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a b s t r a c t

The accumulation of FOG (Fat, Oil and Grease) deposits in sewer pumping stations results in an increase
in maintenance costs, malfunctioning of pumps and, a potential increase of wastewater spills in receiving
open water bodies.

It is thought that a variety of parameters (e.g. geometry of the pump sump, pump operation, socio-
economic parameters of the catchment) influences the built-up of FOG. Based on a database containing
data of 126 pumping stations located in five Dutch municipalities a statistical model was built. It is
shown that 3 parameters are most significant in explaining the occurrence of FOG deposits: mean in-
come of the population in a catchment, the amount of energy (kinetic and potential) per m3 per day and
the density of restaurants, bars and hotels in a catchment. Further it is shown that there are significant
differences between municipalities that can be traced back to the local ‘design paradigm’. For example, in
Amsterdam, the design philosophy of discharging in the pump sump under the water surface (and hence
maintaining a low level of turbulence in the pump sump) results in an increase of the probability of the
formation of FOG.
© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Sewer systems are vital for public health and city life. Sewer
blockages are found to be the dominant failuremechanism in sewer
systems (Arthur et al., 2009; Ashley et al., 2004). In the United
States, almost half of all sewer blockages are related to Fat, Oil and
Grease (FOG) deposits (EPA, 2004). FOG deposits are accumulated
suspended solids in sewer systems and have an adhesive character.
They can become firmly attached to interior sewer pipe walls,
thereby substantially reducing and sometimes even completely
blocking the wastewater flow (Desilva et al., 2011). They have a
grainy, sandstone-like texture with high yield strengths (Keener
et al., 2008) that require intensive cleaning activities such as hy-
draulic jetting (Dirksen et al., 2012; Mattsson et al., 2014).

It is often thought that FOG deposits in public sewer lines result
euwenhuis).

Ltd. This is an open access article u
from solidified cooking oils as they are poured down the drain and
cool down in downstream sewer lines. The formation mechanisms,
however, have appeared to be much more complex. Keener et al.
(2008) showed they are basically metallic soaps, mainly consist-
ing of (saturated) fatty acids and calcium. Later research described
the mechanism of FOG deposit formation in sewer pipes as the
saponification process between calcium and free fatty acids,
together with the aggregation of excess calcium, unreacted fatty
acids and debris in wastewater that are drawn towards the solid
core matrix of saponified solids (He et al., 2013). In addition, recent
work of Gross et al. (2017) showed that FOG deposits can also be the
result of acids crystallization, implying that FOG deposits can also
be formed without the presence of metals.

Collected samples from different locations within the sewer
network showed a wide range in physical and chemical properties
(He et al., 2011; Keener et al., 2008; Nieuwenhuis et al., 2017; Shin
et al., 2015; Williams et al., 2012). Different formation processes
and accumulation mechanisms were suggested for different
network locations (He et al., 2011; Williams et al., 2012), which is
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also in line with the recent laboratory study of Gross et al. (2017).
Both at upstream and downstream locations FOG deposits are

known to accumulate:
In sewer pipes, FOG deposits typically tend to accumulate

slightly above the low-flow water mark (Keener et al., 2008;
Williams et al., 2012). Dirksen et al. (2012) and Dominic et al.
(2013) identified sagging sewers in particular to be vulnerable to
the accumulation of FOG. For lateral house connections, Post et al.
(2016) showed that accumulation of FOG is the main failure
mechanism.

In inverted siphons, declining parts with the presence of air
pockets are particularly prone to FOG blockages (de Groot, 2015).

In pumping stations, FOG deposits with three different appear-
ances were found. Franke et al. (2011) mentioned the floating layers
of FOG, accumulating on the walls of pump sumps. These layers
potentially interfere with the functioning of level regulators in the
pump sump, depending on the type of level regulators. Addition-
ally, Williams et al. (2012) collected FOG samples in the shape of ‘fat
balls’ from the water surface of pumping stations, and Dirksen et al.
(2012) mentioned the occasional detachment of bar-shaped de-
posits in sewer pipes. These may end up in pump sumps, as such
bar-shaped deposits were observed in pump sumps during the site
visits conducted for this study.

Previous studies mainly focused on the chemical aspects of FOG
deposit formation. Although these studies have revealed general
information on locations in public sewer systems that are prone to
FOG accumulation, they did not focus on the particular sewer
contexts of FOG accumulations. In addition, previous studies hardly
elaborated on the probable impact of domestic disposal patterns on
FOG deposits. They focused mainly on Food Service Establishments
(FSEs) (Dominic et al., 2013; He et al., 2011; Williams et al., 2012),
and the fishing and meat industries (Cammarota and Freire, 2006;
Mattsson et al., 2014) as the main contributors to FOG problems. A
recent case study in The Netherlands showed, however, that lateral
house connections are more susceptible to blockages than main
sewers, and that FOG is the dominant failure mechanism in lateral
house connections (Post et al., 2016). This demonstrates that do-
mestic disposal patterns are an important contributor to FOG de-
posits. Similarly, Wallace et al. (2017) mentioned the contribution
of domestic wastewater to FOG blockages and a survey done among
127 Norwegian and Swedish sewer operators reported that
respectively 48 and 22% experienced FOG-related problems in
residential areas (Mattsson et al., 2014). They explicitly mentioned
the severity of FOG accumulation in areas with high-rise apartment
buildings and a relatively high number of immigrants (Mattsson
et al., 2014).

Considering that aspects of lifestyle may be attributed to de-
mographic groups, it is hypothesized that FOG problems are related
to demographics and vary considerably in severity among catch-
ments and in corresponding pumping stations. In addition, it is
expected that pumping stations with structural configurations that
enable low flow velocities are more prone to FOG build-up. The
research presented here aims at finding evidence for both hy-
potheses. To this end, a statistical study on 126 wastewater
pumping stations in five municipalities has been performed.

