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Abstract
Inverse Reinforcement Learning (IRL) is a machine
learning technique used for learning rewards from
the behavior of an expert agent. With complex
agents, such as humans, the maximized reward may
not be easily retrievable. This is because humans
are prone to cognitive biases. Cognitive biases are
a form of deviation from rationality that affects ev-
eryday human decision-making. Time inconsistent
decision-making is a type of a temporal cognitive
bias where planning of future actions may vary at
different points of time. Existing research in this
field explores using IRL algorithms in numerous
real-life situations. However, few works examine
the effects of temporal biases on the recovered re-
ward function. Hence in this research, we propose a
methodology to generate synthetic demonstrations
that emulate human data with this bias. An existing
method, Maximum Entropy IRL (MEIRL) algo-
rithm is used to recover reward functions from ex-
pert models containing aforementioned biases and
compare them to the performance of unbiased mod-
els. The demonstrations are in a form of Markov
Decision Process (MDP), implemented in a Grid-
World environment. Temporal biases will be im-
plemented within the expert demonstrations as dif-
ferent types of agents that portray a specific behav-
ior. Our findings show that all biases affect reward
learning to a considerable extent, with that effect
having different magnitudes depending on different
comparisons.
Keywords: Inverse Reinforcement Learning, Cog-
nitive Bias, Time Inconsistency, Maximum Entropy,
Markov Decision Process, Temporal

1 Introduction
Machine learning (ML) is a branch of artificial intelligence
that enables models to acquire knowledge and learn from
the presented data. Demonstrations are often performed to
teach specific policies or actions to the models. One tech-
nique within the field of ML is Inverse Reinforcement Learn-
ing (IRL) (Russell, 1998), which uses learning from expert
demonstrations in order to learn the reward function of a
Markov Decision Process (MDP) (Sigaud & Buffet, 2013).
One goal of IRL is to understand human behavior from the
demonstrations and use the knowledge to obtain the max-
imized reward function (Adams et al., 2022). The reward
function is an important component of the learning task and,
at times, can be hardly determined in certain applications.

Most important applications of IRL involve learning how
to mimic actions of the expert, attempting to learn the reward
function in order to improve interaction with other systems
and learning about them (Adams et al., 2022). Hence, this
technique has been used in various realms, ranging from in-
teraction between autonomous cars and other cars and pedes-
trians (Sun et al., 2018), to controlling genetic regulatory net-
works (Imani & Braga-Neto, 2018). IRL maintains a high

reputation because of its potential to improving capabilities
of machines and aligning them to human values (Peschl et
al., 2021).

Challenges still remain regarding further research of this
field, including reducing computational complexity, and
adapting to inevitable human systematic biases. These chal-
lenges have been explored in many works such as (Ziebart
et al., 2008), (Fu et al., 2017) and (Levine et al., 2011), who
created different IRL algorithms.
This is where the aim of our research is centered. The topic
is as follows:

• To what extent can IRL learn rewards from demonstra-
tions that contain some form of temporal cognitive bias?

Human behavior is imperfect and humans are natu-
rally prone to having systematic biases (Kahneman et al.,
1982). Alignment of these human characteristics to machines
presents a large challenge in technology. Some of the charac-
teristics are related to time.

Time inconsistency is a type of cognitive bias that refers
to possessing some kind of inconsistent (varying) behavior
through the specific time period (Frederick et al., 2002).
Decision-making on which actions are taken at certain points
of time can change and cause the inconsistency within hu-
mans (Wong, 2008).

On the other hand, time consistent decision-making im-
plies that present plans match future plans. (Frederick et
al., 2002). However, humans are prone to present bias
(Chakraborty, 2021), which describes humans tend to prefer
a smaller present reward over a bigger future reward. This
behavior can also be classified as a time consistent bias as
the rewards are consistently discounted over time, but it may
affect future decision-making.

The goal of this research is to investigate the effects of
these cognitive biases on the recovered rewards. This will
be performed using an already developed algorithm, Max-
imum Entropy IRL (MEIRL) (Ziebart et al., 2008), since
it addresses both imperfect behavior and sub-optimal expert
demonstrations. We will evaluate and compare the model’s
performance of learning reward functions with the distinct
temporal biases and compare them to models with unbiased
models, in order to show the effect of the imperfect behavior.

