following are considered to belong to their re-
spective families: org.apache.lucene, org.junit,
app.cash.sqldelight. Further, org.apache.camel
and org.apache.maven belong to separate families, as
they provide completely different non-complementing
functionality.

• Project Object Model (POM): A per-artifact configu-
ration file that specifies the artifact ID, version, depen-
dencies, and other information used by Maven.

• Release: A published version of an artifact. Artifacts
can have multiple releases.

3 Dataset
Before families can be identified and analysis can be per-
formed on them, a dataset is needed. This section describes
how the dataset was gathered and provides some key statistics
about it.

3.1 Methodology
The Maven Central Repository was chosen as the primary
data source, as it is the largest and de facto primary repos-
itory of Maven packages, and regularly publishes an index
of all hosted files. The index is provided as a list of files in
Apache Lucene format, which can then be migrated into a
relational database, normalized, and processed.

The OSGi specification defines a system for a dynamic
component model which, in summary, contains a list of pack-
ages published by specific releases, and a list of packages re-
quired by them that should be sourced from different releases.
Apart from data about the release each file belongs to and cer-
tain file metadata, the Maven index contains OSGi metadata
for the subset of releases that can make use of it. This OSGi
metadata can be used to determine the dependency relation-
ships between artifacts.

Given the limited adoption of OSGi (see 3.2), using the
dependencies of each release declared in its POM would pro-
vide a far larger dataset spanning a greater number of arti-
facts. The Maven index doesn’t include the releases’ POM
files, hence these were individually downloaded from the
central repository, and then had their dependencies extracted
from them.

Furthermore, Maven allows dependencies to be declared in
the dependencyManagement section of POM files, provid-
ing a hint as to which versions would be compatible, without
actually having to depend on the artifacts. This mechanism is
typically used within dependency families to ensure compat-
ibility for downstream users that depend on multiple artifacts
in a family.

Finally, POM files can inherit certain data from parent
POMs, declared in the parent section. This can be used as
an indicator of some relationship between them.

3.2 Results
The two data sources used are the Maven index, and the POM
files of all releases. Only 50 883 of 688 201 (7.39%) of all
artifacts in the Maven index have OSGi bundles associated
with them, and 15 985 044 (98.1%) releases have POM files.

4 Dependency Family Detection
Prior to conducting any analysis on trends within dependency
families, they must first be detected. This section details how
the dataset obtained in section 3 was used to identify depen-
dency families and provides a discussion on the quality of the
results.

4.1 Methodology
Maven doesn’t provide any metadata that trivially identifies
artifacts as members of dependency families, and each arti-
fact’s family will have to be calculated based on what data
is available. Creating groups of similar entities is a task to
which community-detection algorithms are well-suited, pro-
vided the data can be expressed as a graph. The nodes in such
a graph would represent individual artifacts, and the edges be-
tween them should be weighted by some manner of similarity
metric. Given that dependency families are defined as groups
of dependencies that are designed to be used together, a met-
ric representing their pairwise co-use is a natural fit.

This subsection first describes the graph’s construction,
then discusses evaluation methods.

Graph Construction
Community detection on a graph consisting of the entire cen-
tral maven index would be prohibitively computationally ex-
pensive, hence a hybrid statistical approach with structural
constraints was chosen.

All dependencies in a family must be owned by the same
organization or person, hence communities can be identified
within each organization. It is impossible to identify an or-
ganization from an artifact’s group ID based solely on struc-
tural data, as org.apache.maven and org.apache.felix
both belong to org.apache, whereas io.github.vipcxj
and io.github.riseclipse have two distinct owners and
shouldn’t be in the same family. However, the first two
period-delimited segments of the group ID (e.g. io.github
for io.github.vipcxj) will always have to match for two
artifacts to have the potential of having the same owner, given
that they represent the domain name that hosts the project in
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reverse-DNS notation. 1 As such, community detection can
be performed within each root group ID separately.

