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Customizable Memory Schemes
for Data Parallel Accelerators

Chunyang Gou

Abstract

M emory system efficiency is crucial for any processor to achieve
high performance, especially in the case of data parallel ma-
chines. Processing capabilities of parallel lanes will be wasted,

when data requests are not accomplished in asustainableand timely man-
ner. Irregular vector memory accesses can lead to inefficient use of the par-
allel banks/modules/channels and significantly degrade overall performance
even when highly parallel memory systems are employed. Thisproblem is
also valid for many regular workloads exhibiting irregularvector accesses at
runtime. This dissertation identifies the mismatch betweenthe optimal ac-
cess patterns required by the workloads and the physical data layout as one
of the major factors for memory access inefficiency. We propose customiz-
able memory schemes to address this issue in data parallel accelerators. More
specifically, this thesis extends traditional approaches by proposing two new
parallel memory schemes that alleviate bank conflicts for commonly used ac-
cess patterns. We also propose a framework to capture and convey the access
pattern information to the proposed parallel memory schemes. Furthermore,
we describe techniques that dynamically adjust the instruction sequencer of a
multithreaded vector architecture and customize the access patterns to improve
on-chip, local memory efficiency. Last, we identify and exploit new locality
type to dynamically adjust off-chip memory access granularity of manycore
data parallel architectures, in order to improve main memory efficiency. We
implemented our proposals as extensions of contemporary data parallel archi-
tectures and our evaluation results demonstrate that memory efficiency and
overall system performance can be improved at minimal hardware cost, while
at the same time programming overhead can be greatly reduced.
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1
Introduction

I n the past decades, the amount of digital data newly created and processed
worldwide has been steadily growing. It is quite clear that this trend is go-
ing to continue in the future. This introduces tremendous challenges for

the processing capabilities of modern computer systems. Many of the widely
used workloads follow a particular processing paradigm: the samecomputa-
tion is repeated for a massive number of data elements. Such paradigm, called
data parallel computing, exists in many applications ranging from consumer
and desktop computing (such as multimedia and 3D graphics) up to the high-
performance domain (e.g., financial analysis, bioinformatics, physics simula-
tion and more). Data parallel processing, known also assingle instruction
multiple data(SIMD) [45], demands more efficient computing and memory
hierarchy schemes when compared to scalar approaches.

1.1 Data Parallel Architecture Evolution

Vector supercomputers are the first best known examples of data parallel ma-
chines. Early successful implementations date back to the 1970s, with CDC
Star-100 [33] and Texas Instruments ASC [148] as two representative exam-
ples. Such vector supercomputers were built with proprietary, dedicated vector
processors and rather expensive, highly-banked memory arrays. Vector pro-
cessing had played a central role in supercomputers and has been strikingly
successful up to 1990s [6]. The most prominent vector supercomputers in his-
tory include the Cray series [126] and the NEC SX models [58].

The dominance of the vector supercomputers was gradually replaced by the
“killer-micros” (high performance computers built using commodity micro-

1
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processors) since early 1990s [42]1. Nonetheless, the growth of data parallel
processing paradigm did not stop. In fact, since then more data parallel archi-
tectures have arisen in the commodity computing market. Theadvent of such
data parallel computing facilities is driven by the growingimportance of data
intensive computing on desktops [28, 41], and is enabled by the advances of
the semiconductor technology.

On one hand, various types of SIMD extensions, such as SSE [140], 3DNow
[9], and Altivec [40], have been introduced into the generalpurpose proces-
sors, in the form of short vector datapaths tightly coupled to the original scalar
pipelines. Thegeneral purpose processor(GPP) SIMD extensions typically
provide moderate computation capability limited by short vectors, but have the
merit of being compatible with legacy code (including system software). On
the other hand, data parallel accelerators appeared in application domains such
as home entertainment (e.g., the Cell processor [68, 120]),computer graphics
(such as thegraphics processing units(GPUs) [96,113], and visual computing
accelerators [128]). In contrast to GPP SIMD extensions, there is less burden
of backward comparability in terms of executing legacy codeand the program-
ming styles are still evolving. As a result, these data parallel accelerators can
bespecializedfor a narrower set of workloads. In doing so, both the hardware
designs and the programming models can be highly customizedto improve
performance, power and chip area efficiency.

Besides the GPP SIMD extensions and accelerators mentionedabove, huge
amount of special-purpose hardwired functional units implemented byappli-
cation specific integrated circuits(ASICs) have also been designed and utilized
to exploit data parallelism for dedicated applications. ASIC based systems are
necessitated when extremely high performance is required,or in case rigid
cost/power constraints render the programmability as lessimportant. Good
examples are the Anton multiprocessor for high-speedmolecular dynamics
(MD) simulations from DE Shaw Research [132] and the video codecs pre-
sented in [25, 91]. Often, the design objectives of such special-purpose com-
puting systems determines architectural choices which largely sacrifice flexi-
bility and programmability. Although some of the techniques presented in this
dissertation are also directly applicable to ASIC based systems, we focus our
discussion to programmable data parallel accelerators because of their wider
scope and because we strongly believe that such accelerators are a promising
approach to process data parallel workloads.

1Recently data parallel processors are returning to the Top 500 list [6] in modernized form
(such as machines based on GPUs).
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1.2 Programmable Data Parallel Accelerators

In general, acompute accelerator[119] is a hardware entityseparate fromthe
host general purpose processor, that offers higher performance and better sili-
con area/power efficiency as compared to the host processor.This is achieved
usually for a restricted class of applications in a very specific domain [119]. To
achieve this, the target applications characteristics areheavily exploited during
the design process. Naturally, such design choices can provide combined per-
formance/area/power benefits at the expense of flexibility2. In early compute
accelerators [2] this often resulted in fixed, hardwired datapath designs.

Recently, there seems to be a consensus that high-level programmability using
general purpose programming languages becomes a requirement for accelera-
tors [113, 114, 135]. High-level programmability with matured programming
styles/models not only improves programmer productivity and code portabil-
ity, it also increases applicability of the same accelerator substrate to a wider
set of application domains. This has been demonstrated by recent propos-
als in, e.g.,general-purpose processing on GPUs(GPGPU) [1, 114], unified
visual computing accelerators [128], and unified accelerator architectures for
imaging, video and next-generation immersive multimodal applications [135].
The economic rationale driving the merging of domain-specific accelerators
is that, expanding the application domains range allows forpotentially larger
product volume resulting from increased shares in the marketplace.

For all programmable accelerators, the common essential aim is to exploit
parallelism in the targeted applications. Naturally, application code paral-
lelism can be categorized into three major types:instruction-, task-, anddata-
level. While instruction level parallelism(ILP) has been intensively pursued
by GPPs, task and data level parallelism are usually the primary targets of pro-
grammable accelerators. Task parallel accelerators scalewell with irregular,
dynamic and heterogeneous problems3, that correspond to the global applica-
tion scope situation. However, they suffer from being less capable of capturing
the potential computing efficiency available in data parallel kernels.

In contrast, data parallel accelerators are concerned with(local scope) kernels
with regular and homogeneous processing behavior. There are at least two im-
portant features inherent to the assumed data parallel processing paradigm: 1)
it is relatively easy to get high utilization of throughput architectures (e.g., par-

2In this dissertation flexibility is used for expressing programmability and wide applicability.
3Irregular problems/applications/workloads in this thesis denote those with irregular data

accesses and/or irregular control flows. (Ir)regular data access is elaborated in Section 1.5.
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allel vector lanes); and 2) the pipeline frontend processing has high area/power
efficiency due to the reduced frontend processing bandwidthrequirements.
The above two merits, plus the widespread data parallelism in emerging ap-
plications, naturally render data parallel architecturesto be the primary choice
for accelerator designs targeting regular and homogeneousworkloads operat-
ing on large data sets.

Data and task parallelism are not mutually exclusive but rather complementary.
Currently we have already seen commercial products with multicore GPPs and
GPUs integrated on a single die [7,12,111]. These systems are able to provide
suitable hardware substrates for combined data and task parallel processing.
The more challenging issue of proper programming models andtheir efficient
hardware interfaces, remains an open research question, the solution of which
is still at its infancy. The merging process brings up a set ofnew challenges that
have to be addressed in order to ensure the success of such co-exiting archi-
tectures. One particular example is the shared memory system infrastructure
that has to efficiently support the memory accesses from bothsides. The find-
ings in this thesis can be viewed as one such step toward improving memory
access efficiency(in terms of bandwidth utilization and access time) of such
contemporary co-execution platforms.

Current data parallel processors often adopt local memories with no coher-
ence support implemented in hardware (HW) and less provisions to reduce
single thread latencies compared to GPPs. Such architectural choices often
compromise the programmability to a certain extent, i.e., as restricted by spe-
cific programming styles/models. Generally speaking, the specific program-
ming models exert nontrivial burdens on programmers, such as explicit man-
agement of parallelism and the memory hierarchy, which should be ideally
avoided. This inspires a challenging research topic exploring novel program-
ming models and architectures to relieve such burdens by striking the right bal-
ance between the hardware efficiency (in terms of performance gain/additional
HW cost) and programming efforts. This was also the main motivation behind
the Vector-Thread Architectures [80], Sequoal [43], Rigel[69], SARC [123]
and ENCORE [4] research projects. The specialized programming models
also provide opportunities for system-level optimizations, since, in general,
more information about the application behavior is available when the code is
written under specific constraints of programming styles/models. In addition,
during execution additional information becomes available and can be utilized
for performance optimizations. Based on the above observations, data paral-
lel programming models/language extensions, compile-time analysis, runtime
library optimizations, and architectural extensions willbe jointly explored, to
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address the memory efficiency issues in this dissertation.

1.3 Processor-Memory Performance Gap

It is well known that memory density and capacity have grown along with the
CPU computational capacity and complexity, however memoryspeed has not
kept pace in this process. As a consequence, the processor-memory perfor-
mance gap has steadily increased for decades, rendering memory access as a
major bottleneck. Figure 1.1 shows the relative performance improvements
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Figure 1.1: Processor-memory performance gap

of microprocessors and DRAM memories during the past 30 years, from both
bandwidth and latency perspectives4. For memory graph the Asynchronous 16
bits memory system used by the industry in the eighties formsour baseline and
for processors we have chosen Intel 80286 (without 80287 floating point co-
processor). All memory latencies are calculated under coldstart assumptions.
More precisely, we do not account for delays introduced by memory bank
conflicts but consider only the accumulative numbers of OpenRow and Col-

4The idea of this plot and part of the source data are originated from [59]; other data are
taken from public resources of respective vendors [64,65,112,120].
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umn access latencies. In respect to bandwidth, we considered a single channel
memory configuration as adopted by the industry [65] at the corresponding
time. The estimated bandwidth is the product of the frequency and the data
port width. The microprocessor instruction latency is expressed by the absolute
delay of the integer addition instruction. The instructionbandwidth is the prod-
uct of the maximum achievableinstructions per cycle(IPC) and the pipeline
frequency. For data parallel processors5 (the IBM Cell Broadband Engine,
and three representative GPUs) we determine the latency similar to the micro-
processors, while the relative bandwidth is infloating point6 operations per
second(FLOPS)7. We can safely relate data parallel architecture results tothe
80286 base line since the frequencies of both pipelines (fixed/floating-point)
are the same for the data parallel accelerators. The two graphs representing the
microprocessors and the memories are aligned in time by using roughly the
same start year, end year and similar time periods for the intermediate points.

We used the 4-core IntelSandy Bridgeprocessor to relate the raw computa-
tional capabilities of state of the art GPPs and data parallel accelerators. Note,
that there is a difference between the instruction throughput and FLOPS met-
rics as shown in Figure 1.1. The 4-issue Sandy Bridge core implementsad-
vanced vector extensions(AVX) ISA which supports 256-bit vector operation
(i.e., 8 FLOP) per cycle, hence, its peak FLOPS is twice as bigas its peak in-
struction throughput. This shows two GPP trends: 1) that contemporary GPPs
have the raw computational capabilities of data parallel accelerators more than
5 years old and 2) in order to cope with this delay, GPPs are heavily relying on
wider SIMD lanes (exploiting more data parallelism).

Several observations can be drawn from Figure 1.1. First, the bandwidth has
been improved at a significantly higher rate than latency, for both memories
and processors. This is apparent by noticing that all three curves are well
above the straight line representing identical bandwidth and latency growths.
Moreover, it is quite clear that such disparity between the bandwidth and la-
tency improvement ratio is going to continue. The reason forthis is twofold.
On one hand, since latency is constrained by laws of physics,its improvement
can be mainly attributed to the process technology improvements resulting in
increased clock frequency. This is becoming harder as we areapproaching
certain physical boundaries of the used technology. For example, power con-
sumption is now becoming a major constraint that limits future clock frequency

5In the rest of this thesis, we use the terms(programmable) data parallel acceleratorsand
data parallel processorsinterchangeably.

6We consider single precision floating point.
7Fused multiply-add is considered as a single FLOP in our calculations.
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increases. On the other hand, improving bandwidth is relatively easier. Expo-
nential growth of transistor density, pushed byMoore’s Law [99], has been
successfully driving the industry for the past thirty yearsand is still continuing
today and is used to improve on-chip bandwidth. Off-chip bandwidth is more
expensive (e.g., chip pin-counts are limited, have high parasitic impedances
and PCB traces engineering is costly) but still manageable at reduced scale.
Thus, it is not surprising that the industry has, particularly at present time,
opted forthroughput computing(e.g., wider SIMD lanes, massive HW multi-
threading) as the “easy” way towardsaggregateperformance improvements.
In fact, the parallel processing paradigm has been so widelyspread, that al-
most all computers today are eventually parallel. For example, even hand-held
devices (such as smart phones) are powered by multicores [111,121].

Second, DRAM performance improvement has not kept pace withthe proces-
sors, in terms of both bandwidth and latency, for the past thirty years. In fact,
memory latency has been reduced by 7.6% per year, while the microprocessor
latency reduction amounts to 15.6% on average. Similarly, the DRAM band-
width annual compound increment is 22.8%, whereas for microprocessors it is
40.5%. The bandwidth growth rate for data parallel accelerators is even more
impressive – 55.8% for the past three GPU generations covering only 6 years.
This trend has several important implications stated below.

To deal with the processor-memory latency gap, techniques to alleviate long
memory latencies have become mainstream in microprocessordesign. For
example, caching and prefetching are widely adopted in microprocessors to
hide memory latency and improve performance [59]. Interestingly, various
prefetching techniques hide latency often at the expense ofadditional band-
width consumption. In addition, hardware multithreading,a valid technique to
toleratelong latencies, has been embodied in both CPUs and typical data par-
allel architectures (such as GPUs), as one of the main means to achieve high
throughput. Hence, bandwidth is increased to compensate long latencies and
provide high aggregate throughput.

The differences in processor-memory bandwidth improvements in time, have
resulted in single memory unit being inadequate to feed its processor. In addi-
tion, the trend is clear that such disparity in processor andmemory bandwidth
is increasing (predicted from the last four memory/processor pairs). For suffi-
cient memory bandwidth and reduced access latency, parallel memory systems
with multiple memory units (e.g., banks/channels) are widely used in data par-
allel computers, from vector supercomputers [58,126] to commodity data par-
allel accelerators [44, 51]. Despite the deployment of parallel memory units,



8 CHAPTER 1. INTRODUCTION

Rank L

DRAM

DRAM

Rank 0

DRAM

DRAM

Memory

Controller

Last

Level

Cache

Memory

Controller

Rank L

DRAM

DRAM

Rank 0

DRAM

DRAM

Bank 7

R
o

w
 D

e
c
o

d
e

r

Memory

Cell Array

Sense Amps

Column Decoder

Bank 7Bank 7

R
o

w
 D

e
c
o

d
e

r

Memory

Cell Array

Sense Amps

Column Decoder

Bank 1

R
o
w

 D
e
c
o
d
e
r

Memory

Cell Array

Sense Amps

Column Decoder

Bank 1Bank 1

R
o
w

 D
e
c
o
d
e
r

Memory

Cell Array

Sense Amps

Column Decoder

Bank 0

R
o

w
 D

e
c
o
d
e
r

Memory

Cell Array

Sense Amps

Column Decoder

Bank 0Bank 0

R
o

w
 D

e
c
o
d
e
r

Memory

Cell Array

Sense Amps

Column Decoder

Address

Data

Figure 1.2: DRAM memory organization

efficient vector memory access8 still remains one of the critical problems in
data parallel computers.

1.4 Parallel Memory Organizations and Accesses

As described above, to mitigate the processor-memory performance gap, par-
allel memory organizations, with multiple memory units (such as banks, mod-
ules, and channels), have been proposed and successfully adopted in both early
and contemporary high performance computers [83,87], microprocessors [89],
and mobile processors [79,121]. In such memory organizations, parallel mem-
ory units can be independently indexed to service concurrent memory accesses,
resulting in increased bandwidth and decreased latency. Asan example, Fig-
ure 1.2 shows a typical DRAM memory subsystem organization,which con-
sists of a few independent memory channels. Each channel, controlled by
a memory controller (MC), manages a couple of independent memory ranks
each of which employs several DRAM chips working in lock-step mode. Each
DRAM chip is composed of several banks. While each bank can process
MC commands independently, all banks inside the same chip must share their
data/address buses.

Such parallel memory organizations, with abundantraw memory bandwidth,

8Parallel/vector/SIMD memory access denote the same memoryaccess paradigm, and are
used interchangeably in this thesis (unless explicitly stated otherwise).
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canpotentially improve system performance. One should note that it is often
challenging toeffectivelyutilize the available bandwidth and achieve highsus-
tained bandwidth. This is especially the case in a common execution environ-
ment where thousands of in-flight memory accesses, from multiple processing
elements, arecompetingfor the memory resources and interfering with each
other. Indeed, the parallel memory access inefficiency is not a new problem;
for example, it has been extensively studied for traditional vector memory ac-
cesses, as discussed in the following.

In traditional vector machines, parallel memory organizations were often pre-
sented and analyzed by an abstract model as shown in Figure 1.3. The model
consists of parallel banks, each of which has independent address decoding
logic (i.e., each bank can be indexed independently). Whileaccesses to differ-
ent banks can be simultaneously serviced, accesses to the same bank must be
serialized (but withuniform access timing).

Figure 1.3: 1D array storage in 4 banks (uniform bank access timing)

In data parallel processors (such as vector processors), the data to be processed
is usually stored in array structures. E.g., if a machine hasm parallel mem-
ory units, we can store one-dimensional arrays across the units, in a format
as Figure 1.3 shows, form = 4. When concurrent memory accesses are to
contiguous array elements, all memory units are working in parallel, allowing
peak bandwidth. However, if only even array elements are accessed (the solid
squares in Figure 1.3), theeffective bandwidthis reduced by half, and, as a re-
sult, access latencies are penalized. This effect is usually referred to as “bank
conflict” in the literature9. Depending on the microarchitecture, bank conflicts
can result from interference either among operations executed by the same

9Also known as “partition camping” in the scenario of DRAM accesses that skewed towards
a subset of available DRAM channels [151].
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vector access (intra-vector interference), or among different vector memory
accesses from the same/different execution context(s) (inter-vector interfer-
ence), as illustrated in Figure 1.4.

Figure 1.4: Bank conflicts in a multi-execution vector processing platform

It is clear that the memory inefficiency problem (such as bankconflict) also
occur in scalar processing. The distinction between vectorand scalar memory
accesses, however, is that a single vector memory access comprises a group
of scalar accesses, which are packed into a single instruction and executed
together (normally in lockstep) following a specific pattern. As a result, inter-
ference may occur, not only among different vector memory accesses, but also
among operations executed inside the same vector access. Infact, while inter-
vector interference is similar to memory access interference in scalar process-
ing, intra-vector interference is special in that it is decided by the vector access
pattern, which is often predetermined (even for irregular access patterns) and
usually predictable (even in case of dynamic patterns).

It should be pointed out that, there are also other sources ofparallel mem-
ory inefficiencies beyond the bank conflicts modeled in Figure 1.3. Memory
parallelism can be implemented at different HW levels, using various mem-
ory types, with different characteristics (such as uniform/non-uniform access
timing, being fully pipelined or not). In fact, the simple model illustrated in
Figure 1.3 did not take into account the timing diversity in accessing the same
bank, limiting its application to only memory types with (relatively) uniform
access timing (such as SRAM banks). The advantage of such model lies in its
simplicity, which often results in closed-form mathematical formula that suf-
ficiently describes the memory access behavior. On the otherhand, however,
for memory units with non-uniform access timing, the parallel memory model
and thus the factors impacting the access performance become more complex.
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For example, Figure 1.5 illustrates the parallel memory organization but with
non-uniform bank access timing (DRAM). In this case, contiguous vector ac-
cess is stillconflict-free(similar to the case in Figure 1.3), however, the per-
formance now depends also on the specific address sequence toeach bank.
E.g., when vector access{a0, a1, a2, a3} (V0) is followed by{a4, a5, a6, a7}
(V1), peak throughput is achieved since the second accesseshit the DRAM
page buffer and can be serviced with lowest latency possible. Whereas when
V0 is followed by{a8, a9, a10, a11} (V2), first the contents of the DRAM page
(V0 and V1) will have to be written back to the cell array (the “Pregarge”
command); thenV2 can be read out (“Activate”) to the page buffer. The two
additional steps (as compared to the page-hit case) incur wasted cycles on the
data port and penalize memory performance. As a result, for the same vector
accesses{V0,V1,V2}, the ordering (e.g.,V0 → V1 → V2 vsV0 → V2 → V1)
can have drastic impact on performance. Thus such inter-vector access order-
ing is also considered as an important part of the vector access pattern in case
of non-uniform bank access timing.

Memory access interference is a serious problem, since the low utilization of
parallel memory resources often incurs non-trivial systemperformance degra-
dation even in case ofbalancedprocessor-memory designs10. On the other
hand, naive solutions, such as employing arbitrarily largenumber of memory
units for excessive raw bandwidth, result inoverdesignedmemory systems
which often lead to prohibitive cost and power consumption.In fact, we have
observed the trend of decreasing BW/FLOPS ratio in recent microprocessor
and GPU generations (Section 1.3), which necessitates moreefficient utiliza-
tion of memory resources.

10A balancedprocessor-memory design denotes that processor and memorybandwidths are
matched.
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From the above examples, it can be seen that both memory organization/data
storage format and vector access patterns are of vital importance for high-
performance parallel memory systems. When fixing one of the two, optimiz-
ing the other one can often improve system performance. To this end,parallel
memory schemeshave been designed for vector processing systems, usually
optimized for agivenset of vector access patterns. Traditionally, such schemes
have been responsible mainly for two tasks. First, they manage specific orga-
nizations of parallel memory resources (e.g., at what memory hierarchy lev-
els, and the number of parallel memory units at each level). Secondly, paral-
lel memory schemes designate the corresponding low-level address mapping,
from linear address space to the physical locations in the parallel units (e.g.,
row/bank/channel id). The goal of memory schemes is to increase access par-
allelism among multiple memory units and improve the performance, usually
by supporting conflict-free vector accesses for the given set of vector access
patterns. A more detailed study of parallel memory schemes in the literature
will be introduced in Chapter 2.

1.5 Problem Formulation

As described in the sections above, memory system performance is crucial
for any processor to achieve high performance, but especially for data parallel
machines. The processing capability of parallel lanes can be efficiently uti-
lized only when the data request is accomplished in asustainableand timely
manner. Unfortunately, even for parallel memory systems with adequate raw
bandwidth,irregular access can lead to inefficient utilization of the parallel
memory resources and significantly degrade overall performance.

Vector memory access regularity is completely determined by parallel memory
access patternsandphysical data layout11. From a high-level point of view,
all memory operations are executed on data parallel machines after two trans-
formations. First, memory operations on working data elements are bundled
into vector accesses, and mapped onto parallel hardware lanes for execution.
This is done through the vectorization/SIMDization process which largely de-
termines the memory access patterns of the code12. Second, the working data
sets are mapped to their physical locations on the (usually multi-dimensional)

11Physical data layoutdenotes the data layout in memory units and, as a result, the data
access behavior (such as access timing).

12Memory access patterns are also affected by runtime dynamics in multithreaded/out-of-
order execution, such as GPUs.
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memory topology containing multiple rows/banks/channels. This is realized
by multiple entities crossing many computing system abstraction layers, from
data structures definition at the program level down to the data layout instan-
tiation in memory hardware. For the entire access pattern set, each type of
physical data layout defines its own optimal pattern subset.Memory accesses
on the specific physical data layout can obtain peak performance, only if its
optimal patterns are followed. For the rest, the memory efficiency degrades. A
good example is the memory hierarchy of a typical computing system, whose
(default) data layout exclusively favors contiguous memory accesses. As such,
accesses to continuous addresses are often referred to as “regular accesses”.

In a single execution context (e.g., single-threaded vector processing), irregu-
lar memory accesses are typically originated from sparse data structures and/or
highly irregular control flows. In addition, even applications which are gener-
ally regarded as regular and homogeneous can exhibit irregular vector memory
accesses, e.g., access to a matrix column with row-majored storage format. In
a multithreading scenario, concurrent memory accesses from multiple execu-
tion contexts can interfere with each other and end up with irregular accesses,
even if memory access streams from individual execution arehighly regular.

To summarize, in data parallel machines, memory accesses inefficiency roots
in the mismatch between the actual parallel data access pattern and the one
optimal for the physical data layout. Such a mismatch often results in memory
bandwidth and latency inefficiencies, which penalize system performance. In
particular, some typical scenarios of such inefficiencies include:

• For non-banked on-chip memory designs (adopted in some GPP SIMD
extensions [140] and SIMD processors [68]), if the target addresses of
a vector memory access are discontinuous, additional memory accesses
and data rearrangement operations are required. This is widely known
as the SIMDization data rearrangement overhead [11,106,124].

• For heavily banked on-chip memory designs (adopted in, e.g., GPUs),
mismatch between the data access pattern and the physical data layout
among banks incurs on-chip memory bank conflicts, similar totradi-
tional vector processors [75]. Such bank conflicts result inpipeline stalls
and overall performance degradation [54];

• For manycore architectures (such as GPUs), another issue isthe interfer-
ence among off-chip memory access streams from different cores [152].
Such interference often leads to hot DRAM channels, DRAM bank con-
flicts, and data bus read/write turn-around penalties [53].
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As shown in Section 1.4, traditional parallel memory schemes utilize parallel
hardware memory units, and manage low-level address mapping, to achieve
conflict-freememory access forgiven vector access patterns. In this thesis,
however, we notice that memory access patterns in contemporary data par-
allel processors are not necessarily hard-coded in theinstruction set archi-
tecture(ISA) and exposed to the programmer (unlike the case in traditional
vector processors). Thus, the access pattern information may not be taken for
granted; instead, it is an important design consideration,from the system ar-
chitect pointer of view. Therefore, we argue that, one should not be limited to
just one memory hierarchy level when designing parallel memory schemes; in-
stead, such schemes should be designed at system level, and consolidated with
joint efforts often crossing the HW/SW boundaries. To this end, we propose
customizable memory schemes, which extend conventional parallel memory
schemes, by taking a holistic approach combining both memory access pattern
extractionandexploitation. In such schemes, access pattern information is ef-
ficiently captured and utilized by customizing the low-level memory mapping
with specific parallel memory schemes.

Additional techniques targeting parallel memory efficiency are also incorpo-
rated in our customizable memory schemes, in a broad sense. For example,
with adequate memory access pattern information, the instruction sequencer in
the pipeline front end (e.g., instruction/thread scheduling), the runtime sched-
uler (e.g., task scheduling), and the memory access scheduler (at the memory
controller side) can also be customized, to betteradjust the vector access pat-
terns andadaptto the low level data layout and memory behavior for improved
efficiency. Furthermore, vector access patterns and the physical data layout can
be ideally coordinated for optimal performance, in a unifiedframework, sim-
ilar in spirit to the compiler techniques that combine both vectorization and
memory layout optimization [52,106,124].

The customizable memory schemes approach raises the following research
questions, among others:

• How to design proper memory mapping schemes and provide a cus-
tomizable yet generic mechanism for optimized layout of common data
structures (e.g., 1D/2D arrays,Array of Structures(AoS));

• How to capture the minimal required information about the vector mem-
ory access pattern, and at which application phases;

• How to exploit the vector memory access pattern informationto improve
performance with low overhead, customizable hardware.
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In answering the above questions, this dissertation aims atapproaches to prop-
erly obtain the parallel memory access information, and leverage it to steer
the co-designed hardware schemes. Such approaches are adapted to various
contemporary data parallel architectures. In this way, customizable memory
schemes significantly improve memory efficiency and overallperformance, for
both single data parallel core and manycore systems.

1.6 Machine Organization and Proposed Solutions

Figure 1.6 shows the organization of the baseline data parallel machine as-
sumed in this thesis. This generic model is able to incorporate major contem-
porary multi/many-core data parallel accelerator variants. For example, the
Cell processor [68] can be instantiated from Figure 1.6 withone GPP core
and eightsynergistic processing element(SPE) cores connected using a bi-
directional ring bus. The SPE core has access to its local memory (called
“local store” in the Cell SPE) and the attached DMA engine. Similarly, stan-
dalone GPUs can be instantiated with only accelerator coresconnected by a
crossbar, where both the local memory (called “shared memory” in NVIDIA
GPUs) deployed at each core and the main memory are directly accessible by
cores via specific load/store instructions. Furthermore, systems with GPU and
CPU integrated on a single die [7, 12] can also be modeled withcoexisting
GPP and accelerator nodes as shown in Figure 1.6.

As discussed in Section 1.5, memory access inefficiency mainly roots in the
mismatch between the parallel access patterns and the one favored by the phys-
ical data layout. This problem exists for both on-chip and off-chip memories,
as highlighted in Figure 1.6. This will be addressed in Chapter 3, by introduc-
ing novel conflict-free parallel memory schemes (SAMS and 2DSMM). With
such hardware parallel memory interleaving schemes, the physical data lay-
out can be customized to support conflict-free vector accessfor strides from
multiple stride families, in both 1D and 2D access environments.

Bank interleaving schemes have been adopted in traditionalvector supercom-
puters. However, to the best of our knowledge, it is less explored in liter-
ature how such HW schemes can beefficiently integrated into modern short
vector SIMD processors. Chapter 4 gives an example (called “SAMS Multi-
Layout Memory”) for such integrationat system level. In this chapter, both
the Cell SPE pipeline HW extensions and the programming interfaces for ex-
pressingArray of Structure(AoS) andStructure of Array(SoA) access types
are presented. We illustrate how to capture such high-levelinformation in a
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programmer-friendly way and utilize it to orchestrate the HW parallel memory
schemes and improve memory access efficiency.

Multithreaded data parallel architectures are becoming popular, such as GPUs
and their variants (e.g., Larrabee [128]). In a multithreaded in-order SIMD
execution, on-chip, local memory access bank conflicts can be hidden, by the
elastic pipeline design (Chapter 5) which decouples sharedmemory bank con-
flicts from pipeline stalls. Furthermore, clustered bank conflicts can be re-
solved by the co-designed bank-conflict aware warp scheduling technique, as
shown at the top of Figure 1.6.

Another memory inefficiency is incurred by the interferenceamong off-chip
memory access streams from different cores. In barrel execution of single
program multiple data(SPMD) programs (adopted in, e.g., GPUs), there ex-
ists abundant inter-thread data locality (named “horizontal locality” in Chap-
ter 6). Horizontal locality is exploited to address DRAM access interference
among cores and hence improve system performance. This is achieved by a
holistic DRAM bandwidth efficiency optimization frameworkwith combined
compile-time, runtime and architectural efforts. On the hardware side, an elas-
tic vectormiss status holding register(MSHR) unit with deferred reservation
is proposed, as shown in Figure 1.6.

1.7 Contributions

This dissertation proposes customizable memory schemes toaddress parallel
memory access efficiency issues in data parallel accelerators, as illustrated in
Figure 1.7. In this figureV denotes traditional vector architectures with mem-
ory access patterns hard-coded in the ISA and exposed to the programmer,
while V+ denotes contemporary data parallel processors such as the Cell and
GPUs. In traditional parallel memory schemes (➊ in Figure 1.7), access pattern
information is usually assumed as given and hence efforts are often dedicated
only to designing hardware memory schemes/physical data layout13 for fixed
access patterns. This thesis extends traditional parallelmemory schemes and
makes the following contributions:

• two new parallel memory schemes (SAMSand2DSMM) to cope with
bank conflicts for widely used access patterns (➋ in Figure 1.7);

13The HW memory scheme determines the layout/distribution ofdata in the memory units
and hence the access behavior – i.e., the physical data layout.
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• a framework (SAMS Multi-Layout Memory) to capture and convey the
access pattern information to the customizable parallel memory scheme
integrated into contemporary data parallel architectures(➋ and➌);

• elastic pipelinethat dynamically adjusts the instruction sequencer of a
multithreaded vector architecture to customize the accesspatterns and
improve the on-chip, local memory efficiency (➌ and➍);

• elastic MSHRto exploit horizontal locality and adjust off-chip memory
access granularity of a manycore data parallel architecture, hence im-
prove the main memory efficiency (➌ and➍).

1.8 Dissertation Organization

This dissertation is organized as follows.

Chapter 2 gives an overview of the state of the art in solving memory ac-
cess inefficiency problems in data parallel architectures.Specifically, it pro-
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vides a survey on existing HW parallel memory schemes, techniques to reduce
SIMDization data realignment overhead, techniques to relieve GPU on-chip
memory bank conflicts, and techniques to address off-chip main memory effi-
ciency issues in both GPUs and GPPs.

Chapter 3 introduces two novel hardware parallel memory schemes to cope
with vector access memory bank conflicts. The first scheme (SAMS) deals
with supporting conflict-free 1D vector memory access for strides from two
different stride families. The second proposal (2DSMM) explores hardware
schemes to support 2D stride conflict-free vector memory accesses. Besides
formal description, the hardware prototyping of the proposed schemes is also
presented. The mathematical proof of corresponding conflict-free properties is
shown in Appendices A & B.

Chapter 4 proposes a system-level design to bridge the discrepancy between
data representations in memory and those favored by SIMD processors by
customizing the low-level address mapping. The HW SAMS parallel mem-
ory scheme is extended to provide both AoS and SoA views of thestructured
data accessed by the processor (multiple layout view). Withsuch multi-layout
memory, optimal SIMDization with low overhead, dynamically changing ac-
cess patterns can be achieved. Experimental results show that the SAMS
Multi-Layout Memory proposal has efficient hardware implementation while
synthesized using standard cell library, and significantlydecreases the dynamic
instruction count and execution time, for representative workloads that operate
heavily on array-based data structures.

Chapter 5 presents a novelelastic pipelinedesign that minimizes the negative
impact of on-chip memory bank conflicts on system throughput. A hardware
bank-conflict aware warp schedulingtechnique is also designed to avoid bank
conflicts clustering. Simulation results show the elastic pipeline together with
the co-designed warp scheduling dramatically reduces the pipeline stalls and
improves overall system performance for benchmarks with heavy bank con-
flicts, at trivial hardware overhead.

Chapter 6 presents a holistic off-chip memory access efficiency optimization
framework. Based on the framework, an adaptive DRAM access granularity
scheme to exploit horizontal locality and reduce the memoryaccess interfer-
ence among cores is proposed. Experimental results show that the proposed
techniques effectively improve the DRAM efficiency and overall system per-
formance, with negligible hardware implementation cost.

Finally, Chapter 7 summarizes our findings and directions for future research.





2
Related Work

A s discussed in Chapter 1 one of the most critical design chal-
lenges in data parallel processors is imposed by the memory sub-
system, expected to deliver sustained high bandwidth at reasonable

latency [42, 79, 83]. In this chapter we will review the related state of the art
in building data parallel centric memory subsystems. We will emphasize on
the problems and existing solutions in contemporary mainstream data parallel
architectures. Since this dissertation takes an access-pattern centric, system-
atic approach based on customizable memory schemes, we willfirst introduce
the state of the art parallel memory schemes, which deal withthe organization
and low-level address mapping of memory subsystems with multiple memory
banks/modules/channels. Then existing techniques on memory access patterns
and data layout optimizations will be briefly summarized. Atlast, a survey of
some recent progress in system-level memory access optimizations and, as a
case study, the GPU memory access optimizations, is presented. Although the
main focus of this dissertation is on programmable data parallel accelerators,
we will also examine some relevant memory access optimization techniques
from the GPP domain.

2.1 Parallel Memory Schemes

Parallel memories were introduced in early high performance processors [22]
and later extensively adopted in vector supercomputers [58, 126]. Nowadays,
there is a trend that general purpose systems are utilizing parallel memories
in their memory hierarchy, such as the multibank on-chip cache organiza-
tion in Niagara [77] and Opteron [70], multislice caches in Power proces-
sors [87, 133, 139], parallel on-chip eDRAM banks in the VIRAM proces-
sor [79], and interleaved DRAM banks in Rambus and other commercial-off-

21



22 CHAPTER 2. RELATED WORK

0

4

12

Bank 0

8

1

5

13

Bank 1

9

2

6

14

Bank 2

10

3

7

15

Bank 3

11

0

7

13

Bank 0

10

1

4

14

Bank 1

11

2

5

15

Bank 2

8

3

6

12

Bank 3

9

0

5

15

Bank 0

10

1

6

16

Bank 1

11

2

7

17

Bank 2

12

3

8

18

Bank 3

13

4

9

19

Bank 4

14

Figure 2.1: Stride-2 vector access to three schemes: (a) low-order interleaving; (b)
skewing (c) prime

the-shelf, monolithic DRAM modules.

As introduced in Chapter 1, parallel memory schemes are the main means to
determine the parallel memory subsystem performance. At each memory hi-
erarchy level, such schemes determine: 1) the memory resource organizations
(e.g., the number of parallel memory units); and 2) the mapping from the linear
address space to the physical locations (such as the bank id and local address
inside the bank). The parallel memory schemes are also referred to asinter-
leaved schemes[130], since an important task of the schemes is to distribute
data to memory banks in an interleaved manner. The goal of such interleaving
is to reduce the probability of bank access conflicts, and hence increase access
parallelism among memory units and improve the memory performance.

Vector access, defined by an address stream with a constant offset between
any two consecutive addresses1, is one of the most important memory refer-
ence patterns in data parallel applications. However, vector access to parallel
memories is often vulnerable to bank conflicts, which results in performance

1Vector (memory) accesswas used in Chapter 1 in a more general sense to denote SIMD
memory access.



2.1. PARALLEL MEMORY SCHEMES 23

degradation. For example, Figure 2.1 shows a stride-2 vector access to three
parallel memory schemes. (a) is calledlow-order interleaving, the simplest
and most common interleaving scheme optimized for contiguous memory ac-
cess. For a power of two bank numberN, low-order interleaving scheme uses
the lowestn = long2N bits of the address to select the bank. (b) is a spe-
cific case of theskewing scheme[36, 82], where each row is rotated right by
one element. (c) belongs to theprime memory scheme, which employs prime
number of banks to store the data elements, in an interleavedmanner. Assume
the memory subsystem is designed to service 4 accesses per cycle. As can be
seen in Figure 2.1, the naive low-order interleaving schemewith 4 banks, will
suffer from heavy bank conflicts, and, in consequence, theeffective bandwidth
will be reduced by 50%. In contrast, the other two schemes will successfully
avoid such drawback and meet the high throughput requirement.

In fact, Figure 2.1 illustrates the two categories by which most parallel memory
schemes can be classified: schemes withprimenumber of banks (e.g., (c)) and
with power of twobanks (e.g., (a) and (b)). The major difference, is whether
or not division/modulo operations on prime numbers are involved in address
generation2. For example, the address generation functions of Figures 2.1(c),
aprime memory system, can be described as follows:

{

m(a) = a%5
r(a) = ⌊a5⌋

(2.1)

wherem(a) is the bank id, andr(a) is the local address.

