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Abstract

Flash calculations are used for the dynamic simulation of vapor-liquid phase equilibria (VLE) in
many chemical processes. When used to predict the composition of mixtures in VLE, the repeated
applicatino of these flash calculations, particularly in dynamic cases can cause small inaccuracies
to cascade. One way to prevent this, is to have strong predictions and initial guesses for what
a mixture in equilibrium will look like. For this, stability tests can be employed. Stability tests
require the minimisation of the tangent plane distance, which is derived from the excess Gibbs
Energy. The VLE problem and stability tests have been approached from a viewpoint based in
mathematical optimisation, not one based in thermodynamics. As such, this work provides a
slightly different description of flash calculations and stability tests, and can serve as both an
introduction to the problems, as well as an approach to the problem in a different way than is
traditionally done.

In this report, the tangent plane distance function has been studied and applied to an example to
gain intuition on the problem, and different optimisation methods were considered for minimising
this function. A stochastic- and a deterministic method were applied to the stability problem to
gain a better understanding of which type of method will work better for minimising the tangent
plane distance. Both methods seem sufficient, but the scalability to higher dimensions is lacking,
especially in the deterministic case.
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Chapter 1

Introduction

Many practical problems in the world can be translated to mathematics. This can often be
surprising to people not as ingrained in the fields of mathematics, physics or other engineering
subjects. For example, one could model cars accelerating when a traffic light switches from red
to green using a differential equation, or a mailman trying to deliver mail to different houses on
his route in the shortest time frame using Linear Programming. Similarly, many processes and
situations in the design of a chemical plant can be modelled and predicted using formulas and
algorithms. Simply said, in this thesis we will consider the following:

Consider a box which perfectly isolates, and the temperature and pressure of which we can
regulate (set at specific constants). We put a liquid mixture of two (or more) components
into this box, close it, and set the temperature and pressure. We would like to be able
to predict what happens to the mixture1 if we wait a while (until the mixture does not
change anymore, i.e. is in equilibrium); will the contents of the box only be a liquid, or
will a gas be formed? If so, how much gas? How much of each component is in each phase
(liquid, gas)?

This is the problem we will be considering in this work, generally called the vapor-liquid equi-
librium (VLE) problem, generally solved with flash calculations, algorithms that iteratively con-
verge to a solution that predicts what the components in the box look like. They will be explained
in more detail later in this work, in Section 2.1.

1.1 Zero Emission Fuels

The idea for this project came from, and the research was performed at, Zero Emission Fuels B.V.
(ZEF). ZEF is a company located on the campus of the TU Delft, and it works together with
TU Delft and several other companies and institutes to design and produce a small methanol
production plant. Using the energy from two solar panels, the plant will convert (carbon dioxide
and water in the) air into methanol. This methanol can then be used as fuel for vehicles or
power generators, or as a part of industrial chemical processes, such as in the production of
hydrocarbons [32]. ZEF aims to reduce the costs of synthetic methanol production by reducing

1Here, we will not consider cases where different components of the mixture react with each other.
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2 CHAPTER 1. INTRODUCTION

the overall size, weight and number of parts of the plant, and by integrating different parts of a
typical methanol production chain.

Because the plant is small, and its power source naturally fluctuates in output, a dynamic model
is required to simulate the behavior of the (contents of the) plant. Existing simulation tools
like Aspen fail to properly model the behavior, thus finding new dynamic tools and improving
existing tools for the modelling of these dynamic situations are quite interesting to ZEF.

1.2 Research Goals

Flash calculations have three problems: they take a lot of time to complete, they do not accurately
predict equilibria, especially in the critical region2, and they often cause breakdowns and return
nonphysical outputs when used in dynamic simulations (where they are run many times in
succession)3. Solving all three of these problems is not within the scope of this project, and the
accuracy poses the largest problems for ZEF, and thus will be the main focus here. There are
two concepts that spawned this project:

1. the observation that much of the (still used and referenced) research into flash calculations
(for VLEs) are relatively old: most of the state-of-the-art is from papers published until
1990, or builds increasingly complicated models that do not necessarily improve the calcu-
lations for general VLE flash calculations, but for specific cases, compounds, circumstances
or ranges of pressure and temperature.

2. the hypothesis that few researchers with knowledge of mathematical optimisation, compu-
tational science or algorithm design contributed to the field of thermodynamics and vice
versa. This would mean that most attempts at improving flash calculations have been
done with a purely thermodynamics background and focus in mind, leaving different av-
enues of experimentation and research largely unused. This is an opportunity to approach
the subject from a different side, in this case mathematics and optimisation.

Keeping that in mind, we define the research goals to be as follows:

1. Frame the VLE and the problems surrounding it in a mathematics focused way, as opposed
to a more thermodynamics focused one.

2. Provide an overview for the prominent optimisation techniques used in relation to flash
calculations.

3. Compare different optimisation techniques on their merit for the modelling of VLEs.

Where the “holy grail” for the research is a clear mathematical outline and definition of the
problem, complete with an algorithm or other method to improve on the current state-of-the-art
for flash calculations.

2The critical region is the range of P and T close to the critical point, the combination of the P and T where
a substance can exist in both the liquid- and the vapor phase at the same time. See also Appendix B.

3By “nonphysical” we here mean a theoretical result that cannot happen in practice, such as negative or even
amounts of substance in a mixture that are complex numbers.
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1.3 Research Questions

Based on these goals, we will try to answer the following questions:

1. How up to date is the field of thermodynamics on the use of (mathematical) optimisation
techniques, specifically in the case of flash calculations?