This paper is organized as follows. Further information
regarding MDPs, MEIRL and time inconsistency biases will
be explained in Section 2, as well as previous related work.
Methodology of the utilized environment (model) and the im-
plementation of different time-related biases will be elabo-
rated in Section 3. Furthermore, the results of experiment-
ing with temporal biases will be shown in Section 4. Reflec-
tion and discussion of the results will be elaborated in Sec-
tion 5, including improvements in the approach and missing
instances. Section 6 proposes potential future work on this
topic. Ethical aspects and the reproducibility of our meth-
ods will be discussed in Section 7. Finally, in section 8, the
research will be concluded by summarizing the work.

2 Background and Related Work
This section presents the background information on Markov
Decision Processes (MDPs), the Maximum Entropy IRL al-



gorithm (MEIRL), time inconsistency biases, and related
work in this field.

2.1 Markov Decision Process
MDP (Sigaud & Buffet, 2013) provides a model for se-
quential decision-making under uncertainty. These stochas-
tic models capture the dynamics of systems where the future
state depends solely on the current state, independent of the
past.

MDP is defined as a 5-tuple {S, A, P, γ,R} :

• S represents the set of states

• A represents the set of actions

• P = P (s′ | s, a) represents the probability that action a
in state s goes to state s′

• γ represents the discount factor which quantifies the im-
portance of short-term/long-term rewards

• R represents the reward function

MDPs enable agents to navigate uncertain environments
by explicitly modeling transition probabilities and rewards.
Policies map states to actions. Using policy π, there are dif-
ferent probabilities of choosing a particular action a in state
s. The objective of the agent is to learn optimal policies that
maximize long-term cumulative rewards within MDPs. The
mathematical foundations of Markov processes empower re-
searchers to develop advanced techniques for solving com-
plex decision-making problems and exploring the boundaries
of reinforcement learning theory.

2.2 Maximum Entropy IRL algorithm
Maximum Entropy IRL (MEIRL) (Ziebart et al., 2008) al-
gorithm is used to train a set of agents. MEIRL addresses
both imperfect behavior and sub-optimal expert demonstra-
tions, hence it represents the best fit in our research, accord-
ing to Ziebart et al. (2008), where this algorithm was firstly
presented. The features define that the desired states of our
environment, with the expectation that both the agent follow-
ing our refined reward function, and the expert demonstrating
near-optimal behavior, visit these states with equal frequency.

Matching the expected feature-visitation frequency with
the best reward function proposes an ill-posed issue, since
there are multiple rewards that match it (Ng et al., 1999).
MEIRL proposes a solution to this problem by taking the so-
lution with maximum entropy.

Entropy represents a measure of uncertainty. Feature-
expectation matching has multiple solutions that satisfies our
constraints. The only information which our solution con-
tains for this problem are the feature-expectations we want to
replicate. For this reason, choosing the solution with mini-
mal information ensures lower probability of bias within that
information. We achieve this by choosing the solution with
maximum entropy.

2.3 Time inconsistency biases
As already stated, time inconsistency biases are types of cog-
nitive biases. Cognitive bias (Kahneman et al., 1982) is a sys-
tematic process which makes people assess information and

make decisions based on personal experience and knowledge.
They represent the brain’s shortcuts to navigating plans and
decisions. Decision-making is often affected unconsciously,
and the result can be positive or negative.

Time inconsistency biases lead people to make decisions
that change over a period of time. Human characteristics
which can explain this bias, according to Ainslie and George
(2001), include pre-commitment and temptation, among oth-
ers. A well-known example of this bias in human behavior is
hyperbolic discounting (Evans et al., 2016).

Hyperbolic discounting holds that individuals exhibit a
preference for immediate, smaller rewards over delayed,
larger rewards. An example of this model is that if a person
has the choice of receiving C100 now or C120 tomorrow,
and they choose the smaller reward, but would rather choose
C120 in e.g. 21 days than C100 in 20 days. The switch of
the preference yields the inconsistency here.

This bias can have significant implications for self-control.
For instance, someone might choose to eat unhealthy food
now rather than adhere to a long-term healthy nutrition plan.
People often succumb to immediate temptations rather than
making choices that align with their long-term best interests.