As previously mentioned, dependency families are de-
signed to be used together, hence the co-use rate between
pairs of dependencies should influence the graph’s edge
weights. Given that many families consist of a few depen-
dencies that are used many orders of magnitude more often
than the rest of the family, a normalized metric that isn’t influ-
enced by the absolute usage rate of individual artifacts must
be used. The overlap coefficient matches this criteria, as it
represents the ratio between the overlap of two sets, and the
cardinality of the smaller of the two, yielding a value in range
[0, 1] [10].

For sets Dx, Dy representing the releases that depend on
artifacts x and y respectively, the overlap coefficient is calcu-
lated as c in equation 1. Given the high computational cost of
calculating |Dx ∩ Dy|, it can be approximated by assuming
that for each artifact, the number of releases that only depend
on one of x or y is minimized. This is shown in equation 2,
where A denotes the set of all artifacts and Va denotes the set
of releases for artifact a.

c(x, y) =
|Dx ∩ Dy|

min (|Dx| , |Dy|)
(1)

|Dx ∩ Dy| ≈
∑
a∈A

min (|Dx ∩ Va| , |Dy ∩ Va|) (2)

For the sake of simplicity, Dx includes both releases
that depend on x, and those that mention it in the
dependencyManagement POM section.

Apart from the overlap coefficient, the existence of a
parent-child relation between any two releases of two arti-
facts is another good indicator of a potential family. Let this
be represented by function p : A × A → {0, 1}.

A potentially better indicator could be whether there is a
sibling or descendant relationship between artifacts, however
both of these would require up to |Ar|(|Ar|−1)

2 edges, where
Ar is the set of artifacts in root group ID r, which is infeasible
for the largest root group IDs.

Given that two metrics exist for the weight of an edge,
combining them could potentially lead to better communi-
ties. As such, the function w in equation 3 used as the edge
weight is a linear combination of the c and p metrics, with
α ∈ [0, 1] determining the bias towards each individual met-
ric. Linear combinations are used due to their simplicity, but
other methods of combining the two metrics could potentially
be more effective. The edge weight is always normalized to
[0, 1], which allows for the same parameters to be used for all
cardinalities of Ar.

w (x, y, α) = αp (x, y) + (1− α) c (x, y) (3)

The Leiden [11] and Louvain [2] algorithms are the lead-
ing community detection algorithms, and are the algorithms
used to identify the families. The Leiden algorithm produces

1Certain older artifacts have a one-segment group ID. For these
artifacts, the singlular segment is treated as the root group ID.

better connected communities and doesn’t face the same res-
olution limit on modularity [11], however preliminary results
indicated that the improvement isn’t large enough to justify
only testing the Leiden algorithm. Additionally, in the case
of a graph consisting only of unweighted edges, an algorithm
that groups all connected components of the graph is used.

The Leiden and Louvain algorithms both have multiple pa-
rameters that can tweak their output. We anticipated, based
on prior work, that resolution would have the largest effect, so
our search focused on this parameter. Initial results showed
that increasing their iteration count has diminishing returns,
and the Leiden algorithm’s randomness parameter has little
impact on the final result. As such, finding the parameters
that provide the best communities was done by performing
multiple grid searches over combinations of values for the
resolution and α parameters.

Community Quality Evaluation
The quality of any given set of communities can be measured
by computing their similarity to a set of manually-identified
families. A set of 26 families of differing cardinalities, differ-
ing cardinalities of their root group IDs, and differing usage
rates was used for this purpose to minimize cherry-picking
bias. The families were chosen by selecting random pack-
ages within larger root group IDs as well as from among
the most popular Maven packages, and identifying the family
they would belong to. Any packages with ambiguous depen-
dency families were excluded. See appendix B for the list of
manually-identified families.

The quality of the communities was calculated as the mean
Jaccard index of each community when compared to its cor-
responding manually-identified family. The detected commu-
nity corresponding to each manually-identified community
is determined to be the detected community with the largest
number of nodes in the given manually-identified community.

