Customizable Memory Schemes for
Data Parallel Accelerators

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,
op gezag van de Rector Magnificus prof. ir. K.C.A.M. Luyben,
voorzitter van het College voor Promoties,
in het openbaar te verdedigen op

dinsdag 6 september 2011 om 10:00 uur

door

Chunyang GOU

Master of Science in Information and Communication Engiimee
Tsinghua University, China
geboren te Sichuan, China

Dit proefschrift is goedgekeurd door de promotor:
Prof. dr. ir. H. J. Sips

Copromotor:
Dr. ir. G. N. Gaydadjiev

Samenstelling promotiecommissie:

Rector Magnificus voorzitter

Prof. dr. ir. H. J. Sips Technische Universiteit Delft, protor

Dr. ir. G. N. Gaydadjiev Technische Universiteit Delft, comotor
Prof. dr. P. Stenstrom Chalmers University of Technol@yyeden
Prof. dr. A. Seznec IRISA/INRIA, Frankrijk

Prof. dr. J. Takala Tampere University of Technology, Fidla
Prof. dr. K. G. Langendoen Technische Universiteit Delft

Dr. G. K. Kuzmanov Technische Universiteit Delft

Prof. dr. ir. A.-J. van der Veen Technische Universiteitfheéservelid

ISBN 978-90-72298-23-2

Keywords: Computer Architecture, Data Parallel Accelersit Parallel Memory
Schemes, Customizable Memory Schemes

Copyright© 2011 Chunyang Gou

All rights reserved. No part of this publication may be refroed, stored in a
retrieval system, or transmitted, in any form or by any meafextronic, mechanical,
photocopying, recording, or otherwise, without permiasibthe author.

Cover design by Hani Alers and Nike Gunawan (www.hanike.nl)
Printed in The Netherlands

This thesis is dedicated to my family.

Customizable Memory Schemes
for Data Parallel Accelerators

Chunyang Gou
Abstract

high performance, especially in the case of data parallel ma

chines. Processing capabilities of parallel lanes will lzested,
when data requests are not accomplished sustainableand timely man-
ner. Irregular vector memory accesses can lead to inefficiem of the par-
allel banks/modules/channels and significantly degradeativperformance
even when highly parallel memory systems are employed. pitdblem is
also valid for many regular workloads exhibiting irreguleactor accesses at
runtime. This dissertation identifies the mismatch betwéenoptimal ac-
cess patterns required by the workloads and the physicalldgbut as one
of the major factors for memory access inefficiency. We psepoustomiz-
able memory schemes to address this issue in data paraledeeators. More
specifically, this thesis extends traditional approacheprbposing two new
parallel memory schemes that alleviate bank conflicts fomroonly used ac-
cess patterns. We also propose a framework to capture amdyctite access
pattern information to the proposed parallel memory sclsenf@irthermore,
we describe techniques that dynamically adjust the instnusequencer of a
multithreaded vector architecture and customize the aquagiserns to improve
on-chip, local memory efficiency. Last, we identify and @iphew locality
type to dynamically adjust off-chip memory access grariylaxf manycore
data parallel architectures, in order to improve main megnadiiciency. We
implemented our proposals as extensions of contemporaaypdaallel archi-
tectures and our evaluation results demonstrate that nyeeificiency and
overall system performance can be improved at minimal harewost, while
at the same time programming overhead can be greatly reduced

M emory system efficiency is crucial for any processor to achieve

Acknowledgements

I acknowledge the help and contributions from many peopkndumy PhD
at the computer engineering (CE) laboratory of TU Delft.sEof all, | owe
deep gratitude to the guidance from my supervisor, Dr. G&aagdadjiev. He
insisted on high quality research and always motivated nfiect® challenging
problems. He is always open-minded to let me follow my irge&yeand was
patient with me even when | entered panic mode. He taught metddor-
mulate problems and abstract complexity. He sacrificed nteteyhours and
weekends working together with me to meet the deadlineslyl émjoyed and
greatly benefited from the past several years for being haesit.

I would like to express my sincere gratitude to Dr. Georgi Kanov for his
daily supervision during the first half of my thesis work. Heged me develop
academic thinking skills, identify the research problemtha beginning, and
write technical papers. His rich experience and generoitgae has greatly
benefited my early academic career and the influence willitifircontinue.

| am sincerely grateful to late Prof. Stamatis Vassiliadis giving me the
opportunity to study in the CE group. It was my privilege kmogvhim; his
memory will always remain in my heart. | thank Dr. Koen Bedtédr setting
me on the track of the first visit to the CE group and later theyneseful sug-
gestions on both academic work and life. | am also thankf&irtd. Henk Sips
for serving as my promotor, and grateful to the thesis cotemiprofessors for
their invaluable feedback and comments despite the tigte ichedule.

| considered myself lucky to have nice colleagues in an iratonal envi-
ronment of the CE group, without whom the life at Delft woulot tve com-
plete. Many thanks to Jae Young Hur, loannis Sourdis, QiwiStrydis, Sebas-
tian Isaza, Arnaldo Azevedo, Dimitrios TheodoropoulosgeRdeeuws, Vlad-
Mihai Sima, Laiq Hasan and Nor Zaidi Haron for their kind hatg insightful
discussions which refreshed my mind from time to time. Myci&lehanks go
to past and current officemates in HB.15.230: Elena Pandl@do Galuzzi,
Humberto Calderén, Zubair Nawaz, Pavel Zaykov, Ageel \Alahand Karthik
Chandrasekar, for creating such a harmonious work placelzerihg the nu-

merous technical and non-technical chats with me. | tharalidaCiobanu
and Bogdan Spinean for the close collaboration in the SARElaator mem-
ory design. | also thank Filipa Duarte and Faisal Nadeemhfemice cooper-
ation in organizing the Computer Engineering Colloquiurerahe years.

Special thanks are due to the CE secretary Lidwina Trompdoatministra-
tive assistance and generous help. My thanks are also duertpBik and
Eef, the past and current CE system administrators, ediydoiatheir techni-
cal support in operating the HPC clusters used to run ourlatinas.

| truly appreciate the friendship with many great Chinesenfils during my
stay in the Netherlands. Yizhi Zhao, Zhijiang Chang and Ykindly assisted
me in finding an accommodation at Delft and setting up the reawer when |
joined the group. Their support continued ever since. Yao@\éand Changlin
Chen’s joining us later strengthened our Chinese “minbiitythe CE group
with whom | enjoyed pleasant chats, wonderful meals and-tis@gnce bik-
ing. Outside the group | am also grateful to Qi Jia, Jun Howddhao Pan,
Yang Yang, Shiming Xu, Jin He..., for their generous help tremany un-
forgettable gatherings and trips we enjoyed together.

It is my privilege to work in the SARC and ENCORE projects spaned by
the European Commission. | thank all the excellent peoplinese projects
and the fruitful collaboration with them from which | benefita lot.

I would like to thank many wonderful teachers and friendssaib@hua Univer-
sity who created the premises for me to study in the NethdslaRarticularly,
I am most grateful to Prof. Weimin Zheng for introducing mestomputer ar-
chitecture research. Sincere gratitude also goes to Piagnihg Peng for di-
recting my steps toward Computer Engineering during my endsesis work.

Last but certainly not least, | would like to thank my family.am forever

indebted to my grandparents and parents, for their endigesahd unwavering
support throughout my life. They taught and encouraged rbe¢ome a good
person to the society. | thank my wife, Ling Zhang, for herdppatience,
support, understanding and sharing the wonderful life wigh | also thank my
sister for always loving and supporting her only youngerthea | sincerely
thank my parents in law for their love, support and trust. mdrothe memory
of my grandaunt and maternal grandmother. The everlasting from my

family has always been the source of peace and inspiratioryiheart.

Chunyang Gou Delft, The Netherlands, September 2011

Table of contents

Abstract
Acknowledgments i
Listof Tables i
Listof Figures %
List of AcronymsandSymbols K
1 Introduction i
1.1 Data Parallel Architecture Evolution 0 1
1.2 Programmable Data Parallel Accelerators 0 3
1.3 Processor-Memory PerformanceGap 0 5
1.4 Parallel Memory Organizations and Accesses 0 s
1.5 Problem Formulation []12
1.6 Machine Organization and Proposed Solutions [13
1.7 Contributions [117
1.8 Dissertation Organization [] 18
2 RelatedWork i
2.1 Parallel Memory Schemes L] 21
2.2 Access Pattern and Data Layout Optimizations [d 2
2.3 Off-chip Memory Access Scheduling. [1 30
2.4 Memory Access Optimizationson GPUs L] 31
2.4.1 Avoiding GPU Shared Memory Bank Conflicts . . a3
2.4.2 GPU DRAM Access Optimizations []32
25 Summary e [133
3 Conflict-Free Parallel Memory Schemes [33
3.1 Motivation [35

3.1.1 Definitions oo oL [136
3.1.2 Non-Redundant Parallel Memory Schemes Limitatiohd 3
3.1.3 Strided Access in 2D Environment [] 38
3.2 Single-Affiliation Multiple-Stride Memory Scheme [a0
3.2.1 Moving from Conflict-Free to Low Degree of Affiliation.d4
3.2.2 Hierarchical Single-Affiliation Parallel Memory Sahe [4b
3.2.3 Solving Module Conflicts in Single-Affiliation Schemé4d

3.2.4 The Matched SAMS Scheme [] a5
3.3 2DSMM: 2D Strided Multiaccess Memory Scheme L1 46
3.4 Hardware Design and Implementation L] 49
3.4.1 SAMS Hardware Implementation [] 50
3.4.2 Implementation of 2DSMM Scheme [] 52
3.5 DISCUSSION (165
3.6 SUMMAIY .« o oo oo e [le67
Providing Multiple ViewstoData)
4.1 Introduction [l69
42 Motivation 171
4.3 The Extended SAMS Scheme L] 74
43.1 Original SAMS Schemeo oo []74
4.3.2 Proposed Extensions L] 75
4.4 Implementation and Integration L] 77
4.4.1 SAMS Organization and Implementation L1 77
4.4.2 Integrationintothe CellSPE [] 80
4.5 Experimental Evaluation [] 83
4.6 SUMMArY e e e [1o2
Addressing On-chip Bank Conflicts o3
5.1 Introduction [lo3
5.2 Background and Motivation []o5
5.2.1 Shared Memory AccessonGPU L] 95
5.2.2 Motivating Example, [l97
5.3 ProblemAnalysis []os
5.3.1 Latency and Bandwidth Implications [] o8
5.3.2 Bank Conflicts Impact on Pipeline Performance . L] 10
5.4 Elastic PipelineDesign [103
5.4.1 Safe Scheduling Distance and Conflict Tolerance L[4 10
5.4.2 Out-of-order Instruction Commitment [105

Vi

5.4.3 Extension forLargeWarpSize [105
5.4.4 Hardware Overhead and Impact on Pipeline Timind:] 106

5.5 Bank-conflict Aware Warp Scheduling [1107
5.5.1 Obtaining Bank Conflict Information [_los
5.5.2 Bank Conflict History Cache [_hoo
5.5.3 Proposed Warp Scheduling [J111
5.5.4 HardwareOverhead [111

5.6 Experimental Evaluation [12
5.6.1 Effect on Pipeline Stall Reduction [1115
5.6.2 Performance Improvements |:] 117
5.6.3 Performance of Non-Conflicting Kernels [1119
5.6.4 Interaction with Off-chip DRAM Access [_120

5.7 DISCUSSION o [_ho2

5.8 SUMMANY .« « o o o oo e e [h23

Improving DRAM Access Efficiency [125

6.1 Introduction [_125

6.2 Background and Motivation [_l26

6.3 Horizontal Locality Aware DRAM Scheduling [_ds3
6.3.1 Horizontal Locality 130

6.4

6.5

6.6

6.3.2 Compiler and Runtime Access Pattern Analyzer . L] 134
6.3.3 Adaptive DRAM Access Granularity Scheduling . [1136

Microarchitectural Extension [J138
6.4.1 VectorMSHR(VMSHR) [_138
6.4.2 Elastic MSHR with Deferred Reservation [1141
Experimental Evaluation [143
6.5.1 Memory Bandwidth Requirement [1146
6.5.2 DRAM Access Granularity Distribution [147
6.5.3 Improved DRAM Efficiency [da9
6.5.4 Improvement in Overall Performance [1150
6.5.5 Memory Access Utilization [_1s0
6.5.6 Effect on a GPU with Less Capable Interconnect L] 152
Discussion [_hs3
6.6.1 Effect of Large DRAM Data Packets [153
6.6.2 ImpactofHWCache [hsa
6.6.3 Application to SPMD Barrel Processing [1154
6.6.4 Possible Improvement [1155
6.6.5 Contrastto Closely Related Art [1155

Vii

6.7 Summary e e

7 Conclusions and Future Directions
7.1 Conclusions e e e
7.2 Future Research Directions

A SAMS Conflict-Free AccessProof

B 2DSMM Properties and FormalProof
B.1 Properties of the Basic XOR Scheme
B.2 Properties of the 2DSMM Scheme

Bibliography
List of Publications
Samenvatting

CurriculumVitae

viii

List of Tables

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2
5.3

5.4
5.5

6.1

6.2
6.3
6.4

Delay and hardware usage of ATU [] 51
2DSMM scheme critical path and logic consumption . . . [s
2DSMM scheme storage consumption [l e1
Stridecontrolsignals []7s
Synthesis results of SAMS Multi-Layout Memory system .. z9
Selected benchmark suit [] 84
SAMS instructions, intrinsics and macros [d 8
Changes over the original SPE and theirimpact [1 s
SPU dynamic instruction count and execution time 8§
Benchmark shared memory BW requirement [_] 100
Elastic pipeline HW overhead per GPUcore [] 107
Hardware overhead of bank conflict prediction and wargkma
generation (perGPUcore) [1111
The GPU processor configurations []113
Benchmark characteristics []114
Hardware cost of elastic MSHR with deferred reserva(ean
GPUcore) e [143
Baseline GPU configuratibn. [144
Benchmarks [45
DRAM access granularity distribution [d14

List of Figures

11
1.2
1.3
1.4
15

1.6
1.7

2.1

2.2

3.1
3.2
3.3
3.4
3.5
3.6

3.7

3.8

Processor-memory performancegap [] 5
DRAM memory organization 0 s
1D array storage in 4 banks (uniform bank access timing) . [
Bank conflicts in a multi-execution vector processirgifprm [1b

1D array storage in 4 banks and memory accesses (non-

uniform bank accesstiming) 111
Overview of the proposed customizable memory schemes 8
Customizable memory schemes [] 18
Stride-2 vector access to three schemes: (a) low-ontier- i

leaving; (b) skewing (c) prime [122
Prime memory system with unusedcells [l 23
Inherent limitation in multimodule memory assignment .. . [31
SARC vector coprocessor memory addressing [l 39
SAMS single-affiliation scheme with=12, s =2 [4)
SAMS data arrangement example with 4 modules [44
2D addressingscheme L] a7
Example of 2DSMM module assignment fir= 16,2P =

2,20 =429 =225 =2 ... [ds
2DSMM access examples fir= 32,2°P = 2,29 = 4,2% =

2,2h =2 [ho

Parallel memory system based on customizable HW schemisd)

Xi

3.9 SAMS address translation logic: (a)Module assignment,
(b)Row assignment, (c)Offset assignment| [] 51

3.10 2DSMM address generation patterns [] 53
3.11 2DSMM address generation logic for six access patterns. [54
3.12 2DSMM address translation circuit witf = 1024, N =

256, 2P =2,29 =4 [36
3.13 2DSMM properties for address & data routing simplifaat . [51
3.14 2DSMM address & dataroutingunit [] ss

3.15 Definition of access index for six 2DSMM access patterns [53
3.16 2DSMM address & data routing examp@é & 2, 29 =2) . . [59

3.17 2DSMM memory module depth scaling in Stratix-Il with

2P =2 29 =4 datawidth=64 [d2
3.18 2DSMM ALUTs consumption breakdown in Stratix-1l with

2P = 2,29 = 4, data_width = 64, memory module depth=8192D 63
3.19 2DSMM data width scaling in Stratix-Il with? = 2, 29 =

4, memory_module_depth =32K E4

3.20 2DSMM memory module number scaling in Stratix-1l with
data_width = 16, memory _module_depth = 16K

4.1 Vector-matrix multiplication: multiple working datats . . . [zh
4.2 Sample vector-matrix multiplicationcode iz2
4.3 The proposed multi-layout memory L] 74
4.4 Internal data layouts in SAMS Multi-Layout Memory [z3
4.5 SIMD memory organizations 177

4.6 SAMS Multi-Layout Memory Integration into the Cell SPE . [a1
4.7 Exemplary load/store pipeline optimization: (a)anai

SPE [57], (b)SAMS integration with optimizations []s3
5.1 (a)CUDA threads hierarchy; (b)thread execution in GBt¢ c

pipeline; (c)GPU chip organization 196
5.2 AESsourcecode [] 97
5.3 Effect of elastic pipeline in: (a)reducing pipelinellstand

(b)improving performance []os

Xii

54

5.5
5.6
5.7
5.8

59

5.10
5.11
5.12

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10

Al
A.2
A3
A4

B.1
B.2
B.3

Baseline in-order pipeline: (a)unified memory staged an

(b)splitmemorystages [1102
Elasticpipeline [hos
Elastic pipeline logic diagram [Thos
Bank-conflict aware warp ready signal generation [109
Pipeline stall reduction. In each group: left bar: hasel

GPU; right bar: elastic pipeline enhanced GPU []115
Performance improvement [1117
Elastic pipeline vs hand-optimized code for confligtiernels [1do
Elastic pipeline performance for non-conflicting ladsn. . . . [120
DRAM bandwidthimpact. [_h21
Hierarchy and memory accesses of worker threads [127.
Baseline GPU organization with barrel processing [129
Matrix multiplication PC-Histogram: all4 CTAs [132
Matrix multiplication PC-Histogram: 1CTA [33
VMSHR design: (a)baseline; (b)modifications for etamtisHR[13b
Memory bandwidth requirement [1146
DRAM efficiency o oo [d49
Speedup overthebaseline. [_] 150
Memory access utilization [151
DRAM efficiency improvement and overall performance

speedupfum_ves=1) [1b3

Binary bits representation &= a+6-2°whenl <s<gq .
Binary bits representation &= a+6 -2 whenl <s<gq .
The accessed addresses withstde 25

Address sequence of strided rowaccess
Address sequence of unit-stride row access

[166

167

[160
Binary bits representation ¢f=a+ dwhens >q [17b

C1 177

[ad 1

[181

Address sequence of strided forward diagonal access

Xiii

List of Acronyms and Symbols

AoS, SoA
ASIC
BW
CLA
CPU
CSA
CUDA
DRAM
DLP
FPGA
FR — FCFS
FIFO
FLOP
FLOPS
GPP
GPU
GPGPU
HPC
ILP

IPC

ISA
LuT
mMC

MD
MIPS
MSHR
000
PCB
PMSHR
RTL
SDRAM
SIMD
SPMD
SRAM
TLP

Array of Structures, Structure of Arrays
Application Specific Integrated Circuit
Bandwidth

Carry Look-ahead Adder

Central Processing Unit

Carry Save Adder

Compute Unified Device Architecture
Dynamic Random Access Memory
Data Level Parallelism

Field Programmable Gate Array

First Ready, First Come First Serviced
First In, First Out

FLoating-point OPeration
FLoating-point OPeration per Second
General Purpose Processor

Graphics Processing Unit
General-purpose Processing on GPUs
High Performance Computing
Instruction Level Parallelism
Instructions Per Cycle

Instruction Set Architecture

Lookup Table

Memory Controller

Molecular Dynamics

Million Instructions Per Second

Miss Status Holding Register

Out of Order

Printed Circuit Board

Primary Miss Status Holding Register
Register-Transfer Level

Synchronous Dynamic Random Access Memory
Single Instruction Multiple Data
Single Program Multiple Data

Static Random Access Memory

Task Level Parallelism

XV

XVi

Introduction

worldwide has been steadily growing. It is quite clear thi trend is go-

ing to continue in the future. This introduces tremendowslehges for
the processing capabilities of modern computer systemsiyMéathe widely
used workloads follow a particular processing paradigne: simecomputa-
tion is repeated for a massive number of data elements. Sueldigm, called
data parallel computingexists in many applications ranging from consumer
and desktop computing (such as multimedia and 3D graph#) the high-
performance domain (e.qg., financial analysis, bioinforosatphysics simula-
tion and more). Data parallel processing, known als@iagle instruction
multiple data(SIMD) [45], demands more efficient computing and memory
hierarchy schemes when compared to scalar approaches.

I n the past decades, the amount of digital data newly creattdracessed

1.1 Data Parallel Architecture Evolution

Vector supercomputers are the first best known examplestafpdaallel ma-
chines. Early successful implementations date back to #7@g, with CDC
Star-100 [33] and Texas Instruments ASC [148] as two reptatiee exam-
ples. Such vector supercomputers were built with propsietiedicated vector
processors and rather expensive, highly-banked memaaysari/ector pro-
cessing had played a central role in supercomputers andedwas dtrikingly
successful up to 1990s [6]. The most prominent vector sopgpaters in his-
tory include the Cray series [126] and the NEC SX models [58].

The dominance of the vector supercomputers was graduadigaed by the
“killer-micros” (high performance computers built usingnemodity micro-

2 CHAPTER 1. INTRODUCTION

processors) since early 1990s [EZ]NonetheIess, the growth of data parallel
processing paradigm did not stop. In fact, since then mate mherallel archi-
tectures have arisen in the commodity computing market. atlvent of such
data parallel computing facilities is driven by the growingportance of data
intensive computing on desktops [28, 41], and is enablechbyativances of
the semiconductor technology.

On one hand, various types of SIMD extensions, such as SSHE, [3®Now
[9], and Altivec [40], have been introduced into the gengualpose proces-
sors, in the form of short vector datapaths tightly couptethe original scalar
pipelines. Thegeneral purpose processdGPP) SIMD extensions typically
provide moderate computation capability limited by shetters, but have the
merit of being compatible with legacy code (including systeoftware). On
the other hand, data parallel accelerators appeared ircafgh domains such
as home entertainment (e.g., the Cell processor [68, 180Mputer graphics
(such as thgraphics processing unif&PUs) [96,113], and visual computing
accelerators [128]). In contrast to GPP SIMD extensioresetlis less burden
of backward comparability in terms of executing legacy cadé the program-
ming styles are still evolving. As a result, these data pelratcelerators can
be specializedor a narrower set of workloads. In doing so, both the hardwar
designs and the programming models can be highly custom@zé&dprove
performance, power and chip area efficiency.

Besides the GPP SIMD extensions and accelerators mentaimace, huge
amount of special-purpose hardwired functional units enpnted byappli-
cation specific integrated circuifA\SICs) have also been designed and utilized
to exploit data parallelism for dedicated applications.l@8ased systems are
necessitated when extremely high performance is requoedh case rigid
cost/power constraints render the programmability as ileg®rtant. Good
examples are the Anton multiprocessor for high-speedecular dynamics
(MD) simulations from DE Shaw Research [132] and the videgecs pre-
sented in [25, 91]. Often, the design objectives of suchiapparpose com-
puting systems determines architectural choices whidelarsacrifice flexi-
bility and programmability. Although some of the technigymesented in this
dissertation are also directly applicable to ASIC basetksys, we focus our
discussion to programmable data parallel acceleratorausecof their wider
scope and because we strongly believe that such accetesaton promising
approach to process data parallel workloads.

IRecently data parallel processors are returning to the T6gist [6] in modernized form
(such as machines based on GPUs).

1.2. RROGRAMMABLE DATA PARALLEL ACCELERATORS 3

1.2 Programmable Data Parallel Accelerators

In general, a&ompute acceleratdil 19] is a hardware entitgeparate fronthe
host general purpose processor, that offers higher peafocenand better sili-
con area/power efficiency as compared to the host proceBisris achieved
usually for a restricted class of applications in a very gpedomain [119]. To
achieve this, the target applications characteristicheagily exploited during
the design process. Naturally, such design choices canmderoembined per-
formance/area/power benefits at the expense of erxEliIilly early compute
accelerators [2] this often resulted in fixed, hardwirecagath designs.

Recently, there seems to be a consensus that high-levebpnatability using

general purpose programming languages becomes a requoiréanaccelera-
tors [113, 114, 135]. High-level programmability with megd programming
styles/models not only improves programmer productivitgd aode portabil-

ity, it also increases applicability of the same acceleratdstrate to a wider
set of application domains. This has been demonstrated dantrgropos-
als in, e.g.,general-purpose processing on GP(BPGPU) [1, 114], unified
visual computing accelerators [128], and unified accederatchitectures for
imaging, video and next-generation immersive multimogbgllizations [135].

The economic rationale driving the merging of domain-siieeccelerators
is that, expanding the application domains range allowp&entially larger

product volume resulting from increased shares in the nysldaee.

For all programmable accelerators, the common essentialiaito exploit
parallelism in the targeted applications. Naturally, ailon code paral-
lelism can be categorized into three major typgastruction, task; anddata-
level While instruction level parallelisn{ILP) has been intensively pursued
by GPPs, task and data level parallelism are usually thegpyitargets of pro-
grammable accelerators. Task parallel accelerators sadlawith irregular,
dynamic and heterogeneous probIEmbat correspond to the global applica-
tion scope situation. However, they suffer from being legsable of capturing
the potential computing efficiency available in data patdernels.

In contrast, data parallel accelerators are concerned(leithl scope) kernels
with regular and homogeneous processing behavior. Therat deast two im-
portant features inherent to the assumed data parallebgsony paradigm: 1)
it is relatively easy to get high utilization of throughputhitectures (e.g., par-

2In this dissertation flexibility is used for expressing mammability and wide applicability.
3Irregular problems/applications/workloads in this tkedénote those with irregular data
accesses and/or irregular control flows. (Ir)regular detass is elaborated in Sectlon]1.5.

4 CHAPTER 1. INTRODUCTION

allel vector lanes); and 2) the pipeline frontend proceshizs high area/power
efficiency due to the reduced frontend processing bandwigljuirements.

The above two merits, plus the widespread data parallelisenierging ap-

plications, naturally render data parallel architectdoelse the primary choice
for accelerator designs targeting regular and homogensotldoads operat-

ing on large data sets.

Data and task parallelism are not mutually exclusive blisratomplementary.
Currently we have already seen commercial products withicoué GPPs and
GPUs integrated on a single die [7,12,111]. These systeerade to provide
suitable hardware substrates for combined data and taskgbgrocessing.
The more challenging issue of proper programming modelstazid efficient
hardware interfaces, remains an open research questespliition of which
is still at its infancy. The merging process brings up a seesf challenges that
have to be addressed in order to ensure the success of s@stiting-archi-
tectures. One particular example is the shared memorymyisfeastructure
that has to efficiently support the memory accesses fromdidés. The find-
ings in this thesis can be viewed as one such step toward uimgranemory
access efficiencfin terms of bandwidth utilization and access time) of such
contemporary co-execution platforms.

Current data parallel processors often adopt local memsavith no coher-
ence support implemented in hardware (HW) and less praasio reduce
single thread latencies compared to GPPs. Such archéddiiwices often
compromise the programmability to a certain extent, igrestricted by spe-
cific programming styles/models. Generally speaking, fexsic program-
ming models exert nontrivial burdens on programmers, sgatxalicit man-
agement of parallelism and the memory hierarchy, which lshba ideally
avoided. This inspires a challenging research topic ekmjanovel program-
ming models and architectures to relieve such burdens iynsithe right bal-
ance between the hardware efficiency (in terms of perforega/additional
HW cost) and programming efforts. This was also the mainvatitn behind
the Vector-Thread Architectures [80], Sequoal [43], Ri§gl], SARC [123]
and ENCORE [4] research projects. The specialized progiagimodels
also provide opportunities for system-level optimizasipsince, in general,
more information about the application behavior is avd@athen the code is
written under specific constraints of programming stylesleis. In addition,
during execution additional information becomes avadabid can be utilized
for performance optimizations. Based on the above obsengtdata paral-
lel programming models/language extensions, compile-timalysis, runtime
library optimizations, and architectural extensions Wwél jointly explored, to

1.3. RROCESSORMEMORY PERFORMANCE GAP 5

address the memory efficiency issues in this dissertation.

1.3 Processor-Memory Performance Gap

It is well known that memory density and capacity have grolemg with the
CPU computational capacity and complexity, however menspged has not
kept pace in this process. As a consequence, the processoomy perfor-
mance gap has steadily increased for decades, renderingmnagtess as a
major bottleneck. FigurE_l.1 shows the relative perforreaingprovements

1000000
GTX480 (2010) 4
GTX280 &

% 100000 §--nnmmwmmmmmemmnn e TSNS Celh (2005)
g G80 (2006) 4. —._—-.—- (2008
g Sandy Bridge (2011)
é 10000 - --==========ssssssnn s oo oooonoo Core 2 =2
;_' Pentium 4
B I T s
2 Pentium Pro DDR3 (2009)
@ berti DDR2
e 100 f-—--P enfium—____ssZ_ DDR
©
° 80486 SDRAM ,

10w FPM-64b_______— (Latency improvement

FPM-32b = Bandwidth improvement)
80386 EPM

[80286 1 ‘
(1982)] 1 [Asynchronous-16b (1980)] 10 100

Relative Latency Improvement

Figure 1.1: Processor-memory performance gap

of microprocessors and DRAM memories during the past 30sydéam both
bandwidth and latency perspectﬂeEor memory graph the Asynchronous 16
bits memory system used by the industry in the eighties fmundaseline and
for processors we have chosen Intel 80286 (without 8028Tirfpaoint co-
processor). All memory latencies are calculated under siald assumptions.
More precisely, we do not account for delays introduced bynorg bank
conflicts but consider only the accumulative numbers of CRew and Col-

4The idea of this plot and part of the source data are origihtrtem [59]; other data are
taken from public resources of respective vendors [64,55,120].

6 CHAPTER 1. INTRODUCTION

umn access latencies. In respect to bandwidth, we conslidesagle channel
memory configuration as adopted by the industry [65] at threesponding
time. The estimated bandwidth is the product of the frequeama the data
port width. The microprocessor instruction latency is egged by the absolute
delay of the integer addition instruction. The instructimndwidth is the prod-
uct of the maximum achievablastructions per cycléIPC) and the pipeline
frequency. For data parallel procesﬁ)(the IBM Cell Broadband Engine
and three representative GPUs) we determine the Iater:%astmthe micro-
processors, while the relative bandwidth isflimating poinl operations per
secondFLOPSﬁ. We can safely relate data parallel architecture resuliseo
80286 base line since the frequencies of both pipelinesdffieating-point)
are the same for the data parallel accelerators. The twhgrapresenting the
microprocessors and the memories are aligned in time by usinghly the
same start year, end year and similar time periods for tleenmediate points.

We used the 4-core Int&8andy Bridgeprocessor to relate the raw computa-
tional capabilities of state of the art GPPs and data paeadleelerators. Note,
that there is a difference between the instruction througlpd FLOPS met-
rics as shown in Figule~l.1. The 4-issue Sandy Bridge coréeimgntsad-
vanced vector extensioidVX) ISA which supports 256-bit vector operation
(i.e., 8 FLOP) per cycle, hence, its peak FLOPS is twice aabiis peak in-
struction throughput. This shows two GPP trends: 1) thatetoporary GPPs
have the raw computational capabilities of data paralle¢ékrators more than
5 years old and 2) in order to cope with this delay, GPPs argliigalying on
wider SIMD lanes (exploiting more data parallelism).

Several observations can be drawn from Fiduré 1.1. Firstbimdwidth has
been improved at a significantly higher rate than latenaypfiih memories
and processors. This is apparent by noticing that all threges are well
above the straight line representing identical bandwidith latency growths.
Moreover, it is quite clear that such disparity between thedwidth and la-
tency improvement ratio is going to continue. The reasoritisris twofold.

On one hand, since latency is constrained by laws of phyisscsnprovement
can be mainly attributed to the process technology imprevdsresulting in
increased clock frequency. This is becoming harder as we@peoaching
certain physical boundaries of the used technology. Famele power con-
sumption is now becoming a major constraint that limitsfettlock frequency

®In the rest of this thesis, we use the ter(pgrammable) data parallel acceleratossd
data parallel processormterchangeably.

®We consider single precision floating point.

"Fused multiply-add is considered as a single FLOP in oumtations.

1.3. RROCESSORMEMORY PERFORMANCE GAP 7

increases. On the other hand, improving bandwidth is weligtieasier. Expo-
nential growth of transistor density, pushed Myore’s Law[99], has been
successfully driving the industry for the past thirty yeansl is still continuing
today and is used to improve on-chip bandwidth. Off-chipdveidth is more
expensive (e.g., chip pin-counts are limited, have higlagitic impedances
and PCB traces engineering is costly) but still manageabtedaiced scale.
Thus, it is not surprising that the industry has, partidylat present time,
opted forthroughput computinge.g., wider SIMD lanes, massive HW multi-
threading) as the “easy” way towardggregateperformance improvements.
In fact, the parallel processing paradigm has been so wilalgad, that al-
most all computers today are eventually parallel. For exapgven hand-held
devices (such as smart phones) are powered by multicorés121].

Second, DRAM performance improvement has not kept pacethatiproces-
sors, in terms of both bandwidth and latency, for the pastytiyears. In fact,
memory latency has been reduced by 7.6% per year, while ttrpnocessor
latency reduction amounts to 15.6% on average. Simildry,DRAM band-
width annual compound increment is 22.8%, whereas for rmpioaessors it is
40.5%. The bandwidth growth rate for data parallel acctdesas even more
impressive — 55.8% for the past three GPU generations cayerily 6 years.
This trend has several important implications stated below

To deal with the processor-memory latency gap, techniquedl@viate long

memory latencies have become mainstream in microprocelesign. For
example, caching and prefetching are widely adopted inopicrcessors to
hide memory latency and improve performance [59]. Interesyingarious

prefetching techniques hide latency often at the expensalditional band-
width consumption. In addition, hardware multithreadiagalid technique to
toleratelong latencies, has been embodied in both CPUs and typitalpdea-

allel architectures (such as GPUSs), as one of the main meaashteve high
throughput. Hence, bandwidth is increased to compensatgl&tencies and
provide high aggregate throughput.

The differences in processor-memory bandwidth improvementime, have
resulted in single memory unit being inadequate to feedrdsgssor. In addi-
tion, the trend is clear that such disparity in processorraathory bandwidth
is increasing (predicted from the last four memory/proocegsirs). For suffi-
cient memory bandwidth and reduced access latency, darelaory systems
with multiple memory units (e.g., banks/channels) are Widsed in data par-
allel computers, from vector supercomputers [58, 126] tormodity data par-
allel accelerators [44,51]. Despite the deployment of [Edrenemory units,

8 CHAPTER 1. INTRODUCTION

_
[FRankl | .-~ Lo lill 87 1]

-

Rank 0 -~ Bank 0
DRAM |H

Memory
Controller .

LaSt . DRAM |U \ Address
Level : = N

Cache \
sRank L \\ ‘ Sense Amps |

Memory
Rank 0 h \ [TT] [TT]
Controller N \\ ‘ Column Decoder |
LY

DRAM |U

Memory
Cell Array

19p025(Qq MOy

I‘—“—‘ TTTT

v
Data

DRAM

Figure 1.2: DRAM memory organization

efficient vector memory accébstill remains one of the critical problems in
data parallel computers.

1.4 Parallel Memory Organizations and Accesses

As described above, to mitigate the processor-memory pedioce gap, par-
allel memory organizations, with multiple memory unitsdsuas banks, mod-
ules, and channels), have been proposed and successfyligeddn both early
and contemporary high performance computers [83,87],apiocessors [89],
and mobile processors [79,121]. In such memory organizstiparallel mem-
ory units can be independently indexed to service concumemory accesses,
resulting in increased bandwidth and decreased latencanfexample, Fig-
ure[IT.2 shows a typical DRAM memory subsystem organizatidrnich con-
sists of a few independent memory channels. Each channefrotied by
a memory controller (MC), manages a couple of independemangranks
each of which employs several DRAM chips working in lockpsteode. Each
DRAM chip is composed of several banks. While each bank cacgss
MC commands independently, all banks inside the same chgt share their
data/address buses.

Such parallel memory organizations, with abundaw memory bandwidth,

8parallel/vector/SIMD memory access denote the same meawmgss paradigm, and are
used interchangeably in this thesis (unless explicitljestatherwise).

1.4. RRALLEL MEMORY ORGANIZATIONS AND ACCESSES 9

canpotentiallyimprove system performance. One should note that it is often
challenging tceffectivelyutilize the available bandwidth and achieve hayhs-
tained bandwidth This is especially the case in a common execution environ-
ment where thousands of in-flight memory accesses, fromptaufirocessing
elements, areompetingfor the memory resources and interfering with each
other. Indeed, the parallel memory access inefficiency isanew problem;

for example, it has been extensively studied for traditimeator memory ac-
cesses, as discussed in the following.

In traditional vector machines, parallel memory organareg were often pre-
sented and analyzed by an abstract model as shown in Eigliréd e model
consists of parallel banks, each of which has independaireas decoding
logic (i.e., each bank can be indexed independently). Wattesses to differ-
ent banks can be simultaneously serviced, accesses tontteebsmk must be
serialized (but withuniform access timing

Bank 0 Bank1 Bank2 Bank3

A
z t2h) a a az
E
% ay as g a7
Q
Q
<
g ag a9 a10 a
<
=
) y ap a3 a14 ais

Figure 1.3: 1D array storage in 4 banks (uniform bank access timing)

In data parallel processors (such as vector processoegjatha to be processed
is usually stored in array structures. E.g., if a machinerhgsarallel mem-
ory units, we can store one-dimensional arrays across tie, im a format

as Figurd_II3 shows, fon = 4. When concurrent memory accesses are to
contiguous array elements, all memory units are workingairaltel, allowing
peak bandwidth. However, if only even array elements aressatd (the solid
squares in FigurigTl.3), tledfective bandwidtls reduced by half, and, as a re-
sult, access latencies are penalized. This effect is ystefttrred to as “bank
conflict” in the literaturB. Depending on the microarchitecture, bank conflicts
can result from interference either among operations egdchy the same

°Also known as “partition camping” in the scenario of DRAM asees that skewed towards
a subset of available DRAM channels [151].

10 CHAPTER 1. INTRODUCTION

vector accessirftra-vector interference or among different vector memory
accesses from the same/different execution context{gr{vector interfer-
encé, as illustrated in Figure_l.4.

Figure 1.4: Bank conflicts in a multi-execution vector processing platf

It is clear that the memory inefficiency problem (such as bemflict) also
occur in scalar processing. The distinction between ventdrscalar memory
accesses, however, is that a single vector memory accegzisema group
of scalar accesses, which are packed into a single insiruetnd executed
together (normally in lockstep) following a specific patieAs a result, inter-
ference may occur, not only among different vector memocgsses, but also
among operations executed inside the same vector accdsst,lwhile inter-
vector interference is similar to memory access interfeedn scalar process-
ing, intra-vector interference is special in that it is died by the vector access
pattern, which is often predetermined (even for irregutareas patterns) and
usually predictable (even in case of dynamic patterns).

It should be pointed out that, there are also other sourcem@dlel mem-
ory inefficiencies beyond the bank conflicts modeled in Fedli3. Memory
parallelism can be implemented at different HW levels, gisiarious mem-
ory types, with different characteristics (such as uniforon-uniform access
timing, being fully pipelined or not). In fact, the simple o illustrated in
Figurel LB did not take into account the timing diversity @cessing the same
bank, limiting its application to only memory types with lagvely) uniform
access timing (such as SRAM banks). The advantage of suchlieslin its
simplicity, which often results in closed-form mathemaltitormula that suf-
ficiently describes the memory access behavior. On the boaal, however,
for memory units with non-uniform access timing, the palathemory model
and thus the factors impacting the access performance leegmre complex.

1.4. RRALLEL MEMORY ORGANIZATIONS AND ACCESSES 11

Bank 0 Bank 1 Bank 2 Bank 3

A D Vo {a0,a1,az,a3}
ag as a) as ap ag as az

D V1 {as,a5,36,a7}
D V2 {ag,ag,a10,a11}

ag | a1 dg | 413 ajo | d14 air | s

Non-uniform
access timing

Figure 1.5: 1D array storage in 4 banks and memory accesses (non-unifant
access timing)

For example, FigurEl5 illustrates the parallel memonanization but with
non-uniform bank access timing (DRAM). In this case, cambigs vector ac-
cess is stillconflict-free(similar to the case in Figule_1.3), however, the per-
formance now depends also on the specific address sequeereeldank.
E.g., when vector accedsy, a1, a2, a3} (Vo) is followed by {ay, as, a6, a7}
(V1), peak throughput is achieved since the second accéssésee DRAM
page buffer and can be serviced with lowest latency possiMeereas when
V, is followed by{ag, a9, a10, a11} (V2), first the contents of the DRAM page
(Vo and V;) will have to be written back to the cell array (the “Pregdrge
command); ther/, can be read out (“Activate”) to the page buffer. The two
additional steps (as compared to the page-hit case) incstedigycles on the
data port and penalize memory performance. As a resulthfosame vector
accesse$Vp, Vi, V»}, the ordering (e.gVo — Vi — Vo vsVy — Vo — V)
can have drastic impact on performance. Thus such intéotvaccess order-
ing is also considered as an important part of the vectorsaqoattern in case
of non-uniform bank access timing.

Memory access interference is a serious problem, sinceotheitilization of
parallel memory resources often incurs non-trivial syspariormance degra-
dation even in case dfalancedprocessor-memory desi@s On the other
hand, naive solutions, such as employing arbitrarily largeber of memory
units for excessive raw bandwidth, result dmerdesignednemory systems
which often lead to prohibitive cost and power consumptiorfact, we have
observed the trend of decreasing BW/FLOPS ratio in recentapiocessor
and GPU generations (Sectibnll.3), which necessitates @fficent utiliza-
tion of memory resources.

19A balancedprocessor-memory design denotes that processor and mémodyvidths are
matched.

12 CHAPTER 1. INTRODUCTION

From the above examples, it can be seen that both memoryipatjan/data
storage format and vector access patterns are of vital teapoe for high-
performance parallel memory systems. When fixing one ofule optimiz-

ing the other one can often improve system performance. i$@tid,parallel
memory schemdsave been designed for vector processing systems, usually
optimized for agivenset of vector access patterns. Traditionally, such schemes
have been responsible mainly for two tasks. First, they mpaisaecific orga-
nizations of parallel memory resources (e.g., at what mgrhmrarchy lev-

els, and the number of parallel memory units at each levedosdly, paral-

lel memory schemes designate the corresponding low-leldreas mapping,
from linear address space to the physical locations in tihallphunits (e.g.,
row/bank/channel id). The goal of memory schemes is to asgexccess par-
allelism among multiple memory units and improve the perfance, usually

by supporting conflict-free vector accesses for the givérokgector access
patterns. A more detailed study of parallel memory schemékd literature

will be introduced in Chaptdi 2.

1.5 Problem Formulation

As described in the sections above, memory system perfa@nancrucial
for any processor to achieve high performance, but espetoaldata parallel
machines. The processing capability of parallel lanes @efficiently uti-
lized only when the data request is accomplished sustainableandtimely
manner. Unfortunately, even for parallel memory systenth aglequate raw
bandwidth,irregular access can lead to inefficient utilization of the parallel
memory resources and significantly degrade overall pedooa.

Vector memory access regularity is completely determirygpidallel memory
access patternand physical data Iayo&_E]. From a high-level point of view,
all memory operations are executed on data parallel maglaifter two trans-
formations. First, memory operations on working data el@sare bundled
into vector accesses, and mapped onto parallel hardwags fan execution.
This is done through the vectorization/SIMDization pracesich largely de-
termines the memory access patterns of the[E)c@cond, the working data
sets are mapped to their physical locations on the (usuallyi-simensional)

Uphysical data layoutlenotes the data layout in memory units and, as a result, atse d
access behavior (such as access timing).

12Memory access patterns are also affected by runtime dysamimultithreaded/out-of-
order execution, such as GPUs.

1.5. PRROBLEM FORMULATION 13

memory topology containing multiple rows/banks/channdlsis is realized
by multiple entities crossing many computing system ab#gtma layers, from
data structures definition at the program level down to the gout instan-
tiation in memory hardware. For the entire access patterneseh type of
physical data layout defines its own optimal pattern subddemory accesses
on the specific physical data layout can obtain peak perfoceaonly if its
optimal patterns are followed. For the rest, the memoryiefiy degrades. A
good example is the memory hierarchy of a typical computirsesn, whose
(default) data layout exclusively favors contiguous meyramcesses. As such,
accesses to continuous addresses are often referred wgatairaccesses”.

In a single execution context (e.g., single-threaded vgmocessing), irregu-
lar memory accesses are typically originated from sparsestiaictures and/or
highly irregular control flows. In addition, even applicats which are gener-
ally regarded as regular and homogeneous can exhibit leregector memory

accesses, e.g., access to a matrix column with row-majtoealge format. In

a multithreading scenario, concurrent memory accesses tinaltiple execu-

tion contexts can interfere with each other and end up widgirlar accesses,
even if memory access streams from individual executiorhigaly regular.

To summarize, in data parallel machines, memory access#gi@ncy roots
in the mismatch between the actual parallel data accessrpathd the one
optimal for the physical data layout. Such a mismatch ofésults in memory
bandwidth and latency inefficiencies, which penalize sysperformance. In
particular, some typical scenarios of such inefficienaieduide:

e For non-banked on-chip memory designs (adopted in some @AP S
extensions [140] and SIMD processors [68]), if the targetrasses of
a vector memory access are discontinuous, additional meauzesses
and data rearrangement operations are required. This &ynkdown
as the SIMDization data rearrangement overhead [11, 1@, 12

e For heavily banked on-chip memory designs (adopted in, &8Us),
mismatch between the data access pattern and the physiadhgaut
among banks incurs on-chip memory bank conflicts, similatrddi-
tional vector processors [75]. Such bank conflicts resigipeline stalls
and overall performance degradation [54];

e For manycore architectures (such as GPUSs), another isfueiigerfer-
ence among off-chip memory access streams from differeesda52].
Such interference often leads to hot DRAM channels, DRAM@m-
flicts, and data bus read/write turn-around penalties [53].

14 CHAPTER 1. INTRODUCTION

As shown in Sectiofi 114, traditional parallel memory schemdize parallel
hardware memory units, and manage low-level address mgpfirachieve
conflict-freememory access faogiven vector access patterns. In this thesis,
however, we notice that memory access patterns in contempdata par-
allel processors are not necessarily hard-coded ininsieuction set archi-
tecture (ISA) and exposed to the programmer (unlike the case intiosdil
vector processors). Thus, the access pattern informataynnot be taken for
granted; instead, it is an important design considerafimm the system ar-
chitect pointer of view. Therefore, we argue that, one sthowlt be limited to
just one memory hierarchy level when designing parallel orgrachemes; in-
stead, such schemes should be designed at system levegrasalidated with
joint efforts often crossing the HW/SW boundaries. To thid,ewe propose
customizable memory schemeshich extend conventional parallel memory
schemes, by taking a holistic approach combining both mgmress pattern
extractionandexploitation In such schemes, access pattern information is ef-
ficiently captured and utilized by customizing the low-leremory mapping
with specific parallel memory schemes.

Additional techniques targeting parallel memory efficipace also incorpo-
rated in our customizable memory schemes, in a broad semsesx&mple,
with adequate memory access pattern information, theuictsbn sequencer in
the pipeline front end (e.qg., instruction/thread schety)lithe runtime sched-
uler (e.g., task scheduling), and the memory access sare@tiithe memory
controller side) can also be customized, to baitdjustthe vector access pat-
terns andadaptto the low level data layout and memory behavior for improved
efficiency. Furthermore, vector access patterns and th&qaiylata layout can
be ideally coordinated for optimal performance, in a unifieanework, sim-
ilar in spirit to the compiler techniques that combine bo#tterization and
memory layout optimization [52, 106, 124].

The customizable memory schemes approach raises the iimjoresearch
guestions, among others:

e How to design proper memory mapping schemes and provide -a cus
tomizable yet generic mechanism for optimized layout of own data
structures (e.g., 1D/2D array&rray of StructuregAoS));

e How to capture the minimal required information about theteemem-
ory access pattern, and at which application phases;

e How to exploit the vector memory access pattern informatidmprove
performance with low overhead, customizable hardware.

1.6. MACHINE ORGANIZATION AND PROPOSEDSOLUTIONS 15

In answering the above questions, this dissertation aimgm@baches to prop-
erly obtain the parallel memory access information, anénage it to steer
the co-designed hardware schemes. Such approaches atedattaparious

contemporary data parallel architectures. In this waytarngzable memory
schemes significantly improve memory efficiency and oveetiormance, for

both single data parallel core and manycore systems.

1.6 Machine Organization and Proposed Solutions

Figure[I.6 shows the organization of the baseline datalphrabchine as-
sumed in this thesis. This generic model is able to incotparsjor contem-
porary multi/many-core data parallel accelerator vagarfor example, the
Cell processor [68] can be instantiated from Figlird 1.6 wite GPP core
and eightsynergistic processing elemef8PE) cores connected using a bi-
directional ring bus. The SPE core has access to its localanefcalled
“local store” in the Cell SPE) and the attached DMA enginanitirly, stan-
dalone GPUs can be instantiated with only accelerator aopesected by a
crossbar, where both the local memory (called “shared mghioiNVIDIA
GPUSs) deployed at each core and the main memory are dirext@ssible by
cores via specific load/store instructions. Furthermarstesns with GPU and
CPU integrated on a single die [7, 12] can also be modeled ea#xisting
GPP and accelerator nodes as shown in Figule 1.6.

As discussed in Sectidn1.5, memory access inefficiency lynedots in the
mismatch between the parallel access patterns and thevameday the phys-
ical data layout. This problem exists for both on-chip arfdcbip memories,
as highlighted in FigureZl.6. This will be addressed in CeadBt by introduc-
ing novel conflict-free parallel memory schemes (SAMS an&RIM). With
such hardware parallel memory interleaving schemes, tlysiqdd data lay-
out can be customized to support conflict-free vector actesstrides from
multiple stride families, in both 1D and 2D access environtse

Bank interleaving schemes have been adopted in traditigg@br supercom-
puters. However, to the best of our knowledge, it is lessaepl in liter-
ature how such HW schemes can dficientlyintegrated into modern short
vector SIMD processors. Chapfér 4 gives an example (cagdM'S Multi-
Layout Memory”) for such integratioat system level In this chapter, both
the Cell SPE pipeline HW extensions and the programmingfades for ex-
pressingArray of Structure(AoS) andStructure of Array(SoA) access types
are presented. We illustrate how to capture such high-lewetmation in a

- N g |
L1T$ AR : GPP Node :
Acc Core Elastic Pipeling -, Data Parallel GPP |
Chapter 5 At o '
(Chapter 5) I [~ Accelerator(s) Core Core) |eeel
| N |
Dispalch% _'_'_'_'_'_'.;'_;) I I
Queue = Scheduling Y : ’ L2$ ‘ :
assssascl | 1 \ g) |
I ~ 2 ~ < I
| / On-chip Interconnect (ICNT) ‘ |
Elastic Pipeline |77 77777% : / : I 1 I : I : :
(Chapter 5) | 3§ L3% 13§ |
............. | /, |
SAMS Multi- | // mem mem mem I
Layout Memory)/ ctrl 1 ctrl2) ctrl 1 :
(Chapter) ¥~ | S T___F DRAM ¥ _ Chip _
 Local Memory|! s==e=eea moetoum Tol/NT T 4 schale ks e _: boundary
cmeay FEEAIL L 4 FEEEETL N - i |
1 DMA ¢ il ¢+ L1DS #h MSHRug Al / l |
Py | 1] 1 : o __l«’ e oo __ oo __ __.___TToooioo
From ICNT - o at] | .___{___ = _I__ a F/),’om ICNT
Conflict-Free |*: : 7\ Adaptive Memory Access Conflict-Free Parallel
Parallel Memory I WriteBack I / Granularity with Elastic Memory Schemes (Chapter 3)
L

Schemes

MSHR (Chapter 6)

Figure 1.6: Overview of the proposed customizable memory schemes

9T

‘T d31dVHD

NOILONAOYLN]|

1.7. CONTRIBUTIONS 17

programmer-friendly way and utilize it to orchestrate th& Idarallel memory
schemes and improve memory access efficiency.

