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Hydrogen peroxide plays a key role in many environmental and industrial chemical processes. We performed 
classical Molecular Dynamics and Continuous Fractional Component Monte Carlo simulations to calculate 
thermodynamic properties of H2O2 in aqueous solutions. The quality of the available force fields for H2O2
developed by Orabi and English (2018) [67], and by Cordeiro (2014) [69] was systematically evaluated. To 
assess which water force field is suitable for predicting properties of H2O2 in aqueous solutions, four widely used 
water force fields were used, namely the TIP3P, TIP4P/2005, TIP5P-E, and a modified TIP3P force field. While 
the computed densities of pure H2O2 in the temperature range of 253 - 353 K using the force field by Orabi & 
English are in excellent agreement with experimental results, the densities using the force field by Cordeiro are 
underestimated by 3%. The TIP4P/2005 force field in combination with the H2O2 force field developed by Orabi 
& English can predict the densities of H2O2 aqueous solution for the whole range of H2O2 mole fractions in very 
good agreement with experimental results. The TIP4P/2005 force field in combination with either of the H2O2
force fields can predict the viscosities of H2O2 aqueous solutions for the whole range of H2O2 mole fractions in 
reasonably good agreement with experimental results. The computed diffusion coefficients for H2O2 and water 
molecules using the TIP4P/2005 force field with either of the H2O2 force fields are almost constant for the whole 
range of H2O2 mole fractions. Hydrogen bond analysis showed a steady increase in the number of hydrogen 
bonds with the solute concentrations in H2O2 aqueous solutions for all combinations except for the Cordeiro-
TIP5P-E and Orabi-TIP5P-E systems, which showed a minimum at intermediate concentrations. The Cordeiro 
force field for H2O2 in combination with either of the water force fields can predict the Henry coefficients of 
H2O2 in water in better agreement with experimental values than the force field by Orabi & English.
1. Introduction

Hydrogen peroxide, H2O2, has attracted considerable interest as it 
plays a key role in the oxidative chemistry of the troposphere. It can 
be found both in the gas and in the aqueous phase [1,2], and has 
several industrial [3], environmental [4], and biological [5] applica-
tions. The recombination of hydroperoxyl (HO2) radicals is the most 
important chemical pathway leading to the production of H2O2 in the 
troposphere [6–8]. Subsequently, H2O2 can lead to the acidification of 
clouds, rain, and fog by oxidizing SO2 and converting it into H2SO4 (and 
to a less extent oxidizing NO2 and converting it into HNO3) [9–13]. 

* Corresponding authors at: Department of Applied Physics and Science Education, Technical University of Eindhoven, PO Box 513, 5600 MB, Eindhoven, the 
Netherlands.

H2O2 also serves as a reservoir of HOx radicals that are key oxidants in 
controlling the self-cleaning of the atmosphere [14–16].

H2O2 was first synthesized by Thenard [17] by the reaction of 
barium peroxide with nitric acids in 1818 and is now considered an 
important reagent of green chemistry since it decomposes to water and 
oxygen as the only reaction products. This feature makes H2O2 an en-
vironmentally friendly oxidizing agent for a wide range of applications 
such as pulp and paper bleaching, textile applications, detergent appli-
cations, disinfectant applications, wastewater treatment, and chemical 
oxidation processes [18,19]. It could also serve as a liquid fuel, an al-
ternative to H2 and O2, in a fuel cell [20–22].
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H2O2 is currently produced on an industrial scale with the an-
thraquinone oxidation (AO) process in which hydrogen, atmospheric 
oxygen, and an anthraquinone derivative (typically 2-alkyl-anthra-
quinone) are used with the latter acting as a reaction carrier [18,19]. 
The ubiquitous AO process involves multiple steps which require sig-
nificant energy input and generates waste. In addition, the transport, 
storage, and handling of bulk H2O2 involve hazards as it is irritating to 
nose and eyes, and high concentration of H2O2 is explosive [23]. Other 
methods for large-scale production of H2O2 include partial oxidation 
of primary or secondary alcohols, and electrochemical methods [24]. 
Novel alternatives are under investigation such as direct synthesis of 
H2O2 from O2 and H2 using a variety of catalysts like alumina, sil-
ica, carbon, solvents (e.g., water) [25,26], photocatalytic reactions over 
semiconductors where reactive oxygen-based species (e.g., OH∙, O2−, 
and H2O2) are formed at the surface of semiconductor oxides under 
UV irradiation [27]. An alternative technology to produce H2O2 is to 
use low temperature (or non-thermal) plasmas [28,29] which allows 
H2O2 production at ambient temperatures and pressures [30–34]. This 
enables direct delivery of H2O2 to different substrates; even to heat sen-
sitive substrates such as living tissues. The latter has led to biomedical 
applications of low temperature plasmas [35]. For such applications, 
it is important to know which mechanisms determine the uptake of 
plasma products (e.g., H2O2) in the liquid around the cells and what 
is the concentration of plasma products in the aqueous phase. For 
this, information on the solubility and thermodynamic properties of the 
molecule are necessary so that this can be leveraged into macroscopic 
plasma fluid models [36] to predict the final concentration of H2O2 in 
the liquid phase. Little information is available on solubility and ther-
modynamic properties of H2O2 in aqueous solutions. The scarcity of this 
data is especially relevant when temperature and/or pressure changes. 
The motivation of this work is to provide such data for H2O2 using 
molecular simulations.

Due to the pivotal role of H2O2 in many chemical processes, many 
experimental and computational studies have been conducted to inves-
tigate its properties. The crystal structure of H2O2 was investigated 
using diffraction methods or Raman spectroscopy in Refs. [37–41]. 
Other experimental studies have investigated its densities [42], viscosi-
ties [43], vibrational spectra [44,38,45–47], vapor pressures [48] and 
other thermodynamic properties [49]. In addition, densities, freezing 
points, and vapor pressures of aqueous H2O2 solutions were investi-
gated experimentally in Refs. [42,50–52].

