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Abstract. The aim of this study is to validate a fully non-linear finite-element model to
simulate waves and wave-structure interactions. The Navier–Stokes equations are solved
on an extended domain, which covers both fluid and structure. The latter is represented
by a non-zero solid-concentration field, which is computed by conservatively mapping
a mesh discretising the solid onto the extended mesh. In the regions of non-zero solid
concentration, a penalty force is further added to the equations of motion in order to
represent the effect of the structure on the fluid dynamics. The results are first shown for
the interactions between a cylindrical pile and a regular train of small-amplitude gravity
waves in a numerical wave tank. The pile is considered both as an immersed body and
as a void in the fluid domain. In both cases, good overall agreement is obtained between
the numerical and theoretical predictions of the free-surface elevation. The immersed-
body approach however tends to underestimate the water elevation in the vicinity of the
structure, due to additional dissipation induced by the body force. Second, the generation
of focused wave events is considered. Preliminary results suggests that the present model
is capable of modelling focused wave events propagating in the numerical wave tank. This
is a first step towards modelling the interactions between pile and steep irregular waves.
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1 INTRODUCTION

The accurate computation of wave loads is important in offshore engineering, for ex-
ample, to optimally design oil and gas platforms or coastal defense structures. In recent
years, there has also been an increased interest in offshore renewable-energy devices, which
can be either mounted on the sea bed (fixed devices) or moored to it (floating devices).
In this context, an accurate prediction of the wave loading is vital to ensure that offshore
renewable-energy devices are economically viable and can withstand rough sea conditions.
Numerical models can assist in the design of these devices by analysing several different
configurations, while limiting expensive laboratory or onsite testing. The hydrodynamic
behaviour is however complex due to: (i) the interactions between extreme waves and
solid structures (for fixed and floating devices), and (ii) the mutual interactions between
fluids and moving solids (for floating devices). The proposed method aims at tackling
both aspects, although only fixed solids are considered in this study.

The modelling techniques for wave-structure interactions are reviewed in the litera-
ture [1], in the context of wave energy converter arrays. The methods differ depending
on whether the flow is potential or not. If the flow is potential and the structure is a
bottom-mounted cylinder, the scattering of plane waves in the linear diffraction regime is
described by a Laplace equation for the velocity potential and a set of boundary condi-
tions. This problem has an analytical solution [2]. It is also commonly solved numerically
using the so-called boundary element method, which works on either a linearised formu-
lation of the problem (linear potential models) or the non-linear formulation (non-linear
potential models). Although linear approaches operate in the frequency domain and are
not computationally demanding, they are restricted to constant fluid depths. By contrast,
non-linear approaches work in the time domain and include important terms in the free
surface boundary conditions (and body forcing) which can be very significant. They can
also model transient phenomena and account for nonlinear external forces, despite the po-
tential flow assumption. Therefore, non-linear potential models are extensively used for
computing extreme loads on fixed and moving structures. For example, a fully nonlinear
potential method was used to calculate the wave radiation due to prescribed oscillations
of a submerged sphere [3]. Wu and Eatock Taylor [4] performed a similar analysis with
an oscillating cylinder in two dimensions and showed that, in this context, the boundary
element method was more efficient computationally than a finite-element method. Non-
linear wave interactions with three-dimensional fixed and floating vertical cylinders are
extensively analysed using potential-flow models, including high-order methods [5, 6, 7, 8].

When the flow is not potential, computational fluid dynamics (CFD) models provide
a tool to account for viscous and rotational effects on the flow by numerically solving
the Navier-Stokes equations. Thus, CFD models can compute extreme wave loading, for
which viscous effects and air entrainment cannot be neglected. However, the accurate
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prediction of wave propagation using CFD models is difficult. In [9], it was shown that
most CFD models currently available fail to accurately model waves propagating over
long distances. This is due to the inherent energy dissipation introduced by the discreti-
sation schemes used for the Navier-Stokes equations. A high-order free-surface method
was recently implemented in the CFD model Fluidity [10, 11] and showed very promising
results on the simulation of linear gravity waves in a numerical wave tank [15].