2. Materials

For investigating the impact of domestic disposal patterns, FOG
deposits were considered on the scale of catchment areas. This
allowed using demographics of catchments for studying the influ-
ence of population disposal patterns statistically.

Data on catchments and corresponding pumping stations were
collected in five relatively large Dutch municipalities. Table 1 pro-
vides an overview of the participating municipalities and their
general characteristics; they varied in demographics, type of
catchments and pumping stations.

The dataset of residential catchments was composed in close
collaboration with the municipalities, resulting in binomial data on
FOG accumulation in pump sumps. Each observation is represented
by one catchment and its pumping station, describing the presence
or absence of severe accumulation of FOG as judged by the sewer
manager. This judgement represents the state of FOG accumulation
over multiple years and at least one year. It was based on a com-
bination of 1) visual inspection by operators during regular main-
tenance and 2) available information about cleaning efforts
required. As the municipalities did not systematically record FOG
accumulation, this was the best available data.

To avoid discrepancies between cities, parameter definitions
were discussed beforehand. Pumping stations without consensus
on the severity of FOG accumulation or that were lacking crucial
information (e.g. construction drawings) were excluded from the
dataset.

2.1. Parameter selection

The investigated parameters represent general system charac-
teristics and socio-demographic (from here on called ‘de-
mographic’) characteristics that are potential indicators for FOG
disposal patterns or the FOG accumulation process.

Statistical analyses require comparable parameters and one
representative value per observation. The three parameters, ‘ver-
tical velocity’, ‘pump-on-time’ and ‘kinetic energy density’, are
therefore introduced, representing the geometry of the pumping
stations and the hydraulic loading (Table 2). These parameters are
related to the motion of water, and hence, are suspected to affect
the accumulation of FOG.

2.1.1. Vertical velocity
The average vertical velocity vvert, [mh�1] is calculated as:

vvert ¼ Qpump

Asump
(1)

Where Qpump is the pump capacity under dry weather condi-
tions in [m3h�1], and Asump [m2] the surface area of the pump sump.
Since pumping stations operate under dry weather conditions for
about 80% of the time (Tukker et al., 2012), the Dry Weather Flow
(DWF) is taken as the representative hydraulic loading. For variable
frequency drive (VFD) pumps, the operating schemes have been
provided by the municipalities, allowing to determine represen-
tative values for Qpump during DWF.

2.1.2. Daily operation time
The average daily operation time, toperation, in hours per day is

calculated as:

toperation ¼ Qdwf t
Qpump

(2)

Where Qdwf is the hourly DWF [m3h�1], t is the time [h], in this case
24 h, and Qpump is the pump capacity during DWF [m3h�1].

2.1.3. Kinetic energy density
The values for kinetic energy density, i.e. the incoming energy

per pump sump per day, Edaypump, in [Jm�3d�1], are based on the
values for hourly DWF as provided by the municipalities. For each
pumping station, hourly values for the kinetic energy, Ekin,h [Jh�1],
are summed over the day and divided by the representative water
volume in the pump sump, Vsump [m3]:



Table 1
General characteristics of participating municipalities. The data is revealed from municipal sewer system management plans (Municipality of Almere, 2011; Municipality of
Arnhem, 2009; Municipality of Rotterdam, 2011; Municipality of The Hague, 2010; Waterboard Amstel, 2010). Pumping stations were count as such when their corresponding
(sub)-catchments were identified on the GIS data delivered by the municipalities.

Municipality Number of inhabitants [-] Pumping stations under control of municipality [-] Length of DWF gravity sewers [km]

Total Combined Separated

Amsterdam 767,500 437 1358 525 833
Rotterdam 593,000 536 3311 1809 1502
The Hague 484,000 72 1091 845 246
Almere 188,000 178 595 0 595
Arnhem 147,000 22 464 178 286

Table 2
Selected system characteristic parameters.

Parameter Unit Description

City [-] The city where the pumping station is located
Sewer system type [-] The type of sewer system

Gutters [-] The presence of gutters arranged in a zigzag
Vertical velocity [mh�1] The average vertical velocity in the pump sump following from to the pumping capacity under dry weather conditions
Daily operation time [hd�1] The average operation time per day, based on DWF
Kinetic energy density [Jm�3d�1] Total incoming kinetic energy per unit of volume per day
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Edaypump ¼
X24
t¼1

Ekin;h
Vsump

(3)

The amount of kinetic energy that got into the water in the
pump sump, is calculated as the kinetic energy at the invert level of
the inflowing pipe(s), Ekin,inv [J], and the potential energy, Epot [J], of
the inflowing water with respect to representative water depth in
the pump sump; thewater level in the pump sump is assumed to be
constant.

Ekin ¼ Ekin;inv þ Epot (4)

where Epot is:

Epot ¼ mgh (5)

where m [kg] is the mass of the incoming water, g is the gravita-
tional acceleration [ms�2], and h [m] the fall height of the incoming
water, assuming a constant water level in the pump sump.

And where Ekin,inv is.

Ekin;inv ¼
1
2
mv2 (6)

where m [kg] is the mass of the incoming water, and v [ms�1] the
flow velocity.

The velocities are derived from hourly values for the DWF, ac-
cording to the hourly distribution percentages, and the cross-
sectional area of flow:

v ¼ Qdwf

A
(7)

where Qdwf [m3h�1] is the hourly DWF, and A [m2] is the cross-
sectional area of flow. The velocity, v [mh�1], is assumed to be
constant for every hour and, and the incoming DWF is assumed to
be equally divided among all inlet pipes.

The cross-sectional area, A [m2], depends on the water depth at
the location of the inlet during the particular hour. This is derived
from the representative water depth in the pump sump, z [m] (i.e.
the water depth following from the water level in between the
switch-on and switch-off levels of the DWF pump), the invert level
of the inlet pipe, zi [m], and the average water depth in the pipe at
the location of inflow during the particular hour, d [m]. For the
calculations of the cross-sectional area and/or the flow velocity and
corresponding kinetic energy, three situations for representative
water depths, z, at the location of inlet are distinguished, see Fig. 1.