Various computational studies have been carried out which shed 
light on structural properties of H2O2 monomers as well as its clus-
ters, torsional barrier energies, and vibrational-rotational energy lev-
els [53–57] using quantum mechanical approaches. Structure and dy-
namics of H2O2 in water were also investigated using quantum mechan-
ical methods in Refs. [58–60].

In this work, we use force field based Molecular Dynamics (MD) and 
Continuous Fractional Component Monte Carlo (CFCMC) simulations 
with the purpose of obtaining solubilities and thermodynamic proper-
ties of H2O2 in water, for the first time, in a systematic manner such that 
the quality of the available force fields for H2O2 are assessed. Given 
the complete miscibility of H2O2 in water at all concentrations, it is 
both practical and insightful to explore the properties of H2O2 aqueous 
solutions at varying mole fractions. This allows for a comprehensive un-
derstanding of the behavior of the solution at different concentrations.

Although several force fields are available for H2O2 [61–64], only a 
few of them have been parameterized with respect to the interactions 
between both H2O2 - H2O2 and H2O2 - H2O. One is the ABEEM/MM, 
the atom-bond electronegativity equalization fluctuating charge molec-
ular force field [65,66], which is computationally very expensive due to 
its complex potential energy functional form [65,66]. A simple additive 
potential model for H2O2 was proposed by Orabi & English [67] which 
was parameterized to account for interactions of H2O2 with itself and 
with water. The model was calibrated with regard to the experimental 
2

density and heat of vaporization of pure liquid H2O2 at 0 ◦C, and it was 
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able to reproduce the experimental diffusion coefficient at 0 ◦C and the 
heat capacity at 25 ◦C of liquid H2O2. With a combination of the modi-
fied TIP3P water force field [68], the H2O2 force field could predict the 
experimental hydration free energies and densities of aqueous H2O2 so-
lutions [67]. Another force field parametrization is from the work of 
Cordeiro [69], wherein the bonded interactions were obtained from ab 
initio quantum calculations [70,54], and the Lennard-Jones parameters 
and partial charges were modified to reproduce the properties of pure 
liquid H2O2 and its hydration free energy. This force field was used to 
study the distribution, mobility and residence times of H2O2 at the in-
terface of water and phospholipid biomembranes. In addition, there is 
another parametrization in the paper by Vácha et al. [64] in which the 
behavior of H2O2 at the air-water interface was investigated. The force 
field by Vácha et al. [64] only includes electrostatic and van der Waals 
interactions which were calibrated against the experimental hydration 
energies of H2O2. H2O2 exhibits internal cis-trans rotation with an en-
ergy barrier of about 4.6 kJ/mol [71,72]. This is about 2 𝑘B𝑇 (𝑘B is the 
Boltzmann constant and 𝑇 is the temperature) at room temperature. 
A realistic model of hydrogen peroxide should incorporate the energy 
barrier for the internal cis-trans rotation of the molecule. This is the 
case for the force field by Orabi & English [67] and the force field by 
Cordeiro [69]. The force field by Vácha et al. [64] does not allow this 
rotation to occur.

In this manuscript, we evaluate the quality of the force fields which 
were developed by Cordeiro [69], and Orabi & English [67] for predict-
ing the thermodynamic properties of H2O2 in aqueous solutions. We 
exclude the force field by Vácha et al. [64] from our study as it is un-
able to capture the internal rotation that takes place in H2O2 at ambient 
conditions. We compute the densities of pure H2O2 for a range of tem-
peratures (253 K to 353 K), and compare the results with experimental 
values. In addition, we compute densities, viscosities, and self-diffusion 
coefficients of H2O2 and water in aqueous solutions of H2O2 for the 
whole range of H2O2 mole fractions at ambient temperatures and pres-
sures.

To evaluate which water force field is suitable for predicting prop-
erties of aqueous solutions of H2O2, we use four different widely used 
water force fields: TIP3P [73,68], TIP5P-E [74], TIP4P/2005 [75], and 
a modified version of TIP3P (mTIP3P) [68] that was used in the original 
work by Orabi & English [67]. The TIP3P [73,68] force field is able to 
predict the densities and heats of vaporization of water at ambient con-
ditions, it performs better in calculating the specific heats of water [74], 
and it also predicts the excess chemical potential of water in better 
agreement with the experimental values compared to TIP4P/2005 and 
TIP5P-E [76]. TIP5P-E can capture the thermal conductivities of wa-
ter [74] and its maximum density near 4 ◦C [77]. TIP4P/2005 [75,78]
can predict the densities and self-diffusion coefficients of water with 
commendable accuracy [75]. The results are compared with experimen-
tal values. Finally, we compute the Henry coefficients of H2O2 in water 
at 300 K and 1 bar.

The rest of this manuscript is organized as follows. In section 2, 
details of the force fields which were developed by Cordeiro [69], and 
Orabi & English [67] are provided, and the MD and CFCMC simulations 
are described. The results are presented and discussed in section 3. Fi-
nally, concluding remarks are presented in section 4.

2. Methodology

2.1. Force fields

The force fields developed by Cordeiro [69] and Orabi & En-
glish [67] for H2O2 both use potential energy functions for bonded 
interactions (i.e., bonds, angles, and dihedrals) as well as non-bonded 
interactions, including van der Waals (vdW) and electrostatic interac-
tions. The total potential energy (Etotal) is given by
𝐸total =𝐸bonds +𝐸angles +𝐸dihedrals +𝐸vdW +𝐸electrostatic, (1)
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Table 1

Potential energy functions for force fields developed by Cordeiro [69], and 
Orabi & English [67]. 𝐸bonds, 𝐸angles, 𝐸dihedrals, 𝐸vdW, and 𝐸electrostatic represent 
the stretching, bending, torsional, van der Waals and electrostatic energies, re-
spectively. The definition of parameters is explained in the text (see section 2.1). 
The parameters are provided in Tables S1 and S2 of the Supplementary Infor-
mation.