The purpose of this study is twofold. First, it aims at validating the immersed-body
method in the context of wave-structure interactions. Second, it extends our previous
work to the simulation of focused wave events of increasing steepness propagating in a
numerical wave tank. The paper is organised as follows. Section 2 describes the mathe-
matical formulation of the immersed-body method and the fluid-dynamics model. Results
are detailed in Section 3 for two cases: (i) wave-structure interactions for a cylindrical
pile subjected to a regular train of waves, and (ii) focused wave events propagating in a
numerical wave tank. Finally, conclusions are drawn in Section 4.

2 MATHEMATICAL FORMULATION AND METHODOLOGY

This study uses the computational fluid dynamics model Fluidity [10, 11] to numerically
solve the Navier–Stokes equations. Two approaches are compared to model waves inter-
acting with solid structures. On the one hand, the Navier–Stokes equations are solved on
a mesh surrounding the solid structures (defined-body method). This technique can give
accurate results, when using appropriate discretisation schemes and sufficient spatial reso-
lution, because the solid shape and boundary conditions are represented exactly. However,
if the solid moves in the fluid domain, re-meshing is necessary. This is computationally
expensive and might yield highly-distorted grids. The immersed-body method [12, 13]
was developed to avoid this problem. It consists in filling the regions covered by the
structure with the surrounding fluid, and relaxing the flow to the structure’s behaviour
in those regions. The flow problem is thus solved for a monolithic velocity u = ûf + ûs,
where ûf = αfuf , ûs = αsus, and (αf ,αs) are the fluid- and solid- concentration fields
such that αf +αs = 1 throughout the domain. Assuming that the fluid is incompressible,
the continuity equation for the monolithic velocity is expressed as

∇ · u = 0. (1)

The variation of fluid momentum on the extended mesh is given by

ρ
∂u

∂t
+ ρ (u ·∇)u = −∇p+∇ ·

(
2µS

)
+ F f +B, (2)

where ρ is the fluid density, p is the pressure field, µ is the dynamic viscosity of the fluid,

S is the deviatoric part of the strain-rate tensor Sij = ∂jui + ∂iuj. The relaxation of
the flow velocity to the solid velocity is achieved through the volumetric penalty force
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F f , so that the no-slip boundary condition is not explicitly imposed along the fluid-solid
interface. The force is zero except close to the fluid-solid interface, and is expressed as

F f = β (ûs − αsu) , (3)

where β = max
(

ρ
∆t

+ µ
L2

)
(∆t being the time step and L the local edge length) is a re-

laxation factor which dictates how fast the fluid and solid velocities equal each other at
the interface [12]. The magnitude of the relaxation factor is driven by viscous effects at
small Reynolds numbers and inertial effects at large Reynolds numbers.

The solid-concentration field αs is needed to enforce the penalty condition (Eq. 3), and
also to locate the structure on the extended computational mesh. The computation of αs

is performed as follows:

1. Loop over the elements Es of the structural mesh.

2. For each element of Es:

• Construct the super-mesh S [14] by identifying the elements of the extended
mesh Ef that intersect Es.

• Project a unitary field (which is the value of αs on the structural mesh) from
structural- to super- mesh using a Galerkin projection. This yields αS

s .

3. Project αS
s from super- to fluid- mesh using a Galerkin projection.

Details about the discretisation method, including the conservative Galerkin projection
via a super-mesh, are described in [12]. In this work, time is discretised using a Crank–
Nicolson scheme.

3 RESULTS

3.1 Regular waves

The ability to simulate regular waves in the absence of a pile using Fluidity is demon-
strated in [15]. This study applies the immersed-body approach to the numerical simula-
tion of regular waves interacting with a fixed pile. Figure 1 shows a sketch of the domain,
which has a total length of 51D, a width of 34D and a depth of 2.4D (D being the pile
diameter). The centre of the cylindrical pile is placed at a distance of 34D from the tank
outlet, and 17D from the inlet and sides. The horizontal, lateral and vertical directions
are denoted by x, y, and z respectively.

