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Improved analysis of parity violation at neutron p-wave resonances of>%U
based on resonance spin assignments
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We have measured the spinspfvave resonances in the reaction of low energy neutrons 3tith nuclei
and used them to reanalyze the parity violation experiment of the TRIPLE Collaboration carried out with this
nucleus. The estimate of the root-mean-square matrix element of the parity violation intersiGtiooluding
a bias correction, is found to Bd =0.62"3-3368% C.L)*38495% C.L) meV. The spin assignments of the
resonances improved the analysis.

PACS numbsg(s): 25.40.Ny, 24.80ty, 25.40.Lw, 27.90+b

In this journal the TRIPLE Collaboration published its fects slightly above @ However, one of thenfat 10.2 eV
first result on parity violatior(PV) at p-wave resonances of has been assigned by Wassehal. as 3/2 [4]; thus, it
238 in a transmission experiment with polarized low energyshould not show a PV effect. Either this spin assignment is
(10—-300 eV neutrons using a neutron time-of-flight beam wrong, or the deduced PV effect is zero with a small prob-
from the LANSCE facility[1]. In this work PV could be ability assuming that the measurement is correct. There are
studied at many, that is 1@;wave resonances. This experi- four otherp-wave resonances with PV effects between 1
ment is therefore a considerable improvement with respect t8nd 2. The remaining eighp-wave resonances do not show
pioneering experiments of this kind at Dubna in which py PV effects within the quoted errors. TRIPLE analyzed these

has been studied at one or two resonances per isotope beldw data on the basis of a maximum likelihood method with-

20 eV [2]. In the zero-spin nucleu®®U the 1/2 pwave °ut knowing the spins of ghﬁsatwave resonances and de-

resonances can be admixed with the*1#wave resonances 'ved the estimatél =0.56 g5, meV (68% confidence limijt
due to PV weak nuclear interactions, and thus, may show p@f the parameteM [1]. Bunakov challenged the TRIPLE
effects. Strong enhancements of these PV effects occur d alysis s_tatlng that at most an upper limit ®ﬂ7'5 mev
o (i) the proximity ofs andp resonances, arfd) by admix- 9% confidence limjtof the estimate can be achievigg6.

ing a(strong s-wave resonance or sevegalvave resonances A_n e_xpenmental program has b_een s?arted atthe GELINA
into a weak p-wave resonancelt>I?). Although one facility in GeeI(BeIglum) to determine spins gf-wave reso-

nt p-wa - n’- 9 nances on the basis of neutron captyispectroscopy for the
might expect parity mixing between 372and 3/2° com-

following reasons(i) to see whether the spin assignments of
pound nuclear levels 6f%U, there are no 3/2neutron reso- 238 correlate with the PV effects or notji) to check

nances in the reaction of low energy neutrons With) to  he 10.2 eV resonance spin assignment proposed by Wasson
make parity violation manifest at the 3/2p-wave reso- et al, and(iii) to improve the estimat® [7-9]. Since the
nances. The weag-wave resonances can be distinguishednumber of PV data is still relatively small the possibility that
easily from the strong-wave resonances in the considereda bias in estimatingy may occur is considered. Because of
low energy range of thé*®U+n reaction; however, their the different interpretations of the results by TRIPLE and by
spins(1/2 and 3/2 are not known without further informa- Bunakov some of the expressions used in the analysis will be
tion. discussed in the Bayes approach first.

The TRIPLE results made it possible for the first ime to  There are two conditional probabilities involved in this

analyze PV data in a statistical manner under the assumptigsroblem: (i) the conditional probabilitP?({ X;}N|M) of a set
that the PV matrix elements of one isotope are from a Gaussf N measured value$X;\N=X,,X,,....Xy depending on
ian distribution with zero mean and variank®; that is,M,  the parametel according to a specific theory or model, and
is a parameter, which can be identified with the root-meantji) the posterior probabilityP(M|{X;}") of M with the ex-
square of these matrix elements if the above assumed distfrerimental results available. The question is now to deter-
bution is correctM is related to the strength of the weak mine an expression fd?(M|{X;}") and use this to estimate
nuclear PV force. It is therefore an important quantity topm on the basis of the set of experimental déxa}™. The

know [1,3]. The 63.5 eV resonance in tH&U+n reaction  relation between these two conditional probabilities is given
shows a PV effect=6 times its standard deviatid@), and  py Bayes theorerfil0,11:

hence, this must be a I7/2esonance to a very high degree of

reliability. There are threg@-wave resonances with PV ef- PUXINIM)-P(M)
P{Xi}N) ’