Multithreaded data parallel architectures are becomimuilaw, such as GPUs
and their variants (e.g., Larrabee [128]). In a multithexhéh-order SIMD
execution, on-chip, local memory access bank conflicts ednidulen by the
elastic pipeline design (Chapfdr 5) which decouples shadory bank con-
flicts from pipeline stalls. Furthermore, clustered bankflicts can be re-
solved by the co-designed bank-conflict aware warp schagltdichnique, as
shown at the top of Figule1.6.

Another memory inefficiency is incurred by the interferemeaong off-chip
memory access streams from different cores. In barrel ¢xecof single
program multiple datg SPMD) programs (adopted in, e.g., GPUSs), there ex-
ists abundant inter-thread data locality (named “horiablucality” in Chap-
ter[@). Horizontal locality is exploited to address DRAM eass interference
among cores and hence improve system performance. Thifisvad by a
holistic DRAM bandwidth efficiency optimization framewowkth combined
compile-time, runtime and architectural efforts. On thediaaare side, an elas-
tic vectormiss status holding registdMSHR) unit with deferred reservation
is proposed, as shown in Figurell.6.

1.7 Contributions

This dissertation proposes customizable memory schemaddi@ss parallel
memory access efficiency issues in data parallel acceterats illustrated in
Figure[LY. In this figur& denotes traditional vector architectures with mem-
ory access patterns hard-coded in the ISA and exposed tordigeammer,
while V+ denotes contemporary data parallel processors such asthend
GPUs. Intraditional parallel memory schemesiit Figure[1Y), access pattern
information is usually assumed as given and hence effoeteien dedicated
only to designing hardware memory schemes/physical dgtm for fixed
access patterns. This thesis extends traditional paratehory schemes and
makes the following contributions:

e two new parallel memory schemeSAMSand2DSMM) to cope with
bank conflicts for widely used access patterfisr{ Figure[L.Y);

13The HW memory scheme determines the layout/distributiodaté in the memory units
and hence the access behavior —i.e., the physical datatlayou

18

CHAPTER 1.

INTRODUCTION

Access
Patterns

Physical
Data Layout

Access patterns suggest
how to improve data layout

Access
Patterns

Physical
Data Layout

Application

Algorithm

ProgrammingLanguage

OS/Runtime

ISA

Microarchitecture —]

RTL

Access
Patterns

Physical
Data Layout

New Parallel Memory
Schemes / Physical
Data Layout

Access Patterns?
?

(Customizable)
Physical Data Layout

Physical data layout
suggests how to
improve access patterns

Figure 1.7: Customizable memory schemes

e a framework SAMS Multi-Layout Memojyto capture and convey the
access pattern information to the customizable parallehaomng scheme
integrated into contemporary data parallel architect(ireand(1);

e elastic pipelinethat dynamically adjusts the instruction sequencer of a
multithreaded vector architecture to customize the acpatgerns and
improve the on-chip, local memory efficiendy @ndd);

e elastic MSHRo exploit horizontal locality and adjust off-chip memory
access granularity of a manycore data parallel architectuence im-
prove the main memory efficiencyl(and).

1.8 Dissertation Organization

This dissertation is organized as follows.

Chapter 2 gives an overview of the state of the art in solving memory ac-
cess inefficiency problems in data parallel architectu@®gecifically, it pro-

1.8. DISSERTATION ORGANIZATION 19

vides a survey on existing HW parallel memory schemes, tqabks to reduce
SIMDization data realignment overhead, techniques t@veliGPU on-chip
memory bank conflicts, and techniques to address off-chip mamory effi-

ciency issues in both GPUs and GPPs.

Chapter B introduces two novel hardware parallel memory schemes ppe co
with vector access memory bank conflicts. The first schemevSPdeals
with supporting conflict-free 1D vector memory access foidss from two
different stride families. The second proposal (2DSMM) lexgs hardware
schemes to support 2D stride conflict-free vector memorgsses. Besides
formal description, the hardware prototyping of the pr@abschemes is also
presented. The mathematical proof of corresponding coififée properties is
shown in AppendiceS]A &B.

Chapter @ proposes a system-level design to bridge the discreparteyebe
data representations in memory and those favored by SIMDepsors by
customizing the low-level address mapping. The HW SAMS lf@rmnem-
ory scheme is extended to provide both AoS and SoA views oétiuetured
data accessed by the processor (multiple layout view). @t multi-layout
memory, optimal SIMDization with low overhead, dynamigathanging ac-
cess patterns can be achieved. Experimental results staiwthia SAMS
Multi-Layout Memory proposal has efficient hardware impéartation while
synthesized using standard cell library, and significatiéigreases the dynamic
instruction count and execution time, for representatieekioads that operate
heavily on array-based data structures.

ChapterEpresents a novalastic pipelinedesign that minimizes the negative
impact of on-chip memory bank conflicts on system throughpubhardware
bank-conflict aware warp schedulirigchnique is also designed to avoid bank
conflicts clustering. Simulation results show the elasiieline together with
the co-designed warp scheduling dramatically reducesifiedipe stalls and
improves overall system performance for benchmarks witivipdank con-
flicts, at trivial hardware overhead.

Chapter @ presents a holistic off-chip memory access efficiency ogtition
framework. Based on the framework, an adaptive DRAM accemsudprity
scheme to exploit horizontal locality and reduce the menamgess interfer-
ence among cores is proposed. Experimental results shawhéha@roposed
techniques effectively improve the DRAM efficiency and @alkesystem per-
formance, with negligible hardware implementation cost.

Finally, Chapter[dsummarizes our findings and directions for future research.

Related Work

s discussed in Chaptdd 1 one of the most critical design chal-
A lenges in data parallel processors is imposed by the menmudry s

system, expected to deliver sustained high bandwidth abredble
latency [42, 79, 83]. In this chapter we will review the reldistate of the art
in building data parallel centric memory subsystems. W¢ evilphasize on
the problems and existing solutions in contemporary meggast data parallel
architectures. Since this dissertation takes an accesspaentric, system-
atic approach based on customizable memory schemes, wirstilhtroduce
the state of the art parallel memory schemes, which dealthélorganization
and low-level address mapping of memory subsystems withipfeimemory
banks/modules/channels. Then existing techniques on inyeaoess patterns
and data layout optimizations will be briefly summarized.last, a survey of
some recent progress in system-level memory access ogtionig and, as a
case study, the GPU memory access optimizations, is pezsefithough the
main focus of this dissertation is on programmable datallpheccelerators,
we will also examine some relevant memory access optiroizggchniques
from the GPP domain.

2.1 Parallel Memory Schemes

Parallel memories were introduced in early high perfornegmocessors [22]
and later extensively adopted in vector supercomputerslpEg. Nowadays,
there is a trend that general purpose systems are utilizngllel memories
in their memory hierarchy, such as the multibank on-chipheacrganiza-
tion in Niagara [77] and Opteron [70], multislice caches iowRer proces-
sors [87, 133, 139], parallel on-chip eDRAM banks in the VIRAroces-
sor [79], and interleaved DRAM banks in Rambus and other cerial-off-

21

22 CHAPTER 2. RELATED WORK

Bank 0 Bank1 Bank2 Bank3 Bank 0 Bank1 Bank2 Bank3
ag a) ap az o a a az
a4 as ae az az a4 as ae
as a9 ai0 an aio an ag a9
ap a3 a4 ajs as a4 ais an

(a) (b)
Bank0 Bank 1 Bank2 Bank3 Bank4
h) a; t:h) a3 s
as A ay ag dg
aio an a2 a aig
ais ai6 a7 ag ag

(c)

Figure 2.1: Stride-2 vector access to three schemes: (a) low-ordataateng; (b)
skewing (c) prime

the-shelf, monolithic DRAM modules.

As introduced in Chaptéd 1, parallel memory schemes are #ie means to
determine the parallel memory subsystem performance. &t seemory hi-
erarchy level, such schemes determine: 1) the memory esonganizations
(e.g., the number of parallel memory units); and 2) the mapfriom the linear
address space to the physical locations (such as the bankl ibeal address
inside the bank). The parallel memory schemes are alsaedfép asinter-
leaved schemd4d30], since an important task of the schemes is to diseibut
data to memory banks in an interleaved manner. The goal bfisterleaving

is to reduce the probability of bank access conflicts, andéarcrease access
parallelism among memory units and improve the memory pedioce.

Vector access, defined by an address stream with a consfaat bétween
any two consecutive addreﬂe's; one of the most important memory refer-
ence patterns in data parallel applications. Howeverovextcess to parallel
memories is often vulnerable to bank conflicts, which resimtperformance

IVector (memory) accessas used in Chapt€l 1 in a more general sense to denote SIMD
memory access.

2.1. RARALLEL MEMORY SCHEMES 23

degradation. For example, Figurel2.1 shows a stride-2 vaciess to three
parallel memory schemes. (a) is callledv-order interleaving the simplest
and most common interleaving scheme optimized for contigunemory ac-
cess. For a power of two bank numbéy low-order interleaving scheme uses
the lowestn = Jong> N bits of the address to select the bank. (b) is a spe-
cific case of theskewing schemf86, 82], where each row is rotated right by
one element. (c) belongs to theime memory schemwhich employs prime
number of banks to store the data elements, in an interleaagther. Assume
the memory subsystem is designed to service 4 accessesger g can be
seen in FigurE2]1, the naive low-order interleaving schesitie4 banks, will
suffer from heavy bank conflicts, and, in consequenceeftteetive bandwidth
will be reduced by 50%. In contrast, the other two schemelsswilcessfully
avoid such drawback and meet the high throughput requiremen

In fact, FigurdZlL illustrates the two categories by whiaistparallel memory
schemes can be classified: schemes wittme number of banks (e.g., (c)) and
with power of twobanks (e.g., () and (b)). The major difference, is whether
or not division/modulo operations on prime numbers areliraa in address
generatioE. For example, the address generation functions of Fidumis)2
aprime memory systernan be described as follows:

m(a) = a%5
{ r(a) = 2] 1)

wherem(a) is the bank id, and(a) is the local address.

Bank 0 Bank 1 Bank2 Bank3 Bank4

ao a| a) as

as ag ar ag
) a ag a9
ajs a aps ajy

Figure 2.2: Prime memory system with unused cells

The prime memory systems have been considered in many chsear
projects [81, 86, 117, 118], mainly because of their supkyion supporting
conflict-free access for very wide ranges of strides. Indieéistraightforward

2Hence, all parallel memory schemes consisting of non pofver@banks can be catego-
rized asprime schemes

24 CHAPTER 2. RELATED WORK

to verify that, for a prime memory system withbanks, bank conflicts occur
only when the vector access stride is multipleppfwhile in all other cases,
accesses are conflict-free, and peak throughput can bevadHi22]. How-
ever, the shortcoming is that they involve division/modop®rations on prime
numbers (as exemplified by Equationl2.1), which are gernedéficult to ef-
ficiently implement in hardware. Thusnused cellsare often introduced in
early parallel computers employing prime memory schem&sg], in order
to reduce the HW complexity of address computation. Figillél2strates the
design concept that is adopted in the Burroughs Scientificddsor’s prime
memory system [81]. Note, the blank squares in Figurk 2.2téephysical
memory cells that are not used by the system. The prime bambeaip is set
to be29 + 1, and the address generation functions are defined as follows

{ m(a) = a%p
(@) = 122 = 12

As a consequence, the division by a prime in Equdiioh 2.1 vs cunverted
into a division by a power of two (which is selected at desigre), without any
additional hardware cost. This simplification is a big adage compared with
the basic prime memory systems adopting low-order inteihga However,
the penalty is/p memory space being wasted, which is a clear drawback.

2.2)

To cope with the memory storage utilization issue in the Bughs Scientific
Processor, Gao proposed a prime memory system based ors€Ramainder
Theorem [48]. Observing the number of rows in each bak,s power of
two (M = 2™) —thus coprime te, the proposed scheme successfully avoided
computing the division by replacing(a) = a/p with r(a) = a%M. Since
a%M is equal to the right mostr bits of the address, the local address
generation involves no hardware logic (similar to the cadequatiorfZR). On
the other hand, the bank address computation still remAms.consequence,
the hardware cost is the same, but no memory space is wastedgared
with the original scheme.

In the meantime, Seznec et al. independently analyzed priemeory systems
and revealed similar findings as above in [129]. Moreovex,gpecific prop-
erties of the permutation patterns between processor atsna@ed memory
banks were analyzed. Based on the analysis, an efficientpation network,
calledChinese Remainder Netwonkas proposed, for system configurations
with NV processor elements and memory banks, wieiea product of dis-
tinct prime numbersV = N - ... - N,. Efficient hardware implementations of
the Chinese Remainder Network were presented, for beritralized control
andself-routingcases.

2.1. RARALLEL MEMORY SCHEMES 25

Besides prime memory systems, alternative interleavirgrses have also
been proposed, without the constraint of the prime memonk bamber. For
2D access in raster-graphics memories, Chor et al. propseeimory orga-
nization based on a doubly periodic assignment of pixel& tmemory banks
according to &ibonacci lattice[31]. The proposed memory organization has
the property that the pixels in any rectilinearly orientedtangle that contains
no more tharV pixels can be accessed simultaneously. Mathematical gisaly
was given, to guarante < v/5N. And it was also revealed thaf is even
less thar V for many practical values. Despite its solid theoretic fiation,
however, the proposed scheme still wastes some bandwidte the number
of banks is usually substantially larger than the numbecoéssed data. Also,
the address computation logic was not discussed in dettikipaper.

In the similar context of 2D access, Kim et al. proposed aljgnamemory
scheme based grerfect Latin squarea new Latin square with good proper-
ties useful for parallel array access [72]. The conditiontf® existence of
perfect Latin square was presented. The resulting schemiglesto support
conflict-free row, column, diagonal, and square accesematt The limita-
tion, however, is that the perfect Latin square does notyweaist for arbitrary
square size, and the number of banks must be a square of garinte

Another important type of interleaving schemiisear skewing schemgwere
proposed for parallel memories in [82] and analyzed in [139). In a linear
skewing scheme, element; of a 2D array is stored in memory bank -

i+ X2 -j (A1, A2 € N), a linear combination of the array coordinates. The
linear scheme generalizes for higher dimension arrays][188nilar to the
linear skewing schemes, Jorda et al. proposed a classnoflinearskewing
schemes, and in particular tbebase skewing schemich allows(/N — 1) x

(N — 1) matrices to be stored in N banks, and supports conflict-fceess to
row, columns, the forward diagonal and submatrices [66].

The above schemes assume either prime number of banks, lonbarbers
to be integers in general. In such cases, the address genemady incur
prime number operations (such as modulo, or even divisigithough such
penalty can bgartly removedit cannot be completelgliminatedand often
translates into cost in other forms (e.g., the increaseddnhnect routing com-
plexity [129]). On the other hand, when the number of bankmiser of two,
the expensive prime number calculations can are naturadigled. Therefore,
such configurations are attractive and most widely seenrailphmemory or-
ganizations of contemporary machines. The drawback, henvevthat it is
difficult to support conflict-free memory access for manyesscpatterns. For

26 CHAPTER 2. RELATED WORK

example, memory access with strides acrstsgle-familiescan easily cause
bank conflicts, in memory systems with power of two banks.

To cope with bank conflicts of vector accesses across stadwliés, sev-
eral technigues have been proposed in the literature, dmguthe use of
buffers [34], dynamic memory schemes [35, 36], memory baumbtering [34]

and intra-stream out-of-order access [144]. Under thelphraecmory system
with fully-pipelined memory banks, these methods still kbut are subject to
some limitations.

The use of buffers [34] is probably the most straightforwsotlition as it toler-

ates the bank conflicts by simply buffering the input addressd output data
and collecting the required data after some delay. The bd#égth required

depends on the misalignment between the parallel memognseused and
the vector access stride. If the access stream is distdtauenly between the
memory bank of the system, then the peak throughput of orepdatmemory

bank in one cycle might be achieved after a transient stdntog. However,

since the startup disparity is unavoidable, this solutimmoduces significant
time penalties in case of short access streams. Moreoweydsh of buffers

and the logic for collecting the correct data items from th#drs could cause
substantial hardware overheads.

The dynamic scheme proposed in [35, 36] works well only whendame
data set is accessed with single stride family. Howevehdfdata set is to be
accessed using different stride families, the penalty ahilug and reloading
data between the memory banks and the lower level in the mehierar-
chy may not be amortized in some cases, which would resukelifopnance
degradation of the system.

The memory bank clustering [34] introduces inefficient uséank control
logic and data routing resources, as a number of memory baaksremain
idle during each parallel memory access. For instance,rithdeassumption
that the number of banks is power of two, the number of memanké used
for conflict-free access of two unmatched stride familiey tm@ano more than
50% of the available banks. This results in waste of logioueses and power
in some cases.

The out-of-order vector access [144] is based on the obsamvinat a long,
strided memory reference stream with bank conflicts in setipleorder could
become conflict-free, if properly reordered. For instarineg parallel mem-
ory system with conflict-free stride-4 access support, ides2 stream with
16 memory references could be accomplished by two stridesdras with 8
memory references each. Basically the original strider@ast is split into

2.1. RARALLEL MEMORY SCHEMES 27

two stride-4 sub-streams and the memory system is accestetythe al-

ternating sub-streams. In this case, the access is cdndat-The problem
with intra-vector out-of-order access is that it requir@sg vectors for proper
operation. In addition, as data items are read out of ordgg dermutation
logic may introduce additional penaltiEs

Some recent research projects also consider manipul&ingémory address
mapping to improve memory access performance. In the Iraputsject [24],
physical addresses of discontinuous data are remappedsesvhich are
contiguous in theshadow spaceand references to the discrete data through
the aliases are actually performed by the Impulse MemorytrGlber at the
DRAM side. While improving the cache and memory bus utilamatit is not
suitable for on-chip local stores, as data at the memory stileemain dis-
continuous and the efficiency of the data access remaindiaguulse memory
also has the coherence problem since it creates aliaseséontinuous data.
Similar to Impulse, the active memory system [71] uses tlieesd remapping
to create contiguous aliases for discontinuous data, aceksadhe data with
their aliases, to hijack the memory hierarchy for betteheaeehavior. Again,
the active memory system is unable to improve the efficiedidhe memory
access at the physical memory banks/modules/channelsCaimenand Vec-
tor Memory System [32] proposes broadcasting vector aamamands to all
memory banks/modules, instead of sending individual adeér®data. Despite
its inherent support for strided access, the Command Vétemnory System
does not consider specialized address mapping schemeptovenmemory
access parallelism among multiple banks.

Regarding the data alignment problem in GPP SIMD extensgingies have
been done to improve the performance of SIMD devices byvialiethe im-
pact of non-contiguous and unaligned memory access fromatdware point
of view. For example, Alvarez et al. analyzed the perforneaoicextending
the Altivec SIMD ISA with unaligned memory access supportba64/AvVC
codec applications [11].

3Data permutation is not required in the original proposdH]las there the assumed mem-
ory organization is that single datum is read out from thetiplel memory banks per cycle,
whereas in the organization considered in this thesis pleltata items (equal to the number
of memory banks) are read per cycle.

28 CHAPTER 2. RELATED WORK

2.2 Access Pattern and Data Layout Optimizations

In Sectior 211, we have briefly reviewed the historic and @morary work in

designing parallel memory schemes, which provides thedelsubstrate for
parallel memory organizations, and the correspondinglémgt address map-
ping. All parallel memory schemes are optimized for speaifibset of mem-
ory access patterns. Therefore, it is essential to coyrabtintify the access
pattern information and exploit it for memory access efficieimprovement,

by, e.g., utilizing the pattern information to steer the noeyrschemes.

There has been a large body of research studies and practipasperly ob-
taining the memory access pattern information. One commepntw achieve
this is by static analysis, such as the code analysis tegbsigsed in soft-
ware prefetching [23, 27, 94, 101]. Alternatively, memongcess pattern in-
formation can also be obtained from programmer annotatieor. example,
CUDA-lite [143], a programming model enhancement to CUDAH]l en-
forces programmers to provide annotations describingiceproperties of the
data structures and code regions designated for GPU earcuthe CUDA-
lite tools analyze the code along with these annotatior$datermine if mem-
ory bandwidth can be conserved and latency can be reducetlibing any
special memory types and/or by massaging memory accessnzatt

Memory access patterns can also be captured by profilingLl8, or run-

time [10, 93], which make use of the information provided nslard hard-
ware performance counters. Also, specialized hardwardoeaemployed to
dynamically detect the access patterns (e.g., strides)rinra direct manner,
such as the cases of stream buffers [27,116, 146].

Once memory access patterns have been statically ident#italowing-up
opportunity arises in that algorithms and/or data strestuan be adapted, in
order to suit the hardware memory hierarchy. The rationbkbeformer is
that, access patterns are changed under different versfahe same algo-
rithm — therefore the version most friendly to the memoryrdmehy is cho-
sen [14,21,49, 84]. The latter, adapting data structureseimory hierarchies,
has led to an important area of memory-hierarchy conscimugram data lay-
out optimizations. Such optimizations can be done by hariith @ptimized
library support. For example, specialized data structbhea® been designed
for database applications running on GPPs [21] and the @mdkgsor [14,49].
In Glift [90], an abstraction and generic template libragstbeen created for
defining complex, random-access GPU data structures.

Beyond manually tuning data structures, recently we hase seen compiler

2.2. ACCESSPATTERN AND DATA LAYOUT OPTIMIZATIONS 29

optimizations to facilitate data reorganization. For epamto address the
data alignment problem in GPP SIMD extensions, studies baea done to
improve the performance of SIMD devices by relieving the atipof non-
contiguous and unaligned memory access from the compiliet pb view.
Specifically, Ren et al. proposed a compiler framework tonoge data per-
mutation operations by reducing the number of permutaiiotise source code
with techniques such as permutation propagation and red/d24]. Nuzman
et al. developed an auto-vectorization compilation schiemimterleaved data
access with constant strides that are powers of two, by aearyg the key
data structures [106].

It has been shown that the process of data layout optimizatia also be auto-
mated, with customized memory allocation libraries and giten analysis and
transformations. Truong et al. proposed two data layotrtigeies to improve
locality for heterogeneous data structures allocated miyoaly [142]: field
reorganizatioﬂ and instance interleavilﬁ Chilimba proposed two strate-
gies —cache-conscious reorganizaticand cache-conscious allocatiorand
the corresponding semi-automatic tools that use thestegiea to produce
cache-conscious pointer structure layouts [29, 30]. Zteira). proposear-
ray regroupingandstructure splittingusing whole-program reference affinity,
which measures how close a group of data are accessed tomesheference
trace and gives a hierarchical partition of program dat&].16olovanevsky et
al. implemented C structure optimizations in GCC (i.e.,&@C struct-reorg
pass), to adapt the layout of a data-structure to its acedssrips in order to
better utilize the cache by increasing spatial locality] [52

It is important to note that, despite the advantage of novarel overhead,
software data layout optimization techniques have cedeawbacks. Man-
ual data structure manipulation and data reorganizatianaphuge over-
head on the programmer, in requiring detailed knowledgeiathe low-level
memory hierarchy. For example, the programmer has to taegehof the
logical data layout and its mapping to (usually parallel)nrmey hardware.
(Semi)automated approaches require less programmeveniag, however,
are limited in scope since they require high-level prograformation that is
hard to accurately obtain by profiling/static analysis. eed, most prefetch-
ing schemes either target only loops with statically-knostmided accesses,
or they rely on the access patterns detected during profiléigg unchanged

“to group together data structure fields which are referetmgether in the data structure
declaration

Sidentical fields of different instances of a data structufero referenced together are
grouped together dynamically

30 CHAPTER 2. RELATED WORK

in real executions, which may not be the case since accessnsatan be
input-data dependent. Moreover, in the context of vectomorg access in
data parallel accelerators with parallel memory banksflictiiree access can
not be achieved by only software data layout adaptationowttthe support of
specialized hardware memory schemes for many accessrngatter

2.3 Off-chip Memory Access Scheduling

Off-chip memory access has become more and more importaridern com-
puting systems, due to the expanding gap between the porcgssed and
off-chip memory access latency, and between increasinghgmprocessing
parallelism and off-chip memory bandwidth. In such systeDRAM access
requests are usually buffered inside the memory contrédeming a dynamic
access window. Various scheduling policies can be appliesklect the proper
access in the window to be issued to the DRAM chips, in the lvdpaprov-
ing DRAM access efficiency. This section will review the necadvances in
off-chip memory access scheduling techniques.

Sophisticated out-of-order DRAM scheduling schemes haen lextensively
studied for DRAM efficiency improvement. EXxisting systenosntnonly em-
ploy variants of the FR-FCFS (first-ready, first-come fistve) scheduling
policy [125], which prioritizes row-hit requests over othliequests. Although
FR-FCFS was proposed originally in a thread-unaware ctntegent work
has shown that it is also effective in improving DRAM thropghand overall
system performance in massive multithreaded GPUs [152].

Since thread-unaware memory access schedulers aim at mggrdoRAM
throughput, they have been shown to be ineffective in gueedmg fairness
in general-purpose multicore and multithreaded syster@8, [104, 122]. In
contrast, researchers have recently designed threag-ameanory schedulers
to improve fairness as well as system throughput [73, 74,103]. Unlike
thread-unaware memory schedulers, one of the major irssafhihread-aware
memory schedulers is, different threads have differentacheristics regarding
their DRAM access behavior (such as, bandwidth, regulantythe likelihood
to interfere with others). Therefore, threads can be caiteg into different
classes (e.g., memory-intensive/non-memory-intensiveither static analy-
sis, or dynamic capturing, or both. With such classificatimhedulers can try
to generate the optimal memory access scheduling durirgdsrexecution,
therefore improve both DRAM throughput and fairness.

2.4. MEMORY ACCESSOPTIMIZATIONS ON GPUs 31

2.4 Memory Access Optimizations on GPUs

This section reviews some recent studies on memory accégsizgiions on
GPUs, which is a typical contemporary data parallel acagerarchitecture.
The GPU memory access suffers from two major problems: thehimshared
memory bank conflicts, and the off-chip DRAM access efficgemehich will
be discussed in the following.

2.4.1 Avoiding GPU Shared Memory Bank Conflicts

Bank conflicts form an important problem in vector processord it has been
studied intensively in the literature. To cope with bankftots of vector ac-
cess across stride families, several techniques have bepaged, including
the use of buffers [34], dynamic memory schemes [35, 36,&5,rhemory
banks clustering [34], and intra-stream out-of-order as¢&44], just to name
a few. Some of the existing techniques may be considered Rty Gemory
bank conflict avoidance, however subject to certain linutet. For example,
one possible solution based on existing techniques is tabatidrs in front
of each shared memory bank to create a small access winddvge&uently,
out-of-order scheduling techniques may be applied to vestile bank con-
flicts, within such window. Similar techniques have beencsssfully used
in other scenarios, such as the DRAM memory controller sdlivegl [125].
However, in the context of GPU fine-grain multithreaded Sldicessing,
this technique is not applicable, because distributedobuirder accesses in
parallel shared memory banks create diverged executie@rofdr threads in-
side a warp/subwarp, effectively breaking the subwarp Hatias in the SIMD
datapath. This often leads to conflicts in the register filkkisaat the writeback
stage, which stall the pipeline in the end. In this case,eshatemory bank
conflicts are not resolved but jusbstponedo later pipeline stages.

GPU on-chip shared memory efficiency is also impacted byiphlydata lay-
out. Programming practices exist to avoid or relieve omp-dfank conflicts, by
manually crafting the data layout at source code level (earo-padding for
shared memory data structures) [76,108]. While such opétiins have been
adopted in practice, they lay a nontrivial burden on progrems. Detailed
knowledge of the shared memory hardware is required, an@tioes major
modifications to the source code is needed to apply such izatiions. Be-
sides, they also create portability issues when platforave ldifferent shared
memory configurations. Moreover, static code optimizatiare unable to re-
lieve bank conflicts for patterns which cannot be determistadically. EXx-

32 CHAPTER 2. RELATED WORK

amples are conflict patterns that change dynamically, drafgadependent on
runtime parameters. Recently, we see some work in autognatioch manual
optimizations [151]. Such high-level optimizations hate potential to re-
lieve the shared memory bank conflicts burden from programsnbet are still
limited by their static nature.

2.4.2 GPU DRAM Access Optimizations

Recently we have seen sorseftware optimization frameworks to handle
the complexity of GPU programming and optimizing. Ocel&][3 a dynamic
compilation framework designed to map the NVIDIA CUDA ajggliions onto
diverse multithreaded platforms. It includes a dynami@bjrtranslator from
PTX code to x86 and other ISA.

PTX transformations, such as thread-fusion used in MCUDB6]1land
GPGPU Compiler [151], have also been proposed. The thrgsidrf tech-
nique attempts to merge small threads into larger ones, &antbre spatial
locality, at various memory hierarchy levels (such as tegisand shared mem-
ories), may be created for each kernel thread executionxglgiéing the extra
locality, system performance can be improved.

Main memory access efficiency is also impacted by physice tayout in

DRAM rows/banks/channels. Programming skills to improffecbip mem-

ory access efficiency exist, such as manually changing tteelagout of key
data structures in main memory at source code level [76]oktunfiately, au-
tomating such optimizations using program analysis formmaémory data is
more difficult than the on-chip shared memory case and suck izget to be
seen for GPUs.

From system architecture point of view, GPU memory perforoesoptimiza-
tions have been addressed at different levels: between ¢ &&celerator
and host CPU, inside the GPU core, in GPU on-chip intercdiorecand at
the GPU memory controller side.

At the CPU-GPU interconnectlevel, current GPGPU platforms suffer signif-
icantly from the relatively low bandwidth between the hoBitCand the accel-
erator GPU attached to the CPU through the system bus [7@]r&3earch and
development efforts can be classified into two categorig® improve the ef-
ficiency of the CPU-GPU communication based on existingdlyesoupled
system bus configuration [50]; and 2) to integrate the CPUGRU onto the
same die [7,12].

At the GPU core level, there have been some studies in applyirgfetching

2.5. SUMMARY 33

techniques for GPUs [127], however only datside a thread was consid-
ered. A recent study on GPU prefetching propobedr-Thread Prefetching
(IP) [88], recognizing the GPU specific locality among paralebtdsP fo-
cused ordatency reductiorusing speculation, assuming inadequate parallelism
to hide memory latency.

Memory coalescinffL08] is a hardware mechanism in NVIDIA GPUs to buffer
and mergeéntra-warp memory accesses. Itis an effective way to capture inter-
thread data locality, however, its effectiveness is lidhite a limited scope
(e.g., half/single-warp, depending on the GPU generation)

At the GPU on-chip interconnectlevel, the work [152] also addresses the
memory access streams interleavimgblem, using a customized flow con-
trol design optimized for this scenario. A similar work [1&halyzed the
many-to-few-to-manyraffic pattern in typical GPU configurations, and pro-
posed throughput-effective on-chip interconnection. Kbag observation is
that, the traffic pattern isnbalancedbetween the GPU core nodes and mem-
ory controller nodes and such unbalance is fixed at desige. tiltherefore,
conventional interconnect network designs, which assumaifarm traffic
pattern, can be improved, with the unbalanced traffic paitdormation. The
paper explored such improvement and showed that the thpoigler unit area
is improved with the redesigned interconnect.

At the GPU memory controller side, recent work has shown that out-of-order
DRAM scheduling schemes, such as FR-FCFS [125], are alsot®t in im-
proving DRAM throughput and overall system performance assive multi-
threaded GPUs [53,152]. Needless to say, the performanad&AM con-
troller can often be limited by its relatively small memomqguests window
size, which is constrained by tlwait-of-order(Oo0O) memory scheduler hard-
ware cost. This is especially the case in the context of wagsai the order
of thousands) in-flight DRAM accesses in typical GPUs, whéaid to benefit
from very large scheduler window sizes.

2.5 Summary

In this chapter, we have presented an overview of existimalleh mem-
ory schemes, which provide the hardware substrate for Iphnaemory
banks/modules/channels organizations, and the corrdsmpiow-level ad-
dress mapping. Since parallel memory schemes optimize myeaicoess ac-
cording to specific access patterns, existing methodadgiextracting mem-
ory access pattern information were briefly discussed, withmeration of

34 CHAPTER 2. RELATED WORK

software data layout optimizations based on the accessrpsttFurthermore,
off-chip memory scheduling techniques were also reviewlee, to the grow-
ing importance of off-chip memory access and the perforrmampact of off-

chip memory access scheduling. Finally, we studied exjstaiutions on two
major GPU memory issues: the on-chip shared memory bankiasnfnd

the off-chip DRAM access efficiency.

Conflict-Free Parallel Memory Schemes

cess for multiple stride families in parallel memory schenargeted

for SIMD processing systems. We propose two novel hardwaralp
lel memory schemes to deal with memory bank conflicts incubg vector
memory access. The first scheme (SAMS) deals with suppatingict-free
1D vector memory access for strides from two different strfigimilies. The
second one (2DSMM) moves one step further in that, it expltr@dware
schemes to support 2D stride conflict-free vector memorgss=s. Besides
formal descriptions of the proposed schemes, the hardwapéementation
prototyping are also presented. The corresponding matieahproofs are
listed in AppendixeEJA andlB.

The remainder of the chapter is organized as follows. IniGe&1, we
present the motivation of the proposed parallel memoryrselse The con-
struction procedure and the mathematical formulas of thelSAnd 2DSMM
schemes are described in Sectiénd 3.2[and 3.3, followed iy hlardware
implementation and synthesis results in Secfiolh 3.4. Themdfferences
between our proposal and related works, the design spacapptidations are
briefly discussed in Sectidn_8.5. We conclude the chaptee@i&[3.6.

I n this chapter, we analyze the problem of supporting confiiéd- ac-

3.1 Motivation

In this section, we will first introduce the limitation in noadundarl parallel
memory schemes, which motivates us to 8#&MSscheme. Then we will
present the conflict-free requirement in memory access W&, which leads

In this chaptemon-redundanischemes refer to those with the same number of memory
units as the required data elements number per each paedkess (usually equajslanes).

35

36 CHAPTER 3. CONFLICT-FREE PARALLEL MEMORY SCHEMES

to the design oRDSMM scheme. To facilitate our discussion, we use the
following definitions of some general terms in parallel meynsystems, and
the specific ones used in our SAMS scheme.

3.1.1 Definitions

Definition 1. A stream of independent memory accesses issued by the SIMD
processor in parallel is calledvactor accessA vector access could be either
regular (with constant stride) or irregular (such as thétedgather memory
access). However, we only discuss regular vector accesseis ichapter.

Definition 2. Base addresds the first memory address in a given regular
vector access.

Definition 3. Stride is the constant interval between subsequent memory ad-
dresses in a given regular vector access stream.

Definition 4. Unit stride denotes stride 1.

Definition 5. A stride family is a set of infinite number of stride$S||S =
o-2% s €N, oisodd. This follows the definitions given in [35, 36, 144].

Definition 6. The exponential part of the stride famif\§6||S = o - 2°, s €
N, o is odd}, s, is called thestride family number. The stride family number
completely defines the set of strides belonging to a stridelyaFor example,
stride family with family number O (we will use the phraserige family s”
for short of “stride family with family numbes” hereafter) is the stride set
{1, 3,5, 7,--- } while stride family 1is{2, 6, 10, 14,--- }.

Now we will give some definitions specific in our proposed SAktheme.
Suppose is the linear address amd(a) is the module assignment function of
a parallel memory scheme witti memory modules.

Definition 7. If addressa satisfiesm(a) = m(a + J) (whered < N), address
a hasforward-affiliation .

Definition 8. If address a satisfies(a) = m(a — J) (whered < N), address
a hasbackward-affiliation .

Definition 9. Forward-affiliation and backward-affiliation always ocdar
pairs. For instance, if address a has forward-affiliatiofa) = m(a + ¢))
then the address + § has backward-affiliation. We call addressand its
affiliated addressa(+ ¢) anaffiliation-pair .

3.1. MOTIVATION 37

Linear address 0 1 2 3 4 5 6 7
Initial
module ‘ 0 ‘ L2137
assignment
{1, 2, 3, ?} conflict free => ?7=0
‘ 0 ‘ 11213]0](?
Final
w-ll H O B E

assignment

starting position

Figure 3.1: Inherent limitation in multimodule memory assignment

Now, let us examine the meaning of affiliation. If there exist
forward/backward-affiliations in a memory scheme, thendbkeme is not
conflict-free for parallelV unit-stride accesses at arbitrary base addresses. For
instance, unit-stride accesses starting at addresse$omitard-affiliation will
result in module conflicts.

Definition 10. If addressa is associated with only one single instance of affil-
iation (backward or forward), then it issingle-affiliation address.

Definition 11. If there exist addresses in a non-redundant parallel memory
scheme with single-affiliation and none of them has muftliafion, then it is
asingle-affiliation scheme

3.1.2 Non-Redundant Parallel Memory Schemes Limitations

In traditional matched parallel memory schemes, it is inspge to simul-
taneously support both parallel unit-stride and arbigrastridecﬁ access or-
ders [144]. Figur€3l1 shows an example with four memory rresuUnder
the constraint of unit-stride conflict-free access, the nf®assignment func-
tion of the scheme is completely fixed. Note in Figlird 3.1 thiestant repeat
of module assignment pattern of the first four addresses.niiesystem is
accessed with stridg, half of the memory modules are not utilized (the shad-
owed cells in Figur€3l1). One additional limitation, noosim in Figure 3L,

is that any interleaving scheme optimized for even-strioleflict-free access
could not support conflict-free unit-stride access at eahjtbase addresses.

2By strided we refer to even strides in this chapter, as odd stridesuind) unit stride)
conflict-free accesses are well supported by the simplediaer interleaving scheme [144].

3In this chaptemoduleandbankare used interchangeably, to denote a memory bank with
independent local address decoder.

38 CHAPTER 3. CONFLICT-FREE PARALLEL MEMORY SCHEMES

There is a large number of strided vector accesses in maeytdc and
engineering applications which have significant impact lom performance
of the workloads on traditional vector supercomputers .[1§) the mean-
while, we certainly could not neglect the unit-stride ascesttern, as it
is the most common one in vectorized scientific and engingeapplica-
tions [60, 78, 138]. Even in vectorized SPEC95 benchmaristite second
most frequent stride [115.] Furthermore, there are many occasions in which
simultaneous support of both unit-stride and strided mgnaccesses is de-
sired, as the same data block is accessed with differededypes. When we
have to access data in parallel memories with both unit aed stride, the
problem occurs that we have to either modify the interlegnscheme (that
is, to redistribute data to memory modules in a different way to have the
scheme optimized for conflict-free access with one type oésg while suf-
fer from the non-conflict-free access with the other. Thenkr would incur
data flushing into and reloading from the lower level memaorthie memory
hierarchy whenever there is a change of access stride, asre latter would
introduce processor cycles wasted on waiting for the veaitoess.

As far as unit-stride access on stride-optimized parallemory scheme is
concerned, it is interesting to examine Hf@liation properties of the scheme.
Note that in single-affiliation schemes (defined in last isayf a single-
affiliation address belongs to only an affiliation-pair. @exaffiliation parallel
memory schemes make sure the module conflicts under uidi¢-stccess are
moderate in the sense that, if an address in linear addrase spuses module
conflict within access at one base address, then it will nesase any other
conflict within access at a different base address. In Seid, we shall il-
lustrate how to make use of single-affiliation parallel meyrechemes to con-
struct a memory system capable of supporting conflict-ftedesl accesses
from multiple stride families.

3.1.3 Strided Access in 2D Environment

Previous work on strided access is mostly focused on onerdiimeal case(i.e.
strided vector access). However, with the increasing requents for both
stronger computational power and higher memory bandwiditin fsome en-
gineering and scientific computing domains such as multiapaedar data
processing, and fluid dynamics, aggressive hardware sufipomore com-
plicated memory access patterns is desirable, partigdiaridata-level multi-

“The most frequent access pattern is scalar access in batim&&eand SpecFP95, defined
as “stride-0" in [115].

3.1. MOTIVATION 39

processing systems such as vector and SIMD processorsndtance, in the
SARC research project [123], the mechanism of two dimemdistnided mem-
ory access is to be devised to speed up memory access fordioe ¥eproces-
sor [85], as illustrated in Figufe_3.2 in Figure[3.2 denotes thease address
ES element sizeHS/VS horizontal/vertical stride and HGS/VGS horizon-
tal/vertical group stride

B HS ES _ HGS

A

VS

A
VGS
\d

Figure 3.2: SARC vector coprocessor memory addressing

In this chapter, we propose the 2D strided Multiaccess Mgni@DSMM)
scheme to address the issue of strided access in two dimahsiavironment.
It has the following design goals:

1. Various access patterns. The 2DSMM should support as many useful
access patterns in two dimensional environment as posdthkiden-
tified that the strided row, strided column, strided diag@ral strided
block access patterns are of most interest [118]. Besidieedtaccess,
it should also support continuous data access in paralt# as unit-
stride access in one dimension or access to a continuouk. dioour
view these features are particularly desirable. On one,litae@ DSMM
could be used potentially as a buffer between the processitha main
DRAM memory and therefore it has to be able to exchange data wi
the DRAM memory efficiently. On the other hand, the contiraiblock
access is a very frequently used access pattern in manycatmtis of
our concern.

2. Paralld strided access with no restrictions on the starting position: It
should support strided access at any starting point. Howswme re-
strictions for continuous data access are indispensabtrirscheme
and we think they are acceptable for two reasons. First, @asdh-
tinuous data access is mainly designed for the data excHastgasen

40 CHAPTER 3. CONFLICT-FREE PARALLEL MEMORY SCHEMES

the 2DSMM buffer and DRAM, the restrictions on starting piosi
will have no negative effects on the traffic between 2DSMMéruand
DRAM if the starting position is aligned to DRAM row boundasi Sec-
ond, the starting position restrictions in our scheme wautibably not
cause a big problem for the continuous access traffic betihegroces-
sor and 2DSMM memoE/for the domain-specific applications targeted
by our scheme with the help of a compiler.

3. Simple hardware implementation: The implemented logic for the ad-
dress generation should be simple and fast, because it lig ioritical
path of memory access.

4. No redundancy in memory module number: In most prime memory
systems, there are more memory modules than the numberaohdat
cessed simultaneously. To increase the utilization of ntgmdules,
our 2DSMM scheme would provideatchedparallel access to all mem-
ory modules (i.e. #data elements required per parallekace¢memory
modules). Another common problem with the prime memoryesyst
are the existence of memory holes [86,117] which would a¢saMoided
in our non-redundant system.

3.2 Single-Affiliation Multiple-Stride Memory Scheme

In this section, we propose SAMS, the Single-Affiliation Miyple-Stride
conflict-free parallel memory scheme. SAMS aims at suppgrtonflict-free
unit-stride and strided memory accesses simultaneouglfrdt constructing
a single-affiliation interleaving scheme, and then makiatadines wider to
solve the module conflicting problem in unit-stride accedsich exists in the
single-affiliation scheme.

3.2.1 Moving from Conflict-Free to Low Degree of Affiliation

Many existing non-redundant, dynamic schemes, such as@es¢heme [35,
36], can support conflict-free access for both unit-stridd strided patterns,
with dynamic (re)configuratiof the scheme parameters. However, when the
scheme parameters are configured for strided access anugectnflict-free
unit-stride access is not supported simultaneously. Nawiths difficult to

%In this chapter, we useDSMM bufferand2DSMM memorynterchangeably, to denote the
processor’s local buffer.

3.2. SNGLE-AFFILIATION MULTIPLE-STRIDE MEMORY SCHEME 41

Linear address 1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16 17
Module assignment
wotwsesor [0 [12]o [ifofafefa]afofu]afefufofo]t]-
| scheme(q=2, s=2) X X X X
\ Linear address 0 1 2 3 4 5 6 7 8 9
4 Module assignment
insubgroup(basic‘0‘1‘0‘1‘1‘0‘1‘0‘0‘1‘
XOR scheme with
q=1, s=2)
@ |
9 Linear address o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Module assignment
SRS [0 [o |+ TR o [o FRfele
subgroups
A) ‘ D subgroup 0 D subgroup 1
Linear address 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Module assignment
S (oo Lo oo oo oo oo 2 s [0 o]

(q=2,5=2)

Figure 3.3: SAMS single-affiliation scheme with = 2, s =2

add conflict-free unit-stride access support at once, wpqa® to do this in
two steps. First, we relax the constraint fraonflict-freeto low degree of
affiliation, for unit-stride access. Second, for each and every memodula,
we rearrange the groups of conflicting data items in unitkstt access into
wide data lines so that they could be referenced during oresac The philos-
ophy behind this idea is to restructure the memory modulezdifionally, the
memory module in a multimodule memory system is treated asear (one-
dimensional) structure, and a memory interleaving scherapsnthe linear
address space from processor’s view into multiple lineaityctured storage
units. In our approach, instead of one-dimensional, we ineadeh memory
module as a two-dimensional structure. Therefore, theeafentioned limita-
tion in parallel memory schemes could hopefully be resolwdntroducing
a new dimension of access parallelism, namely the moduke lafed. If the
conflicting data items are located in the same data line, ttieyncould be ac-
cessed in parallel with proper shuffling and selecting djmra. The reason
why low-affiliation schemes are preferable is that, as thgreke of affiliation
increases, the module data line grows wider because it Haswide enough
to accommodate all conflicting items. Consequently, thelare for choos-
ing the proper one(s) from the data line and shuffling datastérom different
modules becomes more complicated.

42 CHAPTER 3. CONFLICT-FREE PARALLEL MEMORY SCHEMES

3.2.2 Hierarchical Single-Affiliation Parallel Memory Scheme

We propose to construct a single-affiliation scheme for SANSarchically.
For a parallel memory system wittf memory modules, when > ¢q (s is
the stride family numberdefined in Sectiofi3.1.1), SAMS adopts Harper’s
XOR scheme [35] as it is single-affiliation in this case. Heareas it is not a
single-affiliation scheme when< g, some modifications must be considered.
Figure[33B illustrates one example of how to build SAMS snagffiliation
scheme based on Harper’'s XOR scheme [35] (referred as “H@dtscheme”

in the figure). The construction process is described agvst

(1) Divide 4 (i.e.29) memory modules into 2 (i.9~°1) subgroups, with
each group deployed with basic XOR scheme configured withe2 (i
2°~1) modules and stride 4 (i.€?).

(2) Interleave the two groups, at the granularity of 4 (i2¢). Now, the
module assignment looks like that of the XOR scheme confibjwiiéh
2 (i.e.2°~1) modules and stride 8 (i.@911).

(3) Combine the two groups and make uniform module index by mgrgi
the subgroup module index and the group index.

As Figure[3.B suggests, there are cases of four items aftiliatth each other
(marked with “X), when the basic XOR scheme is used. Theiaffiiin prob-
lem is resolved when we shrink the number of modules in a gradypch
in turn introduces several (2 in the figure) subgroups of nesluTherefore,
steps (2) and (3) in Figufe_3.3 interleave them at the sulpglenel and merge
them into a unified scheme. After that, we could finally getrggla-affiliation
scheme, as shown at the bottom of the figure.

In the following, we provide the mathematical descriptidrth®e above con-
struction process.

e module assignment function:

a%?29, s=0
m(a) = { (ag--as, (a® TH,_,) %21, 1<s<q (s,q€eN)
(a® Th,,) %29, s>gq
(3.1)
where, a is the n bit linear address, an2f is the number of memory mod-
ules in the SAMS scheme; is the stride family numberwhich is the expo-
nent part of the stride familfS||S = o - 2°, o odd} to be supported with

3.2. SNGLE-AFFILIATION MULTIPLE-STRIDE MEMORY SCHEME 43

conflict-free access by the schenagis thei-th bit of a; m(a) is the module
assignment function which hasbits. The notatiornx%y meansx moduloy,
and< ...,... > denotes binary bits concatenatiohy, , is the XOR scheme
address transformation matrix taken from [35].

min(x,y)—1

THX,y - H 7_k—i-max(x,y), k
k=0

where T; ; is defined to be the identity matrix with a single off-diagbnia

in T(i,j). The binary matrixT is arranged in a form that the bottom-right
element isT (0, 0), and the row index grows when moving up and the column
index grows when moving left so that the top-left element (g — 1,/ — 1)
(assumer is | x I in size). For example,

110 1 00 110
T=]1011]|=]1]011]-1010]|="To Ta1
0 01 0 01 0 01

The ® symbol in this chapter is used for binary vector-matrix riplittation.
For instance, consider

1 00
a=7,T=1011
0 0 1
then
1 00
a@T=[111]0 1 1 |=[110=6.
0 01

The objective of SAMS module assignment function is to make ghat,

on one hand, the scheme is conflict-free for stride fandif}|S = o -

2%, with o odd}; while on the other hand, there are at most two data refer-
ences going to the same module on a parallel unit-stridesacce

3.2.3 Solving Module Conflicts in Single-Affiliation Schemsg

As described in Sectidn_3.2.1, the construction of a siadfiiation scheme
is just the first step of SAMS. To cope with the module conflintthe single-
affiliation scheme, we have to make the modules data linesniidorder to
accommodate the conflicting data items. Furthermore, we tmarrange the

44 CHAPTER 3. CONFLICT-FREE PARALLEL MEMORY SCHEMES

Linear address 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Module

wowm DL 25 2]]1]
(9=2,5=2)

Address distribution in 4 modules with SAMS(q=2, s=2)

Module 0 Module 1 Module 2 Module 3
0|2 1|3 4|6 517
@
9 |11 8 |10 1315 12 | 14
Linear address 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Module Assignment
st (o 2o 2 [[2 [+ [o[2]]

(q=2,5=3)
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

Ll Do e[o[e[e lo[] -

Address distribution in 4 modules with SAMS(q=2, s=3)

Module 0 Module 1 Module 2 Module 3
® 21| 0 2°2| 1 23| 2 2%41 3
419 518 6 | 11 7 |10
13 | 18 12 | 19 15 | 16 14| 17
22 | 27 23 | 26 20 | 25 21 | 24
31| - 30 | - 29 | 28

Figure 3.4: SAMS data arrangement example with 4 modules

data properly in the two-dimensional storage, as showngore3.%. Note”
in the figure is the capacity of the multimodule memory systdtart (1) of
the figure shows the linear address distribution in 4 memaogutes which
satisfies both unit-stride and stride-4 family conflict feezess, and part (2)
illustrates the linear address distribution which satsfeth unit-stride and
stride-8 family conflict free access. We could see from theréghat the idea
of SAMS interleaving scheme virtually introduces a thircthénsion of address
flexibility, the offset in the row (data line), besides thedute index andow
addresH. The guideline of items placement in module row and offssingple
yet effective: to pack the conflicting items into the same vdvile maintaining
the natural order of the items in the local modules. As theed most a pair of
conflicting items located in the same module on a paralldlsinide access, a
row with width of two is enough for holding them.