The Jaccard index, which is the proportion of the overlap
of two sets to their union, can be found in equation 4. It was
chosen because it is normalized to [0, 1] and can be easily
intuitively understood. Additionally, it assigns equal value
to false-positives and false-negatives, as there is no obvious
reason to punish one of these metrics more harshly. [4]

J (A,B) =
|A ∩ B|
|A ∪ B|

(4)

The mean false-discovery rates (FDR) and false-negative
rates (FNR) are also provided, as calculated in equations 5
and 6 respectively using the count of false positives (FP), false
negatives (FN), and true positives (TP). The false-positive
metric could not be provided, as there isn’t a sensible way
to measure the number of true negatives.

FDR =
FP

FP + TP
(5)

FNR =
FN

FN + TP
(6)

Finally, an isolation rate is also provided, equaling the pro-
portion of nodes without any edges, as shown in equation 7.
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U is the set of unconnected nodes, and N is the set of all nodes
in a graph.

IR =
|U|
|N|

(7)

4.2 Results
There exist parent-child relations specified in the POM files
between 315 705 artifact pairs constrained within their root
group IDs, and 15 346 680 pairwise overlap coefficient val-
ues between artifacts. 3 704 862 104 edges could exist given
the root group ID constraint if all graphs were complete.

Community detection yielded the best results with edge
weights being a linear combination of the existence of a
parent-child relation and the overlap coefficient, as opposed
to a single one of these two metrics.

Table 1: Best hyperparameters and corresponding isolation rate, Jac-
card index, false-discovery rate, and false-negative rate for commu-
nity detection for parent-only, overlap coefficient-only, and mixed
edge weights.

Algorithm Resolution α IR J FDR FNR

Connected Components - 1.0 0.546 0.236 0.275 0.544
Leiden 0.06 0.00 0.115 0.432 0.131 0.522
Louvain 0.003 0.96 0.0413 0.575 0.114 0.365

As can be seen in table 1, relying solely on parent-child
relations led to communities that were overly-large, exem-
plified by the high false-discovery rate, and didn’t match the
manually-identified communities well, with a Jaccard index
of only 0.236. While the results were better when relying
only on co-use, yielding a higher Jaccard index and lower
false-discovery rate, a Jaccard index of 0.432 is still low. Both
of these approaches had a high false-negative. When α = 1,
this is solely attributable to the high isolation rate, or high
number of nodes without

Optimal results were obtained with α = 0.96, where the
parent-child relations accounted for the vast majority of any
given edge’s weight. Despite the overlap coefficients having
only a minor influence on edge weight, the Jaccard index is
significantly improved at 0.575, and the false-discovery rate
has its lowest value.

It could be valuable to research whether different functions
for combining edge weights could yield better results. This is
due to how odd it is for the overlap coefficient was weighted
so lightly, since it is an empirical measurement of co-use,
which is what dependency families are definitionally meant
to maximize.

The results could potentially be improved by splitting
the overlap coefficients for dependencyManagement and
dependencies POM sections. Further, calculating the sim-
ilarity of artifact names and using full resolved dependency
trees instead of only direct dependencies would both be com-
putationally expensive, but might drastically improve results.

4.3 Discussion
The biggest challenge during the detection of dependency
families was determining which data would be most appropri-

ate for determining the graph’s edge weights. As discussed in
the methodology, dependency relations in the OSGi metadata
appeared to be a good candidate, as it came included in the
Maven index. However, only 7.39% of artifacts have OSGi
metadata, which greatly limits its usefulness.