*Present address: CEA Saclay, F-91191 Gif-sur-Yvette, France. in which P(M) is the probability distribution oM describ-

P(M{X}")= D
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ing prior information about this parameter, amd{X;}"V) N

=[P{XNIM)P(M)dM is the unconditional probability of P({Xi}N)=J PIM)YAM]T {(pP(Xi|3,M)+qP(X;|3,M)}
{X;}N. This factor normalize®(M|{X;}V). Consider a set of =1

N resonances, which are taken at random from a “nuclear @
box” in which the 1/2° resonances occur with a fractign
and the 3/2 resonances with fractiogq=1—p. The prob-
ability of picking n of these 1/2 resonances and—n of the
3/2” resonances without considering the ordempfg™N".

takes care of the normalization of this function. In the
Bayesian approach E) is the posterior probs\bility distri-
o bution of M based on the experimental dd4t&}" and prior
For each combination of andN—n there areN!/n!(N—n)! .5\ yledge ofM expressed b(M). In ordéer t}o avoid sub-
possible sequences, which will be denotedSs to order jectivity in the Bayesian approach one has to be careful
the spins over the resonances. These sequences have ut the prior knowledge d¥l which one wants to accept.
same probabili?y as long as no other information_is taken intQp, the current problem of parity violation with the assumed
account. Consider the “reduced” PV asymmetries, denotegsayssian distribution of the PV matrix elements one knows
asQ; in Ref.[1], as our set of experimental dafX}" at  for sure thatV=0. Since at this point all values M=0 can
p-wave resonanceisand assume that the measurements depe considered as equally probabR(M) can formally be
pend in a known way on the parametdrwhich can have replaced by the unit step functid(M) =1 for 0<M=ce. Of
different values for the different resonance spins. The condizgyrse also a distributioR (M), which makes large values
tional probability of this set of measured values, givn  of M unlikely, can be introduced. However, this will not be
can be expected as: pursued in this paper.
N At this point a connection with the maximum likelihood
AN _ noN—n ANjeN method can be made. Equati®) can be considered as the
PXiHTIM) ngo Pa % PAXFIS M), @ joint probability density functiofPDP of the set of inde-
" pendent measuremer{t%;}\ and Eq.(6) can be identified as
where P({X;}"|S\',M) is the conditional probability of the likelihood functionL(M). The maximum value of
{X;\N given a spin sequencg\ and M. For independent L(M), orof InL(M), gives the value oM which is the most

In the TRIPLE experiment many runs, in which the neu-
P({xi}N|S§ M) trons have alternatingly positive and negative helicities, have

] ) . been carried out to obtain the transmission asymmetries at a
=[P(X1]j1,M)-P(Xalj2,M)---P(Xx| jn-M)]s,  (3)  series of resonances simultaneously. For each resoriance
Gaussian fit of the histogram of the transmission asymmetry
in which ji,j,....jn are the resonance spins of a chosenwas made from which the mean valMewith errore of the
spin sequence. The spin sequences can be paired in suchedluced PV asymmetries were deridd We do not elabo-
way, that one resonance.g., No. } can be factorized outin rate on the details how reduced PV asymmetries are ob-

Eq. (2). That is: tained, but refer to the original papdrs]. X; ande are ex-
N ) pressed in meV. As mentioned before, the PV matrix
PUAXi}NIM)=[pP(X{|3,M) elements are assumed to have a Gaussian distribution with

. N1 zero mean and variandd? for the 1/2° resonances. The
+AP(Xe|3,M)]-PEX{IYHM), (4 probability density function is the convolution of two Gauss-
ian functions, which again is a Gaussian function. For the

in which P({X{}""*[M) is the same expression as B§)  1/>- resonances the PDF’s can be written as:

but with one measuremeriNo. 1) less, that is{X/}N"1
=Xs,...,XN. Carrying out this procedure for all resonances
gives the expression: —x?