Present or time consistent bias is explained in Section 3.3.
Implementing and experimenting with these time-related bi-
ases, including exponential and hyperbolic discounting, are
explained in Sections 3.3 and 3.4.

2.4 Related work
Time-related biases have been explored in many works, relat-
ing to multiple fields. Hyperbolic discounting and change of
preference over time has been explored by Sozou (1998) and
Zauberman et al. (2009). They have been explored in psy-
chology, through modeling behavioral reinforcement learning
(Sutton, Barto, et al., 1998). The computations relied on ex-
ponential discounting (Ainslie, 1992; Mazur, 1997), which
was shown not to align with behavior of humans and ani-
mal, regarding time inconsistency. Hyperbolic discounting
was later proposed as a more precise model (Frederick et al.,
2002).

In computer science, the most researched factor regarding
biases related to time are time discounting and temporal pref-
erences (Green et al., 1994; Lattimore & Hutter, 2014). Dis-
counting of rewards through time and the estimation of the
discount factor in an IRL framework have been explored by
Giwa and Lee (2021). While they focus on the estimation of
the discount factor, we will show the behavior of agents with
different types of discounting rewards, and the recovery of
the reward using IRL.

As mentioned before, hyperbolic discounting is the most
precise type of discounting rewards for humans, and has been
explored in various works (Evans et al., 2016; Fedus et al.,
2019; Nascimento, 2019). In these works, the bias in agents
is implemented to emulate hyperbolic discounting, and the
behavior of the agents are investigated. Fedus et al. (2019)
show that a deep RL agent can emulate hyperbolic discount-
ing using the Q-learning method (Watkins & Dayan, 1992).

However, to our knowledge, there is no research on how
IRL algorithms, such as MEIRL, can recover reward func-
tions from those demonstrations of biased models. The cre-



ation of synthetic demonstrations that emulate human data
with temporal biases are inspired by multiple referenced
works, and thoroughly elaborated in Sections 3 and 5. How-
ever, it is important to emphasize that we aim to expand the
research by experimenting with MEIRL and explain how it
affects the recovery of the reward function.

3 Methodology
This section will elaborate on the overall approach and tech-
niques used in the research. Firstly, we will introduce the our
approach for the utilized environment and how we use ex-
pert demonstrations, followed by the explanation of learning
rewards using MEIRL. To continue, time-related biases in ex-
pert demonstrations will be explained backed by motivations
of the implementation approach.

3.1 Environment and Research Approach
The environment we utilized was inspired by the work of
(Ziebart et al., 2008), where they used this environment to
introduce MEIRL. We believe this is the environment which
successfully integrates expert demonstrations containing bi-
ases and the utilization of the MEIRL algorithm, while it also
offers clear visualizations of policies, recovered rewards and
agent behavior. The programming language we utilized is
Python.

The environment consists of expert demonstrations im-
plemented in a MDP by using a 6x6 state grid-world envi-
ronment. This environment contains different rewards from
which we obtain reward functions. These rewards are situated
in the terminal states. Expert demonstrations are generated in
form of different expert agents. Actions involve the possibil-
ity of the agent moving to all four adjacent states. However,
in case the agent chooses an action that results beyond the
edges of the grid, it will remain in the same state.

Figure 1 shows our grid-world environment, with three re-
wards the agent can obtain. The closest small reward (S) is
colored dark blue, the medium reward (M) is colored lighter
blue and the delayed big reward (B) is colored yellow.

Every expert agent represents characteristics of a specific
temporal bias. Expert agents will be trained through value
iteration (Poole & Mackworth, 2010) and adapted to include
temporal biases. These agents represent the use of synthetic
data which replaces human demonstrations. Similar agents
have been used in various demonstrations within the field of
artificial intelligence. (Peschl et al., 2021)

The stochastic policy is created given the value derived
from value iteration, which describes a probability distribu-
tion of selecting an action depending on the state. This policy
is then used to generate trajectories of the agent, forming the
expert demonstrations. In this environment, it is important to
mention that the decision-making (choosing of actions) pos-
sesses a 20% chance of choosing a random action, which in-
corporates stochasticity and adds variability to the agent’s ac-
tions.

After we generate trajectories using the policy, we use
MEIRL to recover (learn) rewards. The algorithm generates
new trajectories based on the trajectories of the expert agents,
and determines the value of the recovered reward.