Figure 2.2: Prime memory system with unused cells

The prime memory systems have been considered in many research
projects [81, 86, 117, 118], mainly because of their superiority in supporting
conflict-free access for very wide ranges of strides. Indeed, it is straightforward

2Hence, all parallel memory schemes consisting of non power of two banks can be catego-
rized asprime schemes.
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to verify that, for a prime memory system withp banks, bank conflicts occur
only when the vector access stride is multiple ofp; while in all other cases,
accesses are conflict-free, and peak throughput can be achieved [22]. How-
ever, the shortcoming is that they involve division/modulooperations on prime
numbers (as exemplified by Equation 2.1), which are generally difficult to ef-
ficiently implement in hardware. Thus,unused cellsare often introduced in
early parallel computers employing prime memory schemes [81, 86], in order
to reduce the HW complexity of address computation. Figure 2.2 illustrates the
design concept that is adopted in the Burroughs Scientific Processor’s prime
memory system [81]. Note, the blank squares in Figure 2.2 denote physical
memory cells that are not used by the system. The prime bank numberp is set
to be2q + 1, and the address generation functions are defined as follows:

{

m(a) = a%p

r(a) = ⌊ a
p−1⌋ = ⌊ a

2q ⌋ (2.2)

As a consequence, the division by a prime in Equation 2.1 is now converted
into a division by a power of two (which is selected at design time), without any
additional hardware cost. This simplification is a big advantage compared with
the basic prime memory systems adopting low-order interleaving. However,
the penalty is1/p memory space being wasted, which is a clear drawback.

To cope with the memory storage utilization issue in the Burroughs Scientific
Processor, Gao proposed a prime memory system based on Chinese Remainder
Theorem [48]. Observing the number of rows in each bank,M, is power of
two (M = 2m) – thus coprime top, the proposed scheme successfully avoided
computing the division by replacingr(a) = a/p with r(a) = a%M. Since
a%M is equal to the right mostm bits of the addressa, the local address
generation involves no hardware logic (similar to the case in Equation 2.2). On
the other hand, the bank address computation still remains.As a consequence,
the hardware cost is the same, but no memory space is wasted, as compared
with the original scheme.

In the meantime, Seznec et al. independently analyzed primememory systems
and revealed similar findings as above in [129]. Moreover, the specific prop-
erties of the permutation patterns between processor elements and memory
banks were analyzed. Based on the analysis, an efficient permutation network,
calledChinese Remainder Network, was proposed, for system configurations
with N processor elements and memory banks, whereN is a product ofn dis-
tinct prime numbersN = N1 · ... · Nn. Efficient hardware implementations of
the Chinese Remainder Network were presented, for bothcentralized control
andself-routingcases.
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Besides prime memory systems, alternative interleaving schemes have also
been proposed, without the constraint of the prime memory bank number. For
2D access in raster-graphics memories, Chor et al. proposeda memory orga-
nization based on a doubly periodic assignment of pixels toM memory banks
according to aFibonacci lattice[31]. The proposed memory organization has
the property that the pixels in any rectilinearly oriented rectangle that contains
no more thanN pixels can be accessed simultaneously. Mathematical analysis
was given, to guaranteeM <

√
5N. And it was also revealed thatM is even

less than2N for many practical values. Despite its solid theoretic foundation,
however, the proposed scheme still wastes some bandwidth, since the number
of banks is usually substantially larger than the number of accessed data. Also,
the address computation logic was not discussed in detail inthe paper.

In the similar context of 2D access, Kim et al. proposed a parallel memory
scheme based onperfect Latin square, a new Latin square with good proper-
ties useful for parallel array access [72]. The condition for the existence of
perfect Latin square was presented. The resulting scheme isable to support
conflict-free row, column, diagonal, and square access patterns. The limita-
tion, however, is that the perfect Latin square does not always exist for arbitrary
square size, and the number of banks must be a square of an integer.

Another important type of interleaving schemes,linear skewing schemes, were
proposed for parallel memories in [82] and analyzed in [131,149]. In a linear
skewing scheme, elementai ,j of a 2D array is stored in memory bankλ1 ·
i + λ2 · j (λ1,λ2 ∈ N), a linear combination of the array coordinates. The
linear scheme generalizes for higher dimension arrays [149]. Similar to the
linear skewing schemes, Jorda et al. proposed a class ofsemi-linearskewing
schemes, and in particular thebi-base skewing schemewhich allows(N−1)×
(N − 1) matrices to be stored in N banks, and supports conflict-free access to
row, columns, the forward diagonal and submatrices [66].

The above schemes assume either prime number of banks, or bank numbers
to be integers in general. In such cases, the address generation may incur
prime number operations (such as modulo, or even division).Although such
penalty can bepartly removed, it cannot be completelyeliminatedand often
translates into cost in other forms (e.g., the increased interconnect routing com-
plexity [129]). On the other hand, when the number of banks ispower of two,
the expensive prime number calculations can are naturally avoided. Therefore,
such configurations are attractive and most widely seen in parallel memory or-
ganizations of contemporary machines. The drawback, however, is that it is
difficult to support conflict-free memory access for many access patterns. For
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example, memory access with strides acrossstride-familiescan easily cause
bank conflicts, in memory systems with power of two banks.

To cope with bank conflicts of vector accesses across stride families, sev-
eral techniques have been proposed in the literature, including the use of
buffers [34], dynamic memory schemes [35,36], memory bank clustering [34]
and intra-stream out-of-order access [144]. Under the parallel memory system
with fully-pipelined memory banks, these methods still work but are subject to
some limitations.

The use of buffers [34] is probably the most straightforwardsolution as it toler-
ates the bank conflicts by simply buffering the input addresses and output data
and collecting the required data after some delay. The buffer depth required
depends on the misalignment between the parallel memory scheme used and
the vector access stride. If the access stream is distributed evenly between the
memory bank of the system, then the peak throughput of one data per memory
bank in one cycle might be achieved after a transient startuptime. However,
since the startup disparity is unavoidable, this solution introduces significant
time penalties in case of short access streams. Moreover, the use of buffers
and the logic for collecting the correct data items from the buffers could cause
substantial hardware overheads.

The dynamic scheme proposed in [35, 36] works well only when the same
data set is accessed with single stride family. However, if the data set is to be
accessed using different stride families, the penalty of flushing and reloading
data between the memory banks and the lower level in the memory hierar-
chy may not be amortized in some cases, which would result in performance
degradation of the system.

The memory bank clustering [34] introduces inefficient use of bank control
logic and data routing resources, as a number of memory banksmay remain
idle during each parallel memory access. For instance, under the assumption
that the number of banks is power of two, the number of memory banks used
for conflict-free access of two unmatched stride families may be no more than
50% of the available banks. This results in waste of logic resources and power
in some cases.

The out-of-order vector access [144] is based on the observation that a long,
strided memory reference stream with bank conflicts in sequential order could
become conflict-free, if properly reordered. For instance,in a parallel mem-
ory system with conflict-free stride-4 access support, a stride-2 stream with
16 memory references could be accomplished by two stride-4 streams with 8
memory references each. Basically the original stride-2 stream is split into
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two stride-4 sub-streams and the memory system is accessed with by the al-
ternating sub-streams. In this case, the access is conflict-free. The problem
with intra-vector out-of-order access is that it requires long vectors for proper
operation. In addition, as data items are read out of order, data permutation
logic may introduce additional penalties3.

Some recent research projects also consider manipulating the memory address
mapping to improve memory access performance. In the Impulse project [24],
physical addresses of discontinuous data are remapped to aliases which are
contiguous in theshadow space, and references to the discrete data through
the aliases are actually performed by the Impulse Memory Controller at the
DRAM side. While improving the cache and memory bus utilization, it is not
suitable for on-chip local stores, as data at the memory sidestill remain dis-
continuous and the efficiency of the data access remains low.Impulse memory
also has the coherence problem since it creates aliases for discontinuous data.
Similar to Impulse, the active memory system [71] uses the address remapping
to create contiguous aliases for discontinuous data, and access the data with
their aliases, to hijack the memory hierarchy for better cache behavior. Again,
the active memory system is unable to improve the efficiency of the memory
access at the physical memory banks/modules/channels. TheCommand Vec-
tor Memory System [32] proposes broadcasting vector accesscommands to all
memory banks/modules, instead of sending individual addresses/data. Despite
its inherent support for strided access, the Command VectorMemory System
does not consider specialized address mapping schemes to improve memory
access parallelism among multiple banks.

Regarding the data alignment problem in GPP SIMD extensions, studies have
been done to improve the performance of SIMD devices by relieving the im-
pact of non-contiguous and unaligned memory access from thehardware point
of view. For example, Alvarez et al. analyzed the performance of extending
the Altivec SIMD ISA with unaligned memory access support onH.264/AVC
codec applications [11].

3Data permutation is not required in the original proposal [144] as there the assumed mem-
ory organization is that single datum is read out from the multiple memory banks per cycle,
whereas in the organization considered in this thesis multiple data items (equal to the number
of memory banks) are read per cycle.
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2.2 Access Pattern and Data Layout Optimizations

In Section 2.1, we have briefly reviewed the historic and contemporary work in
designing parallel memory schemes, which provides the hardware substrate for
parallel memory organizations, and the corresponding low-level address map-
ping. All parallel memory schemes are optimized for specificsubset of mem-
ory access patterns. Therefore, it is essential to correctly identify the access
pattern information and exploit it for memory access efficiency improvement,
by, e.g., utilizing the pattern information to steer the memory schemes.

There has been a large body of research studies and practicesin properly ob-
taining the memory access pattern information. One common way to achieve
this is by static analysis, such as the code analysis techniques used in soft-
ware prefetching [23, 27, 94, 101]. Alternatively, memory access pattern in-
formation can also be obtained from programmer annotation.For example,
CUDA-lite [143], a programming model enhancement to CUDA [105], en-
forces programmers to provide annotations describing certain properties of the
data structures and code regions designated for GPU execution. The CUDA-
lite tools analyze the code along with these annotations, and determine if mem-
ory bandwidth can be conserved and latency can be reduced by utilizing any
special memory types and/or by massaging memory access patterns.

Memory access patterns can also be captured by profiling [95,153] or run-
time [10, 93], which make use of the information provided by standard hard-
ware performance counters. Also, specialized hardware canbe employed to
dynamically detect the access patterns (e.g., strides) in amore direct manner,
such as the cases of stream buffers [27,116,146].

Once memory access patterns have been statically identified, a following-up
opportunity arises in that algorithms and/or data structures can be adapted, in
order to suit the hardware memory hierarchy. The rationale of the former is
that, access patterns are changed under different versionsof the same algo-
rithm – therefore the version most friendly to the memory hierarchy is cho-
sen [14,21,49,84]. The latter, adapting data structures tomemory hierarchies,
has led to an important area of memory-hierarchy conscious program data lay-
out optimizations. Such optimizations can be done by hand, with optimized
library support. For example, specialized data structureshave been designed
for database applications running on GPPs [21] and the Cell processor [14,49].
In Glift [90], an abstraction and generic template library has been created for
defining complex, random-access GPU data structures.

Beyond manually tuning data structures, recently we have also seen compiler
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optimizations to facilitate data reorganization. For example, to address the
data alignment problem in GPP SIMD extensions, studies havebeen done to
improve the performance of SIMD devices by relieving the impact of non-
contiguous and unaligned memory access from the compiler point of view.
Specifically, Ren et al. proposed a compiler framework to optimize data per-
mutation operations by reducing the number of permutationsin the source code
with techniques such as permutation propagation and reduction [124]. Nuzman
et al. developed an auto-vectorization compilation schemefor interleaved data
access with constant strides that are powers of two, by reorganizing the key
data structures [106].

It has been shown that the process of data layout optimization can also be auto-
mated, with customized memory allocation libraries and compiler analysis and
transformations. Truong et al. proposed two data layout techniques to improve
locality for heterogeneous data structures allocated dynamically [142]: field
reorganization4 and instance interleaving5. Chilimba proposed two strate-
gies –cache-conscious reorganizationand cache-conscious allocation, and
the corresponding semi-automatic tools that use these strategies to produce
cache-conscious pointer structure layouts [29, 30]. Zhonget al. proposedar-
ray regroupingandstructure splittingusing whole-program reference affinity,
which measures how close a group of data are accessed together in a reference
trace and gives a hierarchical partition of program data [153]. Golovanevsky et
al. implemented C structure optimizations in GCC (i.e., theGCCstruct-reorg
pass), to adapt the layout of a data-structure to its access patterns in order to
better utilize the cache by increasing spatial locality [52].

It is important to note that, despite the advantage of no hardware overhead,
software data layout optimization techniques have certaindrawbacks. Man-
ual data structure manipulation and data reorganization put a huge over-
head on the programmer, in requiring detailed knowledge about the low-level
memory hierarchy. For example, the programmer has to take charge of the
logical data layout and its mapping to (usually parallel) memory hardware.
(Semi)automated approaches require less programmer intervening, however,
are limited in scope since they require high-level program information that is
hard to accurately obtain by profiling/static analysis. Indeed, most prefetch-
ing schemes either target only loops with statically-knownstrided accesses,
or they rely on the access patterns detected during profilingbeing unchanged

4to group together data structure fields which are referencedtogether in the data structure
declaration

5identical fields of different instances of a data structure often referenced together are
grouped together dynamically



30 CHAPTER 2. RELATED WORK

in real executions, which may not be the case since access patterns can be
input-data dependent. Moreover, in the context of vector memory access in
data parallel accelerators with parallel memory banks, conflict-free access can
not be achieved by only software data layout adaptation without the support of
specialized hardware memory schemes for many access patterns.

2.3 Off-chip Memory Access Scheduling

Off-chip memory access has become more and more important inmodern com-
puting systems, due to the expanding gap between the processor speed and
off-chip memory access latency, and between increasing on-chip processing
parallelism and off-chip memory bandwidth. In such systems, DRAM access
requests are usually buffered inside the memory controller, forming a dynamic
access window. Various scheduling policies can be applied,to select the proper
access in the window to be issued to the DRAM chips, in the hopeof improv-
ing DRAM access efficiency. This section will review the recent advances in
off-chip memory access scheduling techniques.

Sophisticated out-of-order DRAM scheduling schemes have been extensively
studied for DRAM efficiency improvement. Existing systems commonly em-
ploy variants of the FR-FCFS (first-ready, first-come first-serve) scheduling
policy [125], which prioritizes row-hit requests over other requests. Although
FR-FCFS was proposed originally in a thread-unaware context, recent work
has shown that it is also effective in improving DRAM throughput and overall
system performance in massive multithreaded GPUs [152].

Since thread-unaware memory access schedulers aim at maximizing DRAM
throughput, they have been shown to be ineffective in guaranteeing fairness
in general-purpose multicore and multithreaded systems [100, 104, 122]. In
contrast, researchers have recently designed thread-aware memory schedulers
to improve fairness as well as system throughput [73, 74, 102, 103]. Unlike
thread-unaware memory schedulers, one of the major insights of thread-aware
memory schedulers is, different threads have different characteristics regarding
their DRAM access behavior (such as, bandwidth, regularityand the likelihood
to interfere with others). Therefore, threads can be categorized into different
classes (e.g., memory-intensive/non-memory-intensive), by either static analy-
sis, or dynamic capturing, or both. With such classification, schedulers can try
to generate the optimal memory access scheduling during threads execution,
therefore improve both DRAM throughput and fairness.
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2.4 Memory Access Optimizations on GPUs

This section reviews some recent studies on memory access optimizations on
GPUs, which is a typical contemporary data parallel accelerator architecture.
The GPU memory access suffers from two major problems: the on-chip shared
memory bank conflicts, and the off-chip DRAM access efficiency, which will
be discussed in the following.

2.4.1 Avoiding GPU Shared Memory Bank Conflicts

Bank conflicts form an important problem in vector processors and it has been
studied intensively in the literature. To cope with bank conflicts of vector ac-
cess across stride families, several techniques have been proposed, including
the use of buffers [34], dynamic memory schemes [35, 36, 55, 56], memory
banks clustering [34], and intra-stream out-of-order access [144], just to name
a few. Some of the existing techniques may be considered for GPU memory
bank conflict avoidance, however subject to certain limitations. For example,
one possible solution based on existing techniques is to addbuffers in front
of each shared memory bank to create a small access window. Subsequently,
out-of-order scheduling techniques may be applied to resolve the bank con-
flicts, within such window. Similar techniques have been successfully used
in other scenarios, such as the DRAM memory controller scheduling [125].
However, in the context of GPU fine-grain multithreaded SIMDprocessing,
this technique is not applicable, because distributed out-of-order accesses in
parallel shared memory banks create diverged execution orders for threads in-
side a warp/subwarp, effectively breaking the subwarp boundaries in the SIMD
datapath. This often leads to conflicts in the register file banks at the writeback
stage, which stall the pipeline in the end. In this case, shared memory bank
conflicts are not resolved but justpostponedto later pipeline stages.

GPU on-chip shared memory efficiency is also impacted by physical data lay-
out. Programming practices exist to avoid or relieve on-chip bank conflicts, by
manually crafting the data layout at source code level (e.g., zero-padding for
shared memory data structures) [76,108]. While such optimizations have been
adopted in practice, they lay a nontrivial burden on programmers. Detailed
knowledge of the shared memory hardware is required, and sometimes major
modifications to the source code is needed to apply such optimizations. Be-
sides, they also create portability issues when platforms have different shared
memory configurations. Moreover, static code optimizations are unable to re-
lieve bank conflicts for patterns which cannot be determinedstatically. Ex-
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amples are conflict patterns that change dynamically, or that are dependent on
runtime parameters. Recently, we see some work in automating such manual
optimizations [151]. Such high-level optimizations have the potential to re-
lieve the shared memory bank conflicts burden from programmers, but are still
limited by their static nature.

2.4.2 GPU DRAM Access Optimizations

Recently we have seen somesoftware optimization frameworks to handle
the complexity of GPU programming and optimizing. Ocelot [39] is a dynamic
compilation framework designed to map the NVIDIA CUDA applications onto
diverse multithreaded platforms. It includes a dynamic binary translator from
PTX code to x86 and other ISA.

PTX transformations, such as thread-fusion used in MCUDA [136] and
GPGPU Compiler [151], have also been proposed. The thread-fusion tech-
nique attempts to merge small threads into larger ones, so that more spatial
locality, at various memory hierarchy levels (such as registers and shared mem-
ories), may be created for each kernel thread execution. By exploiting the extra
locality, system performance can be improved.

Main memory access efficiency is also impacted by physical data layout in
DRAM rows/banks/channels. Programming skills to improve off-chip mem-
ory access efficiency exist, such as manually changing the data layout of key
data structures in main memory at source code level [76]. Unfortunately, au-
tomating such optimizations using program analysis for main memory data is
more difficult than the on-chip shared memory case and such work is yet to be
seen for GPUs.

From system architecture point of view, GPU memory performance optimiza-
tions have been addressed at different levels: between the GPU accelerator
and host CPU, inside the GPU core, in GPU on-chip interconnection, and at
the GPU memory controller side.

At theCPU-GPU interconnectlevel, current GPGPU platforms suffer signif-
icantly from the relatively low bandwidth between the host CPU and the accel-
erator GPU attached to the CPU through the system bus [76]. The research and
development efforts can be classified into two categories: 1) to improve the ef-
ficiency of the CPU-GPU communication based on existing loosely-coupled
system bus configuration [50]; and 2) to integrate the CPU andGPU onto the
same die [7,12].

At the GPU core level, there have been some studies in applyingprefetching
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techniques for GPUs [127], however only datainside a thread was consid-
ered. A recent study on GPU prefetching proposedInter-Thread Prefetching
(IP) [88], recognizing the GPU specific locality among parallel threads.IP fo-
cused onlatency reductionusing speculation, assuming inadequate parallelism
to hide memory latency.

Memory coalescing[108] is a hardware mechanism in NVIDIA GPUs to buffer
and mergeintra-warpmemory accesses. It is an effective way to capture inter-
thread data locality, however, its effectiveness is limited to a limited scope
(e.g., half/single-warp, depending on the GPU generation).

At the GPU on-chip interconnect level, the work [152] also addresses the
memory access streams interleavingproblem, using a customized flow con-
trol design optimized for this scenario. A similar work [16]analyzed the
many-to-few-to-manytraffic pattern in typical GPU configurations, and pro-
posed throughput-effective on-chip interconnection. Thekey observation is
that, the traffic pattern isunbalancedbetween the GPU core nodes and mem-
ory controller nodes and such unbalance is fixed at design time. Therefore,
conventional interconnect network designs, which assume auniform traffic
pattern, can be improved, with the unbalanced traffic pattern information. The
paper explored such improvement and showed that the throughput per unit area
is improved with the redesigned interconnect.

At theGPU memory controller side, recent work has shown that out-of-order
DRAM scheduling schemes, such as FR-FCFS [125], are also effective in im-
proving DRAM throughput and overall system performance in massive multi-
threaded GPUs [53, 152]. Needless to say, the performance ofa DRAM con-
troller can often be limited by its relatively small memory requests window
size, which is constrained by theout-of-order(OoO) memory scheduler hard-
ware cost. This is especially the case in the context of massive (at the order
of thousands) in-flight DRAM accesses in typical GPUs, whichtend to benefit
from very large scheduler window sizes.

2.5 Summary

In this chapter, we have presented an overview of existing parallel mem-
ory schemes, which provide the hardware substrate for parallel memory
banks/modules/channels organizations, and the corresponding low-level ad-
dress mapping. Since parallel memory schemes optimize memory access ac-
cording to specific access patterns, existing methodologies in extracting mem-
ory access pattern information were briefly discussed, withenumeration of
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software data layout optimizations based on the access patterns. Furthermore,
off-chip memory scheduling techniques were also reviewed,due to the grow-
ing importance of off-chip memory access and the performance impact of off-
chip memory access scheduling. Finally, we studied existing solutions on two
major GPU memory issues: the on-chip shared memory bank conflicts, and
the off-chip DRAM access efficiency.



3
Conflict-Free Parallel Memory Schemes

I n this chapter, we analyze the problem of supporting conflict-free ac-
cess for multiple stride families in parallel memory schemes targeted
for SIMD processing systems. We propose two novel hardware paral-

lel memory schemes to deal with memory bank conflicts incurred by vector
memory access. The first scheme (SAMS) deals with supportingconflict-free
1D vector memory access for strides from two different stride families. The
second one (2DSMM) moves one step further in that, it explores hardware
schemes to support 2D stride conflict-free vector memory accesses. Besides
formal descriptions of the proposed schemes, the hardware implementation
prototyping are also presented. The corresponding mathematical proofs are
listed in Appendixes A and B.

The remainder of the chapter is organized as follows. In Section 3.1, we
present the motivation of the proposed parallel memory schemes. The con-
struction procedure and the mathematical formulas of the SAMS and 2DSMM
schemes are described in Sections 3.2 and 3.3, followed by their hardware
implementation and synthesis results in Section 3.4. The major differences
between our proposal and related works, the design space andapplications are
briefly discussed in Section 3.5. We conclude the chapter in Section 3.6.

3.1 Motivation

In this section, we will first introduce the limitation in non-redundant1 parallel
memory schemes, which motivates us to theSAMSscheme. Then we will
present the conflict-free requirement in memory access to 2Ddata, which leads

1In this chapternon-redundantschemes refer to those with the same number of memory
units as the required data elements number per each parallelaccess (usually equals#lanes).

35
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to the design of2DSMM scheme. To facilitate our discussion, we use the
following definitions of some general terms in parallel memory systems, and
the specific ones used in our SAMS scheme.

3.1.1 Definitions

Definition 1. A stream of independent memory accesses issued by the SIMD
processor in parallel is called avector access. A vector access could be either
regular (with constant stride) or irregular (such as the scatter/gather memory
access). However, we only discuss regular vector accesses in this chapter.

Definition 2. Base addressis the first memory address in a given regular
vector access.

Definition 3. Stride is the constant interval between subsequent memory ad-
dresses in a given regular vector access stream.

Definition 4. Unit stride denotes stride 1.

Definition 5. A stride family is a set of infinite number of strides,{S‖S =
σ · 2s , s ∈ N, σ is odd}. This follows the definitions given in [35,36,144].

Definition 6. The exponential part of the stride family{S‖S = σ · 2s , s ∈
N, σ is odd}, s, is called thestride family number . The stride family number
completely defines the set of strides belonging to a stride family. For example,
stride family with family number 0 (we will use the phrase “stride family s”
for short of “stride family with family numbers” hereafter) is the stride set
{1, 3, 5, 7, · · · } while stride family 1 is{2, 6, 10, 14, · · · }.

Now we will give some definitions specific in our proposed SAMSscheme.
Supposea is the linear address andm(a) is the module assignment function of
a parallel memory scheme withN memory modules.

Definition 7. If addressa satisfiesm(a) = m(a + δ) (whereδ < N), address
a hasforward-affiliation .

Definition 8. If address a satisfiesm(a) = m(a − δ) (whereδ < N), address
a hasbackward-affiliation .

Definition 9. Forward-affiliation and backward-affiliation always occurin
pairs. For instance, if address a has forward-affiliation (m(a) = m(a + δ))
then the addressa + δ has backward-affiliation. We call addressa and its
affiliated address (a + δ) anaffiliation-pair .
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Figure 3.1: Inherent limitation in multimodule memory assignment

Now, let us examine the meaning of affiliation. If there exist
forward/backward-affiliations in a memory scheme, then thescheme is not
conflict-free for parallelN unit-stride accesses at arbitrary base addresses. For
instance, unit-stride accesses starting at addresses withforward-affiliation will
result in module conflicts.

Definition 10. If addressa is associated with only one single instance of affil-
iation (backward or forward), then it is asingle-affiliation address.

Definition 11. If there exist addresses in a non-redundant parallel memory
scheme with single-affiliation and none of them has multi-affiliation, then it is
asingle-affiliation scheme.

3.1.2 Non-Redundant Parallel Memory Schemes Limitations

In traditional matched parallel memory schemes, it is impossible to simul-
taneously support both parallel unit-stride and arbitrarily strided2 access or-
ders [144]. Figure 3.1 shows an example with four memory modules3. Under
the constraint of unit-stride conflict-free access, the module assignment func-
tion of the scheme is completely fixed. Note in Figure 3.1 the constant repeat
of module assignment pattern of the first four addresses. When the system is
accessed with stride2, half of the memory modules are not utilized (the shad-
owed cells in Figure 3.1). One additional limitation, not shown in Figure 3.1,
is that any interleaving scheme optimized for even-stride conflict-free access
could not support conflict-free unit-stride access at arbitrary base addresses.

2By strided we refer to even strides in this chapter, as odd strides (including unit stride)
conflict-free accesses are well supported by the simple low-order interleaving scheme [144].

3In this chaptermoduleandbankare used interchangeably, to denote a memory bank with
independent local address decoder.
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There is a large number of strided vector accesses in many scientific and
engineering applications which have significant impact on the performance
of the workloads on traditional vector supercomputers [15]. In the mean-
while, we certainly could not neglect the unit-stride access pattern, as it
is the most common one in vectorized scientific and engineering applica-
tions [60, 78, 138]. Even in vectorized SPEC95 benchmarks itis the second
most frequent stride [115]4. Furthermore, there are many occasions in which
simultaneous support of both unit-stride and strided memory accesses is de-
sired, as the same data block is accessed with different stride types. When we
have to access data in parallel memories with both unit and even stride, the
problem occurs that we have to either modify the interleaving scheme (that
is, to redistribute data to memory modules in a different way), or to have the
scheme optimized for conflict-free access with one type of access while suf-
fer from the non-conflict-free access with the other. The former would incur
data flushing into and reloading from the lower level memory in the memory
hierarchy whenever there is a change of access stride, whereas the latter would
introduce processor cycles wasted on waiting for the vectoraccess.

As far as unit-stride access on stride-optimized parallel memory scheme is
concerned, it is interesting to examine theaffiliation properties of the scheme.
Note that in single-affiliation schemes (defined in last section), a single-
affiliation address belongs to only an affiliation-pair. Single-affiliation parallel
memory schemes make sure the module conflicts under unit-stride access are
moderate in the sense that, if an address in linear address space causes module
conflict within access at one base address, then it will nevercause any other
conflict within access at a different base address. In Section 3.2, we shall il-
lustrate how to make use of single-affiliation parallel memory schemes to con-
struct a memory system capable of supporting conflict-free strided accesses
from multiple stride families.

3.1.3 Strided Access in 2D Environment

Previous work on strided access is mostly focused on one dimensional case(i.e.
strided vector access). However, with the increasing requirements for both
stronger computational power and higher memory bandwidth from some en-
gineering and scientific computing domains such as multimedia, radar data
processing, and fluid dynamics, aggressive hardware support for more com-
plicated memory access patterns is desirable, particularly for data-level multi-

4The most frequent access pattern is scalar access in both SpecInt95 and SpecFP95, defined
as “stride-0” in [115].
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processing systems such as vector and SIMD processors. For instance, in the
SARC research project [123], the mechanism of two dimensional strided mem-
ory access is to be devised to speed up memory access for the vector coproces-
sor [85], as illustrated in Figure 3.2.B in Figure 3.2 denotes thebase address,
ES element size, HS /VS horizontal/vertical stride, andHGS /VGS horizon-
tal/vertical group stride.

Figure 3.2: SARC vector coprocessor memory addressing

In this chapter, we propose the 2D strided Multiaccess Memory (2DSMM)
scheme to address the issue of strided access in two dimensional environment.
It has the following design goals:

1. Various access patterns: The 2DSMM should support as many useful
access patterns in two dimensional environment as possible. It is iden-
tified that the strided row, strided column, strided diagonal and strided
block access patterns are of most interest [118]. Besides strided access,
it should also support continuous data access in parallel such as unit-
stride access in one dimension or access to a continuous block. In our
view these features are particularly desirable. On one hand, the 2DSMM
could be used potentially as a buffer between the processor and the main
DRAM memory and therefore it has to be able to exchange data with
the DRAM memory efficiently. On the other hand, the continuous block
access is a very frequently used access pattern in many applications of
our concern.

2. Parallel strided access with no restrictions on the starting position: It
should support strided access at any starting point. However some re-
strictions for continuous data access are indispensable inour scheme
and we think they are acceptable for two reasons. First, as the con-
tinuous data access is mainly designed for the data exchangebetween
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the 2DSMM buffer and DRAM, the restrictions on starting position
will have no negative effects on the traffic between 2DSMM buffer and
DRAM if the starting position is aligned to DRAM row boundaries. Sec-
ond, the starting position restrictions in our scheme wouldprobably not
cause a big problem for the continuous access traffic betweenthe proces-
sor and 2DSMM memory5 for the domain-specific applications targeted
by our scheme with the help of a compiler.

3. Simple hardware implementation: The implemented logic for the ad-
dress generation should be simple and fast, because it is in the critical
path of memory access.

4. No redundancy in memory module number: In most prime memory
systems, there are more memory modules than the number of data ac-
cessed simultaneously. To increase the utilization of memory modules,
our 2DSMM scheme would providematchedparallel access to all mem-
ory modules (i.e. #data elements required per parallel access = #memory
modules). Another common problem with the prime memory systems
are the existence of memory holes [86,117] which would also be avoided
in our non-redundant system.

3.2 Single-Affiliation Multiple-Stride Memory Scheme

In this section, we propose SAMS, the Single-Affiliation Multiple-Stride
conflict-free parallel memory scheme. SAMS aims at supporting conflict-free
unit-stride and strided memory accesses simultaneously, by first constructing
a single-affiliation interleaving scheme, and then making data lines wider to
solve the module conflicting problem in unit-stride access,which exists in the
single-affiliation scheme.

3.2.1 Moving from Conflict-Free to Low Degree of Affiliation

Many existing non-redundant, dynamic schemes, such as the XOR scheme [35,
36], can support conflict-free access for both unit-stride and strided patterns,
with dynamic (re)configurationof the scheme parameters. However, when the
scheme parameters are configured for strided access at one time, conflict-free
unit-stride access is not supported simultaneously. Now that it is difficult to

5In this chapter, we use2DSMM bufferand2DSMM memoryinterchangeably, to denote the
processor’s local buffer.
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Figure 3.3: SAMS single-affiliation scheme withq = 2, s = 2

add conflict-free unit-stride access support at once, we propose to do this in
two steps. First, we relax the constraint fromconflict-freeto low degree of
affiliation, for unit-stride access. Second, for each and every memory module,
we rearrange the groups of conflicting data items in unit-strided access into
wide data lines so that they could be referenced during one access. The philos-
ophy behind this idea is to restructure the memory modules. Traditionally, the
memory module in a multimodule memory system is treated as a linear (one-
dimensional) structure, and a memory interleaving scheme maps the linear
address space from processor’s view into multiple linearlystructured storage
units. In our approach, instead of one-dimensional, we model each memory
module as a two-dimensional structure. Therefore, the aforementioned limita-
tion in parallel memory schemes could hopefully be resolvedby introducing
a new dimension of access parallelism, namely the module data line. If the
conflicting data items are located in the same data line, thenthey could be ac-
cessed in parallel with proper shuffling and selecting operations. The reason
why low-affiliation schemes are preferable is that, as the degree of affiliation
increases, the module data line grows wider because it has tobe wide enough
to accommodate all conflicting items. Consequently, the hardware for choos-
ing the proper one(s) from the data line and shuffling data items from different
modules becomes more complicated.
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3.2.2 Hierarchical Single-Affiliation Parallel Memory Scheme

We propose to construct a single-affiliation scheme for SAMShierarchically.
For a parallel memory system with2q memory modules, whens > q (s is
the stride family numberdefined in Section 3.1.1), SAMS adopts Harper’s
XOR scheme [35] as it is single-affiliation in this case. However, as it is not a
single-affiliation scheme whens ≤ q, some modifications must be considered.
Figure 3.3 illustrates one example of how to build SAMS single-affiliation
scheme based on Harper’s XOR scheme [35] (referred as “basicXOR scheme”
in the figure). The construction process is described as follows:

(1) Divide 4 (i.e.2q) memory modules into 2 (i.e.2q−s+1) subgroups, with
each group deployed with basic XOR scheme configured with 2 (i.e.
2s−1) modules and stride 4 (i.e.2s ).

(2) Interleave the two groups, at the granularity of 4 (i.e.2s ). Now, the
module assignment looks like that of the XOR scheme configured with
2 (i.e. 2s−1) modules and stride 8 (i.e.2q+1).

(3) Combine the two groups and make uniform module index by merging
the subgroup module index and the group index.

As Figure 3.3 suggests, there are cases of four items affiliated with each other
(marked with “X”), when the basic XOR scheme is used. The affiliation prob-
lem is resolved when we shrink the number of modules in a group, which
in turn introduces several (2 in the figure) subgroups of modules. Therefore,
steps (2) and (3) in Figure 3.3 interleave them at the subgroup level and merge
them into a unified scheme. After that, we could finally get a single-affiliation
scheme, as shown at the bottom of the figure.

In the following, we provide the mathematical description of the above con-
struction process.

• module assignment function:

m(a) =







a%2q, s = 0
〈

aq · · · as ,
(

a ⊗ THs−1,q+1

)

%2s−1
〉

, 1 ≤ s ≤ q
(

a ⊗ THq,s

)

%2q, s > q

(s, q ∈ N)

(3.1)
where,a is then bit linear address, and2q is the number of memory mod-
ules in the SAMS scheme;s is thestride family number, which is the expo-
nent part of the stride family{S‖S = σ · 2s , σ odd} to be supported with



3.2. SINGLE-AFFILIATION MULTIPLE-STRIDE MEMORY SCHEME 43

conflict-free access by the scheme;ai is the i -th bit of a; m(a) is the module
assignment function which hasq bits. The notationx%y meansx moduloy ,
and< ... , ... > denotes binary bits concatenation.THx ,y is the XOR scheme
address transformation matrix taken from [35].

THx ,y =

min(x ,y)−1
∏

k=0

Tk+max(x ,y), k

whereTi ,j is defined to be the identity matrix with a single off-diagonal 1
in T (i , j). The binary matrixT is arranged in a form that the bottom-right
element isT (0, 0), and the row index grows when moving up and the column
index grows when moving left so that the top-left element isT (l − 1, l − 1)
(assumeT is l × l in size). For example,

T =





1 1 0
0 1 1
0 0 1



 =





1 0 0
0 1 1
0 0 1



 ·





1 1 0
0 1 0
0 0 1



 = T1,0 · T2,1

The⊗ symbol in this chapter is used for binary vector-matrix multiplication.
For instance, consider

a = 7, T =





1 0 0
0 1 1
0 0 1





then

a⊗ T = [1 1 1]





1 0 0
0 1 1
0 0 1



 = [1 1 0] = 6 .

The objective of SAMS module assignment function is to make sure that,
on one hand, the scheme is conflict-free for stride family{S‖S = σ ·
2s , with σ odd}; while on the other hand, there are at most two data refer-
ences going to the same module on a parallel unit-stride access.

3.2.3 Solving Module Conflicts in Single-Affiliation Schemes

As described in Section 3.2.1, the construction of a single-affiliation scheme
is just the first step of SAMS. To cope with the module conflictsin the single-
affiliation scheme, we have to make the modules data lines wider in order to
accommodate the conflicting data items. Furthermore, we have to arrange the
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Figure 3.4: SAMS data arrangement example with 4 modules

data properly in the two-dimensional storage, as shown in Figure 3.4. Note2n

in the figure is the capacity of the multimodule memory system. Part (1) of
the figure shows the linear address distribution in 4 memory modules which
satisfies both unit-stride and stride-4 family conflict freeaccess, and part (2)
illustrates the linear address distribution which satisfies both unit-stride and
stride-8 family conflict free access. We could see from the figure that the idea
of SAMS interleaving scheme virtually introduces a third dimension of address
flexibility, the offset in the row (data line), besides the module index androw
address6. The guideline of items placement in module row and offset issimple
yet effective: to pack the conflicting items into the same rowwhile maintaining
the natural order of the items in the local modules. As there is at most a pair of
conflicting items located in the same module on a parallel unit-stride access, a
row with width of two is enough for holding them.

6Row addressin this chapter denotes thelogical illusionof module organization where each
module consists of rows with the size of one data element or two (in case of the SAMS scheme).
In real memory cell arrays, aphysical rowmay have much larger size, in which case some bits
of the schemelogical row addressare used to index thephysical row offset.
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The SAMS interleaving scheme consists of three functions:(1) the module
assignment function which assigns an item in linear addressspace to a specific
module;(2) the row assignment function which determines the row in which
the item is placed; and(3) the offset assignment function which calculates
the offset of the item in the row. Since we have presented the module assign-
ment function in Section 3.2.2, we introduce the row assignment and the offset
assignment functions below:

• row assignment function:

r(a) =







⌊ a
2q+1 ⌋, s = 0

⌊ a
2q+1 ⌋, 1 ≤ s ≤ q

((

⌊ a
2q ⌋+ 1

)

%2n−q
)

/2, s > q

(s, q ∈ N) (3.2)

• offset assignment function:

o(a) =







aq, s = 0
as−1, 1 ≤ s ≤ q

aq, s > q

(s, q ∈ N) (3.3)

The notationsx/y and x
y

mean the quotient of integer division betweenx and
y . Note thatn is the number of bits of the linear address of the2q memory
modules. r(a) hasn − q − 1 bits, while o(a) is a single bit, because we
consider only two pieces of data per data line in the SAMS scheme.