A different metric that was considered is the pairwise
similarity of artifacts’ names, since artifacts in the same
family often share a common prefix in their artifact IDs.
The issue is that approximately 3.7 · 109 pairwise com-
parisons would have to be performed, meaning that a very
efficient comparison method would have to be used. The
primary issue that prohibited this from being used is the
lack of standarization in artifact naming. While some
dependency families are well-behaved, the location of this
shared prefix can differ (e.g. org.slf4j>slf4j-api and
org.slf4j>jcl-over-slf4j), a subset of dependencies
in a family can lack it (e.g. com.itextpdf>itext7-core
and com.itextpdf>pdftest), and some contain a po-
tentially mismatched group ID in their artifact IDs (e.g.
io.github.riseclipse>fr.centralesupelec.edf.
riseclipse.main and io.github.riseclipse>fr.
centralesupelec.edf.riseclipse.iec61850.nsd).
It is difficult to account for such nuance while maximizing
computation speed.

The final dependency families had a false-discovery rate
of 0.114 and a false-negative rate of 0.365. This means that
the identified dependency families, on average, included ex-
cess dependencies that belonged in separate families less of-
ten than they failed to include dependencies that should have
been in them. In this case, it is better for the FNR to be
greater than the FDR, as it means that dependency families
are not overly-broad, which makes it more feasible to calcu-
late statistics like their version homogeneity. The relatively
high false negative rate likely due to the fact that many de-
pendencies are depended upon only a couple times, leading
to inaccurate overlap coefficient values that are often low.

Given that a grid search over a wide range of parameters
was performed to achieve this community detection result, it
is unlikely to get a significantly better result without some-
how sourcing more dependency usage data or changing how
edge weights are calculated. However, the Jaccard index of
0.575, table 2, and figures such as figure 4 indicate that the
quality of detected dependency families is satisfactory.

5 Family-Based Insights
Having identified dependency families sufficiently accu-
rately, insights about trends within them can be found. This
section will discuss their pervasiveness, usage rates, and the
extent to which versions are kept in-sync within families.
These results have implications for manintainers of both de-
pendencies and Maven itself, as well as developers, as dis-
cussed in subsection 5.3.

5.1 Methodology
Most of the figures presented in the results subsection are suf-
ficiently simple that they do not require explanation beyond
that provided in said subsection. The two notable exceptions
are the method of measuring version homogeneity, and the
method of identifying empty releases.
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Measuring Version Homogeneity
A common pattern within dependency families is for all of
their latest version numbers to be equal (see 5.2), allowing a
user to easily use multiple dependencies from a family with-
out having to deduce which versions are compatible with each
other. The version homogeneity metric, as seen in equation
8, represents the ratio of distinct latest version numbers Nt

to the number of artifacts with an existing latest release Rt at
any point in time t for a given dependency family. A higher
value represents a family with more homogeneous versions.

H(t) = 1− |Nt| − 1

|Rt| − 1
(8)

A dependency family’s version homogeneity score can be
averaged over its entire existence T, as seen in equation 9. A
score close to 1 indicates a family whose versions are kept
in-sync with each other.

H =
1

|T|
∑
t∈T

(
1− |Nt| − 1

|Rt| − 1

)
(9)

Identifying Empty Releases
Each release has multiple files associated with it in the
Maven index. Most artifacts have a sources.jar file,
which contains only .java source files, and lacks com-
piled .class files. As such, an identical source JAR
file can be expected to be produced any time a release is
compiled iff the source code hasn’t changed, and the re-
leases’ author has enabled reproducible builds by settings the
project.build.outputTimestamp property or the times-
tamps on the source files have not been changed2. Releases
can also choose to include the POM file in the sources JAR,
which will mark a release as having had its sources changed if
the release’s version number is included in it verbatim. This
is not accounted for, as it is non-trivial to detect.

For consecutive releases, an identical sha1 hash of the
sources JAR identifies a release as unchanged.

5.2 Results
This subsection will cover three key insights, namely the car-
dinalities (sizes) of dependency families, the usage rates of
their individual dependencies, and the homogeneity of their
versioning.