For, z� zi the outlet of the pipe is classified as ‘free outflow’.
Close to the end of such pipes, flow conditions are critical, implying
that the non-dimensional Froude number, Fr, is known and speci-
fied as:

Fr ¼ vcffiffiffiffiffiffiffiffiffiffiffi
g$dm

p ¼ 1 (8)

where vc [ms�1], is the critical flow velocity, g [ms�2] is the gravi-
tational acceleration, and dm [m] is the hydraulic mean depth,
specified as the cross-sectional area of flow per flow width at the
water surface. For such flow conditions, the empirical equation of
Straub (1978) applies (9) and the critical depth dc [m] is derived:

dc
D

¼ 0:567$
Q0:506
dwf

D1:264 (9)

where Qdwf [m3s�1] is the hourly DWF, D [m] is the diameter and dc
[m] the critical depth, where 0:02< dc

D � 0:85.
Thereafter, using geometric and trigonometric equations, the

hydraulic mean depth, dm [m], as displayed in Fig. 1 is determined,
and from (8), the critical flow velocity vc [ms�1] is derived.

For one pumping station the value is slightly below the lower
limit dc

D ¼ 0.007, and for seven pumping stations this value is
exceeding the upper limit dc

D � 1:31. In these cases, dc
D is assumed to

be equal to the lower and upper limits, as the specified conditions
are only violated for minimum and maximum DWF values. The
possible influence of the tail water is neglected, and the water
depth at the outflow is assumed to be equal to the critical depth,
thus neglecting the drawdown effect.

For z< zi < zi þ D, water depth d [m] is used from (10), with the
value of d [m] confined by dc [m].



Fig. 1. Different representative water depth scenarios for calculating the kinetic energy. The figure shows the front view of the inlets.
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d ¼ z� zi (10)

For z � zi þ D, full pipe flow is considered.
Geometrical details, like the shape of the pump sump or the

position of inflow are not considered, as the nature of statistical
analysis does not allow for such details.
2.1.4. Demographic data
Online available geographical data from Statistics Netherlands

on neighbourhood level was used to obtain weighted demographic
data per catchment. The geographical maps were composed from
data from the Key Registers Cadaster and regional data from Sta-
tistics Netherlands (Statistics Netherlands and Kadaster, 2012).
Data from the year 2012 was used, as this was the most recent
dataset covering all parameters needed. Merging data from
different years was infeasible, due to changes over the years in the
borders of administrative neighbourhoods.

Table 3 provides an overview of the potential explanatory pa-
rameters selected from the Statistics Netherlands’ database.

Calculations are performed with Quantum GIS software, version
2.0.1-Dufour (QGIS, 2013). Using the Geoprocessing Intersect tool, a
Table 3
Selected demographic parameters; derived from geographical data on neighbourhood le

Parameter Unit Description

Population density [km�2] Population per unit of area
Household density [km�2] Total number of households per unit
Household size [-] Average number of total inhabitants p
Non-western immigrants [%] The percentage of immigrants with n
Rental properties [%] Percentage of rental properties
Housing association properties [%] Percentage of rental properties owne
Personal income (based on total

population)
½$1000V� Average personal income per person

Personal income (based on working
population)

½$1000V� Average personal income per person

Low income population [%] Percentage of households belonging t
High income population [%] Percentage of households belonging t
Below social minimum [%] Percentage of households belonging t

the political decision-making
FSE density [km�2] Average number of restaurants, cafes
GIS layer with the (contributing areas of) neighbourhoods in each
individual catchment was created.

Further data processing is performed using R statistics software,
version 0.99.893 (R Core Team, 2016). The database shows missing
values; data points that were identified as ‘nihil’ were replaced by
zero, and data points that were identified as ‘susceptible to reli-
ability and secrecy’ were replaced by ‘NA’ (not available).

The total number of inhabitants for each neighbourhood was
calculated, based on the population density and the surface area of
each neighbourhood, as derived from QGIS calculations.

Representative values for the number of Food Service Estab-
lishments (FSE) were derived by summing the ‘average number of
restaurants, cafes and cafeterias within a travel distance of 1 km for
the inhabitants’. This value was divided by the surface area, to
obtain a representative value for the FSE density, The household
density for each catchment was calculated by taking the number of
households divided by the surface area of each neighbourhood.

Estimations of the demographic characteristics per catchment
were obtained by weighing the characteristics according to the
catchment's population that the contributing neighbourhoods
contained. Using the catchment weights, characteristics per
catchment were derived in proportion to their populations. The
vel (Statistics Netherlands and Kadaster, 2012).

of area
er household
on-western origin

d by housing associations
based on total population

based on people with an annual income

o the group with the 40% lowest disposable incomes
o the group with the 20% highest disposable incomes
o the group that has an income that is below the social minimum as established in

and cafeterias within a travel distance of 1 km for each inhabitant
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numbers of inhabitants per catchment were based on the popula-
tion density of the neighbourhoods and the (contributing) surface
areas of the neighbourhoods. After pre-processing of the data, the
database of the selected pumping and their system characteristics
was merged with the demographic catchment data.

2.2. Resulting dataset

Table 4 provides an overview of the data; the dataset consisted
of 128 observations in total, spread over five cities. The number of
pumping stations varied largely among cities. In the entire dataset,
53 pumping stations were categorized as ‘clean’. Seventy-five
pumping stations showed ‘severe accumulation of FOG’.

3. Methods

This study focused on quantifying the relationship between
catchment demographics (representing FOG disposal patterns), the
accumulation of FOG in pump sumps, and whether the pump sump
geometry influenced the accumulation of FOG.