Force field Cordeiro [69] Orabi & English [67]

𝐸bonds
1
4
𝑘𝑏(𝑏2 − 𝑏0

2)2 1
2
𝑘𝑏(𝑏− 𝑏0)2

𝐸angle
1
2
𝑘𝜃(cos𝜃 − cos𝜃0)2

1
2
𝑘𝜃 (𝜃 − 𝜃0)2

𝐸dihedrals
∑5

𝑛=0 𝐶𝑛(cos𝜓)𝑛 𝑘𝜙(1 + cos2𝜙− 𝛿)
𝐸vdW 4𝜖𝑖𝑗 [(

𝜎𝑖𝑗

𝑟𝑖𝑗
)12 − ( 𝜎𝑖𝑗

𝑟𝑖𝑗
)6] 4𝜖𝑖𝑗 [(

𝜎𝑖𝑗

𝑟𝑖𝑗
)12 − ( 𝜎𝑖𝑗

𝑟𝑖𝑗
)6]

𝐸electrostatic
1

4𝜋𝜖𝑜

𝑞𝑖𝑞𝑗

𝑟𝑖𝑗

1
4𝜋𝜖𝑜

𝑞𝑖𝑞𝑗

𝑟𝑖𝑗

where 𝐸bonds, 𝐸angles, 𝐸dihedrals, 𝐸vdW, and 𝐸electrostatic are presented 
in Table 1 for both force fields. The bonded interaction parameters 
(𝐸bonds, 𝐸angles, and 𝐸dihedrals) listed in Table 1 have the following def-
initions: 𝑏 is the bond distance, 𝜃 is the bond angle, 𝜙 is the dihedral 
angle, 𝛿 is the multiplicity factor, and 𝜓 is the supplementary angle of 
𝜙. 𝑘𝑏, 𝑘𝜃 , 𝑘𝜙 are the force constants of the bond stretching, angle vibra-
tion, and dihedral potentials. 𝑏0 and 𝜃0 represent the bond distance and 
bond angle, respectively, at which the corresponding potential functions 
equal zero. 𝐶𝑛 with 𝑛 ranging from 0 to 5 represents the coefficients 
for the Ryckaert-Bellemans dihedral potential [79]. 𝑞 represents the 
atomic partial charges of the electrostatic energy (𝐸electrostatic) term. A 
Lennard-Jones (L-J) potential is used for the long-range van der Waals 
interactions, in which 𝜎 represents the distance at which the particle-
particle interaction energy is zero, and 𝜖 represents the depth of the 
potential well. The mixing rules for the L-J parameters for two dissimi-
lar non-bonded atoms are given by Lorentz-Berthelot [80] [𝜎𝑖𝑗 =

𝜎𝑖+𝜎𝑗

2 , 
𝜖𝑖𝑗 =

√
𝜖𝑖𝜖𝑗] for the force field by Orabi & English and geometric av-

erage [𝜎𝑖𝑗 =
√

𝜎𝑖𝜎𝑗 , 𝜖𝑖𝑗 =
√

𝜖𝑖𝜖𝑗] for the force field by Cordeiro. The 
values of these parameters are provided (using the GROMACS conven-
tion) in Tables S1 and S2 of the Supporting Information (SI) for both 
force fields. The cutoff radius for Lennard-Jones and Coulombic inter-
actions was set to 9 Å. The Particle-Mesh-Ewald [81,82] method was 
used to treat long-range electrostatic interactions. Long-range tail cor-
rections were applied to both energies and pressures [83].

We use three different rigid water force fields in this study, namely 
TIP3P, [73,68] TIP4P/2005, [75] and TIP5P-E [77,84]. We also use a 
modified TIP3P water force field (mTIP3P) [68] which was used in the 
work by Orabi & English [67]. In the remainder of this manuscript, 
the force field developed by Cordeiro [69] is referred to as “Cordeiro” 
and the force field developed by Orabi & English [67] is referred to as 
“Orabi”.

2.2. MD simulations

All-atom Molecular Dynamics (MD) simulation of anhydrous H2O2
for a range of temperatures from 253 K to 353 K, and H2O2 aqueous 
solutions for various mole fractions of H2O2 in the range from 0 to 1.0 
at 298 K, were performed using the GROningen MAchine for Chemical 
Simulations (GROMACS) version 2022.4 [85–89]. Each system was pre-
pared in a simulation box with an initial length of 27.6 Å, containing 
500 molecules. A snapshot of a simulation box containing 250 H2O2
molecules and 250 H2O molecules is shown in Fig. 1.

After energy minimization using the steepest descent algorithm fol-
lowed by a conjugate gradient algorithm, the MD simulations were run 
for 100 ps in the constant number of atoms∕molecules, volume and tem-
perature (NVT) ensemble. The simulations were then continued in the 
constant number of atoms∕molecules, pressure and temperature (NPT) 
ensemble for 25 ns. For calculating the viscosities and self-diffusivities, 
the simulations were continued in the NVT ensemble for another 20 ns. 
3

The temperature was kept fixed by Nosé-Hoover thermostat [90]. The 
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Fig. 1. A snapshot of a simulation box containing 250 H2O2 (red and white 
spheres represent oxygen and hydrogen atoms, respectively) and 250 H2O 
molecules (green spheres), generated by the Visual Molecular Dynamic (VMD) 
software [95].

Parinello-Rahman barostat [91] with a time constant of 1 ps and com-
pressibility of 4.5 × 10−5 bar−1 was used to keep the pressure at 1 bar. 
In all simulations, the Newton’s equations of motion were integrated 
with a leap-frog [92] algorithm with a time step of 2 fs. Periodic bound-
ary conditions were applied in all Cartesian directions. The parallel 
linear constraint solver (P-LINCS) [93,94] was used to constrain the 
O−H bonds in the H2O2 molecule. In this way, the fastest degree of 
freedom in H2O2 (O−H vibrations), is removed which allows to safely 
use 2 fs time step in our MD simulations.