Cardinalities and Pervasiveness
Figure 1 shows how many dependency families with any
given cardinality were identified. There is approximately a
negative power-law relationship between the cardinalities of
dependency families, and how many instances of a family
with such a cardinality exist. As such, most families are very
small, consisting of only a few dependencies. The modal car-
dinality is 2, and only 338 of 59 300 (0.570%) communities
have a cardinality > 100.

The three largest dependency families are presented in ta-
ble 2. They are all coherent despite their large size, and the

2https://maven.apache.org/guides/mini/
guide-reproducible-builds.html

Figure 1: Frequency of dependency family cardinalities.
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two for which communities could be manually identified ex-
hibit a low false-discovery rate, indicating they are not overly
broad.

Table 2: Three largest dependency families, their cardinalities, and
false-discovery rates.

Dependency Family Cardinality FDR

org.apache.camel 2574 0.0703
com.liferay 2167 -
io.openliberty.features 1269 0.000

With the detected dependency families, 522 899 (76.0%)
of all artifacts belong to a dependency family.

Usage Rates
Figure 2 exemplifies how often a dependency is depended
upon if it the second- through nth most depended-upon depen-
dency in a family. There is an approximate negative power-
law relationship between the frequency rank of a dependency
within a family, and how often it is used compared to the
most-used dependency in its family. The trend breaks down
past a frequency rank of around 100 because most families
are of a small size, and the sample size therefore drastically
decreases.

Dependencies that are the second-most often depended
upon within a family still see fairly common use, but this
decays as their rank increases. As such, it is clear that de-
pendency families typically consist of up to a few main de-
pendencies and many peripheral dependencies that have very
situational use-cases.

Figure 3 shows the proportion of a dependency family that
is directly depended-upon. Most often, only a small subset of
any dependency family is directly used by any release. There
is a significant spike in the bucket encompassing 0.500, and a
smaller one in the 0.333 bucket, which is attributable to cases
where one dependency is used in a family with cardinality 2
or 3 respectively. The skew in the results is noticeable be-
cause these are the most common cardinalities.
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Figure 2: Usage rate of dependencies by frequency rank in family,
normalized against most used dependency in given family.
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Figure 3: Proportion of dependency families directly depended
upon.
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Version Homogeneity and Empty Releases
Figure 4 gives an overview of the version homogeneity scores
for dependency families. The homogeneity scores appear to
have a distribution biased towards higher scores and a spike
at very low homogeneities, as the two most common brack-
ets are 0.95 − 1.0 and 0.0 − 0.05. 55.3% of all dependency
families have a version homogeneity ≥ 0.85.

Figure 4: Mean homogeneity score of dependency families.
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As indicated by table 3, 7.98% of releases inside of de-
pendency families are identical, whereas 9.28% of them are
identical outside of dependency families.

Table 3: Identical releases inside and outside of dependency fami-
lies.

Total Source JAR Releases Identical Releases Identical Releases (%)

Inside Family 11793235 941398 7.98
Outside Family 1704253 158127 9.28

As explained in the methodology, it may be valuable to
consider releases with very similar sizes to have had no sig-
nificant code changes. The importance of this is emphasized
by the fact that only 45 402 (6.60%) artifacts have repro-
ducible builds enabled. Figure 5 shows the frequency with
which various source JAR size differences occur between
consecutive releases for size differences ≤ 32 B. Based on
this graph, a cutoff value of ≤ 4 B was chosen to indicate re-
leases that are likely to have had no significant code changes.
Table 4 shows that 60.9% of releases inside families fit this
criterion, while 56.4% of releases outside of them do.

Tables 3 and 4 suggest there isn’t a significant difference
in the amount of empty releases inside and outside of depen-
dency families.

To account for minor changes such as timestamps and ver-
sion numbers, the sizes of the source JARs of consecutive
releases can be compared. While code changes could also re-
sult in only small changes to the size of the source JARs, they
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Figure 5: Absolute difference in source size between consecutive
releases for size differences ≤ 32 B.
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Table 4: Releases inside and outside of dependency families with a
size difference ≤ 4 B.