Figure 1: Original reward function

In our experiments, we will implement four types of expert
agents: unbiased(optimal), time consistent (present) biased,
and two time inconsistent biased agents. The agents will be
elaborated in the following subsections.

3.2 Unbiased Agent
The unbiased agent represents the unbiased or optimal be-
havior. Its policy is optimal, which means the agent always
chooses actions that lead to biggest rewards. The discount
factor value, which decreases future rewards, should ideally
be 1 for this agent, but is set to 0.995 in order to achieve con-
vergence in value iteration. This setting emulates the lack of
bias in this agent and ensure that the decision-making main-
tains the same over time.

3.3 Agent with Time Consistent (Present) Bias
The discount factor has an important role in our experiments
as it represents how much rewards hold value in a certain time
step t. It participates in generating the policy π in value itera-
tion, while converging to calculate optimal state-action prob-
abilities. The choices humans make are related to the value γ
of the discount factor. If the value is higher, 0.5 <γ <1, the
decision-maker is more likely to choose larger rewards and
maintain their initial plans. On the other hand, when the value
is lower, 0 <γ <0.5, the decision-maker is more ’forgetful’
and more likely to choose actions with smaller rewards.

A way of discounting future rewards is exponential dis-
counting, which is often used in demonstrations. However,
Fedus et al. (2019) and Mazur (1997) argue that a single dis-
count factor used in exponential discounting, does not reflect
on the measured value preferences in humans with perfect
accuracy. It does, though, represent a time consistent bias by
decreasing the value of rewards by a constant factor. This
fact motivated the further investigation of this bias in this re-
search. Equation 2 describes exponential discount function:

D = γt (1)

where γ represents the discount factor, and t represents the
time-step. This discount function ensures that rewards de-
crease exponentially as the time goes, which is how present
bias is defined in (Chakraborty, 2021). The agent knows this
and stays consistent with its actions, hence this bias is consid-
ered time consistent with regards to planning future actions.



Agent implementation For this biased agent, the chosen
value of distance factor is 0.9, and this means higher prefer-
ence for the big, long-term reward. The value of the reward,
relative to the state, is described in Equation 2. Value iteration
is adapted to correctly calculate values and feature exponen-
tial discounting.

Vs = max
a

{R(s) + γ ∗ p(s, s′, a)Vs′} (2)

where γ is the discount factor, and the action a and state
s’ are chosen from the maximum value from the state-action
probability matrix. The values of all rewards will exponen-
tially decrease.

3.4 Agents with Time Inconsistent Biases
From Section 2.3, we concluded that the agents with time
inconsistency bias have a different discount function. Since
humans discount their future rewards according to a hyper-
bolic curve (Fedus et al., 2019), we use a hyperbolic discount
function described in Equation 1:

D =
1

1 + kd
(3)

where k is the discount factor, and d presents a delay of
time which both control how we discount future rewards.
This discount function is considered time inconsistent, since
there is a delay, that represents the time in the future where
decisions of the agent can be changed.

Time inconsistency bias in agents are implemented in
forms of a naive and a sophisticated agent. (O’Donoghue
& Rabin, 1999). These agents represent different human
behaviors related to time inconsistency. Naive agent rep-
resents temptation, and sophisticated agent represents pre-
commitment (Ainslie & George, 2001). Agents differ in the
way how they model their future actions.

• Naive: Models its future self with the same actions and
values it has now. When it makes a decision for itself at
time t + d, it discounts immediate rewards at 1 / (1 + kd).

• Sophisticated: Knows all its future actions and models
its planning accordingly. It makes the decision correctly
at rate 1 / (1 + 0).

The existence of time inconsistency within these agents can
be explained with an example. The objective of both agents
is to obtain the maximum reward, the big reward (B).

The Naive agent moves along the shortest path. As it
reaches the medium reward (M), the discounted reward value
becomes larger than the delayed value for the bigger reward
(B), and the agent cannot resist temptation, continuing to
choose to obtain the medium reward. Along the path and
with certain passed time, the plan of action changed, which
displays time inconsistency in decision-making.