5Row addresin this chapter denotes tthegical illusion of module organization where each
module consists of rows with the size of one data elementefimcase of the SAMS scheme).
In real memory cell arrays, ghysical rommay have much larger size, in which case some bits
of the scheméogical row addressre used to index thghysical row offset

3.2. SNGLE-AFFILIATION MULTIPLE-STRIDE MEMORY SCHEME 45

The SAMS interleaving scheme consists of three functiqig:the module
assignment function which assigns an item in linear addsease to a specific
module;(2) the row assignment function which determines the row in tvhic
the item is placed; an@3) the offset assignment function which calculates
the offset of the item in the row. Since we have presented teule assign-
ment function in Section3.2.2, we introduce the row assigmnand the offset
assignment functions below:

e row assignment function:

Lqi Jv s=0
r(a) =19 lzatl, 1<s<gqg (s, geN) (3.2)
(L& +1)%2"9) /2, s>q

N
|

¢ offset assignment function:

ag, s=0
o(a) =% as—1, 1<s<gqg (s, g€N) (3.3)
aq, s>q

The notations</y and % mean the quotient of integer division betweeand
y. Note thatn is the number of bits of the linear address of #ffememory
modules. r(a) hasn — g — 1 bits, while o(a) is a single bit, because we
consider only two pieces of data per data line in the SAMSmehe

We have proved that the SAMS scheme is capable of supportitigdirided
and unit-stride vector accesses without module conflicke detailed mathe-
matical proofs of these properties are presented in App&adi

3.2.4 The Matched SAMS Scheme

In prior sections, we have introduced the SAMS scheme to I[simepusly
support conflict-free unit-stride and strided memory asesgrom onesingle
stride family. In this section, we will examine a specialeas SAMS with the
original hardware scheme input parametdixed at design time tg, called
Matched SAMS Schemehich is able to support conflict-free vector accesses
for strides frommultiple(>> 2) stride families without changing the internal
data layout.

46 CHAPTER 3. CONFLICT-FREE PARALLEL MEMORY SCHEMES

With s = g, the module assignment function, the row assignment fonethd
offset assignment function are simplified as follows:

m(a) = <aq, (a ® Tqulqu) %2‘7_1>
{ r(a) = &7 (g € N) (3.4)
ola) = ag-1

Let us consideyy = 2, which means the Matched SAMS Scheme with 4 mem-
ory modules, for example. With = 2 we have

m(a) = <32v (a ® TH1,3) %2>
= (ap, (a Y T3,0) %2>
= (ap, a3 ® ap)

where< ..., ... > denotes binary bits concatenation. Hence, the address map-
ping of the Matched SAMS Scheme with 4 memory modules is

{ m(a) = (ap, a3 ® ag)

=

() = an-13
(@ = a

@)

where the symbofp denotes thdinary exclusive oi(XOR) operation. The
address mapping of the above example is illustrated in E[@u# (1). Taking
the base address 1 for example, the referenced linear adghamsgps for stride
1, 2 and 4 vector accesses die 2, 3, 4}, {1, 3, 5, 7} and{1, 5, 9, 13}, re-
spectively. As FigurE=3l4 shows, all addresses in each grould be accessed
in parallel within the Matched SAMS Scheme. Indeed, the MetcSAMS
Scheme is capable of supporting conflict-free vector acegthsstrides from
more than two stride families. Mathematic proof of this teatis presented in
AppendixA.

3.3 2DSMM: 2D Strided Multiaccess Memory Scheme

In a 2D address space environment, 2D addressing schemeseissitated to
identify the locations of the data elements targeted by ihe&tor memory
access. A 2D addressing scheme consists of two componkat&Dtmodule
assignment function which maps from a 2D address to the raaddex, and
the row assignment function mapping from a 2D address to thdufe local

address, as shown in Figurel3.5.

3.3. 2DSMM: 2D SRIDED MULTIACCESS MEMORY SCHEME 47

2D address space

/y 2D address
T

00 | 01 | 02] 03| 04 |05] 06|07 |08 09 |010]|0I1]|0I12]013]|014] 015

1.0 L1 1.2 1.3 14 15 16 1,7 18 1.9 L10 | 111 1,12 | L13 | L14 | LIS

20 | 21 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 210 | 201 | L2 | 213 | 214 | 2,15

3.0 3,1 32 33 34 35 36 37 38 39 3,10 | 3,11 | 3,12 | 3,13 | 3,14 | 3,15

40 | 41

mapping

| |
| »! .
| | » Module index

7
00010203
2°
1011|1213

27+ modules in total

Figure 3.5: 2D addressing scheme

In the 2DSMM scheme, there a?€t9(1 < p < q) parallel processing lanes
and their corresponding load/store units, 8889 memory modules which are
arranged into &° x 29 array. All processing lanes access the memory modules
simultaneously, with the vertical access stridg = o, x 2**(o, is odd) and
horizontal strideHS = o}, x 2"(o}, is odd). The addressing functions of the
2DSMM scheme are described as follows:

2D Module assignment function:

{ m,(i,j))=(® T, +a+) %2
mp(j) = (® Th)%29

2D Row assignment function:

0a-(3)-(2)+4

where
J
o = <2q+hs> %2P
B = <2L . 2P—min(p,h5)> 04, 0P
q

48 CHAPTER 3. CONFLICT-FREE PARALLEL MEMORY SCHEMES

min(p,vs)—1
7_v - H 7_k—i-max(p,vs),k
k=0
min(q,hs)—1

Th = H 7—k—i-max(q,hs),k
k=0

Coordinateg/, j) is the 2D address in the 2DSMM address space with the size
of M x N, where the/ coordinate is also referred aertical addressand the

J coordinatehorizontal address$ereafter. m, (i,) is vertical memory mod-

ule assignment function and(;) is horizontal memory module assignment
function. The paim,, m,) determine which memory module in thé x 29
module array the addre$s j) will be mapped to, as illustrated in Figure13.6.

m, ,m
l/’ v

00(01{02(03(1,1|1,0{1,31,2(10|1,1|1,2|13{0,1]0,0/03]|0,2

1011 12]13]01[00]03]02]00[01]02]03|1,1[1,0[13]12

10 1,1]12]1,3]01[00][03|02|00]01][02|03]|1,1]10]13]12

00{01]02|03|1,11,0{1,3]1,2|1,0|1,1|1,2]13]0,1]0,0]0,3]|0,2

0,0 | 0,1

Figure 3.6: Example of 2DSMM module assignment f&f = 16,27 = 2,29 =
4,2 =2 2hs =2

m, andmy, are also calledrertical module indeandhorizontal module index
respectively.r(i, j) determines the local address of elemgnjf) in memory
module(m,, my). T, and T;, are XOR scheme address transformation matri-
ces taken from [36], as explained in Secfion3.2:2nd3 are column rotation
factors.« forces coarse grain rotation based on blocks of &ize29+"s while

0 exerts fine grain rotation based on blocks of dizex 29.

The 2DSMM memory works in the following manneM, N, p and g are
system design parameters which could not be modified aftesyistem is
designed. More specificallyy and N determine the total capacity of the
2DSMM memory, andp and g determine the number of memory modules.
vs and hs are also system parameters which deterniipeand T7,, but they
can be configured during runtime.

The proposed 2DSMM scheme supports conflict-free strided! otock, for-
ward diagonal and backward diagonal access and continweusimd block
access. FigurEZ3.7 shows some examples of different ace¢tssns. The

3.4. HARDWARE DESIGN AND IMPLEMENTATION 49

1,0 L1]1.2]13]0,1 0302100 |01

0,0]0,1]02]03]|1.1 1,3 12 10|11

0,0(0,1]02]03 |11 L3 1,210 1,1

1,013]12]1,0 1,21 1,3]0,1]00 |0,

,110,01(03]02 0,()(#,2 03|11]10]1,

//
,110,0]03102]0,0 020311 / 1,312

L0 13| 12] 10| 11| 1213 0,1 000302

10| 11 1,2

00[01]02[03|11|10[13]12

,110,0]03]02

P

000302

Jo2f03 |11 |10]13]12

A()%v

‘,

1,3 (0,

Smded Forward 7/ Strided Backward . .
. Strided Row . Strided Block Diagonal % Diagonal Continuous Row Continuous Block

Figure 3.7: 2DSMM access examples fof = 32,2°P = 2,29 = 4 2% =2, 2hs =2

detailed mathematical proofs of these properties are pregén AppendiB.

3.4 Hardware Design and Implementation

Above, we have presented the formulas of the SAMS and 2DSMidraes,
which can becustomizedo different access patterns, with the major parameter
being the stride family. For any parallel memory scheme to be practically
useful, it is important to have efficient hardware implenaéioh as the scheme
logic is in the critical path of every memory access. In théston, we will
examine the hardware implementation issues of the propsidezine.

Figure[3:8 illustrates the organization of parallel memsygtem based on
our customizable parallel memory schemes. The vector psoceore issues
memory access commands (base address and stride) to thesAd&8enera-
tion Unit (AGU), where the? linear addresses are calculated in parallel and
then sent down to the customizable parallel memory systehe €ight lin-
ear addresses are resolved by the Address Translation AIit) (into eight
module assignments, eight row addresses and eight rovt affdeesses. After
that, the eight groups of row-offset pair and eight data #déram input data
port (on a memory write) go to the address & data switch andaeed to

50 CHAPTER 3. CONFLICT-FREE PARALLEL MEMORY SCHEMES

4—
Base, stride

Address
Generation Unit

Linear
addresses
Module

assignment 0...29-1 Address

Translation Unit
Row, offset Row, offset
address 0 cee address 29-1
Y
->‘ InSwitch
Local row, ee Local row, offset
 J offset address 0 J address 2°-1
Memory Memory
Module 0 oo odule 2°-1
Data 0 oo IData 29-1
Y
—»‘ OutSwitch ‘

Figure 3.8: Parallel memory system based on customizable HW schemes

the proper memory modules according to their correspongiindule assign-
ments. In case of a read memory access, after the memory enagd latency
the eight read data are fed back to the vector processor eidata switch at
the bottom of FigurE-3]8.

3.4.1 SAMS Hardware Implementation

We will focus on the hardware implementation of ATU for SAM&; it is
the core of the parallel memory scheme. The remaining coemerof Fig-
ure[3B in the SAMS case are either trivial to implement (eA&U), or are
common in all parallel memory schemes (e.g., the input atpubswitches,
the evaluation of which will be delayed in later sections)ame independent
of parallel memory schemes (e.g., the discrete memory resjluhs we have
described in Sectioh—3.2, the Address Translation Unit nithpslinear ad-
dresses;(0 < i < 29 — 1) to the module-row-offset triplesi:(a;), r(a;) and
o(a;). Figure[3D illustrates the logic implementation of theradd translation
process ¢ denotes XOR logic). Note, in Figufe_B.9, the bits selectiaith-
out the involvement of are simplystatic wire selections. The latter which
are completely fixed as and g are fully determined by hardware (such as
a[n — 1 : q] in Figure[33® (b)), whereas those with involvementsafesult

3.4. HARDWARE DESIGN AND IMPLEMENTATION 51

I M
-1:g+
. an-1:q] LGN ra)
n-1
—»M u
. Uj—» 0%
n-2
: 0X
d2n-1::(9_’/f aln-1:0] static bits
e 19 (5:0.) selectlf)n s<=q?
([n-g-1:1])
. M
an IM » U m(a) (b)
. Uj—» (I<=s<=q)|
- 0 X
dJﬂm’/{ a[n-1:0]
s<=n-2? | a[stn-1:s] (s>q)
a (s, q)
LM
U '_. s207 1<=s<=q?
ao
an+|::(9_’ 0X
(a) (c)

Figure 3.9: SAMS address translation logic: (a)Module assignmenRdk) assign-
ment, (c)Offset assignment

Table 3.1: Delay and hardware usage of ATU

Configuration Delay (ns) Hardware Used
n q Logic Delay | Wire Delay | Total | Slices | LUTs
8 3 1.43 1.01 2.44 18 26
16 3 2.54 0.93 3.47 47 71
25 3 2.86 0.95 3.81 75 119
27 3 2.28 1.75 4.03 76 125
32 3 2.83 1.40 4.23 96 148
64 3 4.28 0.95 533 | 180 292
23 3 2.79 0.95 3.74 67 108
23 4 2.75 0.98 3.73 78 126
23 5 2.71 0.99 3.70 88 140

52 CHAPTER 3. CONFLICT-FREE PARALLEL MEMORY SCHEMES

multiplexors (such as,_; in Figure[3® (c)). And the comparisons i{a)
ando(a) logic(i.e. s < g, s # 0 andl < s < q) could be done and stored
a priori, therefore they are not in the critical path. Consadly, the critical
path of the row assignment logic is an— g bit CLA followed by a 2-to-1
multiplexer, and that of the offset assignment is an-(g)-to-1(incurred by
as_1, hote0 < s < n — g) multiplexer and a 2-to-1 multiplexer. For the mod-
ule address assignment functior{a), we have analyzed that after collapsing
and merging all the multiplexors in FigureB.9 (c), we coudd the simplified
hardware implementation with independent{ — g + 1)-to-1 multiplexors
fed by 2-input XOR gates. Hence, the critical path of the ni@dssignment
function is a 2-input XOR gate followed by a { g + 1)-to-1 multiplexer. No-
tice that the module, row and offset assignment functiondcwalependently,
therefore the critical path of ATU is the longest one amorgttiee, which is
then — g bit Carry Look-ahead Adder followed by a 2-to-1 multiplexethe
row assignment function.

It should be noted that, the critical path analyzed aboviedne for conflict-
free access. For a bank-conflicting vector access, it wildivaded into a
sequence of conflict-free sub-vector accesses which anestwwiced by the
parallel memory system back-to-back.

We have implemented the ATU in Verilog and synthesized ingislilinx ISE
9.1i. The target FPGA device is Virtex2-Pro XC2VP30-7FG67Mable[31
summarizes the performance results of our design in terrdelaf and hard-
ware utilization. The experiment is done under differemfigurations with
various module capacities (denotedd)yand number of modules (denoted by
q). For examplen = 23 means the address space (i.e. the capacity) of the
multimodule memory system &V (223) words andg = 3 means there are
8 modules. We could see that the SAMS address translatioo hag low
critical path delay, which is in the proximity @ ns. In addition, the FPGA
logic resources consumption is trivial - less th&3. It is also shown in the
table that the critical path delay and resource consumgitaie well with the
capacity of the parallel memory and the number of memory resdu

3.4.2 Implementation of 2DSMM Scheme
Address Generation Unit (AGU)

The data read/write command from the SIMD processor diregikes to the
AGU (Figure[3:8), where the calculations &9 2D access addresses from
the base address and access pattern are carried out. Stippbsese address

3.4. HARDWARE DESIGN AND IMPLEMENTATION 53

1) Strided Row:
@) Gj+HS) @ j+2-HS) - (i,j+@2"-1)-HS)
2) Strided Block:
@) (@ j+HS) (,j+Q2'=1)-HS)
i+Vs,j) @i+VS,j+HS) @i+VS,j+(27-1)-HS)

i+ =D-VS,j) (+@Q"=1)-VS,j+HS) - (+Q2"-1)-VS,j+(2'-1)-HS)
3) Strided Forward Diagonal

G,)) @+VS,j+HS) - (+Q2F=1)-VS,j+(@2" -1)-HS)
4) Strided Backward Diagonal

@) G+VSj—HS) - [+ =1)-VS,j-(2""-1)-HS)
5) Continuous Row:.

@) Gj+D) @j+2) - @j+2""-])
6) Continuous Block:

@) @ j+1) (i, j+27-1)
@+1)) (+Lj+D) o (L4271

(+2°=1,j) (+2°=1j+1) - (i+27—1j+2¢—1)

Figure 3.10: 2DSMM address generation patterns

is (i, /), then the addresses for the six different access pattegristd in Fig-
ure[310. For these calculations, multiplicatm;the following are needed.

2-V5, 3-VS, .., (2Pt —1). VS
2-HS, 3-HS, ..., (29 —1)-HS

Fortunately, they are not in the critical path, singg and HS are configured
by the vector processor core before the actual memory astads. There-
fore, the multiplications can be carried out in advance ey AbUs of the
baseline AGE and and stored in SRAM memories. With the multiplications
results at hand, the address generation is implementea wvdly as shown in
Figure[3TIL. We could see that the critical path of AGU cargtaine 5-input
multiplexer and onenax(log, M, log, N) -bit adder, and the logic resource
consumption is in the order @P*9.

’Sincep andq are fixed at HW design time, hence the multiplications camiygémented
with shifters and adders.

8Baseline AGU denotes the standard vector AGU without paleticsupport for customiz-
able parallel memory schemes such as SAMS and 2DSMM.

54 CHAPTER 3. CONFLICT-FREE PARALLEL MEMORY SCHEMES

Access pattern 1), 5) 0 > 0 -
Access pattern 3),4) _VS | \p Vs*H2Lh)
Access pattern2) _0 | Uj 0 > m
. . Access pattern 6 0 0
i o ccess pattern 6) _ U gl ¥ i » X v
i i
Access pattern Access pattern
Access pattern 1),3) _HS vee HS*@2%-1)
Access pattern 5) L M 201 "
Access pattern4) -HS | 5 -HS*(2%-1 U
i . Access pattern 2) HS Iy X HS*(2%-1) X .
q _
— b Access pattern 6) 1 il 241 i(2%-1)
Access pattern Access pattern
0, 0o, 0 4
%90 (. (A TH
V\S/SZ > M VS*2HD) | 0y VS* 2Dl
U VS—»u VS —»u
* i2 > X i (20+1) — X v
i
Access pattern Access pattern Access pattern
q 4 (471
-HS*2¢ -HS*(2%+1 -HS*(297-1 M
0 Y HS v ussEn ™ Y
0 »ix i 0 S X i (2%41) i ™ X i (%1
0 1 2%-1 ()
" A ,
Access pattern Access pattern Access pattern
0 » 0o, 0o,
VS*(2M 2T VSHQULOHD) VS*(2P1)
VS*(2P-1) M VS*(2P-1 M VS*(2"-1 M
2°-1 v 201 v) 2°-1 v
X X i (M) =X i (2r1)
; i7(2"+“-2‘*) ;
Access pattern Access pattern Access pattern
HS*(2"1-2% HS*(2P"1-20+1 HS*(27'9-1)
PR N 2»vq,2fl+1g_> M 2r'] M
_HSH(P T ™| wP sy ™ T
HS*(2' 02) U -HS*(2! -il;rl) U —HS:I(SZ*(Z—“I-U U
T x T X j_(2P9-2041) a ™ X j (27-1)
J _(
i@y

Access pattern

Access pattern

Access pattern

Figure 3.11: 2DSMM address generation logic for six access patterns

3.4. HARDWARE DESIGN AND IMPLEMENTATION 55

Address Translation Unit (ATU)

In the next step, the addresses generated by AGU go to theessld@ranslation
Unit and get processed in parallel. Address translatiohdsbre of the entire
2DSMM mechanism. It accepts two dimensional addresses randforms

them into the physical module numbers and module local addse For the
sake of discussion convenience, we repeat the 2DSMM schemmailas in

the following.

Module assignment function:

{ my(i,j) = [(, +(a+p)-2%) @ TV} %2P
mp(j) = (® Th)%29

Row assignment function:

o-(5) (3) 4

where
J
a= <2q+hs>%2p
- L . P—min(p,hS))o p
p= (2q 2 %2
min(p,vs)—1
7_v = H Tk+max(p,vs),k
k=0
min(q,hs)—1
7_h - H 7_k—i-max(q,hs),k
k=0

Under the constraints that bof and N are power of two, the row assign-
ment function is actually implemented by an adder which @tddsproper bit
sections of 2D addressésnd;. So the major concern of address translation
logic is the module assignment function. The binary veatatrix multipli-
cation where the structure of the matrix is variable couldrbplemented in
XOR gate array with a multiplexer. Ag is fixed, the2f—'q part in botha and

0 is actually selection of a fixed bunch of bits joftherefore no extra logic is
neededZZ partina andZ; -2°~™"(P.%%) part in/3 could be implemented with
multiplexers for dynamic bits selection. TB&™in(P.hs) part of 3 would in-
troduce another multiplexer into the critical path, howdveould be avoided

56 CHAPTER 3. CONFLICT-FREE PARALLEL MEMORY SCHEMES

/Him selection
-3
n

{i,00000}
; x <Y "N risj)
— u .
X j[7:2]

B
Y

P
Y

“—1
Y

my(j)

Il =<

0
Y YYYYYY

i

Figure 3.12: 2DSMM address translation circuit withf = 1024, N = 256, 2P =
2,29 =14

by calculating this in advance becaysé constant ands should be config-
ured at least one clock cycle before the actual memory aes@$she 2DSMM
memory would happen. One complete example of the addressdt@an logic

is shown in Figur€312% denotes XOR logic). In the example, the entire ca-
pacity of the 2DSMM memory is 1MB, which is consisted3¢® x 4) memory
modules with data width 32-bit. The entire 2D address spad®24 rowsx
256 columns.

In summary, the critical path of the module assignment fonds comprised
of one OR gate(2-input), one multiplexief, M — p+ 1 -input), one CSA and
one CLA (both are-bit; note the gate delay of CSA®(1)); while the critical
path of the row address assignment function is one adisier((V/ - N) — p— g
-bit). Both paths are independent from each other, thezdfae critical path of
the address translation logic is the longer one. For praatizses such as the
example in Figur€312, the critical path is the,(M - N) — p — g -bit adder.

3.4. HARDWARE DESIGN AND IMPLEMENTATION 57

Strided Forward
Diagonal

Strided Backward
Diagonal

. Strided Row . Strided Block

Continuous Row Continuous Block

Figure 3.13: 2DSMM properties for address & data routing simplification

58 CHAPTER 3. CONFLICT-FREE PARALLEL MEMORY SCHEMES

row address and

A index My, Tow address X
ccess inde data (on a write)

and data (on a

0 write) m,=0, my=0
4 m,=1, m=0
1 m,=0, my=1
— ordered row
5 my=1, my=1 addresses and data
(on a write)
— Module(0,0)
2 m,=0, my=2
All access T — _
patterns my=1, my=2 Module(0,1)
except
continuous L] = =
Tow access 3 m=0, my=3 Moduel(0,2)
7 m,=1, my=3
= | Module(0,3)
= =0, my=0
0 my, row address and M0 Module(1,0)
— data (on a write) =0, my=1
Continuous 1
row access | ||) =0, my=2 acedss pattern Module(1,1)
3 m,=0, m;=3 Module(1,2)
T m,=1, m=0 Module(1,3)
5 — m,=1, my=1
L m,=1, m=2
7
= m,=1, my=3
. . .
E Stage 1 E Stage 2 E
H H H
1 1 1
' ' '
Figure 3.14: 2DSMM address & data routing unit
)
N 7
[\ Wi

77
7

Continuous Block

. . 7 Strided Forward Strided Backward D .
. Strided Row . Strided Block & Diagonal % Diagonal Continuous Row

Figure 3.15: Definition of access index for six 2DSMM access patterns

3.4. HARDWARE DESIGN AND IMPLEMENTATION 59

=0 m;;=0

e me=t my=0

m,=0

| m=0, m=1

N m=1, my=1

|
D e

- M my=1
St mel

m,=1

BREa R ERiEa

salaniioainn)

Figure 3.16: 2DSMM address & data routing exampl® (= 2, 29 = 2)

Address & Data Routing Unit

The resolved addresses from the ATU have to be proper rowgfmiebthey
reach their destination memory modules. The functiorAdfiress & Data
Routing Unit(Switch in Figure[3B) is to route the local addresses and dat
items (on a memory write) to the module numbers and routetdatatput port

on a memory read. It should be noted that, basically a fubsisar switch is
indispensable if thé”™9 addresses/data coming from the ATU go to 2h&9
memory modules in aad hocmanner, and the requirement of address/data
switch exists for any multiple module memory systems relgasdof the pres-
ence of the memory scheme. Fortunately, Theorem 7 guasatitaefor all
2DSMM access patterns except continuous row, when the @iseggsience in
the pattern are arranged2A x 29 array, all accesses in the same column are
assigned to the sammy,; for continuous row access, all accesses in the same
row are assigned to the samg. Figure[3.IB is an example. In the figure, the
data items connected by dotted ellipse or arrows are askigrtbe sameny,,

and data connected by continuous ellipse are assigned sathem,. The
parameters in the example ae= 32, 2P =2, 29 = 4, 25 =2, 2hs =2,

With the help of the inherent properties of 2DSMM scheme atiéress/data
routing circuitry could be largely simplified, as Figure 4.ilustrates. The
“access index” at the left side of the figure denotes the (et index in the
six access patterns, counting from @59 — 1, as shown in Figure_315.

In Figure[3IH# there ar@”™9 incoming packages and each of them is com-

60 CHAPTER 3. CONFLICT-FREE PARALLEL MEMORY SCHEMES

prised of a module index paif(, and m,, from ATU), a module local ad-
dress(from ATU) and a data item from input data port(on a mgmweite).

In the simplified routing circuitry, all incoming package® grouped in two
different ways according to the access patterns. If thessdeenot the contin-
uous row access, then the incoming data are arrangeddrmgmups according
to their my(this is stage one). Now there a2 packages in each group and
each package is consisted ohg, a module local address, and data(on a write).
Then each group ialignedaccording tan, of each package(this is stage two).
After the alignment, only module local address and data(amite) are kept
and they are already ordered in line with the module indetetore, the local
addresses and data could go to the proper memory modules.piiduedure
corresponds to the upper data flow in Figire B.14. For théraomis row ac-
cess, the procedure corresponds to the lower data flow ingheefiWe could
notice that it is also divided into two stages, however, thating informa-
tion shifts for both stages, compared with the upper case. tiWb data flow
merges and the proper data set is selected according todassagattern and
connected to the”™9 memory modules at the right side of the figure. Fig-
ure[3.I6 shows an example for the routing process. For treafaimplicity,
the number of memory modules in the exampl ¥s2, and the routing shown
is for all the access patterns except continuous row adbesspper path of
Figure[3I#).m, andm,, in Figure[3.Ib are the resolved addresses of access
index 0, which guide the two stage routing for it as illustrated iricbtine.
Note for the first stage routing, access in@exre treated in the same way with
access indef because they have the samg, which is shown in the figure by
a thin line following exactly the same way of the bold line tage one.

Above is the description of inward address/data routinghaeism. The phi-
losophy of output data routing is simple: read data shoultbgehere the ad-
dress is from. In other words, the outward data routing isrtherse procedure
of the inward case. Therefore for the outward data routimg data flow goes
from the right side of Figure-3:.14 to the left. The routinglsoeorganized into
two stages just as the inward routing does, moreover it tatleantage of the
same routing information(i.em, andmy) used in inward routing during the
two stages. The only difference is that the stage 1 of inwauntimg becomes
stage 2 of outward routing, and vice versa. The routing méidron is stored
in some registers at the beginning of the next clock cycler dfiward routing
and it could therefore be used in the outward routing cycleckvis exactly the
next clock cycle after the inward routing(note the syncbhtenSRAM module
takes one cycle to read the data out).

The critical path of Address & Data Routing Unit is comprisefdthree 2-

3.4. HARDWARE DESIGN AND IMPLEMENTATION 61

Table 3.2: 2DSMM scheme critical path and logic consumption

Name Critical Path Logic Consumption
Address Generation | one 5-input multiplexer and ong O(2°P*9)

Unit max(log, M, log, N) -bit adder

Address Translation | onelog,(M - N) — p— g -bitadder | O(2°P*9)

Unit

Address & Data | three 2-input multiplexers and twd O(2P*9 - (data-width +
Routing Unit OR gatesZ2P and29 -input each) log,(M - N) — p—q))

Table 3.3: 2DSMM scheme storage consumption
Name SRAM Bits
Address Generation Unit 2PT9 . logy(M - N)
Address & Data Routing Unit | 2P*9 . (p + q)

input multiplexers and two OR gat@8(and 29 -input each), among which
each stage contributes one multiplexer and one OR gateharattess pattern
selection logic contributes another multiplexer. The ¢dogbnsumption is in
the order of2P*9 - (data_width + local_address_width), wheredata_width is
the data width of the 2DSMM memory, atwtal_address_width is the number
of address bits of each memory module, lag,(M - N) — p — q.

Critical Path and Logic Consumption of 2DSMM Scheme

The critical path and logic consumption of 2DSMM scheme ararsarized
in Table[3:2. Note, the logic consumption in the table is Hasethe count of
the parallel critical path circuitry. Table=3.2 only givé®tcombinational logic
consumption. For the 2DSMM scheme, the dominant SRAM copsiom

comes from the/S - i andHS - i(i = 0,1,2...,2PT9 — 1) lookup table used in
ATU and the storage for routing information in Address & DRitauting Unit,

as shown in Table=3.3.

In summary, we could see that the 2DSMM scheme has relatsheyt crit-
ical path which basically increases in proportion to thealithm of memory
size, and logic consumption which grows roughly in promortto the num-
ber of memory modules. Therefore, it could potentially hgaed scalability
with system parameters of memory size and memory module eurdfe will
examine this in more detail in the following section.

62 CHAPTER 3. CONFLICT-FREE PARALLEL MEMORY SCHEMES

Implementation in FPGAs

In the following we will see how the critical path delay, LUTlsokup table)
consumption, SRAM bits consumption scale with the 2DSMM rognsize.
The total memory size is the multiplication of memory moduaienber (i.e.
2P+4), memory module depth (number of data items per memory regdlel,
log(M - N) — p — g), and memory module data width. We will investigate
how the three factors independently influence the hardwapéeimentation of
2DSMM memory.

Delay (ns)
o ws oo 0o
T

al Path

ritic

C
=3

32 128 512 2048 8192

Buffer Size(K Bytes)

7000 120
5 6000
2 5000

100

80

60

40

20

0 L

0.5 2 8 32 128 0.5 2 8 32 128
Memory Module Depth (¥1024) Memory Module Depth (x1024)

Z 4000 f
S 3000 [
”
£ 2000
3
= 1000

Reg bits Consumption

Figure 3.17: 2DSMM memory module depth scaling in Stratix-1l wigh = 2, 29 =
4, data_width = 64

Figure[3I¥V shows the scalability of critical path delay émgic consump-
tion of the 2DSMM memory with memory module depth in StradtiEPGA.
From the first plot in the figure we could see that there iggy slightin-
crease in the critical path delay. This could be explainedhigyanalysis in
Table[32, which indicates that the critical path includes adders of which
the input bits increase linearly with respect to the inoeealog, M and/or
log, N. Consider the fact that the delay of a CLA is in proportionte tog-
arithm of number of its input data bits, it is clear that theical path delay
grows in a logarithm(logarithm) manner with the increasanamory mod-
ule depth. This results the very slight increase of theaaiitpath delay in
the first plot of Figurd_3.17. As for the logic consumptionisitess than 8%

3.4. HARDWARE DESIGN AND IMPLEMENTATION 63

ALUTS consumption and less than 2% SRAM bits of the FPGA resources
even for the largest memory size configuration of the expemii@MB). For
the ALUTs consumption, we could see from the second plot glife[3.1V
that there is no remarkable change during the scaling. Netexerwhelming
majority of the ALUTs consumption comes from the Address &@®Rout-
ing Unit in the experiment configuration, as show in Figure33.Therefore,

0% 1% 2%

O Address Inferring Unit

B Address Resolution
Units

O Address & Data Routing
Unit

O Other

94%

Figure 3.18: 2DSMM ALUTs consumption breakdown in Stratix-1l with? =
2,29 = 4, data_width = 64, memory module depth=8192

the scalability of 2DSMM memory combinational logic consution is deter-

mined by that of the Address & Data Routing Unit. From TdbE2\8e know

that the impact of memory module depth on the logic conswnps trivial, as

long as the change of logarithm of memory module depth is|stoatipared

to datawidth(i.e. A(log,(M - N) — p — q) < data_width), which is the case
for the experiment configurations and most of the real apfitios. For the
SRAM bits consumption, from Tab[e_3.3 we know that the SRANA lgion-

sumption increases in a logarithm manner when scaling thmanemodule

depth. This is shown in the third plot of Figure=3.17.

Now we will have a look at 2DSMM memory scalability regarditiata width
of memory modules, as shown in Figure-3.19. Theoreticakky data width
would not influence the critical path delay, however, we dasge from the
first plot that there is some increase in critical path delasing) the scaling
of data width. By further investigating the breakdown otical path delay
we found that the increased part comes from the FPGA inteexiion delay.
This could be further explained by the second plot of Figui€l3In the plot
of ALUTs consumption, we could see that the combinationgid@onsump-
tion grows linearly with the increase of data width (agae X-axis is plotted

SALUT: adaptive lookup table, a terminology from Altera fos LUTSs in Stratix-1l FPGAS.
See http://www.altera.com/literature/hb/stx2/ssi51002. pdf.

64 CHAPTER 3. CONFLICT-FREE PARALLEL MEMORY SCHEMES

in logarithm manner), which is exactly in accordance with #malysis in Ta-
ble[32 (Remember the majority logic consumption comes frloenAddress
& Data Routing Unit). With the huge increase in the logic aangtion, the
2DSMM logic becomes more and more interconnection boumaeti¢ularly
in the FPGA fabric), therefore the critical path grows as aseguence of in-
creased interconnection delay. From the third plot of FR{IA9 we could see
that the data width does not influence the SRAM bits consumpiivhich is
also indicated in Table3.3.

Critical Path Delay(ns)

8 16 32 64 128
Data Width(bits)

11000 100
= L

= 12000 | 5 90
= £ 80
2 10000 | g 70
8000 z 60 -
6000

ti

50
40
30

4000
20
10

2000
olmm . [‘ 0

8 16 32 64 128 8 16 32 64 128
Data Width(bits) Data Width(bits)

ALUTs Consum

Reg bits Consum

Figure 3.19: 2DSMM data width scaling in Stratix-1l witheP
4, memory_module_depth = 32K

2,29 =

Finally we will check how 2DSMM scales with the number of meynmod-

ules, as shown in Figufe—3]20. In this phase, the criticah pleday grows
roughly in logarithm manner and a major part of the growthassed by the
increase of FPGA interconnection delay due to the enornumis expansion
in the Address & Data Routing Unit. The resource consumptifdooth com-

binational logic and SRAM bits increases linearly during fitaling, which is
indicated precisely in Tab[e-3.2 and Tablel 3.3.

We have also implemented the 2DSMM memory in Xilinx Virtex4
XC4VLX200 FPGA. We found the properties of the hardware enpéntation
results remain the same in Virtex-4, which further confirm good scalability
of the hardware implementation of 2DSMM memory.

3.5. DISCUSSION 65

Path

Critical
N SN

B

4

@

16 32
Memory Module Number

16000 500
14000
12000
10000
8000
6000
4000

w 100
2000 g 5o I:l
P e [=/ .
4 8 16 32 4 8 16 32
Memory Module Number Memory Module Number

o w
a3
SR

bits Consumption

its
— o
oS
RS

ALUTs Consumption

R
o
=3

o

Figure 3.20: 2DSMM memory module number scaling in Stratix-1l with
data_width = 16, memory_module_depth = 16 K

3.5 Discussion

The most distinctive aspect of our scheme compared to théopiesolutions
is that it avoids the module conflicts when the memory refezguatterns go
back and forth between unit-stride and strided accessdghan truly-parallel
data access is supported. Unlike the out-of-order vectoesscscheme, our
proposal preserves the data sequence required by the Ve&tidstore units,
thus atomic parallel access is achieved for short vectatpaak performance
could be sustained for vectors as shor2aslements. The SAMS is a memory
scheme with no redundancy and high utilization of moduleueses. On the
other hand, the SAMS scheme is complementary to the existictgniques,
which means that it could also take their advantages to ivepsystem per-
formance. For instance, it adopts the idea of the dynamiersehwheres can
be configured by the software at run time for different stfalmily access in
different execution phases. For long vectors, it could als@augmented with
out-of-order intra-vector access scheme to support coffifie access for a
wider spectrum of stride families.

It should be noted that SAMS is just one of the set of parallemary schemes,
which provide conflict-free access support for cross stférily vector ac-
cesses, under the configuration of 2D memory modules witle d@ata lines.
It has not yet been proved that SAMS scheme is optimal in tefriigee number

66 CHAPTER 3. CONFLICT-FREE PARALLEL MEMORY SCHEMES

of strides supported, and the complexity of hardware implaation. There-
fore, it could be worthwhile to explore the design space ooy schemes
under the configuration of wide memory modules, to hopefiitig a scheme
with better performance compared to SAMS.

Even inside the SAMS scheme itself, there is still space &fgomance im-
provement. As presented in the chapter, we have elaboratédeomodule
assignment function; however we chose the row assignmehbffset assign-
ment functions straightforwardly. With the module assigminfunction fixed,
there are no means to enlarge the number of supported cdrdicstrides as
the module conflict patterns are fixed with a fixed module assent func-

tion. We also found that the row assignment function doesaffett neither
the module conflicts nor the hardware implementation of tA&S scheme.
However, the offset assignment function, which determihesrelative posi-
tions of the data items in the same row, do have some impadteohardware
implementation. Namely, the offset assignment functiotewmines the per-
mutation patterns of accessed data which should be supdoytihe data rout-
ing circuitry of the SAMS scheme. Therefore, investigationother offset as-
signment functions could also be helpful for better har@aamplementation.

The simplicity of 2DSMM memory comes in the following wayr$i it is the
simplicity of address translation unit which makes pataltidress translation
possible. The other way of address translation in the cowofegsarallel multi-
module memory for SIMD access is to use lookup table, as addpt[118].
In that work, as the prime memory scheme is used, the mod@mtipns on
a prime number make the lookup table solution the only ch@acenodule
assignment function. However, the existence of lookupetalokt only results
in longer critical path and larger die area consumption, disb wastes the
opportunity of parallel address translation because injgractical to provide
each memory module with an independent lookup table. As aemprence
another stage of lookup table is utilized to get the other utedssignments
from the one got from module assignment lookup table in [118kcond,
the inherent characteristics of the six 2DSMM access petprovide with
the a priori “access group” information which is very usefii the routing,
therefore allows replacing the full crossbar switch with acim simpler two-
stage switching circuitry.

Regarding the applications, both the SAMS and 2DSMM schareapplica-
ble wherever the data level parallelism is exploited, todbtize performance of
data intensive applications with both unit-stride anddgii memory accesses.
For instance, the SAMS scheme is adopted as on-chip logal &iothe Cell

3.6. SUMMARY 67

SPE, a typical SIMD processor [68], in Chapfér 4 to improve themory
access flexibility. Similarly, they can also be considermdiritegration as on-
chip buffer for GPP SIMD extensions, where the data aligrtraed permuta-
tion problem, which results from the lack of flexible memoogess support,
remains a bottleneck for many applications [106, 124]. ¢tk be noted that
the integration of a SIMD buffer into a GPP introduces coheegproblem, as
it will be deployed at the same level as the data caches in memerarchy.

However, this problem could be solved by either snoopinghaeisms or by
the use of non-cacheable regions in the address space.

3.6 Summary

In this chapter, we proposed the SAMS scheme, which imprtheeprevious
non-redundant interleaving schemes (with power-of-twonmey modules) by
supporting both conflict-free access for both unit-stridd atrided patterns.
In the SAMS approach, we created a hierarchical way of comgasingle-

affiliation memory scheme from a given multi-affiliation sche. Further-
more, we added a new dimension of data access parallelisrapogsenting
each memory module as a 2D storage to resolve the unit-sicickess conflicts
in the single-affiliation scheme. In this way, SAMS providdgsmic access
time for unit stride access, while it could preserve all bts@f the existing

cross-stride-family parallel memory schemes. To our beetedge, SAMS
is the first non-redundant, power-of-two parallel memoryesne supporting
both strided and unit-stride conflict-free vector access.

In addition, we proposed the 2DSMM scheme based on the b&iRs¢heme,
which supports fully concurrent strided access patternsooizontal, block,
and diagonal access in 2D address space. Besides stridesbait@lso sup-
ports parallel continuous access patterns of horizontdldock access (on
predefined boundaries).

Hardware implementation results in FPGA technology sugglesrt critical

path of the SAMS address translation logic, which is a striodgcation for

the feasibility of the proposed SAMS scheme in practicakfbelr memory
systems. Results also show that vector memory systems baskd 2DSMM

scheme have the advantage of efficient hardware implenmamizt compared
to related work. In particular, we have demonstrated thedgamalability of

2DSMM hardware implementation in terms of both critical lpaelay and
area consumption, with both theoretical analysis and implgation results.
Furthermore, the proposed schemes achieve high memorylenoiilization,

thanks to their non-redundancy nature.

68 CHAPTER 3. CONFLICT-FREE PARALLEL MEMORY SCHEMES

Note. The contents of this chapter is based on the the followingzap

C. Gou, G. Kuzmanov, G. N. GaydadjigMatched SAMS Scheme: Sup-
porting Multiple Stride Unaligned Vector Accesses with Mutiple Mem-

ory Modules, CE Technical Report, CE-TR-2008-06, pp. 1-27, Computer
Engineering Lab, TU Delft, October 2008

C. Gou, G. Kuzmanov, G. N. Gaydadji8AMS: Single-Affiliation Multiple-
Stride Parallel Memory Scheme Proceedings of the 2008 workshop on
Memory access on future processors: a solved problem? (Nd8Wpp. 359—
367, Ischia, Italy, May 2008

C. Gou, G. Kuzmanov, G. N. Gaydadji@bSMM: 2D Strided Multi-access
Memory, CE Technical Report, pp. 1-38, Computer Engineering Lalh, T
Delft, July 2007

C. Gou, G. Kuzmanov, G. N. Gaydadji@D Stride Multiaccess Memory
SchemeHIPEAC ACACES 2007, pp. 193-197, L'Aquila, Italy, July 200

Providing Multiple Views to Data

match between data representations in memory and thosedaby

the SIMD processor. In this chapter, we propose to bridgedite
crepancy between data representations in memory and theseedl by the
SIMD processor byustomizing the low-level address mappinfp achieve
this, we employ the extended Single-Affiliation Multiplériie (SAMS) par-
allel memory scheme at an appropriate level in the memomatadby. This
level of memory provides both Array of Structures (AoS) atidi§ure of Ar-
rays (SoA) views for the structured data to the processqreaing to have
maintainedmultiple layoutsfor the same data With such multi-layout mem-
ory, optimal SIMDization can be achieved. Our synthesislissising TSMC
90nm CMOS technology indicate that the SAMS Multi-Layoutrivtery sys-
tem has efficient hardware implementation, with a criticaihpdelay of less
than 1ns and moderate hardware overhead. Experimentabtical based on
a modified IBM Cell processor model suggests that our apprigaable to
decrease the dynamic instruction count by up to 49% for ateteof real
applications and kernels. Under the same conditions, thédgecution time
can be reduced by up to 37%.

E fficient SIMDization of applications is often hampered by the mis-

4.1 Introduction

One of the most critical challenges in SIMD processing isdgga by the data
representation. By exploiting explicitly expressed dateapielism, SIMD pro-
cessors tend to provide higher performance for computatiomtensive ap-
plications with lower control overhead compared to sudesanicroproces-
sors. However, SIMDization suffers from the notorious peafs of difficult
data alignment and arrangement, which greatly undermérotiential perfor-

69

70 CHAPTER 4. PROVIDING MULTIPLE VIEWS TO DATA

mance [11, 106, 124].

In both scientific and commercial applications, data is Uguaganized in a
structured way. A sequence of structured data units coutdpresented either
in AoS (Array of Structures) or in SoA (Structure of Arraysrrat. Such
a data representation predetermines, at the applicatiah lhe data layout
and its continuity in thdinear memory address spack has been found that
most SIMDized applications are in favor of operating on Sofat for better
performance [46, 61]. However, data representation in ysé&een memory is
mostly in the form of AoS because of two reasons. First, Aothdsnatural
data representation in many scientific and engineeringcagjgns. Secondly,
indirections to structured data, such as pointer or indexesy accesses, are in
favor of the AoS format. Therefore, a pragmatic problem m $iMDization
arises: the need for dynamic data format transform betwes® @nd SoA,
which results in significant performance degradation. Tiobmst knowledge,
no trivial solution for this problem has been previouslygwsed. Our SAMS
Multi-Layout Memory system, presented in this chapter,pgufs contiguous
data access for both AoS and SoA formats. The specific catitits of our
proposal are:

e custom, low-level address mapping logic to manage indaliéhternal
data layout and provide efficient memory accesses for bot8 aad
SoA views;

¢ novel hardware/software interface for improved programpneductiv-
ity and additional performance gains;

e the SAMS scheme implementation in TSMC 90nm CMOS technology
with affordable critical path<€ 1 ns) and its integration into the IBM
Cell SPE model,

e Up to 49% improvement in dynamic instruction counts for egablica-
tions and kernels, which is translated into a 37% reductfadheooverall
execution time.

The remainder of the chapter is organized as follows. Ini@eg2, we pro-
vide the motivation for this work. In Sectidn%.3, the origirBAMS scheme
and the proposed extensions are briefly described. The hegdwplemen-
tation and synthesis results of the SAMS Multi-Layout Meysystem and
its integration to the IBM Cell SPE are presented in Sediigh &imulated
performance of the SAMS memory in applications and kerreeévaluated in
SectiofZ4b. Finally, Sectidn 4.6 summarizes the chapter.

4.2. MOTIVATION 71

B[4]

c[4] = a[4] * B[4]
where o
Co=ag*bo+a1 *by+az*bs'
C1'=ag*by'+ay *bs+a, b7
Co=ag"by+a;*be+a, by
(i=0,1,2,3)

b’ | by | b’

by’ | bl | bs°

be’ | b | bs’

vector data used in SIMD
(a) SoA SIMDization scheme @ processor with SoA
SIMDization scheme

data port width=4 elements vector data stored with SoA
address @ storage format in memory:
— @ @ contiguous
0 0 0 1
0x1F10 | a0’ | a0’ | ao> | a¢® a’ la’ | &’ a 1 memory access
no data rearrangement

0x1F20 a10 all alz a13 all azl aoz alz vector data stored with AoS

storage format in memory:
1

2 3 3 3 i i
0x1F30 | &’ | &' | & | &’ a | a far | a @) | Jiscontiguous
3 memory accesses

data rearrangement
eIerLent size=4B required

(b) SoA storage scheme (c) AoS storage scheme

Figure 4.1: Vector-matrix multiplication: multiple working data sets

4.2 Motivation

Motivation Example: We shall examine the SIMDization of vector-matrix
multiplication, c = a x B, wherea andc are 1x3 vectors anB is a 3x3 ma-
trix with column-major storage. Although the involved coutgtions are quite
simple, SIMDizing them to achieve optimal speedup is veffyadilt. Assum-
ing a 4-way SIMD processor, the first apparent drawback isahly 75% of
the available bandwidth could be utilized during vector tiplications for the
inner products. Afterwards, all the three elements of thetoremultiplication
result have to be accumulated. However, this is not stri@iphard because
the three elements are located in different vector lanekvahiector operation
could be done in SIMD processors only when its operands atetdited in the
same vector lane. Therefore, a sequence of data shuffletiopesrs necessary
to rearrange the elements to be accumulated in the same Moesover, due
to memory alignment restrictions in many practical SIMDtewyss, neither the
second, nor the third column & can be accessed within a single vector load;
instead, they require additional load and shuffle instanstito fetch and rear-
range the data into the right format. As a consequence ofé¢hisangement,
performance is penalized. Zero-padding can be used in sppiEations to

struct vec3 {float a0[4], float a1[4],
float a2[4]};

struct matrix3 {float bO[4], float
b3[4], float b6[4], float b1[4], float
b4[4], float b7[4], float b2[4], float
b5[4], float b8[4]};

struct vec3 a, c;
struct matrix3 b;
vector float a0, a1, a2, b0, b1, b2,
b3, b4, b5, b6, b7, b8, c0, c1, c2;

/'load a with SoA format
a0 = *(vector float*)a.a0;
a1 = *(vector float*)a.a1;
a2 = *(vector float*)a.a2;

//load b with SoA format

/I do computation

c0 = a0*b0+a1*b3+a2*b6;
c1=a0*b1+a1*b4+a2*b7;

c2 = a0*b2+a1*b5+a2*b8;

/1 store results to ¢ with SoA format
(vector float)c.a0 = c0;

(vector float)c.a1 = c1;

(vector float)c.a2 = c2;

(@
SoA storage +
SoA SIMDization

struct vec3 {float a0, float a1, float a2};
struct matrix3 {float b0, float b3, float b6, float b1, float b4,
float b7, float b2, float b5, float b8};

struct vec3 a[4], c[4];

struct matrix3 b[4];

vector float a0, a1, a2, b0, b1, b2, b3, b4, b5, b6, b7, b8,
c0, c1, c2;

/I'load a with AoS format, transform it to SoA with shuffles
vector float tmp0 = *(vector float*)a;

vector float tmp1 = *(vector float*)(&a[1].a1);

vector float tmp2 = *(vector float*)(&a[2].a2);

a0 = spu_shuffle(tmp0, tmp1, pattern_0360);

a0 = spu_shuffle(a0, tmp2, pattern_0125);

a1l = spu_shuffle(tmp1, tmp2, pattern_0360);

a1l = spu_shuffle(a0, tmp0, pattern_5012);

a2 = spu_shuffle(tmp2, tmp0, pattern_0360);

a2 = spu_shuffle(a0, tmp1, pattern_2501);

/l'load b with AoS format, transform it to SoA with shuffles

/I do computation

c0=a0*b0+a1*b3+a2*b6

c1=a0*b1+a1*b4+a2*b7

c2=a0*b2+a1*b5+a2*b8

/I transform results from SoA to AoS format with shuffles,
store them to ¢

(b)
AoS storage +
SoA SIMDization

struct vec3 {float a0, float a1, float a2};
struct matrix3 {float b0, float b3, float b6, float b1, float b4, float b7,
float b2, float b5, float b8};

struct vec3 a[4], c[4];

struct matrix3 b[4];

vector float a0, a1, a2, b0, b1, b2, b3, b4, b5, b6, b7, b8, c0, c1, c2;
/I global addresses in main memory: gaa (for a), gab (b), gac (c)

/I reading data from main memory to multi-layout memory
AOS_DMA_GET(a, gaa, 4*sizeof(vec3), tag, vec3);
AOS_DMA_GET(b, gab, 4*sizeof(matrix3), tag, matrix3);
/l'load a with SoA view

BEGIN_MULTI_VIEW(vec3);

a0 = SOA_GET(&a[0].a0);

al=SOA_GET(&a[0].a1);

a2 = SOA_GET(&a[0].a2);

/l'load b with SoA view

BEGIN_MULTI_VIEW(matrix3);

b0 = SOA_GET(&b[0].b0);

b1 =SOA_GET(&b[0].b1);

b8 = SOA_GET(&b[0].b8);

/I do computation
c0=a0*b0+a1*b3+a2*b6
c1=a0*b1+a1*b4+a2*b7
c2=a0*b2+a1*b5+a2*b8

/I store ¢ with SoA view
BEGIN_MULTI_VIEW(vec3);
SOA_PUT(&c[0].a0, c0);
SOA_PUT(&c[0].a1, c1);
SOA_PUT(&c[0].a2, c2);

/I writing data from multi-layout memory to main memory
AOS_DMA_PUT(c, gac, 4*sizeof(vec3), tag, vec3);

(c)
AoS storage + SoA SIMDization
+ Multi-layout memory

Figure 4.2: Sample vector-matrix multiplication code

ZL

Vivg Ol SM3IA 3TdILTINIA ONIAINOYH ‘7 d3LdVHD

4.2. MOTIVATION 73

alleviate the data alignment problem, but at the cost of @ghstemory space
and additional memory bandwidth which can become prokiditiexpensive
for some applications (e.g. the Wilson-Dirac kernel).

Fortunately, it is common in applications with high datagatism that the
processing is to be operated upon multiple independentsadsa just as Fig-
ure[41a suggests. The SIMDization method which exploita parallelism in
single data set processing is still applicable, which wallrbferred to as “AoS
SIMDization scheme” in the chapter. However, we can also > SIMD
operation to a batch of data sets to exploit inter-datassdllpbsm, which
is referred to as “SoA SIMDization scherfle’If the data storage scheme is
SoA, illustrated in FigureE4l1b, optimal performance gdifoar times speed-
up could be potentially achieved. The example code for thieds shown
in Figure[42a. However, if the data format in memory is AcSsaggested
in Figure[41.c, the data rearrangement is inevitable, tiaguin performance
degradation. The example code for this case (Figule 4.2jgests that, e.g., 6
shuffles are required to rearrange 3 vector elemergdadded from memory,
which are apparently non-trivial overhead compared to tgedh vector-matrix
multiplication.