2. Can the stability- and accuracy problems of flash calculations be improved using state-of-
the-art (NLP-)optimisation techniques?

3. Can the stability- and accuracy problems of flash calculations be improved when ap-
proached from an almost purely mathematical point of view, as opposed to a more thermodynamics-
oriented one?

Questions 2 and 3 seem very close in their definition, but are defined separately as their might
be a subtle but relevant difference between being able to apply optimisation techniques to the
problem, and approaching the problem from a purely mathematical point of view.

1.4 Assumptions and Parameters

In this work, the mixture of substances that will mostly be used as a “direct object” is the [0.4
0.4 0.2] water-methanol-carbon dioxide. We will use this notation in square brackets to denote
the composition of a mixture: in this case, the mixture consists of 40% water, 40% methanol and
20% carbon dioxide. This is because this is a less complicated version of the mixture used by
ZEF, and helps us in defining some important boundaries for the scope of this project, e.g. only
vapor-liquid equilibria will be considered in this work, and no reactions between the substances
will take place. VLEs are still very relevant in the industry [42], and are the only equilibria
expected for the ZEF case. Thus, other equilibria like liquid-liquid or solid-liquid will not be
considered.

1.5 Overview

We will define and describe all the moving parts of the problem in Chapter 2.
In Chapter 3, we will go deeper into formulating the problem as minimising the tangent plane
distance, and take a look at what the tangent plane distance looks like for a [0.4 0.4 0.2] H2O-
CH4O-CO2

4 mixture at different pressures and temperatures.
Chapter 4 will focus on the optimisation part of the problem, discussing the objective function,
different methods that have been applied in literature, and choosing which methods will be
tested, also going deeper into explaining each of these methods.
Chapter 5 contains the results of our tests, with some small preliminary conclusions and obser-
vations.
Finally, we finish with Chapter 6, where we draw conclusions from our findings, evaluate our re-
search goals and -questions, give annotations to the data in the work, and give recommendations
for the future.

4This is the chemical formula for a water-methanol-carbon dioxide mixture.
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Appendix A contains a list of symbols, and Appendix B includes a list of terms to clarify some
thermodynamic terms. It is recommended to keep these two appendices ready for readers that
do not have a background in thermodynamics. Appendix C contains a block diagram of a flash
calculation. Appendix D talks about the fugacity coefficient, specifically an expression for it for
the Soave-Redlich-Kwong equation of state (see Section 2.2). Appendix E contains notes and
calculations for the (MatLab) implementations of each of the methods applied in Chapter 5. In
Appendix F, a mathematical description of the problem without any of the physical context has
been included.



Chapter 2

Problem Description

In this chapter, we will formally introduce the problem(s) we are dealing with: we will explain
what a flash calculation is, talk about equations of state and which one will be employed in this
work. Finally, we will look at two existing methods that are used to improve on the modelling
of VLEs.

2.1 Flash Calculations

Flash calculations are used to calculate the (thermodynamic) properties of mixtures. Consider
a liquid mixture with two components C1 and C2 that are mixed in a tank at some pressure P
and temperature T . While this liquid is in the tank, particles in liquid phase are moving to the
gas phase and vice versa (liquid is “evaporating” and gas is “condensating”). After some time,
the number of particles going from the gas phase to the liquid phase are equal to the number of
particles going to the gas phase from the liquid phase: an equilibrium between the gas (vapor)
phase and liquid phase is reached. In the end, we obtain two substances that are in a VLE. The
known quantities now are P , T , and the two substances and their properties: critical pressure
Pc, critical temperature Tc and acentric factor ω (see below).

Intermezzo: Critical and Acentric Factors

The acentric factor ω is a conceptual number used in defining properties and equations for
substances, it represents the “non-sphericity” of a substance’s molecules. The higher ω is, the
higher the boiling point. It is different for each substance. For examples of different values of ω
for different substances, see [20].
To understand the concept of critical temperature and pressure, we will look at the phase diagram
of water, a visual representation of what phase water is in for what P and V or T . See Figure
2.1.

5



6 CHAPTER 2. PROBLEM DESCRIPTION

Figure 2.1: Schematic of the phase diagram of water (H2O). At the triple point solid, liquid and vapor-
phase water can coexist. At (and beyond) the critical point, liquid- and vapor-phase water can coexist.

Most people know that, at athmospheric pressure, water boils at 100 oC, or about 373 K. Looking
at Figure 2.1, it becomes clear why the addendum “at athmospheric pressure” is necessary: at
different pressures, the boiling point (the line separating liquid and gas) of water is at a different
temperature. The critical point is the combination of the highest temperature (critical temper-
ature Tc) and pressure (critical pressure Pc) for which steam and liquid water can coexist, like
on the rest of the line separating vapor and liquid.

Flash Calculations: Continued

From P , T , z and substance properties such as ω and Pc, we want to compute the volume of
the mixture in the tank, how much of it is in the liquid phase, how much is in the vapor phase
(β, the vapor fraction) and the composition of the liquid- and vapor phases themselves1. To find
these unknown quantities, flash calculations are used. Flash calculations are the basic building
blocks of simulation software.

