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Improved analysis of parity violation at neutron p-wave resonances of238U
based on resonance spin assignments
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We have measured the spins ofp-wave resonances in the reaction of low energy neutrons with238U nuclei
and used them to reanalyze the parity violation experiment of the TRIPLE Collaboration carried out with thi
nucleus. The estimate of the root-mean-square matrix element of the parity violation interaction,M, including
a bias correction, is found to beM̂50.6220.20

10.33~68% C.L.!20.33
10.88~95% C.L.! meV. The spin assignments of the

resonances improved the analysis.

PACS number~s!: 25.40.Ny, 24.80.1y, 25.40.Lw, 27.90.1b
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In this journal the TRIPLE Collaboration published i
first result on parity violation~PV! at p-wave resonances o
238U in a transmission experiment with polarized low ener
~10–300 eV! neutrons using a neutron time-of-flight bea
from the LANSCE facility @1#. In this work PV could be
studied at many, that is 16,p-wave resonances. This exper
ment is therefore a considerable improvement with respec
pioneering experiments of this kind at Dubna in which P
has been studied at one or two resonances per isotope b
20 eV @2#. In the zero-spin nucleus238U the 1/22 p-wave
resonances can be admixed with the 1/21 s-wave resonance
due to PV weak nuclear interactions, and thus, may show
effects. Strong enhancements of these PV effects occur
to ~i! the proximity ofs andp resonances, and~ii ! by admix-
ing a~strong! s-wave resonance or severals-wave resonance
into a weak p-wave resonance (Gn

s@Gn
p). Although one

might expect parity mixing between 3/22 and 3/21 com-
pound nuclear levels of239U, there are no 3/21 neutron reso-
nances in the reaction of low energy neutrons with238U to
make parity violation manifest at the 3/22 p-wave reso-
nances. The weakp-wave resonances can be distinguish
easily from the strongs-wave resonances in the consider
low energy range of the238U1n reaction; however, their
spins~1/2 and 3/2! are not known without further informa
tion.

The TRIPLE results made it possible for the first time
analyze PV data in a statistical manner under the assump
that the PV matrix elements of one isotope are from a Ga
ian distribution with zero mean and varianceM2; that is,M,
is a parameter, which can be identified with the root-me
square of these matrix elements if the above assumed d
bution is correct.M is related to the strength of the wea
nuclear PV force. It is therefore an important quantity
know @1,3#. The 63.5 eV resonance in the238U1n reaction
shows a PV effect'6 times its standard deviation~s!, and
hence, this must be a 1/22 resonance to a very high degree
reliability. There are threep-wave resonances with PV e
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fects slightly above 2s. However, one of them~at 10.2 eV!
has been assigned by Wassonet al. as 3/22 @4#; thus, it
should not show a PV effect. Either this spin assignment
wrong, or the deduced PV effect is zero with a small prob
ability assuming that the measurement is correct. There a
four otherp-wave resonances with PV effects between 1s
and 2s. The remaining eightp-wave resonances do not show
PV effects within the quoted errors. TRIPLE analyzed thes
PV data on the basis of a maximum likelihood method with
out knowing the spins of thesep-wave resonances and de
rived the estimateM̂50.5620.20

10.41meV ~68% confidence limit!
of the parameterM @1#. Bunakov challenged the TRIPLE
analysis stating that at most an upper limit of'1.5 meV
~99% confidence limit! of the estimate can be achieved@5,6#.

An experimental program has been started at the GELIN
facility in Geel~Belgium! to determine spins ofp-wave reso-
nances on the basis of neutron captureg spectroscopy for the
following reasons:~i! to see whether the spin assignments o
238U correlate with the PV effects or not,~ii ! to check
the 10.2 eV resonance spin assignment proposed by Was
et al., and ~iii ! to improve the estimateM̂ @7–9#. Since the
number of PV data is still relatively small the possibility tha
a bias in estimatingM̂ may occur is considered. Because o
the different interpretations of the results by TRIPLE and b
Bunakov some of the expressions used in the analysis will
discussed in the Bayes approach first.

There are two conditional probabilities involved in this
problem:~i! the conditional probabilityP({ Xi%

NuM ! of a set
of N measured values$Xi%

N5X1 ,X2 ,...,XN depending on
the parameterM according to a specific theory or model, and
~ii ! the posterior probabilityP~M u$Xi%

N! of M with the ex-
perimental results available. The question is now to dete
mine an expression forP~M u$Xi%

N! and use this to estimate
M on the basis of the set of experimental data$Xi%

N. The
relation between these two conditional probabilities is give
by Bayes theorem@10,11#:

P~M u$Xi%
N)5

P~$Xi%
NuM !•P~M !