2.3. MC simulations

Continuous Fractional Component Monte Carlo (CFCMC) simu-
lations [96–98] using the open-source Brick-CFCMC software [98–
100] were performed in the isothermal-isobaric (NPT) ensemble. In 
the CFCMC technique, fractional molecules (compared to normal or 
“whole” molecules) are introduced whose interactions with the rest of 
the system are scaled with a continuous coupling parameter 𝜆 (𝜆 ∈
[0, 1]). The minimum value of 𝜆 (𝜆 = 0) indicates no interactions 
between the fractional molecule and the rest of the molecules in the 
system (i.e., fractional molecules act as ideal gas molecules). 𝜆 = 1 
represents full interactions between the fractional molecules and the 
other molecules in the system (i.e., the fractional molecule acts as 
whole molecules). The coupling parameter 𝜆 is biased with a weight 
function (𝑊 (𝜆)) using the Wang-Landau algorithm [101] to improve 
molecule transfers (insertions∕deletions). This ensures a smooth ob-
served probability distribution of 𝜆. We used 100 bins to construct a 
histogram for the 𝜆 values and its probability of occurrence (p(𝜆)). The 
Boltzmann average of any property (A) is then computed using [102]

⟨𝐴⟩ = ⟨ 𝐴 exp[−𝑊 (𝜆)]⟩biased⟨exp[−𝑊 (𝜆)]⟩biased
. (2)

The chemical potential of species 𝑖 is calculated with respect to its ideal 
gas chemical potential [99]

𝜇𝑖 = 𝜇ideal
𝑖

+ 𝜇ex
𝑖
, (3)

where 𝜇ideal
𝑖

and 𝜇ex
𝑖

are the ideal gas and excess chemical potential of 
the species 𝑖, respectively. The excess chemical potential can be related 
to the Boltzmann sampled probability distribution of 𝜆 by the following 
equation [99]

𝜇ex
𝑖

= −𝑘B𝑇 ln
𝑝(𝜆 = 1)
𝑝(𝜆 = 0)

, (4)

where 𝑝(𝜆=1) and 𝑝(𝜆=0) are the Boltzmann sampled probability dis-
tributions of 𝜆 at 1 and 0, respectively. 𝑘B is the Boltzmann constant, 

and T is the absolute temperature. The excess chemical potential at in-
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Fig. 2. Densities of anhydrous H2O2 at various temperatures using the 
Cordeiro [69] and Orabi [67] force fields at 1 bar with the experimental val-
ues [42]. Error bars are estimated based on the standard deviation and are much 
smaller than the symbols used in the figure.

finite dilution (𝜇ex,∞) can be used to determine the Henry volatility 
coefficient1 (𝐾px

𝑣 ) by [104]

𝐾px
𝑣

= 𝜌 𝑘B𝑇 exp
(

𝜇ex,∞

𝑘B𝑇

)
, (5)

where 𝜌 is the number density of the solvent. This yields the Henry 
volatility coefficient (𝐾px

𝑣 ) in units of [Pa]. The Henry coefficient (𝐻cp
𝑠 ) 

in units of [mol/m3 Pa] can be obtained using the following conversion: 
𝐻

cp
𝑠 ≈

𝜌H2O

𝑀H2O𝐾
px
𝑣

in which 𝜌H2O is the density of water, and 𝑀H2O is the 

molar mass of water [103]. The Henry coefficient (𝐻cp
𝑠 ) will have the 

SI units only if 𝜌, 𝑘B, 𝑇 , and 𝑀 are in SI units.
CFCMC simulations contained 300 water molecules in a cubic simu-

lation box with initial dimensions of 21 Å. A single fractional molecule 
of H2O2 was introduced to calculate its excess chemical potential. The 
cut-off radius for the intermolecular L-J and Coulombic interactions was 
set to 9 Å. The Ewald summation [105] method was used for calculat-
ing electrostatic interactions. Long-range tail corrections were applied 
to the L-J potential. Periodic boundary conditions were applied in all 
directions.

For CFCMC simulations, 1,000 initialization cycles were carried out 
followed by 5 × 106 equilibration cycles and 5 × 106 production cy-
cles. One cycle refers to N number of trial moves, where N is the total 
number of molecules. Trial moves were selected with the following 
probabilities: 32% translation moves, 22% rotation moves, 1% volume 
changes, 5% each of bending and torsion moves, 25% 𝜆 changes, and 
10% hybrid moves that combined swap and identity change moves [99]. 
Three independent simulations were performed for each combination of 
water force field and H2O2 force field to obtain an average value and 
the standard deviation for the Henry coefficients.

3. Results and discussion

3.1. Densities

The densities of anhydrous H2O2 for a temperature range of 253 K 
to 353 K (in steps of 20 K) for both the Orabi and Cordeiro force fields 
are plotted in Fig. 2. We used the gmx density tool to compute the aver-
age density of each system. The experimental values are shown in black 
circles [42]. The melting point and boiling point of H2O2 are reported 
as 272.74 K and 423.15 K, respectively [106]. While the Cordeiro force 
4

1 The definition of the Henry law constants is according to Sander [103].
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Fig. 3. Densities of H2O2 aqueous solution for various mole fractions of H2O2

at 𝑇 = 298 K and 1 bar using the (a) Orabi [67] and (b) Cordeiro [69] force 
fields in combination with the TIP3P [73], mTIP3P [68], TIP4P/2005 [75] and 
TIP5P-E [77,84] water force fields. Experimental values [50] are added for com-
parison. Error bars are estimated based on the standard deviation and are much 
smaller than the symbols used in the figure.

field underestimates the densities of anhydrous H2O2 by about 3% com-
pared to the experimental values, the densities of anhydrous H2O2 using 
the Orabi force field are in excellent agreement with the experimental 
values.