Problem Statement: From the above example, it can be observed that parallel
processing of a batch @V data sets is more favorable for better utilization of
SIMD parallel datapath and thus results in higher perfomeanTherefore,
the SoA SIMDization scheme is preferable in most cases. ttinfately, the
most common data layout in the main memory is AoS (as brieflgudised in
Sectiorf&1l). This data representation discrepancy pasigsificant overhead

of dynamic data format conversions between the AoS and SoA.

Proposed Solution: The essential reason for the data format mismatch is that
there isno single optimal data layoubr different data access patterns. For
operations based on indirections, the AoS storage schepreferable since
access to fields inside a data set is contiguous; while forCstderations in
most cases, the SoA storage scheme is favorable. To bridgdatia repre-
sentation gap, our idea is to design a memory system, whiesepres the
benefits of both AoS and SoA layouts. We call such a systemtiiayiout
memory” and its position and main functionalities are shavRigure[4.B. In
such a system, the multi-layout memory is deployed betweemiain memory
and the SIMD processor, working as an intermediate datagtoto provide
contiguous data access to both data fields within the sanaesgat(like the
AoS layout) and the same field across consecutive data setshé SoA lay-

Also known as “outer-loop vectorization” [107].

74 CHAPTER 4. PROVIDING MULTIPLE VIEWS TO DATA

Contiguous access to
fields in same data set

assuming AoS format
Multi-layout
memory > Contiguous access to
same field in con-
y secutive data sets
assuming SoA format

Main memory
(AoS data layout)

Figure 4.3: The proposed multi-layout memory

out). Therefore, the penalty of dynamic conversion betwtherAoS and SoA
data representations is completely avoided with the helfisfmulti-layout
memory. The vector-matrix multiplication code for this eas shown in Fig-
ure[4.2c. It can be observed that, the programmer can eagitgss multiple
views of the data arrays and the shuffle overhead is complateided.

It is worthy to mention that, assuming AoS layout in the linaddress space,
the AoS view of data requires unit-stride access, while & @ew requires
strided access, where the stride is determined by the siteafiorking data
structure. We will address this issue in the following sacti

4.3 The Extended SAMS Scheme

4.3.1 Original SAMS Scheme

Given a specific physical memory organization and resoupasllel mem-
ory schemes determine the mapping from the linear addrese $p physical
locations, such as the module/bank number and row addresstoraccess
is one of the most important memory reference patterns inCai&d appli-
cations. Traditional parallel memory schemes in vector maters provide
conflict-free access for single stride family. To solve the module conflicts
encountered with the cross stride family accesses, sewehalncements have
been previously proposed in literature, such as the use rdrdic memory
schemes [35, 36], use of buffers [34], use of more memory hesd34], and
out-of-order vector access [144].

In Chapte B, a parallel memory scheme, SAMS, was proposeifrtolta-
neously support conflict-free unit-stride and strided memaxcesses. The
SAMS scheme is mathematically described by three functittresmodule as-

4.3. THE EXTENDED SAMS SCHEME 75

float a[100];
struct X {float x0, float x1, float x2} x[12]; layout | stride family (s)
struct Y {float y0, float y1, float y2, flat y3} y[12];
Module 0 Module 1 Module 2 Module 3 D Nas$
.. .. e D 0
a[0] |a[1]| |a[2]|a[3]| |a[4]|a[5]| |a[6] a[7]
] 2
Xo X]] X1 le X2 on xol X1
. . Xm" = X[n].xmM
X2" | Xo x| x| x| x X2 | Xo° Ym' =y[nl.ym

Multi-view access example

i AoS view @y[0].y0:
P Y010, yioly1, yI0ly2, yi0l.y3}
t---<d > Single memory access

SoA view @y[0].y0:
D {y[01.y0, y[1].y0, y[2].y0, y[3].y0}

-> Single memory access

Figure 4.4: Internal data layouts in SAMS Multi-Layout Memory

signment functiofEquatior3.]1); theow assignment functio(Equatio3.R);
and theoffset assignment functigiicquation[3.B). Detailed treatment of the
scheme and the functions was discussed in Selction 3.2.

4.3.2 Proposed Extensions

We have made two important extensions to the original SAM@IsE (Chap-
ter[3), in order to better meet the requirements and consiraif practical
SIMD systems, related to (1)multi-layout support and (2nstrided access.

(1)Multiple Data Layouts Support: In ChaptefB, it was assumed that the en-
tire SAMS memory system adopts a single low-level addregsping (linear
address-module/row/offset) scheme and therefore manages unifiednizl
data layout pattern. Although this simplifies the memoryeascsince it does
not need to indicate the stride family for which the accestad is optimized
(such information is maintained at the global scope), ii§igantly limits the
SAMS applications, since there are many applications withipte structured
data, which require different internal data layouts foiirmad access efficiency.
The Point andPointDatain streamcluster [20], and thepinor andgaugelink

in Wilson-Dirac kernel [63] are exampEEor such a requirement. Therefore,
instead of maintaining a single low-level address mappirtheaglobal scope
for all data, our approactustomizes the address mapping logicd manages

2See Sectiofr 415 for details.

76 CHAPTER 4. PROVIDING MULTIPLE VIEWS TO DATA

an individual internal data layoufor each application data, as illustrated in
Figure[44. Figur€4l4 suggests that #tede familyis an essential parame-
ter in the SAMS scheme. Strided accesses with strides belpng the stride
family supported by the internal data layout could be acd@hed in a single
access; while accesses with strides from other stride iesmhay cause mod-
ule conflicts. Furthermore, it is the stride family tlainfiguresthe low-level
address mapping and the resulting internal data layouteinmtémory. On the
other hand, the internal data layout/address mapgéatgrminesvhat stride
family it supports, as illustrated in Figure}.4.

The configuration granularity of the internal data layowtdi@ess mapping is
a complete 32 bytes data line. This equaissieofvector register), which is
determined by the SAMS hardware. Since most relevant agiits tend to
use large arrays, such granularity is well suited.

Obviously, with the extension to multiple data layouts, vaedto keep track of
the appropriate access strides and stride families fagraifit data. Fortunately,
this is not difficult as the information of the data structared organization is
static in most cases. Therefore, it is quite feasible toipthe programmer
with some abstractions, e.g., C macros or library functieadacilitate cap-

turing such structural information, as Figulrel4.2c illagds. Furthermore, it
is also possible for the compiler to automate the multi-laymemory usage
with proper compile-time analysis and optimizations.

(2)Definition for NaS: By convention, the stride family > 0. We extend this
definition by introducing a special symbikS(not a stride), which indicates
a special non-strided data storage pattern:

m(a) = 5%29
r(a) = =
o(a) = ao

as demonstrated by the layoutain Figure[43. TheVaS pattern is a simple
yet efficient layout for data not touched by any strided megnamcess. The
intuition for this extension is the concern of power effig@gnFor aligned and
continuous accesses, it is unnecessary to invoke the tyagdthe AGU, ATU
and In/OutSwitch logic in Figurﬂ.ﬁbTherefore, those components may be
bypassed or even shutdown to save power, when the prograsndbeeed
unaligned or strided access. In the particular case of thelSMtegration
into the Cell SPE, the system further benefits from/thé pattern. In the Cell
SPE, the local store is responsible for feeding instrustiags well as data to

3See SectioiZ4.1 for details.

4.4, IMPLEMENTATION AND INTEGRATION 77

SIMD Processor

B: base S: stride Vector element [7:0]
US: use_stride B | S |US |UF]
UF: use_stride_family |
Yy Write ;/lc ctor
Address Generation masks eme;l
Unit (AGU) [15:0]
* Stride *Linear
famil
Vector Module/Offset amily f addresscs
element [7:0] assignment 7...0 Address Translation
SIMD Processor Unit (ATU)
Address ector element [7:0] ¢ Row, offset | Row, offspt
address 7 address (y '

—»{ InSwitch ‘

Local row address 7 Local row address 0
Offset address 15,14 Offset address 1,0

Wide-Port Memory

Data 15,14 Data 1,0
Memory Memory
Module 7 Module 0
| I
a) Typical SIMD memory system
() w v sy * Data 15,14 * Data 1,0
—»{ OutSwitch ‘
1
=== Time-shared read/write port for processor and wide access
—— Read port for processor Read port for wide access

* Elements [15:8] used only by wide access port

(b) SAMS Multi-Layout Memory system

Figure 4.5: SIMD memory organizations

SPU, where the instruction fetch (IF) is always aligned astiouous - at the
granularity of 64 bytes [44]. Therefore, the instructiotcfeengine can use the
Na$S layout and completely remove the OutSwitch in Figurd 4.9mfthe IF
pipeline. The DMA engine can also use this pattern for ragidaéa accesses.

4.4 Implementation and Integration

In this section, we investigate the implementation of theViEsAMulti-Layout
Memory system and present its integration into the IBM CBIES

4.4.1 SAMS Organization and Implementation

Figure[4ba illustrates a typical memory system of a SIMDcpssor. To re-
duce hardware complexity, a logically monolithic memorydule with wide
data port is used to feed vector elements, which are conigyiro memory

CHAPTER 4. PROVIDING MULTIPLE VIEWS TO DATA

Table 4.1: Stride control signals

<usestride_family, | 00 01 10 11

usestride>

semantics narrow port | wide port | narrow port unit- | narrow port strided
normal access stride access (e.gl access (e.g. SoA
access A0S view) view)

stride used in | 1 AGU 1 stride from

AGU bypassed processor

stride family used | NaS ATU stridefamily gen- | stridefamily gener-

in ATU bypassed | erated by AGU ated by AGU

of accessed| 29 2a+1 29 29

elements

space, to the SIMD processor core. Figlird 4.5b illustratesotganization
of a multi-layout memory system based on the extended SAM8&rse. The
vector processor core issues memory access commandsigogith the base
address and stride (note the vector lenyt=8) to the Address Generation
Unit(AGU). The eight linear addresses are generated inlphia AGU and
they are then resolved by the Address Translation Unit(Aiftd eight mod-
ule assignments, eight row addresses and eight row offsisesgbs. After-
wards, the eight groups of row-offset pair and eight datenelgs from input
data port (on a memory write) go to the InSwitch and get rotwetie proper
memory modules according to their corresponding modulgyas®nts. In
case of a memory read access, after the read latency of thermemdule@,
eight read data are fed back to the vector processor thrdwg®utSwitch at
the bottom of Figuré_415b. Two additional latencies are iirenl by the in-
tegration of extended SAMS scheme to the original SIMD memsystem
of Figure[45a: a)“inbound path”, which includes AGU, ATUdamSwitch;
b)“outbound path”, which consists of the OutSwitch only.

Address Generation Unit (AGU): AGU is responsible for parallel gener-
ation of the addresses of tf® vector elements, namely{base, base +
stride, base + 2 - stride, ---, base + (29 — 1) - stride}. Also, it computes
the stride family from the stride designated by the SIMD pssor. Note there
are two control signals from the processoisestride and usestride_family.
Table[Z41 shows the semantics of these signals.

Address Trandation Unit (ATU): determines the internal data layout of the

“The access latency of a memory module may be more than orlealole. In the chapter,
we assume the memory modules are fully pipelined.

4.4, IMPLEMENTATION AND INTEGRATION 79

SAMS Multi-Layout Memory and input/output data permutatjmatterns used
in InSwitch and OutSwitch. ATU consists of three indepentdeEmponents:
the module assignment logic, the row assignment logic aadfiset assign-
ment logic. Therefore, the critical path of ATU is the longes the three,
which is then — g bit adder followed by a 2-to-1 multiplexor in the row as-
signment logic [56].

Table 4.2: Synthesis results of SAMS Multi-Layout Memory system
Critical Path Delay [ns] Logic Complexity [# of gates]

q:2|q:3|q:4 q:2|q:3| qg=24

SAMS memory logic 0.76 0.87 1.01 6,906 | 26,784 82,538
equivalent # of 32-bit adders 2.0 2.3 2.7 15 5.9 18.1

In/OutSwitch: In the SAMS Multi-Layout Memory system, the InSwitch is a
29 x 2911 crossbar, while the OutSwitch i24T! x 29 crossbar [56].

Unaligned Vector Access: Unaligned vector memory access is one of the
critical problems in SIMD processing systems [106, 124]e BAMS Multi-
Layout Memory system supports unaligned unit-stride andest vector loads
and stores. Details of a similar technique can be found ih [11

Memory Store Granularity: With 29 memory modules instead of a mono-
lithic memory module, the store granularity of the SAMS NHuayout Mem-
ory system is reduced from an entire vector268felements to a single ele-
ment. For example, the monolithic local store of IBM Cell S&tty supports
loads/stores at the granularity of 128 bits; while with thHeVS scheme with
four memory modules and element size of 32 bits, stores ofdk, £ 32-bit
elements are well supported.

Wide Port Support: The SAMS scheme utilizes wide data lines to tolerate
module conflicts [56]. More specifically, each of the eightdules in Fig-
ure[£%b has a data port width of two elements and the eightanemodules
are capable of servicing 16 elements per access, under tigitioa that it is
aligned to 16 elements boundary. To avoid additional hardwamplexity, the
wide access port in Figufe—4.5b is not responsible for reordehe 16 data
elements during a wide access. Indeed, the wide port betlagemame as an
ordinary linear memory interface: it directly reads or esitall the 16 data el-
ements from/to the 8 memory modules with the row addreéggé(assuming
4B element size), effectively bypassing all the SAMS loditerefore, for a

80 CHAPTER 4. PROVIDING MULTIPLE VIEWS TO DATA

read of a full data line of 16 elements from the SAMS Multi-bay Memory,

the external data consumer has to do a post read shuffle ediging the data.
For a write, a pre-write shuffle is also necessary, sinceritegrial data lay-
out of the SAMS Multi-layout Memory has non-linear struetwas indicated
in Figure[4.%. For the external data provider/consumer ®3AMS memory,
there is a trade-off between the bandwidth and hardware lexityp We shall

further discuss this in Sectibn 4.4.2.

Implementation and Synthesis Results: We have implemented the SAMS
Multi-Layout Memory system using Verilog and synthesizédor TSMC
90nm low-K process technology using Synopsis Desigh Canp8ynthesis
results are provided in Table#%.2 for SAMS memory systemhb w;t8 and 16
memory modules, i.eq = 2, 3 and 4, which target 4-way, 8-way and 16-way
SIMD processing systems respectively. The critical pathydein Tabld 4P
actually present the inbound path. We also calculated tlagive delay and
area consumption of the SAMS system compared to a 32-bit agdéhesized
on the same technology node. Further investigation intesym¢hesis results
indicates that the ATU, which is the core of the SAMS schenas, duite fast
and compact hardware implementation: it only contribwmnproximately%

of the entire critical path delay and its area overhead ia euaaller.

4.4.2 Integration into the Cell SPE

To validate the performance of the proposed SAMS Multi-Ligyblemory

in real applications, we implemented it in a model of the IBMIlGroces-
sor, aiming at computation intensive applications withhhitata parallelism
[68, 120]. The local store of the Cell Synergistic Procegdiitement (SPE)

is chosen for the deployment and implementation of the aaytut mem-
ory system. FigurE~4l.6a depicts the original local store prgrorganization

in the Cell SPE. The fully pipelined 256KB local store is camaed of four
M64k SRAM modulel. Note, the SRAM arrays are themselves single-ported,
therefore, the local store is accessed in a time-shared enaas sketched in
Figure[Z4®a (only the load path is shown for simplicity).

The integration of SAMS Multi-Layout Memory is illustrated Figure[4.6b.
It is also referred to as “SAMS local store” in our experinseint Sectior 45.
Note, although in Figurie4.6b each M64k module is split imarfsubmodules,
the total size of the SAMS local store is kept the same as ihaal one. The

®M64kis the 64KB SRAM module used in SPE local store which runsestime speed as
the SPU core [38].

4.4, IMPLEMENTATION AND INTEGRATION 81

Load/Store Load/Store
Engine Engine
(a) Original (b) SAMS

Local Store Local Store

4-1 MUX SAMS Multi- / SRAM
YYYYY layout Memory - module | Capacity

[(== '
S Shaed type

Dataport
width

Mé64k Mé64k Mé64k Mé64k Il -

MGk | 64KB | 32B*/16B

|

|
mEmm

Out Switch i

Instruction
Fetch
Engine

2
16KB | 8B'4B

buffer buffer
2~
2z
$ % 32-byte data port activated only
e o
e buffer buffer

Post-Read Pre-Write T 8-byte data port activated
Shuffle Shﬂe only for wide-port (32B)

SAMS memory access

—P 8 Bytelcycle == 16 Byte/cycle

S
—> 64 Byte/cycle =~ 128 Byte/cycle

Figure 4.6: SAMS Multi-Layout Memory Integration into the Cell SPE

“splitting” of SRAM arrays may not incur additional enginawy effort, since
the original M64k is composed of 32 subarrays in the Cellllstare physical
implementation [38].

An important change in hardware due to the SAMS integrasamithe 128B
wide port buffers. As high bandwidth of the wide port is erbdinarily de-
sirable for both instruction fetch and DMA in SPE, we choaserovide full
bandwidth of the SAMS memory for the wide port. As discussedec-
tion[£41, in this case the wide port data of each SAMS daf#ineeds to be
aligned to 32B boundary (this is guaranteed by the 128B aagesularity of
the original local store wide port), and the data format sdede adjusted to
the internal layout in SAMS memory modules. The latter reggitwo macros,
the Post-Read Shuffle (PRS) and the Pre-Write Shuffle (PW®g tidded to
the system, as suggested in Figlitd 4.6b. The critical pd#ty ded area of
PRS and PWS are comparable to those of the SAMS ATU, whichelsadthan
one cycle latency and trivial hardware consumption as disedi il Z.4]1.

The major impact on the SPU microarchitecture with the ipoaation of the
SAMS Multi-Layout Memory in the SPE local store is that thedb store
pipeline is lengthened, since the SAMS logic introducestemtil delay. Ac-
cording to our synthesis results in Talilel4.2, the criticathpdelay of the
SAMS inbound path for four memory modules (each with 64-bitt pvidth)

is 0.76 ns, which corresponds to two times the latency of &iBadder. In
the Cell SPU, 32-bit addition in the Vector Fixed Point URiPU) fixed-point
is accomplished in a single cycle [97]. Therefore, we projee deployment

82 CHAPTER 4. PROVIDING MULTIPLE VIEWS TO DATA

of the SAMS memory in SPE’s local store will introduce 2(vstyingent) or
3(considering pipeline latches and retiming costs) aolditi pipeline stages
for the inbound path. The outbound path takes one additioyae since it
has a critical path delay of 0.35ns which is less than ther 3&ency of a
32-bit adder in our study. To summarize, 4 cycles for a loadqund and out-
bound paths) and 3 cycles for a store (only inbound pathwedblis a realistic
estimation for the extra latency incurred by the integrabbthe SAMS Multi-
Layout Memory logic inside the SPU pipeline in our study. Aghe original
SPE [120] the load and store instructions take 6 and 4 cloclesyespectively,
their costs will become 10 and 7 cycles in the modified SPHipipe

SAMS Memory Pipeline Optimization: Certain optimizations can be con-
sidered tohide the SAMS pipeline latency when taking into account target
microarchitecture pipeline specifics. For example, in oqgegiments with the
Cell SPE, there are two pipeline stages dedicated for exgisad, as shown
in Figure[4.Ya. Note, for a narrow port local store accesst{@d4.4.1), only
the base addres8] and data Vector element[7:0], in case of a local store
write) need to be read from SRi¢neral-purpose vector register fl&PVRF),
as Figurd’4}bb indicates. As a result, operations not degegnoch B and
Vector element (e.g. calculationg?2- stride, 3-stride, ---, (29 —1)-stride},
and the computation atride_family from stride) can be performed as soon as
the RF read starts. Based on this observation, SAMS memetgmycan start
working after memory access instructions are issued (kgs)aresulting por-
tion of the SAMS delay effectively hidden by the RF staged)lastrated in
Figure[4¥Yb. Note also the stride register is a dedicateidtegghence writing
it takes one cycle (done at the beginning of RF2detstrideinstruction) and
reading it incurs no delay at the beginning of RF1 for SAMS roghaccess
instructions, which allows for back-to-back issuesefstrideand SAMS mem-
ory access instructions. More aggressive optimizationg eran hide the en-
tire AGU and ATU logic in vector RF read stages (as long as th&ncy fits),
by using a dedicated base register instead of GPVRF to expdgénSwitch
and OutSwitch (see Figufe#.5b) to the load/store pipelathermore, part
of the original 6 cycles load/store pipeline may be overéapwith the SAMS
logic (e.g. there is an adder macro in the original SPE |dadspipeline
to add the base and offset addresses for loads/stores-diith forms [38]),
as FigurdZ]7b shows. Note, although not shown in Figure, 4Fland all
backend pipelines are also increased by 2 and 3 stagescties|ye The for-
mer is because instruction engine fetches instructions foxal store - thus
it also suffers the exposed SAMS latency (2 stages in the pbeaas the last
OutSwitch stage is bypassed in a wide port read). The lattee¢essary since

4.5. EXPERIMENTAL EVALUATION 83

SPE PIPELINE FRONT END

SPE PIPELINE BACK END

‘ Branch Instruction
— {2 - - -

Permute Instruction

~ [Exii-exa-{exaiexd - - - - -

Load/S ruction
(a) <ﬁl}.}-»®

Fixed-Point Instruction

Figure 4.7: Exemplary load/store pipeline optimization: (a)origirdPE [57],
(b)SAMS integration with optimizations

SPE is an in-order issue processor hence equal number dihgigtages be-
fore RF writeback are required to maintain writeback order.

4.5 Experimental Evaluation

Experimental Setup: We use CellSim developed at BSC [3], which is a
cycle-accurate full system simulator for IBM Cell/BE preser. The bench-
marks of our experiments consist of some full applicationefPARSEC [20],
the Wilson-Dirac kernel from INRIA [63], and some micro kels from IBM
Cell SDK [5]. These applications/kernels are selectedesihey are represen-
tative of application codes which operate heavily on afvaged data struc-
tures. This type of code is widely used in scientific and eegimg applica-
tions. TabldZ13 lists the major features of the selecteaharks. Stream-
cluster from PARSEC is an online clustering kernel whichetaktreaming

84 CHAPTER 4. PROVIDING MULTIPLE VIEWS TO DATA

data points as input and uses a modified k-median algorithdo e online
clustering. The parameters of streamcluster workload imstudy are set as
follows: 1024 input points, block size 256 points, 10 poimhénsions, 5-10
centers, up to 500 intermediate centers allowed. Fluidargns an Intel RMS
application and it uses an extension of the Smoothed Rakigtirodynamics
(SPH) method to simulate an incompressible fluid for intévacanimation
purposes [20]. The fluidanimate workload in our experimessiss thesims-
mall input set provided by PARSEC. The 3D working domain for on& 8Rs
been shrunk to 9x9x30 cells and the maximal number of pesticiside a cell
has been reduced to 10. The simulation runs for one time gtepnipute one
frame. Computing the actions of Wilson-Dirac operator gbaotes most of
the CPU time in the simulation of Lattice Quantum Chromodyita (Lattice
QCD), which aims at understanding the strong interactibias bind quarks

Table 4.3: Selected benchmark suit

Benchmark Source Type Application Working
Domain Set

streamcluster PARSEC | kernel data mining | medium

fluidanimate PARSEC | application animation large

Wilson-Dirac Operator| INRIA kernel quantum medium
physics

complex multiplication | Cell SDK | micro kernel - small

matrix transpose Cell SDK | micro kernel - small

and gluons together to form hadrons [63]. The experimentairstudy with
the Wilson-Dirac kernel focus on single SPE for floating paiata, with the
4-way runtime data fusion scheme proposed in [63]. The proldize for the
Wilson-Dirac kernel for single SPE is 128 output spinorghvei computation
intensity of 1608 FP (floating point operations) per outgihgr. Besides full
applications and large kernels, we also include some mieroeis, including
complex number multiplication [62] with workload set to 1@kultiplications
and 4x4 matrix transpose [5] (with workload set to 10K trarsss).

To compile the C code, we use two stand-alone compilers: RBldhain
2.3 (based on gcc 3.4.1) and SPU toolchain 3.3 (based on @ct).4.All
benchmark applications and kernels are compiled with tHeoion.

To make the functionalities of the SAMS Multi-Layout Memaayailable to
software, we have extended the SPU ISA and the programmiedadne. Ta-
ble[4:3 lists some of the new instructions, C intrinsics aratms for the en-

Table 4.4: SAMS instructions, intrinsics and macros

Name Type Operation
setstride instruction | set stride register
lgwsd/x/a instruction | load a quad word witlstride = stride register ands = log» (stride)*, d/x/a-form
stqwsd/x/a instruction | store a quad word withtride = stride register ands = log»(stride)T, d/x/a-form
lgwsfd/x/a instruction | load a quad word wittride = 1 ands = log (stride register)t, d/x/a-form
stgwsfd/x/a instruction | store a quad word witktride = 1 ands = log(stride register), d/x/a-form
spusamssetstride (imm) intrinsic set stride register to valuenm
spusamslqws (a) intrinsic load a quad word at base addreswith stride = stride register ands = log2(stride)t
(unified form for Iqwsd/x/a)
spusamsstqws (a,val) intrinsic store quad wordval at base address with with stride = stride register ands =
log2(stride)’ (unified form for stqwsd/x/a)
spusamslgwsf (a) intrinsic load a quad word at base addressith stride = 1 ands = log2(stride register)! (unified
form for Iqwsfd/x/a)
spusamsstgwsf (a,val) intrinsic store quad wordval at base addresswith with stride = 1 ands = log2(stride register)*
(unified form for stqwsfd/x/a)
BEGIN_MULTI _ VIEW(str) macro spusamssetstride(sizeof(str))
SOAGET(a) macro spusamslqws(a)
SOA_PUT(a,val) macro spusamsstqws(a,val)
AOS_GET(a) macro spusamslqwsf(a)
AOS_PUT(a,val) macro spusamsstqwsf(a,val)
AOS_DMA _GET (la,ga,size,tag,str macro spusamsmfcdma64(la,mfeea2h(ga),mfeea?l(ga),size,tag,
MFC_GET.CMD,log2sizeof(str))
AOS_DMA _PET (la,ga,size,tag,str macro spusamsmfcdma64(la,mfeea2h(ga),mfeea2l(ga),size,tag,

MFC_PUT.CMD, log2sizeof(str})

T Stride family6) calculation is done in AGU (see FigUfel.5b).
flog2sizeofis a new C keyword we implemented in spu-gcc (log2sizedfkig, (sizeof(str)), wherdog, is done at compile time).

NOILVNIVAT TVLNINIHIdXT ‘G

G8

86 CHAPTER 4. PROVIDING MULTIPLE VIEWS TO DATA

hanced SPE with SAMS integration (also referred to as “SAMPE'S. To
reflect the changes in the architecture, we have modifiedpihrgsc backend
to generate optimal code for the SAMS SPE, including autmnsalection of
appropriate instructions for unaligned memory access anibfe access gran-
ularity. The load latency and branch penalty have also bpdated for proper
instruction scheduling. Besides the compiler, the CellSimulator has also
been maodified accordingly.

Before elaborating on the experiments, we compose a list gjornchanges
of the SAMS SPE over the original SPE and their cons and praale[45.
Note, the pipeline optimizations discussed in SedilonXade not applied in
our evaluation.

It should be noted that although there are eight SPEs alailathe Cell pro-
cessor, we only use a single one in our experiments, since am o focus
on the performance impact of the SAMS Multi-Layout MemorySiMDiza-

tion. Our techniques are orthogonal to those for efficierdlfelization of data
parallel applications on multiple processor cores.

Benchmarks SIMDization: In both applications of streamcluster and flu-
idanimate, the house keeping work (such as data prepasasoalar code
dominated by branches (such as building the neighbor talfleidanimate),
and work suited to be done in the global scope (e.g., relmgjlthie grid in flu-
idanimate) is done by PPU, while the majority of the compatais offloaded
to the SPU. When data are ready in the main memory, the PRy¢teSPU to
start processing. SPU reads a portion of data into its Idoed ¥y DMA trans-
fers, processes them and writes (using DMA) the results twaciain memory.
The baseline Wilson-Dirac kernel is already SIMDized anahiig optimized
on the original SPE using SoA SIMDization scheme. Therefoue optimiza-
tions based on the SAMS SPE only involve the elimination afadyic data
format conversion overhead. The micro kernels of complexbmer multipli-
cation and matrix transpose are normally used as one stegeiqueence of data
operations in the SPE local store. Therefore, DMA transéeesnot invoked
in our experiments with them.

It should be noted that for all experiments except streastetu the SoA
SIMDization scheme is adopted since it gives better perémoe over AoS, in
both the original and the SAMS SPEs. As for the memory accattsrps, the
A0S access of the SAMS local-store is used in all benchmankddta trans-
fers between the main memory and the local-store (illustrat FigureZZ4lc).
During execution, however, four benchmarks access thd-tboee with the
SOoA access and one - streamcluster - uses both SoA/Ao0S.

Table 4.5: Changes over the original SPE and their impact

Changes over original SPE

Impact on overall performance, hardware cost and programmng

Latency of store is increased from 4 cyclesNormally no noticeable (negative) impact on performandessithere is seriou

to 7 cycles register spilling.
«» | Latency of load is increased from 6 cycles foMay incur significant performance degradation if instrotexecution could not
§ 10 cycles hide the long load latency.
Penalty of a taken branch is increased frgmimpact on overall performance is usually negligible siree portion of (taken)
18 cycles to 21 cycles branches in total executed instructions is normally srma8PU.
Area overhead Trivial - less than 2 32-bit adders (see Tdhld 4.2).
Reduction of number of executefd Reduction in execution time and memory traffic (This is pattrly favorable
loads/stores as a result of hardware suppoit Cell SPE since reduction in LS traffic also decreases tlaaadh of LS port
for flexible memory access alignment, conflict*).
granularity and stride
g Reduction ofglue instructions for data rear; Reduction in execution time can be considerable when a im@htnumber of

rangement (e.g. data format transform g
tween AoS and SoA)

eglue instructions are incurred in SPU code due to data foreaatangement.

Support for unaligned and strided memo|
accesses with intrinsics; Support for mulf
ple views of data in memory with easy-tg

use abstractions

ryProgrammer and compiler friendly: hardware takes care tHildeof low-level
i- data layouts in memory and data format conversions; progrens and compil-
- ers are relieved from such burdens and therefore can focimsgbrevel opti-

mizations of the application.

*Only the inbound path(3 stages) are exposed to instruatim f

*Note the single-port LS is

shared by data load/store, iottn fetch and DMA transfer.

NOILVNIVAT TVLNINIHIdXT ‘G

.8

Table 4.6: SPU dynamic instruction count and execution time

Memory Instruction Count

Total Instruction Count

Execution Time (cycles)

Benchmark — — —
Original SPE| SAMS SPE| R Original SAMS R Original SPE| SAMSSPE | R
(load/store) (load/store) SPE SPE

streamcluster 12,790,400 10,331,056 19%| 78,850,693 | 45,117,363 | 43%| 251,783,087 | 224,622,745 | 11%
(11,084,211/ (9,079,100/
1,706,189) 1,251,956)

fluidanimate 4,888,924 1,772,207 64%| 33,106,575| 22,515,460 | 32%)| 95,284,379 | 74,148,296 | 22%
(3,043,109/ (680,436/
1,845,815) 1,091,771)

Wilson-Dirac 13,863 11,375 18% 77,038 63,510 18% 75,975 62,035 18%

Operator (13,077/786) (10,551/824)

complex multi- 15,392 15,419 0% 42,008 26,693 36% 96,242 73,137 24%

plication (10,256/5,136) | (10,272/5,147)

matrix transpose 81,950 81,979 0% 167,766 85,893 49% 283,121 179,690 37%
(40,974/40,976)| (40,992/40,987)

88

Vivg Ol SM3IA 3TdILTINIA ONIAINOYH ‘7 d3LdVHD

4.5. EXPERIMENTAL EVALUATION 89

Experimental Results: We evaluate the performance by measuring the ap-
plication execution time on SPU. Talile .6 suggests therawrpatal results.

For the streamcluster benchmark, it is not obvious whetteeAbS or the SoA
SIMDization scheme gives better performance, since it dép®n the input
data, the load latency and the quality of spu-gcc instracsicheduling. Al-

though the critical loop is SIMDized with the AoS SIMDizati@cheme, for
the rest of the code, the loops involving distance calantetire SIMDized with
SoA scheme, to achieve better SIMD datapath utilizatione ajor perfor-

mance improvement of the SAMS SPE comes from the supportiaigned

vector and scalar memory accesses in the SAMS local stosthoaen by the
19% reduction of memory instructions and 43% of total ingions. How-

ever, as the two-level indirection has serious negativeachpn performance
especially in SAMS SPE (it has longer load latency), and #ngel number
of branches in the source code which could not be well hanoje8PU also
incur substantial performance overhead (around 14% drectiine is on IF

stall for the original SPE and 20% for the SAMS SPE since itlbager IF

latency), the overall performance gain is only 11%, as showhable[Z4.6.

For such applications, further effort to make major modifass to both the
data representation and the control flow at algorithm levalilds pay-off for

better SIMDization performance, on both the original anel 8AMS SPEs.
Nonetheless, streamcluster represents a class of appiisarhere both AoS
and SoA SIMDization schemes are applied on the same dattieaedi appli-

cation phases. In such cases, the SAMS Multi-Layout Mersargpability of

providing multiple data views with high efficiency enablesxfble choices of
optimal SIMDization schemes in different scenarios.

In fluidanimate, most execution time is spent on computirg dbnsity and
acceleration for each particle, by accumulating densdies forces between
the current particle and all neighboring particles in vakghge. Since the
data parallelism in computing a single particle pair is viamjited, the SoA
SIMDization scheme is used to vectorize the code, so thahdah datch of
processing the interoperation between 4 particles in theeisticell and a par-
ticle in a neighboring cell are evaluated. Although optiatians are equally
deployed in both the original and the SAMS SPEs, the SAMS SIS gupe-
rior performance for three major reasons. First, the 3Dtjposivelocity and
acceleration data are maintained in AoS format in main mgntloerefore the
dynamic format conversion overhead is incurred in the naBPE. Second,
as the 3D particle data components are not aligned to 16B myemaddresses,
an alignment problem occurs in the original SPE. Third, dilesg scalar mem-
ory access in the code incurs significant performance oaérirethe original

90 CHAPTER 4. PROVIDING MULTIPLE VIEWS TO DATA

SPE. All three overheads are removed in the SAMS SPE, leaditite 22%
reduction of execution time as shown in Tabld 4.6. Note, thmlver of stores
(shown in 3rd column of Table“4.6) in our SoA SIMDized fluidaaite is sig-
nificantly larger than loads. The reason is explained asvd! As the actual
number of particles in current cell (maximal 10) is knownyoal runtime,
therefore 3 batches of processing (dealing with 4, 4, andtitfes in the cur-
rent cell respectively) are necessary for computing onghtaring particle.
Furthermore, each batch has to update the density and eattmieof the cur-
rent particles and the neighboring particle. As a resuitstiores of the particle
data is doubled for current cells with8 particles and tripled for current cells
with 9~10 particles, compared to current cells with onk4l particles, for
each neighboring particle. In contrast to the duplicatedest the loads of
particles in current cell is shared among all particles imaighboring cells,
and the load of the neighboring particle is invoked only oregardless of the
number of particles in current cell. This explains the ulsgiisparity between
the number of dynamic loads and stores in the SAMS SPE. Inripmal SPE,
the number of loads (shown in 2nd column in Tdhld 4.6) areelaitgan stores
because each unaligned load incurs two aligned loads ahdieatigned store
incurs a load-modify-store sequence.

The main problem that prevents SIMDizing the computatiokVidon-Dirac
operator efficiently is the multiple patterns of accessimg ¢ame spinor and
gauge link data [63]. For efficient SIMDization, the authamgoduce the
runtime data fusion technique in [63], which is basically@GASSIMDization
scheme with rearrangement of data from AoS to SoA formatraime. Con-
sequently, it also suffers from the overhead of dynamic ftataat conversion.
With our SAMS Multi-Layout Memory, the spinor and gauge lid&ta are ac-
cessed in both AoS and SoA formats (for computation) withhteficiency,
therefore the data rearrangement overhead is completelinated. Addition-
ally, there are 80 loads overhead per 4 output spinors (tiver@0*128=2560
loads overhead in total for 128 spinors) due to partial usbefoaded spinor
and gauge filed data in the original code with the original SRE partial use
of memory bandwidth also results from the mismatch betweendata lay-
out in the local store and that used in the SPU). With the SAdt&ll store,
such overhead is effectively removed, resulting the reduaember of exe-
cuted load instructions. Altogether, the execution timeeguced by 18% in
the SAMS SPE, as shown in Talllel.6.

In complex number multiplication, with the common A0S regaetation of
complex number array, load and store of the real/imaginary @f consecu-
tive complex numbers require SoA view of the array. With thdtiple view

4.5. EXPERIMENTAL EVALUATION 91

capability of the SAMS memory, the real vector and imaginagtor can be
loaded directly with one single strided access, insteadadihg the mixture
of them and extracting the real and imaginary parts usindflshiastructions,
as the source code in [62] did. Therefore, although the mgrresses count
is the same for both the original and the SAMS SPEs, the ketitlehchieved
a significant performance gain with the SAMS SPE as a restifteofeduction
of the glue instructions.

In 4x4 matrix transpose, if each row (4 elements) of the madrireated as a
basic structure, and the original matrix is stored in the Aa#&at, then ac-
cessing a row requires AoS view of the row array, while adgogsa column
requires the SoA view. With the SAMS local store, the trasspprocedure
is accomplished in a simple manner: first load 4 columns ofiribat ma-
trix directly (with SoA view) into registers (afterwardsethmatrix has been
effectively transposed), and then store them to the outpiiét Any shuffle
instructions to pack the transposed rows from the origipalsrin the origi-
nal SPE are completely eliminated. This explains the siggnifi performance
improvement by the SAMS SPE with the 37% suggested in TaBle 4.

To summarize, experimental results demonstrate that tidSKulti-Layout
Memory is a feasible solution for many data rearrangemeaoiblpms (such
as format conversion between AoS and SoA) popular in SIMzgssors.
Multiple views of array-based data structures provide lpptigramming effi-
ciency and performance improvement for applications dpeyan such data
structures. Additionally, the support for unaligned vectod scalar memory
accesses is also a plus for most applications on SIMD processélthough,
the SAMS memory inevitably introduces certain hardware gexity and a
longer local store pipeline, with careful consideratiortted hardware design
trade-offs, the local store latency can be controlled. Harrtthe SIMD pro-
cessor can exploit the typical streaming nature of veadriapplications by
fetching multiple vectors back-to-back, so that the menlatgncy can be
amortized and tolerated. Therefore the performance datjoaddue to the
longer local store latency are be minimiBed

®E.g., 12% performance loss in Wilson-Dirac kernel whenlistare latency increases from
6 cycles to 10 cycles, with the same code running on the @@RE. Note the overall perfor-
mance results in Tab[e4.6 have already taken this factorsiotount.

92 CHAPTER 4. PROVIDING MULTIPLE VIEWS TO DATA

4.6 Summary

In this chapter, we proposed the SAMS Multi-Layout Memorystive the
data rearrangement problem in general and to reduce themydiata format
conversion overhead in particular. The idea is to easilyasgpthe preferred
view of the data structures in software and let the hardwas&mize the low-
level address mapping logic for optimal data access usiigginformation.
Synthesis results for TSMC 90nm CMOS technology node suggeson-
able latency and area overhead of the proposed SAMS menmmvdstigate
the performance improvement gains, SAMS was integratedtivd IBM Cell
SPE model, and simulated using real applications. Expatsnguggest that,
for applications which require dynamic data format conesrs between AoS
and SoA, our multi-layout memory hardware together with dlseompany-
ing software abstractions improve the system performagagpkto 37% and
simplify the program SIMDization.

Note. The contents of this chapter is based on the the followingpap

C. Gou, G. Kuzmanov, G. N. GaydadjiesAMS Multi-Layout Memory:
Providing Multiple Views of Data to Boost SIMD Performance, Proceed-
ings of the 24th ACM International Conference on SupercdingyICS’10),
pp. 179-188, Tsukuba, Japan, June 2@dst Paper Award

Addressing On-chip Bank Conflicts

bank conflicts. We analyze that the throughput of the GPUgssar

core is often constrained neither by the shared memory hdttiw
nor by the shared memory latency (as long as it stays copstaritis rather
due to thevaried latenciecaused by memory bank conflicts. This results in
conflicts at the writeback stage of the in-order pipeline aadses pipeline
stalls, thus degrading system throughput. Based on theredison, we inves-
tigate and propose a novelastic pipelinedesign that minimizes the negative
impact of on-chip memory bank conflicts on system throughpwtdecou-
pling bank conflicts from pipeline stalls. Simulation resighow that our pro-
posed elastic pipeline together with the co-desigoaak-conflict aware warp
schedulingeduces the pipeline stalls by up to 64.0% (with 42.3% onaayesy
and improves the overall performance by up to 20.7% (on geei8.3%) for
our benchmark applications, at trivial hardware overhead.

O ne of the major problems with the GPU on-chip shared memory is

5.1 Introduction

The trend is quite clear that multi/many-core processoesb&acoming per-
vasive computing platforms nowadays. GPU is one exampleutbes mas-
sive lightweight cores to achieve high aggregated perfaomaespecially for
highly data-parallel workloads. Although GPUs are orifjinaesigned for
graphics processing, the performance of many well tunecrgépurpose
applications on GPUs have established them among one of disé attrac-
tive computing platforms in a more general context — leadinthe GPGPU
(General-purpose Processing on GBWemain [1].

In manycore systems such as GPUs, massive multithreadinge$ to hide
long latencies of the core pipeline, interconnect and wifie memory hier-

93

94 CHAPTERS5. ADDRESSINGON-CHIP BANK CONFLICTS

archy levels. On such heavily multithreaded executionfglats, the overall
system performance is significantly affected by the efficyenf both on-chip
and off-chip memory resources. As a rule, the factors impgdhe on-chip
memory efficiency have quite different characteristics parmad to the off-chip
case. For example, on-chip memories tend to be more senttoynamically
changing latencies, while bandwidth limitations are mareese for off-chip

memories. In the particular case of GPUSs, the on-chip fivetl lmemories, in-
cluding both the software managed shared memories and ttiedne caches,
are heavily banked, in order to provide high bandwidth fer plarallel SIMD

lanes. Even with adequate bandwidth provided by the parakenory banks,
however, applications can still suffer drastic pipelinallst resulting in sig-
nificant performance losses. This is due to unbalanced ses¢s the on-chip
memory banks. This increases the overhead in using on-ohied memories,
since the programmer has to consider the bank conflicts h&umiore, often
the GPU shared memory utilization is constrained by suchheasl.

In this chapter, we analyze that the throughput of the GPWgesor core
is often hampered neither by the on-chip memory bandwidbh by the on-
chip memory latency (as long as it stays constant), but rdijxeghe varied
latencies due to memory bank conflicts, which end up withelatk conflicts
and pipeline stalls in the in-order pipeline, thus degrgdigstem throughput.
To address this problem, we will investigate nogkdstic pipelinedesign that
minimizes the negative impact of on-chip memory bank casflan system
throughput. More precisely, this chapter makes the folgagontributions:

e careful analysis of the impact of GPU on-chip shared memankizon-
flicts on pipeline performance degradation;

e a novelelastic pipelinedesign to alleviate on-chip shared memory con-
flicts and boost overall system throughput;

e co-designedbank-conflict aware warp schedulingchnique to assist our
elastic pipeline hardware;

e pipeline stalls reductions of up to 64.0% leading to ovesg#item per-
formance improvement of up to 20.7% under realistic scenari

The remainder of the chapter is organized as follows. Ini@egL2, we pro-
vide the background and motivation for this work. In SeclioB, we analyze
the GPU shared memory bank conflicts problem from latencytamdiwidth
perspective, and identify the mechanism through whichesharemory bank

5.2. BACKGROUND AND MOTIVATION 95

conflicts degrade GPU pipeline performance. Based on thafiadwe dis-
cuss our proposed elastic pipeline design in Sediioh 5.4e ¢éhdesigned
bank-conflict aware warp scheduling technique is elabdrateSectiol 5.b.
Simulated performance of our proposed elastic pipeline RGBU applica-
tions is evaluated in Sectign’b.6, followed by some genasaludsions of our
simulated GPU core architecture along with the elasticlipipen Sectiorf 5.J7.
Finally, Sectiorf 518 summarizes the chapter.

5.2 Background and Motivation

In this section, we will first introduce some GPU related lgaokind and their
shared memory accesses. Then we provide a motivating egampl

5.2.1 Shared Memory Access on GPU

GPU utilization has spanned far beyond graphics rendedaggring a wide
spectrum of general-purpose computing known as GPGPU H4.pfogram-
ming models of GPU (such as OpenCL [8] and CUDA [109]) are gedhere-
ferred to aexplicitly-parallel, bulk-synchronouSPMD (Single Program Mul-
tiple Data). In such programming models, the programmer extracts aite- d
parallel section of the sequential application code, ifiestthe basic working
unit (typically an element in the problem domain), and ecifili expresses the
same sequence of operations on each working unikarael Multiple kernel
instances (callethreadsin CUDA) are running independently on GPU cores.
The parallel threads are organized into a two-level hidrarm which a ker-
nel (@rid in CUDA) consists of parallel CTASGooperating Thread Arrgyor
block in CUDA), with each CTA composed of parallel threads, as show
Figure[51(a). Explicit, localized synchronizations anmdahip data sharing
mechanisms (such as CUDA shared memory) are supporte@ ieach CTA.

During execution, a batch of threads from the same CTA arapgo into a
warp, which is the smallest unit for the pipeline front-end pisiag (i.e.,
warp scheduling, fetching and decoding stages in Figuig@).ih GPU cores,
as illustrated in Figured.1. For high efficiency, warps asecated on the fine-
grain multithreaded GPU core in a SIMD fashion. Figlird 5.dvaha warp
configuration of 5 threads per warp and a SIMD data path ciomgisf five
lanes. The warps are scheduled and issued to the pipeline imexleaved
manner which is also known &srrel processing141].

GPUs rely mainly on massive hardware multithreading to bidernal DRAM

Grid 0 Id.shared.f32 %f1, [addr] . GPU
with addr = 20*tid.y + 4*(tid.x%4) + 0x00 chip

| Block | [“Block | | Block ;
"\ ©00) (ro) 0 Workload(CTA) dispatch

i \, Sy _ T — -y T s
"l‘ Block Block Black / I 2 _O/a—\\arp scheduling Iﬂ_\ @ @ @
ARGH) (L @]

! : . RENETZY /

\‘; AN S \esVe core 0 I Fetch l_H Decode I / Interconnect

" \ N d‘\ 4

it R — x

l‘ Block(o 0) lane 0 lane 1 lane 2 lane 3 lane 4 ,’/ @ @
i ’ /,

!] RF RF RF RF RF o

: <m— Thread | Thread | Thread | Threa i~ V2P 0 ! DRAM

| ©0) | (1,0) | 20 | GO | 40 / chi

I Yz?‘z?ﬂz? §z7§z7 / ps

l} <m_ Thread | Thread | Thread | Thread i~y V&P | - 7 = - = ,’/

'1 % Lh | @b | GO _w Shared shemory ,///// o mem(?ry (c)

! - — — accegs

| <m_ Thread | Thread | Thread | Thread ™~ Warp 2 bank/0 bank/ bank? bank3 _bdnk 4 Other re gst (to

02 | 12 | @2 | G2 | @42 » ez o Eg Non- || memory qu

bank ~0x04 | | 0x08 | | ox€& || 0x10 interconnect)
flict 0x18 | [Oxlc | [0x20 | [“ox24 ||| ™™ |] (global/ 4
contlict | 1176x28"| ["ox2c | [[0x30 | [0x34 | [0x38 ||| & || cons
(a) data returned 0x3c 0x40 0x44 0x48 | | Ox4c nsn te?(ture) !
) insn /
(from interconnect) /
v v A 2 y— /
Writeback I

\\ [

(b)

Figure 5.1: (a)CUDA threads hierarchy; (b)thread execution in GPU qipeline; (c)GPU chip organization

96

S1O171dNOD MNVY dIHO-NQOONISS3dAAdy ‘G d3LdVvHD

5.2. BACKGROUND AND MOTIVATION 97

__global__ void aesEncrypt128(unsigned * result, unsigned * inData,

int inputSize) {

__shared__ UByte4 tBox0/1/2/3Block[256];

__shared__ UByte4 stageBlock1/2[BSIZE];

unsigned tx = threadldx.x; 0
shared

memory
loads:

no bank

conflict

unsigned op1 = stageBlock2[posldx_E[mod4tx*4] + idx2].ubval[0];

unsigned op2 = stageBlock2[posldx_E[mod4tx*4+1] + idx2].ubval[1];
unsigned op3 = stageBlock2[posldx_E[mod4tx*4+2] + idx2].ubval[2];
unsigned op4 = stageBlock2[posldx_E[mod4tx*4+3] + idx2].ubval[3];
op1 = tBox0Block[op1].uival;
op2 = tBox1Block[op2].uival;
op3 = tBox2Block[op3].uival;
op4 = tBox3Block[op4].uival;

shared memory loads:
bank conflicts! (1

shared memory store:
no bank conflict

stageBlock1[tx].uival = op1*op2”*op3”op4”keyElem;
%,—/
) (m

Figure 5.2: AES source code

latencies. In addition, on-chip memory hierarchies are déployed in GPUs
in order to provide high bandwidth and low latency. Such bipenemories
include, software managed caches (shared memory), or hezdwaches, or a
combination of both [51]. To provide adequate bandwidthtierGPU parallel
SIMD lanes, the shared memory is heavily banked. Howevesgrveltcesses to
the shared memory banks are unbalanced, shared memoryddhéts occur.
For example, with the memory access pattern shown on topgoir€lin.1(b),
data needed by both lanes 0 and 4 reside in the same sharedyriemk 0. In
this case dot bankis formed at bank 0, and the tvemnflictingaccesses have
to beserialized assuming a single-port shared memory desigks a result,
the GPU core throughput may be substantially degraded, las éxemplified
by the following example.

5.2.2 Motivating Example

A snapshot of the AES encryption kernel source is shown inrgigp.2. The
code shown there deals with the second encryption stagst, ffie stage in-
put data indexes are loaded from shared memory regemyeBlockZphase 1).
Then the stage input data are loaded from shared memorynsg@iox*Block
(phase II), with the indexes from phase |. Afterwards theadatprocessed
(phase I11), and finally stored to the shared memory regtageBlockiphase
IV). The other stages of the encryption process work sifgilain phase I
an irregular access pattern callgdlirection or gatheris required, causing

*Even with dual-port shared memory banks, such serializatian not be completely
avoided when the bank conflict degree is higher than two.

98 CHAPTERS5. ADDRESSINGON-CHIP BANK CONFLICTS

1400000 130

1200000 120

1000000 110

800000 100

#Pipeline Stalls
PC

I — —

Y
3
s
5]
3
3

400000 80

200000 +— — — 70 — —

0 . 60
Baseline Elastic pipeline Baseline Elastic pipeline

(a) (b)

Figure 5.3: Effect of elastic pipeline in: (a)reducing pipeline stallsd (b)improving
performance

shared memory bank conflicts during AES execution. As a tethg ker-
nel suffers from a large number of pipeline stalls and nonalrperformance
loss. With our proposed elastic pipeline design (Sediidi together with the
bank-conflict aware warp scheduling technique (Sedfialy, B number of
pipeline stalls is reduced by 48.2%, which translates tovanadl performance
improvement of 10.5%, as Figureb.3 shows.