A flash calculation takes P , T (other inputs are possible), and the properties of the substances
(more than two substances and more than two phases is possible) as inputs. Then, if there is
uncertainty about the number of phases in equilibrium, or to refine initial guesses, a stability test
is performed to see how many phases will be present when the mixture reaches equilibrium. Here,
a global optimisation problem is solved (see Section 2.4.1). Then, an initial guess for the liquid

1The difference between β the vapor fraction and y the vapor composition is as follows: β describes how much
(what fraction) of the contents of the box are a vapor, and y describes what this vapor then looks like. For
example, β = 0.4 and y =[0.2 0.8] means that 40% of the contents of the box are a vapor (and 60% a liquid), and
that the vapor then consists of 20% component 1 and 80% component 2.
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composition x and vapor composition y is made (e.g. “I estimate that the vapor will consist for
30% of substance C1 and 70% of substance C2”, or y = [0.3 0.7]). Both the number of phases and
the initial guess can be determined in different ways, such as using existing modelling software,
intuition, very little care (choosing a 50/50 split) or algorithms. Using these initial guesses we
iteratively do the following: using an equation of state (see Section 2.2) the compressibility factor
Z2 for each phase is calculated, from which the fugacities3 for each phase can be calculated from
a Z-polynomial associated with the equation of state. From this, we can calculate our vapor
fraction β by solving the Rachford-Rice equation [21]:

C∑
i=1

zi(Ki − 1)

1 + β(Ki − 1)
= 0 (2.1)

where C is the number of components in the mixture, zi is the fraction of component i in the feed
mixture (i.e. the mixture that was originally put into the box), and Ki = yi

xi
is the distribution

ratio of component i. Now, we can update our estimates for the liquid- and vapor compositions
x and y. If these stop converging (the change in x and y from one iteration to the next is very
small), we have obtained x and y, and we terminate the flash calculations.
A general description of the flash procedure can be found in literature such as [21] or [58], and
Appendix C includes a block diagram of the flash calculation.

2.2 Equations of State

An equation of state are one of the core parts of flash calculations. An equation of state is an
algebraic relation between the pressure P , the temperature T , and the volume V of a substance
[36]. This is of course quite generic, writing P + V = T would technically also be an “algebraic
relation between P, V and T ”, but not many people would recognize it as a legitimate equation of
state. Equations of state are usually employed to model the behavior of a chemical substance(s)
that is (are) in equilibrium in the form of f(P, V, T ) = 0. One example is the Ideal Gas Law,
one of the first equations of state:

PV = nRT (2.2)

where R is the ideal gas constant (R ≈ 8.31m3 ·Pa ·K−1·mol), and n the number of moles of gas.
There is, as of yet, no one surefire way to theoretically define an equation of state for all species
and mixtures, so many equations of state are based on empirical findings. Their accuracy is often
judged based on their results compared to experimental data [39]. As such, most equations of
state work quite well for a specific range of T , V and/or P and specific substances, but fail to
give accurate results outside of these parameters (without additional empirical corrections).
The purpose of equations of state is essentially threefold [50]:

1. Representation of pressure-volume-temperature (PV T ) data for smoothing and interpola-
tion, and PV T data integration for calculating derived properties such as the fugacity.

2. Prediction of gas phase properties of pure (i.e. unmixed) substances and their mixtures
from only a small amount of experimental data.

2The compressibility factor is a factor which describes how strongly some liquid or gas deviates from an ideal
gas, Z = PV

RT
, where P the pressure, V the volume, T the temperature and R the ideal gas constant

3Fugacity is an “effective pressure”, the pressure of an ideal gas with the same T and P as the non-ideal
substance. See also Appendix B.
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3. Prediction of vapour-liquid equilibria of mixtures, especially at high pressures.

Though understanding equations of state is contextually important, these are not the qualities of
equations of state that we will focus on. Instead, we focus on equations of state as a part of the
algorithms. Because the focus of this work is not equations of state, it is convenient to choose
a specific one as a base for our case, and for the definition of the benchmarks. First, we will
introduce the equations of state that are considered. Then we will define criteria on which we
base the choice of equation of state we will be working with on, and finally choose an equation
of state.

Below is a qualitative description of the equations of state that were considered for this work.
While this is not an exhaustive list of all possible equations of state, we consider these specific
few based on recommendations by experts and literature research. Most of the equations of state
mentioned below are also useful because from them, other more accurate ones were developed
(see also Section 2.3).

2.2.1 Van der Waals Equation

One of the first equations of state to perform better than the Ideal Gas Law, this equation of
state is formulated as follows:

(P +
a

V 2
)(V − b) = RT (2.3)

a = 3PcV
2
c (2.4)

b =
Vc
3

(2.5)

where a is the attraction parameter representing the attraction between the molecules, b is
a repulsion parameter representing the size of the molecules, Tc, Pc are the temperature and
pressure at the substance’s critical point, and P, V, T and R are as defined above. This equation
was based on the Ideal Gas Law and was modified to account for the fact that real gasses do not
behave ideally [53]. This equation no longer sees much use, because its accuracy is now trumped
by other equations of state, such as the ones mentioned below4. It is discussed here mostly for
its historic significance and context.