A statistical analysis was performed. Instead of a conventional
Generalized Linear Model (GLM), a Generalized Linear Mixed
Model (GLMM)was applied to account for correlations between the
pumping stations that were located in the same city. We applied
the procedure as presented in Fig. 2. The procedure consists of four
steps: data exploration, model component selection, model selec-
tion, and model validation.

3.1. Data exploration

A detailed data exploration was performed. First, relationships
between explanatory parameters were investigated. Following the
removal of collinear parameters, a GLMM was applied on the
remaining dataset. Based on this GLMM, outliers were detected.

3.1.1. Collinearity
Pairwise correlations among explanatory parameters were

examined with visual inspection tools and Pearson correlation
coefficients (<0.65). In addition, Variance Inflation Factors (VIFs)
were used to examine linear dependence among three or more
continuous explanatory parameters. A maximumVIF value of 3 was
used; more strict than the cut-off range of 5e10 as suggested by
Montgomery et al. (1992). One collinear parameter at a time was
removed until the values for the VIF and Pearson correlation coef-
ficient were below the preselected thresholds.

3.1.2. Sewer operator dependency
The pumping stations were examined for operator dependency.

The data exploration revealed that pumping stations located in the
same city showed similarities in their characteristics. As this study
aims to identify parameters influencing the accumulation of FOG in
pumping stations, revealing the potential effect of unknown city-
Table 4
Overview of dataset, showing the total number of observations, and the number of
observations with and without FOG accumulation in the pump sump per city.

Municipality Pumping stations in dataset

Total Clean FOG

Amsterdam 53 21 32
Rotterdam 12 6 6
The Hague 25 7 18
Almere 26 12 14
Arnhem 12 7 5
Total 128 53 75
specific parameters was not in the interest of this research. A
GLMM with a random component that accounted for the operator/
city effect was therefore applied. This mixed model structure,
which is further elaborated in Section 3.2, allows making state-
ments on the relationships for similar cities in general. It describes
the notion of an operator and/or city effect, inherently of what
comprises such effects.

3.1.3. Outliers
Based on the GLMM with a random component that accounted

for the operator/city effect, and the fixed component containing all
parameters that remained after removal of the collinear parame-
ters, the dataset was studied for the presence of outliers. Obser-
vations were considered outliers when the severity of FOG
accumulation was likely to be caused by industry, and when the
simplifications on pumping station geometry and system layout
caused a large discrepancy between the actual values and the
calculated values.

Since the response parameter is binary and only covers the
presence or absence of FOG in the pump sump, there is no possi-
bility for outliers in this parameter.

Outliers in the explanatory parameters were investigated
exploiting Cleveland's dot plots, and using Cooks Distance statistics
(Cook, 1977). As a Cooks Distance cut off, the value 4(n-k-1)�1 with
n for the number of observations and k for the number of regression
coefficients was set. The threshold value was used to enhance
graphical interpretation, after which the points identified were
examined in more detail.

After removal of the outliers, the parameters were checked for
collinearity again. The removed outliers did not cause the VIF
values and correlation coefficients to rise above the threshold
values set.

3.2. GLMM component selection and model selection

Both the GLMM component selection and the model selection
(see Fig. 2) were based on the protocol for the top-down strategy
for linear mixed models as recommended by Diggle et al. (2002)
and applied by Zuur et al. (2009). This protocol suggests starting
with a GLMM where the fixed component contains all explanatory
parameters. In the second step, the optimal structure of the random
component is chosen. This induced a correlation structure between
pumping stations that were located in the same city. The third step
focuses on obtaining the optimal fixed structure by means of
backward selection: the first model contains all explanatory pa-
rameters after which the terms are dropped one-by-one, until all
terms were significant (p < 0.05).

3.2.1. Conditional probability distribution and random component
Conditional on the random effect bi that accounted for the city-

effect of city i where the pumping station j was located, the dis-
tribution of the presence/absence of FOG accumulation Yij is
assumed to be binomially distributed with probability pijjbi.

The linear predictor h contains both a fixed and a random
component, following the form of the linear regression model:

h
�
Xij; Zij

� ¼ b � X þ b � Z (11)

where b � X is the fixed component and accounts for the fixed
effect, and b � Z for the random effect. The fixed component is a
linear function of the explanatory parameters. b is the matrix
containing theweights assigned to the explanatory parameters, X is
the design matrix of the explanatory parameters.

The random component extends the linear function of the fixed
component with a compound symmetrical correlation structure,



Fig. 2. The procedure for the GLMM model selection and validation process.
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adding a random intercept, conditional on city, to the fixed inter-
cept. It models the inter-city variation and assumes that pumping
stations that are located in the same city are equally correlated.
3.2.2. Fixed component
The fixed component of the linear predictor is:

hfixed
�
Xij1; …; XijM

� ¼ b0 þ b1 � Xij1 þ…þ bM � XijM (12)

Where j is the pumping station in city i, M represents the total
number of explanatory parameters. bi is the coefficient corre-
sponding to the particular explanatory parameter X, and b0 is the
intercept term.

All continuous explanatory parameters were standardized prior
to fitting, facilitating the comparison of the parameter's weights.
3.2.3. Link function
The relationship between the conditional mean and the

explanatory parameters is determined by the logistic link:

pij ¼
ehðbi;Xij;bi;ZijÞ

1þ ehðbi;Xij;bi;ZijÞ (13)
3.2.4. Model specification
The final model is:

ln

 
pij

1� pij

!
¼ b� Xij þ bi � N

�
0; s2

�
(14)

where pij is the probability that FOG accumulates in the pumping
station j in city i. b is the vector representing themodel coefficients,
Xij is the vector containing the explanatory parameters for pumping
station j, which is located in city i. bi is the random intercept for city
i, and is assumed N(0,s2).
3.3. Model selection and model validation

A stepwise backwards selection approach was applied to find
the optimal model. The assumptions for this final model were
verified using visual tools.