5.3 Problem Analysis

In this section, we will first analyze the latency and bandkidhplications of
GPU shared memory bank conflicts, then identify and analyzertechanism
how shared memory bank conflicts degrade GPU pipeline pedioce.

5.3.1 Latency and Bandwidth Implications

GPUs use a large number of hardware threads to hide bothdanmit and
memory access latency. Such extreme multithreading regjaitarge amount
of parallelism. The needed parallelism, using “Little’'svfd92], can be cal-
culated as follows:

Needed _parallelism = Latency x Throughput (5.1)

For GPU throughput cores, this means the required numbar-thight op-
erations to maintain peak throughput equals the productipalipe latency
and SIMD width. For thestrict barrel processing (See Sectlonl5.7) where all
in-flight operations are from different HW thread contextss directly deter-
mines the required amount of concurrent threads. For otscin general,

5.3. RROBLEM ANALYSIS 99

the needed_parallelism is proportional to the concurrent threads number. As
a result, a moderate increase in pipeline latency can betigffy hiddenby
running more threads. For example, the GPU core configuraised in our
evaluation employs a 24-stage pipeline with SIMD widthE:flSence, assum-
ing four extra stages for tolerating shared memory bank icbsifthe pipeline
depth is increased from 24 stages to 28. In this case, the ewaflihreads
to hide the pipeline latency (function unit/shared mema\penalized, by an
increment from 192 to 224, according to Equatiod 5.1. Thisasmally not
a problem, for both the GPU cores (where there are adequede/dige thread
contexts), and the application domains targeted by GPU# @viough paral-
lelism available).

It is also worth noting that, unlike CPUs, program controlflgpeculation is
not needed in GPUs thanks to the barrel processing mode).[I4refore,
the increase in pipeline latency will not incur pipelinefiif@ency associated
to deeper pipelines [134].

On the other hand, the peak bandwidth of the shared memorgsigrked
to feed the SIMD core, as illustrated by the pipeline modewshin Fig-
ure[51 (b)), where the number of shared memory banks eqimiﬁwidt}ﬁ
Therefore, bandwidth is naturally not a problem when GPUeshanemory
works at peak BW. However, intuitively, when the shared mgni@nk con-
flicts are severe, theustainedbandwidth can drop dramatically. Moreover, it
may eventually become the bottleneck of the entire kerneteton. In such
cases no microarchitectual solution exists without ingir@athe shared mem-
ory raw bandwidth.

To facilitate our discussion, we use the following definitiof bank conflict
degreeof SIMD shared memory access:

Bank conflict degree the maximal number of simultaneous accesses to the
same bank during the same SIMD shared memory access fromathdeb
lanes. Following this definition, the conflict degree of a Bllghared memory
access ranges from 1 wimdwidth. For example, the SIMD shared mem-
ory access in FigureZ3.1(b) has a confiiggree of 2. In general, it takes

conflict_degree W cycles to read/write all data for a SIMD shared memory

#shared_memory _ports
access.

2This is in accordance with a contemporary NVIDIA GTX280 aretture [108]. Similar
pipeline configurations are also widely used in research @®@Udels [17,150].

3Note, in practical implementations, the number of sharethotg banks can be multiple
of (e.g.,2X) the SIMD width, all running at a lower clock frequency comgh to the core
pipeline. The bottom line is, the peak BW of the shared meniwmgt least be capable of
feeding the SIMD core [108].

100 CHAPTER 5. ADDRESSINGON-CHIP BANK CONFLICTS

Table 5.1: Benchmark shared memory BW requirement

Benchmark name ‘ r ‘ conflict_degreeayg r X conflict_degreeayg
AES_encypt 36.1% 1.54 0.56
AES_decypt 35.9% 1.53 0.55

Reduction 4.0% 3.07 0.12
Transpose 3.7% 4.50 0.17
DCT 21.6% 3.33 0.72
IDCT 21.2% 3.33 0.71
DCT_short 10.3% 2.75 0.28
IDCT_short 10.3% 2.75 0.28

Naturally, it depends on an application’s shared memorgssgintensityand
conflict degreewvhether or not it is shared memory BW bound. Assume the
available shared memory B\BW.,,.;;, allows access of one data element per
core cycle for all SIMD lanes. In this case, a single sharechorg instruc-
tion’s bandwidth requirement equals éisnflict_degree. This is due to the fact
that this instruction occupies the shared memorydartfiict_degree cycles
during the execution. Suppose the ratio between #exectized memory
access instructions and all instructions.isThen the shared memory BW can
become a bottlenecit and only if the available BW is smaller than the re-
quired BW, for the entire GPU kernel execution:

BWavaiI < BWreq

1 < r X IPCpor % conflict_degree, s

Considering the normalized IPC per SIMD lan€(,.,, is no larger than 1,
we see that the shared memory BW is a bottlerifick

r x conflict_degree;,z > 1 (5.2)

Table[5.1 shows the values ofdenoted as “shared memory intensity” in Ta-
ble[23) andconflict_degree,,, (“average bank conflict degree” in Talfle]5.5)
in real kernel execution. As can be observed in TABIE 5.1afop[5.2 holds
for none of the GPU kernels in our experiments. This indeate have large
shared memorBW margin as far as bank conflicts are concerned. In other

5.3. RROBLEM ANALYSIS 101

words, we have sufficient amount of shared memory BW to sugiak IPC,
even bank conflicts.

This insight is very important, since it reveals the oppuoitiuto improve over-
all performance, without increasing the raw shared memaky B the rest of
the chapter, we will see how moderate microarchitecturihesent can be
created to solve the problem.

5.3.2 Bank Conflicts Impact on Pipeline Performance

The baseline in-order, single-issue GPU core pipeline gardtion is illus-
trated on the top of Figude3.4(a). The warp scheduling siag®t shown,
and only one of the parallel SIMD lanes of the execution/mgnsiages is
depicted in Figur€hl4(a) for simple iIIustratﬂ)nMeanWhile, although only
sub-stages of the memory stag@EMO/1) are explicitly shown in the figure,
other stages are also pipelined for increased executigudrey. t; denotes
execution time in cyclé, and W; denotes warp instruction fetched in cy¢le

As Figure[5.4(a) showd); is a shared memory access with a conflict degree
of 2, and it suffers from shared memory bank conflict in cycle3, atMEMO
stage. The bank conflict hold4; at MEMO for an additional cycle (assuming
single port shared memory), until it gets resolved at theddagicle /i +4. In the
baseline pipeline configuration with unified memory stagies,bank conflict

in cyclei + 3 has two consequences: (1) it blocks the upstream pipelagest

in the same cycle, thus incurring a pipeline stall which isilfinobserved by
the pipeline front-end in cyclé+ 4; (2) it introduces a bubble into tHdEM1
stage in cycle + 4, which finally turns into a writeback bubble in cyaole- 5.

Notice the fact that/V;,; execution does not have to be blocked Wy, if
W1 is not a shared memory access. Thus a possible pipeline aoatfin
which is able to eliminate the above mentioned consequet)ds fpossible, as
Figure[5.3(b) shows. With the help of the exN®ONMEM path, W, is now

no longer blocked byV;, instead it steps into ttdONMEMpath whileW; is
waiting at stageMEMO for the shared memory access conflict to be resolved,
as Figurd 5}4(b) shows. Unfortunately, this cannot avoidwhiteback bubble

in cyclei+5. Moreover, the bank conflict df; in cyclei+ 3 causes writeback
conflicH at the beginning of cyclé+ 6, which finally incurs a pipeline stall at
fetch stage in the same cycle, as shown in Figure 5.4(b).

“Please refer to Figufe®.1(b) for the pipeline details.
®Note the writeback throughput for a single issue pipelirfeifstruction/cycle at maximum.

102 CHAPTER 5. ADDRESSINGON-CHIP BANK CONFLICTS

Link between shared memory
bank conflict and pipeline stall

! NONMEMO ! NONMEM1
i
1
|
|

—_
L - Q |e
. ~ gz
= I - . x S E
% 2| == 58
e
L o
e £3
)
- K=k
ol . i o=
a I -
1) -
T

IF
\
Wi
Wi

Stall seen at
pipeline front-end

tiva
t1+3

3

Figure 5.4: Baseline in-order pipeline: (a)unified memory stages ahgp(th memory stages

Pipeline stall due to
downstream stage stall

-

o -)

c

® ¢

X

R SRR e R e e © [$=2
'Y ~ e

ol e R L 8

z| E|(BpE ad

I | exe [vevo | memi | wB |
. W
Ly
W
W
X

:3:::3::3:
:
kel
| . 2N 2
=z = 2||BpE| 55
e
R R A 28
¥ 7 ==
| | | NT HW S5
|25 2|8 wwwh - ® 5
el
£ 0
L © £
20
- I e e e aE
D = x| | £ £ | £ =
B R R e s [R _HT

5.4. BHASTIC PIPELINE DESIGN 103

Our observation: Through the above analysis, we can see that the throughput
of the GPU core is constrained neither by the shared memaergwvidth, nor

by the shared memory latency (as long as it stays constaritjather by the
varied execution latencies due to blocking memory bank sfl The vari-
ation in execution latency incurs writeback bubbles andeleck conflicts,
which further causes pipeline stalls in the in-order pipeliAs a result of the
above the system throughput is decreased.

5.4 Elastic Pipeline Design

Based on the analysis of the GPU shared memory bank conftibtgmn, we

will introduce our elastic pipeline design in this sectidts implementation

will be presented, with emphasis on the conflict toleraneed\ware overhead
and pipeline timing impact.

Vl MEMO [MEM1

WB

[F I o]I ExE

H’NONMEMM‘NONMEMI

%‘f Gt Wi

é ti Wi Wit

&‘ tis1 Wi Wi

3
tiv Win W; Wit :
tis3 Wisa |—{W7‘J Wia
tirg Wi (%5\ X Wit
tivs Win N
livs Wisa W
ti7 Wiia

Pipeline stall due to shared ~~. Pipeline bypass

memory bank conflict X Bubble seen at pipeline back-end

Figure 5.5: Elastic pipeline

To address the problem discussed above, we propose ag eigsiine design
which is able to eliminate the negative impact of shared mgrbank con-
flicts on system throughput, as shown in Figuré 5.5. Compaittdthe base-
line pipeline with split memory stages in Figurels.4(b), thejor change is
the added buses to forwandatured instructiongrom EXEandNONMEMO/1
stages to the writeback stage. This effectively turns tigiral 2-stageNON-
MEM pipeline into a 2-entry FIFO queue (we will refer to it adONMEM

104 CHAPTER 5. ADDRESSINGON-CHIP BANK CONFLICTS

gueue” hereafter). Note, the output from tBXE stage can be forwarded di-
rectly to writeback only if it isnot a memory instruction, whereas forwarding
from NONMEMOto writeback is always allowed. Such non-memory instruc-
tions can bypass some or all memory stages, simply becaggedhnot need
any processing by the memory pipeline. As Figurd 5.5 showdphward-
ing matured instructions in thdONMEM gqueue to the writeback stage, the
writeback conflict is removed, and thus the link between bamkl writeback
conflicts is cut and the associated pipeline stall is eliteida

5.4.1 Safe Scheduling Distance and Conflict Tolerance

For ease of discussion, we first define the following warp sype

Memory warp: a warp which is ready for pipeline scheduling and is going to
access any type of memory (e.g., shared/global/ constait$)next instruction
execution.

Shared memory warp a ready warp which is going to access on-chip shared
memory in its next instruction execution.

Non-memory warp: a ready warp which is not going to access any memory
type during its next instruction execution.

In Figure[®.b it is assumed th#lt; , ; is a non-memory instruction. Otherwise,
Wi, will be blocked aEXEstage in cycle+4, sincelV; is pending aMEMO

in the same cycle, due to its shared memory bank conflictsh Sumroblem
exists even i, is not a shared memory acdBs3o avoid this problem, we
have the constraint (fafe memory warp schedule distandefined as:

Safe memory warp schedule distancethe minimal number of cycles be-
tween the scheduling of a shared memory warp and a followiegnany warp,
in order to avoid pipeline stall due to shared memory banklicis

It is easy to verify the relationship betweanfe_mem_dist (short for “safe
memory warp schedule distance”) and the shared memory barflict de-
gree, in the following equation:

(5.3)

) conflict_degree
safe_mem_dist =
#shared_memory _ports

The safe memory warp schedule distance constraint reqthegsmemory
warps should not be scheduled for execution in @X¢_mem_dist — 1 cy-
cles after a bank-conflicting shared memory warp is scheduter example,

®Note, in such case, even if there exists a third path (wittdfixember of stages) for that
memory access type, writeback bubbles cannot be avoidedpdhe same phenomenon illus-
trated in Figuré®l4(b).

5.4. BHASTIC PIPELINE DESIGN 105

safe_mem_dist for W; in Figure[&b is[2| = 2, which means that in the next
cycle, only non-memory warps can be allowed for scheduling.

It is important to point out that, the elastic pipeline hazsdbank conflicts of
any degreewithout introducing pipeline stalls, as long as #we_mem_dist
constraint is satisfied. We will discuss this in more detaibectiorf5.b.

5.4.2 Out-of-order Instruction Commitment

In Figure[&.5, the elastic pipeline shows the behavior ofaftdrder instruc-
tion commitment. For GPU cores wittrict barrel processingSection[5.J7)
(assumed in our evaluation), it is not a problem since thiight instructions
are from different warps. In the case i@flaxed barrel processinin which
consecutively issued instructions may come from the samp {tait without
data dependence), out-of-order instruction commitmeittivthe same exe-
cution context may occur. This is penalized by the pipeliradp unable to
support precise exception. Possible solutions are disduasSectiol 5]7.

5.4.3 Extension for Large Warp Size

Above we have assumetarp_size=simdwidth. In real GPU implementa-
tions, however, the number of threads in a warp can be a neutifg?GPU core
pipeline SIMD widtll. In this case, a warp is divided into smalrbwarps
with the size of each equaling the number of SIMD lanes. Alivearps from
the same warp are executed by the SIMD pipeline consecutiVidierefore,
warp_size/simdwidth free issue slots are needed for a warp to be completely
issued into the pipeline. Moreover, each warp will occupmy $iMD pipeline
for at leastwarp_size/simdwidth cycles during execution. Consider for exam-
ple warp_size/simd_width = 2. In this case boti; and W, ; in Figure[&.b
will have to execute the same shared memory access insmucti the first
and second half of the same warp, respectively. Shés blocked at stage
MEMOin cyclei + 4, W;; is unable to step intMEMO from the EXE stage

at the beginning of the same cycle. This reslits,; being blocked aEXE
and all upstream pipeline stages being blocked in cielel, thus incurring a
pipeline stall.

To solve this problem, an extension has to be adopted to &stiebipeline
shown at the top of Figule3.5. In the extension, we introcareather source

"For example, there are 32 threads per warp in CUDA and 8 SIMBslén NVIDIA GPUs
before the Fermi [51] generation.

106 CHAPTER 5. ADDRESSINGON-CHIP BANK CONFLICTS

of elasticity to theMIEM path, by placing before tHdEMO stage aarp_size/
simd _width — 1)-entry FIFO queue PREMEMqueue” in Figurd516). With
the help of th?REMEMqueue, the elastic pipeline can handle all consecutive,
back-to-back issued bank-conflicting SIMD shared memocgsses from the
same warp, regardless of the conflict degree of each.

PREMEM queue

N A

,%»I‘PREMEM’-» ‘ MEMO ‘I‘ MEMI ’_>

=

>

3|~8B

Figure 5.6: Elastic pipeline logic diagram

The logic diagram of the final elastic pipeline with the exien for large
warp size is shown in Figufe.6, for the case with two memtages and 1-
entry PREMEM queue. The numbers inside the multiplexers denote the MUX
inputs priority (smaller numbers have higher prioritidsyr example, the data
returned from interconnect is assigned with the highestrityi (it is loaded
from the external main memory after hundreds of cycles Jelalgereas only
when there is no available data from elsewhere can the dgtatdtom stage
EXEbe written back (if it is not a memory access).

With the elastic pipeline configuration of Figurels;.; in Figure[55 will
be buffered in th®REMEMqueue in cycle + 4, while W;,, will directly
step into writeback stage at the beginning of cyicles.

To summarize, the elastic pipeline adds two FIFO queues @ob#seline
pipeline: theNONMEM queue with a depth of M and tHeREMEM queue
with a depth of N, where

M = #MEM _stages (5.4)
warp_size

N=|——| — 55

Limd_width-‘ (-5)

5.4.4 Hardware Overhead and Impact on Pipeline Timing

The additional hardware overhead as compared with theibagabeline is
summarized in TableEZ4.2. The metric for the logic complexifypipeline
latches is that of a pipeline latch in a single SIMD lane. Asca@ see in

5.5. BANK-CONFLICT AWARE WARP SCHEDULING 107

Table 5.2: Elastic pipeline HW overhead per GPU core

Type Logic complexity | Quantity
Pipeline latches simd_width M+N
(M+3)-to-1 MUX M+2 1
(N+1)-to-1 MUX N 1

Table[5.2, the area consumption of the additional pipelehles is in the or-
der of (M + N) - simd_width. Considering smalMs andNs in realistic GPU
core pipeline designs (e.®/=4, N=3 in our evaluation), this additional cost is
well acceptable. The hardware overhead of the two multgriels negligible.

The control paths of the two multiplexers are not shown irurefg.®, since
they are simply valid signals from relevant pipeline latcla the beginning
of each stage, and are therefore not in the critical path. gaoed with the
baseline pipeline, all other pipeline stages’ timing isauthed, with only one
exception of the&eXEstage, as illustrated in Fig f.6rhere are two separate
paths in which th&XEstage is prolonged: path A and B, as marked by the two
dash lines in FigurE8.6. A is the (N+1)-to-1 multiplexer @b the (M+3)-
to-1 multiplexer listed in TablEZH.2. With standard critipath optimizations
such as theriority on late arriving signaltechnique [19], both A and B only
incur an additional latency of 2-to-1 MUX for tHeXE stage. Therefore, the
increased latency to stageXEis that of a 2-to-1 MUX in total, which will not
noticeably affect the target frequency of the pipeline instreases (assumed
in our experimental evaluation).

5.5 Bank-conflict Aware Warp Scheduling

As discussed in Sectidn 5.1.1, in order to completely avoedipeline stall
due to shared memory bank conflicts, the constrainsadé memory warp
schedule distancenust be satisfied. Otherwise, two consequences will hap-
pen: 1) theeREMEMqueue will get saturated, which results in pipeline stalls;
and 2) theNONMEMwill get emptied, which results in writeback starvation.
In the end the pipeline throughput is degraded. In order fweawith this
problem, warp scheduling logic should prevent any memompvi@m being

8Note, although not shown in Figureb.4(a), there is a MUX atehd ofMEM1 stage in the
baseline pipeline, since an arbitration to select writklgata from either inside the GPU core
pipeline or from the interconnect is needed.

108 CHAPTER 5. ADDRESSINGON-CHIP BANK CONFLICTS

scheduled in the time frame wfarp_safe memdist (Equation [5J7)) cycles af-
ter a bank-conflicting shared memory warp is scheduled fecation. This is
called ‘bank-conflict aware warp schedulihgliscussed next.

5.5.1 Obtaining Bank Conflict Information

In order to apply bank-conflict aware warp scheduling, westtavfirst find out
which instructions will cause shared memory bank confliate] their corre-
sponding conflict degree. This information may be obtaimetivio ways: 1)
static program analysis; 2) dynamic detection. We choseamym bank con-
flict detection instead of compile-time analysis in our iepkentation for two
reasons. First, some shared memory access patterns (aafbtbehe bank
conflict patterns) are only known at runtime. This is the daseegular access
patterns (e.g. 1D strided) whose pattern parameters {beagstride) are not
known at compile time, or irregular accesses whose bankicbpétterns can
not be identified statically (such as the AES example). Secibrere is no ad-
ditional hardware cost incurred directly by the dynamiedgon, as the shared
memory bank conflict detection logic is needed in the baeqjipelin.

Note, for warp sizes larger than the number of SIMD lanesptgk conflict
degree of theentire warpis the accumulation of all subwarp SIMD accesses,
as given by the following equation:

warp-size 7| _
simd_width -l 1

warp_bkconf _degree = Z conflict_degree; (5.6)
i=0

whereconflict_degree; is the shared memory bank conflict degree of subwarp
i, which is measured by the hardware dynamicallyarp_bkconf _degree is
obtained by an accumulator and a valid result is generatddstdst every

{%W cycles (if there is no pipeline stall during that time).

Accordingly, the safe memory warp schedule distance in Equgs.3) is ex-
tended in the following:

warp-size '|

warp.si 1
simd_width H)
> %0 conflict_degree;

warp_safe_mem_dist =
P #shared_memory _ports

(5.7)

®The shared memory has to identify the conflict degree of eddDShared memory access
(i.e., conflict _degree; in Equation [2.B)) in order to resolve it.

5.5. BANK-CONFLICT AWARE WARP SCHEDULING 109

Bank confilict history cache

PC
warp_bkconf degre | degree
acc e valid

-
wr_addr

wr_data tag warp_bkconf degree

wr_en tag warp_bkconf degree
rd_addr

Y YYY

ok ‘ tag ‘ warp_bkconf degree ‘
\

default_value]
cache read hit <X
warp_to_sched PC == N

warp_to_sched_is_shmem_acgess "
Sel

last_warp_bkconf degree--

clr
new_kernel_launch oIk (saturate counter)
0\5 % :i ; safe_mem_dist_violated
0‘\\ < A(memory warp mask)
QY &Y -
R i
PO I
+

warp_is_memory_access | & b warpireadyiout
warp_ready_in

Figure 5.7: Bank-conflict aware warp ready signal generation

And the safe memory warp schedule distance constraint ngwiress that the
scheduling interval between bank-conflicting shared mgmarp and mem-
ory warp should be no less thararp. safememdist cycles.

It is very important to note that, the bank conflict degreehaf last sched-
uled shared memory warp can not be obtaimetime by simply checking the
warp_bkconf _degree accumulator on the fly. This is due to the fact that it may
have not reached memory stages or finished shared memossasgget when
its bank conflict information is needed by the warp schedulogic. There-
fore, we need t@redict warp_bkconf _degree for a shared memory warp be-
fore the real value becomes valid, by only its shared menmstytction PC.

In our design, we implement a simple prediction scheme wpredicts the
bank conflict degree of a shared memory instruction to be tieeneeasured
during thelast executiorof the same instruction.

5.5.2 Bank Conflict History Cache

In order to maintain the historic conflict degree informatiove implement
a small privatebank conflict history cachdistributed among the GPU cores,
as shown in FigurE8.7. Each time a new kernel is launchedh thet bank
conflict history cache and thiast warp_bkconfdegreecounter are cleared.

110 CHAPTER 5. ADDRESSINGON-CHIP BANK CONFLICTS

The cache is updated whenever a warp execution of shared mypamo
struction gets resolved and thearp_bkconfdegreeaccumulator generates
a valid value for B§. Whenever a shared memory warp is scheduled, the
last warp_bkconfdegreecounter is set to its last warp bank conflict degree
in history, by checking it in the conflict history cache. Ifache miss occurs,
then thdast. warp_bkconfdegreecounter is set to a default value (0 in our de-
sign). The memory warp mask is generated by checking if the re@mory
warp schedule distance constraint is violated. Note, indegign we assume
the warp scheduling stage knows whether or not a ready warghared mem-
ory access (théwarp _to_schedis_ shmemaccess”signal in Figurd5l7), or a
memory access (tHevarp _is_.memory access”signal). This can be done eas-
ily with negligible overhead. For example, we can look up toenmitting
warp’s next instruction type in a per-core type bit-vectoitialized at kernel
launch time) at pipeline writeback stage (only 2 bits per RC kernel are
enough for this purpose), and setup the 2-bit type registsvcated with the
committing warp (only 2 bits per a hardware warp context).

When we use the bank conflict history cache to predict the iconliégree of
scheduled shared memory access, the result is incorreebigituations: (1)
when a cache miss happens (e.g., compulsory misses duecadreache after
a new kernel is launched) and unfortunately the defaultudutglue generated
is different from the actual conflict degree; (2) when theficihdegree of the
same shared memory instruction varies among consecutieitian. Case (1)
is unavoidable for any kernel. Fortunately, its impact orrall performance
is usually negligible. Case (2) occurs only in kernels wittegular shared
memory access patterns and dynamically changing confligedde.g., AES).
It is important to note that, incorrect prediction of the idgthmemory bank
conflict degree in the elastic pipeline will not necessardgult in pipeline
stalls. Indeed, the pipeline will be stalled only when thedicted value is
smallerthan the actual conflict degree and there is at least one nyenaop
scheduled which violates the safe memory warp schedulandistconstraint.
The impact of incorrect bank conflict degree prediction quefine stalls is
shown in Sectiof 5.6l 1.

ONote, in our design the conflict degree value from the accatuhas been decreased by

(ﬁ;ﬁj{j‘jﬂ before written to the conflict history cache, in ordeatign the value for instruction

with no bank conflict to zero.

5.5. BANK-CONFLICT AWARE WARP SCHEDULING 111

5.5.3 Proposed Warp Scheduling

With the bank access conflict history for each shared memmsiyuction main-
tained in the conflict history cache, bank-conflict awarepasrheduling can
apply the same scheduling scheme as the baseline pipelisehtmule the
ready warps for execution. The only difference is that if evusly sched-
uled warpwill befis still being blocked at the memory stages due to shared
memory bank conflicts, then all memory warps are excludeah fitee ready
warp pool, as Figure 5.7 shows.

Once it is guaranteed by the warp scheduling logic that tleer®s memory
warp violating the safe memory warp schedule distance @instthen shared
memory bank conflicts incurred by a single warp can be effelsthandled by
the elastic pipeline design, as discussed in Se€fidn 5Her@tse, the elastic
pipeline will get saturated and stalls due to bank confliatsoagcur. We will
see the impact of the bank-aware warp scheduling on ovezdibpmance in
Sectio5.6R. It should be noted that, warp schedulinghystself is unable
to reduce pipeline stalls caused by shared memory bank atsnflvithout the
elastic pipeline infrastructure.

5.5.4 Hardware Overhead

Table 5.3: Hardware overhead of bank conflict prediction and warp masilegation
(per GPU core)

Type Logic complexity Quantity

Bank conflict | #cachelines (logs(warp_size)+14- 1

history cache log> (#cacheset9) bits, dual port (1R+1W)

AND/NAND gate | — 2-#warp contexts per coreg
Accumulator logn (warp_size) bits 1

2-to-1 MUX - 1

Counter log» (warp_size) bits 1

Comparator log» (warp_size) bits 1

As discussed above, our bank-conflict aware warp scheddlieg not in-
cur any additional overhead in scheduling logic — it simplijiaes the same
scheduling as the baseline. However, the warp ready sigradrgtion logic
needs to be modified to make it aware of in-flight bank-configctshared
memory accesses and enforce the constraint on followingsaarbe sched-

112 CHAPTER 5. ADDRESSINGON-CHIP BANK CONFLICTS

uled, as shown in Figude 8.7. Talfle]5.3 summarizes the haedmserhead
incurred by the bank conflict degree prediction and banKtobraware warp
ready signal generation. The main contributor in Tablé $1Bé bank conflict
degree history cache. Assuming 14 bits PC (which is able talleakernels
with up to 16K instructions — large enough from our expergnchis turns
to 14-og» (#cachesetg bits cache tag size. Remember, eachflict_degree;
in Equation [5.B) takedog(simd_width) bits (Sectiof5.312), therefore the
cache contenwarp_bkconfdegreeoccupieslog,(warp_size) bits. The total
size of the bank conflict history cache is summarized in T&Be In our de-
sign, we implemented a 2-way set associative conflict histache with 256
sets, which is capable of removing all capacity and conflistses for all ker-
nels in our evaluation. In this case, the conflict historyheaconsumes only
704 bytes (withwarp_size=32), which is quite trivial.

Regarding the timing impact, the increase in the warp reahasgeneration
delay observed by the default warp scheduler is only thanefAdND gate, as
shown in Figuréhl7.

5.6 Experimental Evaluation

Experimental Setup: We use a modified version of GPGPU-Sim [17], which
is a cycle-level full system simulator for GPUs implemeqtiptx ISA [110].
We model GPU cores with a 24-stage pipeline similar to coptaary im-
plementations [108, 150]. The detailed configuration of@#J processor is
shown in Tabld5l4. The GPU processor with the baseline ippdtbase-
line GPU") and the case with the proposed elastic pipeliealfanced GPU")
are evaluated in this chapter. They differ only in the copefe configura-
tions and warp scheduling schemes, as Table 5.4 shows. Tilgenwf mem-
ory pipeline stages and thearp_size/simdwidth ratio are 4 (see Table5.4).
Therefore the queue depth is set to 4 for M@NMEM queue, and 3 for the
PREMEMqueue in the elastic pipeline, according to Equatibng @d)[55).

We selected eight shared memory intensive benchmarks frasDAC
SDK [109] and other public sources [98]. Talple]5.5 lists thaimcharac-
teristics of the selected benchmarks. The instruction tounolumnstotal
instructionsandshared memory instructiorshows two numbers, with the first
being the number of dynamic instructions executed by allsk28ar pipelines
(i.e., SIMD lanes) of 16 GPU cores, and the second numbeglibaptx in-
struction count in the compiled prograrBhared memory intensity the ratio
of dynamic shared memory instructions to total executettungons. The

5.6. EXPERIMENTAL EVALUATION 113

Table 5.4: The GPU processor configurations

Number of Cores 16

8-wide SIMD execution pipeline, 24 pipeline stages (with dmory
stages); 32 threads/warp, 1024 threads/core, 8 CTAs/t6884
registers/core; execution model: strict barrel procestsectior 5J7)
Core Configuration | warp scheduling policy: Round-robibgseline GPU vs
bank-conflict aware warp schedulingnhanced GPY
pipeline configuration: baseline pipelineaseline GPY vs
elastic pipeline énhanced GPY

)) 16KB software managed cache (i.e., shared memory)/coraniésh
On-chip Memories
1 access per core cycle per bank

4 GDDR3 memory channels, 2 DRAM chips per channel, 2KB page
DRAM per DRAM chip, 8 banks, 8 Bytes/channel/transmission (GB/3
BW in total), 800 MHz bus freq, 32 DRAM request buffer entries
memory controller policy: out-of-order (FR-FCFS) [125]

Interconnect crossbar, 32-Byte flit size

average bank conflict degrdi®ld shows the average number of cycles spent
on a SIMD shared memory access for each benchmark appticalibis is
collected by running the benchmarks on the baseline @Pdoretic speedup
calculates, assuming IPC=1 (normalized to a single scigdalipe/SIMD lane)
for all instructions except shared memory accesses (ilepipeline ineffi-
ciency comes from pipeline stalls caused by shared memar banflicts),
the speedup that can be gained by eliminating all pipelinbsstCTAs per
core denotes the maximal number of concurrent CTAs that can lbeaéd
on each GPU core. X in thelrregular shared memory patterrolumn in-
dicates kernels with shared memory instructions with int@gaccess patterns
and dynamically varied bank conflict degree.

Note, the kernel names followed bysa denote the CUDA code which has
originally been hand-optimized to avoid shared memory bemkflicts, by
changing the layout of the data structures in shared meneagy, by padding
one additional column to a 2D array). We adopt the codeubd such op-
timizations in our evaluation of elastic pipeline performa in Sectiong5.8.1
and[E.6.R. There are two reasons for this. First, we fountditharactice
if the shared memory bank conflict is a problem, the programmik either
remove it (by the above mentioned hand-optimizations),iraply avoid us-
ing the shared memory. Due to this we were unable to find maisfimx

114 CHAPTER 5. ADDRESSINGON-CHIP BANK CONFLICTS

Table 5.5: Benchmark characteristics

Name Source Grid Dim CTA Dim CTAs/core Total Insns
AES._encypt [98] (257,1,1) | (256,1,1) 2 35132928/534
AES._decypt [98] (257,1,1) | (256,1,1) 2 35527680/540

Reduction CUDA SDK | (16384,1,1)| (256,1,1) 4 415170560/49
Transposex CUDA SDK (16,16,1) | (16,16,1) 4 3538944/54
DCTx CUDA SDK (16,32,1) (8,4,2) 7 7274496/222
IDCT CUDA SDK (16,32,1) (8,4,2) 7 7405568/226
DCT._shortx | CUDA SDK (16,16,1) (8,4,4) 7 10223616/337
IDCT_shortx CUDA SDK (16,16,1) (8,4,4) 7 10190848/336

Sh-mem Avg. Conf. | Theoretic | Irregular Sh-

Name Sh-mem Insns)
Intensity Degree Speedup mem Pattern

AES_encypt | 12697856/193 36.1% 1.54 1.19 Y
AES_decypt | 12763648/194 35.9% 1.53 1.19 Y
Reduction 16744448/5 4.0% 3.07 1.09 Y
Transposex 131072/2 3.7% 4.50 1.13 N
DCTx 1572864/48 21.6% 3.33 1.50 N
IDCTx 1572864/48 21.2% 3.33 1.50 N
DCT_short« 1048576/40 10.3% 2.75 1.18 N
IDCT _shortx 1048576/40 10.3% 2.75 1.18 N

5.6. EXPERIMENTAL EVALUATION 115

O Other elastic pipeline stalls
O Elastic pipeline stalls caused by bank conflicts
O Elastic pipeline stalls caused by sched fails

B Other baseline stalls

O Baseline stalls caused by bank conflicts

B Baseline stalls caused by sched fails

Normalized Pipeline Stalls

Figure 5.8: Pipeline stall reduction. In each group: left bar: base@rJ; right bar:
elastic pipeline enhanced GPU

codes with heavy shared memory bank conflicts. That is why awmuallyroll
backthe shared memory hand-optimizations for these kernelsisadhem in
our initial evaluation presented in this chapter. Secosduming the elastic
pipeline is adopted in the GPU core, we also want to inspestihperforms
for these kernels, without shared memory optimizationsiftee programmer.

We use the NVCC toolchain [110] to compile the CUDA applicatcode. The
toolchain first invokegsudafeto extract and separate the host C/C++ code and
device C code from the CUDA source, then it invokes two staletie com-
pilers: gccto compile the host C/C++ code running on the CPU avimpencc

to compile the device code running on the GPU. All benchmarkscompiled
with -O3 option.

It has to be pointed out that, although we use CUDA code andconees-

sponding toolchain in our experiments, our proposed elagteline and bank-
conflict aware warp scheduling do not rely on any particul&U3rogram-
ming model. Further, the application of our proposal is mtted to GPGPU
applications — graphics kernels can also benefit from it eloerchip shared
memory bank conflict is a concern.

5.6.1 Effect on Pipeline Stall Reduction

Figure[58 shows the proposed elastic pipeline and the bankict aware
warp scheduling effect on reducing pipeline stalls. Theilltssare per ker-
nel, with the left bar of each group showing the number of Ipigestalls in

116 CHAPTER 5. ADDRESSINGON-CHIP BANK CONFLICTS

the baseline GPU, and the right bar showing the stalls in tiamced GPU.
The number of stalls are normalized to the baseline GPUdénseach bar,
the pipeline stalls are broken down into three categoriesn(fbottom to top):

warp scheduling fails, shared memory bank conflicts, andratbasons (i.e.,
writeback conflicts incurred by data returned from interwxt). Note, GPU
core warp scheduling fails if the ready warp pool is emptyjclttan be in-

curred by: (1) the core pipeline latency or other long lakesnde.g., due to
main memory access) which are not hidden by the parallel expution (i.e.,

not enough concurrent CTAs active on chip); (2) the barn@ckronization;

(3) warp control-flow re-convergence mechanisms [47].

As discussed before, shared memory bank conflicts createbadk bubbles
which finally incur pipeline stalls. Note, although the pomtof shared mem-
ory instructions is small for some kernels (such as Redndiwd Transpose,
with less than 5% as shown in Talple]5.5), some of the involuétDSshared

memory accesses result in very high bank conflict degreet @) Therefore

the total number of bank conflicts and pipeline stalls isaygignificant in the
baseline, as shown in Figureb.8.

As Figure[5.B shows, the number of pipeline stalls are sicanifly reduced
by the elastic pipeline. In all kernels except AES encrygtfgipt, the pipeline
stalls caused by bank conflicts are almost completely rethiovihe enhanced
GPU. Remember, the bank conflict stalls in the elastic piypetnhay occur,
only if the conflict degree prediction made by the bank conRistory cache
is incorrect (Sectiof ’5.3.2). The bank conflict history @etas unable to
produce constantly precise conflict degree predictionterttighly irregular
shared memory access patterns in the AES kernels. Thiggdaud large
number of bank conflict stalls. Figureéb.8 shows that the thphcompulsory
misses in bank conflict history cache is negligible in thetidgpipeline.

On the other hand, the number of pipeline stalls due to wdrpdiding failures
are increased for some kernels. This is expected, sinceatiledonflict aware
warp scheduling masks off the ready warps which violate dmstraint of safe
memory warp schedule distance. Contrary to our expectati@nnumber of
warp scheduling fails is actually reduced for Transpose@R@d/IDCT _short

kernels. Detailed investigation reveals that this is ealdb the inter operation
between our elastic pipeline design and the rest of the G®depsor, such
as the on-chip synchronization and control flow re-conwergemechanisms,
and off-chip DRAM organizations. For example, drastic DRANannel con-
flicts are observed during the Transpose kernel executidheobaseline GPU.
Whereas in the GPU enhanced by the elastic pipeline and thie-dmmflict

5.6. EXPERIMENTAL EVALUATION 117

1.50 1.50

Normalized IPC

08 DOBaseline
B Elastic pipeline + Round-robin warp scheduling
0.7 4 O Elastic pipeline + Bank-conflict aware warp scheduling [
O Theoretic speedup

. IR A

3 3 A
o’sQ cf\Q & Qoe?) Oo L ,(\o{\ ,(\o{” «'b&
< & S Q S 2 2 @
2 & S & 6\ 7 C')& 7 Ys
\;59 ’ v(‘/% 7 & < Q i\

Figure 5.9: Performance improvement

aware warp scheduling, such channel conflicts are subsiignteduced and
DRAM efficiency is improved.

The last type of pipeline stall®ther pipeline stallsn Figure[5.8) is caused by
writeback conflicts incurred by data returned from interceet. The number

is slightly increased in the elastic pipeline as shown inuFegs.8. This is
because the number of such conflicts is relatively small,zalatige portion of
them are welhiddenby the large amount of bank conflict stalls at the upstream
of the pipeline, in the baseline GPU.

5.6.2 Performance Improvements

Figure[5.® compares the performance of the baseline GPéntenced GPU
with pure elastic pipe design (with default warp schedylinbe enhanced
GPU with elastic pipeline augmented by bank-conflict awaagoscheduling,
and the theoretic speedup. We can see that the performaingeres/ed by the
pure elastic pipeline only slightly (3.2% on average), withthe assistance
of proper warp scheduling. While with the co-designed beokfict aware
warp scheduling, an additional 10.1% improvement is gaitesatling to the
average performance improvement of the elastic pipelisggdey 13.3%, as
compared to the baseline. This confirms our analysis in @€&B. For AES
encrypt/decrypt, the achieved speedup by the elasticipged substantially
smaller than the theoretical bound, mainly because a lapgiéop of bank
conflict stalls still remains in the elastic pipeline, aswhan Figurd 5.8. DCT
and IDCT see &augegap between the actually achieved performance gain by

118 CHAPTER 5. ADDRESSINGON-CHIP BANK CONFLICTS

elastic pipeline and the theoretic bound. This is due to timalrer of pipeline
stalls caused by warp scheduling fails is significantly éased, also shown in
Figured5.8. Itis interesting to see that the speedup of @stielpipeline design
exceeds the theoretic bound, for kernels Transpose andIDCT/short. This
results from the fact that the number of warp scheduling faiteduced, thanks
to the positive interaction between the elastic pipeliretthe rest of the system
in these cases, as discussed in Se¢fion]5.6.1.

In order to find out how our elastic pipeline performs in relig the over-
head of reducing shared memory bank conflicts from the soétwie, we
compared the performance of un-optimized code (i.e., CUDK $ode with
shared memory bank conflict optimizations removed by usjingon the en-
hanced GPU versus the hand-optimized code (i.e. the oli@b®A SDK
code) running on the baseline GPU, as shown in Fifurel 5.10 wésan
see from the figure, on average the performance of un-ogtrkernel run-
ning on elastic pipeline cores is on par with the optimizeth&krunning on
baseline cores. However, we also found that for the DCT/IDX€mels, the
performance gap is quite large (e.g., 14.9% less perforenancthe elastic
pipeline+un-optimized kernel combination for IDCT). lefath analysis re-
veals that this is due to the change of warp execution ordethéyelastic
pipeline interacts poorly with the global memory accessciwhiesults in de-
graded DRAM access efficiency. This actually leaves roomfdather op-
timizations. For example, a simple variant of our bank-donfiware warp
scheduling allows issuing of memory instructiovislating the safe memory
warp schedule distance, if there are no ready warps to exeoumemory in-
structioft]. This variant essentially trades more bank conflict staliéwer
scheduling fails. Theoretically, the performance showtlghange since the
number of total pipeline stalls is kept the same. Howeves,glrformance
of IDCT with the variant is increased by 5.1% as compared wighoriginal
bank-conflict aware warp scheduling, simply due to the chavfgvarp exe-
cution orddt]. This could be further improved by taking into account als® t
main memory bandwidth efficiency in our design. For examiplaay be pos-
sible to create more efficient warp scheduling schemes varelaware of not
only on-chip shared memory bank-conflict, but also globatoey efficiency.
More details about such interactions between on/off-chgmmry accesses at
system level are discussed in Secfion3.6.4.

Nonetheless, the results in Figlire .10 suggest the strategtml of our elas-

" the original bank-conflict aware warp scheduling, thedyewarp pool is masked to
empty in this case and pipeline will be stalled due to sctinduhils.
12We did not adopt this variant as it degrades the performamrcetiier kernels.

5.6. EXPERIMENTAL EVALUATION 119

114

14
0.9
0.8

0.7 1 @ Baseline + Hand-optimized code

Normalized IPC

06— B Elastic pipeline + Un- optlm\zed code

oo I O !I !I

& Q QO & ’b
0 ¥

Figure 5.10: Elastic pipeline vs hand-optimized code for conflictingrieds

tic pipeline design to relieve the burden of avoiding sharesnory bank con-
flicts from the programmer. Note also, static program amalgad optimiza-
tions are unable to avoid bank conflicts caused by irregudaflict patterns,
which can be effectively handled by our proposal as dematesirby the sub-
stantial performance improvement by elastic pipeline ier AES and Reduc-
tion kernels in Figur&€Xhl9. Therefore, we can safely drawctheclusion that,
our elastic pipeline proposal is capable of relieving thareh memory bank
conflict issue for both regular and irregular access pafeand thus enables
more GPGPU applications to exploit the on-chip shared mgifiooimproved
performance and efficiency which is not possible withoutaposal.

5.6.3 Performance of Non-Conflicting Kernels

Besides bank-conflicting kernels, we also would like to fintito which extent
the proposed elastic pipeline will affect the execution afmal kernels with-
out on-chip shared memory bank conflicts. Note, in this dhgsehank-conflict
aware warp scheduling behaves exactly the same as thetdefapl schedul-
ing, since the conflict degree predicted by the bank configtbhy cache is
constantly zero (Figufe3.7). Timen-conflictingkernels examined in this sec-
tion are the five kernels whose names are followed kyia Table[55, with
the hand-optimization to avoid shared memory bank confliet, the original
CUDA SDK code is used).

The performance of the non-conflicting kernels (i.e. thginal CUDA SDK
source code) execution on both the baseline and elastili@Emm®res is shown
in Figure[&.I1l. As we can see in the figure, the difference ifopmance is

120 CHAPTER 5. ADDRESSINGON-CHIP BANK CONFLICTS

0.9 4

0.8

Normalized IPC

O Baseline

071 B Elastic pipeline

0.6

05 +—

3 #

Figure 5.11: Elastic pipeline performance for non-conflicting kernels

negligible. The performance difference between the eesglipeline and the
elastic pipeline for kernels without any bank conflict is dae (1) the elas-
tic pipeline can hide some of the writeback conflicts causgthb competi-
tion between core pipeline instructions (e.g., non-glabamory instructions)
and global memory loads (Figureb.1); (2) the writeback MWixhe elastic
pipeline (Figurd5J6) changes the default warp completiatenof baseline
in some cases (e.g., when thEEM and NONMEM paths compete for write-
back, or, when there is a pipeline bypass inM@NMEM path (Figurd_515)),
which will further affect warp scheduling and executionarthter. Factor (1)
is always beneficial while factor (2) can contribute eithesipvely or nega-
tively to overall performance, depending on other subthediions (e.g. varied
global memory access efficiency, synchronization effigieanad control flow
re-convergence efficiency, under different warp executiaters).

5.6.4 Interaction with Off-chip DRAM Access

At first glance, it seems that on-chip shared memory accatecisupled from
off-chip DRAM access. Counterintuitively, however, we baalready ob-
served quite some inter-operation between them, is the @erpution order
(and the subsequent DRAM access patterns): as discussesttior8[5.611
and[5.6.2. Indeed, it would be interesting to inspect thati@iship between
our proposed elastic pipeline and the kernel DRAM accessmMieh Fig-

ure[5.I2 tries to unveil it in a quantitatively way. The cuat¢he top shows the
ratio between theoretic speedup and the speedup actuaillay our elastic
pipeline design (data from Figukeb.9). And the one at théoboshows the

5.6. EXPERIMENTAL EVALUATION

121

1.6

14

12

1

0.8 -

0.6

—&— Normalized DRAM bandwidth requirement

—#-Theoretic speedup / actual speedup

actual speedup =
theoretic bound

/N

required bandwidth

_:507199&___/‘4____3‘___
04
—aA
0.2 +
0 T T T T T
& & & & & S S
&0 & 0&’0 K A <2 <2
Q
¢ g ¢ &

Figure 5.12: DRAM bandwidth impact

required DRAM bandwidth by each kernel, normalized to GPUADMRpeak
bandwidth (Tabl€5l4). The required bandwidth is calcualdtg dividing the
total amount of global memory data access by the executina #ssuming
IPC=1 for each SIMD lane. We choose teguired bandwidth as the metric
instead of theactual bandwidth utilization, since the latter has already been
coupled with the interaction between the core pipeline Wiehand external
DRAM access patterns.

Interestingly, the two curves in Figute 5112 show quite regroorrelation be-
tween each other. Roughly speaking, the higher off-chipliaédth is required,
the larger the gap between the speedup of our elastic pipatid the theoretic
bound — in other words, the more difficult to reclaim the perfance loss due
to bank-conflict pipeline stalls. For the benchmarks exaahiim our experi-
ments and the off-chip DRAM configuration in our GPU processee can see
that some rough threshold, say, the 50% DRAM peak bandwiltfskparates
the benchmarks inthigh bandwidthgroup (DCT/IDCT) andow bandwidth
group (the other kernels), as illustrated in Figure .12.tRe low bandwidth
group, the performance loss due to bank conflict stalls &ively easy to be
reclaimed by our proposed elastic pipeline design (indeedheoretic bound
is even surpassed in cases of Transpose and DCT/IgH®Tt). While for the
high bandwidth group, the elastic pipeline performanca gafar from ideal.
The reason seems to be that, standalone core pipeline geelsnjsuch as our
elastic pipeline proposal) ignorant to the main memory ssadficiency are
unable to exploit the full potential of the hardware and theapielism inherent
in the software. This also explains the relatively largefgrenance loss for
DCT/IDCT kernels in Figur€5.10 with our elastic pipeline.

122 CHAPTER 5. ADDRESSINGON-CHIP BANK CONFLICTS

To summarize, it can be anticipated that, cooperative opdition schemes
which take care of both core pipeline optimization and tffscDRAM band-

width efficiency are highly desirable, to further improves toverall perfor-
mance for kernels with both heavy on-chip shared memory banKicts and

off-chip bandwidth requirement.

5.7 Discussion

In this chapter we assumzarrel processing141], which lays the basis for
contemporary GPU execution models [47]. In barrel procgssin instruction
from a different hardware execution context is launchechahelock cycle in
aninterleavedmanner. Consequently, there is no interlock or bypass assoc
ated with the barrel processing, thanks to the non-blocfeagure of the exe-
cution model. Despite its advantagegjct interleaved multithreading has the
drawback of requiring large on-chip execution contextsitie hatency, which
can be improved in some ways. One such improvement is to afioltiple
independeninstructions to be issued into pipeline from the same exacut
context. In GPU cores, that is to allow multiple independastructions from
the same warp to be issued back-to-back (instead dfttiat barrel execution
model in which consecutively issued instructions are fraffeint warps).
Such execution is also adopted by some contemporary GPU% [We call
this extension “relaxed barrel execution model”. The ititenof therelaxed
barrel processingn GPUs is to exploit ILP inside the thread, in order to re-
duce the minimal number of independent hardware execubategts (active
warps) required to hide pipeline latency.

In the case of relaxed barrel execution, there can be twaehdd make our
proposed Elastic Pipeline still work. First, we can stilbal elasticity in the
pipeline backend, which means that the consecutively isgwstructions from
the same warp commit out of the program order. This flexibdbmes at the
cost of the pipeline being unable to support precise exaetandling. This
can be resolved by adding a re-order buffer (ROB), howevexta hardware
cost. A second choice is to forbid out-of-order writebackifistructions from
the same warp. In order to make elastic pipeline still eiffecin reducing
pipeline stalls, it is the responsibility of the schedullogic not to execute any
more instruction from the same warp, if current shared mgnmstruction will
cause any bank conflict. This can be easily integrated intdaok-conflict
aware warp scheduling technique.

This chapter also assumes the execution stages and meragges sire not

5.8. SUMMARY 123

overlapped, therefore our proposed elastic pipeline desag make use of the
existing “spare” MEM pipeline registers as the sourcelafticityto tolerant
the varied pipeline latency due to shared memory bank ctsflitowever, this
is not a mandatory requirement of our elastic pipeline psapoFor example,
in the pipeline configuration with parallel execution/magnstages, we can
insert some additionadpare pipeline stageletween the end of the parallel
execution/memory stages and the beginning of writebadjesta With the
extra stages as the source of elasticity our proposal chnvetk. Note the
extra spare stages do not introduce any additional pipklteacy for ordinary
execution without bank conflicts, thanks to the bypass b(Bigsire[5.4(b)).
The only overhead is the hardware cost of the pipeline stagisters of the
additional pipeline stages.

Although only the effect of elastic pipeline for on-chip égjily managed
shared memory is evaluated in this chapter, we believe thiddirel hardware
cache can also benefit from our proposal. The reason is tnhttwvily-banked
hardware cache also suffers from the dynamically varieth&axcess delay
due to unbalanced bank accesses, which is similar to thedhaemory case.
We leave the evaluation of elastic pipeline for L1 cache agémwork.

For out-of-order processors, thmpeline elasticityrealized by our elastic
pipeline proposal in this chapter is actually enabled bydbueof-order en-
gine. The Oo0 engine provides a small instruction windowgctvihandles the
variation of execution latency similar to a dataflow machifiéne associated
reorder buffer enforces the in-order instruction commitim&or architectures
based on in-order pipelines, our elastic pipeline can béexpfor a wide range
of designs adopting barrel processing and SIMD data paslidée GPUs. The
reason is that the on-chip bank conflict problem exists ggiyein such ar-
chitectures. Furthermore, although we target the varietgion latencies
caused by shared memory bank conflicts in this chapter,i@laigieline can
also be applied to cope with on-chip execution latency tianiadue to other
shared resource conflicts (e.g., accelerator (such as Fie€3s interconnect
buffers allocation, miss status holding registers (MSHitle)cation, etc.). In
such cases, pipeline elasticity can be exploited to taddha resource conflicts
and maximize the SIMD datapath throughput.