2.2.2 Redlich-Kwong (RK)

The Redlich-Kwong equation of state is defined as follows:

P =
RT

V − b
− a√

TV (V + b)
(2.6)

a ≈ 0.427
R2T

5
2
c

Pc
(2.7)

b ≈ 0.087
RTc
Pc

(2.8)

4It is still used to find bounds on the values sometimes as well.
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This method was constructed to conform to the corresponding states principle (in such a way that
b = 0.26Vc), which relates the compressibility factors of different pure substances [39]. While
this equation of state performed well for the time that it was developed, these days it is less
relevant due to the success of other methods, such as the two mentioned below. This equation
of state is mainly discussed because it was a basis for the next two equations of state mentioned
in this chapter, which are both more accurate and more used in practice.

2.2.3 Soave-Redlich-Kwong (SRK)

A modification and improvement of Redlich Kwong, defined as follows:

P =
RT

V − b
− aα

V (V + b)
(2.9)

a ≈ 0.427
R2T 2

c

Pc
(2.10)

b ≈ 0.087
RTc
Pc

(2.11)

α = (1 + (0.485 + 1.551ω − 0.156ω2)(1− T 0.5
r ))2 (2.12)

Tr =
T

Tc
(2.13)

where ω is the acentric factor. This equation of state assumes temperature-dependency for the
attraction parameter a (instead of letting it be a constant, as in Redlich-Kwong). Mixing rules
can be used to extend this equation for multicomponent vapor-liquid-equilibrium calculations.
This modification of Redlich-Kwong by Soave proved to be a significant improvement over the
original Redlich-Kwong, and is widely used in the industry to this day because of its relative
simplicity and accuracy [42]. It was designed to accurately reproduce the vapour pressures of
pure polar substances [44]5. SRK has been modified in many ways, such as the volume translation
by Peneloux [34] and predictive-SRK [15].

2.2.4 Peng-Robinson

Unsatisfied with the performance of SRK, Peng and Robinson set out to formulate a (situation-
ally) better equation of state.

P =
RT

V − b
− aα

V 2 + 2bV − b2
(2.14)

a ≈ 0.457
R2T 2

c

Pc
(2.15)

b ≈ 0.078
RTc
Pc

(2.16)

α = (1 + κ(1− T
1
2
r ))2 (2.17)

κ ≈ 0.375 + 1.54ω − 0.270ω2 (2.18)

Tr =
T

Tc
(2.19)

5“Polar” is a description of the separation of the electric charge of the molecules, with a negatively- and a
positively charged part.
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It was designed to accurately reproduce the vapour pressures of pure polar substances [35]. It
did not outperfrom SRK in all cases (SRK works better for polar mixtures, and Peng-Robinson
works better for non-polar ones), and nowadays Peng-Robinson and SRK are applied in different
areas of chemical engineering [51].

2.2.5 Statistical Associating Fluid Theory (SAFT)

The formulation for the SAFT model is based on the molecules and the interactions between
them. It uses an association term for multi-component mixtures. It models molecules as spheres
with associating mixtures as chains [8]. SAFT is a nonanalytical equation of state consisting of a
few different moving parts that more accurately represent the real behaviour of chemical species
in a compound, such as perturbation models. The complete formulation is quite complex and
extensive, and thus will not be fully included here. Its formulation can be found in literature
[7, 8].

2.3 Model Selection

We will now evaluate the equations of state above on the following criteria:

1 The equation of state should be useful (and used) for modelling fluid properties.

2 The equation can be applied to the ZEF test case.

3 The model needs to allow for the application of mathematical (optimisation) techniques
when implemented.

4 The equation of state should not be rooted too deeply in thermodynamics, to prevent
problems with scope.

We decided that SRK and Peng-Robinson were the two that best met this Criterium 1. While
others are still relevant (SAFT was recommended because of its literary significance and ac-
curacy), none of them can boast the popularity of SRK and Peng-Robinson. Criterium 2 was
fairly easy to evaluate. If the algorithmics could be improved, relevance for ZEF would be all
but guaranteed. Also, ZEF mainly uses SRK and Peng-Robinson for their VLE simulations.
Criterium 3 is implied for every equation of state, as the equations can get quite complicated
for real-life mixtures, such as in the ZEF case. Thus, they cannot easily be solved analytically,
and employ optimisation and numerical methods to be solved. Finally, for Criterium 4, Van
der Waals, (S)RK and Peng-Robinson are, because of their analytical nature, quite close in
their definition and conception to mathematics. This makes it so that most papers related to
these equations of state are readily readable for people coming from mathematics. The imple-
mentation of the methods is also not too difficult thanks to their simple algebraic formulation.
SAFT is more strongly rooted in the fields of chemistry and statistical mechanics, and was due
to its nonanalytical nature less explicitly defined. Thus, it would be a lot harder for a layman
in thermodynamics to work with SAFT than it would be to work with (S)RK and Peng-Robinson.

Taking all of the considerations above into account, the decision not to use SAFT could be made
fairly quickly. The Ideal Gas Law, van der Waals equation, and Redlich-Kwong are disregarded
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because of lack of literary significance (Criterium 1). It should be noted that for the purposes
of this work, we speculate there will not be a big difference between SRK and Peng-Robinson.
Both are cubic equations of state with fairly comparable applications and very similar algebraic
formulations. Thus, we hypothesise that any mathematical solution for improving the stability,
accuracy and/or solving speed of (algorithms employing) one would also be applicable to (al-
gorithms employing) the other with minimal modification This hypothesis is also supported by
literature [22, 29]. Considering their similarities, the choice falls to SRK, as it works better for
polar mixtures such as water-methanol. Further comparison between SRK and Peng-Robinson
can be found in [51].