We have proved that the SAMS scheme is capable of supporting both strided
and unit-stride vector accesses without module conflicts. The detailed mathe-
matical proofs of these properties are presented in Appendix A.

3.2.4 The Matched SAMS Scheme

In prior sections, we have introduced the SAMS scheme to simultaneously
support conflict-free unit-stride and strided memory accesses from onesingle
stride family. In this section, we will examine a special case of SAMS with the
original hardware scheme input parameters fixed at design time toq, called
Matched SAMS Scheme, which is able to support conflict-free vector accesses
for strides frommultiple(> 2) stride families without changing the internal
data layout.
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With s = q, the module assignment function, the row assignment function and
offset assignment function are simplified as follows:







m(a) =
〈

aq,
(

a ⊗ THq−1, q+1

)

%2q−1
〉

r(a) = a
2q+1

o(a) = aq−1

(q ∈ N) (3.4)

Let us considerq = 2, which means the Matched SAMS Scheme with 4 mem-
ory modules, for example. Withq = 2 we have

m(a) =
〈

a2,
(

a ⊗ TH1, 3

)

%2
〉

= 〈a2, (a ⊗ T3, 0)%2〉
= 〈a2, a3 ⊕ a0〉

where< ... , ... > denotes binary bits concatenation. Hence, the address map-
ping of the Matched SAMS Scheme with 4 memory modules is







m(a) = 〈a2, a3 ⊕ a0〉
r(a) = an−1:3

o(a) = a1

where the symbol⊕ denotes thebinary exclusive or(XOR) operation. The
address mapping of the above example is illustrated in Figure 3.4 (1). Taking
the base address 1 for example, the referenced linear address groups for stride
1, 2 and 4 vector accesses are{1, 2, 3, 4}, {1, 3, 5, 7} and{1, 5, 9, 13}, re-
spectively. As Figure 3.4 shows, all addresses in each groupcould be accessed
in parallel within the Matched SAMS Scheme. Indeed, the Matched SAMS
Scheme is capable of supporting conflict-free vector accesswith strides from
more than two stride families. Mathematic proof of this feature is presented in
Appendix A.

3.3 2DSMM: 2D Strided Multiaccess Memory Scheme

In a 2D address space environment, 2D addressing schemes is necessitated to
identify the locations of the data elements targeted by the 2D vector memory
access. A 2D addressing scheme consists of two components: the 2D module
assignment function which maps from a 2D address to the module index, and
the row assignment function mapping from a 2D address to the module local
address, as shown in Figure 3.5.
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4,0 4,1

Module index

Figure 3.5: 2D addressing scheme

In the 2DSMM scheme, there are2p+q(1 ≤ p ≤ q) parallel processing lanes
and their corresponding load/store units, and2p+q memory modules which are
arranged into a2p×2q array. All processing lanes access the memory modules
simultaneously, with the vertical access strideVS = σv × 2vs(σv is odd) and
horizontal strideHS = σh × 2hs (σh is odd). The addressing functions of the
2DSMM scheme are described as follows:

2D Module assignment function:
{

mv (i , j) = (i ⊗ Tv + α + β) %2p

mh(j) = (j ⊗ Th)%2q

2D Row assignment function:

r(i , j) =

(

i

2p

)

·
(

N

2q

)

+
j

2q

where

α =

(

j

2q+hs

)

%2p

β =

(

j

2q
· 2p−min(p,hs)

)

%2p
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Tv =

min(p,vs)−1
∏

k=0

Tk+max(p,vs),k

Th =

min(q,hs)−1
∏

k=0

Tk+max(q,hs),k

Coordinates(i , j) is the 2D address in the 2DSMM address space with the size
of M × N, where thei coordinate is also referred asvertical addressand the
j coordinatehorizontal addresshereafter. mv (i , j) is vertical memory mod-
ule assignment function andmh(j) is horizontal memory module assignment
function. The pair(mv ,mh) determine which memory module in the2p × 2q

module array the address(i , j) will be mapped to, as illustrated in Figure 3.6.

0,0 0,1 0,2 0,3 1,1 1,0 1,3 1,2 1,0 1,1 1,2 1,3 0,1 0,0 0,3 0,2

1,0 1,1 1,2 1,3 0,1 0,0 0,3 0,2 0,0 0,1 0,2 0,3 1,1 1,0 1,3 1,2

1,0 1,1 1,2 1,3 0,1 0,0 0,3 0,2 0,0 0,1 0,2 0,3 1,1 1,0 1,3 1,2

0,0 0,1 0,2 0,3 1,1 1,0 1,3 1,2 1,0 1,1 1,2 1,3 0,1 0,0 0,3 0,2

0,0 0,1

hv mm ,

Figure 3.6: Example of 2DSMM module assignment forN = 16, 2p = 2, 2q =
4, 2vs = 2, 2hs = 2

mv andmh are also calledvertical module indexandhorizontal module index,
respectively.r(i , j) determines the local address of element(i , j) in memory
module(mv ,mh). Tv andTh are XOR scheme address transformation matri-
ces taken from [36], as explained in Section 3.2.2.α andβ are column rotation
factors.α forces coarse grain rotation based on blocks of sizeM×2q+hs while
β exerts fine grain rotation based on blocks of sizeM × 2q.

The 2DSMM memory works in the following manner.M, N, p and q are
system design parameters which could not be modified after the system is
designed. More specifically,M and N determine the total capacity of the
2DSMM memory, andp and q determine the number of memory modules.
vs andhs are also system parameters which determineTv andTh, but they
can be configured during runtime.

The proposed 2DSMM scheme supports conflict-free strided row, block, for-
ward diagonal and backward diagonal access and continuous row and block
access. Figure 3.7 shows some examples of different access patterns. The
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Figure 3.7: 2DSMM access examples forN = 32, 2p = 2, 2q = 4, 2vs = 2, 2hs = 2

detailed mathematical proofs of these properties are presented in Appendix B.

3.4 Hardware Design and Implementation

Above, we have presented the formulas of the SAMS and 2DSMM schemes,
which can becustomizedto different access patterns, with the major parameter
being the stride familys. For any parallel memory scheme to be practically
useful, it is important to have efficient hardware implementation as the scheme
logic is in the critical path of every memory access. In this section, we will
examine the hardware implementation issues of the proposedscheme.

Figure 3.8 illustrates the organization of parallel memorysystem based on
our customizable parallel memory schemes. The vector processor core issues
memory access commands (base address and stride) to the Address Genera-
tion Unit (AGU), where the2q linear addresses are calculated in parallel and
then sent down to the customizable parallel memory system. The eight lin-
ear addresses are resolved by the Address Translation Unit (ATU) into eight
module assignments, eight row addresses and eight row offset addresses. After
that, the eight groups of row-offset pair and eight data items from input data
port (on a memory write) go to the address & data switch and getrouted to
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Figure 3.8: Parallel memory system based on customizable HW schemes

the proper memory modules according to their correspondingmodule assign-
ments. In case of a read memory access, after the memory module read latency
the eight read data are fed back to the vector processor via the data switch at
the bottom of Figure 3.8.

3.4.1 SAMS Hardware Implementation

We will focus on the hardware implementation of ATU for SAMS,as it is
the core of the parallel memory scheme. The remaining components of Fig-
ure 3.8 in the SAMS case are either trivial to implement (e.g., AGU), or are
common in all parallel memory schemes (e.g., the input and output switches,
the evaluation of which will be delayed in later sections), or are independent
of parallel memory schemes (e.g., the discrete memory modules). As we have
described in Section 3.2, the Address Translation Unit mapsthe linear ad-
dressesai(0 ≤ i ≤ 2q − 1) to the module-row-offset triplesm(ai ), r(ai ) and
o(ai ). Figure 3.9 illustrates the logic implementation of the address translation
process (⊕ denotes XOR logic). Note, in Figure 3.9, the bits selectionswith-
out the involvement ofs are simplystatic wire selections. The latter which
are completely fixed asn and q are fully determined by hardware (such as
a[n − 1 : q] in Figure 3.9 (b)), whereas those with involvement ofs result
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Figure 3.9: SAMS address translation logic: (a)Module assignment, (b)Row assign-
ment, (c)Offset assignment

Table 3.1: Delay and hardware usage of ATU

Configuration Delay (ns) Hardware Used

n q Logic Delay Wire Delay Total Slices LUTs

8 3 1.43 1.01 2.44 18 26

16 3 2.54 0.93 3.47 47 71

25 3 2.86 0.95 3.81 75 119

27 3 2.28 1.75 4.03 76 125

32 3 2.83 1.40 4.23 96 148

64 3 4.28 0.95 5.33 180 292

23 3 2.79 0.95 3.74 67 108

23 4 2.75 0.98 3.73 78 126

23 5 2.71 0.99 3.70 88 140
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multiplexors (such asas−1 in Figure 3.9 (c)). And the comparisons inr(a)
ando(a) logic(i.e. s ≤ q, s 6= 0 and1 ≤ s ≤ q) could be done and stored
a priori, therefore they are not in the critical path. Consequently, the critical
path of the row assignment logic is ann − q bit CLA followed by a 2-to-1
multiplexer, and that of the offset assignment is an (n − q)-to-1(incurred by
as−1, note0 ≤ s ≤ n − q) multiplexer and a 2-to-1 multiplexer. For the mod-
ule address assignment functionm(a), we have analyzed that after collapsing
and merging all the multiplexors in Figure 3.9 (c), we could get the simplified
hardware implementation withq independent (n − q + 1)-to-1 multiplexors
fed by 2-input XOR gates. Hence, the critical path of the module assignment
function is a 2-input XOR gate followed by a (n−q+1)-to-1 multiplexer. No-
tice that the module, row and offset assignment functions work independently,
therefore the critical path of ATU is the longest one among the three, which is
then − q bit Carry Look-ahead Adder followed by a 2-to-1 multiplexerin the
row assignment function.

It should be noted that, the critical path analyzed above is the one for conflict-
free access. For a bank-conflicting vector access, it will bedivided into a
sequence of conflict-free sub-vector accesses which are then serviced by the
parallel memory system back-to-back.

We have implemented the ATU in Verilog and synthesized it using Xilinx ISE
9.1i. The target FPGA device is Virtex2-Pro XC2VP30-7FG676. Table 3.1
summarizes the performance results of our design in terms ofdelay and hard-
ware utilization. The experiment is done under different configurations with
various module capacities (denoted byn) and number of modules (denoted by
q). For example,n = 23 means the address space (i.e. the capacity) of the
multimodule memory system is8M (223) words andq = 3 means there are
8 modules. We could see that the SAMS address translation logic has low
critical path delay, which is in the proximity of4 ns. In addition, the FPGA
logic resources consumption is trivial - less than1%. It is also shown in the
table that the critical path delay and resource consumptionscale well with the
capacity of the parallel memory and the number of memory modules.

3.4.2 Implementation of 2DSMM Scheme

Address Generation Unit (AGU)

The data read/write command from the SIMD processor directly goes to the
AGU (Figure 3.8), where the calculations of2p+q 2D access addresses from
the base address and access pattern are carried out. Supposethe base address
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Figure 3.10: 2DSMM address generation patterns

is (i , j), then the addresses for the six different access patterns are listed in Fig-
ure 3.10. For these calculations, multiplications7 of the following are needed.

2 · VS , 3 · VS , ... , (2p+q − 1) · VS

2 · HS , 3 · HS , ... , (2p+q − 1) · HS

Fortunately, they are not in the critical path, sinceVS andHS are configured
by the vector processor core before the actual memory accessstarts. There-
fore, the multiplications can be carried out in advance by the ALUs of the
baseline AGU8 and and stored in SRAM memories. With the multiplications
results at hand, the address generation is implemented in the way as shown in
Figure 3.11. We could see that the critical path of AGU contains one 5-input
multiplexer and onemax(log2 M, log2 N) -bit adder, and the logic resource
consumption is in the order of2p+q.

7Sincep andq are fixed at HW design time, hence the multiplications can be implemented
with shifters and adders.

8Baseline AGU denotes the standard vector AGU without particular support for customiz-
able parallel memory schemes such as SAMS and 2DSMM.
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Figure 3.11: 2DSMM address generation logic for six access patterns
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Address Translation Unit (ATU)

In the next step, the addresses generated by AGU go to the Address Translation
Unit and get processed in parallel. Address translation is the core of the entire
2DSMM mechanism. It accepts two dimensional addresses and transforms
them into the physical module numbers and module local addresses. For the
sake of discussion convenience, we repeat the 2DSMM scheme formulas in
the following.

Module assignment function:
{

mv (i , j) =
[(

i + (α + β) · 2vs
)

⊗ Tv

]

%2p

mh(j) = (j ⊗ Th)%2q

Row assignment function:

r(i , j) =

(

i

2p

)

·
(

N

2q

)

+
j

2q

where

α =
( j

2q+hs

)

%2p

β =
( j

2q
· 2p−min(p,hs)

)

%2p

Tv =

min(p,vs)−1
∏

k=0

Tk+max(p,vs),k

Th =

min(q,hs)−1
∏

k=0

Tk+max(q,hs),k

Under the constraints that bothM andN are power of two, the row assign-
ment function is actually implemented by an adder which addsthe proper bit
sections of 2D addressesi andj . So the major concern of address translation
logic is the module assignment function. The binary vector-matrix multipli-
cation where the structure of the matrix is variable could beimplemented in
XOR gate array with a multiplexer. Asq is fixed, the j

2q part in bothα and
β is actually selection of a fixed bunch of bits ofj , therefore no extra logic is
needed.j/2q

2hs part inα and j
2q ·2p−min(p,hs) part inβ could be implemented with

multiplexers for dynamic bits selection. The2p−min(p,hs) part ofβ would in-
troduce another multiplexer into the critical path, however it could be avoided
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Figure 3.12: 2DSMM address translation circuit withM = 1024, N = 256, 2p =
2, 2q = 4

by calculating this in advance becausep is constant andhs should be config-
ured at least one clock cycle before the actual memory accesses of the 2DSMM
memory would happen. One complete example of the address translation logic
is shown in Figure 3.12 (⊕ denotes XOR logic). In the example, the entire ca-
pacity of the 2DSMM memory is 1MB, which is consisted of8(2×4) memory
modules with data width 32-bit. The entire 2D address space is 1024 rows×
256 columns.

In summary, the critical path of the module assignment function is comprised
of one OR gate(2-input), one multiplexer(log2 M−p+1 -input), one CSA and
one CLA (both arep-bit; note the gate delay of CSA isO(1)); while the critical
path of the row address assignment function is one adder (log2(M ·N)− p− q

-bit). Both paths are independent from each other, therefore the critical path of
the address translation logic is the longer one. For practical cases such as the
example in Figure 3.12, the critical path is thelog2(M ·N)− p− q -bit adder.
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1,0 1,1 1,2 1,3 0,1 0,0 0,3 0,2 0,0 0,1 0,2 0,3 1,1 1,0 1,3 1,2

1,0 1,1 1,2 1,3 0,1 0,0 0,3 0,2 0,0 0,1 0,2 0,3 1,1 1,0 1,3 1,2

0,0 0,1 0,2 0,3 1,1 1,0 1,3 1,2 1,0 1,1 1,2 1,3 0,1 0,0 0,3 0,2

0,0 0,1 0,2 0,3 1,1 1,0 1,3 1,2 1,0 1,1 1,2 1,3 0,1 0,0 0,3 0,2
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1,0 1,1 1,2 1,3 0,1 0,0 0,3 0,2 0,0 0,1 0,2 0,3 1,1 1,0 1,3 1,2

1,0 1,1 1,2 1,3 0,1 0,0 0,3 0,2 0,0 0,1 0,2 0,3 1,1 1,0 1,3 1,2

0,0 0,1 0,2 0,3 1,1 1,0 1,3 1,2 1,0 1,1 1,2 1,3 0,1 0,0 0,3 0,2

0,0 0,1 0,2 0,3 1,1 1,0 1,3 1,2 1,0 1,1 1,2 1,3 0,1 0,0 0,3 0,2

1,0 1,1 1,2 1,3 0,1 0,0 0,3 0,2 0,0 0,1 0,2 0,3 1,1 1,0 1,3 1,2
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Figure 3.13: 2DSMM properties for address & data routing simplification
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Figure 3.14: 2DSMM address & data routing unit
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1,0 1,1 1,2 1,3 0,1 0,0 0,3 0,2 0,0 0,1 0,2 0,3 1,1 1,0 1,3 1,2
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1,0 7 1,2 1,3 0,1 0,0 0,3 0,2 0,0 0,1 0,2 0,3 1,1 1,0 1,3 1,2

2 0,1 3 0,3 4 1,0 5 1,2 6 1,1 7 1,3 0,1 0,0 0,3 0,2

Figure 3.15:Definition of access index for six 2DSMM access patterns
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Figure 3.16: 2DSMM address & data routing example (2p = 2, 2q = 2)

Address & Data Routing Unit

The resolved addresses from the ATU have to be proper routed before they
reach their destination memory modules. The function ofAddress & Data
Routing Unit(Switch in Figure 3.8) is to route the local addresses and data
items (on a memory write) to the module numbers and route datato output port
on a memory read. It should be noted that, basically a full crossbar switch is
indispensable if the2p+q addresses/data coming from the ATU go to the2p+q

memory modules in anad hocmanner, and the requirement of address/data
switch exists for any multiple module memory systems regardless of the pres-
ence of the memory scheme. Fortunately, Theorem 7 guarantees that for all
2DSMM access patterns except continuous row, when the access sequence in
the pattern are arranged in2p × 2q array, all accesses in the same column are
assigned to the samemh; for continuous row access, all accesses in the same
row are assigned to the samemv . Figure 3.13 is an example. In the figure, the
data items connected by dotted ellipse or arrows are assigned to the samemh,
and data connected by continuous ellipse are assigned to thesamemv . The
parameters in the example areN = 32, 2p = 2, 2q = 4, 2vs = 2, 2hs = 2.

With the help of the inherent properties of 2DSMM scheme, theaddress/data
routing circuitry could be largely simplified, as Figure 3.14 illustrates. The
“access index” at the left side of the figure denotes the predefined index in the
six access patterns, counting from 0 to2p+q − 1, as shown in Figure 3.15.

In Figure 3.14 there are2p+q incoming packages and each of them is com-
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prised of a module index pair(mv and mh, from ATU), a module local ad-
dress(from ATU) and a data item from input data port(on a memory write).
In the simplified routing circuitry, all incoming packages are grouped in two
different ways according to the access patterns. If the access is not the contin-
uous row access, then the incoming data are arranged into2q groups according
to their mh(this is stage one). Now there are2p packages in each group and
each package is consisted of amv , a module local address, and data(on a write).
Then each group isalignedaccording tomv of each package(this is stage two).
After the alignment, only module local address and data(on awrite) are kept
and they are already ordered in line with the module index, therefore, the local
addresses and data could go to the proper memory modules. This procedure
corresponds to the upper data flow in Figure 3.14. For the continuous row ac-
cess, the procedure corresponds to the lower data flow in the figure. We could
notice that it is also divided into two stages, however, the routing informa-
tion shifts for both stages, compared with the upper case. The two data flow
merges and the proper data set is selected according to the access pattern and
connected to the2p+q memory modules at the right side of the figure. Fig-
ure 3.16 shows an example for the routing process. For the sake of simplicity,
the number of memory modules in the example is2×2, and the routing shown
is for all the access patterns except continuous row access(the upper path of
Figure 3.14).mv andmh in Figure 3.16 are the resolved addresses of access
index 0, which guide the two stage routing for it as illustrated in bold line.
Note for the first stage routing, access index2 are treated in the same way with
access index0 because they have the samemh, which is shown in the figure by
a thin line following exactly the same way of the bold line in stage one.

Above is the description of inward address/data routing mechanism. The phi-
losophy of output data routing is simple: read data should goto where the ad-
dress is from. In other words, the outward data routing is theinverse procedure
of the inward case. Therefore for the outward data routing, the data flow goes
from the right side of Figure 3.14 to the left. The routing is also organized into
two stages just as the inward routing does, moreover it takesadvantage of the
same routing information(i.e.mv andmh) used in inward routing during the
two stages. The only difference is that the stage 1 of inward routing becomes
stage 2 of outward routing, and vice versa. The routing information is stored
in some registers at the beginning of the next clock cycle after inward routing
and it could therefore be used in the outward routing cycle, which is exactly the
next clock cycle after the inward routing(note the synchronous SRAM module
takes one cycle to read the data out).

The critical path of Address & Data Routing Unit is comprisedof three 2-



3.4. HARDWARE DESIGN AND IMPLEMENTATION 61

Table 3.2: 2DSMM scheme critical path and logic consumption

Name Critical Path Logic Consumption

Address Generation
Unit

one 5-input multiplexer and one
max(log2 M, log2 N) -bit adder

O(2p+q )

Address Translation
Unit

onelog2(M ·N)−p−q -bit adder O(2p+q )

Address & Data
Routing Unit

three 2-input multiplexers and two
OR gates (2p and2q -input each)

O(2p+q · (data width +
log2(M · N) − p − q))

Table 3.3: 2DSMM scheme storage consumption

Name SRAM Bits

Address Generation Unit 2p+q · log2(M · N)

Address & Data Routing Unit 2p+q · (p + q)

input multiplexers and two OR gates(2p and 2q -input each), among which
each stage contributes one multiplexer and one OR gate, and the access pattern
selection logic contributes another multiplexer. The logic consumption is in
the order of2p+q · (data width + local address width), wheredata width is
the data width of the 2DSMM memory, andlocal address width is the number
of address bits of each memory module, i.e.log2(M · N)− p − q.

Critical Path and Logic Consumption of 2DSMM Scheme

The critical path and logic consumption of 2DSMM scheme are summarized
in Table 3.2. Note, the logic consumption in the table is based on the count of
the parallel critical path circuitry. Table 3.2 only gives the combinational logic
consumption. For the 2DSMM scheme, the dominant SRAM consumption
comes from theVS · i andHS · i (i = 0, 1, 2 ... , 2p+q − 1) lookup table used in
ATU and the storage for routing information in Address & DataRouting Unit,
as shown in Table 3.3.

In summary, we could see that the 2DSMM scheme has relativelyshort crit-
ical path which basically increases in proportion to the logarithm of memory
size, and logic consumption which grows roughly in proportion to the num-
ber of memory modules. Therefore, it could potentially havegood scalability
with system parameters of memory size and memory module number. We will
examine this in more detail in the following section.
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Implementation in FPGAs

In the following we will see how the critical path delay, LUTs(lookup table)
consumption, SRAM bits consumption scale with the 2DSMM memory size.
The total memory size is the multiplication of memory modulenumber (i.e.
2p+q), memory module depth (number of data items per memory module, i.e.,
log(M · N) − p − q), and memory module data width. We will investigate
how the three factors independently influence the hardware implementation of
2DSMM memory.

Figure 3.17: 2DSMM memory module depth scaling in Stratix-II with2p = 2, 2q =
4, data width = 64

Figure 3.17 shows the scalability of critical path delay andlogic consump-
tion of the 2DSMM memory with memory module depth in Stratix-II FPGA.
From the first plot in the figure we could see that there is avery slight in-
crease in the critical path delay. This could be explained bythe analysis in
Table 3.2, which indicates that the critical path includes two adders of which
the input bits increase linearly with respect to the increase of log2 M and/or
log2 N. Consider the fact that the delay of a CLA is in proportion to the log-
arithm of number of its input data bits, it is clear that the critical path delay
grows in a logarithm(logarithm) manner with the increase ofmemory mod-
ule depth. This results the very slight increase of the critical path delay in
the first plot of Figure 3.17. As for the logic consumption, itis less than 8%
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ALUTs9 consumption and less than 2% SRAM bits of the FPGA resources
even for the largest memory size configuration of the experiment(8MB). For
the ALUTs consumption, we could see from the second plot of Figure 3.17
that there is no remarkable change during the scaling. Note the overwhelming
majority of the ALUTs consumption comes from the Address & Data Rout-
ing Unit in the experiment configuration, as show in Figure 3.18. Therefore,

Figure 3.18: 2DSMM ALUTs consumption breakdown in Stratix-II with2p =
2, 2q = 4, data width = 64, memorymodule depth=8192

the scalability of 2DSMM memory combinational logic consumption is deter-
mined by that of the Address & Data Routing Unit. From Table 3.2 we know
that the impact of memory module depth on the logic consumption is trivial, as
long as the change of logarithm of memory module depth is small compared
to datawidth(i.e.△(log2(M · N) − p − q)≪ data width), which is the case
for the experiment configurations and most of the real applications. For the
SRAM bits consumption, from Table 3.3 we know that the SRAM bits con-
sumption increases in a logarithm manner when scaling the memory module
depth. This is shown in the third plot of Figure 3.17.

Now we will have a look at 2DSMM memory scalability regardingdata width
of memory modules, as shown in Figure 3.19. Theoretically the data width
would not influence the critical path delay, however, we could see from the
first plot that there is some increase in critical path delay during the scaling
of data width. By further investigating the breakdown of critical path delay
we found that the increased part comes from the FPGA interconnection delay.
This could be further explained by the second plot of Figure 3.19. In the plot
of ALUTs consumption, we could see that the combinational logic consump-
tion grows linearly with the increase of data width (again, the X-axis is plotted

9ALUT: adaptive lookup table, a terminology from Altera for its LUTs in Stratix-II FPGAs.
See http://www.altera.com/literature/hb/stx2/stx2sii51002.pdf.
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in logarithm manner), which is exactly in accordance with the analysis in Ta-
ble 3.2 (Remember the majority logic consumption comes fromthe Address
& Data Routing Unit). With the huge increase in the logic consumption, the
2DSMM logic becomes more and more interconnection bounded(particularly
in the FPGA fabric), therefore the critical path grows as a consequence of in-
creased interconnection delay. From the third plot of Figure 3.19 we could see
that the data width does not influence the SRAM bits consumption, which is
also indicated in Table 3.3.

Figure 3.19: 2DSMM data width scaling in Stratix-II with2p = 2, 2q =
4, memory module depth = 32K

Finally we will check how 2DSMM scales with the number of memory mod-
ules, as shown in Figure 3.20. In this phase, the critical path delay grows
roughly in logarithm manner and a major part of the growth is caused by the
increase of FPGA interconnection delay due to the enormous logic expansion
in the Address & Data Routing Unit. The resource consumptionof both com-
binational logic and SRAM bits increases linearly during the scaling, which is
indicated precisely in Table 3.2 and Table 3.3.

We have also implemented the 2DSMM memory in Xilinx Virtex4
XC4VLX200 FPGA. We found the properties of the hardware implementation
results remain the same in Virtex-4, which further confirm the good scalability
of the hardware implementation of 2DSMM memory.
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Figure 3.20: 2DSMM memory module number scaling in Stratix-II with
data width = 16, memory module depth = 16K

3.5 Discussion

The most distinctive aspect of our scheme compared to the previous solutions
is that it avoids the module conflicts when the memory reference patterns go
back and forth between unit-stride and strided accesses, and thus truly-parallel
data access is supported. Unlike the out-of-order vector access scheme, our
proposal preserves the data sequence required by the vectorload/store units,
thus atomic parallel access is achieved for short vectors and peak performance
could be sustained for vectors as short as2q elements. The SAMS is a memory
scheme with no redundancy and high utilization of module resources. On the
other hand, the SAMS scheme is complementary to the existingtechniques,
which means that it could also take their advantages to improve system per-
formance. For instance, it adopts the idea of the dynamic scheme wheres can
be configured by the software at run time for different stridefamily access in
different execution phases. For long vectors, it could alsobe augmented with
out-of-order intra-vector access scheme to support conflict-free access for a
wider spectrum of stride families.

It should be noted that SAMS is just one of the set of parallel memory schemes,
which provide conflict-free access support for cross stridefamily vector ac-
cesses, under the configuration of 2D memory modules with wide data lines.
It has not yet been proved that SAMS scheme is optimal in termsof the number
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of strides supported, and the complexity of hardware implementation. There-
fore, it could be worthwhile to explore the design space of memory schemes
under the configuration of wide memory modules, to hopefullyfind a scheme
with better performance compared to SAMS.

Even inside the SAMS scheme itself, there is still space for performance im-
provement. As presented in the chapter, we have elaborated on the module
assignment function; however we chose the row assignment and offset assign-
ment functions straightforwardly. With the module assignment function fixed,
there are no means to enlarge the number of supported conflict-free strides as
the module conflict patterns are fixed with a fixed module assignment func-
tion. We also found that the row assignment function does notaffect neither
the module conflicts nor the hardware implementation of the SAMS scheme.
However, the offset assignment function, which determinesthe relative posi-
tions of the data items in the same row, do have some impact on the hardware
implementation. Namely, the offset assignment function determines the per-
mutation patterns of accessed data which should be supported by the data rout-
ing circuitry of the SAMS scheme. Therefore, investigationfor other offset as-
signment functions could also be helpful for better hardware implementation.

The simplicity of 2DSMM memory comes in the following way. First, it is the
simplicity of address translation unit which makes parallel address translation
possible. The other way of address translation in the context of parallel multi-
module memory for SIMD access is to use lookup table, as adopted in [118].
In that work, as the prime memory scheme is used, the modulo operations on
a prime number make the lookup table solution the only choicefor module
assignment function. However, the existence of lookup table not only results
in longer critical path and larger die area consumption, butalso wastes the
opportunity of parallel address translation because it is impractical to provide
each memory module with an independent lookup table. As a consequence
another stage of lookup table is utilized to get the other module assignments
from the one got from module assignment lookup table in [118]. Second,
the inherent characteristics of the six 2DSMM access patterns provide with
the a priori “access group” information which is very usefulfor the routing,
therefore allows replacing the full crossbar switch with a much simpler two-
stage switching circuitry.

Regarding the applications, both the SAMS and 2DSMM schemesare applica-
ble wherever the data level parallelism is exploited, to boost the performance of
data intensive applications with both unit-stride and strided memory accesses.
For instance, the SAMS scheme is adopted as on-chip local store for the Cell
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SPE, a typical SIMD processor [68], in Chapter 4 to improve the memory
access flexibility. Similarly, they can also be considered for integration as on-
chip buffer for GPP SIMD extensions, where the data alignment and permuta-
tion problem, which results from the lack of flexible memory access support,
remains a bottleneck for many applications [106,124]. It should be noted that
the integration of a SIMD buffer into a GPP introduces coherence problem, as
it will be deployed at the same level as the data caches in memory hierarchy.
However, this problem could be solved by either snooping mechanisms or by
the use of non-cacheable regions in the address space.

3.6 Summary

In this chapter, we proposed the SAMS scheme, which improvesthe previous
non-redundant interleaving schemes (with power-of-two memory modules) by
supporting both conflict-free access for both unit-stride and strided patterns.
In the SAMS approach, we created a hierarchical way of composing single-
affiliation memory scheme from a given multi-affiliation scheme. Further-
more, we added a new dimension of data access parallelism by representing
each memory module as a 2D storage to resolve the unit-strideaccess conflicts
in the single-affiliation scheme. In this way, SAMS providesatomic access
time for unit stride access, while it could preserve all benefits of the existing
cross-stride-family parallel memory schemes. To our best knowledge, SAMS
is the first non-redundant, power-of-two parallel memory scheme supporting
both strided and unit-stride conflict-free vector access.

In addition, we proposed the 2DSMM scheme based on the basic XOR scheme,
which supports fully concurrent strided access patterns ofhorizontal, block,
and diagonal access in 2D address space. Besides strided access, it also sup-
ports parallel continuous access patterns of horizontal and block access (on
predefined boundaries).

Hardware implementation results in FPGA technology suggest short critical
path of the SAMS address translation logic, which is a strongindication for
the feasibility of the proposed SAMS scheme in practical parallel memory
systems. Results also show that vector memory systems basedon the 2DSMM
scheme have the advantage of efficient hardware implementation as compared
to related work. In particular, we have demonstrated the good scalability of
2DSMM hardware implementation in terms of both critical path delay and
area consumption, with both theoretical analysis and implementation results.
Furthermore, the proposed schemes achieve high memory module utilization,
thanks to their non-redundancy nature.
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4
Providing Multiple Views to Data

E fficient SIMDization of applications is often hampered by the mis-
match between data representations in memory and those favored by
the SIMD processor. In this chapter, we propose to bridge thedis-

crepancy between data representations in memory and those favored by the
SIMD processor bycustomizing the low-level address mapping. To achieve
this, we employ the extended Single-Affiliation Multiple-Stride (SAMS) par-
allel memory scheme at an appropriate level in the memory hierarchy. This
level of memory provides both Array of Structures (AoS) and Structure of Ar-
rays (SoA) views for the structured data to the processor, appearing to have
maintainedmultiple layoutsfor thesame data. With such multi-layout mem-
ory, optimal SIMDization can be achieved. Our synthesis results using TSMC
90nm CMOS technology indicate that the SAMS Multi-Layout Memory sys-
tem has efficient hardware implementation, with a critical path delay of less
than 1ns and moderate hardware overhead. Experimental evaluation based on
a modified IBM Cell processor model suggests that our approach is able to
decrease the dynamic instruction count by up to 49% for a selection of real
applications and kernels. Under the same conditions, the total execution time
can be reduced by up to 37%.

4.1 Introduction

One of the most critical challenges in SIMD processing is imposed by the data
representation. By exploiting explicitly expressed data parallelism, SIMD pro-
cessors tend to provide higher performance for computationally intensive ap-
plications with lower control overhead compared to superscalar microproces-
sors. However, SIMDization suffers from the notorious problems of difficult
data alignment and arrangement, which greatly undermine its potential perfor-

69
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mance [11,106,124].

In both scientific and commercial applications, data is usually organized in a
structured way. A sequence of structured data units could berepresented either
in AoS (Array of Structures) or in SoA (Structure of Arrays) format. Such
a data representation predetermines, at the application level, the data layout
and its continuity in thelinear memory address space. It has been found that
most SIMDized applications are in favor of operating on SoA format for better
performance [46, 61]. However, data representation in the system memory is
mostly in the form of AoS because of two reasons. First, AoS isthe natural
data representation in many scientific and engineering applications. Secondly,
indirections to structured data, such as pointer or indexedarray accesses, are in
favor of the AoS format. Therefore, a pragmatic problem in the SIMDization
arises: the need for dynamic data format transform between AoS and SoA,
which results in significant performance degradation. To our best knowledge,
no trivial solution for this problem has been previously proposed. Our SAMS
Multi-Layout Memory system, presented in this chapter, supports contiguous
data access for both AoS and SoA formats. The specific contributions of our
proposal are:

• custom, low-level address mapping logic to manage individual internal
data layout and provide efficient memory accesses for both AoS and
SoA views;

• novel hardware/software interface for improved programmer productiv-
ity and additional performance gains;

• the SAMS scheme implementation in TSMC 90nm CMOS technology
with affordable critical path (< 1 ns) and its integration into the IBM
Cell SPE model;

• up to 49% improvement in dynamic instruction counts for realapplica-
tions and kernels, which is translated into a 37% reduction of the overall
execution time.

The remainder of the chapter is organized as follows. In Section 4.2, we pro-
vide the motivation for this work. In Section 4.3, the original SAMS scheme
and the proposed extensions are briefly described. The hardware implemen-
tation and synthesis results of the SAMS Multi-Layout Memory system and
its integration to the IBM Cell SPE are presented in Section 4.4. Simulated
performance of the SAMS memory in applications and kernels is evaluated in
Section 4.5. Finally, Section 4.6 summarizes the chapter.
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Figure 4.1: Vector-matrix multiplication: multiple working data sets

4.2 Motivation

Motivation Example: We shall examine the SIMDization of vector-matrix
multiplication, c = a × B , wherea andc are 1x3 vectors andB is a 3x3 ma-
trix with column-major storage. Although the involved computations are quite
simple, SIMDizing them to achieve optimal speedup is very difficult. Assum-
ing a 4-way SIMD processor, the first apparent drawback is that only 75% of
the available bandwidth could be utilized during vector multiplications for the
inner products. Afterwards, all the three elements of the vector multiplication
result have to be accumulated. However, this is not straightforward because
the three elements are located in different vector lanes while a vector operation
could be done in SIMD processors only when its operands are distributed in the
same vector lane. Therefore, a sequence of data shuffle operations is necessary
to rearrange the elements to be accumulated in the same lanes. Moreover, due
to memory alignment restrictions in many practical SIMD systems, neither the
second, nor the third column ofB can be accessed within a single vector load;
instead, they require additional load and shuffle instructions to fetch and rear-
range the data into the right format. As a consequence of thisrearrangement,
performance is penalized. Zero-padding can be used in some applications to
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struct vec3 {float a0[4], float a1[4], 

float a2[4]};

struct matrix3 {float b0[4], float 

b3[4], float b6[4], float b1[4], float 

b4[4], float b7[4], float b2[4], float 

b5[4], float b8[4]};

…

struct vec3 a, c;

struct matrix3 b;

vector float a0, a1, a2, b0, b1, b2, 

b3, b4, b5, b6, b7, b8, c0, c1, c2;

…

// load a with SoA format

a0 = *(vector float*)a.a0;

a1 = *(vector float*)a.a1;

a2 = *(vector float*)a.a2;

...

// load b with SoA format

…

// do computation

c0 = a0*b0+a1*b3+a2*b6;

c1 = a0*b1+a1*b4+a2*b7;

c2 = a0*b2+a1*b5+a2*b8;

// store results to c with SoA format

*(vector float*)c.a0 = c0;

*(vector float*)c.a1 = c1;

*(vector float*)c.a2 = c2;

struct vec3 {float a0, float a1, float a2};

struct matrix3 {float b0, float b3, float b6, float b1, float b4, 

float b7, float b2, float b5, float b8};

…

struct vec3 a[4], c[4];

struct matrix3 b[4];

vector float a0, a1, a2, b0, b1, b2, b3, b4, b5, b6, b7, b8, 

c0, c1, c2;

…

// load a with AoS format, transform it to SoA with shuffles

vector float tmp0 = *(vector float*)a;

vector float tmp1 = *(vector float*)(&a[1].a1);

vector float tmp2 = *(vector float*)(&a[2].a2);

a0 = spu_shuffle(tmp0, tmp1, pattern_0360);

a0 = spu_shuffle(a0, tmp2, pattern_0125);

a1 = spu_shuffle(tmp1, tmp2, pattern_0360);

a1 = spu_shuffle(a0, tmp0, pattern_5012);

a2 = spu_shuffle(tmp2, tmp0, pattern_0360);

a2 = spu_shuffle(a0, tmp1, pattern_2501);

// load b with AoS format, transform it to SoA with shuffles

…

// do computation

c0=a0*b0+a1*b3+a2*b6

c1=a0*b1+a1*b4+a2*b7

c2=a0*b2+a1*b5+a2*b8

// transform results from SoA to AoS format with shuffles, 

store them to c

...

struct vec3 {float a0, float a1, float a2};

struct matrix3 {float b0, float b3, float b6, float b1, float b4, float b7, 

float b2, float b5, float b8};

…

struct vec3 a[4], c[4];

struct matrix3 b[4];

vector float a0, a1, a2, b0, b1, b2, b3, b4, b5, b6, b7, b8, c0, c1, c2;

// global addresses in main memory: gaa (for a), gab (b), gac (c)

…

// reading data from main memory to multi-layout memory

AOS_DMA_GET(a, gaa, 4*sizeof(vec3), tag, vec3);

AOS_DMA_GET(b, gab, 4*sizeof(matrix3), tag, matrix3);

// load a with SoA view

BEGIN_MULTI_VIEW(vec3);

a0 = SOA_GET(&a[0].a0);

a1 = SOA_GET(&a[0].a1);

a2 = SOA_GET(&a[0].a2);

// load b with SoA view

BEGIN_MULTI_VIEW(matrix3);

b0 = SOA_GET(&b[0].b0);

b1 = SOA_GET(&b[0].b1);

…

b8 = SOA_GET(&b[0].b8);

// do computation

c0=a0*b0+a1*b3+a2*b6

c1=a0*b1+a1*b4+a2*b7

c2=a0*b2+a1*b5+a2*b8

// store c with SoA view

BEGIN_MULTI_VIEW(vec3);

SOA_PUT(&c[0].a0, c0);

SOA_PUT(&c[0].a1, c1);

SOA_PUT(&c[0].a2, c2);

// writing data from multi-layout memory to main memory

AOS_DMA_PUT(c, gac, 4*sizeof(vec3), tag, vec3);

AoS storage + 

SoA SIMDization
AoS storage + SoA SIMDization 

+ Multi-layout memory

SoA storage + 

SoA SIMDization

Figure 4.2: Sample vector-matrix multiplication code
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alleviate the data alignment problem, but at the cost of wasted memory space
and additional memory bandwidth which can become prohibitively expensive
for some applications (e.g. the Wilson-Dirac kernel).