The flow is considered as inviscid, in order to enable direct comparison with existing
analytical theories. Regular waves propagating are generated by setting the horizontal
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velocity at the inlet (x = 0) to the linear wave kinematics solution. Linear waves of
constant steepness ak = 0.001 are considered, where the wave amplitude is defined as
a = H/2 and H = acrest + atrough. The wavenumber k is further related to the wave
frequency ω = 2πT by the following dispersion equation

ω2 = gk tanh(kh), (4)

where g is the acceleration due to gravity and h is the water depth. In this study,
kh = 2.84. Defining the deep-water wave-length as λ0 = 2πg/ω2, the present non-
dimensional water depth is further equal to h/λ0 = 0.45. At the outlet of the domain,
the velocity components are left free and the non-hydrostatic part of the pressure field is
naturally set to zero. An absorption layer is also used in the region 34D ≤ x ≤ 51D to
avoid spurious wave reflections. To this end, the artificial absorption term σu is added to
the right-hand-side of the fluid momentum equation, where

σ =




1
4

(
tanh

[
sin(π(4x̃−1)/2)
1−(4x̃−1)2

]
+ 1

)
if 0 ≤ x̃ ≤ 1

2

1
4

(
tanh

[
sin(π(3−4x̃)/2)
1−(3−4x̃)2

]
+ 1

)
if 1

2
≤ x̃ ≤ 1,

(5)

with x̃ = (x − L0)/L and L = 17D is the length of the absorption layer [16]. A no-
normal flow condition is used at the bottom and lateral sides of the tank, while a com-
bined pressure and free-surface kinematic boundary condition is prescribed for the top
surface [17, 18]. The domain is discretised using a mixed finite-element discretisation
method, where discontinuous linear polynomials are used for the velocity field (i.e. P1-
DG discretisation) and continuous piecewise quadratic polynomials are used for the pres-
sure field (i.e. P2 discretisation). Two different approaches for representing the pile are
compared. In the defined-body case, the fluid mesh excludes the region occupied by the
pile. The pile contour is meshed in the x-y plane by 32 mesh elements, whose typical
edge length is le = D/10. The mesh size increases to le = D/2 at the sides of the do-
main. Representing the solid as a hole in the fluid domain is the classical approach for
modelling fluid flow around a fixed solid structure. By contrast, in the immersed-body
approach, the fluid mesh covers the entire wave tank and a separate solid mesh discretises
the three-dimensional pile. The position of the solid within the fluid mesh is represented
through a solid-concentration field, which is computed following the procedure explained
in Section 2. In this study, both approaches use an unstructured mesh in the x-y plane,
which is extruded vertically into tetrahedra using fourteen uniformly-spaced layers. The
two-dimensional mesh in the x-y plane is composed of 15,000 nodes in the defined-body
case and 10,000 nodes in the immersed-body case. In the latter, the three-dimensional
pile is further discretised by an unstructured mesh composed of 1,000 nodes.

Figure 2 shows the evolution of the free-surface elevation in the horizontal direction,
at the pile centreline and t = 20T (T being the wave period). The continuous line shows
the theoretical solution based on [2]. Symbols represent the numerical result for the
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Figure 1: Sketch of the numerical wave tank.

defined-body case, while the dashed line shows the immersed-body results. The grey area
further illustrates the location of the pile. Good overall agreement is observed between
the numerical and theoretical predictions of the free-surface elevation. However, local
discrepancies are observed in the immersed-body results. In particular, the free-surface
elevation is under-estimated in the vicinity of the pile. There are mainly two possible
explanations for this behaviour. First, this could be due to a lack of spatial resolution
close to the pile, since the spatial resolution around the pile is coarser in the immersed-
body case than in the defined-body simulation. Second, the penalty force given by Eq. 3
induces an additional absorption term in the Navier–Stokes equations that can affect the
wave amplitude in the vicinity of the pile. Ongoing work is focussing on analysing the
effect of mesh refinement on the accuracy of the numerical results, for a wider range of
wave conditions.