2.4 State-of-the-Art

Now that we have generally defined our model, we take a look at how the problems for this model
are resolved in literature. Commonly one of two methods is used to improve on the performance
of flash calculations: stability tests and initial guess methods.

2.4.1 Stability Tests

In Section 2.1 it was mentioned that before we perform a flash calculation, we need to know
into how many phases the mixture will split. If the (liquid) feed mixture is stable for example,
meaning that the phase of the mixture in equilibrium is the same as the input (feed) phase, no
x, y or β have to be calculated, as we already know the overall composition z, and then trivially
β = 0, x = z and y is irrelevant .

Tangent Plane Analysis

Almost all stability tests are based on (Michelsen’s) tangent plane analysis [25]. Tangent plane
analysis uses Gibbs’s Tangent Plane Criterion [1] to determine whether Gibbs energy is at a
global minimum, which would mean that the mixture is in equilibrium. We give a derivation of
the tangent plane condition below for sake of completeness. Consider a C-component mixture
in a perfectly isolated box as introduced in Chapter 1, with a pressure P and temperature T .
Assume P and T are chosen in such a way that the mixture eventually reaches a VLE: there are
both a vapor- and a liquid phase present inside the box and the number of particles going from
vapor- to liquid phase at any moment is equal to the number of particles going from liquid- to
vapor phase. For the C-component mixture of feed composition z, a necessary condition for the
mixture to be in equilibrium is for the chemical potentials for each component to be the same
for every phase:

µ
(L)
i = µ

(V )
i (2.20)

or equivalently, that the fugacities of individual components are equal:

f
(L)
i = f

(V )
i (2.21)

We can also define an equation in terms of the molar fractions 6:

βyi + (1− β)xi = zi (2.22)
6The molar fraction is the concentration of each component in each phase
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and the mole fractions must sum to unity, which also gives us:
C∑
i=1

xi =
C∑
i=1

yi = 1 (2.23)

⇒
C∑
i=1

(yi − xi) = 0 (2.24)

From this, we have obtained a system of 2C + 1 equations ((2.21), (2.22), (2.24)) and 2C + 2
variables (x, y, T, P )). While dealing with equations of state and phase equilibrium calculations,
we define a trivial solution to be a solution where the liquid composition (x) and vapor composi-
tion (y) are identical (such that the equations (2.21), (2.22), (2.24) are satisfied automatically).
Sometimes the trivial solution could be the only valid one (for example for a (P, T ) flash in the
single-phase region), but iterative solution processes often get stuck in a trivial solution even
when it is not the optimum. Many thermodynamic (flash-)calculations encounter (convergence-
)problems when solved in the critical region, i.e. near the critical point. This is because at the
critical point, we have xi = yi = zi, thus in the critical region around this point we are close to
the trivial solution, i.e. xi ≈ yi ≈ zi. In these cases, calculations often converge to the trivial
solution unless initial guesses are sufficiently close to the desired solution (the correct combina-
tion of x, y and β in equilibrium) [28].

The conditions mentioned above are only necessary, and not sufficient. A necessary and sufficient
condition is for the total Gibbs Energy7, to be at a global minimum (for specified (T, P ), other
energies can be minimised for different flashes, see also [25]). The reduced global Gibbs Energy
is equal to:

gE(T, P, z)

RT
=
P

RT

(
v −

∑
i

zivi

)
−

(
ln (v − b)−

∑
i

zi ln (vi − bi)

)

− 1

δ2 − δ1

(
α ln

v + δ2b

v + δ1b
−
∑
i

ziαi

(
vi + δ2bi
vi + δ1bi

)) (2.25)

where vi is the molar volume of component i, v =
∑N

i=1 xiMi

ρmixture
withMi the molar mass of component

i, and

P

RT
=

1

v − b
− α b

(v + δ1b)(v + δ2b)
(2.26)

is determined by the cubic equation of state (if we take δ1 = 0 and δ2 = 1, and set b = 0.08664RTc
Pc

we get the SRK equation of state [28]). It can also be written as:

gE

RT
= ln fmix(T, P, z)−

∑
i

zi ln fi(T, P ) (2.27)

where

ln

(
fmixb

RT

)
=
Pv

RT
− 1− ln

(
v − b
b

)
− α

δ2 − δ1
ln

(
v + δ2b

v + δ1b

)
(2.28)

ln

(
fibi
RT

)
=
Pvi
RT
− 1− ln

(
vi − bi
bi

)
− αi
δ2 − δ1

ln

(
vi + δ2bi
vi + δ1bi

)
(2.29)

7A kind of potential energy, the amount of reversible work that may be performed at constant P and T , see
also Appendix B.
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are the fugacities of the mixture and component i, respectively. The change in Gibbs Energy
∆G = (µ

(v)
i −µ

(L)
i )∆ni (which corresponds to transferring ∆ni moles of component i from liquid

to vapor phase) must be zero at the global minimum for the Gibbs Energy, which would imply
equation (2.20) (and equation (2.21)). From this, we find that the change in Gibbs Energy
associated with a new phase with composition w being formed is equal to

∆G = ∆ε

C∑
i=1

wi(µi(w)− µi(z)) (2.30)

where ∆ε is equal to the (infinitesimal) amount of the phase formed, from which we can define
the Gibbs tangent plane condition:

The mixture is stable iff:
C∑
i=1

wi(µi(w)− µi(z)) ≥ 0

for all w

(2.31)