The outcome of the GLMM was verified by means of a permu-
tational MANOVA, as implemented in the vegan package (R Core
Team, 2016).
4. Results

This section presents the results of the procedure described in
Section 3. In the model selection process, nine parameters were
dropped (Table 5).

The Cooks Distance statistics designated 15 of the 128 obser-
vations as potential outliers. After further exploration of these
marked observations, i.e. by inspecting construction drawings and
catchment datasheets, two observations were removed as outliers:

� The first pumping station was located in The Hague. More than
25% of the design DWF of this catchment was attributed to in-
dustrial wastewater.

� The other station was located in Amsterdam. This pumping
station had two inlet pipes, one of which was a pressurized pipe
that transported 72% of all incoming wastewater. This specific
situation resulted in deviating conditions.

The thirteen remaining marked observations were also checked
for particularities in the pump sump geometry and system type. No
such particularities were found. Since the high leverage is thought
to result from natural variation in pumping stations, and since the
Cooks Distance values were still far below the frequently used cut
off level of 1, no further observations were removed from the
dataset.

Fig. 3 illustrates the differences in a pumping station design
philosophy between cities; the conditional boxplots of the kinetic
energy density show a larger variation between cities than within
cities. For Almere, the median kinetic energy density is 1.6 ∙ 106

[Jm�3d�1], which is three orders of magnitude higher than for
Amsterdam, where the median value is only 2.5 ∙ 103 [Jm�3d�1]
(non-log-transformed). In Amsterdam, the construction of most
pumping stations is such that they have continuously submerged
inlet pipes. This decreases the flow velocity in the inlet pipes
considerably and hence, decreases the kinetic energy. In contrast,
almost all inlet pipes of pumping stations in the city of Almere are
located above the representative water level. This increases the
kinetic energy. In addition, the Almere pump sumps are relatively
small, which has a positive effect on the kinetic energy per unit of
volume and time.

This example illustrates the presence of a city-specific design
philosophy, which is supported by the observations made during
the data collection and by the authors' knowledge on the Dutch
sewer systems. While ‘kinetic energy density’ is one of the inde-
pendent parameters in the final model, there could be other (un-
known) city-specific parameters influencing the build-up of FOG
deposits. It was therefore decided to use a mixed model structure



Table 5
The collinear parameters that were dropped.

Dropped parameter Reason for dropping

Gutters Small number of observations (8 in total, 7 of which located in Arnhem
Below social minimum High number of missing values (21 out of 128)
Personal income (based on working

population)
Highest VIF value (48.0) and highly correlated with the parameter ‘personal income (based on total population)’ (r¼ 0.96)

Low income population High VIF value (18.3) and highly correlated with parameter ‘renting properties’ (r¼ 0.78)
Non-western immigrants Highly correlated with the parameters ‘housing association properties’ (r¼ 0.67) and ‘personal income (based on total

population)’ (r¼ -0.69)
Household density Highly correlated with the parameter ‘population density’ (r¼ 0.87)
High income population Highest VIF value (13.3)
Renting properties Highest VIF value (11.6)
Daily operation time Highly correlated with the parameter ‘kinetic energy density’ (r¼ 0.78)

Fig. 3. Boxplots of the total kinetic energy per unit of volume per day (log transformed with base 10), conditional on city. The width of the boxes is proportional to the number of
observations per class. The horizontal line in each box is the median, the boxes define the hinge (25e75% quartile). The wide dots represent extreme values.
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and deviated slightly from the protocol of Diggle et al. (2002).
Incorporating a random effect for city mitigates the potential effect
of unknown city-specific parameters, allowing for valid inferences
given the available parameters. Such a GLMM structure allows the
intercept to be random over cities and assumes a different refer-
ence probability for the accumulation of FOG for each city.

Table 6 gives an overview of the model selection process and
presents the dropping order of the explanatory parameters. This
was based on the relative quality of models as judged by the
Akaike's Information Criterion (AIC), and the significance of the
model parameters. The parameter that gave the largest drop in AIC
Table 6
Parameters in the model selection process. The dropping order was based on the signifi
Information Criterion (AIC) value is the AIC of the model containing all parameters with a
indicated with a þ in the last column.

Parameter Type Dropping order AIC of G

Household size continuous 1 133.62
Population density continuous 2 131.89
Housing association properties continuous 3 130.51
Total population continuous 4 130.07
Sewer system type categorical 5 131.29
Vertical flow velocity continuous 6 132.58
FSE density continuous
Kinetic energy density continuous
Personal income (based on total population) continuous
if it was excluded from the model, was dropped first. For the final
model, the p-values of the estimated regression coefficients should
stay stable, i.e. these should not change considerably if one of the
parameters is dropped.

During the model selection process, six parameters ‘household
size’, ‘population density’, ‘housing association properties’, ‘total
population’, ‘sewer system type’ and ‘vertical flow velocity’ were
dropped. The final model contains three continuous parameters
‘personal income’, ‘kinetic energy density’, and ‘FSE density’.

As shown in Table 6, the model with the parameters ‘vertical
flow velocity’ and ‘sewer system type’ was preferred by the AIC
cance of regression parameter and the relative quality of the model. The Akaike's
lower position in table. If all model regression parameters were significant, this was

LMM with all parameters below incl. Significance model parameters (p< 0.05)

e

e

e

þ
e

þ



Table 8
City-specific intercepts and the random effects of the final GLMM.