P~$Xi%
N!

, ~1!

in which P(M ) is the probability distribution ofM describ-.
R558 © 1996 The American Physical Society
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53 R559IMPROVED ANALYSIS OF PARITY VIOLATION AT NEUTRON . . .
ing prior information about this parameter, andP~$Xi%
N!

5*P~$Xi%
NuM !P~M !dM is the unconditional probability o

$Xi%
N. This factor normalizesP~M u$Xi%

N!. Consider a set of
N resonances, which are taken at random from a ‘‘nucl
box’’ in which the 1/22 resonances occur with a fractionp
and the 3/22 resonances with fractionq512p. The prob-
ability of pickingn of these 1/22 resonances andN2n of the
3/22 resonances without considering the order ispnqN2n.
For each combination ofn andN2n there areN!/n!(N2n)!
possible sequences, which will be denoted asSn

N , to order
the spins over the resonances. These sequences hav
same probability as long as no other information is taken i
account. Consider the ‘‘reduced’’ PV asymmetries, deno
asQi in Ref. @1#, as our set of experimental data$Xi%

N at
p-wave resonancesi and assume that the measurements
pend in a known way on the parameterM which can have
different values for the different resonance spins. The con
tional probability of this set of measured values, givenM,
can be expected as:

P~$Xi%
NuM !5 (

n50

N

pnqN2n(
Sn
N
P~$Xi%

NuSn
N ,M !, ~2!

where P~$Xi%
NuSn

N ,M ! is the conditional probability of
$Xi%

N given a spin sequenceSn
N and M. For independent

measurements this can be written as:

P~$xi%
NuSn

N ,M !

5@P~X1u j 1 ,M !•P~X2u j 2 ,M !•••P~XNu j N ,M !#S
n
N, ~3!

in which j 1 , j 2 ,...,j N are the resonance spins of a chos
spin sequence. The spin sequences can be paired in su
way, that one resonance~e.g., No. 1! can be factorized out in
Eq. ~2!. That is:

P~$Xi%
NuM !5@pP~X1u

1
2 ,M !

1qP~X1u
3
2 ,M !#•P~$Xi8%

N21uM !, ~4!

in which P~$Xi8%
N21uM ! is the same expression as Eq.~1!

but with one measurement~No. 1! less, that is$Xi8%
N21

5X2 ,...,XN . Carrying out this procedure for all resonanc
gives the expression:

P~$Xi%
NuM !5)

i51

N

$pP~Xi u
1
2 ,M !1qP~Xi u

3
2 ,M !%. ~5!

Equation ~5! gives the probability of a set ofN measured
values $Xi%

N for a givenM. However, one would like to
reverse the procedure and try to get an estimateM̂ on the
basis of these measurements. Using Bayes theorem, give
Eq. ~1!, the following equation for the posterior probabilit
function is obtained:

P~M u$Xi%
N!5F P~M !

P~$Xi%
N! G)

i51

N

$pP~Xi u
1
2 ,M !

1qP~Xi u
3
2 ,M !%, ~6!

in which
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P~$Xi%
N!5E P~M !dM)

i51

N

$~pP~Xi u
1
2 ,M !1qP~Xi u

3
2 ,M !%

~7!

takes care of the normalization of this function. In th
Bayesian approach Eq.~6! is the posterior probability distri-
bution ofM based on the experimental data$Xi%

N and prior
knowledge ofM expressed byP(M ). In order to avoid sub-
jectivity in the Bayesian approach one has to be care
about the prior knowledge ofM which one wants to accept
In the current problem of parity violation with the assum
Gaussian distribution of the PV matrix elements one kno
for sure thatM>0. Since at this point all values ofM>0 can
be considered as equally probable,P(M ) can formally be
replaced by the unit step functionU(M )51 for 0<M<`. Of
course also a distributionP(M ), which makes large value
of M unlikely, can be introduced. However, this will not b
pursued in this paper.

At this point a connection with the maximum likelihoo
method can be made. Equation~3! can be considered as th
joint probability density function~PDF! of the set of inde-
pendent measurements$Xi%

N and Eq.~6! can be identified as
the likelihood function L(M ). The maximum value of
L(M ), or of lnL(M ), gives the value ofM which is the most
likely. This is called the ‘‘estimate’’ and is indicated byM̂.