Next, we evaluate which water force field is suitable for predict-
ing the densities of H2O2 aqueous solutions. To this end, we mod-
elled systems of H2O2 aqueous solutions for the whole range of H2O2
mole fractions (0 to 1.0) at 𝑇 = 298 K and 1 bar using the Orabi or 
Cordeiro force fields in combination with four different water force 
fields: TIP3P, TIP4P/2005, TIP5P-E, and the modified TIP3P water force 
field (mTIP3P) which was used in the work by Orabi & English [67]. 
The choice of temperature at 298 K and pressure at 1 bar was motivated 
by the availability of experimental results by which we could validate 
our models. The results as a function of the H2O2 mole fraction are 
shown in Fig. 3. The experimental values [50] are added for compari-
son.

The densities of pure water (i.e., a mole fraction of zero), using the 
four water force fields are in good agreement with the reported data 
at 298 K and 1 bar [75,107]. The Orabi force field for H2O2 in com-
bination with the TIP4P/2005 water force field or mTIP3P water force 
field predicts the densities of the aqueous solutions in good agreement 
(ca. 0.6%) with the experimental values [50]. The predicted values for 
densities of solutions using the TIP5P-E water force field in combination 

with the Orabi or Cordeiro force fields at low and high concentrations 
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of H2O2 are in good agreement with the experimental values. At inter-
mediate concentrations (0.4 - 0.6 mole fractions), however, the TIP5P-E 
in combination with the Orabi or Cordeiro force fields overestimates the 
densities of solutions by 2% and 5%, respectively. The TIP3P water force 
field in combination with the Orabi force field underestimates the den-
sities of the solutions by 2%. The Cordeiro-TIP3P and Cordeiro-mTIP3P 
models underestimate the densities by 3% at intermediate concentra-
tions. The Cordeiro force field in combination with the TIP4P/2005 
water force field also underestimates the densities of the solution with 
a more pronounced effect at higher mole fractions of H2O2 (≥ 0.5, by 
3%).

We conclude that the Orabi force field is a better force field than 
the Cordeiro force field for predicting the densities of pure H2O2 in 
the temperature range of 253 - 353 K. In addition, the TIP4P/2005 
or the mTIP3P force field in combination with the Orabi force field 
predicts the densities of H2O2 aqueous solutions for the whole range of 
mole fractions (0 - 1.0) in very good agreement with the experimental 
values.

3.2. Viscosities

The viscosities were calculated by a non-equilibrium molecular dy-
namics (NEMD) method, available within GROMACS. For a Newtonian 
liquid, an applied external force induces a velocity gradient in the sys-
tem, according to the Navier-Stokes equation. From the constitutive 
relation between the response strain rate and applied shear stress, we 
can determine the viscosity of the liquid [108]. In our study, we used 
an amplitude of 0.02 nm/ps2 for the acceleration profile. The viscosities 
of H2O2 aqueous solutions for various H2O2 mole fractions (0 to 1.0) 
at 𝑇 = 293 K were computed. Fig. 4 shows the values of viscosity us-
ing the Orabi (a) and Cordeiro (b) force fields in combination with the 
TIP3P, mTIP3P and TIP4P/2005 force fields. The results including the 
TIP5P-E water force field are shown in Figure S1 of the Supplementary 
Information. The standard deviation is used to estimate error bars. The 
experimental values at 293 K are included for comparison [43].

The viscosities of pure water (i.e., mole fraction = 0) are in 
good agreement with the computed values using the TIP3P, mTIP3P, 
TIP4P/2005, and TIP5P-E force fields [109]. The experimental value of 
the viscosity of pure H2O2 at 293 K is 1.25 mPa s [43]. The computed 
value is 1.36 mPa s by using the Orabi force field, and it is 1.34 mPa s 
by using the Cordeiro force field.

The combination of the Orabi force field with the mTIP3P or 
TIP4P/2005 underestimates the viscosities of H2O2 aqueous solutions 
for mole fractions up to 0.9. The Orabi-TIP3P model underestimates 
the values up to a mole fraction of 0.8, above which it slightly over-
estimates. The combination of Cordeiro force field with the mTIP3P 
or TIP3P or TIP4P/2005 water force fields follows a similar trend. 
The Cordeiro-mTIP3P and Cordeiro-TIP3P models underestimate the 
viscosities up to a mole fraction of 0.8, above which it slightly overes-
timates. The Cordeiro-TIP4P/2005 model, however, underestimates the 
values of viscosities by 7% up to a mole fraction of 0.5 while it overes-
timates by ca. 5% for H2O2 mole fractions higher than 0.8. Contrary to 
the other water force fields, the TIP5P-E water force field in combina-
tion with either the Orabi or Cordeiro force fields predicts a relatively 
high peak in viscosity at the intermediate mole fractions (mole fraction 
of 0.5), see Figure S1 of the Supplementary Information. This may be 
due to structural changes which the TIP5P-E water force field induces 
in the system. This is addressed in section 3.4 using radial distribution 
functions.

We conclude that the TIP4P/2005 water force field in combina-
tion with the Orabi force field or the Cordeiro force field predicts the 
viscosities of H2O2 aqueous solutions in better agreement with the ex-
5

perimental values.
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Fig. 4. Viscosities of H2O2 aqueous solution for various mole fractions of H2O2
at 293 K for the (a) Orabi [67] and (b) Cordeiro [69] force fields in combi-
nation with the TIP3P [73], mTIP3P [68] and TIP4P/2005 [75]. The results 
including the TIP5P-E water force field are shown in Figure S1 of the Supple-
mentary Information. Error bars are estimated based on the standard deviation. 
The experimental values [43] at 293 K are added for comparison.