City Random effect Intercept

Arnhem �0.841 �0.448
Rotterdam �0.082 �0.475
Amsterdam �0.007 0.387
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over the final model, and all estimations for the regression pa-
rameters were significant. Nevertheless, this model was rejected as
the optimal model; after the parameter ‘sewer system type’ was
dropped and the model was fitted again, the regression parameter
of ‘vertical flow velocity’ turned out to be non-significant anymore,
making this model not trustworthy.
The Hague 0.589 0.983
Almere 1.060 1.454
4.1. Final model

The final GLMM contains the explanatory parameters ‘personal
income’, ‘kinetic energy density’, and ‘FSE density’ only. The glmer
function from the lme4 package was used for the Bernoulli GLMM,
and the model was fit by the default maximum likelihood with a
Laplacian approximation. As the GLMM likelihoods involve high
order integrals lacking analytical solutions, the likelihood values
are approximated using numerical integration.

The final model to estimate the probability of the accumulation
of FOG in the pump sump model is specified as:

ln

 
pij

1� pij

!
¼ 0:394� 1:652 $Incomeij � 1:068 $Energyij

þ 1:749$FSEij þ bi bi

� Nð0;0:820Þ
(15)

where pij is the probability that FOG accumulates in the pumping
station j, which is located in city i.

Table 7 presents the estimated regression coefficients and
model fits for this final GLMM with standardized parameters. The
probability of FOG accumulation in the pump sump increases in
response to a decrease in the average personal income of a catch-
ment area and an increase in the number of restaurants, cafes and
cafeterias within a travel distance of 1 km in the catchment area.
This probability can be reduced by increasing the daily amount of
incoming kinetic energy per unit of volume of water in the pump
sump. Table 8 shows the city-specific intercepts. A further discus-
sion on the explanatory parameters and the city-specific intercepts
is given in Section 5.2 and 5.3.

The dispersion coefficient, defined as the Pearson residual
deviance divided by the residual degrees of freedom in which the
mixed effects were calculated to be one degree of freedom, is 0.86.
Since this value approximates 1, no over- or under-dispersion could
be detected.

The regression parameter estimates are all significant at the 5%
level. The parameter ‘FSE density’ is, however, at the margin of
significance with a p-value of 0.0493, using Wald Z-statistics.
Comparable results are found when a GLM is fitted as a function of
solely the parameter ‘FSE density’, and gives a (slightly higher) p-
value of 0.0661.

As the predictor FSE density was justifiable on the basis of
physical considerations, it was decided to keep the parameter in the
Table 7
Parameter estimates of the GLMM with standardized parameters. The model esti-
mates the probability of the accumulation of FOG in the pump sump.

Response parameter Effects

Yij Random effects Variance
City identity 0.820
Fixed effects Estimate± SD Pr (>jzj)
Intercept (average) 0.394± 0.513 0.4427
Personal Income �1.652± 0.388 <0.0001
Kinetic energy density �1.068± 0.468 0.0225
FSE density 1.749± 0.890 0.0493
final model. FOG blockages in sewer lines frequently occur in the
proximity of restaurant and bar areas, andmost of the FOG deposits
analysed were collected from sewer lines downstream from FSE
areas (Keener et al., 2008; Shin et al., 2015; Williams et al., 2012). A
larger sample size is required to obtain more information on the
significance of this relationship.

5. Model validation and discussion

5.1. Model validation

Visual tools are used to verify the model assumptions for the
final model. Deviance residuals are used for this model validation,
enhancing checking for the presence of patterns (McCullagh and
Nelder, 1989).

The Cooks Distance statistics is used to check for influential
observations once again. No extreme observations were discovered
in comparison with the first Cooks Distance plot.

5.1.1. Residual plots
Fig. 4 shows the residuals plotted versus the fitted values, both

for all observations at once, and conditional on city. Although re-
sidual plots of binomial GLMMs provide only limited information, it
is thought that the different cities react comparably to the model.

Fig. 5 shows the deviance residuals against the standardized
explanatory parameters for all assessed parameters.

To validate the model, the residual spread should be similar for
all values of the explanatory parameter, and no patterns should be
present. For the binomial GLMM, the deviance residuals rij,D are
defined as such, that for Yij¼ 0, rij,D is negative, and for Yij¼ 1, rij,D is
positive.

The upper row shows the (standardized) parameters that were
included in the final model. For these parameters, the spread was
less for higher values, suggesting violation of the homogeneity
assumption. Additionally, in the residual plot for kinetic energy
density, a pattern can be observed; all residuals are negative for
higher values of kinetic energy density.

Most of the parameters that are not included in the model do
not show such strong patterns. The parameters ‘vertical flow ve-
locity’, ‘household size’, ‘housing association properties’, and to a
certain extent ‘sewer system type’ displayed residual spreads that
are approximately equal for all values of the parameters. Adding the
parameters ‘population density’ and/or ‘total population’ did not
resolve the patterns, nor did adding higher order or interaction
terms.

As the patterns could not be resolved, it is concluded that the
assumption of independence and constant variance (homogeneity)
is violated. This could have affected the estimated regression
coefficients.

5.1.2. Permutational MANOVA
To verify the outcomes of the GLMM, a permutational MANOVA,

which is more robust to heterogeneity, was applied. A backward
selection on the explanatory parameters (Table 6) resulted in a
model with the last three parameters equal to the three parameters



Fig. 4. Deviance residual plots for the fitted values, both for all observations combined and conditional on city. The y-axis shows the residuals, the x-axis the fitted values.

E. Nieuwenhuis et al. / Water Research 135 (2018) 155e167 163
of the final GLMM model (p¼ 0.001), and thereby confirms the
outcomes of the GLMM.
5.2. Operator dependency

Fig. 6 illustrates the GLMM predicted probabilities of the accu-
mulation of FOG in pump sumps, along (standardized) personal
income values, based on a population mean for the parameters ‘FSE
density’ and ‘kinetic energy density’. The thick curve represents the
population average, and the two dashed curves represent the inter-
city variation; 95% of the values for bi are estimated to fall between
these two curves. The high variance (0.820) reveals that there is a
substantial inter-city variation.