From these calculations, Michelsen [28] ends up with the following formulation for the tangent
plane distance (tpd), the distance from the tangent line at a point to the Gibbs Energy curve at
w:

TPD(w) = g(w)− t(w) =
∑
i

wi(µi(w)− µi(z)) (2.32)

If TPD at a composition w is negative for some feed composition z, we can choose the y-phase
composition y = w and find an x−phase composition x < z such that the phase split yields
a decrease in the Gibbs Energy. Equation (2.32) can be rewritten using the physical relation
between φi and µi into the reduced tangent plane distance

tpd(w) =
TPD(w)

RT
=
∑
i

wi(lnwi + lnφi(w)− di)

where di = ln zi + lnφi(z)

(2.33)

where φi(w) is the fugacity coefficient of component i at composition w. TPD ≥ 0 is a necessary
and sufficient condition for phase equilibrium stability, and for our (P, T ) flash even specifies that
the solution is unique. However, verifying that the condition is satisfied requires a search over
the entire composition space, requiring extensive computations [25]. Using the tangent plane
condition not only answers the yes/no question of phase stability, but also helps in finding a
good starting point for subsequent calculation of the correct phase distribution from the trial
phase composition w that results in a negative TPD. Using the TPD instead of the Gibbs
Energy has as an advantage that it is in general easier to work with fugacity coefficients than
chemical potentials, and that minimising the TPD is more reliable and robust than minimising
the Gibbs Energy [16].

The problem we are now dealing with is this: we want to find a global minimum of tpd(w), and
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see if it is negative8. We can formulate this as a minimisation problem:

min tpd(w) =
∑
i

wi(lnwi + lnφi(w)− ln zi − lnφi(z)) (2.34)

subject to wi > 0, i = 1,2,. . . ,k, (2.35)
wi = 0, i = k+1,. . . ,C, (2.36)
k∑
i

wi − 1 = 0 (2.37)

where (2.35) represents the components that are (allowed) in the phase model, and (2.36) rep-
resent those that are not. This is a nonlinear, nonconvex problem [13]. Usually k = C, e.g. all
components can be present in all phases, except in the case of some substances, like gas hydrates
[28]. For the cases we are dealing with, we can assume that k = C, which allows us to rewrite
the minimisation problem:

min tpd(w) =
∑
i

wi(lnwi + lnφi(w)− ln zi − lnφi(z)) (2.38)

subject to wi > 0, i = 1,2,. . . ,C, (2.39)(∑
i

wi

)
− 1 = 0 (2.40)

Thus, tangent plane analysis tells us whether the mix has a single phase (is stable) or has two
phases (is unstable), and gives us a composition w for the new phase being formed, which can
help us in determining initial guesses for the flash.

2.4.2 Initial Guesses

As mentioned before, when in the critical region, solutions have a tendency to converge to a
trivial- or nonphysical solution. To combat this, methods and algorithms have been developed
for the generation of more accurate initial guesses, which allow for a better chance of converging
to a solution that better represents the reality. The Wilson Equation is one of the more popular
ways of determining initial guesses.

The Wilson Equation

Initial guesses for xi and yi are often estimated using the Wilson Equation [55] [33], via an
expression for Ki = yi

xi
:

Ki =
xi
yi

=
Pci
P

exp

{
5.37(1 + ωi)(1−

Tci
T

}
(2.41)

8Michelsen [28] recommends finding all minima of tpd(w) and then checking if any of them are negative
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From this, we can obtain the liquid and vapor decompositions (x,y) via the general rules:

β ⇒
C∑
i=1

zi(Ki − 1)

1 + β(Ki − 1)
= 0 (Rachford-Rice) (2.42)

xi =
Kizi

1 + β(Ki − 1)
(2.43)

yi =
zi

1 + β(Ki − 1)
(2.44)

the derivations of which can be found in [33].

2.5 The Reduced Tangent Plane Distance Function

Consider the fugacity coefficient φi(w). This is a function calculated using the equation of state,
e.g. for SRK we have:

lnφi(w) =
bi

b(m)
(Z − 1)− log(Z −B)− A

B

(
2

∑
j wjaij

a(m)
− bi

b(m)
log

1 +B

Z

)
(2.45)

where A,B,Z, a(m), b(m) are all dependent on w. Expressions for these w-dependent terms for
the SRK equation of state can be found in Appendix D. Calculating Z involves finding the root
of a polynomial of degree at most 3. φ is a nonlinear, nonconvex function.

Problem (2.38) can be transformed into an unconstrained optimisation problem using new deci-
sion variables γi ∈ (0, 1) [57]:

niw = γizinz, i = 1, . . . , C (2.46)

wi =
niw∑c
j=1 njw

, i = 1, . . . , C (2.47)

nF =
C∑
i=1

niz, the total number of moles in the (feed) mixture, (2.48)

giving us the following optimisation problem:

min tpd(γ) (2.49)
0 ≤ γi ≤ 1, i = 1, . . . , C (2.50)

(2.51)

Having the problem be an unconstrained one can be useful for the purposes of some solution
methods.