The Sophisticated agent has the same preference of reward
as the Naive agent. However, it knows its future plans, so it
chooses to go along the possibly longer route, to avoid temp-
tation from the medium reward (M). On the longer route, it
still might opt to obtain a smaller reward over the big reward
if the difference in discount factor values is not significant.
Otherwise, the initial plan stays, it reaches the big reward (B),

which displays the characteristic of pre-commitment. In this
way, the Sophisticated agent behaves similarly to the agent
with time consistent bias, but the discounting of rewards is
different.

Implementation of agents The implementation of these
agents is as follows. The decision-making of the agent is de-
pendent of three components: state s, action a and delay d,
instead of the state-action decision-making in value iteration.
Calculation of the value of the reward is inspired by (Evans et
al., 2017), but is adapted to be similar to value iteration, as it
best fits to our setting. The value of the reward V is consisted
of the current reward R and the future reward. The current
reward is discounted as described in Equation 3. The final
reward is computed as described in Equation 4:

Vs = max
a,d

{
1

1 + kd
R(s, a) + p(s, s′, a)Vs′

}
(4)

Where s’ is the next state and is determined by the maxi-
mum value from the state-action probability matrix. The ac-
tion a of the agents are determined by the maximum value of
probability, according to the delay d for the Naive agent and
the delay d = 0 for the Sophisticated agent. In this manner,
the Naive agent computes the action it would take in state
s’ given that reward is obtained as with a delay d. The So-
phisticated agent computes the action that will successfully
happen, with the delay of 0.

The results obtained with these experiments and metrics
used to evaluate the performance of learning rewards are elab-
orated in Section 4, while the further discussion on the imple-
mentation and the reflection on results can be found in Sec-
tion 5.

4 Results
4.1 Agent with Time Consistent Bias
With the implementation of exponential discounting that rep-
resent the time consistent bias, we will display some results.

Figure 2 shows the behavior of the unbiased agent and its
actions on the grid. The recovered reward using MEIRL is
shown in Figure 3. These results can be compared to the be-
havior and recovered reward of the biased agent, where the
reward is discounted exponentially with a discount factor of
0.9, shown respectively in Figure 4 and Figure 5. The value
of the discount factor for the unbiased agent was set to 0.995,
as explained in Section 3.2.

From Figure 2, we can clearly see that the policy of the
unbiased expert agent leads it to claim the big reward (B) in
most cases. With the recovered reward shown in Figure 3, we
see MEIRL successfully learns this reward and that the big
reward is the highest recovered among the terminal reward
states.

In Figure 4, we see that the optimal policy of the biased
agent changes by a certain margin comparing to the policy of
the unbiased agent. However, the recovered reward did result
in a solid replication of behavior. Hence, it is observable that
MEIRL can learn rewards from demonstrations with this bias
where the reward is decreased by exponential discounting.



Figure 2: Optimal policy of
unbiased agent

Figure 3: Recovered reward of
unbiased agent

Figure 4: Optimal policy of
biased agent

Figure 5: Recovered reward of
biased agent

These initial results lead us to experimenting with differ-
ent values of the discount factor. Distribution of obtained re-
wards with generated trajectories further shows the behavior
of the biased agent. When started experimenting with dif-
ferent values of the discount factor, we observed that with
discount factors smaller than 0.6, the rewards get discounted
quickly over time and the agent always chooses to obtain the
closest reward, the medium one. As we observe from Figure
6, the trajectories mainly end up in the medium reward state,
in around 97% of them. With larger values of the discount
factor, the behavior begins to change. By raising the discount
factor, the agent chooses the small and the big reward more
often. With the discount factor of 0.9, the agent obtains the
medium reward in 73% of trajectories, the small one in 18%
of trajectories, and the big one in 9% of trajectories. As the
discount factor gets closer to the value of 1, the agent tends
to obtain the big reward in most cases, but not all of them due
to stochasticity and the minimal discounting of rewards. The
optimal agent gets the small reward in 38% of the trajectories,
the medium one in 16%, and the big one in 46%.

At this point we examined the distribution of trajectories in
relation with the recovered reward using MEIRL algorithm,
to investigate the affect of bias on reward learning. The re-
sults revealed consistent distribution, where the medium re-
ward exhibited the highest recovery rate, with an average of
75.7%. The small reward is recovered with an average of
24.3%, while the big reward is solely recovered only when
the discount factor is higher than 0.95. Besides the rare de-
viation when the discount factor value is 0.85, this distribu-
tion pattern shows that learning rewards from demonstrations
with the time consistent bias, is not significantly influenced

Figure 6: Trajectory distribution of the biased agent

Figure 7: Trajectory distribution with MEIRL

by the value of the discount factor. Moreover, we can con-
clude by comparing results of the biased agent and recovering
the reward, that MEIRL does not achieve the highest degree
of success, mostly by differences of the recovery of the small
reward.