3.2 Focused waves

In practice, most waves are irregular. This section tackles the simulation of irregular
waves using Fluidity. The computational domain is identical to the numerical wave tank
considered in the previous section, except that the wave maker generates a steep tran-
sient wave groups and the pile is removed. The focused wave events are such that the
maximum wave amplitude occurs at a distance xf = 10h from the input boundary and
a time of tf = 16T (T being the wave period of the previous section). Three values are
considered for the sum of focused event amplitude: Asumkp = 100.54; 502.65; 1005.3 (kp
being the wave number corresponding to the peak in JONSWAP spectrum). Since it is
numerically challenging to have a stable solution for large values of the wave steepness
when the flow is inviscid, a uniform kinematic viscosity of ν = 10−3 m2s−1 is used in
the present simulations as viscous damping. Ongoing work is currently investigating a
numerical stabilisation method to add minimal dissipation attempting to minimise the
effect on the accuracy of the method.

Figures 3 to 5 show the time evolution of the free-surface elevation at xf = 10h for three
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Figure 2: Non-dimensionalised surface elevation η/a at t = 20T for ak = 0.001 and h/λ0 = 0.45. The
continuous line is the wave amplitude calculated using linear diffraction theory. The symbols represent
the numerical results for the defined-body case, while the dashed line shows the immersed-body results.
The grey area represents the location of the pile.

values of the focused event amplitude: Asumkp = 100.54 (Fig. 3), Asumkp = 502.65 (Fig. 4),
and Asumkp = 1005.3 (Fig. 5). The continuous line represents second-order theoretical
calculation [19], while symbols show the present numerical results. It is apparent in the
three plots that the event focusses at t = 16T . Figure 3 shows that the numerical result of
the surface elevation agrees well with the theoretical calculation at Asumkp = 100.54. At
higher values of Asumkp, a departure from the second-order calculation is expected due to
the presence of higher-order components. The present numerical results predict well this
departure, for example, through a downstream shift of the focused location, see Figs. 4-5.
Although these results look promising, further analysis is ongoing to assess the effect of
resolution and viscous damping on the results.

4 CONCLUSIONS

This work combines a high-order free-surface method with a fluid-structure interaction
algorithm to simulate waves and wave-structure interactions in a numerical wave tank.
Preliminary results show that the proposed methodology is capable of simulating: (i)
regular and irregular waves propagating in a numerical wave tank, and (ii) wave-structure
interactions with a fixed structure. For the latter, good overall agreement is shown be-
tween the defined- and immersed- body approaches, when a bottom-mounted pile is placed
in the numerical wave tank. The immersed-body approach however underestimates the
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Figure 3: Surface elevation η(t) for a focused event of amplitude Asumkp = 100.54 at xf = 24D. The
continuous line represents second-order calculation, while symbols are the present numerical results.

water elevation in the vicinity of the structure. Two possible explanations for this effect
are: (i) lack of spatial resolution around the pile, and/or (ii) additional dissipation induced
by the immersed-body force. Future work will focus on: (i) the effect of increased spatial
resolution on the accuracy of the numerical results, (ii) the effect of turbulence models
on the propagation of focused wave events, and (iii) a wider range of linear and nonlinear
wave conditions. This work is a first-step towards the fully non-linear simulation of steep
irregular waves interacting with a structure.
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A. Viré, J. Spinneken, M.D. Piggott, C.C. Pain and S. Kramer

0 5 10 15 20
−0.1

−0.05

0

0.05

0.1

0.15

t/T

η/h

Figure 5: Surface elevation η(t) for a focused event of amplitude Asumkp = 1005.3 at xf = 24D. The
continuous line represents second-order calculation, while symbols are the present numerical results.

[9] Maguire, A.E. Geometric design considerations and control methodologies for ab-
sorbing wavemakers, PhD Thesis, The University of Edinburgh (2011).

[10] Pain, C.C., Piggott, M.D., Goddard, A.J.H., Fang, F., Gorman, G.J., Marshall, D.P.,
Eaton, M.D., Power, P.W. and de Oliveira, C.R.E. Three-dimensional unstructured
mesh ocean modelling. Ocean Model. (2005) 10:5–33.

[11] Piggott, M.D., Farrell, P.E., Wilson, C.R., Gorman, G.J. and Pain, C.C. Anisotropic
mesh adaptivity for multi-scale ocean modelling, Phil. Trans. R. Soc. A (2009)
367:4591–4611.
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