Fortunately, it is common in applications with high data parallelism that the
processing is to be operated upon multiple independent datasets, just as Fig-
ure 4.1a suggests. The SIMDization method which exploits data parallelism in
single data set processing is still applicable, which will be referred to as “AoS
SIMDization scheme” in the chapter. However, we can also mapeach SIMD
operation to a batch of data sets to exploit inter-dataset parallelism, which
is referred to as “SoA SIMDization scheme”1. If the data storage scheme is
SoA, illustrated in Figure 4.1b, optimal performance gain of four times speed-
up could be potentially achieved. The example code for this case is shown
in Figure 4.2a. However, if the data format in memory is AoS, as suggested
in Figure 4.1c, the data rearrangement is inevitable, resulting in performance
degradation. The example code for this case (Figure 4.2b) suggests that, e.g., 6
shuffles are required to rearrange 3 vector elements ofa loaded from memory,
which are apparently non-trivial overhead compared to the actual vector-matrix
multiplication.

Problem Statement: From the above example, it can be observed that parallel
processing of a batch ofN data sets is more favorable for better utilization of
SIMD parallel datapath and thus results in higher performance. Therefore,
the SoA SIMDization scheme is preferable in most cases. Unfortunately, the
most common data layout in the main memory is AoS (as briefly discussed in
Section 6.1). This data representation discrepancy poses asignificant overhead
of dynamic data format conversions between the AoS and SoA.

Proposed Solution:The essential reason for the data format mismatch is that
there isno single optimal data layoutfor different data access patterns. For
operations based on indirections, the AoS storage scheme ispreferable since
access to fields inside a data set is contiguous; while for SIMD operations in
most cases, the SoA storage scheme is favorable. To bridge the data repre-
sentation gap, our idea is to design a memory system, which preserves the
benefits of both AoS and SoA layouts. We call such a system “multi-layout
memory” and its position and main functionalities are shownin Figure 4.3. In
such a system, the multi-layout memory is deployed between the main memory
and the SIMD processor, working as an intermediate data storage to provide
contiguous data access to both data fields within the same data set (like the
AoS layout) and the same field across consecutive data sets (like the SoA lay-

1Also known as “outer-loop vectorization” [107].
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Figure 4.3: The proposed multi-layout memory

out). Therefore, the penalty of dynamic conversion betweenthe AoS and SoA
data representations is completely avoided with the help ofthis multi-layout
memory. The vector-matrix multiplication code for this case is shown in Fig-
ure 4.2c. It can be observed that, the programmer can easily express multiple
views of the data arrays and the shuffle overhead is completely avoided.

It is worthy to mention that, assuming AoS layout in the linear address space,
the AoS view of data requires unit-stride access, while the SoA view requires
strided access, where the stride is determined by the size ofthe working data
structure. We will address this issue in the following section.

4.3 The Extended SAMS Scheme

4.3.1 Original SAMS Scheme

Given a specific physical memory organization and resources, parallel mem-
ory schemes determine the mapping from the linear address space to physical
locations, such as the module/bank number and row address. Vector access
is one of the most important memory reference patterns in SIMDized appli-
cations. Traditional parallel memory schemes in vector computers provide
conflict-free access for asinglestride family. To solve the module conflicts
encountered with the cross stride family accesses, severalenhancements have
been previously proposed in literature, such as the use of dynamic memory
schemes [35, 36], use of buffers [34], use of more memory modules [34], and
out-of-order vector access [144].

In Chapter 3, a parallel memory scheme, SAMS, was proposed tosimulta-
neously support conflict-free unit-stride and strided memory accesses. The
SAMS scheme is mathematically described by three functions: themodule as-
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… … … …

float a[100];

struct X {float x0, float x1, float x2} x[12];

struct Y {float y0, float y1, float y2, flat y3} y[12];

… … … …

… … … …
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… … … …
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Figure 4.4: Internal data layouts in SAMS Multi-Layout Memory

signment function(Equation 3.1); therow assignment function(Equation 3.2);
and theoffset assignment function(Equation 3.3). Detailed treatment of the
scheme and the functions was discussed in Section 3.2.

4.3.2 Proposed Extensions

We have made two important extensions to the original SAMS scheme (Chap-
ter 3), in order to better meet the requirements and constraints of practical
SIMD systems, related to (1)multi-layout support and (2)non-strided access.

(1)Multiple Data Layouts Support: In Chapter 3, it was assumed that the en-
tire SAMS memory system adopts a single low-level address mapping (linear
address↔module/row/offset) scheme and therefore manages unified internal
data layout pattern. Although this simplifies the memory access since it does
not need to indicate the stride family for which the accesseddata is optimized
(such information is maintained at the global scope), it significantly limits the
SAMS applications, since there are many applications with multiple structured
data, which require different internal data layouts for optimal access efficiency.
ThePoint andPointDatain streamcluster [20], and thespinor andgaugelink
in Wilson-Dirac kernel [63] are examples2 for such a requirement. Therefore,
instead of maintaining a single low-level address mapping at the global scope
for all data, our approachcustomizes the address mapping logicand manages

2See Section 4.5 for details.
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an individual internal data layoutfor each application data, as illustrated in
Figure 4.4. Figure 4.4 suggests that thestride familyis an essential parame-
ter in the SAMS scheme. Strided accesses with strides belonging to the stride
family supported by the internal data layout could be accomplished in a single
access; while accesses with strides from other stride families may cause mod-
ule conflicts. Furthermore, it is the stride family thatconfiguresthe low-level
address mapping and the resulting internal data layout in the memory. On the
other hand, the internal data layout/address mappingdetermineswhat stride
family it supports, as illustrated in Figure 4.4.

The configuration granularity of the internal data layout/ address mapping is
a complete 32 bytes data line. This equals 2×sizeof(vector register), which is
determined by the SAMS hardware. Since most relevant applications tend to
use large arrays, such granularity is well suited.

Obviously, with the extension to multiple data layouts, we have to keep track of
the appropriate access strides and stride families for different data. Fortunately,
this is not difficult as the information of the data structureand organization is
static in most cases. Therefore, it is quite feasible to provide the programmer
with some abstractions, e.g., C macros or library functions, to facilitate cap-
turing such structural information, as Figure 4.2c illustrates. Furthermore, it
is also possible for the compiler to automate the multi-layout memory usage
with proper compile-time analysis and optimizations.

(2)Definition for NaS: By convention, the stride familys ≥ 0. We extend this
definition by introducing a special symbolNaS(not a stride), which indicates
a special non-strided data storage pattern:







m(a) = a
2%2q

r(a) = a
2q+1

o(a) = a0

as demonstrated by the layout ofa in Figure 4.4. TheNaS pattern is a simple
yet efficient layout for data not touched by any strided memory access. The
intuition for this extension is the concern of power efficiency. For aligned and
continuous accesses, it is unnecessary to invoke the majority of the AGU, ATU
and In/OutSwitch logic in Figure 4.5b3. Therefore, those components may be
bypassed or even shutdown to save power, when the program does not need
unaligned or strided access. In the particular case of the SAMS integration
into the Cell SPE, the system further benefits from theNaS pattern. In the Cell
SPE, the local store is responsible for feeding instructions as well as data to

3See Section 4.4.1 for details.
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SPU, where the instruction fetch (IF) is always aligned and continuous - at the
granularity of 64 bytes [44]. Therefore, the instruction fetch engine can use the
NaS layout and completely remove the OutSwitch in Figure 4.5b from the IF
pipeline. The DMA engine can also use this pattern for regular data accesses.

4.4 Implementation and Integration

In this section, we investigate the implementation of the SAMS Multi-Layout
Memory system and present its integration into the IBM Cell SPE.

4.4.1 SAMS Organization and Implementation

Figure 4.5a illustrates a typical memory system of a SIMD processor. To re-
duce hardware complexity, a logically monolithic memory module with wide
data port is used to feed vector elements, which are contiguous in memory
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Table 4.1: Stride control signals

<usestride family,
usestride>

00 01 10 11

semantics narrow port
normal
access

wide port
access

narrow port unit-
stride access (e.g.
AoS view)

narrow port strided
access (e.g. SoA
view)

stride used in
AGU

1 AGU
bypassed

1 stride from
processor

stride family used
in ATU

NaS ATU
bypassed

stride family gen-
erated by AGU

stride family gener-
ated by AGU

# of accessed
elements

2q 2q+1 2q 2q

space, to the SIMD processor core. Figure 4.5b illustrates the organization
of a multi-layout memory system based on the extended SAMS scheme. The
vector processor core issues memory access commands, together with the base
address and stride (note the vector lengthVL=8) to the Address Generation
Unit(AGU). The eight linear addresses are generated in parallel in AGU and
they are then resolved by the Address Translation Unit(ATU)into eight mod-
ule assignments, eight row addresses and eight row offset addresses. After-
wards, the eight groups of row-offset pair and eight data elements from input
data port (on a memory write) go to the InSwitch and get routedto the proper
memory modules according to their corresponding module assignments. In
case of a memory read access, after the read latency of the memory modules4,
eight read data are fed back to the vector processor through the OutSwitch at
the bottom of Figure 4.5b. Two additional latencies are incurred by the in-
tegration of extended SAMS scheme to the original SIMD memory system
of Figure 4.5a: a)“inbound path”, which includes AGU, ATU and InSwitch;
b)“outbound path”, which consists of the OutSwitch only.

Address Generation Unit (AGU): AGU is responsible for parallel gener-
ation of the addresses of the2q vector elements, namely:{base, base +
stride, base + 2 · stride, · · · , base + (2q − 1) · stride}. Also, it computes
the stride family from the stride designated by the SIMD processor. Note there
are two control signals from the processor:usestride andusestride family.
Table 4.1 shows the semantics of these signals.

Address Translation Unit (ATU): determines the internal data layout of the

4The access latency of a memory module may be more than one clock cycle. In the chapter,
we assume the memory modules are fully pipelined.
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SAMS Multi-Layout Memory and input/output data permutation patterns used
in InSwitch and OutSwitch. ATU consists of three independent components:
the module assignment logic, the row assignment logic and the offset assign-
ment logic. Therefore, the critical path of ATU is the longest of the three,
which is then − q bit adder followed by a 2-to-1 multiplexor in the row as-
signment logic [56].

Table 4.2: Synthesis results of SAMS Multi-Layout Memory system

Critical Path Delay [ns] Logic Complexity [# of gates]

q = 2 q = 3 q = 4 q = 2 q = 3 q = 4

SAMS memory logic 0.76 0.87 1.01 6,906 26,784 82,538

equivalent # of 32-bit adders 2.0 2.3 2.7 1.5 5.9 18.1

In/OutSwitch: In the SAMS Multi-Layout Memory system, the InSwitch is a
2q × 2q+1 crossbar, while the OutSwitch is a2q+1 × 2q crossbar [56].

Unaligned Vector Access: Unaligned vector memory access is one of the
critical problems in SIMD processing systems [106, 124]. The SAMS Multi-
Layout Memory system supports unaligned unit-stride and strided vector loads
and stores. Details of a similar technique can be found in [11].

Memory Store Granularity: With 2q memory modules instead of a mono-
lithic memory module, the store granularity of the SAMS Multi-Layout Mem-
ory system is reduced from an entire vector of2q elements to a single ele-
ment. For example, the monolithic local store of IBM Cell SPEonly supports
loads/stores at the granularity of 128 bits; while with the SAMS scheme with
four memory modules and element size of 32 bits, stores of 1, 2or 4 32-bit
elements are well supported.

Wide Port Support: The SAMS scheme utilizes wide data lines to tolerate
module conflicts [56]. More specifically, each of the eight modules in Fig-
ure 4.5b has a data port width of two elements and the eight memory modules
are capable of servicing 16 elements per access, under the condition that it is
aligned to 16 elements boundary. To avoid additional hardware complexity, the
wide access port in Figure 4.5b is not responsible for reordering the 16 data
elements during a wide access. Indeed, the wide port behavesthe same as an
ordinary linear memory interface: it directly reads or writes all the 16 data el-
ements from/to the 8 memory modules with the row address ofbase

32 (assuming
4B element size), effectively bypassing all the SAMS logic.Therefore, for a
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read of a full data line of 16 elements from the SAMS Multi-Layout Memory,
the external data consumer has to do a post read shuffle after reading the data.
For a write, a pre-write shuffle is also necessary, since the internal data lay-
out of the SAMS Multi-layout Memory has non-linear structure as indicated
in Figure 4.4. For the external data provider/consumer of the SAMS memory,
there is a trade-off between the bandwidth and hardware complexity. We shall
further discuss this in Section 4.4.2.

Implementation and Synthesis Results: We have implemented the SAMS
Multi-Layout Memory system using Verilog and synthesized it for TSMC
90nm low-K process technology using Synopsis Design Compiler. Synthesis
results are provided in Table 4.2 for SAMS memory systems with 4, 8 and 16
memory modules, i.e.,q = 2, 3 and 4, which target 4-way, 8-way and 16-way
SIMD processing systems respectively. The critical path delays in Table 4.2
actually present the inbound path. We also calculated the relative delay and
area consumption of the SAMS system compared to a 32-bit adder synthesized
on the same technology node. Further investigation into thesynthesis results
indicates that the ATU, which is the core of the SAMS scheme, has quite fast
and compact hardware implementation: it only contributes to approximately15
of the entire critical path delay and its area overhead is even smaller.

4.4.2 Integration into the Cell SPE

To validate the performance of the proposed SAMS Multi-Layout Memory
in real applications, we implemented it in a model of the IBM Cell proces-
sor, aiming at computation intensive applications with high data parallelism
[68, 120]. The local store of the Cell Synergistic Processing Element (SPE)
is chosen for the deployment and implementation of the multi-layout mem-
ory system. Figure 4.6a depicts the original local store memory organization
in the Cell SPE. The fully pipelined 256KB local store is composed of four
M64kSRAM modules5. Note, the SRAM arrays are themselves single-ported,
therefore, the local store is accessed in a time-shared manner, as sketched in
Figure 4.6a (only the load path is shown for simplicity).

The integration of SAMS Multi-Layout Memory is illustratedin Figure 4.6b.
It is also referred to as “SAMS local store” in our experiments in Section 4.5.
Note, although in Figure 4.6b each M64k module is split into four submodules,
the total size of the SAMS local store is kept the same as the original one. The

5M64k is the 64KB SRAM module used in SPE local store which runs at the same speed as
the SPU core [38].
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“splitting” of SRAM arrays may not incur additional engineering effort, since
the original M64k is composed of 32 subarrays in the Cell local store physical
implementation [38].

An important change in hardware due to the SAMS integration is on the 128B
wide port buffers. As high bandwidth of the wide port is extraordinarily de-
sirable for both instruction fetch and DMA in SPE, we choose to provide full
bandwidth of the SAMS memory for the wide port. As discussed in Sec-
tion 4.4.1, in this case the wide port data of each SAMS duplicate needs to be
aligned to 32B boundary (this is guaranteed by the 128B access granularity of
the original local store wide port), and the data format needs to be adjusted to
the internal layout in SAMS memory modules. The latter requires two macros,
the Post-Read Shuffle (PRS) and the Pre-Write Shuffle (PWS), to be added to
the system, as suggested in Figure 4.6b. The critical path delay and area of
PRS and PWS are comparable to those of the SAMS ATU, which has less than
one cycle latency and trivial hardware consumption as discussed in 4.4.1.

The major impact on the SPU microarchitecture with the incorporation of the
SAMS Multi-Layout Memory in the SPE local store is that the local store
pipeline is lengthened, since the SAMS logic introduces additional delay. Ac-
cording to our synthesis results in Table 4.2, the critical path delay of the
SAMS inbound path for four memory modules (each with 64-bit port width)
is 0.76 ns, which corresponds to two times the latency of a 32-bit adder. In
the Cell SPU, 32-bit addition in the Vector Fixed Point Unit (FPU) fixed-point
is accomplished in a single cycle [97]. Therefore, we project the deployment
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of the SAMS memory in SPE’s local store will introduce 2(verystringent) or
3(considering pipeline latches and retiming costs) additional pipeline stages
for the inbound path. The outbound path takes one additionalcycle since it
has a critical path delay of 0.35ns which is less than the 0.38ns latency of a
32-bit adder in our study. To summarize, 4 cycles for a load (inbound and out-
bound paths) and 3 cycles for a store (only inbound path involved) is a realistic
estimation for the extra latency incurred by the integration of the SAMS Multi-
Layout Memory logic inside the SPU pipeline in our study. As in the original
SPE [120] the load and store instructions take 6 and 4 clock cycles respectively,
their costs will become 10 and 7 cycles in the modified SPE pipeline.

SAMS Memory Pipeline Optimization: Certain optimizations can be con-
sidered tohide the SAMS pipeline latency when taking into account target
microarchitecture pipeline specifics. For example, in our experiments with the
Cell SPE, there are two pipeline stages dedicated for register read, as shown
in Figure 4.7a. Note, for a narrow port local store access (Section 4.4.1), only
the base address (B) and data (Vector element[7:0], in case of a local store
write) need to be read from SPUgeneral-purpose vector register file(GPVRF),
as Figure 4.5b indicates. As a result, operations not dependent onB and
Vector element (e.g. calculations{2 ·stride, 3 ·stride, · · · , (2q−1) ·stride},
and the computation ofstride family from stride) can be performed as soon as
the RF read starts. Based on this observation, SAMS memory system can start
working after memory access instructions are issued (IS stages), resulting por-
tion of the SAMS delay effectively hidden by the RF stages, asillustrated in
Figure 4.7b. Note also the stride register is a dedicated register, hence writing
it takes one cycle (done at the beginning of RF2 forsetstrideinstruction) and
reading it incurs no delay at the beginning of RF1 for SAMS memory access
instructions, which allows for back-to-back issue ofsetstrideand SAMS mem-
ory access instructions. More aggressive optimizations may even hide the en-
tire AGU and ATU logic in vector RF read stages (as long as their latency fits),
by using a dedicated base register instead of GPVRF to exposeonly InSwitch
and OutSwitch (see Figure 4.5b) to the load/store pipeline.Furthermore, part
of the original 6 cycles load/store pipeline may be overlapped with the SAMS
logic (e.g. there is an adder macro in the original SPE load/store pipeline
to add the base and offset addresses for loads/stores with-d/x/l forms [38]),
as Figure 4.7b shows. Note, although not shown in Figure 4.7b, IF and all
backend pipelines are also increased by 2 and 3 stages, respectively. The for-
mer is because instruction engine fetches instructions from local store - thus
it also suffers the exposed SAMS latency (2 stages in the example as the last
OutSwitch stage is bypassed in a wide port read). The latter is necessary since
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SPE is an in-order issue processor hence equal number of pipeline stages be-
fore RF writeback are required to maintain writeback order.

4.5 Experimental Evaluation

Experimental Setup: We use CellSim developed at BSC [3], which is a
cycle-accurate full system simulator for IBM Cell/BE processor. The bench-
marks of our experiments consist of some full applications from PARSEC [20],
the Wilson-Dirac kernel from INRIA [63], and some micro kernels from IBM
Cell SDK [5]. These applications/kernels are selected since they are represen-
tative of application codes which operate heavily on array-based data struc-
tures. This type of code is widely used in scientific and engineering applica-
tions. Table 4.3 lists the major features of the selected benchmarks. Stream-
cluster from PARSEC is an online clustering kernel which takes streaming
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data points as input and uses a modified k-median algorithm todo the online
clustering. The parameters of streamcluster workload in our study are set as
follows: 1024 input points, block size 256 points, 10 point dimensions, 5-10
centers, up to 500 intermediate centers allowed. Fluidanimate is an Intel RMS
application and it uses an extension of the Smoothed Particle Hydrodynamics
(SPH) method to simulate an incompressible fluid for interactive animation
purposes [20]. The fluidanimate workload in our experimentsuses thesims-
mall input set provided by PARSEC. The 3D working domain for one SPE has
been shrunk to 9x9x30 cells and the maximal number of particles inside a cell
has been reduced to 10. The simulation runs for one time step to compute one
frame. Computing the actions of Wilson-Dirac operator contributes most of
the CPU time in the simulation of Lattice Quantum Chromodynamics (Lattice
QCD), which aims at understanding the strong interactions that bind quarks

Table 4.3: Selected benchmark suit

Benchmark Source Type Application
Domain

Working
Set

streamcluster PARSEC kernel data mining medium

fluidanimate PARSEC application animation large

Wilson-Dirac Operator INRIA kernel quantum
physics

medium

complex multiplication Cell SDK micro kernel - small

matrix transpose Cell SDK micro kernel - small

and gluons together to form hadrons [63]. The experiments inour study with
the Wilson-Dirac kernel focus on single SPE for floating point data, with the
4-way runtime data fusion scheme proposed in [63]. The problem size for the
Wilson-Dirac kernel for single SPE is 128 output spinors, with a computation
intensity of 1608 FP (floating point operations) per output spinor. Besides full
applications and large kernels, we also include some micro kernels, including
complex number multiplication [62] with workload set to 10Kmultiplications
and 4x4 matrix transpose [5] (with workload set to 10K transposes).

To compile the C code, we use two stand-alone compilers: PPU toolchain
2.3 (based on gcc 3.4.1) and SPU toolchain 3.3 (based on gcc 4.1.1). All
benchmark applications and kernels are compiled with the -O1 option.

To make the functionalities of the SAMS Multi-Layout Memoryavailable to
software, we have extended the SPU ISA and the programming interface. Ta-
ble 4.4 lists some of the new instructions, C intrinsics and macros for the en-



4
.5

.
E

X
P

E
R

IM
E

N
T

A
L

E
V

A
L

U
A

T
IO

N
85

Table 4.4: SAMS instructions, intrinsics and macros

Name Type Operation

setstride instruction set stride register

lqwsd/x/a instruction load a quad word withstride = stride register ands = log2(stride)† , d/x/a-form

stqwsd/x/a instruction store a quad word withstride = stride register ands = log2(stride)† , d/x/a-form

lqwsfd/x/a instruction load a quad word withstride = 1 ands = log2(stride register)† , d/x/a-form

stqwsfd/x/a instruction store a quad word withstride = 1 ands = log2(stride register)† , d/x/a-form

spusamssetstride (imm) intrinsic set stride register to valueimm

spusamslqws (a) intrinsic load a quad word at base addressa with stride = stride register ands = log2(stride)†

(unified form for lqwsd/x/a)

spusamsstqws (a,val) intrinsic store quad wordval at base addressa with with stride = stride register and s =
log2(stride)† (unified form for stqwsd/x/a)

spusamslqwsf (a) intrinsic load a quad word at base addressa with stride = 1 ands = log2(stride register)† (unified
form for lqwsfd/x/a)

spusamsstqwsf (a,val) intrinsic store quad wordval at base addressa with with stride = 1 ands = log2(stride register)†

(unified form for stqwsfd/x/a)

BEGIN MULTI VIEW(str) macro spusamssetstride(sizeof(str))

SOA GET(a) macro spusamslqws(a)

SOA PUT(a,val) macro spusamsstqws(a,val)

AOS GET(a) macro spusamslqwsf(a)

AOS PUT(a,val) macro spusamsstqwsf(a,val)

AOS DMA GET (la,ga,size,tag,str) macro spusamsmfcdma64(la,mfcea2h(ga),mfcea2l(ga),size,tag,
MFC GET CMD,log2sizeof(str)‡ )

AOS DMA PET (la,ga,size,tag,str) macro spusamsmfcdma64(la,mfcea2h(ga),mfcea2l(ga),size,tag,
MFC PUT CMD,log2sizeof(str)‡ )

†Stride family(s) calculation is done in AGU (see Figure 4.5b).
‡log2sizeofis a new C keyword we implemented in spu-gcc (log2sizeof(str)=log2 (sizeof(str)), wherelog2 is done at compile time).
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hanced SPE with SAMS integration (also referred to as “SAMS SPE”). To
reflect the changes in the architecture, we have modified the spu-gcc backend
to generate optimal code for the SAMS SPE, including automatic selection of
appropriate instructions for unaligned memory access and flexible access gran-
ularity. The load latency and branch penalty have also been updated for proper
instruction scheduling. Besides the compiler, the CellSimsimulator has also
been modified accordingly.

Before elaborating on the experiments, we compose a list on major changes
of the SAMS SPE over the original SPE and their cons and pros inTable 4.5.
Note, the pipeline optimizations discussed in Section 4.4.2 are not applied in
our evaluation.

It should be noted that although there are eight SPEs available in the Cell pro-
cessor, we only use a single one in our experiments, since we want to focus
on the performance impact of the SAMS Multi-Layout Memory onSIMDiza-
tion. Our techniques are orthogonal to those for efficient parallelization of data
parallel applications on multiple processor cores.

Benchmarks SIMDization: In both applications of streamcluster and flu-
idanimate, the house keeping work (such as data preparation), scalar code
dominated by branches (such as building the neighbor table in fluidanimate),
and work suited to be done in the global scope (e.g., rebuilding the grid in flu-
idanimate) is done by PPU, while the majority of the computation is offloaded
to the SPU. When data are ready in the main memory, the PPU triggers SPU to
start processing. SPU reads a portion of data into its local store by DMA trans-
fers, processes them and writes (using DMA) the results backto main memory.
The baseline Wilson-Dirac kernel is already SIMDized and heavily optimized
on the original SPE using SoA SIMDization scheme. Therefore, our optimiza-
tions based on the SAMS SPE only involve the elimination of dynamic data
format conversion overhead. The micro kernels of complex number multipli-
cation and matrix transpose are normally used as one step in asequence of data
operations in the SPE local store. Therefore, DMA transfersare not invoked
in our experiments with them.

It should be noted that for all experiments except streamcluster, the SoA
SIMDization scheme is adopted since it gives better performance over AoS, in
both the original and the SAMS SPEs. As for the memory access patterns, the
AoS access of the SAMS local-store is used in all benchmarks for data trans-
fers between the main memory and the local-store (illustrated in Figure 4.1c).
During execution, however, four benchmarks access the local-store with the
SoA access and one - streamcluster - uses both SoA/AoS.
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Table 4.5: Changes over the original SPE and their impact

Changes over original SPE Impact on overall performance, hardware cost and programming
co

ns

Latency of store is increased from 4 cycles

to 7 cycles

Normally no noticeable (negative) impact on performance unless there is serious

register spilling.

Latency of load is increased from 6 cycles to

10 cycles

May incur significant performance degradation if instruction execution could not

hide the long load latency.

Penalty of a taken branch is increased from

18 cycles to 21 cycles∗
Impact on overall performance is usually negligible since the portion of (taken)

branches in total executed instructions is normally small in SPU.

Area overhead Trivial - less than 2 32-bit adders (see Table 4.2).

pr
os

Reduction of number of executed

loads/stores as a result of hardware support

for flexible memory access alignment,

granularity and stride

Reduction in execution time and memory traffic (This is particularly favorable

in Cell SPE since reduction in LS traffic also decreases the chance of LS port

conflict⋆).

Reduction ofglue instructions for data rear-

rangement (e.g. data format transform be-

tween AoS and SoA)

Reduction in execution time can be considerable when a nontrivial number of

glue instructions are incurred in SPU code due to data formatrearrangement.

Support for unaligned and strided memory

accesses with intrinsics; Support for multi-

ple views of data in memory with easy-to-

use abstractions

Programmer and compiler friendly: hardware takes care of details of low-level

data layouts in memory and data format conversions; programmers and compil-

ers are relieved from such burdens and therefore can focus onhigh-level opti-

mizations of the application.

∗Only the inbound path(3 stages) are exposed to instruction fetch.
⋆Note the single-port LS is shared by data load/store, instruction fetch and DMA transfer.
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Table 4.6: SPU dynamic instruction count and execution time

Benchmark
Memory Instruction Count Total Instruction Count Execution Time (cycles)

Original SPE
(load/store)

SAMS SPE
(load/store)

R Original
SPE

SAMS
SPE

R Original SPE SAMS SPE R

streamcluster 12,790,400
(11,084,211/
1,706,189)

10,331,056
(9,079,100/
1,251,956)

19% 78,850,693 45,117,363 43% 251,783,087 224,622,745 11%

fluidanimate 4,888,924
(3,043,109/
1,845,815)

1,772,207
(680,436/
1,091,771)

64% 33,106,575 22,515,460 32% 95,284,379 74,148,296 22%

Wilson-Dirac
Operator

13,863
(13,077/786)

11,375
(10,551/824)

18% 77,038 63,510 18% 75,975 62,035 18%

complex multi-
plication

15,392
(10,256/5,136)

15,419
(10,272/5,147)

0% 42,008 26,693 36% 96,242 73,137 24%

matrix transpose 81,950
(40,974/40,976)

81,979
(40,992/40,987)

0% 167,766 85,893 49% 283,121 179,690 37%
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Experimental Results: We evaluate the performance by measuring the ap-
plication execution time on SPU. Table 4.6 suggests the experimental results.

For the streamcluster benchmark, it is not obvious whether the AoS or the SoA
SIMDization scheme gives better performance, since it depends on the input
data, the load latency and the quality of spu-gcc instruction scheduling. Al-
though the critical loop is SIMDized with the AoS SIMDization scheme, for
the rest of the code, the loops involving distance calculation are SIMDized with
SoA scheme, to achieve better SIMD datapath utilization. The major perfor-
mance improvement of the SAMS SPE comes from the support for unaligned
vector and scalar memory accesses in the SAMS local store, asshown by the
19% reduction of memory instructions and 43% of total instructions. How-
ever, as the two-level indirection has serious negative impact on performance
especially in SAMS SPE (it has longer load latency), and the large number
of branches in the source code which could not be well handledby SPU also
incur substantial performance overhead (around 14% execution time is on IF
stall for the original SPE and 20% for the SAMS SPE since it haslonger IF
latency), the overall performance gain is only 11%, as shownin Table 4.6.
For such applications, further effort to make major modifications to both the
data representation and the control flow at algorithm level would pay-off for
better SIMDization performance, on both the original and the SAMS SPEs.
Nonetheless, streamcluster represents a class of applications where both AoS
and SoA SIMDization schemes are applied on the same data at different appli-
cation phases. In such cases, the SAMS Multi-Layout Memory’s capability of
providing multiple data views with high efficiency enables flexible choices of
optimal SIMDization schemes in different scenarios.

In fluidanimate, most execution time is spent on computing the density and
acceleration for each particle, by accumulating densitiesand forces between
the current particle and all neighboring particles in validrange. Since the
data parallelism in computing a single particle pair is verylimited, the SoA
SIMDization scheme is used to vectorize the code, so that in each batch of
processing the interoperation between 4 particles in the current cell and a par-
ticle in a neighboring cell are evaluated. Although optimizations are equally
deployed in both the original and the SAMS SPEs, the SAMS SPE gives supe-
rior performance for three major reasons. First, the 3D position, velocity and
acceleration data are maintained in AoS format in main memory, therefore the
dynamic format conversion overhead is incurred in the original SPE. Second,
as the 3D particle data components are not aligned to 16B memory addresses,
an alignment problem occurs in the original SPE. Third, frequent scalar mem-
ory access in the code incurs significant performance overhead in the original



90 CHAPTER 4. PROVIDING MULTIPLE V IEWS TO DATA

SPE. All three overheads are removed in the SAMS SPE, leadingto the 22%
reduction of execution time as shown in Table 4.6. Note, the number of stores
(shown in 3rd column of Table 4.6) in our SoA SIMDized fluidanimate is sig-
nificantly larger than loads. The reason is explained as follows. As the actual
number of particles in current cell (maximal 10) is known only at runtime,
therefore 3 batches of processing (dealing with 4, 4, and 2 particles in the cur-
rent cell respectively) are necessary for computing one neighboring particle.
Furthermore, each batch has to update the density and acceleration of the cur-
rent particles and the neighboring particle. As a result, the stores of the particle
data is doubled for current cells with 5∼8 particles and tripled for current cells
with 9∼10 particles, compared to current cells with only 1∼4 particles, for
each neighboring particle. In contrast to the duplicated stores, the loads of
particles in current cell is shared among all particles in all neighboring cells,
and the load of the neighboring particle is invoked only onceregardless of the
number of particles in current cell. This explains the unusual disparity between
the number of dynamic loads and stores in the SAMS SPE. In the original SPE,
the number of loads (shown in 2nd column in Table 4.6) are larger than stores
because each unaligned load incurs two aligned loads and each unaligned store
incurs a load-modify-store sequence.

The main problem that prevents SIMDizing the computation ofWilson-Dirac
operator efficiently is the multiple patterns of accessing the same spinor and
gauge link data [63]. For efficient SIMDization, the authorsintroduce the
runtime data fusion technique in [63], which is basically a SoA SIMDization
scheme with rearrangement of data from AoS to SoA format at runtime. Con-
sequently, it also suffers from the overhead of dynamic dataformat conversion.
With our SAMS Multi-Layout Memory, the spinor and gauge linkdata are ac-
cessed in both AoS and SoA formats (for computation) with high efficiency,
therefore the data rearrangement overhead is completely eliminated. Addition-
ally, there are 80 loads overhead per 4 output spinors (therefore 20*128=2560
loads overhead in total for 128 spinors) due to partial use ofthe loaded spinor
and gauge filed data in the original code with the original SPE(the partial use
of memory bandwidth also results from the mismatch between the data lay-
out in the local store and that used in the SPU). With the SAMS local store,
such overhead is effectively removed, resulting the reduced number of exe-
cuted load instructions. Altogether, the execution time isreduced by 18% in
the SAMS SPE, as shown in Table 4.6.

In complex number multiplication, with the common AoS representation of
complex number array, load and store of the real/imaginary part of consecu-
tive complex numbers require SoA view of the array. With the multiple view
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capability of the SAMS memory, the real vector and imaginaryvector can be
loaded directly with one single strided access, instead of loading the mixture
of them and extracting the real and imaginary parts using shuffle instructions,
as the source code in [62] did. Therefore, although the memory accesses count
is the same for both the original and the SAMS SPEs, the kernelstill achieved
a significant performance gain with the SAMS SPE as a result ofthe reduction
of the glue instructions.

In 4x4 matrix transpose, if each row (4 elements) of the matrix is treated as a
basic structure, and the original matrix is stored in the AoSformat, then ac-
cessing a row requires AoS view of the row array, while accessing a column
requires the SoA view. With the SAMS local store, the transpose procedure
is accomplished in a simple manner: first load 4 columns of theinput ma-
trix directly (with SoA view) into registers (afterwards the matrix has been
effectively transposed), and then store them to the output buffer. Any shuffle
instructions to pack the transposed rows from the original rows in the origi-
nal SPE are completely eliminated. This explains the significant performance
improvement by the SAMS SPE with the 37% suggested in Table 4.6.

To summarize, experimental results demonstrate that the SAMS Multi-Layout
Memory is a feasible solution for many data rearrangement problems (such
as format conversion between AoS and SoA) popular in SIMD processors.
Multiple views of array-based data structures provide bothprogramming effi-
ciency and performance improvement for applications operating on such data
structures. Additionally, the support for unaligned vector and scalar memory
accesses is also a plus for most applications on SIMD processors. Although,
the SAMS memory inevitably introduces certain hardware complexity and a
longer local store pipeline, with careful consideration ofthe hardware design
trade-offs, the local store latency can be controlled. Further, the SIMD pro-
cessor can exploit the typical streaming nature of vectorized applications by
fetching multiple vectors back-to-back, so that the memorylatency can be
amortized and tolerated. Therefore the performance degradation due to the
longer local store latency are be minimized6.

6E.g., 12% performance loss in Wilson-Dirac kernel when local store latency increases from
6 cycles to 10 cycles, with the same code running on the original SPE. Note the overall perfor-
mance results in Table 4.6 have already taken this factor into account.
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4.6 Summary

In this chapter, we proposed the SAMS Multi-Layout Memory tosolve the
data rearrangement problem in general and to reduce the dynamic data format
conversion overhead in particular. The idea is to easily express the preferred
view of the data structures in software and let the hardware customize the low-
level address mapping logic for optimal data access using this information.
Synthesis results for TSMC 90nm CMOS technology node suggest reason-
able latency and area overhead of the proposed SAMS memory. To investigate
the performance improvement gains, SAMS was integrated into the IBM Cell
SPE model, and simulated using real applications. Experiments suggest that,
for applications which require dynamic data format conversions between AoS
and SoA, our multi-layout memory hardware together with theaccompany-
ing software abstractions improve the system performance by up to 37% and
simplify the program SIMDization.

Note. The contents of this chapter is based on the the following paper:

C. Gou, G. Kuzmanov, G. N. Gaydadjiev, SAMS Multi-Layout Memory:
Providing Multiple Views of Data to Boost SIMD Performance, Proceed-
ings of the 24th ACM International Conference on Supercomputing (ICS’10),
pp. 179–188, Tsukuba, Japan, June 2010.Best Paper Award
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Addressing On-chip Bank Conflicts

O ne of the major problems with the GPU on-chip shared memory is
bank conflicts. We analyze that the throughput of the GPU processor
core is often constrained neither by the shared memory bandwidth,

nor by the shared memory latency (as long as it stays constant), but is rather
due to thevaried latenciescaused by memory bank conflicts. This results in
conflicts at the writeback stage of the in-order pipeline andcauses pipeline
stalls, thus degrading system throughput. Based on this observation, we inves-
tigate and propose a novelelastic pipelinedesign that minimizes the negative
impact of on-chip memory bank conflicts on system throughput, by decou-
pling bank conflicts from pipeline stalls. Simulation results show that our pro-
posed elastic pipeline together with the co-designedbank-conflict aware warp
schedulingreduces the pipeline stalls by up to 64.0% (with 42.3% on average)
and improves the overall performance by up to 20.7% (on average 13.3%) for
our benchmark applications, at trivial hardware overhead.

5.1 Introduction

The trend is quite clear that multi/many-core processors are becoming per-
vasive computing platforms nowadays. GPU is one example that uses mas-
sive lightweight cores to achieve high aggregated performance, especially for
highly data-parallel workloads. Although GPUs are originally designed for
graphics processing, the performance of many well tuned general-purpose
applications on GPUs have established them among one of the most attrac-
tive computing platforms in a more general context – leadingto the GPGPU
(General-purpose Processing on GPUs) domain [1].