Finally, we compared the similarity between trajectories
generated from the biased agent with the recovered reward,
and those trajectories generated from the optimal agent with
the recovered reward. To calculate this similarity, we em-
ployed the Euclidean distance similarity to measure the close-
ness of the points in two trajectories. We calculated the sim-
ilarity of trajectories in percentages, where points were con-
sidered close if their Euclidean distance similarity exceeded a
predefined threshold of 0.3. The Euclidean distance similar-
ity of two points is obtained as in Equation 5, where d(p1, p2)
is the Euclidean distance between points p1 and p2.

D =
1

1 + d(p1, p2)
(5)

As the two trajectories were generated with the recovered
reward using the optimal policy, we repeated the generation
process 10 times and took the average value of the Euclidean
distance similarity as a result.

Results of this analysis revealed an interesting pattern. The



Figure 8: Similarity of trajectories generated from biased agent and
the optimal agent with recovered reward

trajectories share 35.8% of similarity when the biased agent
has a discount factor of 0.2. As the discount factor increased
to 0.6, the similarity between the trajectories also gradually
increased, reaching 42.2%. An unexpected drop in similarity
was encountered for discount factor values of 0.7 and 0.8,
where the similarity dropped to 20.7%. The reason for this
could potentially be the same reason there was a deviation in
the trajectory distribution of MEIRL for the similar discount
factor value. With the discount factor of 0.9, the similarity
peaked with a value of 44.7%.

These findings provide an insight into the affect of the bias
on learning rewards, with the similarity of agent’s trajecto-
ries. Observed results suggest that the discount factor has a
nuanced impact on the similarity between generated trajecto-
ries.

4.2 Results of Time Inconsistent Agents
Optimal policy and recovered reward of the Naive agent are
shown in Figure 9 and 10, respectively. In the same manner,
the optimal policy and recovered reward of the Sophisticated
agent are shown in Figure 11 and 12.

The figures display that the Naive agent imitates an in-
consistent behavior, especially with the optimal policy with
the recovered reward shown in Figure 10. The Sophisti-
cated agent shows some inconsistent behavior, as it some-
times chooses the path to a small reward when reaching spe-
cific states, as well as the longest path to the big reward. How-
ever, we decided to focus on the performance of learning the
rewards using the MEIRL algorithm.

In order to discover to what extent MEIRL learns rewards
from demonstrations that contain time inconsistency biases,
we again employed the Euclidean distance similarity metric
to calculate the similarity between the trajectory of the opti-
mal agent and the trajectory of the biased agents (Figure 13).
Same threshold was applied as for the time consistent biased
agent.

In our experiments, we used hyperbolic discounting to
demonstrate time inconsistency, varying the discount factors
from 0.02 to 0.2. Results showed that values larger than 0.2

Figure 9: Optimal policy of
Naive agent

Figure 10: Recovered reward of
Naive agent

Figure 11: Optimal policy of
Sophisticated agent

Figure 12: Recovered reward of
Sophisticated agent

discounted rewards very rapidly, and therefore did not ac-
curately represent naive and sophisticated behaviors of the
agents.

The findings suggested that the similarity of trajectories
was higher for the sophisticated agents than the naive ones,
peaking at 42.6% for the discount factor of 0.02, while being
reduced to 30.6% when the discount factor is increased to 0.2.
Trajectories exhibited lower similarity for naive agents, peak-
ing at 39% when the factor is 0.02, and declining to 24.7% for
the discount factor value of 0.1.

These results showed that for both Naive and Sophisti-
cated agents, MEIRL did not learn rewards to the perfect ex-
tent, comparing to the reward learning of the unbiased agent.

Figure 13: Similarity of trajectories generated from biased agent
and the optimal agent with recovered reward



Though, it is noteworthy that the performance of MEIRL did
not vary greatly between demonstrations with time consistent
biases and time inconsistent biases.

5 Discussion
This section will discuss the final analysis on the obtained re-
sults mention some improvements and metrics we could have
made to obtain different, and possibly better, results.