T 'M):sz(mue?) exﬁ{ 2(M?+ef)

] . (8

N
P({xi}“lM>=Ql{pP(xilé,MHqP(xil%,M)}. (5)

These can be identified with the conditional probabilities
P(Xi|3,M)=1(X;,M) for the 1/2 resonances in the
reverse the procedure and try to get an estinMten the _Baye5|an approach. For the 3/2esonances the PDF's are

basis of these measurements. Using Bayes theorem, given ﬁglependent oM and the prior probabilities of these reso-

Eq. (1), the following equation for the posterior probability nces can be writien as:
function is obtained:

Equation(5) gives the probability of a set di measured
values{X;}"N for a given M. However, one would like to

P(M)
PUXHY)

N 1 — X2
P(M|{X}Y)= TT {(pP(X|3.M) POGIEM) == epr 2 ] ©)

=1 i

+qP(Xi|3,M)}, (6) . _ , ,
Combining Eqs(6) to (9) gives the following expression for
in which the likelihood function:



R560 H. POSTMA, F. GUNSING, AND F. CORVI 53

1 N 1 —x2 basis of physical information the I/2esonances for a maxi-
L(M)= c H p- > ex > - mum likelihood analysis. At the GELINA neutron facility in
=1 N2m(M°+e€) 2(M*+ef) Geel (Belgium) spins of p-wave resonances 6fU have

9 been determined on the basis of resonance neutron-capture
+q- 1 ex _Xzi (10) v-ray spectroscopy using high resolution Ge detectors and a

27e; 2¢; neutron time-of-flight setup. Intensity ratios of low energy
transitions as well as intensities of primagytransitions to

in which 1C denotes the normalization factor. This factor [€VelS with known spins, made it possible to determine the
poses a problem since with the secdodnstantterms in the ~ SPins of 19p-wave resonances. These include thepdéave
factors of Eq.(10) the integral inC goes to infinity which ~ résonances used in the TRIPLE experimight9. Seven of
means that Eq(10) is not normalizable. Because of this them turned out to have spin 1/2. Three of the four reso-
problem TRIPLE introduced an upper limit of 10 meV in Nances showmg I_DV gﬁects larger than twice their standard
order to be able to normalize the likelihood function. In adeviation are within this group. The other nine resonances of
way this is introducing prior knowledge abolt, which is the TRIPLE experiment were found_ to have spin 3/2, among
believed to be considerably below this accepted upper limitthem the 10.2 eV resonance for which a PV effect of slightly
In the TRIPLE publication§1] the values ofp andq were  larger than two standard deviations has been quétgd
taken to be 1/3 and 2/3. These values were justified on theomething might be wrong with the deduced PV effect of
basis of the assumed j2 1) spin dependence near the neu-this resonance. On the whole there is a reasonable correlation

tron binding energy. If the better spin dependence functiorp€ween the TRIPLE parity violation experiment and the
(2] +1)exp—(j + 1/2)2/25?} is used, witho~3 as lowest €€l Spin assignments. The fraction of 1/@&sonances of

spin cutoff parameter fof*% conceivable with Ref[12], the set of assigned 19 resonances is 0.37 in agreement with
the value ofp becomes~0.38. A change op from 1/3 to the expected value qf based on Ref.12]. _

0.38 has very little effect on the estimate Mf Hence, we _ The Ilkel|h0(_)d f_unct|on for resonances with known as-
will stick to the original value op. Reanalyzing the PV data Signments 1/2 is given by:

of the 16 resonances 6f%U with Eq. (10), that is without

knowledge of the spins, we obtain the estimate 1 Il 1 —X
M=0.57"83368% C.L)*§3395% C.L) meV with the 68%, LtiM=¢ L 2m(M%+e?) P 2mz+ed) | 1y
respectively, the 95% confidence limits indicated, a result in '

accordance with the earlier quoted value obtained byyith more than one measurement this likelihood function is
TRIPLE. With the 68% confidence limits there is still the normalizable and thus it is not necessary to assume an upper
possibility of 32% that the true value &fl is outside this |imit for M in this case. The maximum of Egl1) can be

n 2

range. Therefore, we include 95% confidence Iimit_s. _ obtained fromd InL(M)/dM=0, which leads to the likeli-
Bunakov[5,6] used also Eq(2) as a start to derive his pgqq equation:

likelihood function for the PV experiments. He considered in " (M E—XD)

each spin sequencd) first the subgroups of 1/2” reso- > 2—2'_ (12)

nances and calculated their produptior) probabilities us- =1 (M ‘Hﬂz)