Another reformulation for the objective function is:

TPDF (w) =

C∑
i=1

(ki+1(w)− ki(w)) (2.52)

where ki(w) = ln (φi(w))+ln (wi)− ln (zi)− ln (φi(z)), and we choose kC+1 = k1. The summand
for component i is the reduced tangent plane distance tpd(y). The advantage of this formulation
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is that the minima lie at TPDF = 0, and knowing the value of minima a priori can be advan-
tageous. The zeros of TPDF correspond with points on the Gibbs Energy surface where the
tangent plane at w is parallel to the one at z, ki(w). Thus, when we find w∗ such that TPDF
is minimised, we have found the minimum tpd: tpd(w∗) [46, 47, 48].
Another reformulation, turning the function into a dimensionless one [30]:

D̄(x) =
D(x)

RT
=
∑

xi(lnφi(x)− lnφi(z)) (2.53)

In general, the “standard” definition for the tpd suffices for the practical applications discussed
in this work, but the reformulations were discussed for completeness’ sake. Other ways of using
the stability problems in phase equilibrium and their difficulties can be found in [27].



Chapter 3

The Tangent Plane Distance

Flash calculations are usually not run in isolation, especially in the ZEF case. In dynamic
simulations, flash calculations are but one part, and they are run multiple times. Output from one
iteration is often fed back into the next iteration. Because of this, small errors or inconsistencies
returned by a flash calculation during the simulation often “explode” into larger errors, physically
impossible outputs or cause the algorithm to crash. This means that technically, we are working
to improve on issues with stability of the flash calculations. However, because we are working
with single isolated flash calculations in this research, we will focus on improving the accuracy of
the flash algorithms, which then would improve the general stability of the dynamic simulations.
In this chapter, we will look deeper into the tangent plane distance function and its properties.
This analysis will be aided by looking at tangent plane distance plots for a [0.4 0.4 0.2] H2O-
CH4O-CO2

1 mixture at different pressures and temperatures.

3.1 Stability Tests

In Section 2.4, we discussed initial guesses and stability tests as ways to improve VLE simulations.
The main focus of this thesis will be on the minimisation of the stability tests, for the following
reasons:

• Stability tests have a more rigorous theoretical proof of why they work, which lends itself
better to applying mathematical optimisation techniques to it.

• They more explicitly contain optimisation problems, which allows for a more direct explo-
ration of the hypotheses mentioned in Chapter 1.2.

• Solutions to stability tests can give a trial phase composition for the new phase being
formed, which naturally leads to better initial guesses for the flash calculations.

• Stability tests are generally applicable to different flash calculations (with different equa-
tions of state), and also useful outside of improving flash calculations and dynamic sim-
ulations (just for the purpose of predicting whether a mixture under some P and T is
stable).

1water-methanol-carbon dioxide.

17
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We aim to improve the problems in the critical region, which are also illustrated in Figure 3.1

Figure 3.1: Plot of a two-phase region using the Wilson equation and the SRK equation of state, formed
by the bubble point curve (blue) and dew point curve (black). They come together at the critical point,
where the liquid- and vapor phase can coexist.

Here, the Wilson equation in combination with the SRK equation of state were used to plot
something called the two-phase region: for a range of pressures, the bubble- and dew point
temperatures of [0.4 0.4 0.2] H2O-CH4O-CO2 mixtures were calculated. These were converted
to volumes via V = ZRT

P and log plotted, to make the results easier to visually identify. In
theory, Figure 3.1 should look like a “neat” parabola, but problems arise near the critical point
(at the top of the would-be parabola). Near the critical point (where the dew- and bubble curves
coincide), estimates for the bubble- and dew point volume (for a given pressure) are often off.
This is generally believed to be caused due to having solutions to the equilibrium equations be
very close to a trivial solution, and thus tending to converge to an incorrect solution [28]. SRK
and Wilson are however stable in the sense that, given a P , a V will be almost always be provided,
even if no bubble- or dew- point exists (in the so-called supercritical region for example, above
the critical point, log(P ) > 16.25 in Figure 3.1). These two factors cause the sudden dropoff
and peculiar angle for the bubble point, the dew point not reaching a stationary point correctly
and both the bubble- and dew point curve continuing into the supercritical region (where they
coincide because the mixture is no longer 2-phase).

3.2 TPD plots

To check the performance of tangent plane analysis and how to handle calculating the tpd, we
use tangent plane analysis to judge whether the feed was stable or unstable for a liquid- and a
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vapor feed. This was done for T=330,. . . ,380 at P = 0.96 bar, This was then compared to data
from the Dortmünd Data Bank [10] to evaluate the ability of tangent plane analysis to correctly
predict the stability of a mixture, see Figure 3.2.

Figure 3.2: Results of tangent plane analysis, compared with data from the Dortmünd Data Bank (DDB).
Green * represent the bubble- and dew point of the mxiture according to the DDB. Black × represent a
tested data point. Numbers above a × represent whether tangent plane analysis judged a point to be stable
(1) or unstable (2) for a vapor- or liquid feed, respectively.