3.3. Self-diffusion coefficients

Diffusion coefficients were calculated from the mean-squared dis-
placements (MSD) and were corrected for finite-size effects with the 
Yeh-Hummer equation [110,111]

𝐷 =𝐷MD +
𝑘B𝑇 𝜉

6𝜋𝜂𝐿
, (6)

where 𝐷 and 𝐷MD denote the diffusion coefficient calculated with 
and without the finite-size effects corrections, respectively. 𝑘B is the 
Boltzmann constant, 𝑇 is the absolute temperature (in K), 𝜉 is a dimen-
sionless number which for a cubic simulation box is equal to 2.837, 𝐿
is the length of the cubic simulation box, and 𝜂 is the viscosity of the 
system. We used the gmx msd tool to obtain the MSD as a function of 
time. 𝐷MD is obtained by fitting the MSD to

⟨𝑟2⟩MSD = 2𝑑𝐷MD𝑡, (7)

where 𝑑 = 3 is the dimension of the system. The self-diffusion coef-
ficients were calculated from 1 ns to 20 ns NVT trajectories. Figure 
S3 of the SI shows an example of MSD versus time on a logarithmic 
scale. Fig. 5 shows the self-diffusion coefficients of H2O2 and water 
in aqueous H2O2 solutions for the whole range of hydrogen peroxide 

mole fractions (0 to 1.0). The results including the TIP5P-E water force 
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Fig. 5. Self-diffusion coefficients of water molecules and H2O2 molecules in 
H2O2 aqueous solutions for different mole fractions of H2O2 at 298 K using 
the (a) Orabi [67] and (b) Cordeiro [69] force fields in combination with the 
TIP3P [73], mTIP3P [68], and TIP4P/2005 [75] water force fields. The results 
including the TIP5P-E water force field are shown in Figure S2 of the Supple-
mentary Information. Error bars are estimated based on the standard deviation 
and are much smaller than the symbols used in the figure.

field are shown in Figure S2 of the SI. The self-diffusion coefficients 
of pure water (i.e., mole fraction=0) for the four water force fields 
are in good agreement with the values reported in Ref. [75,112,77]. 
The TIP5P-E and TIP4P/2005 water force fields predict the value of 
the self-diffusion coefficient in better agreement with the experimental 
value (2.3 nm2/s [113]).

The self-diffusion coefficients of both the water and the H2O2
molecules decrease monotonically by increasing the mole fraction of 
H2O2 using the Orabi-TIP3P or Orabi-mTIP3P models. There is a sim-
ilar trend for the Cordeiro-TIP3P and Cordeiro-mTIP3P models. The 
TIP4P/2005 water force field in combination with either the Orabi 
force field or the Cordeiro force field predicts a relatively constant 
self-diffusion coefficient for both water and H2O2 for the whole range 
of mole fractions. This is in agreement with a recent experimental 
study [33] where it was concluded that the self-diffusion coefficients 
of H2O2 in solutions are insensitive to its concentration. The TIP5P-E 
water force field in combination with either the Orabi or Cordeiro force 
fields predicts a minimum at a mole fraction of 0.5 for the self-diffusion 
coefficients of both water and H2O2. This is correlated with its very 
high value of viscosities (see Figure S1 of the Supplementary Informa-
6

tion).
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Fig. 6. Radial distribution functions (RDFs) as a function of radial distance, 
𝑟 [nm], for Ow (O of water) - Hw (H of water) for H2O2 aqueous solutions 
with 𝑥 = 0.1 (b), 𝑥 = 0.5 (c), and 𝑥 = 0.9 (d) at 298 K and 1 bar using the 
Orabi force field in combination with the mTIP3P [68], TIP5P-E [77,84], and 
TIP4P/2005 [75] water force fields, where 𝑥 is the mole fraction of H2O2. The 
RDF for pure water is plotted in (a).

3.4. Radial distribution functions

In sections 3.2 and 3.3, we concluded that the TIP5P-E water force 
field in combination with either the Orabi force field or the Cordeiro 
force field for H2O2 does not predict viscosities of H2O2 aqueous solu-
tions, and thereby self-diffusion coefficients of H2O2 in aqueous solu-
tion, well. To identify the reason behind, structural properties of H2O2
aqueous solution at various mole fractions were investigated using the 
radial distribution functions (RDF), and hydrogen bonding pattern were 
explored. Note that there are 4 atom types in each system: hydrogen of 
water (Hw), oxygen of water (Ow), hydrogen of H2O2 (Hp), and oxygen 
of H2O2 (Op).

The RDFs for Ow and Hw in pure water using the mTIP3P, TIP5P-E 
and TIP4P/2005 water force fields are shown in Fig. 6 (a). The results 
show a first peak at approximately 0.18 nm, and a second peak at ap-
proximately 0.32 nm. The peak heights slightly differ between the water 
force fields with the TIP4P/2005 predicting a higher value followed by 
the TIP5P-E, and then the mTIP3P predicting a smaller value.

The respective RDFs in H2O2 aqueous solutions using the Orabi force 
field in combination with the three water force fields for systems with 
mole fractions of 0.1, 0.5, and 0.9 are also shown in Fig. 6 (b, c, d). The 
RDFs for Ow and Hw for systems using the Cordeiro force field in combi-

nation with the mTIP3P, TIP5P-E, and TIP4P/2005 are shown in Figure 
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Fig. 7. Radial distribution functions (RDFs) as a function of radial distance, 
𝑟 [nm], for Op (O of H2O2) - Hp (H of H2O2) for H2O2 aqueous solutions 
with 𝑥 = 0.1 (b), 𝑥 = 0.5 (c), and 𝑥 = 0.9 (d) at 298 K and 1 bar using the 
Orabi [67] force field in combination with the mTIP3P [68], TIP5P-E [77,84], 
and TIP4P/2005 [75] water force fields, where 𝑥 is the mole fraction of H2O2. 
The first peak (at ca. 0.19 nm) was removed to distinguish the differences be-
tween the combinations clearly. The RDF for pure H2O2 is plotted in (d) using 
the Orabi force field and the Cordeiro force field.