ing the PDF’s given by Eq8). Thereafter, he applied Bayes ) o oA
theorem, Eq(1), to obtain the posterior probabilities of the The root of this equation is the estimaté With unequal
subgroups of 1/2 resonances; thus each having its own nor-values ofe; Eqg. (12) can only be solved numerically. With
malization factor. The same thing was done for the subihe PV data of the seven known I/2esonances we obtain:
groups withm(=N-—n) 3/2" resonances using the PDF'’s of -
Eq. (9) but multiplied by the delta functions(M)=1 at M=0.58"03368% C.L)"35495% C.L) meV
M=0. Applying Bayes theorem to these subgroups again . o .
this procedure, spin sequences in which, e.g., the 63.5 eWate is close to the value obtained W_lthout kpowmg the
resonance is assumed to be 3t much larger probabili- SPIns; however, the 68% and 95% co_nfldence intervals are
ties than experimentally justified. For each spin sequence th@maller; 0.53 versus 0.61 meV, respectively, 1.20 versus 1.51
normalized probabilities of the two subgroups were summedneV for the 68% and 95% intervals. The ratio of the 95%
and subsequently all spin sequences were combined excetd 68% intervals is 2.26 with spins assigned and 2.48 with-
the spin sequence with=0, which was left out since it Out k_nowmg the spins. Thus in our analysis the I|k<_al|hood
cannot produce PV. The likelihood function obtained in thisfunction resembles somewhat more closely a Gaussian func-
way requires the calculation @ —1 integrals for normal-  tion. . _
ization which makes the analysis very time consuming. Itis_ The ~CrameRao lower bound which depends on
not surprising that with Bunakov's likelihood function only E{d“InL(M)/dM?}, the expectation of the second deriva-
an upper limit ofM is obtained due to the introduction of the tive of the likelihood function at its maximum, gives an es-
delta function and separate normalizations of the spin sudimate of the smallest possible value of the variancéviof
groups. By accepting an upper limit, Bunakov includesFOr an unbiased estimator it is given by:
M=0. However, already on the basis of the PV effect of the
63.5 eV resonance alor=0 is excluded. var(M)= —1 _ 1

The analysis simplifies if the resonance spins are known E{d’InL(M)/dM?} ~ ="_[2M?/(M?+e?)?]’
from another experiment making it possible to select on the (13)
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FIG. 1. Two likelihood curves; the dashed line relates to the 16
resonances 28U with the resonance spins not known, and the full
line concerns the seven assigned 1f2sonances out of these 16
resonances. 130
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in which the expectation valueg{x?}=M?+e? of the ]
PDF's for then 1/2" resonances are used. Equatid) 1.00]
gives the error estimater,,=[varM)]*2=0.23 in fair o]
agreement with the 68% confidence interval. However, the
confidence limits obtained with the likelihood function are ]
asymmetric due to its shape. 050 r
Figure 1 shows the likelihood function for the seven™/2

resonances compared with the likelihood function of all 16
resonances but with spins unknown. For the second curve ]
p=1/3 is used. The likelihood function for the seven known 0.00 . ; : . . . . :
1/2” resonances is sharper compared to the likelihood func- rore 113 452 635 837 892 1731 z427(eV)
tion for unknown spins which falls off more slowly at larger

M values probably due to the additional resqnances with FIG. 2. Effect on the estimat®! when each resonandedi-
small X, v_alu_es and larger error_s. That both estlr_naﬂaare cated is removed from the analysis one at a tinta); for the 16
so close is likely related to the influence of the single strong.sonances without knowing the spins, aiwl for the seven as-

PV effec.t of the 63.5 eV rgsonance a”O_' the fact that th%igned 1/Z resonances. At the beginning of each plot the estimates
observation of a PV effect with small error indicates spin 1/2.51 without removing a resonance are given.

Mathematically this preference is automatically implemented
in the analysis without knowledge of the spins by the ) ) o .
exp{—XiZ/eiz} terms in the likelihood function, Eq(10), other six resonances. This §uggests thgt py assigning spins to
used by TRIPLE. the resonances a more rellak_)Ie ana_lly5|s is achieved.