In manycore systems such as GPUs, massive multithreading isused to hide
long latencies of the core pipeline, interconnect and different memory hier-

93
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archy levels. On such heavily multithreaded execution platforms, the overall
system performance is significantly affected by the efficiency of both on-chip
and off-chip memory resources. As a rule, the factors impacting the on-chip
memory efficiency have quite different characteristics compared to the off-chip
case. For example, on-chip memories tend to be more sensitive to dynamically
changing latencies, while bandwidth limitations are more severe for off-chip
memories. In the particular case of GPUs, the on-chip first level memories, in-
cluding both the software managed shared memories and the hardware caches,
are heavily banked, in order to provide high bandwidth for the parallel SIMD
lanes. Even with adequate bandwidth provided by the parallel memory banks,
however, applications can still suffer drastic pipeline stalls, resulting in sig-
nificant performance losses. This is due to unbalanced accesses to the on-chip
memory banks. This increases the overhead in using on-chip shared memories,
since the programmer has to consider the bank conflicts. Furthermore, often
the GPU shared memory utilization is constrained by such overhead.

In this chapter, we analyze that the throughput of the GPU processor core
is often hampered neither by the on-chip memory bandwidth, nor by the on-
chip memory latency (as long as it stays constant), but rather by the varied
latencies due to memory bank conflicts, which end up with writeback conflicts
and pipeline stalls in the in-order pipeline, thus degrading system throughput.
To address this problem, we will investigate novelelastic pipelinedesign that
minimizes the negative impact of on-chip memory bank conflicts on system
throughput. More precisely, this chapter makes the following contributions:

• careful analysis of the impact of GPU on-chip shared memory bank con-
flicts on pipeline performance degradation;

• a novelelastic pipelinedesign to alleviate on-chip shared memory con-
flicts and boost overall system throughput;

• co-designedbank-conflict aware warp schedulingtechnique to assist our
elastic pipeline hardware;

• pipeline stalls reductions of up to 64.0% leading to overallsystem per-
formance improvement of up to 20.7% under realistic scenario.

The remainder of the chapter is organized as follows. In Section 5.2, we pro-
vide the background and motivation for this work. In Section5.3, we analyze
the GPU shared memory bank conflicts problem from latency andbandwidth
perspective, and identify the mechanism through which shared memory bank
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conflicts degrade GPU pipeline performance. Based on the findings, we dis-
cuss our proposed elastic pipeline design in Section 5.4. The co-designed
bank-conflict aware warp scheduling technique is elaborated in Section 5.5.
Simulated performance of our proposed elastic pipeline in GPGPU applica-
tions is evaluated in Section 5.6, followed by some general discussions of our
simulated GPU core architecture along with the elastic pipeline in Section 5.7.
Finally, Section 5.8 summarizes the chapter.

5.2 Background and Motivation

In this section, we will first introduce some GPU related background and their
shared memory accesses. Then we provide a motivating example.

5.2.1 Shared Memory Access on GPU

GPU utilization has spanned far beyond graphics rendering,covering a wide
spectrum of general-purpose computing known as GPGPU [1]. The program-
ming models of GPU (such as OpenCL [8] and CUDA [109]) are generally re-
ferred to asexplicitly-parallel, bulk-synchronousSPMD (Single Program Mul-
tiple Data). In such programming models, the programmer extracts the data-
parallel section of the sequential application code, identifies the basic working
unit (typically an element in the problem domain), and explicitly expresses the
same sequence of operations on each working unit in akernel. Multiple kernel
instances (calledthreadsin CUDA) are running independently on GPU cores.
The parallel threads are organized into a two-level hierarchy, in which a ker-
nel (grid in CUDA) consists of parallel CTAs (Cooperating Thread Array, or
block in CUDA), with each CTA composed of parallel threads, as shown in
Figure 5.1(a). Explicit, localized synchronizations and on-chip data sharing
mechanisms (such as CUDA shared memory) are supported inside each CTA.

During execution, a batch of threads from the same CTA are grouped into a
warp, which is the smallest unit for the pipeline front-end processing (i.e.,
warp scheduling, fetching and decoding stages in Figure 5.1(b)) in GPU cores,
as illustrated in Figure 5.1. For high efficiency, warps are executed on the fine-
grain multithreaded GPU core in a SIMD fashion. Figure 5.1 shows a warp
configuration of 5 threads per warp and a SIMD data path consisting of five
lanes. The warps are scheduled and issued to the pipeline in an interleaved
manner which is also known asbarrel processing[141].

GPUs rely mainly on massive hardware multithreading to hideexternal DRAM
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Figure 5.1: (a)CUDA threads hierarchy; (b)thread execution in GPU corepipeline; (c)GPU chip organization
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__global__ void aesEncrypt128( unsigned * result, unsigned * inData,

int inputSize) {

__shared__ UByte4 tBox0/1/2/3Block[256];

__shared__ UByte4 stageBlock1/2[BSIZE];

unsigned tx = threadIdx.x;

...

unsigned op1 = stageBlock2[posIdx_E[mod4tx*4]   + idx2].ubval[0];

unsigned op2 = stageBlock2[posIdx_E[mod4tx*4+1] + idx2].ubval[1];

unsigned op3 = stageBlock2[posIdx_E[mod4tx*4+2] + idx2].ubval[2];

unsigned op4 = stageBlock2[posIdx_E[mod4tx*4+3] + idx2].ubval[3];

op1 = tBox0Block[op1].uival;

op2 = tBox1Block[op2].uival;

op3 = tBox2Block[op3].uival;

op4 = tBox3Block[op4].uival;

...

stageBlock1[tx].uival = op1^op2^op3^op4^keyElem;

...

}

(I)

shared

memory

loads:

no bank 

conflict

shared memory loads:

bank conflicts!

shared memory store: 

no bank conflict

(II)

(III)

(IV)
 ! ! ! " ! ! ! #

Figure 5.2: AES source code

latencies. In addition, on-chip memory hierarchies are also deployed in GPUs
in order to provide high bandwidth and low latency. Such on-chip memories
include, software managed caches (shared memory), or hardware caches, or a
combination of both [51]. To provide adequate bandwidth forthe GPU parallel
SIMD lanes, the shared memory is heavily banked. However, when accesses to
the shared memory banks are unbalanced, shared memory bank conflicts occur.
For example, with the memory access pattern shown on top of Figure 5.1(b),
data needed by both lanes 0 and 4 reside in the same shared memory bank 0. In
this case ahot bankis formed at bank 0, and the twoconflictingaccesses have
to beserialized, assuming a single-port shared memory design1. As a result,
the GPU core throughput may be substantially degraded, as tobe exemplified
by the following example.

5.2.2 Motivating Example

A snapshot of the AES encryption kernel source is shown in Figure 5.2. The
code shown there deals with the second encryption stage. First, the stage in-
put data indexes are loaded from shared memory regionstageBlock2(phase I).
Then the stage input data are loaded from shared memory regions tBox*Block
(phase II), with the indexes from phase I. Afterwards the data is processed
(phase III), and finally stored to the shared memory regionstageBlock1(phase
IV). The other stages of the encryption process work similarly. In phase II
an irregular access pattern calledindirection or gather is required, causing

1Even with dual-port shared memory banks, such serialization can not be completely
avoided when the bank conflict degree is higher than two.
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Figure 5.3: Effect of elastic pipeline in: (a)reducing pipeline stallsand (b)improving
performance

shared memory bank conflicts during AES execution. As a result, the ker-
nel suffers from a large number of pipeline stalls and non-trivial performance
loss. With our proposed elastic pipeline design (Section 5.4) together with the
bank-conflict aware warp scheduling technique (Section 5.5), the number of
pipeline stalls is reduced by 48.2%, which translates to an overall performance
improvement of 10.5%, as Figure 5.3 shows.

5.3 Problem Analysis

In this section, we will first analyze the latency and bandwidth implications of
GPU shared memory bank conflicts, then identify and analyze the mechanism
how shared memory bank conflicts degrade GPU pipeline performance.

5.3.1 Latency and Bandwidth Implications

GPUs use a large number of hardware threads to hide both function unit and
memory access latency. Such extreme multithreading requires a large amount
of parallelism. The needed parallelism, using “Little’s law” [92], can be cal-
culated as follows:

Needed parallelism = Latency × Throughput (5.1)

For GPU throughput cores, this means the required number of in-flight op-
erations to maintain peak throughput equals the product of pipeline latency
and SIMD width. For thestrict barrel processing (See Section 5.7) where all
in-flight operations are from different HW thread contexts,this directly deter-
mines the required amount of concurrent threads. For other cases in general,
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the needed parallelism is proportional to the concurrent threads number. As
a result, a moderate increase in pipeline latency can be effectively hiddenby
running more threads. For example, the GPU core configuration used in our
evaluation employs a 24-stage pipeline with SIMD width of 82. Hence, assum-
ing four extra stages for tolerating shared memory bank conflicts, the pipeline
depth is increased from 24 stages to 28. In this case, the number of threads
to hide the pipeline latency (function unit/shared memory)is penalized, by an
increment from 192 to 224, according to Equation 5.1. This isnormally not
a problem, for both the GPU cores (where there are adequate hardware thread
contexts), and the application domains targeted by GPUs (with enough paral-
lelism available).

It is also worth noting that, unlike CPUs, program control flow speculation is
not needed in GPUs thanks to the barrel processing model [141]. Therefore,
the increase in pipeline latency will not incur pipeline inefficiency associated
to deeper pipelines [134].

On the other hand, the peak bandwidth of the shared memory is designed
to feed the SIMD core, as illustrated by the pipeline model shown in Fig-
ure 5.1(b)), where the number of shared memory banks equalssimd width3.
Therefore, bandwidth is naturally not a problem when GPU shared memory
works at peak BW. However, intuitively, when the shared memory bank con-
flicts are severe, thesustainedbandwidth can drop dramatically. Moreover, it
may eventually become the bottleneck of the entire kernel execution. In such
cases no microarchitectual solution exists without increasing the shared mem-
ory raw bandwidth.

To facilitate our discussion, we use the following definition of bank conflict
degreeof SIMD shared memory access:
Bank conflict degree: the maximal number of simultaneous accesses to the
same bank during the same SIMD shared memory access from the parallel
lanes. Following this definition, the conflict degree of a SIMD shared memory
access ranges from 1 tosimdwidth. For example, the SIMD shared mem-
ory access in Figure 5.1(b) has a conflictdegree of 2. In general, it takes
⌈

conflict degree
#shared memory ports

⌉

cycles to read/write all data for a SIMD shared memory
access.

2This is in accordance with a contemporary NVIDIA GTX280 architecture [108]. Similar
pipeline configurations are also widely used in research GPUmodels [17,150].

3Note, in practical implementations, the number of shared memory banks can be multiple
of (e.g.,2X ) the SIMD width, all running at a lower clock frequency compared to the core
pipeline. The bottom line is, the peak BW of the shared memoryis at least be capable of
feeding the SIMD core [108].
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Table 5.1: Benchmark shared memory BW requirement

Benchmark name r conflict degreeavg r × conflict degreeavg

AES encypt 36.1% 1.54 0.56

AES decypt 35.9% 1.53 0.55

Reduction 4.0% 3.07 0.12

Transpose 3.7% 4.50 0.17

DCT 21.6% 3.33 0.72

IDCT 21.2% 3.33 0.71

DCT short 10.3% 2.75 0.28

IDCT short 10.3% 2.75 0.28

Naturally, it depends on an application’s shared memory accessintensityand
conflict degreewhether or not it is shared memory BW bound. Assume the
available shared memory BW,BWavail , allows access of one data element per
core cycle for all SIMD lanes. In this case, a single shared memory instruc-
tion’s bandwidth requirement equals itsconflict degree. This is due to the fact
that this instruction occupies the shared memory forconflict degree cycles
during the execution. Suppose the ratio between #executed shared memory
access instructions and all instructions isr . Then the shared memory BW can
become a bottleneckif and only if the available BW is smaller than the re-
quired BW, for the entire GPU kernel execution:

BWavail < BWreq

i.e.,

1 < r × IPCnor × conflict degreeavg

Considering the normalized IPC per SIMD lane,IPCnor , is no larger than 1,
we see that the shared memory BW is a bottleneckiff

r × conflict degreeavg > 1 (5.2)

Table 5.1 shows the values ofr (denoted as “shared memory intensity” in Ta-
ble 5.5) andconflict degreeavg (“average bank conflict degree” in Table 5.5)
in real kernel execution. As can be observed in Table 5.1, Equation 5.2 holds
for none of the GPU kernels in our experiments. This indicates we have large
shared memoryBW margin, as far as bank conflicts are concerned. In other
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words, we have sufficient amount of shared memory BW to sustain peak IPC,
even bank conflicts.

This insight is very important, since it reveals the opportunity to improve over-
all performance, without increasing the raw shared memory BW. In the rest of
the chapter, we will see how moderate microarchitectural refinement can be
created to solve the problem.

5.3.2 Bank Conflicts Impact on Pipeline Performance

The baseline in-order, single-issue GPU core pipeline configuration is illus-
trated on the top of Figure 5.4(a). The warp scheduling stageis not shown,
and only one of the parallel SIMD lanes of the execution/memory stages is
depicted in Figure 5.4(a) for simple illustration4. Meanwhile, although only
sub-stages of the memory stage (MEM0/1) are explicitly shown in the figure,
other stages are also pipelined for increased execution frequency. ti denotes
execution time in cyclei , andWi denotes warp instruction fetched in cyclei .

As Figure 5.4(a) shows,Wi is a shared memory access with a conflict degree
of 2, and it suffers from shared memory bank conflict in cyclei + 3, atMEM0
stage. The bank conflict holdsWi at MEM0 for an additional cycle (assuming
single port shared memory), until it gets resolved at the endof cyclei+4. In the
baseline pipeline configuration with unified memory stages,the bank conflict
in cycle i + 3 has two consequences: (1) it blocks the upstream pipeline stages
in the same cycle, thus incurring a pipeline stall which is finally observed by
the pipeline front-end in cyclei + 4; (2) it introduces a bubble into theMEM1
stage in cyclei + 4, which finally turns into a writeback bubble in cyclei + 5.

Notice the fact thatWi+1 execution does not have to be blocked byWi , if
Wi+1 is not a shared memory access. Thus a possible pipeline configuration
which is able to eliminate the above mentioned consequence (1) is possible, as
Figure 5.4(b) shows. With the help of the extraNONMEMpath,Wi+1 is now
no longer blocked byWi , instead it steps into theNONMEMpath whileWi is
waiting at stageMEM0 for the shared memory access conflict to be resolved,
as Figure 5.4(b) shows. Unfortunately, this cannot avoid the writeback bubble
in cyclei+5. Moreover, the bank conflict ofWi in cyclei+3 causes writeback
conflict5 at the beginning of cyclei + 6, which finally incurs a pipeline stall at
fetch stage in the same cycle, as shown in Figure 5.4(b).

4Please refer to Figure 5.1(b) for the pipeline details.
5Note the writeback throughput for a single issue pipeline is1 instruction/cycle at maximum.



102
C

H
A

P
T

E
R

5
.

A
D

D
R

E
S

S
IN

G
O

N
-C

H
IP

B
A

N
K

C
O

N
F

L
IC

T
S

MEM0IF MEM1 WBID EXE

ti-1 Wi-1

ti

ti+1

ti+2

ti+3

ti+4

ti+5

Wi

Wi

Wi

Wi-1

Wi-1

Wi-1

Wi-1

Wi-1

Wi

Wi

Wi+1

Wi+1

Wi+1

Wi

ti+6 Wi

ti+7

Wi+1

Wi+1

Wi+1

 

 

 

 

 

 

 

 

Wi+2Wi+3 Wi+1

Wi+2Wi+3

  

Pipeline stall due to shared 

memory bank conflict

Pipeline stall due to 

downstream stage stall

Bubble seen at 

pipeline back-end

Stall seen at 

pipeline front-end

Wi+2

IF WBID EXE

ti-1 Wi-1

ti

ti+1

ti+2

ti+3

ti+4

ti+5

Wi

Wi

Wi

Wi-1

Wi-1

Wi-1

Wi-1

Wi-1

WiWi+1

Wi+1

Wi+1

ti+6 Wi

ti+7 Wi+1

 

 

 

 

 

 

 

 

  

Wi+1

MEM0 MEM1

Wi
Wi+1

Wi

Wi+1
Wi+2

Wi+2

Wi+3

Wi+3

Wi+4

Wi+4

Wi+5

Wi+5

Pipeline stall due to 

writeback conflict

Link between shared memory 

bank conflict and pipeline stall

(a) (b)

NONMEM0 NONMEM1

Figure 5.4: Baseline in-order pipeline: (a)unified memory stages and (b)split memory stages



5.4. ELASTIC PIPELINE DESIGN 103

Our observation: Through the above analysis, we can see that the throughput
of the GPU core is constrained neither by the shared memory bandwidth, nor
by the shared memory latency (as long as it stays constant), but rather by the
varied execution latencies due to blocking memory bank conflicts. The vari-
ation in execution latency incurs writeback bubbles and writeback conflicts,
which further causes pipeline stalls in the in-order pipeline. As a result of the
above the system throughput is decreased.

5.4 Elastic Pipeline Design

Based on the analysis of the GPU shared memory bank conflict problem, we
will introduce our elastic pipeline design in this section.Its implementation
will be presented, with emphasis on the conflict tolerance, hardware overhead
and pipeline timing impact.
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Figure 5.5: Elastic pipeline

To address the problem discussed above, we propose an elastic pipeline design
which is able to eliminate the negative impact of shared memory bank con-
flicts on system throughput, as shown in Figure 5.5. Comparedwith the base-
line pipeline with split memory stages in Figure 5.4(b), themajor change is
the added buses to forwardmatured instructionsfrom EXEandNONMEM0/1
stages to the writeback stage. This effectively turns the original 2-stageNON-
MEM pipeline into a 2-entry FIFO queue (we will refer to it as “NONMEM
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queue” hereafter). Note, the output from theEXEstage can be forwarded di-
rectly to writeback only if it isnot a memory instruction, whereas forwarding
from NONMEM0to writeback is always allowed. Such non-memory instruc-
tions can bypass some or all memory stages, simply because they do not need
any processing by the memory pipeline. As Figure 5.5 shows, by forward-
ing matured instructions in theNONMEMqueue to the writeback stage, the
writeback conflict is removed, and thus the link between bank- and writeback
conflicts is cut and the associated pipeline stall is eliminated.

5.4.1 Safe Scheduling Distance and Conflict Tolerance

For ease of discussion, we first define the following warp types:
Memory warp : a warp which is ready for pipeline scheduling and is going to
access any type of memory (e.g., shared/global/ constant) in its next instruction
execution.
Shared memory warp: a ready warp which is going to access on-chip shared
memory in its next instruction execution.
Non-memory warp: a ready warp which is not going to access any memory
type during its next instruction execution.

In Figure 5.5 it is assumed thatWi+1 is a non-memory instruction. Otherwise,
Wi+1 will be blocked atEXEstage in cyclei+4, sinceWi is pending atMEM0
in the same cycle, due to its shared memory bank conflicts. Such a problem
exists even ifWi+1 is not a shared memory access6. To avoid this problem, we
have the constraint ofsafe memory warp schedule distance, defined as:
Safe memory warp schedule distance: the minimal number of cycles be-
tween the scheduling of a shared memory warp and a following memory warp,
in order to avoid pipeline stall due to shared memory bank conflicts.

It is easy to verify the relationship betweensafe mem dist (short for “safe
memory warp schedule distance”) and the shared memory bank conflict de-
gree, in the following equation:

safe mem dist =

⌈

conflict degree

#shared memory ports

⌉

(5.3)

The safe memory warp schedule distance constraint requiresthat memory
warps should not be scheduled for execution in nextsafe mem dist − 1 cy-
cles after a bank-conflicting shared memory warp is scheduled. For example,

6Note, in such case, even if there exists a third path (with fixed number of stages) for that
memory access type, writeback bubbles cannot be avoided, due to the same phenomenon illus-
trated in Figure 5.4(b).
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safe mem dist for Wi in Figure 5.5 is
⌈

2
1

⌉

= 2, which means that in the next
cycle, only non-memory warps can be allowed for scheduling.

It is important to point out that, the elastic pipeline handles bank conflicts of
any degreewithout introducing pipeline stalls, as long as thesafe mem dist

constraint is satisfied. We will discuss this in more detail in Section 5.5.

5.4.2 Out-of-order Instruction Commitment

In Figure 5.5, the elastic pipeline shows the behavior of out-of-order instruc-
tion commitment. For GPU cores withstrict barrel processing(Section 5.7)
(assumed in our evaluation), it is not a problem since the in-flight instructions
are from different warps. In the case ofrelaxed barrel processingin which
consecutively issued instructions may come from the same warp (but without
data dependence), out-of-order instruction commitment within the same exe-
cution context may occur. This is penalized by the pipeline being unable to
support precise exception. Possible solutions are discussed in Section 5.7.

5.4.3 Extension for Large Warp Size

Above we have assumed#warp size=simdwidth. In real GPU implementa-
tions, however, the number of threads in a warp can be a multiple of GPU core
pipeline SIMD width7. In this case, a warp is divided into smallersubwarps
with the size of each equaling the number of SIMD lanes. All subwarps from
the same warp are executed by the SIMD pipeline consecutively. Therefore,
warp size/simdwidth free issue slots are needed for a warp to be completely
issued into the pipeline. Moreover, each warp will occupy the SIMD pipeline
for at leastwarp size/simdwidth cycles during execution. Consider for exam-
ple warp size/simd width = 2. In this case bothWi andWi+1 in Figure 5.5
will have to execute the same shared memory access instruction for the first
and second half of the same warp, respectively. SinceWi is blocked at stage
MEM0 in cycle i + 4, Wi+1 is unable to step intoMEM0 from theEXEstage
at the beginning of the same cycle. This resultsWi+1 being blocked atEXE
and all upstream pipeline stages being blocked in cyclei + 4, thus incurring a
pipeline stall.

To solve this problem, an extension has to be adopted to the elastic pipeline
shown at the top of Figure 5.5. In the extension, we introduceanother source

7For example, there are 32 threads per warp in CUDA and 8 SIMD lanes in NVIDIA GPUs
before the Fermi [51] generation.
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of elasticity to theMEM path, by placing before theMEM0stage a (warp size/
simd width − 1)-entry FIFO queue (“PREMEMqueue” in Figure 5.6). With
the help of thePREMEMqueue, the elastic pipeline can handle all consecutive,
back-to-back issued bank-conflicting SIMD shared memory accesses from the
same warp, regardless of the conflict degree of each.

WB

EXE

MEM0 MEM1

data returned from interconnect

0

1 A

B

PREMEM queue

NONMEM queue

PREMEM

NONMEM0 NONMEM1

Figure 5.6: Elastic pipeline logic diagram

The logic diagram of the final elastic pipeline with the extension for large
warp size is shown in Figure 5.6, for the case with two memory stages and 1-
entryPREMEM queue. The numbers inside the multiplexers denote the MUX
inputs priority (smaller numbers have higher priorities).For example, the data
returned from interconnect is assigned with the highest priority (it is loaded
from the external main memory after hundreds of cycles delay); whereas only
when there is no available data from elsewhere can the data output from stage
EXEbe written back (if it is not a memory access).

With the elastic pipeline configuration of Figure 5.6,Wi+1 in Figure 5.5 will
be buffered in thePREMEMqueue in cyclei + 4, while Wi+2 will directly
step into writeback stage at the beginning of cyclei + 5.

To summarize, the elastic pipeline adds two FIFO queues to the baseline
pipeline: theNONMEM queue with a depth of M and thePREMEMqueue
with a depth of N, where

M = #MEM stages (5.4)

N =

⌈

warp size

simd width

⌉

− 1 (5.5)

5.4.4 Hardware Overhead and Impact on Pipeline Timing

The additional hardware overhead as compared with the baseline pipeline is
summarized in Table 5.2. The metric for the logic complexityof pipeline
latches is that of a pipeline latch in a single SIMD lane. As wecan see in



5.5. BANK -CONFLICT AWARE WARP SCHEDULING 107

Table 5.2: Elastic pipeline HW overhead per GPU core

Type Logic complexity Quantity

Pipeline latches simd width M+N

(M+3)-to-1 MUX M+2 1

(N+1)-to-1 MUX N 1

Table 5.2, the area consumption of the additional pipeline latches is in the or-
der of(M + N) · simd width. Considering smallMs andNs in realistic GPU
core pipeline designs (e.g.M=4,N=3 in our evaluation), this additional cost is
well acceptable. The hardware overhead of the two multiplexers is negligible.

The control paths of the two multiplexers are not shown in Figure 5.6, since
they are simply valid signals from relevant pipeline latches at the beginning
of each stage, and are therefore not in the critical path. Compared with the
baseline pipeline, all other pipeline stages’ timing is untouched, with only one
exception of theEXEstage, as illustrated in Figure 5.68. There are two separate
paths in which theEXEstage is prolonged: path A and B, as marked by the two
dash lines in Figure 5.6. A is the (N+1)-to-1 multiplexer andB is the (M+3)-
to-1 multiplexer listed in Table 5.2. With standard critical path optimizations
such as thepriority on late arriving signaltechnique [19], both A and B only
incur an additional latency of 2-to-1 MUX for theEXE stage. Therefore, the
increased latency to stageEXE is that of a 2-to-1 MUX in total, which will not
noticeably affect the target frequency of the pipeline in most cases (assumed
in our experimental evaluation).

5.5 Bank-conflict Aware Warp Scheduling

As discussed in Section 5.4.1, in order to completely avoid the pipeline stall
due to shared memory bank conflicts, the constraint ofsafe memory warp
schedule distancemust be satisfied. Otherwise, two consequences will hap-
pen: 1) thePREMEMqueue will get saturated, which results in pipeline stalls;
and 2) theNONMEMwill get emptied, which results in writeback starvation.
In the end the pipeline throughput is degraded. In order to cope with this
problem, warp scheduling logic should prevent any memory warp from being

8Note, although not shown in Figure 5.4(a), there is a MUX at the end ofMEM1stage in the
baseline pipeline, since an arbitration to select writeback data from either inside the GPU core
pipeline or from the interconnect is needed.
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scheduled in the time frame ofwarp safememdist (Equation (5.7)) cycles af-
ter a bank-conflicting shared memory warp is scheduled for execution. This is
called “bank-conflict aware warp scheduling”, discussed next.

5.5.1 Obtaining Bank Conflict Information

In order to apply bank-conflict aware warp scheduling, we have to first find out
which instructions will cause shared memory bank conflicts,and their corre-
sponding conflict degree. This information may be obtained in two ways: 1)
static program analysis; 2) dynamic detection. We chose dynamic bank con-
flict detection instead of compile-time analysis in our implementation for two
reasons. First, some shared memory access patterns (and therefore the bank
conflict patterns) are only known at runtime. This is the casefor regular access
patterns (e.g. 1D strided) whose pattern parameters (e.g.,the stride) are not
known at compile time, or irregular accesses whose bank conflict patterns can
not be identified statically (such as the AES example). Second, there is no ad-
ditional hardware cost incurred directly by the dynamic detection, as the shared
memory bank conflict detection logic is needed in the baseline pipeline9.

Note, for warp sizes larger than the number of SIMD lanes, thebank conflict
degree of theentire warpis the accumulation of all subwarp SIMD accesses,
as given by the following equation:

warp bkconf degree =

⌈ warp size
simd width⌉−1

∑

i=0

conflict degreei (5.6)

whereconflict degreei is the shared memory bank conflict degree of subwarp
i, which is measured by the hardware dynamically.warp bkconf degree is
obtained by an accumulator and a valid result is generated atfastest every
⌈

warp size
simd width

⌉

cycles (if there is no pipeline stall during that time).

Accordingly, the safe memory warp schedule distance in Equation (5.3) is ex-
tended in the following:

warp safe mem dist =









∑⌈ warp size
simd width⌉−1

i=0 conflict degreei

#shared memory ports









(5.7)

9The shared memory has to identify the conflict degree of each SIMD shared memory access
(i.e.,conflict degreei in Equation (5.6)) in order to resolve it.
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Figure 5.7: Bank-conflict aware warp ready signal generation

And the safe memory warp schedule distance constraint now requires that the
scheduling interval between bank-conflicting shared memory warp and mem-
ory warp should be no less thanwarp safememdist cycles.

It is very important to note that, the bank conflict degree of the last sched-
uled shared memory warp can not be obtainedin timeby simply checking the
warp bkconf degree accumulator on the fly. This is due to the fact that it may
have not reached memory stages or finished shared memory accesses yet when
its bank conflict information is needed by the warp scheduling logic. There-
fore, we need topredict warp bkconf degree for a shared memory warp be-
fore the real value becomes valid, by only its shared memory instruction PC.
In our design, we implement a simple prediction scheme whichpredicts the
bank conflict degree of a shared memory instruction to be the one measured
during thelast executionof the same instruction.

5.5.2 Bank Conflict History Cache

In order to maintain the historic conflict degree information, we implement
a small privatebank conflict history cachedistributed among the GPU cores,
as shown in Figure 5.7. Each time a new kernel is launched, both the bank
conflict history cache and thelast warp bkconfdegreecounter are cleared.
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The cache is updated whenever a warp execution of shared memory in-
struction gets resolved and thewarp bkconfdegreeaccumulator generates
a valid value for it10. Whenever a shared memory warp is scheduled, the
last warp bkconfdegreecounter is set to its last warp bank conflict degree
in history, by checking it in the conflict history cache. If a cache miss occurs,
then thelast warp bkconfdegreecounter is set to a default value (0 in our de-
sign). The memory warp mask is generated by checking if the safe memory
warp schedule distance constraint is violated. Note, in ourdesign we assume
the warp scheduling stage knows whether or not a ready warp isa shared mem-
ory access (the“warp to schedis shmemaccess”signal in Figure 5.7), or a
memory access (the“warp is memory access”signal). This can be done eas-
ily with negligible overhead. For example, we can look up thecommitting
warp’s next instruction type in a per-core type bit-vector (initialized at kernel
launch time) at pipeline writeback stage (only 2 bits per PC per kernel are
enough for this purpose), and setup the 2-bit type register associated with the
committing warp (only 2 bits per a hardware warp context).

When we use the bank conflict history cache to predict the conflict degree of
scheduled shared memory access, the result is incorrect in two situations: (1)
when a cache miss happens (e.g., compulsory misses due to thecold cache after
a new kernel is launched) and unfortunately the default output value generated
is different from the actual conflict degree; (2) when the conflict degree of the
same shared memory instruction varies among consecutive execution. Case (1)
is unavoidable for any kernel. Fortunately, its impact on overall performance
is usually negligible. Case (2) occurs only in kernels with irregular shared
memory access patterns and dynamically changing conflict degree (e.g., AES).
It is important to note that, incorrect prediction of the shared memory bank
conflict degree in the elastic pipeline will not necessarilyresult in pipeline
stalls. Indeed, the pipeline will be stalled only when the predicted value is
smaller than the actual conflict degree and there is at least one memory warp
scheduled which violates the safe memory warp schedule distance constraint.
The impact of incorrect bank conflict degree prediction on pipeline stalls is
shown in Section 5.6.1.

10Note, in our design the conflict degree value from the accumulator has been decreased by
˚

warp size

simd width

ˇ

before written to the conflict history cache, in order toalign the value for instruction
with no bank conflict to zero.
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5.5.3 Proposed Warp Scheduling

With the bank access conflict history for each shared memory instruction main-
tained in the conflict history cache, bank-conflict aware warp scheduling can
apply the same scheduling scheme as the baseline pipeline toschedule the
ready warps for execution. The only difference is that if a previously sched-
uled warpwill be/is still being blocked at the memory stages due to shared
memory bank conflicts, then all memory warps are excluded from the ready
warp pool, as Figure 5.7 shows.

Once it is guaranteed by the warp scheduling logic that thereis no memory
warp violating the safe memory warp schedule distance constraint, then shared
memory bank conflicts incurred by a single warp can be effectively handled by
the elastic pipeline design, as discussed in Section 5.4. Otherwise, the elastic
pipeline will get saturated and stalls due to bank conflicts will occur. We will
see the impact of the bank-aware warp scheduling on overall performance in
Section 5.6.2. It should be noted that, warp scheduling justby itself is unable
to reduce pipeline stalls caused by shared memory bank conflicts, without the
elastic pipeline infrastructure.

5.5.4 Hardware Overhead

Table 5.3: Hardware overhead of bank conflict prediction and warp mask generation
(per GPU core)

Type Logic complexity Quantity

Bank conflict
history cache

#cachelines·(log2(warp size)+14-
log2(#cachesets)) bits, dual port (1R+1W)

1

AND/NAND gate – 2·#warp contexts per core

Accumulator log2(warp size) bits 1

2-to-1 MUX – 1

Counter log2(warp size) bits 1

Comparator log2(warp size) bits 1

As discussed above, our bank-conflict aware warp schedulingdoes not in-
cur any additional overhead in scheduling logic – it simply utilizes the same
scheduling as the baseline. However, the warp ready signal generation logic
needs to be modified to make it aware of in-flight bank-conflicting shared
memory accesses and enforce the constraint on following warps to be sched-
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uled, as shown in Figure 5.7. Table 5.3 summarizes the hardware overhead
incurred by the bank conflict degree prediction and bank-conflict aware warp
ready signal generation. The main contributor in Table 5.3 is the bank conflict
degree history cache. Assuming 14 bits PC (which is able to handle kernels
with up to 16K instructions – large enough from our experience), this turns
to 14-log2(#cachesets) bits cache tag size. Remember, eachconflict degreei

in Equation (5.6) takeslog2(simd width) bits (Section 5.3.2), therefore the
cache contentwarp bkconfdegreeoccupieslog2(warp size) bits. The total
size of the bank conflict history cache is summarized in Table5.3. In our de-
sign, we implemented a 2-way set associative conflict history cache with 256
sets, which is capable of removing all capacity and conflict misses for all ker-
nels in our evaluation. In this case, the conflict history cache consumes only
704 bytes (withwarp size=32), which is quite trivial.

Regarding the timing impact, the increase in the warp ready signal generation
delay observed by the default warp scheduler is only that of oneANDgate, as
shown in Figure 5.7.

5.6 Experimental Evaluation

Experimental Setup: We use a modified version of GPGPU-Sim [17], which
is a cycle-level full system simulator for GPUs implementing ptx ISA [110].
We model GPU cores with a 24-stage pipeline similar to contemporary im-
plementations [108, 150]. The detailed configuration of theGPU processor is
shown in Table 5.4. The GPU processor with the baseline pipeline (“base-
line GPU”) and the case with the proposed elastic pipeline (“enhanced GPU”)
are evaluated in this chapter. They differ only in the core pipeline configura-
tions and warp scheduling schemes, as Table 5.4 shows. The number of mem-
ory pipeline stages and thewarp size/simdwidth ratio are 4 (see Table 5.4).
Therefore the queue depth is set to 4 for theNONMEMqueue, and 3 for the
PREMEMqueue in the elastic pipeline, according to Equations (5.4)and (5.5).

We selected eight shared memory intensive benchmarks from CUDA
SDK [109] and other public sources [98]. Table 5.5 lists the main charac-
teristics of the selected benchmarks. The instruction count in columnstotal
instructionsandshared memory instructionsshows two numbers, with the first
being the number of dynamic instructions executed by all 128scalar pipelines
(i.e., SIMD lanes) of 16 GPU cores, and the second number being the ptx in-
struction count in the compiled program.Shared memory intensityis the ratio
of dynamic shared memory instructions to total executed instructions. The
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Table 5.4: The GPU processor configurations

Number of Cores 16

Core Configuration

8-wide SIMD execution pipeline, 24 pipeline stages (with 4 memory

stages); 32 threads/warp, 1024 threads/core, 8 CTAs/core,16384

registers/core; execution model: strict barrel processing (Section 5.7)

warp scheduling policy: Round-robin (baseline GPU) vs

bank-conflict aware warp scheduling (enhanced GPU)

pipeline configuration: baseline pipeline (baseline GPU) vs

elastic pipeline (enhanced GPU)

On-chip Memories
16KB software managed cache (i.e., shared memory)/core, 8 banks,

1 access per core cycle per bank

DRAM

4 GDDR3 memory channels, 2 DRAM chips per channel, 2KB page

per DRAM chip, 8 banks, 8 Bytes/channel/transmission (51.2GB/s

BW in total), 800 MHz bus freq, 32 DRAM request buffer entries

memory controller policy: out-of-order (FR-FCFS) [125]

Interconnect crossbar, 32-Byte flit size

average bank conflict degreefield shows the average number of cycles spent
on a SIMD shared memory access for each benchmark application. This is
collected by running the benchmarks on the baseline GPU.Theoretic speedup
calculates, assuming IPC=1 (normalized to a single scalar pipeline/SIMD lane)
for all instructions except shared memory accesses (i.e., all pipeline ineffi-
ciency comes from pipeline stalls caused by shared memory bank conflicts),
the speedup that can be gained by eliminating all pipeline stalls. CTAs per
core denotes the maximal number of concurrent CTAs that can be allocated
on each GPU core. AY in the Irregular shared memory patternscolumn in-
dicates kernels with shared memory instructions with irregular access patterns
and dynamically varied bank conflict degree.

Note, the kernel names followed by a> denote the CUDA code which has
originally been hand-optimized to avoid shared memory bankconflicts, by
changing the layout of the data structures in shared memory (e.g., by padding
one additional column to a 2D array). We adopt the code butundosuch op-
timizations in our evaluation of elastic pipeline performance in Sections 5.6.1
and 5.6.2. There are two reasons for this. First, we found that in practice
if the shared memory bank conflict is a problem, the programmer will either
remove it (by the above mentioned hand-optimizations), or simply avoid us-
ing the shared memory. Due to this we were unable to find many existing
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Table 5.5: Benchmark characteristics

Name Source Grid Dim CTA Dim CTAs/core Total Insns

AES encypt [98] (257,1,1) (256,1,1) 2 35132928/534

AES decypt [98] (257,1,1) (256,1,1) 2 35527680/540

Reduction CUDA SDK (16384,1,1) (256,1,1) 4 415170560/49

Transpose> CUDA SDK (16,16,1) (16,16,1) 4 3538944/54

DCT> CUDA SDK (16,32,1) (8,4,2) 7 7274496/222

IDCT> CUDA SDK (16,32,1) (8,4,2) 7 7405568/226

DCT short> CUDA SDK (16,16,1) (8,4,4) 7 10223616/337

IDCT short> CUDA SDK (16,16,1) (8,4,4) 7 10190848/336

Name Sh-mem Insns
Sh-mem Avg. Conf. Theoretic Irregular Sh-

Intensity Degree Speedup mem Pattern

AES encypt 12697856/193 36.1% 1.54 1.19 Y

AES decypt 12763648/194 35.9% 1.53 1.19 Y

Reduction 16744448/5 4.0% 3.07 1.09 Y

Transpose> 131072/2 3.7% 4.50 1.13 N

DCT> 1572864/48 21.6% 3.33 1.50 N

IDCT> 1572864/48 21.2% 3.33 1.50 N

DCT short> 1048576/40 10.3% 2.75 1.18 N

IDCT short> 1048576/40 10.3% 2.75 1.18 N
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Figure 5.8: Pipeline stall reduction. In each group: left bar: baselineGPU; right bar:
elastic pipeline enhanced GPU

codes with heavy shared memory bank conflicts. That is why we manuallyroll
backthe shared memory hand-optimizations for these kernels anduse them in
our initial evaluation presented in this chapter. Second, assuming the elastic
pipeline is adopted in the GPU core, we also want to inspect how it performs
for these kernels, without shared memory optimizations from the programmer.

We use the NVCC toolchain [110] to compile the CUDA application code. The
toolchain first invokescudafeto extract and separate the host C/C++ code and
device C code from the CUDA source, then it invokes two stand-alone com-
pilers: gcc to compile the host C/C++ code running on the CPU andnvopencc
to compile the device code running on the GPU. All benchmarksare compiled
with -O3option.