S4 of the SI. In the system with a mole fraction of 0.1, the position of 
the peaks is independent of the water force fields. As the mole frac-
tion of H2O2 is increased to 0.5 and 0.9, the position of the peaks does 
not change in systems where the mTIP3P or TIP4P/2005 force field is 
used. In the systems where the TIP5P-E water force field is used, how-
ever, the RDF changes: the height of the peaks becomes smaller and 
an additional structural correlation appears in the system with a mole 
fraction of 0.5. This additional correlation between the water molecules 
persists till 0.8 nm, whereas for the systems in which the mTIP3P or 
TIP4P/2005 is used, the structural correlation persists only till 0.6 nm. 
In the Orabi-TIP5P-E system with a mole fraction 0.9, the first two peaks 
disappear. A similar trend can be observed for the combinations involv-
ing the Cordeiro force field with the mTIP3P, TIP5P-E, and TIP4P/2005 
water force fields (see Figure S4 of SI). In the Cordeiro-TIP5P-E combi-
nation with a mole-fraction of 0.5, however, the structural correlation 
between the water molecules is stronger than that of the corresponding 
Orabi-TIP5P-E combination. This can be seen from a more prominent 
peak after 0.4 nm compared to the other models.

The RDFs for Op and Hp in H2O2 aqueous solution with mole frac-
tions of 0.1, 0.5 and 0.9 using the Orabi force field in combination with 
the three water force fields are shown in Fig. 7 (a, b, c). Similarly, the 
7

respective RDFs using the Cordeiro force field in combination with the 
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three water force fields are shown in Figure S5 of SI. The RDF of Op
and Hp in pure H2O2 using the Orabi and the Cordeiro force fields are 
also shown in Fig. 7 (d). The first peak in the RDF has a large ampli-
tude, therefore we removed it to be able to distinguish the differences 
between the systems more clearly (see Figure S6 of SI). RDFs of the 
system at a mole fraction of 0.9 are almost identical using the three dif-
ferent water force fields with a second peak at 0.37 nm. By decreasing 
the mole fraction of H2O2 to 0.5, and 0.1, the RDFs remain the same 
for the systems in which the mTIP3P-E or the TIP4P/2005 is used. For 
the system in which the TIP5P-E water force field is used, however, the 
RDF changes drastically. This is also the case with the Cordeiro-TIP5P-
E model. The RDF for pure H2O2 using the Orabi force field is almost 
identical as the system using the Cordeiro force field.

The RDFs for Op and Hw, Op and Ow, and Ow and Hp using the Orabi 
force field with the three water force fields (mTIP3P, TIP4P/2005, and 
TIP5P-E) for solutions with mole fractions of 0.1, 0.5 and 0.9, are shown 
in Fig. 8. Likewise, RDFs with the Cordeiro force field and the water 
force fields are shown in Figure S7 of SI. In systems where the mTIP3P 
and TIP4P/2005 water force fields were used, RDFs have the same 
structure in which the position of the first peak is in good agreement 
with X-ray measurements on crystals of H2O2⋅2H2O [114] and simula-
tion results [67]. On the contrary, the structural properties in systems 
where the TIP5P-E force field was used, have changed. A comparable 
effect can be seen in Figure S7 of SI where the Cordeiro-TIP5P-E com-
bination is used.

The number of water molecules in the micro and first solvation shells 
of H2O2 molecule were obtained by integrating up to the first and sec-
ond minima of the RDF for Op - Ow, respectively. The results are shown 
in Table S3 and S4 of the SI. Orabi & English [67] reported 3.0 and 9.4 
water molecules in the micro and first solvation shells, respectively, for 
a single peroxide molecule in 500 water molecules using the mTIP3P 
water force field. Authors in Ref. [58] report 6.0 water molecules in 
the first solvation shell of H2O2 using a hybrid quantum-classical simu-
lation. According to our results, the number of water molecules in the 
first solvation shell at mole fractions of 0.1 and 0.9 are lower for sys-
tems where the TIP5P-E water force field is used. At a mole fraction of 
0.5, however, the number of water molecules in the first solvation shell 
slightly increases.

3.5. Hydrogen bond analysis

The number of hydrogen bonds (calculated as the summation of hy-
drogen bonds between H2O2 - H2O2, H2O2 - water and water - water) 
per H2O2 molecule for combinations of the Orabi and Cordeiro force 
fields with the water force fields is shown in Fig. 9. We used the geomet-
ric criterion for hydrogen bonds proposed in Ref. [115]. Accordingly, 
a hydrogen bond is identified when the angle formed by the hydro-
gen, the acceptor, and donor atoms is below 30◦, with the distance 
between the acceptor and donor atoms to be less than 0.36 nm. The 
geometric criterion is depicted in Figure S8 of the SI. The number of 
hydrogen bonds for both the Orabi and Cordeiro force fields in com-
bination with the TIP4P/2005, TIP3P and mTIP3P water force fields 
exhibit a steady increase until a mole fraction of 0.9. Existing literature 
indicates the existence of about 4 hydrogen bonds between hydrogen 
peroxide and water molecules [58,60]. For pure H2O2 systems, the 
number of hydrogen bonds sharply decreases to about 5 for both the 
Orabi and Cordeiro systems. The Orabi-TIP5P-E and Cordeiro-TIP5P-E 
combinations are however different compared to the others. These com-
binations indicate a minimum in the number of hydrogen bonds at a 
mole fraction of 0.4 (around 3 hydrogen bonds for Orabi-TIP5P-E and 2 
for Cordeiro-TIP5P-E). The minima for the number of hydrogen bonds 
at the intermediate concentrations for both these systems are concur-
rent with the high viscosities and low diffusion seen in Figures S1 and 
S2 of the SI.