5.1 Result Analysis
Regarding the time consistent biased agent, the retrieved re-
sults were similar to what we expected. The biased agent
showed the expected behavior, as it chose the medium reward
in most trajectories. After applying MEIRL to the trajectories
of the biased agent, we found that the rewards were learned
in a similar fashion, with an exception. MEIRL recovered the
small reward around 25% more than the big one consistently
for all values of the discount factor, while the expert agent
claimed big and small rewards at a similar amount of trajec-
tories. The recovery of the medium reward was a bit lower
than for the expert agent, but remained fairly consistent for
all discount factors.

Regarding the comparison of performance of learning re-
wards between the biased agent and the unbiased optimal
agent, from Figure 8 we concluded that the biased agent
yielded worse recovery of rewards, at an average of 30.5% for
the different discount factors. We claim it showed worse per-
formance of learning rewards since from Figure 3, we found
that the unbiased agent learns the rewards with the highest
success rate.

On the other hand, regarding time inconsistent agents, we
cannot conclude with absolute certainty that we received the
best possible results and flawlessly shown the learning of re-
wards from the demonstrations generated by our versions of
time inconsistent agents. The possible reasons are elaborated
in the following subsection, while we will now reflect on the
findings of our experiment.

Though the Sophisticated agent behaved in a similar fash-
ion to the time consistent agent (as explained in Section
3.4), we obtained results between those two agents compar-
ing to the optimal agent, that show a superiority of perfor-
mance of the Sophisticated agent (around 10%). Hence, the
way in which humans discount rewards (hyperbolic) performs
slightly better than exponential discounting on learning the
rewards.

The Naive agent showed inconsistent recovery of rewards
comparing to the optimal agent, and with a lower success rate
than the Sophisticated agent. This is caused presumably by
the way the Naive agent is implemented, but also the incon-
sistent behavior it is supposed to imitate. On the other hand,
we believe that MEIRL manages to recover the rewards to a
substantial level. From Figure 10, we see that the most ob-
tained reward is the small one, followed by the medium and
big, which adheres to its characteristics according to its orig-
inal description from O’Donoghue and Rabin (1999).

5.2 Improvements
To begin with, it is stated in Section 3.1 that the implemen-
tation of time consistent agents was performed in an environ-

ment inspired by the work of Ziebart et al. (2008). In the
context of our second part of the research, time inconsistent
agents, we built upon the work by Evans et al. (2017) to im-
plement these specific types of agents. In their research, this
is employed by the WebPPL tool (Goodman & Stuhlmüller,
2014), which offered them a suitable framework. After some
experimenting, our objective was to integrate this approach
into our original setting, and not fully abandon it. This deci-
sion was motivated by the fact that our original grid-world en-
vironment already adheres to the MEIRL algorithm, which is
a crucial factor in our research. Furthermore, it also provides
clear display of policies and recovered rewards, as explained
in Section 3.1.

However, due to the time constraints of the research and
the difference of implementation in the work of Evans et al.
(2017), we could not manage to completely adapt it to our
environment (setting). Nevertheless, we believe our imple-
mentation of time inconsistent agents (explained in Section
3.4), presents the correct adaptation to a significant extent,
which is also shown by our findings, mainly from Figures 9 to
12. The key difference lies in the way our approach involves
training agents with specific policies and utilizing those poli-
cies to generate trajectories, same as MEIRL algorithm uses
the policy the calculate the final reward. In contrast, their im-
plementation is not centered around IRL, nor it uses policies
to generate trajectories or rewards. Instead, their implemen-
tation relies on a recursive decision rule in methods that cal-
culate expected values (utilities in their work) and perform
actions. While this approach certainly can be used to im-
plement time inconsistent agents, it would be intriguing to
compare our findings.

Finally, we are missing more results and different metrics
to show the performance of reward recovery for time incon-
sistent agents. Due to the time constraints, the results were
more focused on performance in form of the euclidean dis-
tance similarity of trajectories. In the potential future expan-
sion of this research, more metrics should be incorporated,
to help in discovery of more thorough findings. Future work
involving this research is further discussed in the following
section.