It has to be pointed out that, although we use CUDA code and thecorre-
sponding toolchain in our experiments, our proposed elastic pipeline and bank-
conflict aware warp scheduling do not rely on any particular GPU program-
ming model. Further, the application of our proposal is not limited to GPGPU
applications – graphics kernels can also benefit from it where on-chip shared
memory bank conflict is a concern.

5.6.1 Effect on Pipeline Stall Reduction

Figure 5.8 shows the proposed elastic pipeline and the bank-conflict aware
warp scheduling effect on reducing pipeline stalls. The results are per ker-
nel, with the left bar of each group showing the number of pipeline stalls in
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the baseline GPU, and the right bar showing the stalls in the enhanced GPU.
The number of stalls are normalized to the baseline GPU. Inside each bar,
the pipeline stalls are broken down into three categories (from bottom to top):
warp scheduling fails, shared memory bank conflicts, and other reasons (i.e.,
writeback conflicts incurred by data returned from interconnect). Note, GPU
core warp scheduling fails if the ready warp pool is empty, which can be in-
curred by: (1) the core pipeline latency or other long latencies (e.g., due to
main memory access) which are not hidden by the parallel warpexecution (i.e.,
not enough concurrent CTAs active on chip); (2) the barrier synchronization;
(3) warp control-flow re-convergence mechanisms [47].

As discussed before, shared memory bank conflicts create writeback bubbles
which finally incur pipeline stalls. Note, although the portion of shared mem-
ory instructions is small for some kernels (such as Reduction and Transpose,
with less than 5% as shown in Table 5.5), some of the involved SIMD shared
memory accesses result in very high bank conflict degrees (upto 8). Therefore
the total number of bank conflicts and pipeline stalls is quite significant in the
baseline, as shown in Figure 5.8.

As Figure 5.8 shows, the number of pipeline stalls are significantly reduced
by the elastic pipeline. In all kernels except AES encrypt/decrypt, the pipeline
stalls caused by bank conflicts are almost completely removed in the enhanced
GPU. Remember, the bank conflict stalls in the elastic pipeline may occur,
only if the conflict degree prediction made by the bank conflict history cache
is incorrect (Section 5.5.2). The bank conflict history cache was unable to
produce constantly precise conflict degree prediction for the highly irregular
shared memory access patterns in the AES kernels. This results in a large
number of bank conflict stalls. Figure 5.8 shows that the impact of compulsory
misses in bank conflict history cache is negligible in the elastic pipeline.

On the other hand, the number of pipeline stalls due to warp scheduling failures
are increased for some kernels. This is expected, since the bank-conflict aware
warp scheduling masks off the ready warps which violate the constraint of safe
memory warp schedule distance. Contrary to our expectation, the number of
warp scheduling fails is actually reduced for Transpose andDCT/IDCT short
kernels. Detailed investigation reveals that this is related to the inter operation
between our elastic pipeline design and the rest of the GPU processor, such
as the on-chip synchronization and control flow re-convergence mechanisms,
and off-chip DRAM organizations. For example, drastic DRAMchannel con-
flicts are observed during the Transpose kernel execution onthe baseline GPU.
Whereas in the GPU enhanced by the elastic pipeline and the bank-conflict
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Figure 5.9: Performance improvement

aware warp scheduling, such channel conflicts are substantially reduced and
DRAM efficiency is improved.

The last type of pipeline stalls (other pipeline stallsin Figure 5.8) is caused by
writeback conflicts incurred by data returned from interconnect. The number
is slightly increased in the elastic pipeline as shown in Figure 5.8. This is
because the number of such conflicts is relatively small, anda large portion of
them are wellhiddenby the large amount of bank conflict stalls at the upstream
of the pipeline, in the baseline GPU.

5.6.2 Performance Improvements

Figure 5.9 compares the performance of the baseline GPU, theenhanced GPU
with pure elastic pipe design (with default warp scheduling), the enhanced
GPU with elastic pipeline augmented by bank-conflict aware warp scheduling,
and the theoretic speedup. We can see that the performance isimproved by the
pure elastic pipeline only slightly (3.2% on average), without the assistance
of proper warp scheduling. While with the co-designed bank-conflict aware
warp scheduling, an additional 10.1% improvement is gained, leading to the
average performance improvement of the elastic pipeline design by 13.3%, as
compared to the baseline. This confirms our analysis in Section 5.5. For AES
encrypt/decrypt, the achieved speedup by the elastic pipeline is substantially
smaller than the theoretical bound, mainly because a large portion of bank
conflict stalls still remains in the elastic pipeline, as shown in Figure 5.8. DCT
and IDCT see ahugegap between the actually achieved performance gain by
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elastic pipeline and the theoretic bound. This is due to the number of pipeline
stalls caused by warp scheduling fails is significantly increased, also shown in
Figure 5.8. It is interesting to see that the speedup of our elastic pipeline design
exceeds the theoretic bound, for kernels Transpose and DCT/IDCT short. This
results from the fact that the number of warp scheduling fails is reduced, thanks
to the positive interaction between the elastic pipeline and the rest of the system
in these cases, as discussed in Section 5.6.1.

In order to find out how our elastic pipeline performs in relieving the over-
head of reducing shared memory bank conflicts from the software side, we
compared the performance of un-optimized code (i.e., CUDA SDK code with
shared memory bank conflict optimizations removed by us) running on the en-
hanced GPU versus the hand-optimized code (i.e. the original CUDA SDK
code) running on the baseline GPU, as shown in Figure 5.10. Aswe can
see from the figure, on average the performance of un-optimized kernel run-
ning on elastic pipeline cores is on par with the optimized kernel running on
baseline cores. However, we also found that for the DCT/IDCTkernels, the
performance gap is quite large (e.g., 14.9% less performance on the elastic
pipeline+un-optimized kernel combination for IDCT). In-depth analysis re-
veals that this is due to the change of warp execution order bythe elastic
pipeline interacts poorly with the global memory access which results in de-
graded DRAM access efficiency. This actually leaves room forfurther op-
timizations. For example, a simple variant of our bank-conflict aware warp
scheduling allows issuing of memory instructionsviolating the safe memory
warp schedule distance, if there are no ready warps to execute non-memory in-
struction11. This variant essentially trades more bank conflict stalls for fewer
scheduling fails. Theoretically, the performance should not change since the
number of total pipeline stalls is kept the same. However, the performance
of IDCT with the variant is increased by 5.1% as compared withthe original
bank-conflict aware warp scheduling, simply due to the change of warp exe-
cution order12. This could be further improved by taking into account also the
main memory bandwidth efficiency in our design. For example,it may be pos-
sible to create more efficient warp scheduling schemes whichare aware of not
only on-chip shared memory bank-conflict, but also global memory efficiency.
More details about such interactions between on/off-chip memory accesses at
system level are discussed in Section 5.6.4.

Nonetheless, the results in Figure 5.10 suggest the strong potential of our elas-

11In the original bank-conflict aware warp scheduling, the ready warp pool is masked to
empty in this case and pipeline will be stalled due to scheduling fails.

12We did not adopt this variant as it degrades the performance for other kernels.
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Figure 5.10: Elastic pipeline vs hand-optimized code for conflicting kernels

tic pipeline design to relieve the burden of avoiding sharedmemory bank con-
flicts from the programmer. Note also, static program analysis and optimiza-
tions are unable to avoid bank conflicts caused by irregular conflict patterns,
which can be effectively handled by our proposal as demonstrated by the sub-
stantial performance improvement by elastic pipeline for the AES and Reduc-
tion kernels in Figure 5.9. Therefore, we can safely draw theconclusion that,
our elastic pipeline proposal is capable of relieving the shared memory bank
conflict issue for both regular and irregular access patterns, and thus enables
more GPGPU applications to exploit the on-chip shared memory for improved
performance and efficiency which is not possible without ourproposal.

5.6.3 Performance of Non-Conflicting Kernels

Besides bank-conflicting kernels, we also would like to find out to which extent
the proposed elastic pipeline will affect the execution of normal kernels with-
out on-chip shared memory bank conflicts. Note, in this case,the bank-conflict
aware warp scheduling behaves exactly the same as the default warp schedul-
ing, since the conflict degree predicted by the bank conflict history cache is
constantly zero (Figure 5.7). Thenon-conflictingkernels examined in this sec-
tion are the five kernels whose names are followed by a> in Table 5.5, with
the hand-optimization to avoid shared memory bank conflict (i.e., the original
CUDA SDK code is used).

The performance of the non-conflicting kernels (i.e. the original CUDA SDK
source code) execution on both the baseline and elastic pipeline cores is shown
in Figure 5.11. As we can see in the figure, the difference in performance is
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negligible. The performance difference between the baseline pipeline and the
elastic pipeline for kernels without any bank conflict is dueto: (1) the elas-
tic pipeline can hide some of the writeback conflicts caused by the competi-
tion between core pipeline instructions (e.g., non-globalmemory instructions)
and global memory loads (Figure 5.1); (2) the writeback MUX in the elastic
pipeline (Figure 5.6) changes the default warp completion order of baseline
in some cases (e.g., when theMEM andNONMEMpaths compete for write-
back, or, when there is a pipeline bypass in theNONMEMpath (Figure 5.5)),
which will further affect warp scheduling and execution order later. Factor (1)
is always beneficial while factor (2) can contribute either positively or nega-
tively to overall performance, depending on other subtle conditions (e.g. varied
global memory access efficiency, synchronization efficiency and control flow
re-convergence efficiency, under different warp executionorders).

5.6.4 Interaction with Off-chip DRAM Access

At first glance, it seems that on-chip shared memory access isdecoupled from
off-chip DRAM access. Counterintuitively, however, we have already ob-
served quite some inter-operation between them, is the warpexecution order
(and the subsequent DRAM access patterns): as discussed in Sections 5.6.1
and 5.6.2. Indeed, it would be interesting to inspect the relationship between
our proposed elastic pipeline and the kernel DRAM access behavior. Fig-
ure 5.12 tries to unveil it in a quantitatively way. The curveat the top shows the
ratio between theoretic speedup and the speedup actually gained by our elastic
pipeline design (data from Figure 5.9). And the one at the bottom shows the
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Figure 5.12:DRAM bandwidth impact

required DRAM bandwidth by each kernel, normalized to GPU DRAM peak
bandwidth (Table 5.4). The required bandwidth is calculated by dividing the
total amount of global memory data access by the execution time assuming
IPC=1 for each SIMD lane. We choose therequiredbandwidth as the metric
instead of theactual bandwidth utilization, since the latter has already been
coupled with the interaction between the core pipeline behavior and external
DRAM access patterns.

Interestingly, the two curves in Figure 5.12 show quite strong correlation be-
tween each other. Roughly speaking, the higher off-chip bandwidth is required,
the larger the gap between the speedup of our elastic pipeline and the theoretic
bound – in other words, the more difficult to reclaim the performance loss due
to bank-conflict pipeline stalls. For the benchmarks examined in our experi-
ments and the off-chip DRAM configuration in our GPU processor, we can see
that some rough threshold, say, the 50% DRAM peak bandwidth bar, separates
the benchmarks intohigh bandwidthgroup (DCT/IDCT) andlow bandwidth
group (the other kernels), as illustrated in Figure 5.12. For the low bandwidth
group, the performance loss due to bank conflict stalls is relatively easy to be
reclaimed by our proposed elastic pipeline design (indeed the theoretic bound
is even surpassed in cases of Transpose and DCT/IDCTshort). While for the
high bandwidth group, the elastic pipeline performance gain is far from ideal.
The reason seems to be that, standalone core pipeline techniques (such as our
elastic pipeline proposal) ignorant to the main memory access efficiency are
unable to exploit the full potential of the hardware and the parallelism inherent
in the software. This also explains the relatively large performance loss for
DCT/IDCT kernels in Figure 5.10 with our elastic pipeline.
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To summarize, it can be anticipated that, cooperative optimization schemes
which take care of both core pipeline optimization and off-chip DRAM band-
width efficiency are highly desirable, to further improve the overall perfor-
mance for kernels with both heavy on-chip shared memory bankconflicts and
off-chip bandwidth requirement.

5.7 Discussion

In this chapter we assumebarrel processing[141], which lays the basis for
contemporary GPU execution models [47]. In barrel processing, an instruction
from a different hardware execution context is launched at each clock cycle in
an interleavedmanner. Consequently, there is no interlock or bypass associ-
ated with the barrel processing, thanks to the non-blockingfeature of the exe-
cution model. Despite its advantages,strict interleaved multithreading has the
drawback of requiring large on-chip execution contexts to hide latency, which
can be improved in some ways. One such improvement is to allowmultiple
independentinstructions to be issued into pipeline from the same execution
context. In GPU cores, that is to allow multiple independentinstructions from
the same warp to be issued back-to-back (instead of thestrict barrel execution
model in which consecutively issued instructions are from different warps).
Such execution is also adopted by some contemporary GPUs [147]. We call
this extension “relaxed barrel execution model”. The intention of therelaxed
barrel processingin GPUs is to exploit ILP inside the thread, in order to re-
duce the minimal number of independent hardware execution contexts (active
warps) required to hide pipeline latency.

In the case of relaxed barrel execution, there can be two choices to make our
proposed Elastic Pipeline still work. First, we can still allow elasticity in the
pipeline backend, which means that the consecutively issued instructions from
the same warp commit out of the program order. This flexibility comes at the
cost of the pipeline being unable to support precise exception handling. This
can be resolved by adding a re-order buffer (ROB), however atextra hardware
cost. A second choice is to forbid out-of-order writeback for instructions from
the same warp. In order to make elastic pipeline still effective in reducing
pipeline stalls, it is the responsibility of the schedulinglogic not to execute any
more instruction from the same warp, if current shared memory instruction will
cause any bank conflict. This can be easily integrated into our bank-conflict
aware warp scheduling technique.

This chapter also assumes the execution stages and memory stages are not
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overlapped, therefore our proposed elastic pipeline design can make use of the
existing “spare” MEM pipeline registers as the source ofelasticityto tolerant
the varied pipeline latency due to shared memory bank conflicts. However, this
is not a mandatory requirement of our elastic pipeline proposal. For example,
in the pipeline configuration with parallel execution/memory stages, we can
insert some additionalspare pipeline stagesbetween the end of the parallel
execution/memory stages and the beginning of writeback stages. With the
extra stages as the source of elasticity our proposal can still work. Note the
extra spare stages do not introduce any additional pipelinelatency for ordinary
execution without bank conflicts, thanks to the bypass buses(Figure 5.4(b)).
The only overhead is the hardware cost of the pipeline stage registers of the
additional pipeline stages.

Although only the effect of elastic pipeline for on-chip explicitly managed
shared memory is evaluated in this chapter, we believe the first level hardware
cache can also benefit from our proposal. The reason is that the heavily-banked
hardware cache also suffers from the dynamically varied cache access delay
due to unbalanced bank accesses, which is similar to the shared memory case.
We leave the evaluation of elastic pipeline for L1 cache as future work.

For out-of-order processors, thepipeline elasticityrealized by our elastic
pipeline proposal in this chapter is actually enabled by theout-of-order en-
gine. The OoO engine provides a small instruction window, which handles the
variation of execution latency similar to a dataflow machine. The associated
reorder buffer enforces the in-order instruction commitment. For architectures
based on in-order pipelines, our elastic pipeline can be applied for a wide range
of designs adopting barrel processing and SIMD data path, besides GPUs. The
reason is that the on-chip bank conflict problem exists generally in such ar-
chitectures. Furthermore, although we target the varied execution latencies
caused by shared memory bank conflicts in this chapter, elastic pipeline can
also be applied to cope with on-chip execution latency variation due to other
shared resource conflicts (e.g., accelerator (such as FPU) access, interconnect
buffers allocation, miss status holding registers (MSHRs)allocation, etc.). In
such cases, pipeline elasticity can be exploited to tolerate the resource conflicts
and maximize the SIMD datapath throughput.

5.8 Summary

In this chapter, we analyzed the shared memory bank conflict problem, and
identified how the bank conflicts are translated into pipeline performance
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degradation. Based on the observation, we proposed a novel elastic pipeline
design that minimizes the negative impact of on-chip memoryconflicts on sys-
tem throughput, by decoupling bank conflicts from pipeline stalls. Simulation
results show that our elastic pipeline with the co-designedbank-conflict aware
warp scheduling significantly reduces the pipeline stalls by up to 64.0% and
improves overall performance by up to 20.7%, with trivial hardware overhead.
Besides the performance advantage, our proposal also leadsto reduced GPU
programming complexity by relieving the burden of avoidingshared memory
bank conflicts from the programmer.

Note. The contents of this chapter is based on the the following papers:

C. Gou, G. N. Gaydadjiev, Addressing GPU On-chip Shared Memory Bank
Conflicts Using Elastic Pipeline, invited to Special Issue of International
Journal of Parallel Programming on SI: Computing Frontiers2011 Best Pa-
pers(in press)

C. Gou, G. N. Gaydadjiev, Elastic Pipeline: Addressing GPU On-chip
Shared Memory Bank Conflicts, Proceedings of the 8th ACM International
Conference on Computing Frontiers (CF’11), pp. 1–11, Ischia, Italy, May
2011.Nominated for the Best Paper Award by the Program Committee



6
Improving DRAM Access Efficiency

I n this paper, we analyze a particular spatial locality case (called hori-
zontal locality) inherent to GPUs employing barrel execution of SPMD
kernels. We then propose an adaptive DRAM access granularity scheme

to exploit and enforce the horizontal locality in order to reduce GPU cores
memory interference and hence improve GPU DRAM efficiency. With the
proposed technique, DRAM efficiency grows by 1.42X on average, leading to
12.3% overall performance gain, for a set of representativememory intensive
GPGPU applications.

6.1 Introduction

Off-chip memory bandwidth is becoming a scarce resource in current and fu-
ture manycore processors due to chip pin count limitations.Particularly, the
bandwidth can be a severe bottleneck forgraphics processing units(GPUs) due
to their high ALU density design. Furthermore, DRAM access streams from
different GPU cores can easily incur destructive interference among them.
Therefore, efficient DRAM bandwidth utilization is crucial, especially for a
growing number of data/memory-intensive applications. Memory access op-
timization techniques from the general purpose computing domain, such as
prefetching and DRAM access scheduling, have demonstratedtheir effective-
ness for GPUs [88,152]. However, as a platform originally designed for graph-
ics processing, GPUs have their specific characteristics when used for general
purpose workloads (akageneral-purpose processing on GPUs(GPGPU) [1]).
Hence, traditional solutions not aware of GPU programming and execution
model specifics can lead to sub-optimal decisions and resultin inefficient off-
chip memory bandwidth utilization.

In this paper, we leverage a spatial locality typical for GPUs, called “horizontal

125
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locality”, to improve external memory access efficiency. Wepropose a holistic
DRAM bandwidth optimization framework for GPUs with combined compile-
time, run-time, and architectural efforts. Our technique takes advantage of per
memory instruction access pattern information generated by a compiler and
runtime analyzer, and schedules the optimal access granularity accordingly at
kernel launch time. With the co-designed hardware support,adaptive memory
access granularity is achieved, DRAM efficiency is increased and the overall
performance improved.

This chapter makes the following specific contributions:

• novel method to improve GPU DRAM efficiency, using combined
compile-time and runtime efforts along with specific microarchitectural
extension;

• adaptive, inter-thread/warp localityaware DRAM access granularity
scheduling technique to improve DRAM efficiency;

• trivial hardware overheadelastic vector MSHRdesign withdeferred
reservation;

• DRAM efficiency improvement by 1.42X on average (corresponding to
12.3% overall performance boost) for a set of representative workloads.

The remainder of this chapter is organized as follows. In Section 6.2, we pro-
vide the background and motivation for this work. In Section6.3, the horizon-
tal locality is analyzed, and the memory access pattern analyzer is briefly in-
troduced, followed by the elaboration of our proposed adaptive memory access
granularity scheduling. The microarchitectural extension to support adaptive
memory access granularity is discussed in Section 6.4. Simulation results for
a set of memory-intensive CUDA benchmarks are presented in Section 6.5.
Finally, Section 6.7 summarizes the chapter.

6.2 Background and Motivation

GPU is a manycore platform employing large number of lightweight cores
to achieve high aggregated performance, originally for graphics workloads.
Nowadays, its utilization has spanned far beyond graphics rendering, covering
a wide spectrum of general-purpose applications (referredto asGPGPU[1]).
GPUs often adoptbulk synchronous programming(BSP) [145] programming
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Figure 6.1: Hierarchy and memory accesses of worker threads

models. The execution of BSP programs on GPUs often employsbarrel pro-
cessing[141] due to its low pipeline implementation overhead.

Programming Model Properties: The BSP model has been widely adopted
in programming languages targeting manycore accelerator architectures, e.g.,
CUDA [105] and OpenCL [8]. In such languages, the parallelism of the ap-
plication’s computation intensive kernels is explicitly expressed in asingle
program multiple data(SPMD) manner. In suchexplicitly-parallel, bulk-
synchronousSPMD programming models, the programmer extracts the data-
parallel section of the application code, identifies the basic working unit (typ-
ically an element in the problem domain), and explicitly expresses the same
sequence of operations on each working unit in akernel. Multiple kernel in-
stances (calledthreadsin CUDA) are running independently on the GPU cores.

In CUDA, the parallel threads are organized into a two-levelhierarchy, in
which a kernel (also calledgrid) consists of parallel CTAs (cooperating thread
array, aka block), with each CTA composed by parallel threads, as shown
in Figure 6.11. Explicit, localized synchronization and on-chip data sharing
mechanisms (such as CUDA shared memory) are supported inside each CTA.

1This is an example based on CUDA, with the warp size reduced from 32 to 2 to simplify
the illustration.
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Baseline Manycore Barrel Processing Organization:Figure 6.2 shows our
baseline organization. On the right the high-level system organization is
shown. The system consists of an GPU node withK cores and a memory
subsystem withL DRAM channels, connected by the on-chip interconnect.
Depending on the implementation, the GPU node itself may form a chip (sim-
ilar to discrete GPUs), or the GPU node(s) and host CPU(s) canbe integrated
on the same die (e.g., [12]). The host processor offloads computation intensive
kernels to the GPU node during execution. The kernel code andparameters
are transferred from host processor using the host interface, and the workloads
are dispatched at the CTA/block granularity. Concurrent CTAs are executed
on GPU cores independent of each other.

The left part of Figure 6.2 illustrates a single GPU core. During execution,
a batch of threads from the same CTA are grouped into awarp, the smallest
unit for the pipeline front-end processing. Each core maintains a set of on-chip
hardware execution contexts and switches at the warp granularity. The context
switching, also calledwarp scheduling, is done in an interleaved manner, also
known asbarrel processing[141]. Warps are executed by the core pipelines
in a SIMD fashion for improved pipeline front-end processing efficiency. In
practical designs, the threads number in a warp can be multiple of the SIMD
width. In this case, a warp is composed of multiple slices (subwarpshere),
with each subwarp size equaling the SIMD width. Subwarps from the same
warp are processed by the SIMD pipeline back-to-back.

Warps can access two types of memory: on-chip shared memory and off-chip
memory. When there is an off-chip memory access (in systems without hard-
ware data caches, such as the one evaluated in Section 6.5), or a cache miss
(in case on-chip L1 data cache is adopted), the execution is taken care of by a
miss status holding register(MSHR) unit as shown in Figure 6.2. The memory
access information is logged by the allocated MSHR entry, and warp execution
is put into inactive status. After being fired into the on-chip interconnect, off-
chip memory access streams from GPU cores start competing shared resources
against each other, often resulting in nontrivial interference at DRAM side and
inefficient DRAM bandwidth utilization.

DRAM Bandwidth Utilization Inefficiency: The interference among GPU
cores has various forms:Hot DRAM Channels:when multiple GPU cores ac-
cess only one or a few DRAM channels, leaving the others idle.This directly
degrades memory system performance since the bandwidth of “cold”(idle)
channels is wasted.DRAM bank conflicts:when memory accesses from mul-
tiple cores compete reading or writing to different rows of the same DRAM
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Figure 6.2: Baseline GPU organization with barrel processing

bank. This causes frequent opening and closing row operations, which also
degrades DRAM performance due to their high penalty.Bus read/write tran-
sition cost: Shifting between read and write in the same DRAM channel
introduces not only additional latency but also bandwidth losses. This is due
to the data bus turn-around time which is necessary for the shared input/output
data bus design adopted in most contemporary DRAM chips. Allof the above
penalties are often non-negligible, especially for data intensive applications.

Motivation: As a platform originally designed for graphics processing,GPUs
have their specific characteristics when used for accelerating general-purpose
workloads. Therefore, in order to better address the off-chip memory band-
width inefficiencies, the unique characteristics of both the GPU programming
and execution models should be exploited. In this chapter, we leverage a
spatial locality typical for SPMD barrel processing, called horizontal local-
ity, to improve external memory access efficiency. Specifically, we propose a
holistic DRAM bandwidth optimization framework for GPUs with combined
compile-time, run-time, and architectural efforts. Our technique utilizes mem-
ory instruction access pattern information provided by a static access pattern
analyzer, and runtime scheduling for optimal access granularity based on the
available horizontal locality determined by the access pattern. With the sup-
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port of co-designed hardware, adaptive memory access granularity is achieved
and the DRAM efficiency and the overall performance are improved.

6.3 Horizontal Locality Aware DRAM Scheduling

In this section, we will first analyze horizontal locality, aspatial inter-
thread/warp locality typical for GPU execution. Then we usea compiler and
runtime analyzer to extract the kernel memory access patterns. With the pre-
cise address pattern information, a scheduler is created toidentify the available
horizontal locality, and find out the most profitable external memory access
granularity at kernel launch time.

6.3.1 Horizontal Locality

Within GPU barrel execution of SPMD kernels, the memory access behavior is
determined not only by asinglethread/warp, but also by concurrent warps ex-
ecution. Figure 6.1 shows a typical 2D address pattern in a CUDA kernel. One
important observation is that, the access pattern not only guides each worker
thread to its working field (data address in memory), but alsobinds the rela-
tionship among threads’ memory accesses. For example, memory addresses of
warps 0 and 1 are always contiguous, for the given access pattern. Therefore,
spatial locality can be exploited. Different from the spatial locality in general-
purpose processors, this new locality type has two distinctcharacteristics: 1)
it is an inter-thread/warp localityamong multiple independent threads/warps;
2) if captured, it only benefits the neighbor threads/warps but not the memory
access initiator. In this chapter, we call such inter-thread/warp spatial locality
“horizontal locality”, whereas the spatial locality inside a thread will be re-
ferred to as “vertical locality”. We will see in Section 6.5 that both locality
types are important in optimizing memory access for GPU throughput.

Above we have assumed that all warps are executing the same memory instruc-
tion using the same access pattern. In fact, this originatesfrom the combination
of the SPMD programming model and the barrel execution modeladopted in
contemporary GPUs. Withinstrict barrel execution, an instruction from each
warp execution context is launched at each clock cycle in aninterleavedman-
ner. Moreover, all warps are executing the same SPMD kernel code. In this
way, the execution of concurrent warps in a core ishighly correlatedin that
the in-flight instructions are similar in many cases. Even with relaxed barrel
execution, where consecutive instructions from the same warp are allowed to



6.3. HORIZONTAL LOCALITY AWARE DRAM SCHEDULING 131

issue into the SIMD pipeline, since the average size ofindependent instruction
blocks2 is small (1∼3 instructions in our benchmarks), the horizontal locality
can still be captured in time3 before the requested data arrives.

A real example: Figures 6.3 and 6.4 shows the PC-Histogram of a GPU core
running matrix multiplication kernel (MM in Section 6.5), drawn using a mod-
ified version of AerialVison [13]. The one on top shows the PC-Histogram
of all warps execution, while the bottom one illustrates that of warps from a
singleCTA. The x-axis of Figures 6.3 and 6.4is the core cycle time, while the
y-axis is the kernelparallel thread execution(PTX) source line number. The
PC histogram represents the portion of the program touched by the concurrent
threads (i.e., PTX instructions executed or on which the threads are pending)
during each sampling interval4. The color intensity of Figures 6.3 and 6.4 indi-
cates the thread count. During any interval, the aggregate thread count remains
constant (1024 in Figure 6.3 and 256 in Figure 6.4). The PC-Histograms at dif-
ferent intervals differ only in the invoked PTX instructions and their count.

Several observations can be made from the example: 1) unlikea traditional
vector processor, concurrent warps are executingnot in lock-step(Figure 6.3),
even with the Round-robin warp scheduler (Table 6.2); 2) even though warps
execution isinterwined across CTAs, warps inside a single CTA are highly
correlated (Figure 6.4); 3) external memory accesses (e.g., global loads at PTX
source lines 118 and 121) effectivelyre-align the CTA warps execution, similar
to barrier synchronizations (e.g., PTX source line 124).

The above observations confirm the analysis at the beginningof this section,
in that the GPU SPMD barrel processing indeed correlates theCTA warp exe-
cution. Besides, the other major reasons for the correlatedexecution include:
bulk synchronizations common in BSP programs, and the rather long external
memory latency (e.g.,> 1000 cycles in above example) incurred by insuffi-
cient transientexternal memory bandwidth during burst memory accesses.

It should be pointed out that, the MM example shown in Figures6.3 and 6.4
is a typical regular application, with intrinsic locality.However, even with less
regular memory access patterns, memory accesses fromclose neighbor warps
often exhibit spatial locality, which can be also captured (e.g., FWT in Sec-
tion 6.5). Admittedly, for applications with highly irregular control flow (such

2A sub-basic block with mutually independent instructions.
3It takes 384 cycles for all 32 warps to issue an independent instruction block of 3 in-

structions, a time much shorter than average main memory access delay for memory intensive
kernels.

4128 cycles sampling interval is chosen, during which all 1024 threads can execute exactly
one instruction in the 8-way SIMD pipeline (Table 6.2).
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as BFS and LPS), it is difficult to precisely identify the horizontal locality,
since the available locality changes dynamically during warp execution.

As stated in Section 6.2, concurrent memory accesses of different cores can
interfere in GPUs. For example, even if accesses from warps 0and 1 of block
(0,0) in Figure 6.1 are issued back-to-back, they can beseparatedalong the
way to DRAM, e.g., by on-chip interconnect or memory controllers. As a
consequence, their horizontal locality is broken, resulting in extra DRAM bank
conflicts and memory bus transition penalties. In the following, we propose a
novel way toexploit andenforcethe horizontal locality in GPUs and improve
external memory bandwidth efficiency.

6.3.2 Compiler and Runtime Access Pattern Analyzer

In an explicitly-parallel, bulk-synchronous SPMD program, in order for
the worker thread to identify its working set, a mapping between the
thread id and the working set is designated in the code:addr =
Φ(tid .z , ctaid .y , tid .y , ctaid .x , tid .x), as illustrated in Figure 6.1. IdeallyΦ
can be of any arbitrary form, however, the number of patternsused in program-
mers practice is rather small, and the complexity of addressgeneration is often
limited. Leveraging this observation, we have prototyped aframework able to
detect and exploit the most common memory access patterns for CUDA ker-
nels. Our framework employs static control- and dataflow analysis at compile
time to detect the accessskeletontype, and build the corresponding parameters
expressions. A skeleton is defined as aparameterizedaddress mapping func-
tion, which is able to generatea class ofmemory access patterns. Our runtime
library will evaluate the parameters expressions providedby compiler analy-
sis, based on the CUDA kernel dimensions and input parameters available at
launch time. We implemented our prototype as additional NVCC compiler
pass and library extensions to CUDA runtime environment. Currently, our
framework supports two most common skeletons –

① 1D/2D contiguous/strided/block-strided access:

η(a, b, c , d , e, f )

=(a, b, c , d , e, f ) · (tid .z , ctaid .y , tid .y , ctaid .x , tid .x , 1)

=a · tid .z + b · ctadid .y + c · tid .y + d · ctaid .x + e · tid .x + f

with parametersa, b, c , d , e, f ∈ N (used in regular memory access patterns);
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and② skewed access:

y = η(a, b, c , d , e, f )

ϕ(h1, l1, s1, h0, l0, s0,α,β, y) = (y [h1 : l1]≪ s1 | y [h0 : l0]≪ s0) · α + β

where,h1, l1, s1, h0, l0, s0,α,β ∈ N (used in irregular applications). Skewed
access skeleton is constructed using 1D/2D access (y ), and contains two bits
sections: the higher section, taken from bitsh1 to l1 of y and shifted left bys1
bits; the lower section, generated similarly. In the final form, the two sections
andy arenormalizedso thatl0 = s0 = 0.

The compile-time access pattern analysis employs static control- and dataflow
analysis to trace back the use-def chain of the memory instruction. In order to
do so, a set oftransition operations, such as{+, -, ·, /,≪(shift left),≫(shift
right), &(logic and),|(logic or),∧(logic not)}, are defined for the above skele-
tons. Ideally, transition operations should be completelycomposablewithout
limitations. However, this requires more complex address skeletons, becom-
ing more costly in terms of analysis time. In practice, trade-offs are made in
defining the operations composability, in order to reduce the analysis complex-
ity while at the cost of less analysis accuracy. Admittedly,this compromises
the compiler capability in handling various memory addressgeneration types.
During analysis, if an unsupported transition operation oroperation composi-
tion occurs, the process simply stops and returns an analysis fail.

Since some kernel parameters may be available only at runtime, thus the com-
piler analysis outputs skeleton id (① or ②) and builds the internal representa-
tions for each skeleton parameter. This process can be formalized as follows:
given







Θ ← {kernel input params}
nctaid ← {CUDA grid dimension}
ntid ← {CUDA block dimension}

for I ∈ {kernel memory insn}, the compiler analysis generates















skeleton idI

τ = ζI ,τ (Θ, nctaid , ntid)

τ ∈
{

{a, b, c , d , e, f }, skeleton idI = ①

{a, b, ... , f , h1, l1 ... ,α,β}, skeleton idI = ②

Accordingly, the interface between the compiler analysis and runtime is
skeleton idI andζI ,τ . Skeleton type is known after static analysis; whileζI ,τ
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is composed of atree representation, with each leave node pointing to one of
the Θ, nctaid , andntid parameters, and other nodes being arithmetic opera-
tions. Normally, address generation for GPU kernel memory instructions is not
complex, therefore the tree representation usually contains only few nodes. At
kernel launch time, since all parametersΘ, nctaid , andntid are known, thus
the precise access pattern is extracted by simply evaluating tree representations
for all ζI ,τ .

Note, at kernel scope, the memory address use-def chain may vary along dif-
ferent control flow paths. In this case,multiple access pattern versionsmay
exist for the same instructionI , with each corresponding to a different control
flow path. In a general sense, such multiple versions per memory instruction
case can be viewed as another form of access pattern, although it can not be
efficiently expressed inclosed form. Also it creates major challenges in GPU
execution. We will see this in Section 6.5.

6.3.3 Adaptive DRAM Access Granularity Scheduling

Alg. 6.1 Adaptive memory access granularity scheduling
1: max gran ←DRAM channel interleaving granularity
2: min gran ←DRAM minimal access granularity
3: data size ←data size of memory access instruction
4: blockDim.x ←block size in dimension x
5: d , e, is skewed access, l1, s1, h0←access pattern parameters

6: if e! = data size or blockDim.x×e! = d or (is skewed access and (l1 ≤ h0 or s1 ≤ h0
or 2h0 ≤ max gran)) then

7: return min gran

8: else ifblockDim.x × e > max gran then
9: return max gran

10: else ifblockDim.x × e < min gran then
11: return min gran

12: else
13: return blockDim.x × e

14: end if

To reduce bank conflicts and bus turn-around times,adaptive DRAM access
granularity scheduling(Alg. 6.1) is created to determine the memory access
granularity, based on access pattern information generated by the memory pat-
tern analyzer described in Section 6.3.2. The essential idea of the adaptive
granularity scheduling is as follows. Since the address pattern determines the
locality among neighbor warps’ memory accesses, we can choose the maxi-
mal access granularityallowedby the horizontal locality, for a given memory
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instruction. When a warp memory instruction execution misses, it initiates the
external memory access with thelarge granularity. Due to the horizontal lo-
cality, the extra requested data will often be used by neighbor warps, hence,
boosting memory efficiency,without the penalty of wasted memory bandwidth.

The key in the adaptive memory access granularity is to correctly identify the
available horizontal locality. Line 6 of Alg. 6.1 examines whether or not a
memory instruction has the appropriate horizontal locality. Currently, only
instructions accessing contiguous memory addresses amongneighbor threads
in a block’s x-axis (Figure 6.1) are considered – a rather conservative decision
made in this work. Lines 8 to 13 determine the proper access granularity under
three constraints: 1) the minimal access granularity, set by the DRAM interface
(32B for GDDR3 in our study); 2) the maximal granularity, setby DRAM
channel interleaving granularity; and 3) theblock boundaryconstraint (e ×
blockDim.x), due to the fact that a warp should not fetch data outside the
block boundary. E.g., in Figure 6.1, warp 0 of block(0,0) should not fetch
data for warp 0 of block(1,0) even if they are neighbors in thegrid map, since
the scheduler at kernel launch time does not know whether or not the two
independent blocks will be concurrently executed on the same core.

Example: For the global memory load instruction shown in Fig-
ure 6.1, our compiler pass identified2D accessskeleton, with parameters
(a, b, c , d , e, f ) = (0, 192, 48, 16, 4, 0) calculated by the runtime by evalu-
ating the corresponding tree representations. At kernel launch time, first the
memory access contiguity among warps inside a block is determined. This is
done by checking if the accesses from neighbor warps fail to cover the con-
tiguous address space (e 6= data size or blockDim.x × e 6= d , false in this
case). At this point, the access pattern is assured to havestronghorizontal lo-
cality where contiguousblockDim.x × e (16 in this case) bytes data will be
fully utilized by the load instruction warps execution in the block. Therefore,
an MSHR entry is allocated, and 16 bytes external memory request is fired into
the interconnect when warp 0 is run. In case of no hardware data cache, warp
0 has also to book MSHR space for the fired load request,however only for its
own requested data(8B data segmentX ). Later on when warp 1 is invoked
for the load execution, it simply checks the MSHR tag array tofind out an
ongoing load whichcoversits request (8B data segmentY ). At this point, it
allocates an MSHR entry and reserve the data space forY . Afterwards, it is
put into inactive status, waiting for dataY to return from DRAM. The hard-
ware mechanism supporting this process is calledelastic MSHR with deferred
reservation, which will be addressed in the following section.
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6.4 Microarchitectural Extension

In this section, we present the necessary microarchitectural extension to sup-
port adaptive external memory access granularity. We will first describe the
vector MSHR unit which the extension is built upon, and then the elastic
MSHR hardware design.

It should be mentioned that, the access granularity values,determined by the
runtime scheduling, can be easily transferred from the hostCPU to the GPU
through host interface (Figure 6.2), and stored in a specific, on-chipaccess
granularity buffershared by all GPU cores. This can be achieved easily with
trivial architectural extension, thus the details will be omitted in this Section.