Analysis of the RDFs, solvation shells, and the number of hydrogen 

bonds of the TIP5P-E systems indicate a variation in the arrangement 
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Fig. 8. Radial distribution functions (RDFs) as a function of radial distance, 𝑟 [nm], for Op (O of H2O2) and Hw (H of water) (a - c), Ow (O of water) and Op (O 
of H2O2) (d - f), and Ow (O of water) and Hp (H of H2O2) (g - i) for systems using the mTIP3P [68], TIP5P-E [77,84], and TIP4P/2005 [75] water force fields in 
combination with the Orabi force field for 𝑥 = 0.1, 𝑥 = 0.5, and 𝑥 = 0.9 at 298 K and 1 bar, where 𝑥 is the mole fraction of H O .
of water molecules around a H2O2 molecule. We attribute this to the 
presence of the two dummy atoms representing the lone electron pairs 
of the oxygen atom of the water molecule in the TIP5P-E water force 
field. This is in agreement with the work by Nutt and Smith [116] who 
compared the performance of three water force fields, TIP5P, TIP4P, 
and mTIP3P in providing a reliable description for protein solvation 
in water. These authors concluded that TIP5P behaves differently from 
TIP4P and mTIP3P as the RDFs between the hydrogen of the protein 
and oxygen of water for their protein-TIP5P system exhibit a shift in the 
peak position and peak heights, similar to the RDFs in our systems (see 
Fig. 8 (g-i)). This anomalous behavior of TIP5P was attributed to the 
presence of the two dummy atoms representing the lone electron pairs 
of the oxygen atom of the water molecule in TIP5P. As we observed 
the same trend in our aqueous systems of H2O2, we conclude that the 
combination of the TIP5P-E water force field and either of the H2O2
force fields induce stronger interactions between the water molecules 
and H2O2 due to the presence of the two dummy atoms representing the 
lone electron pairs of the oxygen atom of the water molecule using the 
TIP5P-E water force field. This leads to the incongruity of the viscosities 
and self-diffusion coefficients of the TIP5P-E systems compared to the 
other systems.

3.6. Henry coefficients

The Henry coefficients were computed for H2O2 in water using the 
8

Orabi and Cordeiro force fields in combination with the various water 
2 2

Table 2

Excess chemical potentials (𝜇ex), the Henry volatility coefficient (𝐾px
𝑣 ), and the 

Henry coefficient (𝐻cp
𝑠 ), using the Orabi and the Cordeiro force fields in combi-

nation with the TIP4P/2005, TIP3P, and mTIP3P water force fields. Errors are 
estimated using standard deviations of independent simulations.

Model 𝜇ex/[K] 𝐾
px
𝑣 /[Pa] 𝐻

cp
𝑠 /[mol/m3 Pa]

Orabi - TIP4P/2005 −3734 ± 30 512 ± 52 109 ± 11
Orabi - TIP3P −3836 ± 27 365 ± 32 153 ± 14
Orabi - mTIP3P −3963 ± 14 239 ± 11 232 ± 11
Cordeiro - TIP4P/2005 −4142 ± 32 132 ± 14 424 ± 46
Cordeiro - TIP3P −4392 ± 58 58 ± 11 989 ± 190
Cordeiro - mTIP3P −4487 ± 57 42 ± 7 1357 ± 275

force fields. It should be noted that we have not further considered the 
TIP5P-E water force field for the solubility calculations as it has been 
ascertained from the earlier sections that neither the Cordeiro nor Orabi 
force fields in combination with the TIP5P-E water force field could ac-
curately predict the densities, viscosities and self-diffusion coefficients 
of H2O2 aqueous systems. The results of the solubility calculations are 
provided in Table 2. The reported experimental values range from 670 
to 1400 [mol/m3 Pa] [117–120]. It is evident that the Cordeiro force 
field in combination with the TIP3P or mTIP3P water force fields pre-
dicts the Henry constants that are within the range of the reported 

experimental values.
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Fig. 9. Number of hydrogen bonds per H2O2 molecule for systems with various 
mole fractions of H2O2 at 𝑇 = 298 K and 1 bar using the (a) Orabi [67] and (b) 
Cordeiro [69] force fields in combination with the TIP3P [73], mTIP3P [68], 
TIP4P/2005 [75] and TIP5P-E [77,84] water force fields.

4. Conclusions

We performed MD and CFCMC simulations to study thermodynamic 
properties of aqueous solutions of H2O2. The quality of the available 
force fields of H2O2, Cordeiro [69] and Orabi [67], was evaluated by 
comparing the results with experiments. The densities of pure H2O2
computed using the Orabi force field are in excellent agreement with 
the experimental values for the temperature range of 253 K to 353 K. 
The Cordeiro force field underestimates the densities of pure H2O2 by 
3%. We computed densities, viscosities, and self-diffusion coefficients 
of H2O2 in aqueous solutions for the whole range of mole fractions 
of H2O2 (0 to 1.0) at ambient temperatures and pressures using four 
widely used water force fields: TIP3P, mTIP3P, TIP4P/2005, and TIP5P-
E. The results show that the TIP4P/2005 water force field in combi-
nation with the Orabi force field can predict the densities of H2O2
aqueous solution in excellent agreement with experimental values. Both 
the Orabi and Cordeiro force fields in combination with the TIP4P/2005 
water force field predict the viscosities of H2O2 in reasonable agree-
ment with experimental results. The TIP5P-E water force field leads to 
a very high value (maximum) for viscosity of H2O2 aqueous solutions 
at a mole fraction of 0.5, and thereby a very small value (minimum) 
for self-diffusion coefficient of H2O2 and water. The TIP4P/2005 force 
field in combination with either of the Orabi or Cordeiro force fields 
predicts a relatively constant diffusion coefficient for the whole range 
9

of H2O2 mole fractions that is in agreement with a recent experimen-
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tal study [33]. Analysis of the RDFs, solvation shells, and the number of 
hydrogen bonds of the TIP5P-E systems indicate a variation in the ar-
rangement of water molecules around a H2O2 molecule. We attribute 
this to the presence of the two dummy atoms representing the lone 
electron pairs of the oxygen atom of the water molecule in the TIP5P-E 
water force field, which leads to a stronger interaction between water 
molecules and H2O2 molecules and therefore a deviation in the dynamic 
properties (viscosities and self-diffusion coefficients) of these systems. 
Finally, we computed the Henry coefficients of H2O2 in water. The val-
ues using the Cordeiro force field in combination with either of the 
TIP3P or mTIP3P water force fields are within the range of experimen-
tal values. The quantitative data presented in this work can be used by 
macroscopic plasma fluid models to determine the uptake of H2O2 from 
the gas phase plasma by liquid [36] or to interpret and complement ex-
perimental findings [121].
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