Total Releases Similar Releases Similar Releases (%)

Inside Family 14378803 7180341 49.9
Outside Family 1918902 961663 50.1

are significantly more likely to be larger than a simple ver-
sion number change, which should at most change the size
by a few bytes.

5.3 Discussion
Cardinalities and Pervasiveness
Dependency families account for the majority of the Maven
ecosystem, with 76.0% of all dependencies belonging to a
family. This number is likely to be higher, given that the false-
negative rate is higher than the false-discovery rate when de-
tecting dependency families.

It is also interesting to note that most dependency families
are small, with the modal family cardinality being 2, and their
cardinalities decreasing approximately based on the power
law.

Usage Rates
The trend seen in figure 2 wherein the frequency with which
dependencies are used has a negative power-law relationship
with their frequency rank approximately corresponds with
Zipf’s law [12], which states that such a distribution is gener-
ally expected when comparing the occurrence count and fre-
quency rank of events in a wide variety of phenomena [6].
This trend only holds until a frequency rank of around 100,
which is likely explainable by the fact that only 0.570% of de-
pendency families have a cardinality > 100, and such a low
sample size can easily introduce bias.

Figure 3 indicates that typically only a small subset of any
given dependency family is directly depended upon. This
could be seen as a success of Maven’s dependency specializa-
tion, since it means that downstream releases do not include

the majority of a dependency family’s code that they don’t
need, but that would bloat the final compiled binary.

It is also interesting to note that many families have a few
primary dependencies that are used very often, while the rest
have a more niche use-case and are used significantly less
often. Once again, this could be considered an indicator of
the success of dependency specialization.

Version Homogeneity and Empty Releases
High version homogeneity is the clear trend within depen-
dency families, as 55.3% of families have a homogeneity
score ≥ 0.85. 0.85 was chosen as the cutoff discriminating
homogenous from inhomogenous families by accounting for
the FDR of 0.114, and the fact that even for families that have
simultaneous releases for all of their dependencies, the mi-
nor time differences between these releases render a score of
1.00 unlikely. Developers who use dependency families can
often safely assume that various dependencies they use from
the same family will have the same version, but this is by no
means a given.

Detecting empty releases by simply checking the sha1
hashes of the source JARs of consecutive releases is not very
effective, as only 6.60% of artifacts have reproducible builds
enabled. This means that the source JARs will have slight
changes despite the source code not having changed.

Considering releases with a size difference of ≤ 4 B as
having no code changes yields a very high figure of 49.9% of
releases within families being empty, and 50.1% of releases
outside of them being empty. One could expect there to be
far more empty releases within dependency families to keep
versions in-sync, but because of the imperfect outcome of de-
pendency family detection, the similarity between these fig-
ures is likely attributable to the false-positives decreasing this
value for releases in families, and false-negatives increasing
it outside of families. These high values indicate that, while
similarly sized releases are pervasive, we cannot easily deter-
mine whether they actually contain no code changes, and are
solely used to keep versions in-sync.

The very high number of empty releases suggests that it
would be beneficial to optimize artifact storage in Maven to-
wards them. It is probable that most of these similar releases
also have a high byte-level similarity, and by storing the bi-
nary diffs between such releases, the size of the Maven Cen-
tral repository could be noticeably decreased. Furthermore,
this result highlights the importance of reproducible builds,
as identical source JARs could be trivially deduplicated by
certain file systems. Maven should consider making repro-
ducible builds opt-out instead of opt-in, or should at the very
least simplify how easy they are to enable.

6 Responsible Research
Ethical implications and reproducibility are both important
aspects of research to consider. While we have been unable
to identify any potential ethical concerns with analyzing and
drawing conclusions from the gathered data, sourcing this
data ethically is important.