6 Future Work
This section discusses the possible next steps in the research
of this topic.

The next step in this research topic would likely be the fur-
ther adaptation of the grid-world environment, and using the
same recursive approach in the tool WebPPL (Goodman &
Stuhlmüller, 2014) to construct time inconsistent agents, as
implemented in (Evans et al., 2017). As discussed in the pre-
vious section, this may result in getting more accurate results
in the behavior of the agents, but also may improve the per-
formance of learning the rewards.

If the research is to be continued using the same environ-
ment, it can be enhanced by incorporating walls in the grid,
in the form of inaccessible states, which reduce the number
of potential different trajectories of the agent. This would
improve the supposed behavior of the agents, especially the
time inconsistent ones, as they would construct more optimal



paths.
Due to the time constraints of this research, real-life data

from humans could not have been collected. It would be in-
teresting to compare real-life data to synthetic data used in
this research, and compare the results of recovered rewards.

While we believe the Naive and Sophisticated agents cor-
rectly emulate human characteristics regarding time incon-
sistency, there is one more mentioned in (Ainslie & George,
2001), which is procrastination.

Procrastination means delaying the important task, by fo-
cusing on smaller, immediate tasks. This can also be repli-
cated in the expert demonstrations, though the implemen-
tation is different to the implementation of agents in our
MDP. The idea behind this agent is elaborated by Evans
et al. (2017), where they use the Partially Observed MDP
(POMDP) (Spaan, 2012). Learning rewards using IRL al-
gorithms can then be investigated with demonstrations con-
taining this bias.

We believe these advancements would certainly help ex-
pand the research in this field and determine the ability of
IRL to learn rewards from agents with temporal biases.

7 Responsible Research
Ethical responsibility is a very important factor in every re-
search. As already explained, no real-life data was used in
this research, hence approval and consent was not needed in
our case. The implementation of all agents (expert demon-
strations) are inspired by previous works, as explained in Sec-
tion 3. Maximum Entropy IRL (MEIRL) algorithm is a well-
known, published algorithm. Changes and alterations in code
were done to adhere to our MDP environment and the use of
MEIRL, in order to obtain proper results and show the results
of our research.

With this, all researchers can replicate the investigation in
order to observe results or expand onto ours. This research
paper will also be available online in TU Delft research repos-
itories, so it will be available for all future researchers.

The limitations of this research include creating synthe-
sized demonstrations, instead of using real-life data from hu-
mans. In addition, the adapted implementation of the Naive
and Sophisticated agents may not replicate the behavior of
time inconsistent agents to perfection. Unfortunately, with
the use of the 6x6 grid-world MDP, the existing MEIRL al-
gorithm and the form of displaying results in Section 4, the
time inconsistency bias in agents could not be replicated in
the same way as inspired from the work of Evans et al. (2016),
as explained in Section 5. Therefore, this may hinder the fur-
ther applicability of our findings.

8 Conclusion
As Inverse Reinforcement Learning continues to emerge as
a valuable framework in the world of Artificial Intelligence,
more research is conducted in order to expand its applica-
tions and enrich this field. Understanding human behavior
from demonstrations in order to retrieve maximized rewards
describes the aim of IRL algorithms. Humans tend to possess
cognitive biases which hinders their decision-making and ev-
eryday life. One type of those cognitive biases include tem-

poral or time-related biases, which affect people’s planning
over time.

The objective of this paper is to investigate the effect of
expert demonstrations containing temporal biases on reward
learning using Inverse Reinforcement Learning. From nu-
merous types of temporal biases, we managed to investi-
gate this effect by implementing three different types of bi-
ases in our expert demonstrations. which represent different
human characteristics (present, pre-commitment and temp-
tation). These biases were incorporated in the demonstra-
tions in a form of agents (time consistent, sophisticated and
naive, respectively). The existing algorithm, Maximum En-
tropy IRL algorithm, was utilized to recover (learn) rewards
from the behavior of these agents. Our findings show that all
biased agents have a substantial effect on learning rewards,
especially when compared to learning rewards from an op-
timal agent. Moreover, we have also shown that IRL learns
rewards from time consistent and sophisticated agents at a
higher rate then the naive agent.

As we conducted this research, we have come across poten-
tial improvements and additional temporal biases which can
be utilized to further expand this topic. It will be intriguing
to compare our results to the results using different tools, as
well as the effect of demonstrations with different temporal
biases on reward learning.
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