6.4.1 Vector MSHR (VMSHR)

Before going into details, first we shall introduce some definitions for the ease
of discussion:Vector memory access:a group of memory accesses requested
by the scalar threads from within the samesubwarp(Section 6.2) execution.
Primary load and primary MSHR (PMSHR): A vector load is called “pri-
mary load” if there is no in-flight memory read access targeting/covering the
same address range as this memory load. When a primary load isprocessed
by the MSHR unit, an MSHR entry, called “primary MSHR”, has to be allo-
cated to keep track of the load access address. Note, for eachprimary load and
PMSHR allocation, an off-chip memory access has to be fired.Secondary
load and secondary MSHR (SMSHR):A vector load is called “secondary
load” if there is at least one in-flight memory load access targeting/covering
the same address range as this memory load. When a secondary load is pro-
cessed by the MSHR unit, an MSHR entry associated with the corresponding
PMSHR of the overlapping in-flight load, called “secondary MSHR”, has to be
allocated. Note, a SMSHR only has to record the target register address. Un-
like primary load, a secondary load doesnot need to fire any off-chip memory
access, since it is covered by its primary load already in flight. Vector MSHR
(VMSHR): A MSHR unit design which is capable of processing vector mem-
ory access. The major difference between aVMSHRand ascalar MSHRsis
that the former is required to allocate vector memory accesses, and commit
the ready data to vector registers, both in parallel. Depending on the detailed
implementation, the main challenge of a VMSHR design can be apure band-
width problem, or it may be a more complex issue requiring sophisticated data
rearrangement when committing data to vector registers. Since our proposal
does not change the MSHR data writeback and deallocation behavior, we will
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focus on the MSHR storage scheme and allocation logic in thischapter.Nor-
mal block: the memory access granularity of a normal load and store (32B
in our configuration).Hyper block: If the load granularity determined by the
runtime scheduler (Section 6.3.3) is larger than thenormal block, then it is
called ahyper block.

We modeled a source addressed MSHR design [67] for GPU core, with the
storage scheme similar to [18], as shown on top of Figure 6.5(a). Each PMSHR
entry includes a valid bit (V) and an address tag. Since our modeled GPU core
does not include a on-chip hardware data cache, a storage (the Data field) has
to be provided for each primary load, together with a data ready bit (Y), Each
SMSHR is composed of a valid bit (V), an offset (O) indicatingthe offset
inside theData field, a thread id (Tid) recording the hardware thread id which
requests the memory access, a target register address (R), and a data format (F)
field. Since MSHRs can be implemented with non fully-associative structures,
we show a set associative MSHR design on top of Figure 6.5(a),for the purpose
of discussion generality.

In our design, we associate 2 SMSHRs to each PMSHR, in order toavoid
performance losses due to the pipeline being blocked by a secondary load [67].
This also makes it possible for the MSHR unit to capture certain temporal
locality, using the second SMSHR entry5.

MSHR allocation: For a vector MSHR allocation, the vector load address6

together with the corresponding access information from each lane7 are sent
to the MSHR unit. Then the load address is searched among all PMSHR
tag arrays, to identify the vector access type and check PMSHR/SMSHR
entry availability accordingly. In the end, two output signals are generated.
MSHRalloc fail=1 informs the core pipeline that a valid MSHR entry is not
found for the vector memory access, which will block the pipeline. Other-
wise, the allocation is successful, and in consequence the MSHR unit will take
charge for the vector memory access and the core pipeline will be released.
The other signal,fire read packetto ICNT=1 indicates: 1) current load is a
primary load; 2) PMSHR allocation is successful; 3) an interconnect buffer is
needed. In this case, the MSHR unit will wait for an interconnect buffer, and

5Note, a SMSHR entry is also allocated when a PMSHR is allocated for a primary load, to
keep track of the target register addresses [67].

6Vector memory stores are simply packed by the MSHR unit and directly injected into the
interconnect.

7If lanes requests are targeting different memory blocks, then the vector has to be split into
sub-vectors, with each accessing a block. Then the sub-vector requests are sent to the MSHR
unit one by one.
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then a DRAM read request is fired into the interconnect if a buffer is available.
At this point, the first stage of this load instruction execution, sending out the
request, is finished.

Note, we arenot proposing new vector MSHR designs here. Instead, we just
model one the possible design, with the intention to show howour proposed
adaptive DRAM access granularity can be actually implemented in hardware
and integrated into the baseline vector MSHR design.

6.4.2 Elastic MSHR with Deferred Reservation

In order to support adaptive access granularity for horizontal locality aware
DRAM access granularity scheduling, the vector MSHR needs to be extended,
which we call “Elastic MSHR” in this chapter. The idea of elastic MSHR is
straightforward. Since the primary MSHR already maintainsthe access ad-
dress, we can also extend it with an extra field to keep track ofaccess granular-
ity. However, the problem occurs when we allocate for a primary load. Since
we also need to reserve the storage for outstanding primary loads, we are fac-
ing the problem of proper data storage size to be reserved, which is changing
dynamically. A naive solution will be a MSHR design which associates a stor-
age to each PMSHR entry with a large size able to satisfy all dynamic size
requirements. Unfortunately, this results not only in chiparea waste, but also
complicates the already sophisticated data rearrangementproblem during vec-
tor MSHR writeback.

Our observation is, since the primary vector load which initiates the hyper
block access will only consume its own required data (i.e., anormal block),
it is not necessary for the primary load to reserve theextra storage space, for
a hyper block memory access. Based on this observation, we propose a sim-
ple yet effective MSHR data storage reservation policy for GPU cores without
hardware L1 data cache, which we call “deferred reservation”. In the deferred
reservation, each PMSHR is associated with a storage of a normal block size.
When a PMSHR is allocated, only this storage is reserved, irrespective of the
hyper block size. By the time a hyper block returns from DRAM,if the cor-
responding storage space for some hyper block part has not yet been reserved
(indicating that the part has never been requested by any secondary load), then
that part is simply discarded. In this case, system performance may decrease
due to the additional, unused off-chip trafic. Fortunately,we found such occa-
sions rare in our experiments (Section 6.5.5).
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Microarchitectural Modifications

With the deferred reservation scheme, the aforementioned elastic MSHR data
storage size problem is resolved, with only slight modifications to the baseline
vector MSHR design. As shown on top of Figure 6.5(b), ahyper block size
(HBS) field is added to the PMSHR tag, defined as the ratio between the re-
quested memory load (being either normal block or hyper block) granularity
and the normal block size. The two dashed squares in Figure 6.5(b) show the
modifications to the original vector MSHR allocation logic in order to support
elastic MSHR with deferred reservation, assuminglog2(#PMSHR sets) <
#different

hyper block size
normal block size

.8

It is important to note that, with non fully-associative MSHR implementa-
tions (i.e.,#PMSHR sets > 1), it may occur that a secondary load is falsely
identified and processed as a primary load by the MSHR unit, when the real
primary load (which covers that secondary load) is allocated in some MSHR
set different from the one the secondary load is mapped to9. In this case, an
unnecessary off-chip memory request is fired into the interconnect, resulting
in system performance degradation. Essentially, the trade-off here is between
the MSHR hardware complexity and off-chip bandwidth utilization. Since off-
chip memory bandwidth is a serious problem in manycore GPUs,we priori-
tize memory performance over MSHR hardware complexity, andthus assume
fully-associative MSHR for designs with practical MSHR sizes10. In this case
the above problem does not exist.

Hardware Cost and Timing Overhead

The shaded components in Figure 6.5(b) already exist in the baseline vector
MSHR in Figure 6.5(b). Note, the single comparator in Figure6.5(a) is split
into two (in shadow) in Figure 6.5(b). Assuming fully-associative MSHR de-
sign (which incurs the highest hardware cost), and the optional hyper block
sizes 64, 128 and 256B (Section 6.5), the hardware cost is summarized in Ta-
ble 6.1. M in the table denotes the PMSHR entry number. As we can see in
Table 6.1, the extra hardware cost of ourelastic MSHR with deferred reserva-
tion is trivial, for practical MSHR designs. By examining Figure6.5, it is easy

8In our evaluation it is0 < 3 with fully-associative MSHR and 3 hyper block sizes. When
log2(#PMSHR sets) >= #different hyper block size

normal block size
, no modification is needed.

9This is a scenario similar to the address disambiguation issue in configurable caches.
10In our evaluation, 64 MSHR (PMSHR) entries per GPU core is adopted (Table 6.2), similar

to [16].
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Table 6.1: Hardware cost of elastic MSHR with deferred reservation (per GPU core)

Type Quantity Type Quantity

2-input AND Gate x 6M 3-bit Comparator x M

3-input AND Gate x M M-input NOR Gate x 1

to verify that the critical path is the one that passes through theway arbitration
unit, which isnot affected by the additional logic of our proposal.

6.5 Experimental Evaluation

Experimental Setup: We use a modified version of GPGPU-Sim [17],
a cycle-level full system simulator implementing PTX virtual ISA [110] of
NVIDIA CUDA programming model and target architectures. The detailed
configuration of the modeled GPU is shown in Table 6.2. The prototyped ac-
cess pattern analyzer and the adaptive access granularity scheduling run on
the host CPU. When a kernel is to be launched, the scheduled optimal ac-
cess granularity values for memory instructions are transferred to the accel-
erator. At the accelerator node, the baseline and our proposal execution dif-
fer mainly in memory access granularity: the baseline memory accesses are
32B11, while our proposal memory access granularity isdeterminedby the
launch time scheduler (Section 6.3.3) implemented in our runtime library, and
realizedby the elastic MSHR design (Section 6.4.2) implemented in our mi-
croarchitecture. We evaluated only adaptive memoryload granularity.

We used 17 memory intensive benchmarks from CUDA SDK [109], Rodinia
benchmark suit [26], and [17], which are widely used in GPU architecture re-
search [16,89]. The selected benchmarks are listed in Table6.3. The selection
criteria is that the memory bandwidth requirement (Section6.5.1) is larger than
1 Byte per core per cycle. Similar criteria has been used in prior work [16].
Note, we only considered CUDAglobal and local memory accesses in eval-
uating the bandwidth requirement, since this work focuses on generic GPU
memory systems. Memory accesses generated by graphics-specific subsys-
tems, such as texture and constant memories, arenot counted. This has ex-
cluded memory intensive kernels such askmeans[26] andMUMerGPU [26]
from our benchmarks.

11Appropriate for the simulated 8-way SIMD pipeline.
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Table 6.2: Baseline GPU configuration†

Number of Cores 16 @1296.0 Mhz

Core Configuration

8-wide SIMD execution pipeline, 24 pipeline stages

32 threads/warp, 1024 threads/core, 8 CTAs/core, 16384 registers/core

warp scheduling policy: Round-robin, execution model: strict barrel processing (Section 6.3.1)

On-chip Memories
16KB software managed cache (i.e., shared memory)/core, 8 banks, 1 access per core cycle per bank

64 MSHRs/core, with 32B data field per MSHR entry (no hardwarecache)

DRAM

4 GDDR3 memory channels, 2 DRAM chips per channel, 2KB page per DRAM chip, 8 banks per DRAM chip

8 Bytes/channel/transmission, 68.2 GB/s aggregate bandwidth @1066 Mhz bus freq, 256B channel interleaving

GDDR3 memory timing:tCL=12,tRP =12,tRC =41,tRAS =29,tRCD=14,tRRD=10

memory controller policy: out-of-order (FR-FCFS) [125], 32 DRAM request buffer entries per controller

Interconnect Network crossbar (2-ary 5-fly butterfly [37]) @602.0 Mhz, 16-Byte flitsize, 2 Virtual Channels, 8 buffers per Virtual Channel
† a downsizedNVIDIA GeForce GTX 280 version, with 16 vs 30 processor coresand half of its aggregated DRAM bandwidth (68.2 instead of 141.7 GB/s)
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Table 6.3: Benchmarks

Name Abbr. Name Abbr. Name Abbr.

Transpoes [109] TRA Speckle Reducing Anisotropic Diffusion [26] SRAD Weather Prediction [17] WP

Fast Wavelet Transform [109] FWT Parallel Reduction [109] RD LIBOR Monte Carlo [17] LIB

Scalar Product [109] SP Streamcluster [26] SC CFD Solver [26] CFD

BFS Graph Traversal [26] BFS RAY Tracing [17] RAY 3D Laplace Solver [17] LPS

Separable Convolution [109] COV Matrix Multiplication [109] MM Black-Scholes Option Pricing [109] BS

Nearest Neighbor [26] NN Back Propogation [26] BP
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Figure 6.6: Memory bandwidth requirement

Some benchmarks consist of more than one kernel. All resultspresented here
are aggregation of all kernels invoked in benchmark execution.

6.5.1 Memory Bandwidth Requirement

Figure 6.6 shows the bandwidth requirement of our benchmarks, with the met-
ric being Bytes per GPU core cycle. Note, the “memory bandwidth require-
ment” in this section denotes bandwidth to feed data to GPU core pipelines,not
off-chip memory bandwidth. The left bar of each group shows thenetmemory
bandwidth requirement (net BW req), calculated by dividing the net memory
access (assuming 1B access granularity) by the execution time assuming nor-
malized IPC=1.net BW reqactually gives the lower bound of sustained mem-
ory bandwidth necessary to keep the GPU core pipeline busy. The right bar,
practical BW req, is calculated by dividing the required data (assuming 32B
access granularity) by the execution time on GPU cores with perfect memory
system, but taking into account warp control flow divergencepenalty [47].

The disparity between thenetandpracticalbenchmark bandwidth requirement
reflects itsmemory utilization efficiency(Section 6.5.5). Among all bench-
marks, NN shows the largest gap, because the kernel code exhibits extremely
high vertical locality (intra-thread spacial locality, Section 6.3.1), with 32
memory loads from within each thread accessing contiguous 32 Bytes global
memory. Unfortunately, vertical locality is not captured by our modeled GPU
core (with no hardware cache). For such benchmarks, it is desirable to adopt
on-chip hardware data caches to reduce the off-chip bandwidth requirement.

The solid bar in Figure 6.6 lines out the peak bandwidth of ourbaseline DRAM
subsystem, 52.6B/corecycle. Considering there are 128 scalar lanes in total
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from 16 8-way SIMD cores, this translates into a bandwidth-FLOP ratio of
0.41. Interestingly, Figure 6.6 shows that, the peak bandwidth of the baseline
DRAM system indeed exceeds most benchmarks’ bandwidth requirements.
However, as we will see in following sections, most of them are actually mem-
ory bound during execution, due to lowDRAM efficiency.

6.5.2 DRAM Access Granularity Distribution

Table 6.4 shows the static instruction count scheduled at each granularity level
by our runtime scheduler for each benchmark in our experiments. Note, 32, 64,
128 and 256B denote the possible granularity of thesubwarp vector accesses
(Section 6.4.1) generated by the corresponding memory instructions. As we
can see in Table 6.4, no particular pattern in the granularity type distribution
is observed across all benchmarks – their optimal granularity spread across all
four levels. Moreover, 10 out of the 17 benchmarks require atleast two access
granularity types. This suggests that in general asingleoptimal access gran-
ularity for all memory accesses in a kernel is not feasible, and, confirms the
need for scheduling memory instructions separately, basedon access patterns.

The last row of Table 6.4, AF (analysis fail), indicates the number of memory
instructions for which the access pattern analysis failed in our experiments.
The reasons for analysis fails include: 1) skeleton transition operations or
operation compositions used in address generation are not supported by the
compiler; or 2) access patterns are dependent on the controlflow path (Sec-
tion 6.3.2). In either case, an analysis fail will result in the minimal access
granularity (32B in our experiments) being scheduled (notethe first row of
data in Table 6.4 already includes such AF instructions). Specially, in case
2), the obtained multiple access pattern versions (Section6.3.2) are simply
dropped by the runtime scheduler, because it runs on the hostCPU before the
kernel launches, having no clue about the dynamic path takenby the warp exe-
cution. The only exception is addresses generated in loops with constant steps
across loop iterations – in this case, multiple pattern versions differ only in
skeleton parameterf (Section 6.3.2), and are treated as a single valid pattern
by the runtime granularity scheduler.

Note, a granularity larger than 32B in our experiments indicates that the sub-
warp vector memory accesses generated by the correspondingmemory instruc-
tion will fetch data more than needed by themselves. Therefore, Table 6.4 also
confirms that the horizontal locality widely exists in GPGPUapplications.
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Table 6.4: DRAM access granularity distribution

TRA SR WP FWT RD LIB SP SC CFD BFS RAY LPS COV MM BS NN BP

32B 0 12 100 3 0 12 0 108 60 48 8 2 0 0 0 40 3

64B 1 26 0 0 0 0 0 0 0 0 5 0 12 2 0 0 11

128B 0 0 0 0 2 0 0 0 0 0 0 2 0 0 0 0 0

256B 0 0 0 62 2 15 2 180 86 16 0 0 0 0 30 0 0

AF 0 0 86 3 0 2 0 108 60 48 8 2 0 0 0 0 0
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Figure 6.7: DRAM efficiency

6.5.3 Improved DRAM Efficiency

DRAM efficiency is defined as the ratio between DRAM data bus actual trans-
fer cycles and the number of cycles with pending DRAM access:

Etot =

#kernels−1
∑

k=0

#channels−1
∑

i=0

#bus transactionsk,i

2 ·
#kernels−1

∑

k=0

#channels−1
∑

i=0

#active cyclesk,i

where#bus transactionsk,i is the number of accomplished DRAM bus trans-
actions in channeli during the execution of kernelk, and#active cyclesk,i

is the number of DRAM bus cycles during which channeli is notcompletely
idle. Here completely idle denotes the DRAM channel status with no pending
accesses in its request queue and any ongoing memory accesses. The factor2
in the equation is due to the fact that there are two bus transactions in one cycle
for dual-data-ratememories.

Fig. 6.7 shows the overall DRAM efficiency of our adaptive DRAM access
granularity scheme for all benchmark applications. Withineach group, there
are three bars. The left and middle show the DRAM efficiency with the base-
line and our proposal, respectively. The right bar shows thenet gain. The
RD and SP kernels see the largest DRAM efficiency improvement, since they
have very few memory access instructions with simple accesspatterns, and
demonstrate high horizontal locality. Meanwhile, we have observed that most
fetched data are efficiently utilized by neighbor warps in such kernels, even
at the largest access granularity of 256B (Figure 6.9). Other benchmarks also
show varied efficiency increment, with the only exceptions being WP and NN.
The reason is that theidentifiedaccess patterns do not have exploitable hori-
zontal locality, while for the rest instructions the analyzer failed to extract the
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Figure 6.8: Speedup over the baseline

precise access patterns as they are control flow dependent. As a result WP and
NN are executed with the same access granularity as the baseline. Nonetheless,
the average DRAM efficiency is improved by our adaptive memory granularity
scheme by 1.42X, a strong indication that our approach is capable of efficiently
exploiting the available horizontal locality in the benchmarks.

6.5.4 Improvement in Overall Performance

Figure 6.8 shows the overall performance improvement with our adaptive
memory granularity scheme. On average, the performance is improved by
12.3% over the baseline. Note, some benchmarks, such as BFS and LPS,
see substantial overall performance degradation. Detailed analysis reveals that
severinter-warp control flow divergenceoccurs during kernel execution. In
this case, neighbor warps execute along different control flow path, rendering
the extra data fetched at large granularity being wasted. Asa result, mem-
ory bandwidth is wasted and system performance is degradable, especially for
BFS (which is heavily memory bound). This can be alleviated by utilizing
both static analysis results from the pattern analyzer, andalso the control flow
information avaialbe atwarp execution time. We leave this as our future work.

6.5.5 Memory Access Utilization

Memory access utilizationis defined as the portion of data loaded from off-chip
memory which istruly utilized by the processor core pipeline. Fundamen-
tally, imperfect memory access utilization results from the mismatchbetween
the data manipulation granularity in program world and themuch largerdata
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Figure 6.9: Memory access utilization

movement granularity in a real machine. For example, the most frequently
used data types are of 1 to 8 Bytes in CUDA C code, whereas the smallest
burst size of GDDR3 interface is 32 Bytes.

Figure 6.9 shows the memory access utilization for both the baseline and our
adaptive access granularity scheme. In general, when an application employs
irregular memory access patterns, the memory access efficiency drops.For
example, SC and BFS make intensive use of pointer accesses inside a thread
(SIMD lane), forming scatter/gather accesses during SIMD pipeline subwarp
execution, resulting in very low memory access efficiency. As mentioned in
Section 6.5.1, NN exhibits exclusively vertical locality not captured in our
GPU model, therefore it suffers the lowest memory access utilization (in most
cases only one single Byte out of 32B DRAM data is utilized). Nonetheless,
irregular memory access is an open issue, not only for data parallel architec-
tures (in forms of scatter/gather), but also for general-purpose processors (e.g.,
pointer-chasing). For GPU predicated SIMD execution, another source of low
memory access utilization is warp divergence. In such case,only part of the
SIMD lanes and the data transfer bandwidth are utilized.

Interestingly, we have observed a good correlation betweenthe memory access
under-utilization and the portion of AF(analysis fail) memory instructions (the
last row of Table 6.4) in total memory instructions (sum of other 4 data rows
in the same column). Remember, one major cause of pattern analysis fails is
access pattern being dependent on control flow paths (Section 6.5.2). There-
fore, such correlation suggests that control flow divergence is actually a major
contributing factor to GPU memory under-utilization. The impact is in two
fold: 1) it directly degrades memory access utilization, as described in above
paragraph; 2) itindirectly decrease memory utilization, by creating irregular
memory access patterns in different control flow paths.
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Memory access utilization should be taken good care of, especially in our
adaptive granularity proposal. With the increased DRAM access granularity,
the utilization tends to decrease. Fortunately, on averageour approach did
not substantially decrease memory access efficiency, as shown in Figure 6.9,
thanks to the conservative scheduling we have adopted (Section 6.3.3). How-
ever, some benchmarks, such as BFS and LPS, still see significant memory
access efficiency degradation.

Another interesting observation in Figure 6.9 is that, despite its relatively small
size (as compared to a normal L1 data cache), the vector MSHR managed
capturing certain temporal locality in some of the benchmarks, such as SR, BP
and MM. Investigation in the kernel code reveals different temporal locality
sources. E.g., with SR, the temporal locality results from the threads inside a
same CTA accessing the surrounding elements overlapping each other; while
for MM, the data sharing occur among CTAs accessing same matrix tiles. For
the other applications, the temporal locality is either limited, or not captured
by the vector MSHR.

6.5.6 Effect on a GPU with Less Capable Interconnect

In order to see how our proposal interacts with different interconnection capa-
bilities, we did the same experiments with an interconnect with the same topol-
ogy and intersection bandwidth, with the number of virtual channels reduced
from 2 to 1. Figure 6.10 shows the DRAM efficiency improvement(on the top)
and overall performance speedup (on the bottom). It can be seen that the simi-
lar trend for both efficiency and performance improvement isalso maintained
in this cases. On average, our proposed adaptive memory access granularity
scheme gives a improvement of 35.1% and 77.2%, for DRAM efficiency and
overall performance, respectively. Further analysis reveals that, the effect of
our adaptive memory access granularity is twofold in GPUs with less capable
on-chip interconnect. First, our adaptive memory access granularity gener-
ates less traffic, with lower packet overhead12, when horizontal locality exists
in the kernel execution. Second (more importantly), the original memory ac-
cess stream from a GPU core getsinterleavedin the less capable interconnect
by common fairness-oriented flow control policies. As a result, the locality in
the original memory access streams (if any) is broken at the memory controller

12E.g., for our 16B flit size, the packet overhead for 32B data is50% (32B data + 8B header
requires 3 flits), which is reduced to 6.25% for a 256B data packet.
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Figure 6.10: DRAM efficiency improvement and overall performance speedup
(num vcs=1)

side13. This is particularly true for GPUs with less capable interconnect, where
the interconnect is saturated and consequently suchinter-core memory access
interleavingis more frequent. Our adaptive memory access granularity scheme
works perfectly in this scenario, in that itenforcesthe locality from each core’s
memory access stream,adapted to available horizontal locality. This explains
the higher performance improvement in a less capable interconnect GPU.

6.6 Discussion

6.6.1 Effect of Large DRAM Data Packets

One possible drawback of our proposal is that, it might degrade the intercon-
nect performance, since our proposal fetches large DRAM data packets.

In general, large packets can degrade interconnect performance, since they
tend to cause traffic congestion, and decrease the utilization of channel re-
source and buffers. Besides, large packets also cause QoS problems [37].
However, in the particular context of throughput-orientedGPU accelerators,

13This is true, even for a memory controller with a capable out-of-order access scheduling
(such as the one modeled in our evaluation), since the request queue depth (scheduling window
size) is limited.
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we anticipate that moderate increase in memory access delayfor a single
thread/warp does not decrease system throughput, as long asit can be hidden
by concurrently active warps execution. On the other hand, we have observed
that the interconnect traffic congestion resulting from large read data packets
is quite rare, probably due to the fact that the data traffic from memory to GPU
core forms afew-to-manypattern [16]. Furthermore, solutions to alleviate the
side effect of large packets exist, e.g., thesplit packettechnique [37].

6.6.2 Impact of HW Cache

On-chip HW data caches are recently adopted in commercial GPUs, e.g.,
NVIDIA Fermi. Please note that, for spatial locality among threads, although
caches can capture certain amounts of it by the (wide) cache line access, are
unable to dynamically optimize DRAM access granularity. More specifically,
the data cache can capture only one row in Table 6.4 (say, 64B cache line size).
For memory accesses preferring access granularity different from the cache
line size, the cache block access either wastes DRAM bandwidth when the ac-
cess granularity is smaller than the cache line size (e.g., the 3 irregular access
patterns in FWT in Table 6.4) or, it incurs unnecessary inter-core memory ac-
cess interference at the memory controller side. In the former case the use of
HW data cache is questionable and indeed our approach has no impact due to
dominating cache block accesses. In the latter case, when the preferred access
granularity is larger than cache lines (e.g., for the 62 regular access patterns
in FWT in Table 6.4) our approach will work by correctly adjusting DRAM
access granularity to the access patterns. In addition, with the help of on-chip
L1 data cache, spatial locality inside each thread can also be exploited by our
scheme, which is otherwise difficult (Section 6.5.1). This said, we consider
our approach general and not limited by the fact that our experiments consider
only GPUs with no L1 data caches.

6.6.3 Application to SPMD Barrel Processing

In Section 6.3.1 we have analyzed the horizontal locality being inherent in
barrel execution of SPMD programs. GPU is the most prominentexample of
manycore architectures which embody both SPMD programmingand the bar-
rel execution model, at present time. This work experimented with a holistic
framework with compile-/runtime analysis, scheduling andthe co-designed ar-
chitectural support, to exploit and enforce the horizontallocality and improve
memory efficiency. Although the techniques are implementedand evaluated
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with a GPU model, we believe our proposal is also effective for other architec-
tures employing SPMD barrel execution, in capturing the horizontal locality.

6.6.4 Possible Improvement

In this chapter, we presented a holistic framework for GPU memory access
optimization. By combined compile-time access pattern analysis and runtime
pattern extraction, we obtained the detailed access pattern information forlo-
cal andglobalmemory access instructions. With this information, we optimize
the memory access performance by calculate and enforce the optimal granu-
larity for each off-chip memory access pattern, to exploit horizontal locality
and improve DRAM efficiency. Based on this work, two directions can be
immediately explored: (1) to reduce runtime overhead. For example, since
the importance of individual memory accesses may be different (depending
on, e.g., high/low invocation frequency which can be roughly identified by
compile time analysis), it may not be necessary toextractaccess patterns for
all instructions. Rather, only thosecritical accesses, the access granularity of
which may have strong impact on overall performance (as suggested in Ta-
ble 6.4), need to be further investigated at runtime. (2) to identify more op-
portunities for increasing DRAM efficiency and overall performance. In fact,
we have utilized only a small portion of the valid access pattern information
(e.g., the access stride parameters in dimension-Y,b andc , are not used in the
access granularity scheduling experimented in this work).Naturally, the extra
access information characterizes certain aspects of the dynamic behavior of
kernel execution. Therefore, it can be further exploited, e.g., to reduce GPU
DRAM channel conflicts and interconnect congestion, by appropriate memory
aware CTA issue and warp scheduling schemes.

6.6.5 Contrast to Closely Related Art

Ocelot [39] is a dynamic compilation framework to map the NVIDIA CUDA
applications onto diverse multithreaded platforms. It includes a dynamic bi-
nary translator from PTX code to x86 ISA and others. While Ocelot is a
general framework, our access pattern analyzer is dedicated for external mem-
ory access analysis, and designed with minimal runtime overhead objective in
mind. Moreover, our runtime scheduling is assisted by the co-designed hard-
ware which is essential inrealizing the adaptive memory access granularity.

PTX transformations, such as thread-fusion used in MCUDA [136] and
GPGPU Compiler [151], have also been proposed to change CUDAcode
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memory access patterns, in order to optimize their execution on existing GPUs.
In our view, such techniques make a good effort increatinghorizontal locality.
In contrast, our proposal focuses onexploitingandenforcingthe horizontal lo-
cality in existing code. Therefore, PTX transformations are complementary to
our work, and we believe the combination of two have the potential for further
GPU performance improvement.

Memory coalescing[108] is a hardware mechanism in NVIDIA GPUs to buffer
and mergeintra-warp memory accesses. In this way variable-sized loads, de-
pending on access locality, are also supported. However, the effectiveness of
coalescing is limited to half/single-warp14. In contrast, our approach takes
advantage of the high level access pattern information, andcaptures horizon-
tal locality both inside and among warps even whennot issued back-to-back
(Section 6.3.1). Thus our scheme generalizes memory coalescing, and the ”co-
alescing rules” are effectively relaxed in our system.

A recent study on GPU prefetching proposedInter-Thread Prefetching
(IP) [88], somehow similar to our work in spirit, both recognizing the GPU
specific locality among parallel threads.IP focused onlatency reductionus-
ing speculation, assuming inadequate parallelism to hide memory latency. In
contrast, our work emphasizes onoff-chip memory access efficiencyusingac-
curate access patterninformationwithout speculation, in a context where the
off-chip memory bandwidth efficiency becomes the performance bottleneck15.
Moreover, our work is novel in analyzing the horizontal locality in SPMD bar-
rel execution embodied by GPUs.

At the GPU on-chip interconnect level, the work [152] also addresses themem-
ory access streams interleavingproblem, using a customized flow control de-
sign optimized for this scenario. Different form their work, our approach uti-
lizes high-level access pattern information at the source (GPU cores) of the
traffic, and adjust memory access granularity according to the available hori-
zontal locality. Also, our adaptive memory access granularity scheme does not
change the behavior of kernel execution with less or no horizontal locality.

14depending on GPU generation
15For example, for the same application “Black-Scholes”, #max warps/core is 12 (see Table

III in [88]) in the GPU modeled in [88] (NVIDIA GeForce 8800GT). While in the GPU modeled
in our study (GeForce GTX 280) #max warps/core becomes 24, resulting in doubled available
parallelism (with per-core off-chip bandwidth not significantly increased). Hence, the memory
efficiency, rather than latency, becomes the first-order issue.
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6.7 Summary

In this chapter, we analyzed horizontal locality found in GPUs with SPMD
barrel execution. We proposed an adaptive DRAM access granularity scheme
to exploit this locality and reduce memory access interference among GPU
cores to improve DRAM efficiency. Our scheme comprises a compiler and
runtime access pattern analyzer, a runtime granularity scheduler, and the co-
designed elastic MSHR HW support. Our results show that, on average our
proposal improves DRAM efficiency by 1.42X and the overall performance
12.3%, for a set of representative GPGPU applications.

Note. The contents of this chapter is based on the the following papers:

C. Gou, G. N. Gaydadjiev, Exploiting SPMD Horizontal Locality to Im-
prove Memory Efficiency, IEEE Computer Architecture Letters, Vol. 99,
DOI: http://doi.ieeecomputersociety.org/10.1109/L-CA.2011.5, 2011

C. Gou, G. N. Gaydadjiev, Improving GPU DRAM Efficiency Using Access
Granularity , submitted to the 44th Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO-44), 2011





7
Conclusions and Future Directions

7.1 Conclusions

This dissertation identified that one major factor of the memory access ineffi-
ciency in data parallel accelerators is the mismatch between the access pattern
required by the workloads and the one optimal for the physical data layout. We
proposed customizable memory schemes to address the accessefficiency prob-
lem of parallel memories in terms of bandwidth utilization and access time.
Different from conventional approaches, customizable memory schemes em-
ploy systematic approach with well coordinated hardware and software efforts.
Our approach leverages the extra information about the application and its ex-
ecution characteristics available within code written under the corresponding
programming styles/models of data parallel accelerators.Furthermore, our
approach extracts such information at proper application phases using cus-
tomized programming interfaces, compile-time analysis, runtime optimiza-
tions and architectural extensions, to steer the memory scheme hardware and
improve memory efficiency.

To support conflict-free vector access for multiple stride families frequently re-
quired in workloads with irregular memory accesses, this dissertation proposed
two novel hardware parallel memory schemes in Chapter 3. Thefirst one, the
SAMS hardware scheme, supports both unit-stride and strided conflict-free
1D vector memory access. To the best of our knowledge, the proposed SAMS
scheme is the first of its kind that supports atomic parallel access without lim-
iting the vector length and without using more memory banks than the paral-
lel access degree. The second access scheme we proposed was the 2DSMM
scheme able to support conflict-free vector access in a 2D environment.

To illustrate how such hardware parallel memory schemes canbe integrated
into the system level of a contemporary data parallel accelerators, this disser-
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tation proposed a parallel memory design to bridge the discrepancy between
data representations in memory and those favored by the SIMDprocessor by
customizing the low-level address mapping. The key in the proposed design
is a customizable memory scheme (called “SAMS Multi-LayoutMemory”) in
the memory hierarchy backed up by the SAMS hardware that provides bothAr-
ray of Structures(AoS) andStructure of Arrays(SoA) views of structured data
to the processor, appearing to have maintained multiple layouts for the same
data. With such multi-layout memory, optimal SIMDization with dynamically
changing access patterns can be achieved. We did show in Chapter 4 how
the customizable memory scheme enalbed by SAMS can significantly improve
both memory access efficiency and system performance. Our scheme achieved
all of the above performance targets while reducing programming efforts.

To minimize the negative impact of on-chip memory bank conflicts on system
throughput, we proposed a novel elastic pipeline design which decouples bank
conflicts from pipeline stalls in multithreaded vector execution. We described
in Chapter 5 how the proposed elastic pipeline together withthe co-designed
bank-conflict aware warp scheduling substantially reduce pipeline stalls and
improve the overall performance for workloads characterized with many on-
chip shared memory bank conflicts, when applied to GPUs. Thisis all achieved
with trivial hardware overhead. In the mean time, our proposal also leads to
reduced GPU programming complexity by relieving the burdenof avoiding
shared memory bank conflicts from the programmer.

To improve external memory access efficiency in the case of data parallel
manycore accelerator architectures adopting barrel execution of SPMD pro-
grams, we proposed a holistic framework for off-chip memoryaccess opti-
mizations in Chapter 6. We analyzed the horizontal localityamong parallel
execution of independent worker threads in a core. To prevent the available
horizontal locality from being broken by the interference among accelerator
cores memory accesses, this dissertation described an adaptive memory access
granularity scheme to exploit and enforce such horizontal locality, based on the
proposed holistic memory optimization framework. We showed in Chapter 6
that with the proposed techniques, DRAM efficiency is dramatically increased
and overall system performance is improved.

To summarize, this dissertation demonstrated: 1) both memory access patterns
and physical data layout can be optimized to improve memory efficiency; 2)
optimal solutions require striking the right balance between adjusting either
memory access patterns or physical data layout, with respect to programming
efforts and hardware efficiency (in terms of performance gain/additional HW
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cost). These two findings, within the context of contemporary data parallel ac-
celerators, form the core of our customizable memory schemes. Especially, a
key factor of customizable memory techniques is how to properly capture the
access pattern information. We showed in this thesis that itcan be achieved by
well coordinated HW/SW efforts across multiple computing system abstrac-
tion layers: customized programming interfaces, static code analysis, runtime
optimziations and architectural extensions.

In Chapter 1 we posed three research questions which we answered throughout
this thesis. Here are their summarized answers:

• Conflict-free accesses for common 1D and 2D vector patterns can be
supported, by extending traditional parallel memory schemes (SAMS
and 2DSMM);

• Systematic approaches should be leveraged to capture the memory ac-
cess pattern information, with well coordinated HW/SW efforts across
computing system abstraction layers (SAMS Multi-Layout Memory,
elastic pipeline and elastic MSHR);

• Access pattern information can be exploited using customizable HW,
by adapting the physical data layout to access patterns (SAMS Multi-
Layout Memory); by decoupling on-chip memory access irregularities
from pipeline stalls (elastic pipeline); and by enforcing the horizontal
locality and reducing inter-core memory interference (elastic MSHR).

At a broader scope, we argue that the techniques proposed in this thesis move
one step forward in expanding the effectiveness scope of contemporary data
parallel accelerators. Such techniques can also be useful for the long-term
merging of the data parallel architectures with other parallel architectures (such
as task parallel), toward unified accelerator architectures.

7.2 Future Research Directions

This dissertation introduced customizable memory schemesto increase paral-
lel memory access efficiency. The customizable memory techniques comprise
two major components: 1) customizable hardware memory schemes, and 2)
customizable parallel memory access scheduling. There areseveral possible
future research directions to improve these two componentsand to further in-
crease memory efficiency of contemporary data parallel accelerators:
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• In spite of various existing hardware parallel memory schemes in the
literature (including the SAMS and 2DSMM introduced in thisthesis),
there is still room for innovation in new parallel memory schemes to
support more conflict-free patterns. However, two issues should be kept
in mind. First, the hardware scheme design should be investigated at
system-level. Especially, questions should be asked: how is it related
to mainstream data parallel architectures? How important are the new
access pattens supported by the scheme, with respect to real/emerging
applications? The second issue is the additional cost due tothe new
schemes, in terms of extra latency/silicon area and power consumption;

• With the additional memory access flexibility provided by conflict-free
hardware memory schemes (such as SAMS and 2DSMM), it may be
worthwhile to revisit relevant program flow analyses/transformations, to
help renovate automatic SIMDization;

• In the SAMS Multi-Layout Memory design, we have shown that, a
customizable memory scheme which is adaptive for individual data
structures/access patterns, has the potential to boost theperformance of
emerging applications on SIMD processors. However, as our work tar-
geted the access of array-based data structures as a first step, it would be
interesting to apply similar approaches to more difficult problems (e.g.,
linked-list/trees), with proper customizable hardware address mapping
and the corresponding software abstractions;

• For the elastic pipeline design, it would be interesting to evaluate its
effect on GPU cores with banked on-chip hardware caches. Moreover,
it would be desirable to improve the accuracy of bank conflictdegree
prediction for irregular shared memory access patterns forbetter warp
scheduling efficiency. Another interesting follow-up research direction
could be the co-optimization of on/off-chip memory access efficiency;

• Current implementation of the adaptive memory access granularity pro-
posal only focuses on memory loads; however, our framework also pro-
vides the access pattern information for stores. Since system perfor-
mance can also be improved by optimizing memory writes [137], it
would be interesting to explore mechanisms using access pattern in-
formation to optimize memory access efficiency for both loads and
stores. Moreover, since only part of the memory access pattern infor-
mation is utilized in our adaptive memory access granularity scheme, it
would be worthwhile to further exploit the holistic memory optimiza-
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tion framework to orchestrate GPU warp execution for bettermemory
efficiency and overall performance, by techniques such as memory effi-
ciency aware block issuing, and warp scheduling;

• The effectiveness of hardware parallel memory schemes are only eval-
uated for on-chip SRAMs. Since DRAM access efficiency is alsosen-
sitive to the low level address mapping, it is desirable to expand the
utilization of such parallel memory schemes to DRAMs, with necessary
extensions suited for DRAM organizations;

• Another interesting work is to optimize both memory access patterns and
physical data layout in a unified framework. We believe this co-design
has the potential to bring extra benefits, by leveraging on techniques
from both memory access scheduling and parallel memory schemes;

• Finally, with the emerging trend toward unified acceleratorarchitectures
[69, 113, 128, 135], both accelerator HW substrate and programming
models able to capture data and task parallelism are jointlyexplored, for
better balance between programming efforts and HW efficiency. This
introduces new challenges for customizable memory schemesto further
improve programmability while maintaining efficiency.