5.8 Summary

In this chapter, we analyzed the shared memory bank confisdilgm, and
identified how the bank conflicts are translated into pigelperformance

124 CHAPTER 5. ADDRESSINGON-CHIP BANK CONFLICTS

degradation. Based on the observation, we proposed a nagticepipeline
design that minimizes the negative impact of on-chip mensonylicts on sys-
tem throughput, by decoupling bank conflicts from pipelitadls. Simulation
results show that our elastic pipeline with the co-desidvemk-conflict aware
warp scheduling significantly reduces the pipeline stafisip to 64.0% and
improves overall performance by up to 20.7%, with triviatdware overhead.
Besides the performance advantage, our proposal also teadduced GPU
programming complexity by relieving the burden of avoidsitared memory
bank conflicts from the programmer.

Note. The contents of this chapter is based on the the followingsp

C. Gou, G. N. GaydadjieAddressing GPU On-chip Shared Memory Bank

Conflicts Using Elastic Pipeline invited to Special Issue of International
Journal of Parallel Programming on Sl: Computing Frontie2611 Best Pa-
pers(in press)

C. Gou, G. N. GaydadijievElastic Pipeline: Addressing GPU On-chip
Shared Memory Bank Conflicts Proceedings of the 8th ACM International
Conference on Computing Frontiers (CF'11), pp. 1-11, Echily, May
2011.Nominated for the Best Paper Award by the Program Committee

Improving DRAM Access Efficiency

zontal locality inherent to GPUs employing barrel execution of SPMD
kernels. We then propose an adaptive DRAM access granutatieme
to exploit and enforce the horizontal locality in order taluee GPU cores
memory interference and hence improve GPU DRAM efficiencyith\he
proposed technique, DRAM efficiency grows by 1.42X on averéepding to
12.3% overall performance gain, for a set of representatigenory intensive
GPGPU applications.

I n this paper, we analyze a particular spatial locality casdél€d hori-

6.1 Introduction

Off-chip memory bandwidth is becoming a scarce resourcelireat and fu-
ture manycore processors due to chip pin count limitatidPetticularly, the
bandwidth can be a severe bottleneckdmaphics processing uni{&PUs) due
to their high ALU density design. Furthermore, DRAM acceiseans from
different GPU cores can easily incur destructive interfeeeamong them.
Therefore, efficient DRAM bandwidth utilization is crugia@specially for a
growing number of data/memory-intensive applications.niey access op-
timization techniques from the general purpose computimigiain, such as
prefetching and DRAM access scheduling, have demonstthsideffective-
ness for GPUs [88,152]. However, as a platform originallyigieed for graph-
ics processing, GPUs have their specific characteristienwied for general
purpose workloads (akgeneral-purpose processing on GP{@GPGPU) [1]).
Hence, traditional solutions not aware of GPU programming execution
model specifics can lead to sub-optimal decisions and rasurefficient off-
chip memory bandwidth utilization.

In this paper, we leverage a spatial locality typical for GP¢hlled “horizontal

125

126 CHAPTERG6. IMPROVING DRAM ACCESSEFFICIENCY

locality”, to improve external memory access efficiency. pepose a holistic
DRAM bandwidth optimization framework for GPUs with combthcompile-
time, run-time, and architectural efforts. Our technigaiees advantage of per
memory instruction access pattern information generayed bompiler and
runtime analyzer, and schedules the optimal access grapwacordingly at
kernel launch time. With the co-designed hardware suppdeptive memory
access granularity is achieved, DRAM efficiency is incrdaaed the overall
performance improved.

This chapter makes the following specific contributions:

e novel method to improve GPU DRAM efficiency, using combined
compile-time and runtime efforts along with specific miaaratectural
extension;

e adaptive,inter-thread/warp localityaware DRAM access granularity
scheduling technigue to improve DRAM efficiency;

e trivial hardware overheaelastic vector MSHRlesign withdeferred
reservation

e DRAM efficiency improvement by 1.42X on average (correspogdo
12.3% overall performance boost) for a set of represemtainrkloads.

The remainder of this chapter is organized as follows. IriSe®.2, we pro-

vide the background and motivation for this work. In Seclid®, the horizon-
tal locality is analyzed, and the memory access patterrya@als briefly in-

troduced, followed by the elaboration of our proposed adaphemory access
granularity scheduling. The microarchitectural extendim support adaptive
memory access granularity is discussed in Se¢fioh 6.4. |1Siion results for

a set of memory-intensive CUDA benchmarks are presentecatidh[G.5.

Finally, Sectior 617 summarizes the chapter.

6.2 Background and Motivation

GPU is a manycore platform employing large number of lighdglve cores
to achieve high aggregated performance, originally foplgies workloads.
Nowadays, its utilization has spanned far beyond grapleiedering, covering
a wide spectrum of general-purpose applications (refaoedsGPGPU[1]).

GPUs often adopbulk synchronous programmin@SP) [145] programming

6.2. BACKGROUND AND MOTIVATION 127

Id.global.s32 %f1, [addr]
Grid 0 with addr =
N 192*ctaid.y + 48*tid.y + 16*ctaid.x + 4*tid.x + 0x0400
\‘\ Block ~RBlock Block
L (0.0) 0y,
S ; DRAM DRAM DRAM DRAM
N NN Ctald'y Channel 0 Channel 1 Channel 2 Channel 3
\ Block \Block Block
| @D wn @1 ha, Cfa/d X 0x0400 0x0500 0x0600 0x0700
Y N y{ 0x0404 A e AV AV e A
Y N 0x0408 ¥ axiiad ¥
: { 0x040c 00200 0x0600
! Block(0,0)
\ warp l
\'\ @ Threa (@ 'lm\
| 0,0) | (L) N2.0) | (3,0 "
. > (> warp 2 0x0430 warps 0,1 of Block (1,0)
g Thread | ThreadYThre @:’—" 0x0434 l‘Wal’ps 0,1 of Block (2,0)
5 | NOD | @D W T { 0x0438 !
warp 3 0x043¢
§ 1 @ Threa /@ 'lm\
=2 | 0,2 1,2 22 2
s | (\) I2)AN22) | B2)

\ Thread | Thread'Y Thread | Thread .
' = (\
\,‘ ©0.3) | (1.3) 23) [(GB), tldy 4 warps 2,3 of Block (1,0)
— ' 5 F warps 2,3 of Block (2,0)
tid.x ‘

0x0900
blockDim.x

Figure 6.1: Hierarchy and memory accesses of worker threads

models. The execution of BSP programs on GPUs often emplagrsl pro-
cessing141] due to its low pipeline implementation overhead.

Programming Model Properties: The BSP model has been widely adopted
in programming languages targeting manycore acceleratbitectures, e.g.,
CUDA [105] and OpenCL [8]. In such languages, the parahelsf the ap-
plication’s computation intensive kernels is explicitlypeessed in aingle
program multiple data(SPMD) manner. In suckexplicitly-parallel, bulk-
synchronoussPMD programming models, the programmer extracts the data-
parallel section of the application code, identifies thada®rking unit (typ-
ically an element in the problem domain), and explicitly mgses the same
sequence of operations on each working unit keemel Multiple kernel in-
stances (callethreadsin CUDA) are running independently on the GPU cores.

In CUDA, the parallel threads are organized into a two-levierarchy, in
which a kernel (also callegrid) consists of parallel CTAspoperating thread
array, akablocK), with each CTA composed by parallel threads, as shown
in Figure[Eﬂ Explicit, localized synchronization and on-chip datarsitg
mechanisms (such as CUDA shared memory) are supporte@ ieaah CTA.

1This is an example based on CUDA, with the warp size reduasd 82 to 2 to simplify
the illustration.

128 CHAPTERG6. IMPROVING DRAM ACCESSEFFICIENCY

Baseline Manycore Barrel Processing OrganizationFigure[6.2 shows our
baseline organization. On the right the high-level systagmmization is
shown. The system consists of an GPU node wtltores and a memory
subsystem with. DRAM channels, connected by the on-chip interconnect.
Depending on the implementation, the GPU node itself may faichip (sim-
ilar to discrete GPUSs), or the GPU node(s) and host CPU(spedntegrated
on the same die (e.g., [12]). The host processor offloads etatipn intensive
kernels to the GPU node during execution. The kernel codeparameters
are transferred from host processor using the host inesréawd the workloads
are dispatched at the CTA/block granularity. ConcurrenA€are executed
on GPU cores independent of each other.

The left part of Figuré_8]2 illustrates a single GPU core. iBgiexecution,

a batch of threads from the same CTA are grouped int@@p, the smallest
unit for the pipeline front-end processing. Each core nag@msta set of on-chip
hardware execution contexts and switches at the warp gmtyulThe context
switching, also calledvarp schedulingis done in an interleaved manner, also
known asbarrel processing141]. Warps are executed by the core pipelines
in a SIMD fashion for improved pipeline front-end procegsefficiency. In
practical designs, the threads number in a warp can be teutifthe SIMD
width. In this case, a warp is composed of multiple slicasb{varpshere),
with each subwarp size equaling the SIMD width. Subwarpsiftbe same
warp are processed by the SIMD pipeline back-to-back.

Warps can access two types of memory: on-chip shared memdrgf&chip
memory. When there is an off-chip memory access (in systeitm®u hard-
ware data caches, such as the one evaluated in S&cflon 6&b}ache miss
(in case on-chip L1 data cache is adopted), the executi@kentcare of by a
miss status holding registéMSHR) unit as shown in Figuie8.2. The memory
access information is logged by the allocated MSHR entny,vearp execution

iS put into inactive status. After being fired into the ongchiiterconnect, off-
chip memory access streams from GPU cores start competngdstesources
against each other, often resulting in nontrivial intezfere at DRAM side and
inefficient DRAM bandwidth utilization.

DRAM Bandwidth Utilization Inefficiency: The interference among GPU
cores has various formglot DRAM Channels:when multiple GPU cores ac-
cess only one or a few DRAM channels, leaving the others itihés directly
degrades memory system performance since the bandwidtbotd”(idle)
channels is wasteddRAM bank conflicts:when memory accesses from mul-
tiple cores compete reading or writing to different rows loé same DRAM

6.2. BACKGROUND AND MOTIVATION 129

/ \\\ GPU
Host Interf:
GPU Core — Node

A 2 b ‘ Workload(CTA) Dispatch ‘
o000
""" (] memoily accesy request to ICNT
shared | § . § _I(._ﬂ>
' L1DS MSHR !
h 0

warp execution contexts
——1 B
memory e ———
returned memory data from ICNT

warp —
* J Interconnect (ICNT) ‘
<
RF RF coo RF || -
ip
...... L]
A l A //,

I writeback I /

scheduling it ———1
Boundary
v ¢ x DRAM Channels
—
_ =/

HC

:%'H

1

Figure 6.2: Baseline GPU organization with barrel processing

bank. This causes frequent opening and closing row opestiwhich also
degrades DRAM performance due to their high pendbys read/write tran-
sition cost: Shifting between read and write in the same DRAM channel
introduces not only additional latency but also bandwiddses. This is due
to the data bus turn-around time which is necessary for tagedhinput/output
data bus design adopted in most contemporary DRAM chipsofAlie above
penalties are often non-negligible, especially for datarigive applications.

Motivation: As a platform originally designed for graphics process@gUs
have their specific characteristics when used for acceigrgeneral-purpose
workloads. Therefore, in order to better address the aff-afemory band-
width inefficiencies, the unique characteristics of bo# &PU programming
and execution models should be exploited. In this chapter,leverage a
spatial locality typical for SPMD barrel processing, cdllgorizontal local-
ity, to improve external memory access efficiency. Specifically propose a
holistic DRAM bandwidth optimization framework for GPUsttvicombined
compile-time, run-time, and architectural efforts. Owtteique utilizes mem-
ory instruction access pattern information provided byadictaccess pattern
analyzer, and runtime scheduling for optimal access gaaityilbased on the
available horizontal locality determined by the accessepat With the sup-

130 CHAPTERG6. IMPROVING DRAM ACCESSEFFICIENCY

port of co-designed hardware, adaptive memory accesslgrapus achieved
and the DRAM efficiency and the overall performance are im@do

6.3 Horizontal Locality Aware DRAM Scheduling

In this section, we will first analyze horizontal locality, spatial inter-
thread/warp locality typical for GPU execution. Then we aseompiler and
runtime analyzer to extract the kernel memory access pattéith the pre-
cise address pattern information, a scheduler is creaiddmtify the available
horizontal locality, and find out the most profitable exténmemory access
granularity at kernel launch time.

6.3.1 Horizontal Locality

Within GPU barrel execution of SPMD kernels, the memory asd®havior is
determined not only by singlethread/warp, but also by concurrent warps ex-
ecution. Figur€gll shows a typical 2D address pattern inBAkernel. One
important observation is that, the access pattern not amlyeg each worker
thread to its working field (data address in memory), but bisds the rela-
tionship among threads’ memory accesses. For example, meddresses of
warps 0 and 1 are always contiguous, for the given accessrpaitherefore,
spatial locality can be exploited. Different from the sphkbcality in general-
purpose processors, this new locality type has two disthetacteristics: 1)

it is aninter-thread/warp localityamong multiple independent threads/warps;
2) if captured, it only benefits the neighbor threads/wansnbt the memory
access initiator. In this chapter, we call such inter-tf@arp spatial locality
“horizontal locality”, whereas the spatial locality insicg thread will be re-
ferred to as “vertical locality”. We will see in Secti@n b .Bat both locality
types are important in optimizing memory access for GP Uubihput.

Above we have assumed that all warps are executing the samenmn@struc-
tion using the same access pattern. In fact, this origiriedesthe combination
of the SPMD programming model and the barrel execution madepted in
contemporary GPUs. Withistrict barrel executionan instruction from each
warp execution context is launched at each clock cycle immnleavedman-
ner. Moreover, all warps are executing the same SPMD keoug.cIn this
way, the execution of concurrent warps in a cordighly correlatedin that
the in-flight instructions are similar in many cases. Evethwelaxed barrel
execution where consecutive instructions from the same warp areveticdo

6.3. HORIZONTAL LocALITY AWARE DRAM SCHEDULING 131

issue into the SIMD pipeline, since the average sizedépendent instruction
blockd is small (~3 instructions in our benchmarks), the horizontal locality
can still be captured in tirffebefore the requested data arrives.

A real example: Figured6.B and 8.4 shows the PC-Histogram of a GPU core
running matrix multiplication kernel (MM in Sectidn®.5),avn using a mod-
ified version of AerialVison [13]. The one on top shows the RiStogram
of all warps execution, while the bottom one illustratest thflawarps from a
singleCTA. The x-axis of FigureE_6l3 afid 6.4is the core cycle timiaijawthe
y-axis is the kerneparallel thread executiofPTX) source line number. The
PC histogram represents the portion of the program touchékexconcurrent
threads (i.e., PTX instructions executed or on which theatis are pending)
during each sampling interfhIThe color intensity of Figurds 8.3 ahdl6.4 indi-
cates the thread count. During any interval, the aggrebetad count remains
constant (1024 in Figuie 8.3 and 256 in Figuré 6.4). The P&agrams at dif-
ferent intervals differ only in the invoked PTX instructsand their count.

Several observations can be made from the example: 1) ualikaditional
vector processor, concurrent warps are executotgn lock-step(Figure[6.8),
even with the Round-robin warp scheduler (Tdblé 6.2); 2hdtieugh warps
execution isinterwined across CTAs, warps inside a single CTA are highly
correlated (FigurE@l4); 3) external memory accesses (#adpal loads at PTX
source lines 118 and 121) effectivedralignthe CTA warps execution, similar
to barrier synchronizations (e.g., PTX source line 124).

The above observations confirm the analysis at the begirofitigis section,

in that the GPU SPMD barrel processing indeed correlate€Tewarp exe-
cution. Besides, the other major reasons for the correkexedution include:
bulk synchronizations common in BSP programs, and the rédhg external
memory latency (e.g> 1000 cycles in above example) incurred by insuffi-
cienttransientexternal memory bandwidth during burst memory accesses.

It should be pointed out that, the MM example shown in Figiii&sand &l
is a typical regular application, with intrinsic localitiowever, even with less
regular memory access patterns, memory accessescfom® neighbor warps
often exhibit spatial locality, which can be also capturedy(FWT in Sec-
tion[6.3). Admittedly, for applications with highly irretar control flow (such

2A sub-basic block with mutually independent instructions.

%It takes 384 cycles for all 32 warps to issue an independesituiction block of 3 in-
structions, a time much shorter than average main memomnsaatelay for memory intensive
kernels.

4128 cycles sampling interval is chosen, during which all4Lfifeads can execute exactly
one instruction in the 8-way SIMD pipeline (Talllel6.2).

132 (HAPTERG6. IMPROVING DRAM ACCESSEFFICIENCY

o o o o
o n o n o n
o ~ ©o < m — o
T et
L = = Jss6s01
I |
r _ i 5 i ! qL6000T
I =
| = - - F
t _ 1 = 160276 n
| A
F | {1zess O
<
t - s {e€vzs ©
i ©
F 1 {svsos 5
- o
' -
2]
r - : - £S90L uln
: O
H — Y = = {69Lv9 o
1 c
! S
: o =1
F | g {18885 5 @
=t - > [S]
= S 3
F |2 —-) {ee62s =
E g >
1 - S
F 1 " JsotLy X
| p—
| -
| ©
t . p— = = qLtety =
"
e &
e = (o]
L o - 433 o
_ ! _ =
! =]
_ ' (@]
F . R 34434 _H
M i
= _ ' -t Hessez
: e
= ..\\.\ﬁ
" =g
L e 159941
deLett
16885

6.3. HORIZONTAL LocALITY AWARE DRAM SCHEDULING

133

€L8TTT

$86S0T

£6000T

6026

1ze88

EEVT8

SPS9L

L£S90L

69.¥9

18885

£€662S

SOTLY

LTCTY

62ESE

vv6C

EGGET

G991

LLLTT

6885

Cycle

Figure 6.4: Matrix multiplication PC-Histogram: 1 CTA

134 CHAPTERG6. IMPROVING DRAM ACCESSEFFICIENCY

as BFS and LPS), it is difficult to precisely identify the tammtal locality,
since the available locality changes dynamically duringpaexecution.

As stated in Sectioh 8.2, concurrent memory accesses efeliff cores can
interfere in GPUs. For example, even if accesses from wagmsl(of block
(0,0) in FigurdGll are issued back-to-back, they casdmaratedalong the
way to DRAM, e.g., by on-chip interconnect or memory conér@. As a
conseguence, their horizontal locality is broken, resglin extra DRAM bank
conflicts and memory bus transition penalties. In the foitgywe propose a
novel way toexploitandenforcethe horizontal locality in GPUs and improve
external memory bandwidth efficiency.

6.3.2 Compiler and Runtime Access Pattern Analyzer

In an explicitly-parallel, bulk-synchronous SPMD program order for
the worker thread to identify its working set, a mapping ledw the
thread id and the working set is designated in the codsddr =
®(tid.z, ctaid.y, tid.y, ctaid x, tid.x), as illustrated in FigureZ8.1. Ideally
can be of any arbitrary form, however, the number of pattesesl in program-
mers practice is rather small, and the complexity of addyesgration is often
limited. Leveraging this observation, we have prototypdchenework able to
detect and exploit the most common memory access pattert&fDA ker-
nels. Our framework employs static control- and dataflonhyemat compile
time to detect the acceskeletortype, and build the corresponding parameters
expressions. A skeleton is defined agasameterizechddress mapping func-
tion, which is able to generateclass ofmemory access patterns. Our runtime
library will evaluate the parameters expressions proviskedompiler analy-
sis, based on the CUDA kernel dimensions and input paramateilable at
launch time. We implemented our prototype as additional V& mpiler
pass and library extensions to CUDA runtime environment.rré@uly, our
framework supports two most common skeletons —

0 1D/2D contiguous/strided/block-strided access:

n(a, b, c,d, e, f)
=(a,b,c,d, e, f)-(tid.z, ctaid.y, tid.y, ctaid .x, tid .x, 1)
=a-tid.z+ b- ctadid.y + c - tid.y + d - ctaid. x + e - tid. x + f

with parameters, b, ¢, d, e, f € N (used in regular memory access patterns);

6.3. HORIZONTAL LocALITY AWARE DRAM SCHEDULING 135

andd skewed access:

y =mn(a, b,c,d ef)
o(h1, 11,51, KO, 10,50, a, B, y) = (y[hl : 11] < s1 | y[hO: I0] < sO)-a + B

where,hl, /1, s1, h0, 10, s0, «, 6 € N (used in irregular applications). Skewed
access skeleton is constructed using 1D/2D acggsad contains two bits
sections: the higher section, taken from bitsto /1 of y and shifted left by1
bits; the lower section, generated similarly. In the finatipthe two sections
andy arenormalizedso that/0 = s0 = 0.

The compile-time access pattern analysis employs staticae and dataflow
analysis to trace back the use-def chain of the memory ittgdru In order to
do so, a set ofransition operationssuch as{+, -, -, /, <(shift left), >(shift
right), &(logic and),|(logic or), A(logic not)}, are defined for the above skele-
tons. Ideally, transition operations should be completeljnposablavithout
limitations. However, this requires more complex addrésdesons, becom-
ing more costly in terms of analysis time. In practice, traffs are made in
defining the operations composability, in order to reduesatialysis complex-
ity while at the cost of less analysis accuracy. Admittettys compromises
the compiler capability in handling various memory addmgeseration types.
During analysis, if an unsupported transition operatiomeration composi-
tion occurs, the process simply stops and returns an aadijiki

Since some kernel parameters may be available only at rapthms the com-
piler analysis outputs skeleton idl (or (1) and builds the internal representa-
tions for each skeleton parameter. This process can be liaedas follows:
given

© «— {kernel input params}
nctaid «— {CUDA grid dimension}
ntid «— {CUDA block dimension}

for | € {kernel memory insn}, the compiler analysis generates

skeleton_id,
7 = (;.-(©, nctaid, ntid)
{a,b,c,d, e f}, skeleton_id; = [
TE { {a,b,....,f, h1,11..., &, B}, skeleton_idy =0

Accordingly, the interface between the compiler analysisl auntime is
skeleton_id; and(; ,. Skeleton type is known after static analysis; witjle

136 CHAPTERG6. IMPROVING DRAM ACCESSEFFICIENCY

is composed of &ree representationwith each leave node pointing to one of
the ©, nctaid, and ntid parameters, and other nodes being arithmetic opera-
tions. Normally, address generation for GPU kernel memusiriictions is not
complex, therefore the tree representation usually camiamly few nodes. At
kernel launch time, since all paramet@s nctaid, andntid are known, thus
the precise access pattern is extracted by simply evafuaée representations
for all ¢; .

Note, at kernel scope, the memory address use-def chain ampalong dif-
ferent control flow paths. In this caseultiple access pattern versiomsay
exist for the same instructioh with each corresponding to a different control
flow path. In a general sense, such multiple versions per memstruction
case can be viewed as another form of access pattern, dithliocgn not be
efficiently expressed inlosed form Also it creates major challenges in GPU
execution. We will see this in Sectignb.5.

6.3.3 Adaptive DRAM Access Granularity Scheduling

Alg. 6.1 Adaptive memory access granularity scheduling

. max_gran —DRAM channel interleaving granularity

min_gran «—DRAM minimal access granularity

data_size «+—data size of memory access instruction
blockDim.x <block size in dimension x

d, e, is_skewed _access, /1, s1, h0 <—access pattern parameters

o akhwbhkE

if el = data_size or blockDim.x x el = d or (is_skewed_access and (1 < h0orsl < h0
or 2" < max_gran)) then

7 return min_gran

8: else ifblockDim.x x e > max_gran then

9: return max_gran

10: else ifblockDim.x x e < min_gran then

11: return min_gran

12: else

13: return blockDim.x x e

14: end if

To reduce bank conflicts and bus turn-around tinzegptive DRAM access
granularity schedulingAlg. &) is created to determine the memory access
granularity, based on access pattern information gertebgtéhe memory pat-
tern analyzer described in Sectibn 613.2. The essential afie¢he adaptive
granularity scheduling is as follows. Since the addrestepatietermines the
locality among neighbor warps’ memory accesses, we cansehthee maxi-
mal access granularigllowedby the horizontal locality, for a given memory

6.3. HORIZONTAL LocALITY AWARE DRAM SCHEDULING 137

instruction. When a warp memory instruction execution sss# initiates the
external memory access with tkerge granularity Due to the horizontal lo-
cality, the extra requested data will often be used by ne&ighiarps, hence,
boosting memory efficiencyyithout the penalty of wasted memory bandwidth

The key in the adaptive memory access granularity is to ctiyreentify the
available horizontal locality. Line 6 of Ald_8.1 examinehether or not a
memory instruction has the appropriate horizontal logali€urrently, only
instructions accessing contiguous memory addresses anggigbor threads
in a block’s x-axis (Figur€®l1) are considered — a rathesenrative decision
made in this work. Lines 8 to 13 determine the proper accessuarity under
three constraints: 1) the minimal access granularity, s8tdDRAM interface
(32B for GDDR3 in our study); 2) the maximal granularity, $st DRAM
channel interleaving granularity; and 3) thkock boundaryconstraint & x
blockDim.x), due to the fact that a warp should not fetch data outside the
block boundary. E.g., in Figude_8.1, warp 0 of block(0,0) wonot fetch
data for warp 0 of block(1,0) even if they are neighbors inghd map, since
the scheduler at kernel launch time does not know whethembthe two
independent blocks will be concurrently executed on theeseone.

Example: For the global memory load instruction shown in Fig-
ure[61, our compiler pass identifi@D accessskeleton, with parameters
(a,b,c,d, e f) = (0,192,48,16,4,0) calculated by the runtime by evalu-
ating the corresponding tree representations. At kerngicla time, first the
memory access contiguity among warps inside a block is mhited. This is
done by checking if the accesses from neighbor warps faibtercthe con-
tiguous address space & data_size or blockDim.x x e # d, false in this
case). At this point, the access pattern is assured togtaweg horizontal lo-
cality where contiguous/ockDim.x x e (16 in this case) bytes data will be
fully utilized by the load instruction warps execution in the klo€herefore,
an MSHR entry is allocated, and 16 bytes external memorye®qsi fired into
the interconnect when warp 0 is run. In case of no hardwaie cathe, warp
0 has also to book MSHR space for the fired load regimestever only for its
own requested datéBB data segmenX). Later on when warp 1 is invoked
for the load execution, it simply checks the MSHR tag arrayintd out an
ongoing load whiclkcoversits request (8B data segmeW). At this point, it
allocates an MSHR entry and reserve the data spac¥ fokfterwards, it is
put into inactive status, waiting for datd to return from DRAM. The hard-
ware mechanism supporting this process is catladtic MSHR with deferred
reservation which will be addressed in the following section.

138 CHAPTERG6. IMPROVING DRAM ACCESSEFFICIENCY

6.4 Microarchitectural Extension

In this section, we present the necessary microarchitdcextension to sup-
port adaptive external memory access granularity. We wit fiescribe the
vector MSHR unit which the extension is built upon, and thka é&lastic
MSHR hardware design.

It should be mentioned that, the access granularity valietermined by the
runtime scheduling, can be easily transferred from the @64t to the GPU
through host interface (Figufe_6.2), and stored in a speafiechip access
granularity buffershared by all GPU cores. This can be achieved easily with
trivial architectural extension, thus the details will baitied in this Section.

6.4.1 Vector MSHR (VMSHR)

Before going into details, first we shall introduce some digdins for the ease
of discussionMector memory accessa group of memory accesses requested
by the scalar threads from within the sasgbwargSection[6.R) execution.
Primary load and primary MSHR (PMSHR): A vector load is called pri-
mary load if there is no in-flight memory read access targeting/cmgethe
same address range as this memory load. When a primary Igaddessed
by the MSHR unit, an MSHR entry, calleghfimary MSHR, has to be allo-
cated to keep track of the load access address. Note, fopeacary load and
PMSHR allocation, an off-chip memory access has to be fit®econdary
load and secondary MSHR (SMSHR):A vector load is called secondary
load” if there is at least one in-flight memory load access tamggtiovering
the same address range as this memory load. When a secooddrig Ipro-
cessed by the MSHR unit, an MSHR entry associated with thegponding
PMSHR of the overlapping in-flight load, calledécondary MSHRhas to be
allocated. Note, a SMSHR only has to record the target egéstdress. Un-
like primary load, a secondary load do&st need to fire any off-chip memory
access, since it is covered by its primary load already ihtligector MSHR
(VMSHR): A MSHR unit design which is capable of processing vector mem-
ory access. The major difference betweeviMSHRand ascalar MSHRSs
that the former is required to allocate vector memory a@ssand commit
the ready data to vector registers, both in parallel. Dejpgnon the detailed
implementation, the main challenge of a VMSHR design can pera band-
width problem, or it may be a more complex issue requirinchisiated data
rearrangement when committing data to vector registensceSour proposal
does not change the MSHR data writeback and deallocaticavi@hwe will

6.4. MICROARCHITECTURAL EXTENSION

139

§ GPU vector_load_address(via)

Way 0 (from °°fe)l{v, 0, Tid, R, Flo, ..., {V, O, Tid, R, F}»

i Data | [v[o]rid[R[¥] ¢« [v]o[rid[R]F]}

| v]o[rid[R[F| eee [v[o]rid[r]]

| Data_|{[v][o]rid[R]F] e o« [v][0]ria[R] F]:
—I-;wr o pusie o« [VIO[Tid[R[F] e« [V][o]rid[R]F

! . 1 . i

iDelk | . s wr_en_SMSHR 94

[v]Tag] Y[Data]i[v[o]rid[R]F] eee[v]oO]rid[R] F

primary MSHR v]o[rid[R[] eee [v]o]rid[R[F

(PMSHR) tag array -

secondary MSHR (SMSHR) array

MSHR entry ‘(read out @same cycle)

e [

Ve — — — —

per MSHR-Way

primary_tag_ Logic
matched_way0
allocate_
SMSHR
in_way0

- —_——
A

[loc PMSHR)
PMSHR_entry_avail_way0 alloc_PMSHR_

| ' . in_way0 |

| vee way cee |
Pl\lSHRﬁen!ryiavailiway(WJ) arbitration | alloc_PMSHR_

| enable in_way(W-

| primary_tag_ primary_tag_ MSHR_ MSHR_

| matched_way0 matched_way(W-1) unavail_ unavail_

| way0 way(W-1)

is_primary_load

MSHR-Way u

|
|
|
|
Shared Logic |

& sharediogic | B
MSHR_alloc_fail
(to GPU core)

fire_read_packet_to_ICNT
(to interconnect)

(@)

Figure 6.5: VMSHR design: (a)baseline;

PMSHR: [V]TaglY] == [V]Tag[HBS[Y
vV TangBS eoo
TB XYy
A-Fd—————— = N
| |
TB- - |
I | #Bss- HBSS-SB |
| |sB)
| Tag[HBSS-SB-1:0] |
| Tag[:HBSS-SB] :
| TAG(vIa) TAG(via)
| [:HBSS-SB] [HBSS-SB-1:0] |
]] |
|
| gsslss
| |
| |
. primary_tag_ |
NB_primary_ta
: maE:phela o \:vya_yog_ matched_way0 |
\ per MSHR-Way Logic |
________________ —
[——— \
| NB_primary_tag_ NB_primary_tag_
matched_way0 matched_way(W-1) way |
| arbitration] |
MSHR-Way enable |
Shared Logic 0 |
N —

NB: normal block

NBS: normal block size
HBS: hyper block size/normal block size

SB: = log,#(PMSHR sets)

TB: #(tag bits) = #(address bits) - log,NBS - SB
HBSS: #discrete (hyper block size/normal block
size) ratios supported

TAG(a): tag of address a

HB: hyper block

(b)

(b)modifications for elastichFS

140 CHAPTERG6. IMPROVING DRAM ACCESSEFFICIENCY

focus on the MSHR storage scheme and allocation logic inctiagter.Nor-

mal block: the memory access granularity of a normal load and store (32B
in our configuration)Hyper block: If the load granularity determined by the
runtime scheduler (Sectidn_6.B.3) is larger than nibemal block then it is
called ahyper block

We modeled a source addressed MSHR design [67] for GPU cadite thre
storage scheme similar to [18], as shown on top of Figuleh.ach PMSHR
entry includes a valid bit (V) and an address tag. Since outeteal GPU core
does not include a on-chip hardware data cache, a storagBdth field) has
to be provided for each primary load, together with a datdydst (Y), Each
SMSHR is composed of a valid bit (V), an offset (O) indicatithge offset
inside theDatafield, a thread id (Tid) recording the hardware thread id Wwhic
requests the memory access, a target register addresa@R) gata format (F)
field. Since MSHRs can be implemented with non fully-asso@astructures,
we show a set associative MSHR design on top of Fijule 6 ffehe purpose
of discussion generality.

In our design, we associate 2 SMSHRs to each PMSHR, in ordavdml
performance losses due to the pipeline being blocked byandacy load [67].
This also makes it possible for the MSHR unit to capture aeramporal
locality, using the second SMSHR erﬂry

MSHR allocation: For a vector MSHR allocation, the vector load adcﬁess
together with the corresponding access information frooh danf are sent
to the MSHR unit. Then the load address is searched amongVEiHR
tag arrays, to identify the vector access type and check PRISMSHR
entry availability accordingly. In the end, two output sidg are generated.
MSHRalloc_fail=1 informs the core pipeline that a valid MSHR entry is not
found for the vector memory access, which will block the pige Other-
wise, the allocation is successful, and in consequence BidRMunit will take
charge for the vector memory access and the core pipelineeviteleased.
The other signalfire_read packetto_ICNT=1 indicates: 1) current load is a
primary load; 2) PMSHR allocation is successful; 3) an icwenect buffer is
needed. In this case, the MSHR unit will wait for an interoecinbuffer, and

*Note, a SMSHR entry is also allocated when a PMSHR is alldctatea primary load, to
keep track of the target register addresses [67].

®Vector memory stores are simply packed by the MSHR unit arettly injected into the
interconnect.

’If lanes requests are targeting different memory bloclen the vector has to be split into
sub-vectors, with each accessing a block. Then the sulpvesjuests are sent to the MSHR
unit one by one.

6.4. MICROARCHITECTURAL EXTENSION 141

then a DRAM read request is fired into the interconnect if ddoié available.
At this point, the first stage of this load instruction exéait sending out the
request, is finished.

Note, we arenot proposing new vector MSHR designs here. Instead, we just
model one the possible design, with the intention to show bowproposed
adaptive DRAM access granularity can be actually impleedim hardware
and integrated into the baseline vector MSHR design.

6.4.2 Elastic MSHR with Deferred Reservation

In order to support adaptive access granularity for hotedolocality aware
DRAM access granularity scheduling, the vector MSHR needietextended,
which we call ‘Elastic MSHR in this chapter. The idea of elastic MSHR is
straightforward. Since the primary MSHR already maintahns access ad-
dress, we can also extend it with an extra field to keep traelcoéss granular-
ity. However, the problem occurs when we allocate for a pryjn@ad. Since
we also need to reserve the storage for outstanding primads| we are fac-
ing the problem of proper data storage size to be reserveidhusichanging
dynamically. A naive solution will be a MSHR design which@sates a stor-
age to each PMSHR entry with a large size able to satisfy alhdyc size
requirements. Unfortunately, this results not only in chipa waste, but also
complicates the already sophisticated data rearranggoneioliem during vec-
tor MSHR writeback.

Our observation is, since the primary vector load whichiatas the hyper
block access will only consume its own required data (i.enpamal block),
it is not necessary for the primary load to reserve ¢ra storage spacgdor
a hyper block memory access. Based on this observation, epoge a sim-
ple yet effective MSHR data storage reservation policy fBtdxores without
hardware L1 data cache, which we caleferred reservatidh In the deferred
reservation, each PMSHR is associated with a storage ofraatdniock size.
When a PMSHR is allocated, only this storage is reservesspective of the
hyper block size. By the time a hyper block returns from DRAMhe cor-
responding storage space for some hyper block part has hbega reserved
(indicating that the part has never been requested by aoydary load), then
that part is simply discarded. In this case, system perfoomanay decrease
due to the additional, unused off-chip trafic. Fortunate#y,found such occa-
sions rare in our experiments (Section 8.5.5).

142 CHAPTERG6. IMPROVING DRAM ACCESSEFFICIENCY

Microarchitectural Modifications

With the deferred reservation scheme, the aforementiolestieMSHR data
storage size problem is resolved, with only slight modifaa to the baseline
vector MSHR design. As shown on top of Figlirel 6.5(bpyaer block size
(HBS) field is added to the PMSHR tag, defined as the ratio kerivtlee re-
quested memory load (being either normal block or hyperk)lgcanularity
and the normal block size. The two dashed squares in HigH(b)Ghow the
modifications to the original vector MSHR allocation logicarder to support
elastic MSHR with deferred reservation, assumiog, (#PMSHR _sets) <
#different hyper-block size

normal_block_size
It is important to note that, with non fully-associative MBHmMplementa-
tions (i.e.,# PMSHR _sets > 1), it may occur that a secondary load is falsely
identified and processed as a primary load by the MSHR unignwthe real
primary load (which covers that secondary load) is allatdtesome MSHR
set different from the one the secondary load is mappﬂdlmthis case, an
unnecessary off-chip memory request is fired into the intamect, resulting
in system performance degradation. Essentially, the toéfdecre is between
the MSHR hardware complexity and off-chip bandwidth uétion. Since off-
chip memory bandwidth is a serious problem in manycore GRdspriori-
tize memory performance over MSHR hardware complexity,tand assume
fully-associative MSHR for designs with practical MSHRegz1. In this case
the above problem does not exist.

Hardware Cost and Timing Overhead

The shaded components in Figlirel 6.5(b) already exist in diselime vector
MSHR in Figure[6.b(b). Note, the single comparator in Fidbirf#(a) is split

into two (in shadow) in FigurE8.5(b). Assuming fully-assdive MSHR de-
sign (which incurs the highest hardware cost), and the patibyper block
sizes 64, 128 and 256B (Sectionl6.5), the hardware cost imsuiaed in Ta-
ble[&1. M in the table denotes the PMSHR entry number. As we can see in
Table[6.1, the extra hardware cost of elaistic MSHR with deferred reserva-
tion is trivial, for practical MSHR designs. By examining Figliid, it is easy

8In our evaluation it i) < 3 with fully-associative MSHR and 3 hyper block sizes. When
log, (#PMSHR _sets) >= #tdifferent 22e-blocksize. g mogification is needed.

®This is a scenario similar to the address disambiguatiareigsconfigurable caches.

9In our evaluation, 64 MSHR (PMSHR) entries per GPU core ipteth(TablEELR), similar

to [16].

6.5. EXPERIMENTAL EVALUATION 143

Table 6.1: Hardware cost of elastic MSHR with deferred reservatiom U core)

Type Quantity Type Quantity
2-input AND Gate X 6M 3-bit Comparator XM
3-input AND Gate x M M-input NOR Gate x1

to verify that the critical path is the one that passes thnahgway arbitration
unit, which isnot affected by the additional logic of our proposal.

6.5 Experimental Evaluation

Experimental Setup: We use a modified version of GPGPU-Sim [17],
a cycle-level full system simulator implementing PTX vatuSA [110] of
NVIDIA CUDA programming model and target architectures. eTdetailed
configuration of the modeled GPU is shown in Tdhld 6.2. Theéopyped ac-
cess pattern analyzer and the adaptive access granulaniggding run on
the host CPU. When a kernel is to be launched, the schedulémadmc-
cess granularity values for memory instructions are teansfl to the accel-
erator. At the accelerator node, the baseline and our pabgagcution dif-
fer mainly in memory access granularity: the baseline mgnagcesses are
32, while our proposal memory access granularitydéterminedby the
launch time scheduler (Sectibn 613.3) implemented in ontime library, and
realizedby the elastic MSHR design (Sectibn614.2) implemented innoid
croarchitecture. We evaluated only adaptive menhaay granularity.

We used 17 memory intensive benchmarks from CUDA SDK [109f]iRia
benchmark suit [26], and [17], which are widely used in GPthaecture re-
search [16,89]. The selected benchmarks are listed in [EaBlélhe selection
criteria is that the memory bandwidth requirement (Sed&nl) is larger than
1 Byte per core per cycle. Similar criteria has been usedior prork [16].
Note, we only considered CUD#global andlocal memory accesses in eval-
uating the bandwidth requirement, since this work focusegeneric GPU
memory systems. Memory accesses generated by graphiifiesgabsys-
tems, such as texture and constant memoriespareounted. This has ex-
cluded memory intensive kernels suchkaseang26] and MUMerGPU [26]
from our benchmarks.

"appropriate for the simulated 8-way SIMD pipeline.

Table 6.2: Baseline GPU configuration

Number of Cores

16 @1296.0 Mhz

Core Configuration

8-wide SIMD execution pipeline, 24 pipeline stages
32 threads/warp, 1024 threads/core, 8 CTAs/core, 1638<teeg/core
warp scheduling policy: Round-robin, execution modelcstrarrel processing (Secti@n 6.B.1)

On-chip Memories

16KB software managed cache (i.e., shared memory)/corani&h 1 access per core cycle per bank
64 MSHRs/core, with 32B data field per MSHR entry (no hardveaehe)

DRAM

4 GDDR3 memory channels, 2 DRAM chips per channel, 2KB pag®g&AM chip, 8 banks per DRAM chip

8 Bytes/channel/transmission, 68.2 GB/s aggregate baltld\@1066 Mhz bus freq, 256B channel interleaving
GDDR3 memory timingitc; =12, trp=12, trc=41, tras=29, trcp=14, trrp=10

memory controller policy: out-of-order (FR-FCFS) [1252 BRAM request buffer entries per controller

Interconnect Network

crossbar (2-ary 5-fly butterfly [37]) @602.0 Mhz, 16-Byte diite, 2 Virtual Channels, 8 buffers per Virtual Chann

T adownsizedNVIDIA GeForce GTX 280 version, with 16 vs 30 processor caed half of its aggregated DRAM bandwidth (68.2 instead df. 745B/s)

el

144"

‘9 d31ldvVHD

AON3IDI443SS302V INVH A ONINOHdIN]

Table 6.3: Benchmarks

Name Abbr. Name Abbr. Name Abbr.

Transpoes [109] TRA Speckle Reducing Anisotropic Diffusion [26] SRAD Weather Prediction [17] WP

Fast Wavelet Transform [109] FWT Parallel Reduction [109] RD LIBOR Monte Carlo [17] LIB

Scalar Product [109] SP Streamcluster [26] SC CFD Solver [26] CFD

BFS Graph Traversal [26] BFS RAY Tracing [17] RAY 3D Laplace Solver [17] LPS

Separable Convolution [109] COV Matrix Multiplication [109] MM Black-Scholes Option Pricing [109] BS
Nearest Neighbor [26] NN Back Propogation [26] BP

NOILVNIVAT TVLNINIHIdXT ‘G'9

SPT

146 CHAPTERG6. IMPROVING DRAM ACCESSEFFICIENCY

196.3 402.7
160

140 -
5]
120 [| net_BW_req

100 | | O practical_BW_req

80
60 - 52.6B/core_cycle (

: MJTIMM

TRA SR WP FWT RD LIB SP SC CFD BFS RAY LPS COV MM BS NN BP AVG

Memory Bandwidth Requirement

Figure 6.6: Memory bandwidth requirement

Some benchmarks consist of more than one kernel. All reptdisented here
are aggregation of all kernels invoked in benchmark exeouti

6.5.1 Memory Bandwidth Requirement

Figure[6.6 shows the bandwidth requirement of our benchsparith the met-

ric being Bytes per GPU core cycle. Note, the “memory bantwidquire-
ment” in this section denotes bandwidth to feed data to GRE& gipelinesnot
off-chip memory bandwidth. The left bar of each group shdvesietmemory
bandwidth requiremennét BW.req), calculated by dividing the net memory
access (assuming 1B access granularity) by the executassuming nor-
malized IPC=1net BW.reqactually gives the lower bound of sustained mem-
ory bandwidth necessary to keep the GPU core pipeline busg. right bar,
practicaL BW.req, is calculated by dividing the required data (assuming 32B
access granularity) by the execution time on GPU cores vétfept memory
system, but taking into account warp control flow divergeperalty [47].

The disparity between theetandpractical benchmark bandwidth requirement
reflects itsmemory utilization efficiencySection[6.555). Among all bench-
marks, NN shows the largest gap, because the kernel codaitexéxtremely
high vertical locality (intra-thread spacial locality, Gen [6.31), with 32
memory loads from within each thread accessing contigu@uBy3es global
memory. Unfortunately, vertical locality is not captureddur modeled GPU
core (with no hardware cache). For such benchmarks, it isaids to adopt
on-chip hardware data caches to reduce the off-chip barldwédjuirement.

The solid bar in FigurE8l6 lines out the peak bandwidth ofaaseline DRAM
subsystem, 52.6B/careycle. Considering there are 128 scalar lanes in total

6.5. EXPERIMENTAL EVALUATION 147

from 16 8-way SIMD cores, this translates into a bandwidti®P ratio of

0.41. Interestingly, Figure_8.6 shows that, the peak badittwaf the baseline
DRAM system indeed exceeds most benchmarks’ bandwidthiresgants.

However, as we will see in following sections, most of themartually mem-
ory bound during execution, due to I®RAM efficiency

6.5.2 DRAM Access Granularity Distribution

Table[&.2 shows the static instruction count scheduledcht ganularity level
by our runtime scheduler for each benchmark in our expetisndote, 32, 64,
128 and 256B denote the possible granularity ofghlewarp vector accesses
(Section[6.411) generated by the corresponding memoruttgins. As we
can see in Table_8.4, no particular pattern in the granwvléyfie distribution
is observed across all benchmarks — their optimal grartylsipread across all
four levels. Moreover, 10 out of the 17 benchmarks requiteast two access
granularity types. This suggests that in genersingle optimal access gran-
ularity for all memory accesses in a kernel is not feasibhel, @onfirms the
need for scheduling memory instructions separately, basextcess patterns.

The last row of Tablg6l4, AF (analysis fail), indicates thener of memory
instructions for which the access pattern analysis faitedur experiments.
The reasons for analysis fails include: 1) skeleton tramsibperations or
operation compositions used in address generation areuppbded by the
compiler; or 2) access patterns are dependent on the cdinnopath (Sec-
tion[6:3.2). In either case, an analysis fail will result ire tminimal access
granularity (32B in our experiments) being scheduled (rib&efirst row of
data in Tabld_6l4 already includes such AF instructions)ectlly, in case
2), the obtained multiple access pattern versions (Sefii8) are simply
dropped by the runtime scheduler, because it runs on thedRidtbefore the
kernel launches, having no clue about the dynamic path takéme warp exe-
cution. The only exception is addresses generated in lodhscanstant steps
across loop iterations — in this case, multiple patternigassdiffer only in
skeleton parameteft (Section 6.3), and are treated as a single valid pattern
by the runtime granularity scheduler.

Note, a granularity larger than 32B in our experiments iatdis that the sub-
warp vector memory accesses generated by the correspandimgry instruc-

tion will fetch data more than needed by themselves. Thezelabld 6.4 also
confirms that the horizontal locality widely exists in GPGRpplications.

148 (HAPTERG6. IMPROVING DRAM ACCESSEFFICIENCY

BP
3
11
0
0
0

BS | NN

LPS | COV | MM
0
12
0
0
0

BFS | RAY

16
48

60
0
0

86

60

SC | CFD

108
0
0

180

108

SP
0
0
0
2
0

LIB
12
0
0
15
2

Table 6.4: DRAM access granularity distribution
RD
0
0
2
2
0

FWT
3
0
0
62
3

SR | WP
100
0
0
0
86

12

26
0
0
0

TRA
0
1
0
0
0

32B
64B
128B
256B

AF

6.5. EXPERIMENTAL EVALUATION 149

2.24 1.13

H Baseline
0.8 B Our proposal
O Our proposal / baseline - 1

0.6

DRAM Efficiency

0.4 -

0.2

TRA SR WP FWT RD LIB SP SC CFD BFS RAY LPS COV MM BS NN BP AVG

Figure 6.7: DRAM efficiency

6.5.3 Improved DRAM Efficiency

DRAM efficiency is defined as the ratio between DRAM data busadrans-
fer cycles and the number of cycles with pending DRAM access:

F# kernels—1 #channels—1
#bus_transactionsy ;

E.. — k=0 i=0
tot = #kernels—1 #channels—1
2.3 > Hactive_cyclesy ;
k=0 i=0

where# bus_transactionsy ; is the number of accomplished DRAM bus trans-
actions in channel during the execution of kerndd, and #active_cyclesy ;

is the number of DRAM bus cycles during which channi notcompletely
idle. Here completely idle denotes the DRAM channel status watpending
accesses in its request queue and any ongoing memory accébgefactor2

in the equation is due to the fact that there are two bus tchinsa in one cycle
for dual-data-ratememories.

Fig.[6.1 shows the overall DRAM efficiency of our adaptive DRRAccess
granularity scheme for all benchmark applications. Witkð group, there
are three bars. The left and middle show the DRAM efficienay whie base-
line and our proposal, respectively. The right bar showsntbiegain. The
RD and SP kernels see the largest DRAM efficiency improvensimte they
have very few memory access instructions with simple acpaierns, and
demonstrate high horizontal locality. Meanwhile, we halieesved that most
fetched data are efficiently utilized by neighbor warps inhsiernels, even
at the largest access granularity of 256B (Fiduré 6.9). ikachmarks also
show varied efficiency increment, with the only exceptioasg WP and NN.
The reason is that thidentifiedaccess patterns do not have exploitable hori-
zontal locality, while for the rest instructions the anayfailed to extract the

150 CHAPTERG6. IMPROVING DRAM ACCESSEFFICIENCY

Speedup

RD LIB SP SC CFD BFS RAY LPS COVMM BS NN BP AVG

TRA SR WP FW

3

Figure 6.8: Speedup over the baseline

precise access patterns as they are control flow dependgatresult WP and
NN are executed with the same access granularity as thermsdbnetheless,
the average DRAM efficiency is improved by our adaptive mgngoanularity
scheme by 1.42X, a strong indication that our approach iglilemf efficiently
exploiting the available horizontal locality in the bencimis.

6.5.4 Improvement in Overall Performance

Figure[&8 shows the overall performance improvement with adaptive
memory granularity scheme. On average, the performancapsoved by
12.3% over the baseline. Note, some benchmarks, such as BFERS,
see substantial overall performance degradation. Ddtaralysis reveals that
severinter-warp control flow divergenceccurs during kernel execution. In
this case, neighbor warps execute along different contal flath, rendering
the extra data fetched at large granularity being wasted.a Assult, mem-
ory bandwidth is wasted and system performance is degrdagpecially for
BFS (which is heavily memory bound). This can be alleviatgdutlizing
both static analysis results from the pattern analyzeradsathe control flow
information avaialbe awarp execution timeWe leave this as our future work.

6.5.5 Memory Access Utilization

Memory access utilizatiois defined as the portion of data loaded from off-chip
memory which istruly utilized by the processor core pipeline. Fundamen-
tally, imperfect memory access utilization results frora thismatchbetween
the data manipulation granularity in program world andrinech largerdata

6.5. EXPERIMENTAL EVALUATION 151

[
‘ B Baseline B Our proposal

Memory Access Utilization

TRA SR WP FWT RD LIB SP SC CFD BFS RAY LPS COV MM BS NN BP AVG

Figure 6.9: Memory access utilization

movement granularity in a real machine. For example, thet finequently
used data types are of 1 to 8 Bytes in CUDA C code, whereas tlaflestn
burst size of GDDR3 interface is 32 Bytes.