Instructions and tooling maintained by Apache were used
to download the Apache-owned Maven index, which implies
their endorsement of such actions, but downloading all of the
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89.9 GB of POM files falls outside of a typical use-case. It
could be considered ethically questionable to use excess re-
sources provided to the public for free by a non-profit cor-
poration, hence the POM files were sourced from a mirror
distributed by Google. Google arguably has sufficient capital
and resources to allow for such an operation without undue
cost.

With such an empirical study, reproducibility is of high im-
portance. As such, all the source code used to obtain this
paper’s figures, along with instructions on how to use it, is
made available under the Affero General Public License ver-
sion 33. The choice of a strong copyleft license ensures that
any improvements made to the code must also be made avail-
able to users of any derived software. By providing all source
code, the results can be replicated by other researchers, and
the methodology can be scrutinized.

7 Conclusions and Future Work
In this study, we proposed a method for identifying depen-
dency families based on a hybrid structural and statistical
approach and evaluated it as quite effective. We note that
most dependency families consist of a few frequently used de-
pendencies and many supplemental ones, indicating that de-
pendency specialization is generally successful. Further, we
point out that releases without code changes are very common
and could be stored more optimally, and justify enabling re-
producible builds as a more sensible default. Finally, we note
that it is common for the latest releases within any family to
have the same version, but this doesn’t occur often enough for
developers to be able to safely make this assumption without
checking.

Future work includes investigating the impact of using bi-
nary diffs instead of storing compiled binaries in package
repositories, especially for similar releases. It is possible that
other dependency ecosystems, including non-Java ones, sim-
ilarly have many releases with few changes and could also
stand to benefit from such an approach. Additionally, it would
be interesting to investigate whether the usage trends of de-
pendencies in families are similar among downstream non-
dependency software, as well as in other dependency ecosys-
tems.
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Appendix
A Family Detection Grid Search

Hyperparameters

Table 5: Hyperparameters used in grid search to find The best com-
munities.

Algorithm Resolution α Iterations Randomness

Leiden {0.01n|n ∈ Z, 1 ≤ n ≤ 30} {0.1n|n ∈ Z, 0 ≤ n ≤ 10} 70 0.1
Louvain {0.01n|n ∈ Z, 1 ≤ n ≤ 30} {0.1n|n ∈ Z, 0 ≤ n ≤ 10} 70

Leiden {0.001n|n ∈ Z, 1 ≤ n ≤ 15} {0.1n|n ∈ Z, 4 ≤ n ≤ 10} 70 0.1
Louvain {0.001n|n ∈ Z, 1 ≤ n ≤ 15} {0.1n|n ∈ Z, 4 ≤ n ≤ 10} 70

Leiden {0.001n|n ∈ Z, 2 ≤ n ≤ 8} {0.01n|n ∈ Z, 85 ≤ n ≤ 98} 70 0.1
Louvain {0.001n|n ∈ Z, 2 ≤ n ≤ 8} {0.01n|n ∈ Z, 85 ≤ n ≤ 98} 70

B Manually-Identified Dependency Families
Table 6 shows the 26 manually-identified dependency fami-
lies used to evaluate the quality of the detected communities.
Any artifact with a group ID that started with the value in the
table was considered to be in that family.

Table 6: Manually-identified dependency families.

Group ID Prefix

app.cash.sqldelight

app.cash.treehouse

app.cash.wisp

com.google.errorprone

com.google.guava

com.squareup.okio

com.squareup.retrofit2

io.circe

io.github.amyassist

io.github.jsoagger

io.github.llamalad7

io.github.panpf.jsonx

io.github.panpf.sketch4

io.github.panpf.zoomimage

org.apache.kafka

org.apache.lucene

org.apache.xbean

org.eclipse.ditto

org.eclipse.store

org.eclipse.xtext

org.jetbrains.exposed

org.junit

org.scalatest

org.slf4j

org.wso2.charon

org.wso2.msf4j

C Source Code
All of the source code used for this paper can be found
at following address: https://github.com/wojciech-graj/
maven-dependency-families
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