A
SAMS Conflict-Free Access Proof

I n this section, we will present the mathematical foundationsfor the basic
SAMS scheme, and its derivative, the Matched SAMS Scheme, both pro-
posed in Chapter 3. “Conflict-free” conventionally means that data to be

referenced in one access are located in different modules sothat they could
be accessed in parallel. However, the concept of conflict-free in the SAMS
context is slightly extended such that it includes the caseswhere there are two
references located in the same module which reside in the same row (therefore
they could also be accessed in parallel). For the sake of clarity, we will use the
term “strictly conflict-free” when we refer to the conventional meaning. Now
we will first illustrate some properties of the SAMS scheme, and then give the
proof of its capability of supporting conflict-free access in theorems later.

Property 1. The period of SAMS module assignment function is2q+s .

Proof. There are three cases in the SAMS scheme.

I) s = 0. m(a) = a%2q = (a + 2q+s) %2q = m(a + 2q+s).

II) 1 ≤ s ≤ q.

m(a) =
〈

aq · · · as ,
(

a⊗ THs−1,q+1

)

%2s−1
〉

=
〈

aq · · · as ,
(

(a + 2q+s)⊗ THs−1,q+1

)

%2s−1
〉

(A.1)

= m(a + 2q+s) .

Equation (A.1) stands because the module assignment function of Harper’s
XOR scheme, namely

(

a ⊗ THs−1,q+1

)

%2s−1, has a period of2(s−1)+(q+1) =
2q+s [36].

III) s > q. In this case the module assignment function is precisely that of
Harper’s XOR scheme configured with2q banks and stride2s , which has a
period of2q+s [36].

Property 2. When1 ≤ s ≤ q, the SAMS scheme is conflict-free for any stride
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1 q! 0!

Figure A.1: Binary bits representation ofb = a + δ · 20 when1 ≤ s ≤ q

S = 2s′(0 ≤ s ′ ≤ s − 1).

Proof. The SAMS scheme is conflict-free, if we could guarantee that the
conflicting items in linear address space are mapped to the same row. De-
scribed in mathematics, given two different addressesa andb, we need prove
r(a) = r(b) under the conditionsm(a) = m(b) andb = a + δ · 2s′(1 ≤ δ ≤
2q − 1)(without loss of generality we assumeb > a).

First we examine the equationm(a) = m(b). Note when1 ≤ s ≤ q m(a) =
m(b) means
〈

aq · · · as ,
(

a ⊗ THs−1,q+1

)

%2s−1
〉

=
〈

aq · · · as ,
(

a⊗ THs−1,q+1

)

%2s−1
〉

,

i.e.

aq · · · as = bq · · · bs (A.2)
(

a ⊗ THs−1,q+1

)

%2s−1 =
(

b ⊗ THs−1,q+1

)

%2s−1 . (A.3)

According to the definition, equation (A.3) could be furtherexpanded as














a0 ⊕ aq+1 = b0 ⊕ bq+1

a1 ⊕ aq+2 = b1 ⊕ bq+2

...
as−2 ⊕ aq+s−1 = bs−2 ⊕ bq+s−1

. (A.4)

Whens ′ = 0, we haveb = a+δ. The binary bits representation of the addition
process is depicted in Figure A.1. Consideraq = bq(from equation (A.2))
together with Figure A.1, we could see that there is no carry input from bit
q − 1 to bit q during the addition. Accordingly, the high order bits(frombit
q on) of a are not affected by the addition ofδ, which meansan−1 · · · aq+1 =
bn−1 · · · bq+1, i.e. a

2q+1 = b
2q+1 , which meansr(a) = r(b).

Whens ′ = 1, we haveb = a + 2 · δ, which is depicted in Figure A.2. Note the
addition on bit 0 isb0 = a0 + 0, thusb0 = a0. Combined with equation (A.4),
we havebq+1 = aq+1, which indicates that there is no carry input from bitq

to bit q + 1. Hencean−1 · · · aq+1 = bn−1 · · · bq+1, i.e. a
2q+1 = b

2q+1 , which
meansr(a) = r(b).
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q 0 

Figure A.2: Binary bits representation ofb = a + δ · 21 when1 ≤ s ≤ q

Similarly, for s ′ = k(k = 2, ... , s − 1), i.e. b = a + δ · 2k , we have














a0 = b0

a1 = b1

...
ak = bk

. (A.5)

by examing the process of addition. Considering (A.5) together with (A.4), we
know















aq+1 = bq+1

aq+2 = bq+2

...
aq+k+1 = bq+k+1

. (A.6)

This indicates that there is no carry input from bitq + k to bit q + k + 1.
Therefore the high order bits(from bitq + k + 1 on) of a are kept untouched
during the addition. Consequently we havean−1 · · · aq+1 = bn−1 · · · bq+1, i.e.

a
2q+1 = b

2q+1 , which meansr(a) = r(b).

Property 2 reveals a very interesting feature of the SAMS scheme: it could
potentially support conflict-free vector accesses with strides across multiple
stride families, under the conditions ≤ q. Moreover, it is exactly where the
idea of the Matched SAMS Scheme originates. We will see how this feature
works for the Matched SAMS Scheme later.

Before proving the conflict-free access support of SAMS scheme, first we have
to prove that it is a bijection onEn1. Only when the interleaving scheme is a
bijection from the linear address space to the transformed space(the module-
row-offset trinity in SAMS) could it be consistent in both theory and practice.

Theorem 1. The mapping from linear addressa to the module-row-offset
trinity in the SAMS scheme is a bijection onEn.

Proof. As there are three cases in the SAMS scheme, we will discuss them
one by one.

1DenoteE
n = {0, 1, ... , 2n − 1}.
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I) s = 0. By concatenating the binary bits of the memory module assignment,
row assignment, and offset assignment, we get

〈m(a), r(a), o(a)〉
=

〈

a%2q,
a

2q+1
, aq

〉

=
〈

a%2q,
a

2q

〉

.

It’s clear that the mapping froma to the trinity〈m(a), r(a), o(a)〉 is a bijection
on E

n.

II) 1 ≤ s ≤ q. By concatenating the binary bits of the memory module
assignment, row assignment, and offset assignment, we get

〈m(a), r(a), o(a)〉
=

〈

aq ... as ,
(

a ⊗ THs−1,s+1

)

%2s−1,
a

2q+1
, as−1

〉

(A.7)

bijection⇔
〈

(

a ⊗ THs−1,s+1

)

%2s−1,
a

2q+1
, aq ... as , as−1

〉

(A.8)

=
〈

(

a ⊗ THs−1,s+1

)

%2s−1,
a

2s−1

〉

. (A.9)

Note expression (A.9) is virtually the Harper XOR scheme configured with
2s−1 memory modules and stride2s+1(the first part of the binary concatenation
is the module assignment function, and the last part is the row assignment
function). Therefore, mapping froma to (A.9) is a bijiection onEn. As the
transform between (A.7) and (A.8) is also a bijiection, hence mapping froma

to 〈m(a), r(a), o(a)〉 is a bijection onEn.

III) s > q. By concatenating the binary bits of the memory module assign-
ment, row assignment, and offset assignment, we get

〈m(a), r(a), o(a)〉
=

〈

(

a ⊗ THq,s

)

%2q,
(( a

2q
+ 1

)

%2n−q
)

/2, aq

〉

=
〈

(

a ⊗ THq,s

)

%2q,
(( a

2q
+ 1

)

%2n−q
)

/2,
(( a

2q
+ 1

)

%2n−q
)

%2
〉

=
〈

(

a ⊗ THq,s

)

%2q,
( a

2q
+ 1

)

%2n−q
〉

(A.10)

bijection⇔
〈( a

2q
+ 1

)

%2n−q,
(

a ⊗ THq,s

)

%2q
〉

(A.11)

=
[〈 a

2q
,

(

a ⊗ THq,s

)

%2q
〉

+ 2q
]

%2n . (A.12)
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Figure A.3: The accessed addresses with strideS = 2s

Note the transform between (A.10) and (A.11) is a bijection.As we know the
Harper’s XOR scheme which maps linear addressa to the row-module con-
catenation

〈

a
2q ,

(

a ⊗ THq,s

)

%2q
〉

is a bijection onEn, therefore the mapping
from a to

[〈

a
2q ,

(

a ⊗ THq,s

)

%2q
〉

+ 2q
]

%2n is also a bijection with fixedq.
Therefore, the mapping from linear addressa to 〈m(a), r(a), o(a)〉 is a bijec-
tion onE

n.

Theorem 2. The SAMS scheme is conflict-free for both unit-stride and stride
family {S‖S = σ · 2s , σ odd}.
Proof. I) s = 0. In this case the stride family becomes{S‖S = σ, σ odd},
which includes the unit stride. The SAMS module assignment function when
s = 0 is the same as that of the simple low-order interleaving scheme, hence it
is conflict-free for all odd stride accesses.

II) 1 ≤ s ≤ q.

a) Strided access with strideS = 2s .

Suppose the starting address of the strided access isb. Then the accessed items
in linear address space areb, b + 2s , ... , b + 2s(2q − 1), which is shown in
Figure A.3. In the figure the address sequence is rearranged into a matrix,
where the address increases in a column-major manner, and each row consists
of all the references to the same subgroup (Note there are2q−s+1 subgroups
in total.). Now we will prove each and every item in the matrixis distributed
into a different memory module, by the SAMS module assignemnt function
〈

aq · · · as ,
(

a ⊗ THs−1,q+1

)

%2s−1
〉

. By examing the address matrix we could
see that itemk · 2q+1(k = 0, 1, ... 2s − 1) does not affectaq · · · as , and the
only determinant factor is itemb + k · 2s(k = 0, 1, ... 2q−s+1 − 1), which
results differentaq · · · as for different k. In other words, the high order bits
of the module assignment function is different for different rows. Now we
look into the row. For the i-th row(i = 0, 1, ... , 2q−s+1 − 1), the address
sequence is precisely that generated by the strided access with starting address
b + i · 2s and stride2q+1. Consequently, the second part of the SAMS module
assignment function, which is actually the Harper’s XOR scheme configured
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01    
!q

Figure A.4: Binary bits representation ofb = a + δ whens > q

with conflict-free access for stride2q+1, designates different module indices to
different address items in the same row. In other words,

(

a ⊗ THs−1,q+1

)

%2s−1

is different for each and every items in the same row. Together with the fact
thataq · · · as is different for different rows, we could know that each and every
items in the address sequence referenced by the strided access are assigned to
different memory modules. Hence the SAMS scheme isstrictly conflict-free
for access strideS = 2s .

b) Strided access with stride family{S‖S = σ · 2s , σ odd}.
Since the SAMS scheme is strictly conflict-free for strideS = 2s in the sense
that all referenced addresses in one access are distributedin different modules,
it is also strictly conflict-free for the stride family{S‖S = σ · 2s , σ odd},
according to Theorem 3 in [36].

c). Unit-stride access.

This has already been proved in Property 2.

III) s > q.

a) Strided access with stride family{S‖S = σ · 2s , σ odd}.
When s > q, as the SAMS scheme adopts the module assignment function
from Harper’s XOR scheme directly, therefore it isstrictly conflict-free for
strided access with stride family{S‖S = σ · 2s , σ odd}.
b) Unit-stride access.

To prove the SAMS scheme to be conflict-free for unit-stride access, we only
have to prove that the conflicting items in linear address space are mapped
to the same row. Depicted in mathematics, given two different addressesa
andb, we need prover(a) = r(b) under the conditionsm(a) = m(b) and
1 ≤ |b − a| ≤ 2q − 1.

Assumeb = a + δ(1 ≤ δ ≤ 2q − 1). Consider the binary bits representa-
tion of b = a + δ, as depicted in Figure A.4. From the figure we could see
that, if aq−1 ... a0 = bq−1 ... b0, thenδ = 0, which meansa = b. Therefore
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aq−1 ... a0 6= bq−1 ... b0. In addition we knowm(a) = m(b), i.e.















a0 ⊕ as = b0 ⊕ bs

a1 ⊕ as+1 = b1 ⊕ bs+1

· · ·
aq−1 ⊕ aq+s−1 = bq−1 ⊕ bq+s−1

.

Therefore we knowaq+s−1 ... as 6= bq+s−1 ... bs . Consequently we know that
there should be a carry input from bits − 1 to bit s, which is the only possi-
ble way to make the equation in Figure A.4 stand. Furthermore, as the carry
outcome of bits − 1 could only come from that of bitq− 1, therefore we have

as−1 ... aq = 1 ... 1 (A.13)

bs−1 ... bq = 0 ... 0 (A.14)

bn−1 ... bq = an−1 ... aq + 1 . (A.15)

As bq = 0(from Equation (A.14)), we could further get

bn−1 ... bq

2
=

bn−1 ... bq + 1

2
. (A.16)

Combining equation A.15 and Equation A.16, we know

an−1 ... aq + 1

2
=

bn−1 ... bq + 1

2
,

i.e.

( a

2q
+ 1

)

/2 =

(

b

2q
+ 1

)

/2 ,

which indicates thatr(a) = r(b). This means that any conflicting items(items
located in the same memory module) under unit-stride accessin the SAMS
scheme are assigned to the same row, therefore they could be referenced si-
multaneously in one access.

Corollary 1. The Matched SAMS Scheme is conflict-free for stride 1(unit
stride), 2, ... , 2q−1 and stride family{S‖S = σ · 2q, σ odd}.
Proof. In the Matched SAMS Scheme, the parameters is set toq, therefore
Corollary 1 is virtually the direct application of Property2 and Theorem 2.

The Matched SAMS Scheme is simple yet powerful, because of the large stride
range it covers. In general, the Matched SAMS Scheme is capable of support-
ing conflict-free accesses with strides fromlog2(#modules) + 1 families. For
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example, if we have a parallel memory system with 8 memory modules which
deploys the Matched SAMS Scheme, then it could provide conflict-free access
for unit stride, stride 2, stride 4, and any stride of8 ·σ(σ odd). Thus the poten-
tial benefit is very promising in high performance vector processing systems,
where a large number of processor clocks are spent on loading, packing and
unpacking data from memory.

Note. The contents of this appendix is based on the the following report:

C. Gou, G. Kuzmanov, G. N. Gaydadjiev, Matched SAMS Scheme: Sup-
porting Multiple Stride Unaligned Vector Accesses with Multiple Memory
Modules, CE Technical Report, CE-TR-2008-06, October 2008



B
2DSMM Properties and Formal Proof

B.1 Properties of the Basic XOR Scheme

The 2DSMM is based on the XOR scheme proposed by Harper
III[Harper92](we will refer to it asthe basic XOR schemehereafter), which
provides conflict free strided vector access with multiple memory modules.
The main properties of the basic XOR scheme is enumerated in the following.
The basic XOR scheme is

{

m(a) = (a ⊗ T )%2n

r(a) = a/n

whereT =
∏min(n,s)−1

k=0 Tk+max(n,s),k . a is the address in linear address space,
2n the number of memory modules, and2s the power of two part of the access
stride.m(a) is the module assignment function andr(a) is the row assignment
function.

Property 1 Any 2n strided accesses with strideS = σ · 2s(σ is odd)
are assigned to2n different modules by the memory assignment function
m(a)[Harper92]. In other words,(b ⊗ T )%2n, ((b + σ · 2s) ⊗ T )%2n, ...,
((b + (2n − 1) · σ · 2s)⊗ T )%2n are different(between0 and2n − 1) for any
arbitrary base addressb and oddσ. This is indeed theconflict freerequirement
which is the basic XOR scheme designed for.

Property 2 Any 2n unit-stride accesses are assigned to2n different mod-
ules by the memory assignment functionm(a), under the condition that the
base address(the address of the starting position) is at theboundaries of
{τ · 2min(n,s)‖τ ∈ N}[Gou07]. In other words,((τ · 2min(n,s)) ⊗ T )%2n,
((τ · 2min(n,s) + 1)⊗T )%2n, ... , ((τ · 2min(n,s) + 2n − 1)⊗T )%2n are differ-
ent(between0 and2n − 1).
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Property 3 The basic XOR scheme is periodic with the period of2n+s when
accessed with strideS = σ · 2s (σ is odd)[Harper92]. In other words,((a + k ·
2n+s)⊗ T )%2n = (a ⊗ T )%2n (k ∈ N).

It is important to point out that asTv
1 and Th of the 2DSMM scheme are

instances of the basic XOR scheme, all the three properties above are also
applicable to them, with parameters2n replaced by2p(for Tv ) or 2q(for Th),
and2s replaced by2vs or 2hs , respectively.

B.2 Properties of the 2DSMM Scheme

Property 4 The period ofmv (i , j) (with fixed j) is 2p+vs ; the period ofmh(j)
is 2q+hs ; the period of(mv , mh) is 2p+vs × 2p+q+hs . In other words,mv (i +
k · 2p+vs , j) = mv (i , j); mh(j + k · 2q+hs) = mh(j); (mv (i + k · 2p+vs , j + l ·
2p+q+hs), mh(j + l · 2p+q+hs)) = (mv (i , j), mh(j)) (k, l ∈ N).

Proof. Periodicity ofmv (i , j)(j is fixed) andmh(j) comes directly from Prop-
erty 3. For the period of(mv , mh), it is easy to verify that(mv (i , j), mh(j)) =
(mv (i + k · 2p+vs , j + l · 2p+q+hs ), mh(j + l · 2p+q+hs))(k, l ∈ N). Suppose
the period of(mv (i , j), mh(j)) is 2p+vs × P andP = τ · 2q+hs (1 ≤ τ ≤ 2p).
By examining the definition ofα andβ we know

α(j + l · P) = (α(j) + l · τ)%2p

β(j + l · P) = β(j)

which means that

mv (i + k · 2p+vs , j + l · P)

= mv (i , j + l · P)

= [i ⊗ Tv + α(j + l · P) + β(j + l · P)]%2p

= [i ⊗ Tv + α(j) + β(j) + l · τ ]%2p

To makemv (i + k · 2p+vs , j + l · P) = mv (i , j), it should be satisfied that

[i ⊗ Tv + α(j) + β(j) + l · τ ] %2p = [i ⊗ Tv + α(j) + β(j)] %2p

which means that(l ·τ)%2p = 0 for ∀ l . So we knowτ = 2p andP = 2p+q+hs ,
and the period of(mv (i , j), mh(j)) is 2p+vs × 2p+q+hs .

1As we could see from the definition, the basic XOR scheme is completely determined by
the address transformation matrixT . So we could refer to an XOR scheme by just giving the
name of the transformation matrix.
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Lemma 1 Elements of the same column in the 2D address space are assigned
to modules with the same horizontal module index.

Proof. All elements of a column in the 2D address space have the same hor-
izontal addressj = j0. So they are assigned to the samemh(j0), from the
definition ofmh.

Lemma 2 Every column could be accessed in parallel for2p strided accesses
with strideVS = σv · 2vs(σv is any arbitrary odd number).

Proof. For any columnj = j0, the 2p addresses of the strided accesses are
{(bv , j0), (bv + VS , j0), ... , (bv + (2p − 1) ·VS , j0)}. According to Lemma 1
they are assigned to the samemh. Now considermv . According to Property 1
the accesses are assigned to different modules under the basic XOR scheme
Tv , i.e. bv ⊗ Tv , (bv + VS)⊗ Tv , ... , (bv + (2p − 1)VS)⊗Tv are different.
Moreover,α andβ are fixed with givenj0, sobv ⊗ Tv + α + β, (bv + VS)⊗
Tv + α + β, ... , (bv + (2p − 1)VS)⊗ Tv + α + β are different. In effect, all
2p accesses are assigned to2p different vertical module indexes, so they could
be accessed in parallel.

Lemma 3 Every column could be accessed in parallel for2p unit-stride ac-
cesses, under the condition that the vertical base address is at the boundaries
of {τ · 2min(p,vs)‖τ ∈ N}.

Proof. Proof of Lemma 3 is much like the proof of Lemma 2. As the horizontal
coordinates(j) of all elements in the same column are the same,mv of the
2DSMM scheme is equal to the module assignmentm′(denotem′ = i ⊗ Tv )
of the basic XOR schemeTv plus a constant valueα + β, i.e. mv = (m′ +
α + β)%2p. According to Property 2, the address sequence of the accessare
assigned to differentm′, therefore they are assigned to differentmv . In effect,
all 2p accesses are assigned to2p different vertical module indexes, so they
could be accessed in parallel.

Lemma 4 Any 2q unit-stride row accesses2 whose horizontal base address is
at the boundaries of{τ · 2q‖τ ∈ N} are assigned to modules with the same
vertical module index.

2The expressions “unit-stride row access” and “continuous row access” would be used al-
ternatively in this report for the same concept.



176 APPENDIX B. 2DSMM PROPERTIES ANDFORMAL PROOF

Proof. The address sequence of the row access is{(i0, τ · 2q), (i0, τ · 2q +
1), ... , (i0, (τ + 1) · 2q − 1)}. Considermv (i0, τ · 2q + k) (0 ≤ k ≤ 2q − 1).

α =

(

τ · 2q + k

2q+hs

)

%2p =
( τ

2hs

)

%2p

β =

(

τ · 2q + k

2q
· 2p−min(p,hs)

)

%2p

= (τ · 2p−min(p,hs))%2p

We could see that neitherα nor β is related tok, which means thatmv (i0, τ ·
2q + k) =

[(

i0 + (α + β) · 2vs
)

⊗ Tv

]

%2p is not related tok. Therefore

address sequence{(i0, τ · 2q), (i0, τ · 2q + 1), ... , (i0, τ · 2q + 2q − 1)} are
assigned to modules with the same vertical module index.

Theorem 1 Every row could be accessed in parallel for2p+q accesses with
strideHS = σh · 2hs (σh is any arbitrary odd number).

Proof. For any rowi = i0, the address sequence of the strided row access is
{(i0, bh), (i0, bh + HS), ... , (i0, (2p+q − 1) · HS)}(bh is the horizontal base
address).

i)Address sequence{(i0, b′
h), (i0, b′

h + HS), ... , (i0, b′
h + (2q − 1) · HS)}(b′

h

is the horizontal base address) are assigned to2q modules with differentmh.
This is true according to Property 1 ofTh.

ii)Address sequence{(i0, bh +k ·HS), (i0, bh +k ·HS +2q ·HS), ... , (i0, bh +
k · HS + (2p − 1) · 2q · HS)}(0 ≤ k ≤ 2q − 1) are assigned to2q modules
with the samemh but differentmv .
Considermh. It is periodic with period of2q+hs according to Property 3. Note
2q · HS = 2q · σh · 2hs , so the elements of the address sequence have an
interval which is multiple(σh times) of the period ofmh. So they are assigned
to modules with the same horizontal index bymh. Now considermv (i0, bh +
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k · HS + l · 2q · HS).

α =

(

bh + k · HS + l · 2q · σh · 2hs

2q+hs

)

%2p

= (Bk + l · σh)%2p (DenoteBk =
bh + k · HS

2q+hs
)

β =

(

bh + k · HS + l · 2q · HS

2q
· 2p−min(p,hs)

)

%2p

=
(

(Ck + l · σh · 2hs) · 2p−min(p,hs)
)

%2p

(

DenoteCk =
bh + k · HS

2q

)

=
(

Ck · 2p−min(p,hs)
)

%2p

= Dk

(

DenoteDk =
(

Ck · 2p−min(p,hs)
)

%2p
)

So we have

mv (i0, bh + k · HS + l · 2q · HS)

= (i0 ⊗ Tv + α + β) %2p

= (i0 ⊗ Tv + Bk + Dk + l · σh)%2p

It is obvious that for any fixedk, mv is different for each0 ≤ l ≤ 2p − 1 with
oddσh.

Now consider the entire address sequence of the2p+q accesses, enumerated in
the address matrix in Figure B.1(only the horizontal address of the address pair
is shown because the vertical address is the same for all the accesses). Suppose

1

(2 1)

2 (2 1) (2 1)

(2 1) 2 ((2 1) 2 1) (2 1)

q

h h h

q q q

h h h

p q p q p q

h h h

b b HS b HS

b HS b HS b HS

b HS b HS b HS

 

 

  ! "

 "   "  ! "

 ! " "  ! "  "  ! "

 

 

! !  !

 

Figure B.1: Address sequence of strided row access

any two elements of the access sequence are assigned to modules (m′
v ,m′

h)
and(m′′

v ,m′′
h), respectively. Assume they are assigned to the same module,i.e.

m′
v = m′′

v andm′
h = m′′

h . According toi) andii), m′
h = m′′

h could be possible
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only when they are in the same column of the address matrix. Inthis case,
m′

v = m′′
v could be satisfied only when the two are the same, according toii).

That is to say,m′
v = m′′

v andm′
h = m′′

h could never happen at the same time
for two different accesses in the access stream. This provesTheorem 1.

Theorem 2 Every row could be accessed in parallel for2p+q unit-stride ac-
cesses, under the condition that the horizontal base address is at the boundaries
of {τ · 2q+min(p,hs)‖τ ∈ N}.

Proof. For any rowi = i0, the address sequence of the unit-stride row access
is {(i0, τ · 2q+min(p,hs)), (i0, τ · 2q+min(p,hs) + 1), ... , (i0, τ · 2q+min(p,hs) +
2p+q − 1)}(τ ∈ N).

i)Address sequence{(i0, δ ·2q), (i0, δ ·2q +1), ... , (i0, δ ·2q +2q−1)}(δ ∈ N)
are assigned to2q modules with the samemv but differentmh. According to
Lemma 4, the accesses are assigned to modules with the same vertical module
indexes. As the base address is at the boundaries of{τ · 2q‖τ ∈ N}, the access
sequence are assigned to2q different horizontal modules, i.e. differentmh,
according to Property 2.

ii)Address sequence{(i0, τ ·2p+q +k), (i0, τ ·2p+q +k+2q), ... , (i0, τ ·2p+q +
k +(2p − 1) · 2q)}(0 ≤ k ≤ 2q − 1) are assigned to2p modules with different
mv .
Considermv (i0, τ · 2p+q + k + l · 2q)(0 ≤ l ≤ 2p − 1).

α =

(

τ · 2p+q + k + l · 2q

2q+hs

)

%2p

=

(

τ · 2p + l

2hs

)

%2p

β =

(

τ · 2p+q + k + l · 2q

2q
· 2p−min(p,hs)

)

%2p

We could see that neitherα norβ is related tok.

(α + β)%2p =

{
(

τ
2hs−p + l

)

%2p p ≤ hs
(

τ · 2p−hs + l
2hs + (l%2hs) · 2p−hs

)

%2p p > hs

Whenp ≤ hs, it is clear that(α + β)%2p traversesEq3 when l traversesEq

with fixed τ . Now let’s consider the casep > hs. By examining the structure
of l

2hs +(l%2hs) ·2p−hs , it could be noticed that asp > hs and0 ≤ l ≤ 2p−1,

3DenoteE
q = {0, 1, ... , 2p − 1}.
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it moves the highestp − hs bits of l to the lowestp − hs bits(as the effect
of l

2hs ), and moves the lowesths bits to the highesths bits(as the effect of

(l%2hs) · 2p−hs ). So whenl traversesEq, l
2hs + (l%2hs) · 2p−hs also traverses

E
q. As τ is fixed, we know(α + β)%2p traversesEq in both cases ofp ≤ hs

andp > hs. Thereforemv (i0, τ ·2p+q +k + l ·2q) = (i0 ⊗ Tv + α + β) %2p

traversesEq, for 0 ≤ l ≤ 2q − 1. This provesii).

iii)Address sequence{(i0, τ · 2q+hs + k), (i0, τ · 2q+hs + k + 2q), ... , (i0, τ ·
2q+hs + k + (2p − 1) · 2q)}(0 ≤ k ≤ 2q − 1) are assigned to2p modules with
differentmv .
Considermv (i0, τ · 2q+hs + k + l · 2q)(0 ≤ l ≤ 2p − 1).

α =

(

τ · 2q+hs + k + l · 2q

2q+hs

)

%2p

=

(

τ +
l

2hs

)

%2p

β =

(

τ · 2q+hs + k + l · 2q

2q
· 2p−min(p,hs)

)

%2p

=
(

(τ · 2hs + l) · 2p−min(p,hs)
)

%2p

=

{

l%2p p ≤ hs

(τ · 2p + l · 2p−hs)%2p p > hs

So we have

(α + β)%2p =

{

(τ + l)%2p p ≤ hs
(

τ + l
2hs + (l%2hs) · 2p−hs

)

%2p p > hs

We could see the structure of(α + β)%2p remains the same as the case ofii)
with respect tol . Therefore the analysis inii) also applies here, and we know
iii) is true.

With the results ofii) and iii), it is obvious that address sequence{(i0, τ ·
2q+min(p,hs)+k), (i0, τ ·2q+min(p,hs)+k+2q), ... , (i0, τ ·2q+min(p,hs)+k+(2p−
1) · 2q)}(0 ≤ k ≤ 2q − 1) are assigned to2p modules with differentmv . Now
consider the entire address sequence of the2p+q accesses, enumerated in the
address matrix in Figure B.2(only the horizontal address ofthe address pair is
shown because the vertical address is the same for all the accesses). According
to ii) and iii), different rows are assigned to modules with differentmv , and
elements in each row are assigned to modules with differentmh according to
i). So it is clear that all the2p+q unit-stride accesses are assigned to different
memory modules.
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min( , ) min( , ) min( , )

min( , ) min( , ) min( , ) 1

min( , ) min( , ) min( , )

2 2 1 2 2 1

2 2 2 2 1 2 2 1

2 (2 1) 2 2 (2 1) 2 1 2 2 1

q p hs q p hs q p hs q

q p hs q q p hs q q p hs q

q p hs p q q p hs p q q p hs p q

   

   

   

! ! !

! ! ! !

! ! ! !

" " ! " ! #

" ! " ! ! " ! #

" ! # " " ! # " ! " ! #

 

 

! !  !

 

Figure B.2: Address sequence of unit-stride row access

Theorem 3 Every forward diagonal could be accessed in parallel for2p+q

accesses with vertical strideVS = σv · 2vs and horizontal strideHS = σh ·
2hs (σv andσh are any arbitrary odd numbers).

Proof. The address sequence of strided forward diagonal access is
{(bv , bh), (bv + VS , bh + HS), ... , (bv + (2p+q − 1) · VS , bh + (2p+q −
1)] · HS}(bv , bh are vertical and horizontal base addresses respectively).

i)Addresses{(b′
v , b′

h), (b
′
v + VS , b′

h + HS), ... , (b′
v + (2q − 1) · VS , b′

h +
(2q − 1)] ·HS}(b′

v , b′
h are vertical and horizontal base addresses respectively)

are assigned to modules with differentmh. This is true according to Property 1
of Th.

ii)Addresses{(bv + k ·VS , bh + k ·HS), (bv + (k + 2q) ·VS , bh + (k + 2q) ·
HS), ... , (bv + (k + (2p − 1) · 2q) · VS , bh + (k + (2p − 1) · 2q) ·HS)}(0 ≤
k ≤ 2q − 1) are assigned to modules with the samemh but differentmv .
Considermh. It is periodic with period of2q+hs according to Property 3 ofTh.
Note2q ·HS = 2q · σh · 2hs , which means the interval of the address sequence
is multiple(σh times) of the period ofmh. So the accesses are assigned to
modules with the same horizontal index. Now considermv (bv + (k + l · 2q) ·
VS , bh + (k + l · 2q) · HS)(0 ≤ l ≤ 2p − 1).

α =

(

bh + (k + l · 2q) · σh · 2hs

2q+hs

)

%2p

= (Bk + l · σh)%2p

(

DenoteBk =
bh + k · σh · 2hs

2q+hs

)

β =

(

bh + (k + l · 2q) · σh · 2hs

2q
· 2p−min(p,hs)

)

%2p

= Ck (DenoteCk =

(

bh + k · σh · 2hs

2q
· 2p−min(p,hs)

)

%2p)
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So we have

mv (bv + (k + l · 2q) · VS , bh + (k + l · 2q) · HS)

= [(bv + k · VS + l · 2q · σv · 2vs)⊗ Tv + Bk + Ck + l · σh]%2p

Note the factorl · 2q · σv · 2vs . Under the general constraintp ≤ q of 2DSMM
scheme, it is the multiple of2p+vs , the period ofTv according to Property 4.
So we have

β = [(bv + k · VS)⊗ Tv + Bk + Ck + l · σh] %2p

from which we could see thatmv traversesEp when l traversesEp, with any
fixed k and oddσh. This means that the elements of address sequence inii)
are assigned to modules with different vertical indexes.

Now consider the entire address sequence of the2p+q accesses, enumerated in
the address matrix in Figure B.3. Suppose two elements of theaccess sequence

1

1

, , (2 1) ,

(2 1)

2 , (2 1) , (2 1) ,

2 (2 1) (2 1)

(2 1) 2 , ((2 1
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q
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q
h h h

q q q
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q q q

h h h

p q p
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Figure B.3: Address sequence of strided forward diagonal access

are assigned to modules(m′
v ,m′

h) and(m′′
v ,m′′

h), respectively. According toi)
and ii), m′

h = m′′
h could be possible only when they are in the same column

of the address matrix. In this case,m′
v = m′′

v could happen only when they
are the same, according toii). In consequence,m′

v = m′′
v andm′

h = m′′
h could

never happen at the same time for two different accesses in the access stream.
This justifies Theorem 3.

Theorem 4 Every backward diagonal could be accessed in parallel for2p+q

accesses with vertical strideVS = σv · 2vs and horizontal strideHS = σh ·
2hs (σv andσh are any arbitrary odd numbers).
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Proof. The address sequence of backward diagonal access is{(bv , bh), (bv +
VS , bh−HS), ... , (bv +(2p+q−1)·VS , bh−(2p+q−1)·HS}(bv , bh are vertical
and horizontal base addresses respectively, andbh ≥ (2p+q − 1) · HS). There
is no essential difference between this sequence and the sequence generated by
forward diagonal access, and it is easy to verify that the proof of Theorem 3
also holds for Theorem 4.

Theorem 5 Every strided block with the size of2p×2q in which the intervals
of the elements areVS = σv · 2vs in vertical andHS = σh · 2hs in horizontal
could be accessed in parallel(σv andσh are any arbitrary odd numbers).

Proof. We know all elements of a column in the strided block are assigned
to modules with the samemh(Lemma 1), and different column holds different
mh(Property 1 ofTh). So if two different addresses in the strided block are as-
signed to modules with the samemh, they should be in the same column. Once
two accesses are in the same column, they could never have thesamemv be-
cause Lemma 2 indicates that all elements of a column in the strided block are
assigned to modules with differentmv . So all elements of the accessed block
are assigned to different modules, which means that they could be accessed in
parallel.

Theorem 6 Every continuous block with the size of2p×2q could be accessed
in parallel, under the condition that the vertical base address is at the bound-
aries of{τ · 2min(p,vs)‖τ ∈ N} and the horizontal vertical address is at the
boundaries of{τ · 2min(q,hs)‖τ ∈ N}.

Proof. Each column of the accessed block is assigned to the same
mh(Lemma 1), and different column is assigned to differentmh when the hor-
izontal base address is at the boundaries of{τ · 2min(q,hs)‖τ ∈ N}(Property 2
of Th). Moreover, each element of the column in the accessed blockis as-
signed to a differentmv when the vertical base address is at the boundaries of
{τ ·2min(p,vs)‖τ ∈ N}(Property 2 ofTv ). So all elements of the accessed block
are assigned to different modules and they could be accessedin parallel.

Theorem 6 additionally justifies the row assignment function r(a) of the
2DSMM scheme because it guarantees that all the elements which are assigned
to the same row address byr(a) are assigned to different memory modules.

Theorem 7 When the access sequence are arranged in2p × 2q array in row-
major manner, for all the strided access patterns and the continuous block ac-
cess, all accesses in same column are assigned to samemh; For continuous
row access, all accesses in same row are assigned to samemv .
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Proof. When the access sequence are arranged in2p × 2q array in row-major
manner, for the strided block access and the continuous block access, the ac-
cesses in same column have the same horizontal addressj , so they are as-
signed to the samemh, according to Lemma 1; For the strided row, strided
forward diagonal and strided backward diagonal access patterns, any two ac-
cesses in the same column have their horizontal addresses related in the form
of j1 = j0 + k · 2q · HS = j0 + k · σh · 2q+hs (k ∈ N). According to Prop-
erty 4,mh(j0) = mh(j1). That is to say, in all the strided access patterns and
the continuous block access, accesses in the same column areassigned to the
samemh.
Now consider the continuous row access. From Theorem 2 we know the hori-
zontal base address is at the boundaries of{τ ·2q+min(p,hs)‖τ ∈ N}. Therefore
when the access sequence are arranged in2p × 2q array in row-major manner,
each row will start at the horizontal boundaries of{τ · 2q‖τ ∈ N}. According
to Lemma 4, the elements of the same row will be assigned to thesamemv .

Theorem 7 reveals an opportunity to exploit the inherent regularities within
module assignment functions of the six access patterns to simplify the address
and data switching circuitry. We have already seen this in the 2DSMM imple-
mentation presented in Section 3.4.2.

Note. The contents of this appendix is based on the the following report:

C. Gou, G. Kuzmanov, G. N. Gaydadjiev, 2DSMM: 2D Strided Multi-access
Memory, CE Technical Report, Computer Engineering Lab, TU Delft, July
2007
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Samenvatting

D e efficiëntie van het geheugensysteem is van cruciaal belangvoor
elke processor om hoge prestaties te bereiken, vooral in hetgeval
van data parallelle machines. Dataverwerkingsmogelijkheden van

parallelle hardware units zullen onbenut blijven wanneer gegevens niet aan-
houdend en op tijd bereikt kunnen worden. Onregelmatige vector geheugenac-
cessen kunnen leiden tot een inefficiënt gebruik van de parallelle banken / mod-
ules / kanalen en de algemene prestaties aanzienlijk verslechteren, zelfs wan-
neer snelle, parallelle geheugensystemen worden gebruikt. Dit probleem geldt
ook voor vele regelmatige programmas die onregelmatige vector geheugenac-
cessen vertonen tijdens het uitvoeren van het programma. Dit proefschrift
identificeert de mismatch tussen de optimale geheugenaccesspatronen vereist
door het programma en de fysieke data lay-out, als een van de belangrijkste
factoren voor de inefficiëntie van geheugenaccess. Wij stellen configureer-
bare geheugenschemas voor om dit probleem aan te pakken in data paral-
lelle acceleratoren. Meer specifiek, dit proefschrift schetst een uitbreiding
van traditionele benaderingen door het voorstellen van twee nieuwe parallelle
geheugenschema’s die de bank access conflicten verminderenvoor de meest
gebruikte accesspatronen. We stellen ook een ontwerpmethode voor om de in-
formatie over de geheugenaccesspatroon over te brengen naar de voorgestelde
parallelle geheugenschemas. Verder beschrijven we technieken die dynamisch
de instructiesequencer van een multithreaded vector architectuur aanpassen en
de geheugenaccesspatronen benvloeden om de efficiëntie van accessen naar
het on-chip geheugen te verbeteren. Als laatste identificeren we een nieuw
data lokaliteitstype en exploiteren deze voor het dynamisch aanpassen van
de off-chip geheugenaccessgranulariteit van manycore dataparallelle architec-
turen, om de efficiëntie van het hoofdgeheugenaccess te verbeteren. We im-
plementeerden onze voorstellen als een uitbreiding van moderne dataparal-
lelle architecturen en onze evaluatie resultaten tonen aandat efficiëntie van
het geheugen en de algemene prestaties van het systeem verbeterd kunnen
worden tegen minimale hardware-kosten, terwijl tegelijkertijd de programmer-
ingsoverhead sterk kan worden verminderd.
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