Figure[&9 shows the memory access utilization for both teeline and our
adaptive access granularity scheme. In general, when dicatigm employs
irregular memory access patterns, the memory access efficiency dFaps.
example, SC and BFS make intensive use of pointer accessde mthread
(SIMD lane), forming scatter/gather accesses during SINRlime subwarp
execution, resulting in very low memory access efficiencg mentioned in
Section[&511, NN exhibits exclusively vertical localitptncaptured in our
GPU model, therefore it suffers the lowest memory acce$gaiton (in most
cases only one single Byte out of 32B DRAM data is utilizedpnitheless,
irregular memory access is an open issue, not only for datdl@laarchitec-
tures (in forms of scatter/gather), but also for generappse processors (e.g.,
pointer-chasing). For GPU predicated SIMD execution, lagiosource of low
memory access utilization is warp divergence. In such casg, part of the
SIMD lanes and the data transfer bandwidth are utilized.

Interestingly, we have observed a good correlation betwsememory access
under-utilization and the portion of AF(analysis fail) memy instructions (the

last row of Tabld_&}4) in total memory instructions (sum diet4 data rows

in the same column). Remember, one major cause of pattetysentails is
access pattern being dependent on control flow paths (8&E#02). There-
fore, such correlation suggests that control flow divergaa@ctually a major
contributing factor to GPU memory under-utilization. Thepiact is in two

fold: 1) it directly degrades memory access utilization, as described in above
paragraph; 2) itndirectly decrease memory utilization, by creating irregular
memory access patterns in different control flow paths.

152 CHAPTERG6. IMPROVING DRAM ACCESSEFFICIENCY

Memory access utilization should be taken good care of,ailhe in our

adaptive granularity proposal. With the increased DRAMeascgranularity,
the utilization tends to decrease. Fortunately, on avemageapproach did
not substantially decrease memory access efficiency, agnsimoFigure[6.D,
thanks to the conservative scheduling we have adoptedi¢8&EB.3). How-
ever, some benchmarks, such as BFS and LPS, still see sigmifitemory
access efficiency degradation.

Another interesting observation in Figlirel6.9 is that, dests relatively small
size (as compared to a normal L1 data cache), the vector MSHfaged
capturing certain temporal locality in some of the benchksasuch as SR, BP
and MM. Investigation in the kernel code reveals differarhporal locality
sources. E.g., with SR, the temporal locality results frown threads inside a
same CTA accessing the surrounding elements overlappitgather; while
for MM, the data sharing occur among CTAS accessing samexidgs. For
the other applications, the temporal locality is eitheritégd, or not captured
by the vector MSHR.

6.5.6 Effect on a GPU with Less Capable Interconnect

In order to see how our proposal interacts with differergricdbnnection capa-
bilities, we did the same experiments with an interconnéttt the same topol-
ogy and intersection bandwidth, with the number of virtusdmrnels reduced
from 2 to 1. Figur&6.710 shows the DRAM efficiency improvem@mtthe top)
and overall performance speedup (on the bottom). It candretbat the simi-
lar trend for both efficiency and performance improvememtis® maintained
in this cases. On average, our proposed adaptive memorgsagcanularity
scheme gives a improvement of 35.1% and 77.2%, for DRAM efiicy and
overall performance, respectively. Further analysis as/éhat, the effect of
our adaptive memory access granularity is twofold in GPUh Veiss capable
on-chip interconnect. First, our adaptive memory acceasugarity gener-
ates less traffic, with lower packet overI'Ethen horizontal locality exists
in the kernel execution. Second (more importantly), thgiogl memory ac-
cess stream from a GPU core getterleavedin the less capable interconnect
by common fairness-oriented flow control policies. As a ltieslie locality in
the original memory access streams (if any) is broken at gmony controller

12E g., for our 16B flit size, the packet overhead for 32B daG0k (32B data + 8B header
requires 3 flits), which is reduced to 6.25% for a 256B dat&eiac

6.6. DISCUSSION 153

4.33 2.27 1.27 1.07

g 1 '
< M Baseline
5 08 || ™ Our proposal
'E:'J 06 | | O Our proposal / baseline - 1
=
< 0.4
8

0.2 -

0-

TRA SR WP FWT RD LIB SP SC CFD BFS RAY LPS COV MM BS NN BP AVG

25
£ z%
-}
g 15
& 1

0.5
0
TRA SR WP FWT RD LIB SP SC CFD BFS RAY LPS COV MM BS NN BP AVG

Figure 6.10: DRAM efficiency improvement and overall performance spgedu
(num_vcs=1)

siddd. Thisis particularly true for GPUs with less capable inbeneect, where
the interconnect is saturated and consequently Buehcore memory access
interleavingis more frequent. Our adaptive memory access granulatiigrse
works perfectly in this scenario, in thatehforceghe locality from each core’s
memory access strearapted to available horizontal localityrhis explains
the higher performance improvement in a less capable omneect GPU.

6.6 Discussion

6.6.1 Effect of Large DRAM Data Packets

One possible drawback of our proposal is that, it might dégtae intercon-
nect performance, since our proposal fetches large DRAIS piatkets.

In general, large packets can degrade interconnect peafare) since they
tend to cause traffic congestion, and decrease the utilizatf channel re-
source and buffers. Besides, large packets also cause @b&mps [37].
However, in the particular context of throughput-orienteBU accelerators,

3This is true, even for a memory controller with a capable afubrder access scheduling
(such as the one modeled in our evaluation), since the requese depth (scheduling window
size) is limited.

154 CHAPTERG6. IMPROVING DRAM ACCESSEFFICIENCY

we anticipate that moderate increase in memory access @mlay single
thread/warp does not decrease system throughput, as ldhgaasbe hidden
by concurrently active warps execution. On the other hardhave observed
that the interconnect traffic congestion resulting frongéaread data packets
is quite rare, probably due to the fact that the data trafimfmemory to GPU
core forms dew-to-manypattern [16]. Furthermore, solutions to alleviate the
side effect of large packets exist, e.g., Hpdit packettechnique [37].

6.6.2 Impact of HW Cache

On-chip HW data caches are recently adopted in commerci&dJsGR.g.,
NVIDIA Fermi. Please note that, for spatial locality amohgeads, although
caches can capture certain amounts of it by the (wide) cacbeatcess, are
unable to dynamically optimize DRAM access granularity. riMepecifically,
the data cache can capture only one row in Teble 6.4 (say, &diiedine size).
For memory accesses preferring access granularity diffdrem the cache
line size, the cache block access either wastes DRAM batldwiden the ac-
cess granularity is smaller than the cache line size (dg.3trregular access
patterns in FWT in TablEZ@.4) or, it incurs unnecessary intge memory ac-
cess interference at the memory controller side. In the éorrase the use of
HW data cache is questionable and indeed our approach haspaati due to
dominating cache block accesses. In the latter case, whairdiferred access
granularity is larger than cache lines (e.g., for the 62 largaccess patterns
in FWT in Table[G}4) our approach will work by correctly adjng DRAM
access granularity to the access patterns. In additioh, thét help of on-chip
L1 data cache, spatial locality inside each thread can asexploited by our
scheme, which is otherwise difficult (Sectibn 615.1). Thiglswe consider
our approach general and not limited by the fact that our rex@ats consider
only GPUs with no L1 data caches.

6.6.3 Application to SPMD Barrel Processing

In Section[&311 we have analyzed the horizontal localitywdpénherent in
barrel execution of SPMD programs. GPU is the most promiegatmple of
manycore architectures which embody both SPMD programmintgthe bar-
rel execution model, at present time. This work experinntgh a holistic
framework with compile-/runtime analysis, scheduling #melco-designed ar-
chitectural support, to exploit and enforce the horizoldeality and improve
memory efficiency. Although the techniques are implemeiaied evaluated

6.6. DISCUSSION 155

with a GPU model, we believe our proposal is also effectiveother architec-
tures employing SPMD barrel execution, in capturing thezomtal locality.

6.6.4 Possible Improvement

In this chapter, we presented a holistic framework for GPUnmry access
optimization. By combined compile-time access patterdyaimand runtime
pattern extraction, we obtained the detailed access pattfarmation forlo-
cal andglobalmemory access instructions. With this information, wernje
the memory access performance by calculate and enforcepthmab granu-
larity for each off-chip memory access pattern, to explaitizontal locality
and improve DRAM efficiency. Based on this work, two direngocan be
immediately explored: (1) to reduce runtime overhead. Kamgle, since
the importance of individual memory accesses may be diffef@epending
on, e.g., high/low invocation frequency which can be royghentified by
compile time analysis), it may not be necessargxttractaccess patterns for
all instructions. Rather, only thoseitical accessesthe access granularity of
which may have strong impact on overall performance (asestgd in Ta-
ble[6.34), need to be further investigated at runtime. (2d&mtify more op-
portunities for increasing DRAM efficiency and overall merhance. In fact,
we have utilized only a small portion of the valid accessgratinformation
(e.g., the access stride parameters in dimensianaridc, are not used in the
access granularity scheduling experimented in this waigturally, the extra
access information characterizes certain aspects of thanag behavior of
kernel execution. Therefore, it can be further exploited,,go reduce GPU
DRAM channel conflicts and interconnect congestion, by apate memory
aware CTA issue and warp scheduling schemes.

6.6.5 Contrastto Closely Related Art

Ocelot [39] is a dynamic compilation framework to map the RVA CUDA

applications onto diverse multithreaded platforms. Hudes a dynamic bi-
nary translator from PTX code to x86 ISA and others. While l10ices a

general framework, our access pattern analyzer is dedifate@xternal mem-
ory access analysis, and designed with minimal runtimeh@at objective in
mind. Moreover, our runtime scheduling is assisted by thdegigned hard-
ware which is essential irealizingthe adaptive memory access granularity.

PTX transformations, such as thread-fusion used in MCUDAB6]1land
GPGPU Compiler [151], have also been proposed to change Ctligi

156 CHAPTERG6. IMPROVING DRAM ACCESSEFFICIENCY

memory access patterns, in order to optimize their exatatioexisting GPUs.
In our view, such techniques make a good effortigatinghorizontal locality.
In contrast, our proposal focuses exploitingandenforcingthe horizontal lo-
cality in existing code. Therefore, PTX transformations eomplementary to
our work, and we believe the combination of two have the ga@kfor further
GPU performance improvement.

Memory coalescinffL08] is a hardware mechanism in NVIDIA GPUs to buffer
and mergeantra-warp memory accesses. In this way variable-sized loads, de-
pending on access locality, are also supported. Howeweeffectiveness of
coalescing is limited to half/single-w In contrast, our approach takes
advantage of the high level access pattern information,captures horizon-

tal locality both inside and among warps even winet issued back-to-back
(Sectior&.31). Thus our scheme generalizes memory ciadesind the "co-
alescing rules” are effectively relaxed in our system.

A recent study on GPU prefetching proposétter-Thread Prefetching
(IP) [88], somehow similar to our work in spirit, both recognigithe GPU
specific locality among parallel threadd? focused oratency reductiorus-
ing speculation, assuming inadequate parallelism to hidmany latency. In
contrast, our work emphasizes off-chip memory access efficienggingac-
curate access patterimformationwithout speculationin a context where the
off-chip memory bandwidth efficiency becomes the perforoednnttlene(@.
Moreover, our work is novel in analyzing the horizontal llityein SPMD bar-
rel execution embodied by GPUs.

At the GPU on-chip interconnect level, the work [152] alsdredses themem-
ory access streams interleavipgoblem, using a customized flow control de-
sign optimized for this scenario. Different form their wodur approach uti-
lizes high-level access pattern information at the sou@RU cores) of the
traffic, and adjust memory access granularity accordindpdcat/ailable hori-
zontal locality. Also, our adaptive memory access gratitylacheme does not
change the behavior of kernel execution with less or no bat# locality.

14depending on GPU generation

5For example, for the same application “Black-Scholes”, #¥marps/core is 12 (see Table
111in [88]) in the GPU modeled in [88] (NVIDIA GeForce 8800G.TWhile in the GPU modeled
in our study (GeForce GTX 280) #max warps/core becomes 24ltieg in doubled available
parallelism (with per-core off-chip bandwidth not signéfitly increased). Hence, the memory
efficiency, rather than latency, becomes the first-ordeeiss

6.7. SUMMARY 157

6.7 Summary

In this chapter, we analyzed horizontal locality found inW&Pwith SPMD

barrel execution. We proposed an adaptive DRAM access lgidtguscheme
to exploit this locality and reduce memory access interfeeeamong GPU
cores to improve DRAM efficiency. Our scheme comprises a dempnd

runtime access pattern analyzer, a runtime granularitgdidir, and the co-
designed elastic MSHR HW support. Our results show that,venage our
proposal improves DRAM efficiency by 1.42X and the overalifpenance

12.3%, for a set of representative GPGPU applications.

Note. The contents of this chapter is based on the the followingsp

C. Gou, G. N. GaydadjievExploiting SPMD Horizontal Locality to Im-
prove Memory Efficiency, IEEE Computer Architecture Letters, Vol. 99,
DOI: http://doi.ieeecomputersociety.org/10.1109/L-€@&11.5, 2011

C. Gou, G. N. Gaydadjieymproving GPU DRAM Efficiency Using Access
Granularity , submitted to the 44th Annual IEEE/ACM International Sympo
sium on Microarchitecture (MICRO-44), 2011

Conclusions and Future Directions

7.1 Conclusions

This dissertation identified that one major factor of the mmgmaccess ineffi-
ciency in data parallel accelerators is the mismatch betwemaccess pattern
required by the workloads and the one optimal for the phydiata layout. We
proposed customizable memory schemes to address the atfagsacy prob-
lem of parallel memories in terms of bandwidth utilizatiomdaaccess time.
Different from conventional approaches, customizable orgrschemes em-
ploy systematic approach with well coordinated hardwarksarftware efforts.
Our approach leverages the extra information about thecgipin and its ex-
ecution characteristics available within code written emithe corresponding
programming styles/models of data parallel acceleratdrsrthermore, our
approach extracts such information at proper applicatioasps using cus-
tomized programming interfaces, compile-time analysisjtime optimiza-
tions and architectural extensions, to steer the memommsethardware and
improve memory efficiency.

To support conflict-free vector access for multiple stramifies frequently re-
quired in workloads with irregular memory accesses, ttasetitation proposed
two novel hardware parallel memory schemes in Chdpter 3 fildteone, the
SAMS hardware scheme, supports both unit-stride and dtridaflict-free
1D vector memory access. To the best of our knowledge, theopesnl SAMS
scheme is the first of its kind that supports atomic paratteeas without lim-
iting the vector length and without using more memory bahlken tthe paral-
lel access degree. The second access scheme we proposdte \28sSiMM
scheme able to support conflict-free vector access in a 2[Pomment.

To illustrate how such hardware parallel memory schemesheaintegrated
into the system level of a contemporary data parallel acatles, this disser-

159

160 CHAPTER 7. CONCLUSIONS ANDFUTURE DIRECTIONS

tation proposed a parallel memory design to bridge the elisorcy between
data representations in memory and those favored by the SiiMdEessor by
customizing the low-level address mapping. The key in tlopased design
is a customizable memory scheme (called “SAMS Multi-Laylgigmory”) in
the memory hierarchy backed up by the SAMS hardware thaiges\wbothAr-
ray of StructuregAoS) andStructure of ArraygSoA) views of structured data
to the processor, appearing to have maintained multipleutsyfor the same
data. With such multi-layout memory, optimal SIMDizatioiithvdynamically
changing access patterns can be achieved. We did show inteC@hpow
the customizable memory scheme enalbed by SAMS can sigrtifigenprove
both memory access efficiency and system performance. Genszachieved
all of the above performance targets while reducing prognarg efforts.

To minimize the negative impact of on-chip memory bank cotglon system
throughput, we proposed a novel elastic pipeline desigehvtiecouples bank
conflicts from pipeline stalls in multithreaded vector ax@an. We described
in Chaptef’b how the proposed elastic pipeline together thighco-designed
bank-conflict aware warp scheduling substantially rediupeline stalls and
improve the overall performance for workloads characeetiwith many on-
chip shared memory bank conflicts, when applied to GPUs.i$hisachieved
with trivial hardware overhead. In the mean time, our prapedso leads to
reduced GPU programming complexity by relieving the burdémvoiding
shared memory bank conflicts from the programmer.

To improve external memory access efficiency in the case t& darallel

manycore accelerator architectures adopting barrel @eecaf SPMD pro-

grams, we proposed a holistic framework for off-chip memacgess opti-
mizations in Chaptdrl6. We analyzed the horizontal locaityong parallel
execution of independent worker threads in a core. To ptabvenavailable
horizontal locality from being broken by the interferencacmg accelerator
cores memory accesses, this dissertation described ativedagmory access
granularity scheme to exploit and enforce such horizontallity, based on the
proposed holistic memory optimization framework. We shdweChaptefb
that with the proposed techniques, DRAM efficiency is dracadly increased
and overall system performance is improved.

To summarize, this dissertation demonstrated: 1) both mgauxess patterns
and physical data layout can be optimized to improve memffigiency; 2)
optimal solutions require striking the right balance batwedjusting either
memory access patterns or physical data layout, with ré$pgrogramming
efforts and hardware efficiency (in terms of performance/gaiditional HW

7.2. FUTURE RESEARCHDIRECTIONS 161

cost). These two findings, within the context of contemppdata parallel ac-
celerators, form the core of our customizable memory sckefaspecially, a
key factor of customizable memory techniques is how to migmapture the

access pattern information. We showed in this thesis tltainitoe achieved by
well coordinated HW/SW efforts across multiple computirygtem abstrac-
tion layers: customized programming interfaces, statéecanalysis, runtime
optimziations and architectural extensions.

In ChapteflL we posed three research questions which we eststheoughout
this thesis. Here are their summarized answers:

e Conflict-free accesses for common 1D and 2D vector patteanshe
supported, by extending traditional parallel memory sobtefBAMS
and 2DSMM);

e Systematic approaches should be leveraged to capture thmemac-
cess pattern information, with well coordinated HW/SW efacross
computing system abstraction layers (SAMS Multi-Layout nivbey,
elastic pipeline and elastic MSHR);

e Access pattern information can be exploited using custabbéz HW,
by adapting the physical data layout to access patterns SMMIti-
Layout Memory); by decoupling on-chip memory access irlaglies
from pipeline stalls (elastic pipeline); and by enforcig thorizontal
locality and reducing inter-core memory interferencegetaMSHR).

At a broader scope, we argue that the techniques proposhi ithesis move
one step forward in expanding the effectiveness scope depgorary data
parallel accelerators. Such techniques can also be usefthé long-term

merging of the data parallel architectures with other palrafchitectures (such
as task parallel), toward unified accelerator architesture

7.2 Future Research Directions

This dissertation introduced customizable memory scheamiesrease paral-
lel memory access efficiency. The customizable memory tquaks comprise
two major components: 1) customizable hardware memorynsebgand 2)
customizable parallel memory access scheduling. Therseseral possible
future research directions to improve these two comporamiso further in-
crease memory efficiency of contemporary data parallellaaters:

162 CHAPTER 7. CONCLUSIONS ANDFUTURE DIRECTIONS

e In spite of various existing hardware parallel memory sobenm the
literature (including the SAMS and 2DSMM introduced in ttigsis),
there is still room for innovation in new parallel memory sotes to
support more conflict-free patterns. However, two issuesishbe kept
in mind. First, the hardware scheme design should be imgatstl at
system-level. Especially, questions should be asked: bawrelated
to mainstream data parallel architectures? How importestlze new
access pattens supported by the scheme, with respect fenmeaging
applications? The second issue is the additional cost duketmew
schemes, in terms of extra latency/silicon area and powesuwoption;

¢ With the additional memory access flexibility provided bynftwt-free
hardware memory schemes (such as SAMS and 2DSMM), it may be
worthwhile to revisit relevant program flow analyses/tfansations, to
help renovate automatic SIMDization;

e In the SAMS Multi-Layout Memory design, we have shown that, a
customizable memory scheme which is adaptive for indiVicilata
structures/access patterns, has the potential to boopetfmmance of
emerging applications on SIMD processors. However, as @uk var-
geted the access of array-based data structures as a first steuld be
interesting to apply similar approaches to more difficutiidems (e.g.,
linked-list/trees), with proper customizable hardwaredrads mapping
and the corresponding software abstractions;

e For the elastic pipeline design, it would be interesting taleate its
effect on GPU cores with banked on-chip hardware cacheseder,
it would be desirable to improve the accuracy of bank conflegree
prediction for irregular shared memory access patternbdtier warp
scheduling efficiency. Another interesting follow-up raszh direction
could be the co-optimization of on/off-chip memory accedfisiency;

e Current implementation of the adaptive memory access tagtyupro-
posal only focuses on memory loads; however, our framewsik@o-
vides the access pattern information for stores. Sinceesygterfor-
mance can also be improved by optimizing memory writes [[L&7]
would be interesting to explore mechanisms using accessrpan-
formation to optimize memory access efficiency for both faahd
stores. Moreover, since only part of the memory accessrpatiéor-
mation is utilized in our adaptive memory access granglagheme, it
would be worthwhile to further exploit the holistic memorpgtmniza-

7.2. FUTURE RESEARCHDIRECTIONS 163

tion framework to orchestrate GPU warp execution for battemory
efficiency and overall performance, by techniques such asaneeffi-
ciency aware block issuing, and warp scheduling;

e The effectiveness of hardware parallel memory schemesrdyeecwal-
uated for on-chip SRAMs. Since DRAM access efficiency is akso-
sitive to the low level address mapping, it is desirable tpaex the
utilization of such parallel memory schemes to DRAMs, widt@ssary
extensions suited for DRAM organizations;

e Another interesting work is to optimize both memory accedtapns and
physical data layout in a unified framework. We believe tlusdesign
has the potential to bring extra benefits, by leveraging chrtigues
from both memory access scheduling and parallel memorymsesie

¢ Finally, with the emerging trend toward unified acceleratiawhitectures
[69, 113, 128, 135], both accelerator HW substrate and progring
models able to capture data and task parallelism are jasthored, for
better balance between programming efforts and HW effigieftis
introduces new challenges for customizable memory schémfasther
improve programmability while maintaining efficiency.

SAMS Conflict-Free Access Proof

SAMS scheme, and its derivative, the Matched SAMS Schenth, [ro-

posed in Chaptdr 3. “Conflict-free” conventionally mearst tfiata to be
referenced in one access are located in different moduléksatdhey could
be accessed in parallel. However, the concept of configgt-fn the SAMS
context is slightly extended such that it includes the cadesre there are two
references located in the same module which reside in the sam(therefore
they could also be accessed in parallel). For the sake dfyclae will use the
term “strictly conflict-free” when we refer to the conventad meaning. Now
we will first illustrate some properties of the SAMS schenme] then give the
proof of its capability of supporting conflict-free accesgheorems later.

I n this section, we will present the mathematical foundatimmghe basic

Property 1. The period of SAMS module assignment functior29s=.
Proof. There are three cases in the SAMS scheme.
) s =0. m(a) = a%29 = (a+ 297%) %29 = m(a + 297°).

) 1<s<q.
m(a) = (ag---as, (a® Th,_,..,) %25~1)
= <aq T ds ((a + 2q+s) ® THsfl,qul) %25_1> (A.1)
= m(a+29%%).

Equation [[A11) stands because the module assignment danofi Harper’s
XOR scheme, namelfa ® Ty, _, .,,) %2°~1, has a period op(s~1+(a+1) =
29+ [36].

) s > q. In this case the module assignment function is precisely dh
Harper's XOR scheme configured wid banks and strid@®, which has a
period of297° [36]. m

Property 2. Whenl < s < g, the SAMS scheme is conflict-free for any stride

165

166 APPENDIX A. SAMS CONFLICT-FREE ACCESSPROOF

<an_]...aq+1, aq...as, A1, ag....a0>
+ b} 5,

q-1

<by1...bge1, b.r-b, bty b bg>

Figure A.1: Binary bits representation df= a+ 6 - 2° whenl < s < g

S§=20<s <s—1).

Proof. The SAMS scheme is conflict-free, if we could guarantee that t
conflicting items in linear address space are mapped to time saw. De-
scribed in mathematics, given two different addressasd b, we need prove
r(a) = r(b) under the conditiong(a) = m(b) andb = a+4-25(1 < <
29 — 1)(without loss of generality we assunbe> a).

First we examine the equation(a) = m(b). Note whenl < s < g m(a) =
m(b) means

<aq o as, (a ® THsfl,qH) %25_1> = <aq T as (a ® THs—l,qH) %25_1> !
i.e.

ag-ras = bg--bs (A.2)
(a® T, 1) %2271 = (b® Th,_,,,,) %2 ", (A.3)

According to the definition, equatioh{A.3) could be furtiespanded as

ao P ag+1 = bg ® bgt1
a1 @ ag+2 = bh® bq+2 (A.4)
as 2@ agrs—1 = bs—2® bgis—1

Whens’ = 0, we haveb = a+4. The binary bits representation of the addition
process is depicted in Figufe_A.1. Considgr = by(from equation [[AR))
together with Figuré_All, we could see that there is no carpyi from bit

g — 1 to bit g during the addition. Accordingly, the high order bits(frdot

q on) of a are not affected by the addition 6f which means,_; - -- ag41 =

bn_1-+- bgt1,1.€. 521 = 521, which means(a) = r(b).

Whens' = 1, we haveb = a+ 2§, which is depicted in FiguleZAl.2. Note the
addition on bit 0 ishg = ap + 0, thusby = a9. Combined with equatioh{AL4),

we havebg 1 = aq+1, Which indicates that there is no carry input from dit

to bit g + 1. Hencea,_1---ag41 = bp_1 -+ bgi1, I.€. 531 = 52+, which

meansr(a) = r(b).

167

<an_]...aq+1, aq...as, A1, ag....a0>
+) 9,0

q

<bp1...bge1, b.r-b, bty b bg>

Figure A.2: Binary bits representation d¢f= a+ 6 - 2! whenl < s < g

Similarly, fors’ = k(k =2,...,s — 1),i.e. b= a+ ¢ - 2¥, we have

ap = bo
dy = bl (A 5)
i = bk

by examing the process of addition. Consider[dg{A.5) togetvith [A4), we
know

agr1 = bg1
a = b
agtk+l = bgrri

This indicates that there is no carry input from bit+ k to bit g + k + 1.
Therefore the high order bits(from hjt+ k + 1 on) of a are kept untouched
during the addition. Consequently we haye - - - ag41 = bp—1 - - bg11, i.€.

52+ = 521, which means(a) = r(b).

Property 2 reveals a very interesting feature of the SAM%®i&h it could
potentially support conflict-free vector accesses withdesr across multiple
stride families, under the condition< g. Moreover, it is exactly where the
idea of the Matched SAMS Scheme originates. We will see hasvfdfature
works for the Matched SAMS Scheme later.

Before proving the conflict-free access support of SAMS s@hdirst we have
to prove that it is a bijection o . Only when the interleaving scheme is a
bijection from the linear address space to the transforrpadesthe module-
row-offset trinity in SAMS) could it be consistent in bottetbry and practice.

Theorem 1. The mapping from linear addressto the module-row-offset
trinity in the SAMS scheme is a bijection @r.

Proof. As there are three cases in the SAMS scheme, we will discess th
one by one.

'DenoteE" = {0,1,...,2" — 1}.

168 APPENDIX A. SAMS CONFLICT-FREE ACCESSPROOF

I) s = 0. By concatenating the binary bits of the memory module assént,
row assignment, and offset assignment, we get

(m(a), r(a), o(a))
= <a%2‘7, a7 aq>
= <a%2q, %> .

It's clear that the mapping fromto the trinity (m(a), r(a), o(a)) is a bijection
onE".

I) 1 < s < g. By concatenating the binary bits of the memory module
assignment, row assignment, and offset assignment, we get

(a), r(a), o(a))

(m
_ a
= <aq cas, (a® Th, ,.,,) %2°7 1, ST as—1> (A7)
buemon <(a® TH, 15+1 %25_1, 2q—il, aq ... as, as_1> (A.8)
_ a
= <(a® TH571,5+1) %25 1’ 25—1> : (Ag)

Note expression [Al9) is virtually the Harper XOR schemefigpmed with
2°~1 memory modules and stri®*1 (the first part of the binary concatenation
is the module assignment function, and the last part is theassignment
function). Therefore, mapping fromto (A3) is a bijiection onE". As the
transform betweerl {Al7) and{A.8) is also a bijiection, reenwpping froma

to (m(a), r(a), o(a)) is a bijection orE".

ll) s > g. By concatenating the binary bits of the memory module assig
ment, row assignment, and offset assignment, we get

(m(a), r(a), o(a))
- (s T ((F 1)))

a

_ <(a ® Th,.) %27, ((2—q + 1) %2”“7) /2,

((2% + 1) %2"—‘7) %2>

- <(a ® Th,,) %29, (% + 1> %2"_q> (A.10)
bijgion <(2iq + 1) %209 (a ® THq,s) %2‘1> (A.11)

= (55 (2® Th,) %27) +27| %2". (A12)

169

b b+27" b+27" (27 -1)
b+2° b+2° 420! b+2° +20" (27 -1)
b+2' (2‘1‘ ~1) b+2° .(2‘1".*‘ —1)+ 20" by (2o —1')+ 201 (2 —1)

Figure A.3: The accessed addresses with st§de 2°

Note the transform betweeh {A]10) alhd (A.11) is a bijectids.we know the
Harper's XOR scheme which maps linear addrese the row-module con-
catenation(2, (a® T,,) %27) is a bijection oriE”, therefore the mapping
fromato [(&, (a® Th,,) %29) +29] %2" is also a bijection with fixed.
Therefore, the mapping from linear addreds (m(a), r(a), o(a)) is a bijec-
tiononE"”. m

Theorem 2. The SAMS scheme is conflict-free for both unit-stride andlstr
family {S||S = o - 2°, o odd}.

Proof. 1) s = 0. In this case the stride family becomgS||S = o, o odd},
which includes the unit stride. The SAMS module assignmenttion when
s = 0 is the same as that of the simple low-order interleaving eehdence it
is conflict-free for all odd stride accesses.

NH1<s<gqg.
a) Strided access with stride= 2°.

Suppose the starting address of the strided accésgisen the accessed items
in linear address space abeb + 2°, ..., b+ 2°(29 — 1), which is shown in
Figure[A33. In the figure the address sequence is rearramgedimatrix,
where the address increases in a column-major manner, ahd@a consists
of all the references to the same subgroup (Note ther@%e! subgroups
in total.). Now we will prove each and every item in the maisxdistributed
into a different memory module, by the SAMS module assigrtefumction
(ag---as, (a® Th,_,,.,) %2°~'). By examing the address matrix we could
see that itemk - 29%1(k = 0,1, ...2° — 1) does not affect - - - a5, and the
only determinant factor is itemh + k - 2°(k = 0,1,...2975t1 — 1), which
results differenta, - - - a5 for different k. In other words, the high order bits
of the module assignment function is different for diffareows. Now we
look into the row. For the i-th row(= 0,1,...,2975t1 — 1), the address
sequence is precisely that generated by the strided acithsstavting address
b+ i-2% and stride29+1. Consequently, the second part of the SAMS module
assignment function, which is actually the Harper's XOResoh configured

170 APPENDIX A. SAMS CONFLICT-FREE ACCESSPROOF

<an_|...aq+s, Agts-1---ds, As-1...dq, aq_]...a0>
+ 5 .0,

g1

<by.1...Dgrss Dyrsct-.bes betr.bg, by1...bp>

Figure A.4: Binary bits representation ¢f = a + § whens > g

with conflict-free access for strid¥+!, designates different module indices to
different address items in the same row. In other wofdsy T, , .,) %2°~!

is different for each and every items in the same row. Togethh the fact
thata, - - - a5 is different for different rows, we could know that each amdrg
items in the address sequence referenced by the stridesisean@eassigned to
different memory modules. Hence the SAMS schem&tnstly conflict-free
for access stridé = 2°.

b) Strided access with stride fami{\5||S = o - 2°, ¢ odd}.

Since the SAMS scheme is strictly conflict-free for strigle= 2° in the sense
that all referenced addresses in one access are distripudéterent modules,
it is also strictly conflict-free for the stride familyS||S = o - 2%, o odd},
according to Theorem 3 in [36].

¢). Unit-stride access.

This has already been proved in Property 2.

) s > gq.

a) Strided access with stride famif\6||S = ¢ - 2°, ¢ odd}.

Whens > q, as the SAMS scheme adopts the module assignment function
from Harper's XOR scheme directly, therefore itgsictly conflict-free for
strided access with stride fami}5||S = o - 2°, o odd}.

b) Unit-stride access.

To prove the SAMS scheme to be conflict-free for unit-strideess, we only
have to prove that the conflicting items in linear addresse@ae mapped
to the same row. Depicted in mathematics, given two diffesetdresses
and b, we need prove(a) = r(b) under the conditionsn(a) = m(b) and
1<|b—a]<29-1.

Assumeb = a+ 6(1 < § < 29 — 1). Consider the binary bits representa-
tion of b = a + 4, as depicted in Figue_A.4. From the figure we could see
that, ifag_1...a0 = bg—1 ... by, thend = 0, which means: = b. Therefore

171

ag—1...40 # bg—1 ... bp. In addition we knowm(a) = m(b), i.e.

ap @ as = bo D bs
a1 @ ast1 = by ®bsy1
aq—l @ aq+5—1 — bq_]_ @ bq+5_1

Therefore we knowags_1 ... as # bgts—1 ... bs. Consequently we know that
there should be a carry input from Bit— 1 to bit s, which is the only possi-
ble way to make the equation in Figure’A.4 stand. Furtherpasehe carry
outcome of bits — 1 could only come from that of by — 1, therefore we have

as-1..aq = 1..1 (A.13)
bs—1..bg = 0..0 (A.14)
bp—1..bg = ap_1..ag+1. (A.15)

As b, = 0(from Equation[[ATH)), we could further get

2 2
Combining equatioh”A15 and Equatibn Al 16, we know

bo-1..bg _ bn-1..bg+1 (A.16)

a,,_l...aq+1 . bn_l...bq—l—l

2 2 '

@)e - (2)m

which indicates that(a) = r(b). This means that any conflicting items(items
located in the same memory module) under unit-stride adoed®e SAMS
scheme are assigned to the same row, therefore they coukfdyerrced si-
multaneously in one accesm

Corollary 1. The Matched SAMS Scheme is conflict-free for stride 1(unit
stride) 2, ..., 2971 and stride family{S||S = o - 29, o odd}.

Proof. In the Matched SAMS Scheme, the parametés set tog, therefore
Corollary 1 is virtually the direct application of Prope@yand Theorem 21

The Matched SAMS Scheme is simple yet powerful, becauseedathe stride
range it covers. In general, the Matched SAMS Scheme is tapébupport-
ing conflict-free accesses with strides frdwg, (#modules) + 1 families. For

172 APPENDIX A. SAMS CONFLICT-FREE ACCESSPROOF

example, if we have a parallel memory system with 8 memoryutesdwhich
deploys the Matched SAMS Scheme, then it could provide at+ffiee access
for unit stride, stride 2, stride 4, and any stride8e& (o odd). Thus the poten-
tial benefit is very promising in high performance vectorgagsing systems,
where a large number of processor clocks are spent on lgapiauding and
unpacking data from memory.

Note. The contents of this appendix is based on the the followipgnte

C. Gou, G. Kuzmanov, G. N. GaydadjieMatched SAMS Scheme: Sup-
porting Multiple Stride Unaligned Vector Accesses with Muliple Memory
Modules, CE Technical Report, CE-TR-2008-06, October 2008

2DSMM Properties and Formal Proof

B.1 Properties of the Basic XOR Scheme

The 2DSMM is based on the XOR scheme proposed by Harper
llI[Harper92](we will refer to it asthe basic XOR schentereafter), which
provides conflict free strided vector access with multiplenmory modules.
The main properties of the basic XOR scheme is enumeratée folowing.

The basic XOR scheme is

{ m(a) = (a® T)%2"
r(a) =a/n

whereT = HT:&”'S)_I Titmax(ns).k- @S the address in linear address space,
2" the number of memory modules, abtthe power of two part of the access
stride. m(a) is the module assignment function ar(d) is the row assignment
function.

Property 1 Any 2" strided accesses with strid@ = o - 2°(c is odd)
are assigned tQ@" different modules by the memory assignment function
m(a)[Harper92]. In other words,b ® T)%2", (b + o - 2°) ® T)%2", ...,
(b+(2"—1)-0-2°) ® T)%2" are different(betweefs and2"” — 1) for any
arbitrary base addregsand odds. This is indeed theonflict freerequirement
which is the basic XOR scheme designed for.

Property 2 Any 2" unit-stride accesses are assigned2todifferent mod-
ules by the memory assignment functier{a), under the condition that the
base address(the address of the starting position) is abdhadaries of
{r - 2min(ns)||7 € N}[GouO7]. In other words((r - 2™"("9)) & T)%2",
((1-2min(ms) £ 1) @ T)%2", ..., ((r-2™mn(ms) 127 — 1) ® T)%2" are differ-
ent(betweer) and2" — 1).

173

174 APPENDIXB. 2DSMM PROPERTIES ANDFORMAL PROOF

Property 3 The basic XOR scheme is periodic with the perio@&fs when
accessed with stridé = o - 2°(c is odd)[Harper92]. In other word§(a + k -
2M9) @ T)%2" = (a® T)%2" (k € N).

It is important to point out that aé’ﬂ and T, of the 2DSMM scheme are
instances of the basic XOR scheme, all the three propertiegeaare also
applicable to them, with parametes replaced by2P(for T,) or 29(for T,),
and2s replaced by"s or 2"s, respectively.

B.2 Properties of the 2DSMM Scheme

Property 4 The period ofm, (i, ;) (with fixed j) is 2P*"*; the period ofmp())
is 29+hs: the period of(m,, my,) is 2°PTvs x 2PF9+hs In other wordsm, (i +
k-2Ptvs i)y =my(i,j); mp(j+ k-29708) = my(j); (my(i+k-2PHvs j+1-
2PHaths) my(j + 1 - 20%9th)) = (my (i,), ma())) (k, I € N).

Proof. Periodicity ofm, (i, j)(j is fixed) andm(j) comes directly from Prop-
erty[3. For the period ofm,, my,), itis easy to verify thatm, (i, j), my(j)) =
(my(i + k- 2PTVs j | . 2PFaths) 'm, (j 4 | . 2PTa+hs))(k | € N). Suppose
the period of(m, (i,), my(j)) is2PT¥s x P andP = 7 -29%hs(1 < 7 < 2°P).
By examining the definition oft and 5 we know

a(j+1-P) = (a(j)+1-7)%2P

BU+1-P) = BU)

which means that
m,(i + k- 2Pt j+ 1. P)
= m(i,j+1-P)
= [®@T,+a(i+!1-P)+8(+1P)]%2P
= [i® T, +a(j) + By) + - 7] %2P
To makem, (i + k - 2P*vs, j+1- P) = m,(i,]), it should be satisfied that
[i® T, 4+ a() + BG) +1-7)%2P =[i @ T, + a(j) + B()] %2°

which means tha/-7)%2P = 0 for ¥ /. So we knowr = 2P andP = 2P+a+hs,
and the period ofm, (i, j), mp(j)) is 2P+¥s x 2°PTaths m

1As we could see from the definition, the basic XOR scheme isptetely determined by
the address transformation matifx So we could refer to an XOR scheme by just giving the
name of the transformation matrix.

B.2. PROPERTIES OF TH2DSMM SCHEME 175

Lemma 1 Elements of the same column in the 2D address space areexsign
to modules with the same horizontal module index.

Proof. All elements of a column in the 2D address space have the sarme h
izontal addresg = jy. So they are assigned to the samg(jy), from the
definition of my,. A

Lemma 2 Every column could be accessed in parallelZ®strided accesses
with stride VS = o, - 2¥%(o, is any arbitrary odd number).

Proof. For any columnj = jg, the 2P addresses of the strided accesses are
{(bv, jo),(by + VS, jo),.... (b, + (2P — 1) - VS, jo)}. According to Lemma&ll
they are assigned to the samg. Now considem, . According to Propertf/l1
the accesses are assigned to different modules under tleeXfaR scheme
T,,ieb, T, (by+VS)®T,, .., (b, + (2P —1)VS) ® T, are different.
Moreover,« and 3 are fixed with givenp, sob, @ T, + a«+ 3, (b, + VS) ®
T,+a+0, .., (b, + (2P -1)VS)® T, + o + [are different. In effect, all

2P accesses are assigne@fadifferent vertical module indexes, so they could
be accessed in parallelm

Lemma 3 Every column could be accessed in parallel 28runit-stride ac-
cesses, under the condition that the vertical base addresshe boundaries
of {r . 2min(P.s) || & N},

Proof. Proof of LemmdB is much like the proof of Lemiida 2. As the harizab
coordinateg(of all elements in the same column are the same,of the
2DSMM scheme is equal to the module assignmefftienotem’ = i @ T,)

of the basic XOR schemg, plus a constant value + 3, i.e. m, = (m’ +

a + 3)%2P. According to Propert{]2, the address sequence of the aacess
assigned to different’’, therefore they are assigned to differemt. In effect,
all 2P accesses are assigned2todifferent vertical module indexes, so they
could be accessed in parallait

Lemma 4 Any 29 unit-stride row accesd@svhose horizontal base address is
at the boundaries ofr - 297 € N} are assigned to modules with the same
vertical module index.

2The expressions “unit-stride row access” and “continuaws access” would be used al-
ternatively in this report for the same concept.

176 APPENDIXB. 2DSMM PROPERTIES ANDFORMAL PROOF

Proof. The address sequence of the row accesgiis T - 29
1), ..., (fo, (+1)-29—1)}. Considerm, (io, 7-29+ k) (0

o = <7T'2q+k> w2 = (o) %2

)'(i0v7'2q+
< k<20_1),

2q+hs 2hs
8 = <7T i 22qq+ k- 2P—min(P,h5)> 040P

= (- 2p—min(p,h5))%2p

We could see that neither nor j is related tok, which means thatn, (ip, 7 -

29+ k) = [(io + (a+3) - 2"5> ® Tv] %?2P is not related tok. Therefore
address sequendgio, 7 - 29), (io, 7 - 29 + 1), ..., (ip, 7 - 29 + 29 — 1)} are
assigned to modules with the same vertical module indEx.

Theorem 1 Every row could be accessed in parallel f5r"9 accesses with
stride HS = oy, - 2"5(oy, is any arbitrary odd number).

Proof. For any rowi = iy, the address sequence of the strided row access is
{(io, bn), (io, by + HS), ..., (io, (2PT9 — 1) - HS)}(by, is the horizontal base
address).

i)Address sequencfio, b},), (o, b}, + HS), ..., (io, b}, + (29 — 1) - HS)}(b},
is the horizontal base address) are assignedf tmodules with differentn;,.
This is true according to Propefiy 1 @,.

iil)Address sequendd i, by+ k- HS), (io, bp+k-HS+29-HS), ..., (io, b+
k-HS+ (2P —1)-29- HS)}(0 < k <29 —1) are assigned t29 modules

with the samen,, but differentm, .

Considerm,. Itis periodic with period oR9*4s according to Properid 3. Note

29 . HS = 29 .0y - 2", so the elements of the address sequence have an
interval which is multiple§,, times) of the period ofn,. So they are assigned

to modules with the same horizontal index tay. Now considermn, (io, b, +

B.2. PROPERTIES OF TH2DSMM SCHEME 177

k- HS +1-29 HS).

L <bh + k- H52j;+/h.52q “op 2”5> 040P
= (Bk+1-0p)%2P (DenoteBy = bh;#)
5 (b,, T k- H52j [-29.HS ‘2p_min(p,hs)> %0
- <(Ck +1-0p-2") 2p_min(p,h$)) 72°
(DenoteCk = bh+2+Hs>

— (Ck . 2p—min(pyh5)> 04 0P
= D, (DenoteDk - (Ck : 2"‘”“”("'”5)) %2")
So we have

my (o, by + k - HS +1-29 - HS)
(b® T, +a+ B)%2°P
= (o® Ty + Bx+ Di+1-0p) %2°

It is obvious that for any fixed, m, is different for eact) < / < 2P — 1 with
oddoy,.

Now consider the entire address sequence o2fhé accesses, enumerated in
the address matrix in FiguteB.1(only the horizontal adsicfshe address pair
is shown because the vertical address is the same for akttlesses). Suppose

b, b, +HS . b+(2"-1)-HS
b, +2¢-HS b, + (2! +1)- HS . b+ =1)-HS
b, +(2" =1)-2¢-HS b, +((2" =1)-2+1)-HS ... b, +(2"""—1)-HS

Figure B.1: Address sequence of strided row access

any two elements of the access sequence are assigned toesioa()| m})
and(m{,, m}), respectively. Assume they are assigned to the same magule,
m,, = m;, andm) = m). According to/) andii), mj, = m} could be possible

178 APPENDIXB. 2DSMM PROPERTIES ANDFORMAL PROOF

only when they are in the same column of the address matrixhisncase,
m!, = m/, could be satisfied only when the two are the same, accordirig. to
That is to saym|, = m{, andm} = mj could never happen at the same time
for two different accesses in the access stream. This piivesrentIL.m

Theorem 2 Every row could be accessed in parallel 9 unit-stride ac-
cesses, under the condition that the horizontal base addrasthe boundaries
of {7 - 2q+m‘“(Pv”5)HT € N}

Proof. For any rowi = i, the address sequence of the unit-stride row access
is {(iOy T 2q+min(p,hs)), (iO. . 2q+min(p,hs) + 1), o (iOv . 2q+min(p,hs) +
2PT9 — 1) }(7 € N).

i)Address sequendéip, 6-29), (ip, 0-29+1), ..., (ip, 0-294+29—-1)}(d € N)
are assigned t@9 modules with the sames, but differentm,. According to
Lemmd3, the accesses are assigned to modules with the seinalvaodule
indexes. As the base address is at the boundarigs-&||~ € N}, the access
sequence are assigned2®d different horizontal modules, i.e. differenty,
according to Properfy 2.

ii)Address sequenddip, 7-2PT9+k), (ig, 7-2PTI+ k+29), ..., (ip, T-2PTI+
k+ (2P —1)-29)}(0 < k <29 —1) are assigned t2° modules with different
m,.

Considerm, (i, 7 - 2P+ 4+ k4 1-29)(0 < 1 < 2P — 1).

N L Ry iy B T
. <T TE > b
2P 4
_ (%) %2P
+
5 _ (7_ LOPta 4 fe .09 ' 2p_min(p,h5)> 92P
2q

We could see that neithernor 3 is related tok.

_T 0/ DpP < h
0/ 0P (2,75,,3—1-/)/02 p=ns
(Oé + 5) %2 { (7_ . 2p—hs + 2_25 + (/%2hs) . 2p—hs) 02P p > hs
Whenp < hs, it is clear that{« + 3)%2P traverseﬂE‘?ﬁ when/ traversedt?
with fixed 7. Now let’s consider the cage > hs. By examining the structure
of 2Lh + (1%2"s) - 2P=hs it could be noticed that gs> hs and0 < / < 2P —1,

*DenoteE? = {0,1,...,2° — 1}.

B.2. PROPERTIES OF TH2DSMM SCHEME 179

it moves the highesp — hs bits of / to the lowestp — hs bits(as the effect
2hs) and moves the lowests bits to the highests bits(as the effect of

(1%2") - 2P=h%). So when traversesi, i + (1%2"<) - 2P~ also traverses
E9. As 7 is fixed, we knowa + 3)%2P traversesE9 in both cases 0p < hs
andp > hs. Thereforem, (i, 7-2PT9+k+1-29) = (ip® T, + a + 3) %2P

traversest?, for 0 < / < 29 — 1. This provesi).

iif)Address sequencf{ip, 7 - 297" + k), (i, 7 - 297hs 4 k +29), ..., (o, T -
29Fhs k(2P —1)-29)}(0 < k < 29— 1) are assigned t2° modules with
differentm, .

Considerm, (ig, 7 - 2977 + k +1.29)(0 < 1 < 2P —1).

T 20Ths). 20
a = < 2q+h$ >%2p

T+ ﬁ) %2P

. +hs
g = (29 +k+/ 29

. OP— min(p, hs) > 9,2P

(7 28 1) - 2p=min(p1)) 9420

1%2P p < hs
(1-2P +1-2P7h)%2P p > hs

So we have

(r+ /)%2P p<hs
o/ P —
(o +5)%2 = { (7 + 5 + (1%20%) - 2P=hs) %2P p > hs

We could see the structure @f + 3)%2P remains the same as the casei bf
with respect td. Therefore the analysis i) also applies here, and we know
iii) is true.

With the results ofii) and i), it is obvious that address sequenide, 7 -
2q+min(p,hs)+k), (iOv 7_,2q+min(p,hs)_|_k_i_2q), o (iO. 7_,2q+min(p,hs)_i_k_i_(zp_
1)-29)}(0 < k < 29 —1) are assigned t?° modules with differentn, . Now
consider the entire address sequence oRth@ accesses, enumerated in the
address matrix in Figufe_B.2(only the horizontal addresh®faddress pair is
shown because the vertical address is the same for all teeses). According
to ii) andiii), different rows are assigned to modules with different and
elements in each row are assigned to modules with differgréiccording to
i). Soitis clear that all th@P+9 unit-stride accesses are assigned to different
memory modulesm

180 APPENDIXB. 2DSMM PROPERTIES ANDFORMAL PROOF

r- 2q+min(p,hx) r- 2q+min(p,/m) + 1 r- 2q+min(p,h.\') + Zq _ 1
r. 2q+min(p,h.y) + 2¢1 T 2q+min(p,hs') + Zq + 1 . T 2q+min(p,hs') + 2q+] _ 1
720 L (2P —1). 20 20T L (2P 1) 20 1 L. g 20T et

Figure B.2: Address sequence of unit-stride row access

Theorem 3 Every forward diagonal could be accessed in parallel2ford
accesses with vertical stridéS = o, - 2** and horizontal stridédS = oy, -
2Ms(0, andoy, are any arbitrary odd numbers).

Proof. @ The address sequence of strided forward diagonal access is
{(by, bp), (b, + VS, by, + HS), ..., (b, + (2PT9 — 1) - VS, by + (2PT9 —
1)] - HS}(by, by, are vertical and horizontal base addresses respectively).

i)Addresses((b,,, b}), (b, + VS, b}, + HS), ..., (b, + (29 — 1) - VS, b}, +

(29 —1)] - HS}(b,,, by, are vertical and horizontal base addresses respectively)
are assigned to modules with different. This is true according to Propefily 1

of Tp.

ii)Addresseg (b, + k- VS, b, + k- HS), (b, + (k+29)- VS, b+ (k+29)-
HS),....(by + (k+ (2P —1)-29)- VS, b+ (k+ (2P —1)-29) - HS)}(0 <

k <29 — 1) are assigned to modules with the samgebut differentm, .
Considerm,,. Itis periodic with period oR9*"s according to Properfy 3 of},.
Note29 - HS = 29 - o4, - 2"s, which means the interval of the address sequence
is multiple@, times) of the period ofn,. So the accesses are assigned to
modules with the same horizontal index. Now consia(b, + (k + /- 29) -

VS, bp+ (k+1-29)- HS)(0 </ <2P—1).

by + (k+1-29) - - 2hs
o = < 2q+hs %2[3

by + k- oy, - 2
= (Bxk+1-0p)%2P (DenoteBk: %)

h
5 = <bh + (k + I2-q2q) cop - 28 ‘ 2p_min(p,h5)> %P

= Cx (DenoteCk:< T

. 2p—min(p,h5)> %2P)

B.2. PROPERTIES OF TH2DSMM SCHEME 181

So we have

my(by, + (k+1-29)- VS, by + (k +1-29) - HS)
= [(by+k-VS+1-29-0,-2")R T, + Bk + Cx + | - op] %2°

Note the factor - 29 - o, - 2*°. Under the general constraipt< g of 2DSMM
scheme, it is the multiple ¢fP™v*, the period ofT, according to Properti 4.
So we have

ﬁ:[(bv—l—k-VS)@TV—I-Bk—I-Ck—I—/-O‘h]%QP

from which we could see that, traversesEP when/ traversedEP, with any
fixed k and oddo,. This means that the elements of address sequengg in
are assigned to modules with different vertical indexes.