In the TRIPLE experiment many runs, in which the ne
trons have alternatingly positive and negative helicities, h
been carried out to obtain the transmission asymmetries
series of resonances simultaneously. For each resonanci a
Gaussian fit of the histogram of the transmission asymm
was made from which the mean valueXi with errorei of the
reduced PV asymmetries were derived@1#. We do not elabo-
rate on the details how reduced PV asymmetries are
tained, but refer to the original papers@1#. Xi andei are ex-
pressed in meV. As mentioned before, the PV mat
elements are assumed to have a Gaussian distribution
zero mean and varianceM2 for the 1/22 resonances. The
probability density function is the convolution of two Gaus
ian functions, which again is a Gaussian function. For
1/22 resonances the PDF’s can be written as:

f ~xi ,M !5
1

A2p~M21ei
2!
expH 2xi

2

2~M21ei
2! J . ~8!

These can be identified with the conditional probabiliti
P(Xi u

1
2,M !5 f ~Xi ,M ! for the 1/22 resonances in the

Bayesian approach. For the 3/22 resonances the PDF’s ar
independent ofM and the prior probabilities of these res
nances can be written as:

P~Xi u
3
2 ,M !5

1

A2pei
2
expH 2Xi

2

2ei
2 J . ~9!

Combining Eqs.~6! to ~9! gives the following expression fo
the likelihood function:
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L~M !5
1

C )
i51

N F p• 1

A2p~M21ei
2!
expH 2Xi

2

2~M21ei
2! J

1q•
1

A2pei
2
expH 2Xi

2

2ei
2 J G ~10!

in which 1/C denotes the normalization factor. This fact
poses a problem since with the second~constant! terms in the
factors of Eq.~10! the integral inC goes to infinity which
means that Eq.~10! is not normalizable. Because of thi
problem TRIPLE introduced an upper limit of 10 meV i
order to be able to normalize the likelihood function. In
way this is introducing prior knowledge aboutM, which is
believed to be considerably below this accepted upper lim
In the TRIPLE publications@1# the values ofp andq were
taken to be 1/3 and 2/3. These values were justified on
basis of the assumed (2j11) spin dependence near the ne
tron binding energy. If the better spin dependence funct
(2 j11)exp$2~j11/2)2/2s2} is used, withs'3 as lowest
spin cutoff parameter for238U conceivable with Ref.@12#,
the value ofp becomes'0.38. A change ofp from 1/3 to
0.38 has very little effect on the estimate ofM. Hence, we
will stick to the original value ofp. Reanalyzing the PV data
of the 16 resonances of238U with Eq. ~10!, that is without
knowledge of the spins, we obtain the estima
M̂50.5720.21

10.40~68% C.L.!20.33
11.18~95% C.L.! meV with the 68%,

respectively, the 95% confidence limits indicated, a resul
accordance with the earlier quoted value obtained
TRIPLE. With the 68% confidence limits there is still th
possibility of 32% that the true value ofM is outside this
range. Therefore, we include 95% confidence limits.

Bunakov @5,6# used also Eq.~2! as a start to derive his
likelihood function for the PV experiments. He considered
each spin sequenceSn

N first the subgroups ofn 1/22 reso-
nances and calculated their product~prior! probabilities us-
ing the PDF’s given by Eq.~8!. Thereafter, he applied Baye
theorem, Eq.~1!, to obtain the posterior probabilities of th
subgroups of 1/22 resonances; thus each having its own n
malization factor. The same thing was done for the s
groups withm(5N2n) 3/22 resonances using the PDF’s o
Eq. ~9! but multiplied by the delta functiond(M )51 at
M50. Applying Bayes theorem to these subgroups ag
separately the exp$2X i

2/2ei
2} dependences are lost. Due t

this procedure, spin sequences in which, e.g., the 63.5
resonance is assumed to be 3/22 get much larger probabili-
ties than experimentally justified. For each spin sequence
normalized probabilities of the two subgroups were summ
and subsequently all spin sequences were combined ex
the spin sequence withn50, which was left out since it
cannot produce PV. The likelihood function obtained in th
way requires the calculation of2N21 integrals for normal-
ization which makes the analysis very time consuming. I
not surprising that with Bunakov’s likelihood function onl
an upper limit ofM̂ is obtained due to the introduction of th
delta function and separate normalizations of the spin s
groups. By accepting an upper limit, Bunakov includ
M̂50. However, already on the basis of the PV effect of t
63.5 eV resonance aloneM̂50 is excluded.