One may wonder how large the contribution of each reso- Parameter estimates obtained with small numbers of data
nance is to the estimatd. This can be studied by removing Should be looked at carefully for possible biage$,11. The
all resonances once from the analysis and recalculating ~ estimator ofM given by Eq.(12) is consistent; that is, it is
(or n) times. Figures @) and 2b) show what happens in the unbiased in the limit of large number of data: }im.M
case of the 16 resonances with spins unknown, respectively Mye. However, with a small number of data points there
in the case of the seven assigned 1/f@sonances. In the first might be a bias. This is already evident from a theoretical
case removing the 63.5 eV resonance has a dramatic effe@pproach. Following the procedures given in Rét€] and
while in the second case the effect of removing this resof13] the biasb,(M)=M — M, can to first order approxi-
nance is considerably smaller and more in balance with thenation in 1N be expressed as:

({meV)

-1

~  E{d®InL(M)/dM3}+2E{[d InL(M)/dM]-[d?InL(M)/dM? S -
o)== }ZE{CEEInL(M)/dMZ}Z][ be- M7 2T/ MPeDT (1

in which the right-hand part is based on expectations calculated Bt} = M?+e and E{x/’} =3(M?+¢f)? using the
PDF's given by Eq(8). AssumingM 2>ei2 Eq. (14) reduces td,(M)=—M/4n, which givesb,~ —0.021 meV. Calculating
the expectations with the experimental uncertaingiegivesb,~—0.046 meV.
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Another method to get information about the bias is basedgainstM) it can be concluded that the highest probability
on Monte Carlo simulations. We have carried out simulationsccurs for an estimate dfl, which is several percent below
with n values ofX; taken randomly from a normalGauss- M. (the histogram is slightly asymmetJicSince the ex-
ian) distributionN(0,M?) with errors from the normal distri- periment can only be carried out with a limited number of
butionN(0,22?) in which = represents the averaged spread inresonances if%8U the probability of finding a value of
the variances of; and takingM ;,e=1 meV. ForE we used slightly below the mean valugMy,) is fairly large.

0, 0.5, 1, and 2. In all cases the averdd#) is systemati- Of course by improving the accuracy bf the bias will be
cally below M., but M. is approached for increasing  lowered, but will reach a limit of about a few percent when

The bias observed in this simulation is fitted with: remains small. It will be difficult to decrease the bias by
increasing the number of studied 1I/esonances.
b=3 a/n' (15) On the basis of the above considerations about the bias we
r

acceptb,~—0.04 meV. As shown by Quenouille and other
authors the variance of the estimate increases only slightly in
for r=1, and forr=1; 2. AcceptingZ=0.5 (roughly repre-  this process of bias removfl4,15,18. By combining the
senting®*®U) and n=7 the bias, after scaling tM=0.58 bias quadratically with the 68% confidence limits and
meV, is found to be-0.028 meV with only the=1 term,  2.2é, quadratically with the 95% confidence limits we ar-
and —0.031 meV withr=1 and 2. rive at the following final estimate:
An ingenious method to correct for the bias has been de-
veloped by Quenouille and is known as the jackknife method M :0_628%(68% C.L.)fg'gg(%% C.L) meV.
[14,15. The method works as follows: if the estimate of a ' '

parameter frorm data points i, then by taking out each  ag conclusions we like to make the following statements:

of the data points one by one, other estimates, , are (i) The spin assignments of tR&%U p-wave resonances and
o_btalr_1ed._W|th the bias in first order proportional t(m,_JMje the PV effects correlate well except for one resonafice.
bias is given bybn;\v’(n_l_){tn_“nfl»- The remaining  The uncorrected estimateéd for both analysegunknown
bias is of order 1n<. In this way we foundb,~—0.064  \ersus known spinsare very close, however, the 68%, and
meV. ) ) ) especially the 95% confidence intervals are reduced with

Another Monte Carlo simulation has been carried out byknown spins. The analysis appears to be more reliable with
Bowman and Sharapojd6] to test the likelihood function  assigned spingiii) A first order bias correction related to the
for unknown and known spins. They took values for thegmall number of data points shiftd by about+7%. (iv) If

reduced matrix elements and their errors randomly from distne spins are not known, the TRIPLE likelihood function is
tributions closely resembling®*Th PV data[17]. The aver-  an excellent alternative.

age(M) obtained from 1000 pseudo random data sets is very
close to M, (spins not knowh or equal toM,. (spins One of us(H.P) likes to acknowledge interesting discus-
known). From their published histografmumber of events sions with J. David Bowman.
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