Now consider the entire address sequence o2fhé accesses, enumerated in
the address matrix in FiguEeB.3. Suppose two elements @fdbess sequence

b, b, +VS, b, +(27-1)-V8,
b, b, + HS b, +(2-1)-HS
(bv +21 -VS,j [bv +(2¢ +1)-VS,J (bv +(207 —1)-VS,J

b, +27-HS b, +(27 +1)-HS b, +(2" ~1)- HS

b+ (2" =1)-27-VS,) (b, +((2" =1)-27 +1)-VS, b, + (27" ~1)-VS,
b, +(2"=1)-29-HS | (b, +(2" =1)-2+1)-HS) =~ \b,+(2""" ~1)-HS

Figure B.3: Address sequence of strided forward diagonal access

are assigned to modulésr;,, m}) and(m;, mj), respectively. According to)
andii), m, = mj} could be possible only when they are in the same column
of the address matrix. In this case;, = m/ could happen only when they
are the same, according 9. In consequencen;, = m, andmj = m} could
never happen at the same time for two different accesseg iadtess stream.
This justifies Theorerl 3m

Theorem 4 Every backward diagonal could be accessed in paralle2Aof
accesses with vertical stridéS = o, - 2** and horizontal stridédS = oy, -
2hs(0, andoy, are any arbitrary odd numbers).

182 APPENDIXB. 2DSMM PROPERTIES ANDFORMAL PROOF

Proof. The address sequence of backward diagonal accéés,isby,), (b, +
VS, bp—HS), ..., (b, +(2PT9—1)-VS, b,—(2PT9—1)-HS}(b,, b, are vertical
and horizontal base addresses respectively,bgriel (2Pt9 — 1) - HS). There
is no essential difference between this sequence and therssgjgenerated by
forward diagonal access, and it is easy to verify that thefpod TheorenB
also holds for Theoreid 4m

Theorem 5 Every strided block with the size @P x 29 in which the intervals
of the elements ar&S = o, - 2* in vertical andHS = o, - 2" in horizontal
could be accessed in paralle)(ando, are any arbitrary odd numbers).

Proof. We know all elements of a column in the strided block are assig

to modules with the same,(Lemma&l), and different column holds different
mp(Property[d ofT,). So if two different addresses in the strided block are as-
signed to modules with the sams,, they should be in the same column. Once
two accesses are in the same column, they could never hagarien, be-
cause Lemm@l 2 indicates that all elements of a column in thieedtblock are
assigned to modules with different,. So all elements of the accessed block
are assigned to different modules, which means that thelg dmuaccessed in
parallel. m

Theorem 6 Every continuous block with the size ®f x 29 could be accessed
in parallel, under the condition that the vertical base asslis at the bound-
aries of {7 - 2mn(P.¥s)||r ¢ N} and the horizontal vertical address is at the
boundaries of 7 - 2™in(4.h9) ||+ ¢ N},

Proof. Each column of the accessed block is assigned to the same
mp(Lemmal), and different column is assigned to differ@ptwhen the hor-
izontal base address is at the boundariegrof2mn(.hs) || ¢ N}(Property®

of T,). Moreover, each element of the column in the accessed lioak-
signed to a differentn, when the vertical base address is at the boundaries of
{7-2min(P.vs) ||+ € N}(Property® ofT,). So all elements of the accessed block
are assigned to different modules and they could be accaspedallel. B

Theorem[b additionally justifies the row assignment functida) of the
2DSMM scheme because it guarantees that all the elementh aitd assigned
to the same row address bfa) are assigned to different memory modules.

Theorem 7 When the access sequence are arrangéd i 29 array in row-
major manner, for all the strided access patterns and thincouns block ac-
cess, all accesses in same column are assigned to rsgnieor continuous
row access, all accesses in same row are assigned torsame

B.2. PROPERTIES OF TH2DSMM SCHEME 183

Proof. When the access sequence are arranged in 29 array in row-major
manner, for the strided block access and the continuousk lalocess, the ac-
cesses in same column have the same horizontal adgressthey are as-
signed to the same,,, according to Lemmfl1; For the strided row, strided
forward diagonal and strided backward diagonal acceserpattany two ac-
cesses in the same column have their horizontal addredagsdran the form
of i = jo+ k-29-HS = jo + k- op-29Ths (k € N). According to Prop-
erty[4, m,(jo) = mu(j1)- That is to say, in all the strided access patterns and
the continuous block access, accesses in the same colurassageed to the
samemy,.

Now consider the continuous row access. From Thedlem 2 we km hori-
zontal base address is at the boundariggroR9+™in(P.hs) || - ¢ N}. Therefore
when the access sequence are arrang@é in29 array in row-major manner,
each row will start at the horizontal boundaries{ef- 29|/ € N}. According

to Lemmd#, the elements of the same row will be assigned tsaimem,. &

Theorem reveals an opportunity to exploit the inherentlegies within

module assignment functions of the six access patterngtali§y the address
and data switching circuitry. We have already seen thisegr2IdASMM imple-

mentation presented in Section 314.2.

Note. The contents of this appendix is based on the the followipgnte

C. Gou, G. Kuzmanov, G. N. Gaydadji@DSMM: 2D Strided Multi-access
Memory, CE Technical Report, Computer Engineering Lab, TU Delity J
2007

(1]
(2]
(3]
(4]
(5]
(6]
(7]
(8]
(9]
(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

Bibliography

GPGPU home page. http://gpgpu.org.
http://en.wikipedia.org/wiki/3dfxnteractive.
http://pcsostres.ac.upc.edu/cellsim/doku.php.
http://www.encore-project.eu/.
http://www.ibm.com/developerworks/power/cell/.
http://www.top500.0rg/.

Intel Sandy Bridge, Intel processor roadmap, 2010.
OpenCL home page. http://www.khronos.org/opencl/.
3DNoOw TECHNOLOGY MANUAL, (2000).

ADL-TABATABAI, A.-R., HUDSON, R. L., SERRANO, M. J.,AND SUBRAMONEY, S.
Prefetch injection based on hardware monitoring and objetadata. IfProceedings of
the ACM SIGPLAN 2004 conference on Programming Languaggbasd Implemen-
tation (New York, NY, USA, 2004), PLDI '04, ACM, pp. 267-276.

ALVAREZ, M., SALAMI, E., RAMIREZ, A., AND VALERO, M. Performance impact

of unaligned memory operations in SIMD extensions for videdec applications. In

ISPASS '07: Proceedings of the 2007 International Symposio Performance Anal-

ysis of Systems and Softwdtes Alamitos, CA, USA, 2007), vol. 0, IEEE Computer
Society, pp. 62-71.

AMD. http://sites.amd.com/us/fusion/apu/pagesifa.aspx.

ARIEL, A., FUNG, W., TURNER, A., AND AAMODT, T. Visualizing complex dynamics
in many-core accelerator architectures. Performance Analysis of Systems Software
(ISPASS), 2010 IEEE International Symposiun{201.0), pp. 164 —174.

BADER, D., AGARWAL, V., AND MADDURI, K. On the design and analysis of irregular
algorithms on the Cell processor: A case study of list rapkinarch 2007.

BaiLy, D. Vector computer memory bank contentidBEE Trans. Computers 3@/ar.
1987), 293-298.

BAKHODA, A., KiM, J.,AND AAMODT, T. M. Throughput-effective on-chip networks
for manycore accelerators. Rroceedings of the 2010 43rd Annual IEEE/ACM inter-
national symposium on Microarchitectuf@/ashington, DC, USA, 2010), MICRO '43,
IEEE Computer Society, pp. 421-432.

BAKHODA, A., YUAN, G., FUNG, W., WONG, H., AND AAMODT, T. Analyzing
CUDA workloads using a detailed GPU simulator, 2009.

BATTEN, C., KRASHINSKY, R., GERDING, S.,AND ASANoOVIC, K. Cache refill/laccess
decoupling for vector machines. Rroceedings of the 37th annual IEEE/ACM inter-
national symposium on Microarchitectu(@/ashington, DC, USA, 2004), MICRO 37,
IEEE Computer Society, pp. 331-342.

BHATNAGAR, H. Advanced ASIC Chip Synthesis Using Synopsys Design Compile
Physical Compiler and PrimeTim2nd ed. Kluwer Academic Publishers, 2001.

185

186

BIBLIOGRAPHY

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

BIENIA, C., KUMAR, S., SNGH, J. P.,AND LI, K. The PARSEC benchmark suite:
Characterization and architectural implications.PIRCT '08: Proceedings of the 17th
international conference on Parallel Architectures andn@ulation TechniquegNew
York, NY, USA, 2008), ACM, pp. 72-81.

BoNcz, P. A., MANEGOLD, S.,AND KERSTEN M. L. Database architecture opti-
mized for the new bottleneck: Memory accessPmceedings of the 25th International
Conference on Very Large Data Bas&an Francisco, CA, USA, 1999), VLDB '99,
Morgan Kaufmann Publishers Inc., pp. 54-65.

BUDNIK, P.,AND Kuck, D. The organization and use of parallel memori¢SEE
Trans. Computers 20 (Dec. 1971), 1566-1569.

CALLAHAN, D., KENNEDY, K., AND PORTERFIELD, A. Software prefetching. In
ASPLOS-1V: Proceedings of the fourth international coafee on Architectural Sup-
port for Programming Languages and Operating Systékew York, NY, USA, 1991),
ACM, pp. 40-52.

CARTER, J., HSIEH, W., STOLLER, L., SWANSON, M., ZHANG, L., BRUNVAND,
E., Davis, A., Kuo, C.-C., KURAMKOTE, R., FRRKER, M., SCHAELICKE, L., AND
TATEYAMA , T. Impulse: Building a smarter memory controllerHPCA '99: Proceed-
ings of the 5th International Symposium on High PerformaBoenputer Architecture
(Washington, DC, USA, 1999), IEEE Computer Society, pp.7B0—

CHANG, H.-C., LIN, C.-C.,AND GUO, J.-I. A novel low-cost high-performance VLSI
architecture for MPEG-4 AVC/H.264 CAVLC decoding. Gircuits and Systems, 2005.
ISCAS 2005. IEEE International Symposium(btay 2005), pp. 6110 — 6113 Vol. 6.

CHE, S., BOYER, M., MENG, J., TARJAN, D., SHEAFFER, J. W., LEE, S.-H.,AND
SKADRON, K. Rodinia: A benchmark suite for heterogeneous computiB§E Work-
load Characterization Symposium(2009), 44-54.

CHEN, T.-F., AND BAER, J.-L. A performance study of software and hardware data
prefetching schemes. B$CA '94: Proceedings of the 21st annual International Sym-
posium on Computer Architectufgos Alamitos, CA, USA, 1994), IEEE Computer
Society Press, pp. 223-232.

CHEN, Y.-K., CHHUGANI, J., DUBEY, P., HUGHES, C., KiM, D., KUMAR, S., LEE,
V., NGUYEN, A., AND SMELYANSKIY, M. Convergence of recognition, mining, and
synthesis workloads and its implicationBroceedings of the IEEE 9& (May 2008),
790 -807.

CHiILIMBI, T. M., DAVIDSON, B.,AND LARUS, J. R. Cache-conscious structure defini-
tion. In Proceedings of the ACM SIGPLAN 1999 conference on Programh@nguage
Design and ImplementatiaiNew York, NY, USA, 1999), PLDI '99, ACM, pp. 13-24.

CHILIMBI, T. M., HiLL, M. D., AND LARUS, J. R. Cache-conscious structure layout.
SIGPLAN Not. 34May 1999), 1-12.

CHOR, B., LEISERSON C. E., RVEST, R. L., AND SHEARER, J. B. An application
of number theory to the organization of raster-graphics orgmJ. ACM 33(January
1986), 86—104.

CORBAL, J., ESPASA R.,AND VALERO, M. Command vector memory systems: High
performance at low cost. PACT '98: Proceedings of the 1998 International Conference
on Parallel Architectures and Compilation Techniqu#gashington, DC, USA, 1998),
IEEE Computer Society, pp. 68—77.

BIBLIOGRAPHY 187

(33]
(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

(43]

(44]

[45]

[46]
[47]

(48]

CoRPp, C. D. CDC STAR-100 instruction execution times, rev. 2.

D. T. HARPER IlI. Block, multistride vector and FFT accesses in parattemory
systemsIEEE Trans. Parallel and Distributed Systemsl21991), 43-51.

D. T. HARPERIII. Increased memory performance during vector accessesigh the
use of linear address transformatioHSEE Trans. Computers 42 (1992), 227-230.

D. T. HARPERIII, AND LINEBARGER, D. A. Conflict-free vector access using a dy-
namic storage schemtEEE Trans. Computers 43 (1991), 276-283.

DALLY, W. J. Principles and Practices of Interconnection Networkdorgan Kauf-
mann, 2004.

DHONG, S., TAKAHASHI, O., WHITE, M., ASANO, T., NAKAZATO, T., SLBERMAN,
J., KAWASUMI, A., AND YOSHIHARA, H. A 4.8GHz fully pipelined embedded SRAM
in the streaming processor of a CELL processoPidoceedings of IEEE Int'l Solid-State
Circuits Conference 200Q005), pp. 486—612.

Diamos, G. F., KERR, A. R., YALAMANCHILI , S.,AND CLARK, N. Ocelot: a dy-
namic optimization framework for bulk-synchronous apafions in heterogeneous sys-
tems. InProceedings of the 19th international conference on Patdkchitectures and
Compilation Technique@New York, NY, USA, 2010), PACT '10, ACM, pp. 353—-364.

DIEFENDORFF, K., DUBEY, P. K., HOCHSPRUNG R., AND SCALES, H. Altivec ex-
tension to powerpc accelerates media process$kBE Micro 2Q 2 (2000), 85-95.

DUBEY, P. Recognition, mining and synthesis moves computersetetth of teraTech-
nology Intel MagazinéFeb. 2005).

EspasA R., VALERO, M., AND SMITH, J. E. Vector architectures: past, present and
future. InICS '98: Proceedings of the 12th International Conference&apercomputing
(New York, NY, USA, 1998), ACM, pp. 425-432.

FATAHALIAN , K., KNIGHT, T. J., HOUSTON, M., EREZ, M., HORN, D. R., LEEM,

L., PARK, J. Y., REN, M., AIKEN, A., DALLY, W. J.,AND HANRAHAN, P. Sequoia:
Programming the memory hierarchy.Pnoceedings of the 2006 ACM/IEEE Conference
on Supercomputin(2006).

FLACHS, B., ASANO, S., DHONG, S., HOTSTEE P., GERvVAIS, G., KIM, R., LE,
T., Liu, P., LEENSTRA J., LUBERTY, J., MICHAEL, B., OH, H., MUELLER, S.,
TAKAHASHI, O., HATAKEYAMA , A., WATANABE, Y., AND YANO, N. A streaming
processing unit fors a Cell processor. Rroceedings of IEEE Int’l Solid-State Circuits
Conference 20082005), pp. 134-135.

FLYNN, M. J. Some computer organizations and their effectiven@ssnputers, IEEE
Transactions on C-219 (1972), 948 —960.

FORSYTH, T. SIMD programming with Larrabednttp://software.intel.com/file/15545

FUNG, W. W. L., SHAM, |., YUAN, G., AND AAMODT, T. M. Dynamic warp for-
mation and scheduling for efficient GPU control flow. Pnoceedings of the 40th An-
nual IEEE/ACM international symposium on Microarchiteet(\Washington, DC, USA,
2007), MICRO 40, IEEE Computer Society, pp. 407-420.

GAO, Q. S. The Chinese remainder theorem and the prime memagnsysProceed-
ings of the 20th annual International Symposium on Comphitehitecture(New York,
NY, USA, 1993), ISCA '93, ACM, pp. 337-340.

188

BIBLIOGRAPHY

[49]

(50]

(51]
(52]

(53]

[54]

(58]

(56]

[57]

(58]

[59]

(60]

(61]

(62]

(63]

GEDIK, B., BORDAWEKAR, R. R.,AND YU, P. S. Cellsort: high performance sorting
on the Cell processor. IRroceedings of the 33rd international conference on Veryda
data base$2007), VLDB '07, VLDB Endowment, pp. 1286-1297.

GELADO, |., STONE, J. E., ®BEZzAS, J., RATEL, S., NavARRO, N., AND Hwu,
W.-Mm. W. An asymmetric distributed shared memory model for fogfeneous parallel
systems. IrProceedings of the fifteenth edition of ASPLOS on Architet&upport for
Programming Languages and Operating Systéiew York, NY, USA, 2010), ASPLOS
'10, ACM, pp. 347-358.

GLASKOWSKY, P. N. Nvidia’s Fermi: The first complete GPU computing aretture.

GOLOVANEVSKY, O., AND ZAKS, A. Struct-reorg: Current status and future perspec-
tives. INnGCC Summit Proceeding2007).

Gou, C.,AND GAYDADJIEV, G. Exploiting SPMD horizontal locality to improve mem-
ory efficiency.IEEE Computer Architecture Letters 9RapidPosts (2011).

Gou, C.,AND GAYDADJIEV, G. N. Elastic pipeline: addressing gpu on-chip shared
memory bank conflicts. IProceedings of the 8th ACM International Conference on
Computing Frontier§New York, NY, USA, 2011), CF '11, ACM, pp. 3:1-3:11.

Gou, C., KuzmANoV, G., AND GAYDADJIEV, G. N. SAMS multi-layout memory:
providing multiple views of data to boost SIMD performanck Proceedings of the
24th ACM International Conference on SupercompuiiNgw York, NY, USA, 2010),
ICS '10, ACM, pp. 179-188.

Gou, C., KuzmAaNov, G. K., AND GAYDADJIEV, G. N. SAMS: single-affiliation
multiple-stride parallel memory scheme.Pnoceedings of the 2008 Workshop on Mem-
ory Access on future processors: a solved probl¢Mé&w York, NY, USA, 2008), MAW
'08, ACM, pp. 350-368.

GSCHWIND, M., HOFSTEE H. P., R ACHS, B., HOPKINS, M., WATANABE, Y., AND
YAMAZAKI , T. Synergistic Processing in Cell’s Multicore Architeau IEEE Micro
26, 2 (2006), 10-24.

HAMMOND, S. W., LOFT, R. D., AND TANNENBAUM, P. D. Architectural and ap-
plication: the performance of the NEC SX-4 on the NCAR benafisuite. InSu-
percomputing '96: Proceedings of the 1996 ACM/IEEE Comfegeon Supercomputing
(Washington, DC, USA, 1996), IEEE Computer Society, p. 22.

HENNESSY J. L.,AND PATTERSON, D. A. Computer Architecture, Fourth Edition: A
Quantitative Approach Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2006.

Hsu, W.-C.,AND SMITH, J. Performance of cached DRAM organizations in vector
supercomputersACM SIGARCH Computer Architecture News (8lay 1993), 327—
336.

IBM SYSTEMS AND TECHNOLOGY GROUP. Cell BE programming
tutorial v3.0. http://www-01.ibm.com/chips/techlib/techlib.nsfftdocs/
FC857AE550F7EB83872571A80061F788

IBM SYSTEMS AND TECHNOLOGY GROUP. Developing code for Cell - SIMD.
www.cc.gatech.edbéader/cell/Day1-06DevelopingCodeforCell-SIMD. ppt

IBRAHIM, K. Z., AND BODIN, F. Implementing Wilson-Dirac operator on the Cell
Broadband Engine. IICS '08: Proceedings of the 22nd annual International Confe
ence on Supercomputirilew York, NY, USA, 2008), ACM, pp. 4-14.

BIBLIOGRAPHY 189

(64]
(65]
(66]

(67]
(68]

(69]

[70]

(71]

[72]

(73]

[74]

[79]
[76]
[77]

(78]

[79]

(80]

INTEL CORPORATION Intel® 64 and IA-32 Architectures Software Developer's Man-
ual, Volume 1: Basic ArchitecturdNo. 253669-033US. December 2009.

JEDEC LID STATE TECHNOLOGY ASSOCIATION http://www.jedec.org.

JORDA, J., MZOUGHI, A., AND LITAIZE, D. Semi-linear and bi-base storage schemes
classes: general overview and case studyPrbteedings of the 9th International Con-
ference on Supercomputiriyew York, NY, USA, 1995), ICS '95, ACM, pp. 299-307.

Jouppl, N. P. Destination indexed miss status holding regist&t§ patent, 1998.

KAHLE, J. A., Day, M. N., HOFSTEE H. P., DHNS, C. R., MAEURER, T. R.,AND
SHIPPY, D. Introduction to the Cell multiprocessodlBM Journal of Research and
Development 4.5 (2005), 589 —604.

KELM, J. H., DHNSON, D. R., DHNSON, M. R., CRAGO, N. C., TUOHY, W., MAH-
ESRI, A., LUMETTA, S. S., RANK, M. |., AND PATEL, S. J. Rigel: an architecture and
scalable programming interface for a 1000-core acceler8IGARCH Comput. Archit.
News 37(June 2009), 140-151.

KELTCHER, C., MCGRATH, K., AHMED, A., AND CONWAY, P. The AMD Opteron
processor for multiprocessor servellSEE Micro (Mar. 2003), 66-76.

Kim, D., CHAUDHURI, M., HEINRICH, M., AND SPEIGHT, E. Architectural support
for uniprocessor and multiprocessor active memory systdfBEE Trans. Computers
53, 3 (2004), 288-307.

Kim, K., AND PRASANNA-KUMAR, V. K. Perfect latin squares and parallel array
access. IProceedings of the 16th annual International Symposiumamliter Archi-
tecture(New York, NY, USA, 1989), ISCA '89, ACM, pp. 372-379.

Kim, Y., HAN, D., MuTLuU, O., AND HARCHOL-BALTER, M. Atlas: A scalable
and high-performance scheduling algorithm for multiplenmoey controllers. InHigh
Performance Computer Architecture (HPCA), 2010 IEEE 16thrational Symposium
on (jan. 2010), pp. 1 -12.

KiM, Y., PAPAMICHAEL, M., MuTLU, O.,AND HARCHOL-BALTER, M. Thread clus-
ter memory scheduling: Exploiting differences in memorgess behavior. IRroceed-
ings of the 2010 43rd Annual IEEE/ACM international symposon Microarchitecture
(Washington, DC, USA, 2010), MICRO '43, IEEE Computer Sogipp. 65—76.

KIRK, D. B., AND MEI W. HWU), W. Programming Massively Parallel Processors: A
Hands-on ApproachMorgan Kaufmann, 2010.

KIRK, D. B., AND MEI W. HwWU, W. Programming Massively Parallel Processors: A
Hands-on ApproachMorgan Kaufmann, 2010.

KONGETIRA, P., AINGARAN, K., AND OLUKOTUN, K. Niagara: A 32-way multi-
threaded SPARC processtEEE Micro (Mar. 2005), 21—-29.

KONTOTHANASSIS L., SUGUMAR, R., FAANES, G., SMITH, J., AND SCOTT, M.
Cache performance in vector supercomputergrbteedings of the ACM/IEEE Confer-
ence on Supercomputing 19aW94), pp. 255-264.

KozYRAKIS, C. Scalable Vector Media-Processors for Embedded Systehi3 thesis,
UC Berkeley, Berkeley, CA, USA, May 2002.

KRASHINSKY, R., BATTEN, C., HAMPTON, M., GERDING, S., PHARRIS, B.,
CASPER J.,AND AsANoVIC, K. The vector-thread architecture. Rroceedings of
the 31st annual International Symposium on Computer Agchire (Washington, DC,
USA, 2004), ISCA '04, IEEE Computer Society, pp. 52—.

190

BIBLIOGRAPHY

[81]
[82]
[83]
[84]
[85]
[86]

(87]

(88]

(89]

[90]

(91]

(92]

(93]

(94]

[99]

Kuck, D., AND STOKES, R. The Burroughs scientific processor (BSEomputers,
IEEE Transactions on C-356 (may 1982), 363 —376.

Kuck, D. J. ILLIAC IV software and application programmintEEE Trans. Comput.
17 (August 1968), 758-770.

Kuck, D. J. A survey of parallel machine organization and progrémy. ACM Com-
put. Surv. QMarch 1977), 29-59.

KUMAR, V. Introduction to Parallel Computing2nd ed. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2002.

KuzmaNov, G., GAYDADJIEV, G., AND VASSILIADIS, S. Multimedia rectangularly
addressable memorpultimedia, IEEE Transactions on & (2006), 315 — 322.

LAWRIE, D. H., AND VORA, C. R. The prime memory system for array acceE&EE
Trans. Comput. 3{May 1982), 435-442.

LE, H. Q., STARKE, W. J., HELDS, J. S., O’'®NNELL, F. P., NsUYEN, D. Q.,
RONCHETTI, B. J., S\UER, W. M., SCHWARZ, E. M., AND VADEN, M. T. IBM
POWER 6 microarchitecturéBM J. Res. & Dev. 516 (2007), 639—662.

LEE, J., LAKSHMINARAYANA , N. B., Kim, H., AND VuDuc, R. Many-thread aware
prefetching mechanisms for GPGPU applicationsPioceedings of the 2010 43rd An-
nual IEEE/ACM international symposium on Microarchitaet(Washington, DC, USA,
2010), MICRO 43, IEEE Computer Society, pp. 213-224.

LEE, V. W., Kim, C., CHHUGANI, J., DEISHER, M., KiM, D., NGUYEN, A. D.,
SATISH, N., SMELYANSKIY, M., CHENNUPATY, S., HAMMARLUND, P., SNGHAL,
R.,AND DuBEY, P. Debunking the 100x GPU vs. CPU myth: an evaluation ofuitjine
put computing on CPU and GPU. Rroceedings of the 37th annual International
Symposium on Computer Architectifidew York, NY, USA, 2010), ISCA '10, ACM,
pp. 451-460.

LEFOHN, A. E., SENGUPTA, S., KNISS, J., STRZODKA, R.,AND OWENS, J. D. Glift:
Generic, efficient, random-access GPU data struct&€s/ Trans. Graph. 2%January
2006), 60-99.

LIN, Y.-K., LI, D.-W., LIN, C.-C., Kuo, T.-Y., Wu, S.-J., RAI, W.-C., CHANG,
W.-C.,AND CHANG, T.-S. A 242mW, 10mm2 1080p H.264/AVC high profile encoder
chip. InProceedings of the 45th annual Design Automation Conferédew York, NY,
USA, 2008), DAC '08, ACM, pp. 78-83.

LiTTLE, J. D. C. A proof for the queuing formula: L= wOperations Research, @
(1961), pp. 383-387.

Lu,J., HEN, H., FU, R., Hsu, W.-C., OTHMER, B., YEW, P.-C.,AND CHEN, D.-Y.
The performance of runtime data cache prefetching in a di;aptimization system.
In Proceedings of the 36th annual IEEE/ACM international sgaipm on Microarchi-
tecture(Washington, DC, USA, 2003), MICRO 36, IEEE Computer Sggipp. 180—.

Luk, C.-K.,AND MOWRY, T. C. Compiler-based prefetching for recursive data struc
tures. InProceedings of the seventh international conference omitactural Sup-
port for Programming Languages and Operating Systékewv York, NY, USA, 1996),
ASPLOS-VII, ACM, pp. 222-233.

Luk, C.-K., MUTH, R., BTIL, H., WEISS R., LOWNEY, P. G.,AND COHN, R.
Profile-guided post-link stride prefetching. Rroceedings of the 16th International
Conference on Supercomputifigew York, NY, USA, 2002), ICS '02, ACM, pp. 167—
178.

BIBLIOGRAPHY 191

[96]

[97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]
[109]

MACEDONIA, M. The GPU enters computing’s mainstrediBEE Computer Magazine
36, 10 (Oct. 2003), 106-108.

MADING, N., LEENSTRA J., RLLE, J., SAUTTER, R., BUTTNER, S., BHRENREICH,
S.,AND HALLER, W. The vector fixed point unit of the synergistic procesdement

of the Cell architecture processor. DATE '06: Proceedings of the conference on De-
sign, Automation and Test in Eurof&001 Leuven, Belgium, Belgium, 2006), European
Design and Automation Association, pp. 244—248.

MANAVSKI, S. CUDA compatible GPU as an efficient hardware accelefatohES
cryptography. InSignal Processing and Communications, 2007. ICSPC 20(HE IE
International Conference of2007), pp. 65 —68.

MOORE, G. E. Readings in computer architecture. Morgan Kaufmamsiishers Inc.,
San Francisco, CA, USA, 2000, ch. Cramming more componerits iategrated cir-
cuits, pp. 56-59.

MOSCIBRODA, T., AND MUTLU, O. Memory performance attacks: Denial of memory
service in multi-core systems. IRroceedings of 16th USENIX Security Symposium
on USENIX Security SymposiufBerkeley, CA, USA, 2007), USENIX Association,
pp. 18:1-18:18.

MoOwRY, T. C., LAM, M. S., AND GUPTA, A. Design and evaluation of a compiler
algorithm for prefetching. IfProceedings of the fifth international conference on Archi-
tectural Support for Programming Languages and Operatiggt&ngNew York, NY,
USA, 1992), ASPLOS-V, ACM, pp. 62-73.

MuTLU, O.,AND MOSCIBRODA, T. Stall-time fair memory access scheduling for chip
multiprocessors. IProceedings of the 40th Annual IEEE/ACM international sgmp
sium on MicroarchitecturéWashington, DC, USA, 2007), MICRO 40, IEEE Computer
Society, pp. 146-160.

MuTLU, O., AND MOSCIBRODA T. Parallelism-aware batch scheduling: Enhancing
both performance and fairness of shared DRAM systemBrdneedings of the 35th an-
nual International Symposium on Computer Architeciashington, DC, USA, 2008),
ISCA '08, IEEE Computer Society, pp. 63—74.

NEsBIT, K. J., AGGARWAL, N., LAUDON, J.,AND SMITH, J. E. Fair queuing memory
systems. InProceedings of the 39th Annual IEEE/ACM international sgsipm on
Microarchitecture(Washington, DC, USA, 2006), MICRO 39, IEEE Computer Sagiet
pp. 208-222.

NICKOLLS, J., Buck, I., GARLAND, M., AND SKADRON, K. Scalable parallel pro-
gramming with CUDA.Queue §March 2008), 40-53.

NuzmAN, D., ROSEN, |., AND ZAKS, A. Auto-vectorization of interleaved data for
SIMD. In PLDI '06: Proceedings of the 2006 ACM SIGPLAN conference am P
gramming Language Design and Implementatibiew York, NY, USA, 2006), ACM,
pp. 132-143.

NuzMAN, D., AND ZAKS, A. Outer-loop vectorization: revisited for short simd ar-
chitectures. IPACT '08: Proceedings of the 17th international conferenneParallel
Architectures and Compilation Techniqui@éew York, NY, USA, 2008), ACM, pp. 2—
11.

NVIDIA. CUDA best practice guide, edition 3.0.
NVIDIA. http://developer.nvidia.com/object/cuda0_downloads.html.

192 BIBLIOGRAPHY

[110] NVIDIA. The CUDA compiler driver NVCC, edition 2.2.
[111] NVIDIA. Bringing high-end graphics to handheld dexscWhitepaper(2011), 1-28.
[112] NVIDIA. NVIDIA CUDA Programming Guide 4.®011.

[113] OwENS, J., HousTON, M., LUEBKE, D., GREEN, S., STONE, J.,AND PHILLIPS, J.
GPU computing.Proceedings of the IEEE 96 (May 2008), 879 —899.

[114] OweNs, J., LUEBKE, D., GOVINDARAJU, N., HARRIS, M., KRUGER, J., LEFOHN,
A., AND PURCELL, T. A survey of general purpose computation on graphicsviarel
Computer Graphics Forum 2@007), 80-113.

[115] PaJueLoO, A., GONZALEZ, A., AND VALERO, M. Speculative dynamic vectorization.
In Proceedings of the 29th Ann. Int'l Symp. Computer Archited2002), pp. 271-280.

[116] PaLACHARLA, S.,AND KESSLER R. E. Evaluating stream buffers as a secondary
cache replacement. I8CA '94: Proceedings of the 21st annual International Sym-
posium on Computer Architectufgos Alamitos, CA, USA, 1994), IEEE Computer

Society Press, pp. 24-33.

[117] PARK, J. W. An efficient buffer memory system for subarray accesEE Trans.
Parallel Distrib. Syst. 1ZMarch 2001), 316—-335.

[118] PaRk, J. W. Multiaccess memory system for attached SIMD compUteEE Trans.
Comput. 53April 2004), 439-452.

[119] PaTEL, S.,AND Hwu, W.-Mm. W. Accelerator architecturesdicro, IEEE 28 4 (2008),
4-12.

[120] PHAM, D., AIPPERSPACH T., BOERSTLER D., BOLLIGER, M., CHAUDHRY, R.,
Cox, D., HArRVEY, P., HaRVEY, P., HOFSTEE H., JOHNS, C., KAHLE, J.,
KAMEYAMA , A., KEATY, J., MASUBUCHI, Y., PHAM, M., PILLE, J., ROSLUSZNY,
S., RLEY, M., StAasIAK, D., Suzuokl, M., TAKAHASHI, O., WARNOCK, J.,
WEITZEL, S., WENDEL, D., AND YAZAWA, K. Overview of the architecture, cir-
cuit design, and physical implementation of a first-genenaCell processorSolid-State
Circuits, IEEE Journal of 411 (2006), 179 — 196.

[121] QuALcCOMM. http://www.qualcomm.com/news/releases/2011/02dapmm-
announces-next-generation-snapdragon-mobile-chipsetly.

[122] RAFIQUE, N., LIM, W.-T.,AND THOTTETHODI, M. Effective management of DRAM

bandwidth in multicore processors. Bmoceedings of the 16th International Conference

on Parallel Architecture and Compilation Techniqu@¥ashington, DC, USA, 2007),
PACT '07, IEEE Computer Society, pp. 245—-258.

[123] RAMIREZ, A., CABARCAS, F., UURLINK, B., ALVAREZ MESA, M., SANCHEZ, F.,
AZEVEDO, A., MEENDERINCK, C., QOBANU, C., ISAZA, S.,AND GAYDADJIEV, G.
The SARC architectureMicro, IEEE 3Q 5 (2010), 16 —29.

[124] ReN, G., WU, P.,AND PADUA, D. Optimizing data permutations for SIMD devices.

In PLDI '06: Proceedings of the 2006 ACM SIGPLAN conference argiRamming
Language Design and Implementati@ew York, NY, USA, 2006), ACM, pp. 118—
131.

[125] RIXNER, S., DaLLY, W., KAPASI, U., MATTSON, P.,AND OWENS, J. Memory ac-
cess scheduling. I@omputer Architecture, 2000. Proceedings of the 27th tretgonal
Symposium o(2000).

BIBLIOGRAPHY 193

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

RUssSELL, R. M. The CRAY-1 computer systemCommunications of the ACKJan.
1978), 63-72.

Rvoo, S., RODRIGUES C. I., STONE, S. S., B\GHSORKHI, S. S., lENG, S.-Z.,
STRATTON, J. A., AND Hwu, W.-M. W. Program optimization space pruning for a
multithreaded GPU. IfProceedings of the 6th annual IEEE/ACM international sym-
posium on Code generation and optimizatidfew York, NY, USA, 2008), CGO '08,
ACM, pp. 195-204.

SEILER, L., CARMEAN, D., SPRANGLE, E., FORSYTH, T., ABRASH, M., DUBEY,

P., UNKINS, S., LAKE, A., SUGERMAN, J., CaVIN, R., ESPASA R., GROCHOWSK],

E., VAN, T., AND HANRAHAN, P. Larrabee: A many-core x86 architecture for visual
computing.ACM Trans. Graph. 27August 2008), 18:1-18:15.

SEZNEC, A., AND LENFANT, J. Odd memory systems may be quite interesting.
SIGARCH Comput. Archit. News P#lay 1993), 341-350.

SEZNEC, A., AND LENFANT, J. Interleaved parallel schemdzarallel and Distributed
Systems, IEEE Transactions onl2 (dec 1994), 1329 —1334.

SHAPIRO, H. D. Theoretical limitations on the efficient use of paghithemories|IEEE
Trans. Comput. 2{May 1978), 421-428.

SHAw, D. E., DENEROFF, M. M., DROR, R. O., KuskiN, J. S., lARSON, R. H.,
SALMON, J. K., YOUNG, C., BATSON, B., BOWERS K. J., CHAO, J. C., EASTWOOD,
M. P., GAGLIARDO, J., GROSSMAN, J. P., Hb, C. R., [ERARDI, D. J., KOLOSSVARY,
I., KLEPEIS, J. L., LAYMAN, T., MCLEAVEY, C., MORAES, M. A., MUELLER, R.,
PRIEST, E. C., $HAN, Y., SPENGLER J., THEOBALD, M., TOWLES, B., AND WANG,
S. C. Anton, a special-purpose machine for molecular dyosmsimulation. InPro-
ceedings of the 34th annual International Symposium on Qeenp@rchitecture(New
York, NY, USA, 2007), ISCA '07, ACM, pp. 1-12.

SINHAROY, B., KALLA, R. N., TENDLER, J. M., HCKEMEYER, R. J.,AND JOYNER,
J. B. POWER 5 system microarchitectulBM J. Res. & Dev. 494/5 (2005), 505-521.

STARK, J., BROWN, M. D., AND PATT, Y. N. On pipelining dynamic instruction
scheduling logic. IrProceedings of the 33rd annual ACM/IEEE international sgmp
sium on MicroarchitecturéNew York, NY, USA, 2000), MICRO 33, ACM, pp. 57-66.

STMICROELECTRONICS AND CEA. Platform 2012: A many-core programmable ac-
celerator for ultra-efficient embedded computing in nan@m&chnology.Whitepaper
(November 2010), 1-26.

STRATTON, J. A., GROVER, V., MARATHE, J., AARTS, B., MURPHY, M., Hu, Z.,
AND Hwu, W.-M. W. Efficient compilation of fine-grained SPMD-threadedgmams
for multicore CPUs. InProceedings of the 8th annual IEEE/ACM international sym-
posium on Code generation and optimizatidfew York, NY, USA, 2010), CGO '10,
ACM, pp. 111-119.

STUECHELI, J., KASERIDIS, D., DALY, D., HUNTER, H. C.,AND JOHN, L. K. The

virtual write queue: coordinating DRAM and last-level cagtolicies. InProceedings
of the 37th annual International Symposium on Computer itgcture (New York, NY,

USA, 2010), ISCA 10, ACM, pp. 72-82.

SuN, T.,AND YANG, Q. A comparative analysis of cache designs for vector [aging.
IEEE Trans. Computers 4@/ar. 1999), 331-344.

194

BIBLIOGRAPHY

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

TENDLER, J. M., DobsoN, J. S., RELDS, J. S., &., H. L., AND SINHAROY, B.
POWER 4 system microarchitectur®M J. Res. & Dev. 461 (Jan. 2002), 5-25.

THAKKAR, S. T.,AND HUFF, T. Internet streaming simd extensior@omputer 3212
(1999), 26-34.

THISTLE, M. R., AND SMITH, B. J. A processor architecture for horizon.Rroceed-
ings of the 1988 ACM/IEEE Conference on Supercompuytiog Alamitos, CA, USA,
1988), Supercomputing '88, IEEE Computer Society Press3pp4l.

TRUONG, D., BODIN, F.,AND SEZNEC, A. Improving cache behavior of dynamically
allocated data structures. Rarallel Architectures and Compilation Techniques, 1998.
Proceedings. 1998 International Conference(ont 1998), pp. 322 —329.

UENG, S.-Z., LATHARA, M., BAGHSORKHI, S. S.,AND Hwu, W.-M. W. Lan-
guages and compilers for parallel computing. SpringetageBerlin, Heidelberg, 2008,
ch. CUDA-Lite: Reducing GPU Programming Complexity, ppl3-—

VALERO, M., LANG, T., PEIRON, M., AND AYGUADE, E. Conflict-free access for
streams in multimodule memoriekEEE Trans. Computers 44995), 634—646.

VALIANT, L. G. A bridging model for parallel computatio@ommun. ACM 38August
1990), 103-111.

VANDERWIEL, S. P. AND LILJA, D. J. Data prefetch mechanismdsCM Comput. Surv.
32 (June 2000), 174-199.

VoLkov, V. Better performance at lower occupancy. GRPU Technology Conference
2010(2010), GTC '10.

WAaTsON, W. J. The TI ASC: a highly modular and flexible super compatehitecture.
In Proceedings of the December 5-7, 1972, fall joint computerf@rence, part (New
York, NY, USA, 1972), AFIPS '72 (Fall, part I), ACM, pp. 22128.

WiJsHOFE H. A. G., AND VAN LEEUWEN, J. The structure of periodic storage
schemes for parallel memorid&EE Trans. Computers 34 (1985), 501-505.

WONG, H., PAPADOPOULOU, M.-M., SADOOGHI-ALVANDI, M., AND MOSHOVOS

A. Demystifying GPU microarchitecture through microbemettking. InPerformance
Analysis of Systems Software (ISPASS), 2010 IEEE InterztSymposium of2010),
pp. 235 —246.

YANG, Y., XIANG, P., KONG, J.,AND ZHOU, H. A gpgpu compiler for memory opti-
mization and parallelism management.Aroceedings of the 2010 ACM SIGPLAN con-
ference on Programming Language Design and Implementéiew York, NY, USA,
2010), PLDI '10, ACM, pp. 86-97.

YUAN, G., BAKHODA, A., AND AAMODT, T. Complexity effective memory access
scheduling for many-core accelerator architectureMitmoarchitecture, 2009. MICRO-
42. 42nd Annual IEEE/ACM International Symposium(2009), pp. 34 —44.

ZHONG, Y., ORLOVICH, M., SHEN, X., AND DING, C. Array regrouping and structure
splitting using whole-program reference affinity. Pmoceedings of the ACM SIGPLAN
2004 conference on Programming Language Design and Impilietien (New York,
NY, USA, 2004), PLDI '04, ACM, pp. 255-266.

List of Publications

International Journals

1. C. Gou, G. N. Gaydadjiernddressing GPU On-chip Shared Memory
Bank Conflicts Using Elastic Pipeling invited toSpecial Issue of Inter-
national Journal of Parallel Programming on Sl: Computingphtiers
2011 Best Paper§n press)

2. C. Gou, G. N. Gaydadjievxploiting SPMD Horizontal Locality ,
IEEE Computer Architecture Letter§olume 10, Issue 1, pp. 20-23,
JANUARY-JUNE 2011, DOI: 10.1109/L-CA.2011.5

3. C. Galuzzi, C. Gou, D.R.H. Calderon, G. N. Gaydadjiev,V&ssil-
iadis, High-bandwidth Address Generation Unit, Journal of Signal
Processing Systemsol. 57, Number 1, pp. 33-44, 2008

International Conference Proceedings

1. C. Gou, G. N. Gaydadjieunproving GPGPU DRAM Efficiency Us-
ing Access Granularity, submitted tahe 44th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO-42011

2. C.Gou, G. N. Gaydadjieylleviating On-chip Shared Memory Bank
Conflicts in Data Parallel Architectures, to appear inElectronics -
ET2011 Sozopol, Bulgaria, September 2011

3. C. Gou, G. N. Gaydadjiewlastic Pipeline: Addressing GPU On-
chip Shared Memory Bank Conflicts Proceedings of the 8th ACM
International Conference on Computing Frontiers (CF'lpp. 1-11,
Ischia, Italy, May 2011. Acceptance rate: 18.2% (22/129minated
for the Best Paper Award by the Program Committee

4. C. Gou, G. Kuzmanov, G. N. Gaydadji&&AMS Multi-Layout Mem-
ory: Providing Multiple Views of Data to Boost SIMD Performance,
Proceedings of the 24th ACM International Conference onefugm-
puting (ICS’10) pp. 179-188, Tsukuba, Japan, June 2010. Acceptance
rate: 17.8% (32/180Best Paper Award

5. C. Gou, G. Kuzmanov, G. N. GaydadjieSAMS: Single-Affiliation
Multiple-Stride Parallel Memory Scheme, Proceedings of the 2008

195

196 LIST OF PUBLICATIONS

workshop on Memory access on future processors: a solvdulgmn®
(MAW’08), pp. 359-367, Ischia, Italy, May 2008

Technical Reports

1. C. Gou, G. Kuzmanov, G. N. GaydadjieMatched SAMS Scheme:
Supporting Multiple Stride Unaligned Vector Accesses withMulti-
ple Memory Modules, CE Technical Report, CE-TR-2008;Q06p. 1—
27, Computer Engineering Lab, TU Delft, October 2008

2. C. Gou, G. Kuzmanov, G. N. Gaydadji@pSMM: 2D Strided Multi-
access MemoryCE Technical Reporpp. 1-38, Computer Engineering
Lab, TU Delft, July 2007

Non Peer-Reviewed Conference Proceedings
1. C. Gou, G. Kuzmanov, G. N. Gaydadji@p Stride Multiaccess Mem-

ory SchemeHIPEAC ACACES 20Qpp. 193-197, L'Aquila, Italy, July
2007

Samenvatting

elke processor om hoge prestaties te bereiken, vooral igédwt

van data parallelle machines. Dataverwerkingsmogeldkhnevan
parallelle hardware units zullen onbenut blijven wannesgeyens niet aan-
houdend en op tijd bereikt kunnen worden. Onregelmatigeoovgeheugenac-
cessen kunnen leiden tot een inefficient gebruik van ddipbesbanken / mod-
ules / kanalen en de algemene prestaties aanzienlijk eatsten, zelfs wan-
neer snelle, parallelle geheugensystemen worden gebRithprobleem geldt
ook voor vele regelmatige programmas die onregelmatigiovgeheugenac-
cessen vertonen tijdens het uitvoeren van het programma.prdefschrift
identificeert de mismatch tussen de optimale geheugersgetesnen vereist
door het programma en de fysieke data lay-out, als een vamldadyijkste
factoren voor de inefficientie van geheugenaccess. Wigsteonfigureer-
bare geheugenschemas voor om dit probleem aan te pakkenairpaiaal-
lelle acceleratoren. Meer specifiek, dit proefschrift $sheen uitbreiding
van traditionele benaderingen door het voorstellen var tveuwe parallelle
geheugenschema’s die de bank access conflicten vermindeoere meest
gebruikte accesspatronen. We stellen ook een ontwerpaetlumr om de in-
formatie over de geheugenaccesspatroon over te brengedenaaorgestelde
parallelle geheugenschemas. Verder beschrijven we &dmidie dynamisch
de instructiesequencer van een multithreaded vectortaocthiur aanpassen en
de geheugenaccesspatronen benvloeden om de efficiéntiaceassen naar
het on-chip geheugen te verbeteren. Als laatste identficere een nieuw
data lokaliteitstype en exploiteren deze voor het dynameanpassen van
de off-chip geheugenaccessgranulariteit van manycoepdegllelle architec-
turen, om de efficiéntie van het hoofdgeheugenaccess beteeen. We im-
plementeerden onze voorstellen als een uitbreiding vanemeddataparal-
lelle architecturen en onze evaluatie resultaten tonendaarfficientie van
het geheugen en de algemene prestaties van het systeeneregnnen
worden tegen minimale hardware-kosten, terwijl tegettjlgede programmer-
ingsoverhead sterk kan worden verminderd.

D e efficientie van het geheugensysteem is van cruciaal belang

197

Curriculum Vitae

Chunyang Gouwas born on March 1, 1981 in Sichuan,
China. He received his secondary education between
1993 and 1999 at No. 1 Middle School of Bazhong in
Sichuan, China. From 1999 to 2003 he studied at the
School of Communications and Information Engineer-
ing, University of Electronic Science and Technology of
China in Chengdu, China. He received Bachelor’s de-
gree in 2003, and continued in the same year to study
at the Department of Electronic Engineering, Tsinghua Ehsiity in Beijing,
China. He received his Master’'s degree in Information anch@anication
Engineering in 2006.

In October 2006, he joined the Computer Engineering laboyaif Delft Uni-
versity of Technology in the Netherlands, and, under thesady of Assistant
Professor Georgi N. Gaydadjiev, he started his PhD studyking on paral-
lel memory schemes for data parallel architectures. Theareh work was
funded by the European Commission in the context of the SAR{> and
was continued by the ENCORE project. The results of this veoekpresented
in the current dissertation.

Chunyang’s research interests include compilers and anoging systems,
program optimizations and performance tuning, multicor@manycore, GPU
computing, data locality and memory hierarchy, with pattac focus on data
parallel architectures and high-performance parallel orgrachemes.

199

	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	List of Acronyms and Symbols
	Introduction
	Data Parallel Architecture Evolution
	Programmable Data Parallel Accelerators
	Processor-Memory Performance Gap
	Parallel Memory Organizations and Accesses
	Problem Formulation
	Machine Organization and Proposed Solutions
	Contributions
	Dissertation Organization

	Related Work
	Parallel Memory Schemes
	Access Pattern and Data Layout Optimizations
	Off-chip Memory Access Scheduling
	Memory Access Optimizations on GPUs
	Avoiding GPU Shared Memory Bank Conflicts
	GPU DRAM Access Optimizations

	Summary

	Conflict-Free Parallel Memory Schemes
	Motivation
	Definitions
	Non-Redundant Parallel Memory Schemes Limitations
	Strided Access in 2D Environment

	Single-Affiliation Multiple-Stride Memory Scheme
	Moving from Conflict-Free to Low Degree of Affiliation
	Hierarchical Single-Affiliation Parallel Memory Scheme
	Solving Module Conflicts in Single-Affiliation Schemes
	The Matched SAMS Scheme

	2DSMM: 2D Strided Multiaccess Memory Scheme
	Hardware Design and Implementation
	SAMS Hardware Implementation
	Implementation of 2DSMM Scheme

	Discussion
	Summary

	Providing Multiple Views to Data
	Introduction
	Motivation
	The Extended SAMS Scheme
	Original SAMS Scheme
	Proposed Extensions

	Implementation and Integration
	SAMS Organization and Implementation
	Integration into the Cell SPE

	Experimental Evaluation
	Summary

	Addressing On-chip Bank Conflicts
	Introduction
	Background and Motivation
	Shared Memory Access on GPU
	Motivating Example

	Problem Analysis
	Latency and Bandwidth Implications
	Bank Conflicts Impact on Pipeline Performance

	Elastic Pipeline Design
	Safe Scheduling Distance and Conflict Tolerance
	Out-of-order Instruction Commitment
	Extension for Large Warp Size
	Hardware Overhead and Impact on Pipeline Timing

	Bank-conflict Aware Warp Scheduling
	Obtaining Bank Conflict Information
	Bank Conflict History Cache
	Proposed Warp Scheduling
	Hardware Overhead

	Experimental Evaluation
	Effect on Pipeline Stall Reduction
	Performance Improvements
	Performance of Non-Conflicting Kernels
	Interaction with Off-chip DRAM Access

	Discussion
	Summary

	Improving DRAM Access Efficiency
	Introduction
	Background and Motivation
	Horizontal Locality Aware DRAM Scheduling
	Horizontal Locality
	Compiler and Runtime Access Pattern Analyzer
	Adaptive DRAM Access Granularity Scheduling

	Microarchitectural Extension
	Vector MSHR (VMSHR)
	Elastic MSHR with Deferred Reservation

	Experimental Evaluation
	Memory Bandwidth Requirement
	DRAM Access Granularity Distribution
	Improved DRAM Efficiency
	Improvement in Overall Performance
	Memory Access Utilization
	Effect on a GPU with Less Capable Interconnect

	Discussion
	Effect of Large DRAM Data Packets
	Impact of HW Cache
	Application to SPMD Barrel Processing
	Possible Improvement
	Contrast to Closely Related Art

	Summary

	Conclusions and Future Directions
	Conclusions
	Future Research Directions

	SAMS Conflict-Free Access Proof
	2DSMM Properties and Formal Proof
	Properties of the Basic XOR Scheme
	Properties of the 2DSMM Scheme

	Bibliography
	List of Publications
	Samenvatting
	Curriculum Vitae