The analysis simplifies if the resonance spins are kno
from another experiment making it possible to select on
r
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basis of physical information the 1/22 resonances for a maxi
mum likelihood analysis. At the GELINA neutron facility i
Geel ~Belgium! spins of p-wave resonances of238U have
been determined on the basis of resonance neutron-ca
g-ray spectroscopy using high resolution Ge detectors a
neutron time-of-flight setup. Intensity ratios of low energyg
transitions as well as intensities of primaryg transitions to
levels with known spins, made it possible to determine
spins of 19p-wave resonances. These include the 16p-wave
resonances used in the TRIPLE experiment@7–9#. Seven of
them turned out to have spin 1/2. Three of the four re
nances showing PV effects larger than twice their stand
deviation are within this group. The other nine resonance
the TRIPLE experiment were found to have spin 3/2, amo
them the 10.2 eV resonance for which a PV effect of sligh
larger than two standard deviations has been quoted@1#.
Something might be wrong with the deduced PV effect
this resonance. On the whole there is a reasonable correl
between the TRIPLE parity violation experiment and t
Geel spin assignments. The fraction of 1/22 resonances o
the set of assigned 19 resonances is 0.37 in agreement
the expected value ofp based on Ref.@12#.

The likelihood function for resonances with known a
signments 1/22 is given by:

L~M !5
1

C )
i51

n
1

A2p~M21ei
2!
expH 2Xi

2

2~M21ei
2! J . ~11!

With more than one measurement this likelihood function
normalizable and thus it is not necessary to assume an u
limit for M in this case. The maximum of Eq.~11! can be
obtained fromd lnL(M )/dM50, which leads to the likeli-
hood equation:

(
i51

n
~M21ei

22Xi
2!

~M21ei
2!2

50. ~12!

The root of this equation is the estimateM̂. With unequal
values ofei Eq. ~12! can only be solved numerically. Wit
the PV data of the seven known 1/22 resonances we obtain

M̂50.5820.20
10.33~68% C.L.!20.32

10.88~95% C.L.! meV

with the 68% and 95% confidence limits indicated. This
timate is close to the value obtained without knowing t
spins; however, the 68% and 95% confidence intervals
smaller; 0.53 versus 0.61 meV, respectively, 1.20 versus
meV for the 68% and 95% intervals. The ratio of the 95
and 68% intervals is 2.26 with spins assigned and 2.48 w
out knowing the spins. Thus in our analysis the likeliho
function resembles somewhat more closely a Gaussian f
tion.

The Crame´r-Rao lower bound which depends o
E{ d2lnL(M )/dM2}, the expectation of the second deriv
tive of the likelihood function at its maximum, gives an e
timate of the smallest possible value of the variance ofM̂.
For an unbiased estimator it is given by:

Var~M̂ !>
21

E$d2lnL~M ! /dM2%
5

1

( i51
n @2M2 / ~M21ei

2!2#
,

~13!
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in which the expectation valuesE$xi
2%5M21ei

2 of the
PDF’s for then 1/22 resonances are used. Equation~13!
gives the error estimatesM5@var~M̂ !#1 /2>0.23 in fair
agreement with the 68% confidence interval. However, t
confidence limits obtained with the likelihood function ar
asymmetric due to its shape.

Figure 1 shows the likelihood function for the seven 1/22

resonances compared with the likelihood function of all 1
resonances but with spins unknown. For the second cu
p51/3 is used. The likelihood function for the seven know
1/22 resonances is sharper compared to the likelihood fu
tion for unknown spins which falls off more slowly at large
M values probably due to the additional resonances w
smallXi values and larger errors. That both estimatesM̂ are
so close is likely related to the influence of the single stro
PV effect of the 63.5 eV resonance and the fact that t
observation of a PV effect with small error indicates spin 1/
Mathematically this preference is automatically implement
in the analysis without knowledge of the spins by th
exp{2Xi

2/ei
2} terms in the likelihood function, Eq.~10!,

used by TRIPLE.
One may wonder how large the contribution of each res

nance is to the estimateM̂. This can be studied by removing
all resonances once from the analysis and recalculatingM̂ N
~or n! times. Figures 2~a! and 2~b! show what happens in the
case of the 16 resonances with spins unknown, respectiv
in the case of the seven assigned 1/22 resonances. In the first
case removing the 63.5 eV resonance has a dramatic eff
while in the second case the effect of removing this res
nance is considerably smaller and more in balance with

FIG. 1. Two likelihood curves; the dashed line relates to the
resonances of238U with the resonance spins not known, and the fu
line concerns the seven assigned 1/22 resonances out of these 16
resonances.
he
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other six resonances. This suggests that by assigning spin
the resonances a more reliable analysis is achieved.