To explain the variation between the five participating cities in
more detail, a plot of the predicted probabilities of accumulation of
FOG per city was made (Fig. 7). This plot shows the predicted
probabilities also along the standardized values for personal in-
come, but for the other parameters, the mean values for each city
individually were calculated.

The graph illustrates that each city has different intercepts. For a
representative pumping station in Arnhem, thus a pumping station
with mean values for all parameters for the city of Arnhem, the
predicted probability that FOG accumulates in this pumping station
is approximately 0.4, while for Amsterdam, this probability equals
0.8.

This shows that pumping stations in Amsterdam aremore prone
to the accumulation of FOG, given the explanatory parameters. This
is also thought to be affected by the relatively low values for kinetic
energy density in Amsterdam and high values for the FSE density,
making the pumping stations more prone to the accumulation of
FOG.
5.3. The role of kinetic energy density and socioeconomic factors
related to FOG disposal

The parameter ‘kinetic energy density’ [Jm�3d�1] is the only
non-demographic parameter in the model, and its manipulation
provides a possible approach to preventing the accumulation of
FOG. For example, for catchments with a low average income and a
high FSE density, a high kinetic energy per pump sump may pre-
vent the accumulation of FOG in the pump sump.

The significant role that kinetic energy density plays is
demonstrated in Fig. 8, showing the probability of FOG accumula-
tion along the standardized parameter for kinetic energy density,
for three different income classes. The continuous parameter ‘per-
sonal income’was discretized into three intervals. The observations
were equally divided among the intervals and the mean value for
the observations within one interval was taken as the representa-
tive interval value.

Fig. 8 demonstrates the importance of kinetic energy for
catchments with lower incomes. For a pumping station that is
located in a catchment in the low-income class, with a mean value
for kinetic energy density (thus the standardized kinetic energy
density equals 0), the predicted probability of FOG accumulation is
approximately 0.9. For a pumping station located in the same
catchment, having different pumping station characteristics,
resulting in a value for the standardized kinetic energy density of 4,
this probability would be only 0.1. This example illustrates the in-
fluence of kinetic energy density on preventing the accumulation of
FOG in pump sumps for catchments with a low-income population.
For catchments belonging to the high-income class while having an
average FSE density, the model suggests that the daily amount of
kinetic energy per unit of volume is of less importance. It thereby
demonstrates that, besides structural configurations, i.e. the kinetic



Fig. 5. Residual plots versus the explanatory parameters. The y-axes show the residuals, and the values of x-axis the standardized parameters. The upper row shows the parameters
that were included in the final model. The two lower rows show the parameters that were dropped in the model selection process. The line x¼ 0 represents the mean value of the
corresponding (standardized) explanatory parameter.
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energy density, also demographics, i.e. FOG from FSEs and domestic
dwellings, influence the accumulation of FOG.

The high estimated probabilities of FOG accumulation in areas
with lower incomes are in line with the observations of Mattsson
et al. (2014). They explicitly mentioned the occurrence of severe
FOG accumulation in areas with high rise apartment buildings and
a relatively high number of immigrants. No such significant re-
lationships could be revealed from this study though; high-rise
apartment buildings were not included as such in this study, and
population density turned out to be a non-significant parameter.
The, on the basis of multi-collinearity, dropped covariate ‘per-
centage of immigrants with non-western origin’, however, was
highly correlated with the parameter ‘personal income’ (r¼ -0.69),
suggesting that this covariate may be related to the accumulation of
FOG too. Nevertheless, a Dutch governmental study on food habits
and lifestyle (RIVM, 2002) seems to contradict this statement: it



Fig. 6. GLMM predicted probabilities of FOG accumulation along (standardized) personal income values, for catchments with a mean FSE density and for pumping stations with a
mean value for kinetic energy density. The thick middle line represents the predicted values for the entire sample of pumping stations. The confidence interval shows the variation
of the predictions between the cities.

Fig. 7. GLMM predicted probabilities of FOG accumulation per city along (standardized) personal income values, for catchments with both mean values for FSE density and mean
values for kinetic energy density of the particular city. The thick middle line represents the predicted values for the entire population.
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reported a lower relative fat consumption for Turkish and Moroc-
can immigrants, both in comparison with groups with low socio-
economic status and with the overall mean of the Dutch
population. It should be noted, however, that the Turkish and
Moroccan population in the Netherlands represent only around
36% of the entire population that has a non-western origins
(Statistics Netherlands, 2016a) and it is unknown whether the
Turkish and Moroccan population with low incomes were sub-
tracted from the group with low socioeconomic status. Moreover,
FOG disposal is, in addition to fat consumption, also related to
cooking and dishwashing habits. As such, the RIVM 2002 study
does not allow to conclude on FOG disposal in relation to ethnical
groups. Similarly, no such conclusions could be drawn in relation to
income. The Dutch National Food Consumption Survey (RIVM,
2011) reported on the intake of fat, subdivided into educational
level (and the level of education and the average income are
strongly correlated (Statistics Netherlands, 2016b)). This survey
revealed only a minor difference (<5%) in the daily fat consumption
between the different groups, and moreover, people with a mod-
erate education level had the highest mean fat intake (90.1 g/day).
Nevertheless, literature evidence on a relation between income and
broader FOG-related issues does exist. A study that analysed dif-
ferences in the fat intake across social groups for nine European
countries, found that people with a lower socioeconomic status
consumed slightly more fat than people with a higher socioeco-
nomic status (Lopez-Azpiazu et al., 2003). Another literature review
on the geography of fast food outlets found a positive relation be-
tween fast food outlets and deprivation (Fraser et al., 2010). Hence,
both studies observed a relation between income and issues related
to FOG. It is thought that people of one income-group share
particular FOG disposal patterns, which could be related to FOG
intake and/or cooking and dishwashing habits.