Parameter estimates obtained with small numbers of d
should be looked at carefully for possible biases@10,11#. The
estimator ofM given by Eq.~12! is consistent; that is, it is
unbiased in the limit of large number of data: limn→`M̂
5M true. However, with a small number of data points ther
might be a bias. This is already evident from a theoretic
approach. Following the procedures given in Refs.@10# and
@13# the biasbn~M̂ !5M̂2M true can to first order approxi-
mation in 1/N be expressed as:

16
ll

FIG. 2. Effect on the estimateM̂ when each resonance~indi-
cated! is removed from the analysis one at a time;~a! for the 16
resonances without knowing the spins, and~b! for the seven as-
signed 1/22 resonances. At the beginning of each plot the estimat
M̂ without removing a resonance are given.
bn~M̂ !'
E$d3lnL~M ! /dM3%12E$@d lnL~M ! /dM#•@d2lnL~M ! /dM2#%

2E$d2lnL~M ! /dM2%2
52H 4M̂3 (

i51

n

@1 / ~M̂21ei
2!2#J 21

, ~14!

in which the right-hand part is based on expectations calculated withE$xi
2%5M21ei

2 andE$xi
4%53~M21ei

2!2 using the
PDF’s given by Eq.~8!. AssumingM̂2@ei

2 Eq. ~14! reduces tobn~M̂ !52M̂ /4n, which givesbn'20.021 meV. Calculating
the expectations with the experimental uncertaintiesei givesbn'20.046 meV.
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Another method to get information about the bias is bas
on Monte Carlo simulations. We have carried out simulatio
with n values ofXi taken randomly from a normal~Gauss-
ian! distributionN~0,M2! with errors from the normal distri-
butionN~0,(2! in which( represents the averaged spread
the variances ofxi and takingM true51 meV. For( we used
0, 0.5, 1, and 2. In all cases the average^M̂ & is systemati-
cally belowMtrue, butMtrue is approached for increasingn.
The bias observed in this simulation is fitted with:

bn5(
r
ar /n

r ~15!

for r51, and forr51; 2. Accepting(50.5 ~roughly repre-
senting 238U! and n57 the bias, after scaling toM̂50.58
meV, is found to be20.028 meV with only ther51 term,
and20.031 meV withr51 and 2.

An ingenious method to correct for the bias has been d
veloped by Quenouille and is known as the jackknife meth
@14,15#. The method works as follows: if the estimate of
parameter fromn data points istn , then by taking out each
of the data points one by one,n other estimatestn21 are
obtained. With the bias in first order proportional to 1/n, the
bias is given bybn'~n21!$tn2^tn21&%. The remaining
bias is of order 1/n2. In this way we foundbn'20.064
meV.

Another Monte Carlo simulation has been carried out
Bowman and Sharapov@16# to test the likelihood function
for unknown and known spins. They took values for th
reduced matrix elements and their errors randomly from d
tributions closely resembling232Th PV data@17#. The aver-
age^M̂ & obtained from 1000 pseudo random data sets is v
close toMtrue ~spins not known! or equal toMtrue ~spins
known!. From their published histogram~number of events
ed
s

in

e-
d
a

y

e
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ry

againstM! it can be concluded that the highest probability
occurs for an estimate ofM, which is several percent below
Mtrue ~the histogram is slightly asymmetric!. Since the ex-
periment can only be carried out with a limited number of
resonances in238U the probability of finding a value ofM̂
slightly below the mean value~Mtrue! is fairly large.
Of course by improving the accuracy ofM̂ the bias will be
lowered, but will reach a limit of about a few percent whenn
remains small. It will be difficult to decrease the bias by
increasing the number of studied 1/22 resonances.

On the basis of the above considerations about the bias w
acceptbn'20.04 meV. As shown by Quenouille and other
authors the variance of the estimate increases only slightly
this process of bias removal@14,15,18#. By combining the
bias quadratically with the 68% confidence limits and
2.26bn quadratically with the 95% confidence limits we ar-
rive at the following final estimate:

M̂50.6220.20
10.33~68% C.L.!20.33

10.88~95% C.L.! meV.

As conclusions we like to make the following statements
~i! The spin assignments of the238U p-wave resonances and
the PV effects correlate well except for one resonance.~ii !
The uncorrected estimatesM̂ for both analyses~unknown
versus known spins! are very close, however, the 68%, and
especially the 95% confidence intervals are reduced wit
known spins. The analysis appears to be more reliable wit
assigned spins.~iii ! A first order bias correction related to the
small number of data points shiftsM̂ by about17%. ~iv! If
the spins are not known, the TRIPLE likelihood function is
an excellent alternative.

One of us~H.P.! likes to acknowledge interesting discus-
sions with J. David Bowman.
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