The results of this study suggest that FOG issues in pump sumps
may be reduced by minimising the FOG disposal or by increasing
the kinetic energy density. Measures to reduce FOG disposal may
involve educational campaigns aiming to change the behaviour of
people, like the well-known UK ‘bin it - don't block it’ campaign, or
installing grease traps at FSEs AND ascertaining that the grease
traps are being operated and maintained properly. Additionally,
more robust systems could resolve FOG issues, e.g. if preventive



Fig. 8. Predicted probabilities for different income classes for the ‘population of cities’ (bi¼ 0), and along (standardized) kinetic energy values. For the parameters ‘FSE density’ and
‘personal income’, mean values for the population were taken. The three income classes were based on the intervals of the continuous income parameter. The observations are
plotted as dots; the 0 stands for absence and the 1 for presence of FOG. Prediction intervals were not added, as this does not provide valuable information for logistic regression.
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measures do not suffice. For pumping stations, FOG accumulation
could be overcome by a particular design of pumping stations that
accompany higher kinetic energy densities. As this typically re-
quires deeper pump sumps, the design of a pumping station should
balance investment costs and operational costs for FOG removal,
while at the same time it should avoid excessive air entrainment.
From earlier research, see e.g. Lubbers (2007), it is known that the
geometry of pump sumps have a large influence on the risk of air-
entrainment, which may lead to a significant increase in energy
losses in wastewater pressure mains and, in extreme cases, to
complete loss of hydraulic capacity (Pothof, 2011; Pothof and
Clemens, 2010).

In addition to kinetic energy density, other parameters related
to flow velocities and patterns could influence the FOG accumula-
tion process. Dirksen et al. (2012) found that sagging sewers are
more vulnerable to the accumulation of FOG, and Dominic et al.
(2013) stated that particular sewer constructions, which decrease
flow velocities, could enhance FOG accumulation. Furthermore,
since the dropped parameter ‘daily operation time’ was correlated
with kinetic energy density (r¼ 0.77), a higher daily operation time
could also decrease the probability of the accumulation of FOG. In
practice, this suggests, however, operation of pumps beyond the
normal operational envelope, which may decrease the service life.

Further physical research on the exact impact of kinetic energy
density and flow patterns on FOG accumulation is required.
Although the model assumptions of independency and homoge-
neity were violated, the reported results provide important insights
into factors influencing the accumulation of FOG. For future sta-
tistical research, it is recommended to systematically record the
accumulation of FOG and use a more balanced dataset, i.e. to have
more observations with higher values. Also, a larger sample size
could solve the observed heterogeneity.

6. Conclusions

This research provides insight into important aspects of catch-
ment demographics and pumping station characteristics that are
related to the accumulation of FOG in pumping stations. General-
ized Linear Mixed Model (GLMM) procedures are used to analyse
the data, consisting of 126 observations of catchments and corre-
sponding pumping stations, located in five different cities. This
study presents a procedure tomodel the probability of the presence
or absence of FOG in pump sumps, as a function of demographic
and general system characteristics of catchment areas.

The final model contains three parameters, representing the
average catchment income, FSE (Food Service Establishments)
density, and kinetic energy density of wastewater. The high sig-
nificance of the parameter ’personal income’ demonstrates that it is
possible to identify a relationship between FOG disposal and the
accumulation of FOG in sewer systems on a catchment scale. This
suggests that some aspects of lifestyle, i.e. FOG disposal patterns,
are shared by particular demographic groups, thereby resulting in
significant variation in the probability of FOG accumulation in
pumping stations between catchment areas. Additionally, the
analysis shows that geometrical configurations of pumping stations
may play an essential role in the prevention of severe FOG
accumulation.

The model reveals that severe accumulation of FOG in pump
sumps is negatively related to the average income earned per
person in the catchments. It is expected that particular FOG
disposal patterns are shared by individuals of one income-group, as
income cannot influence the accumulation of FOG in itself. Partic-
ular diets, cleaning habits and typical moments of FOG disposal
might be aspects comprising such disposal patterns, and further
research is required to obtain insights into how these aspects may
influence the accumulation of FOG. As the dropped parameter
‘percentage of non-western immigrants’was highly correlatedwith
income, these particular disposal patterns might be culture-bound.

Furthermore, the model revealed that FSE density is positively
correlated with the presence of FOG deposits in pump sumps. As
the accumulation of FOG is generally known to be severe in
restaurant and bar areas, it is thought that the presence of FSEs
directly contributes to the accumulation of FOG.

Next to income and the presence of FSEs, the model finds a
negative relationship between the total kinetic energy of DWF per
storage volume and presence/absence of FOG in pump sumps.

The results of this study can provide useful information for
municipalities in every country to define more effective mainte-
nance strategies or to prevent the accumulation of FOG. It could,
e.g., suggest the kind of data that could be recorded by munici-
palities or motive particular structural configurations of pump
sumps. In particular, for catchments receiving wastewater from
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areas with a low average income and/or where the FSE density is
high, increased construction costs to increase the kinetic energy
density may be justified to decrease FOG removal costs. As the
assumptions of both independence and homogeneity, however,
were violated, the outcomes of the model should be interpreted
with care.

For future statistical research, it is recommended to systemati-
cally record the accumulation of FOG, use a more balanced dataset
and perform (simulation-based) cross-validation to comparemodel
predictions against data. This could improve the predictive per-
formance of the model, thereby providing information for pre-
venting the accumulation of FOG and making municipal
maintenance strategies more effective.

The outcomes of this study also provide direction for future
experimental design: further research will focus on the multiphase
flow phenomena in wastewater pumping stations and on the in-
fluence that geometry has with respect to:

� the accumulation of FOG
� air-entrainment
� and sediment deposits

The ultimate goal is to obtain a sound understanding of these
processes and to derive a design strategy for wastewater pump
sumps that function optimally (e.g. no air entrainment), while their
maintenance needs (notably removing FOG and sediments) are
minimised.
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