In Figure 3.2, × represent a point on which we performed tangent plane analysis. This was done
for both a vapor- and a liquid feed. The results are represented by the numbers above the ×. A
1 means that the minimum tangent plane distance was nonnegative (i.e., tangent plane analysis
predicts the mixture is stable, i.e. single-phase). A 2 means that the minimum tangent plane
distance was negative (i.e., tangent plane analysis predicts the mixture is unstable, i.e. two-phase
in this case). The first number of the two represents the result when assuming a vapor feed, and
the second number for a liquid feed.
For example, “2,1” above one of the × means that the mixture was judged to be unstable for a
vapor feed, and stable for a liquid feed. The green ∗ represent the bubble- and dew point, re-
spectively, for the mixture at this P according to the data from the Dortmünd Data Bank. This
plot was made for z = [0.1 0.9], [0.2 0.8], . . . [0.9 0.1]. In general tangent plane analysis performs
very close to reality for this P , with tangent plane analysis having a similarly sized two-phase
region, shifted up by about 2K. This is assuming that we “intelligently” choose the phase for
our input mixture, i.e. if our (P, T ) combination lies to the left of the bubble line we input a
liquid feed and we input a vapor feed when we are to the right of the dew line (see also Figures
2.1 and 3.1). We can make this assumption because if we chose the feed phase “unintelligently”,
the resulting phases and their components in equilibrium will be the same as for the intelligently
chosen feed in reality. The problem could also be solved by always performing tangent plane
analysis assuming both a liquid- and a vapor feed, and then choosing the most appropriate one.
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This will inform how we use tangent plane analysis later on: we will calculate the minimum tpd
for both a liquid- and a vapor feed, and if any one of them is stable, we judge the mixture to be
stable (as we assume we chose our feed phase logically)2.

To further gain intuition about the Tangent Plane Distance, of which we aim to find the global
minimum later, tangent plane distance plots were made for different values of P and T for a
[0.4 0.4 0.2] H2O-CH4O-CO2 mixture. These values were chosen from the liquid, two-phase and
vapor regions of the mixture, which were estimated using the Wilson equation (see Figure 3.3).

Figure 3.3: Plot of the P , V for which the tpd surface was plot, with the bubble- and dew point curves.
The P, T data points (Figure 3.4) was converted to log P , log V for easier visual identification. The
critical point, *, was (visually) estimated to be around P ± 1.5 · 107Pa, T ± 523K.

Then, for every other point along each of these three lines, the tangent plane distance for each
possible trial phase composition w was calculated, and this was visualised using a ternary dia-
gram3, resulting in a picture such as Figure 3.5.

2This problem of not knowing the number and kinds of phases a priori is solved in literature in two ways:
i) by adjusting the number of phases and conditions simultaneously and ii) by calculating the minimum tpd for
each possible resulting combination of phases. Here, we have chosen option ii) but we will not go deeper into this
specific problem. See also [49].

3Plotted using the formulae x = −0.5w1 + 0.5w2 and y = w3.
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Figure 3.4: The P , T plot of the data (see also Figure 3.3).

Figure 3.5: A 3D plot of the tpd, with the value of tpd represented by color. A gas feed means that the
new phase that is formed is assumed to be liquid (and vice cersa, for some of the figures below).

Immediately visible from this first plot is a “line” (of a sudden shift in height) in the middle of
the triangle, showing a discontinuity, see also Figure 3.6.
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Figure 3.6: Side view to have a better look at the discontinuity, which can be seen from top view in Figure
3.5.

Keeping in mind that we find these tangent plane distances assuming both a liquid- and a vapor
feed, and then if either one is stable, we judge the mixture to be stable. In the case that both
feed phases result in a stable mixture or both result in an unstable mixture, we choose the “least
stable” one, i.e. the feed phase for which the minimum tangent plane distance is the lowest.
When both minima are equal, the one belonging to a vapor feed is chosen. This last decision
was made fairly arbitrarily, as the chosen phase does not matter much when both minima are
equal in size and position.

3.2.1 Liquid Region/Left (Green)

28 out of the 50 samples were judged by tangent plane analysis to be single-phase (stable). All
of these samples had, in general, the same properties. The global tpd minimum was at the
feed composition z, with peaks at pure methanol. These samples that were judged to be single
phase were all found at the highest pressures (the last 28 cases checked, P ≈ 1.6 ·107 . . . 3.6 ·107).

The other 22 samples were judged to be two-phase (unstable), with the minimum being located
at 100% CO2 (with at most a 0.1 concentration of methanol at higher pressures in this range
P ≈ 0.07 · 107 . . . 1.5 · 107). Using Figures 3.7 and 3.8 we can see that these cases that were
wrongly judged to be unstable are at subcritical pressures.
Remarkably, all these tpd plane plots looked the same regardless of the assumed feed phase.
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Figure 3.7: log(P ), log(V ) plot. In this picture, a magenta + is used to signify cases that have a discon-
tinuity in the tpd (e.g. Figure 3.9). Red × denote a point that was misjudged, e.g. when a point left of
the bubble point curve was decided by the algorithm to be unstable. Finally, green o are for cases that
have at least one local minimum.

Figure 3.8: P , T plot of Figure 3.7.
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3.2.2 2-phase Region/Mid (Yellow)

In the 2-phase region, 26 of the samples were judged to be stable (single phase). All of these
had their global minimum at w = z, and assumed a vapor feed, and peaks for trial phases
consisting of a single component. These occurred for the highest pressures (last 26 samples,
P ≈ 1.7 · 107 . . . 3.6 · 107), in the supercritical region. Thus, these points should indeed be stable,
even though they lie in the middle region.

The other 24 unstable (2-phase) samples exhibited differing behaviors. For the lowest pressures
(until around P ≈ 2.9 · 106Pa), a liquid feed was assumed and the global minimum was found at
100% CO2, with a maximum at the H2O-CH4O base of the ternary diagram, assuming a liquid
feed.
For P ≈ 3 · 106 . . . 5.7 · 106, the global minimum was found at [0.8 ± 0.1, 0.2 ± 0.1 0]4. These
samples also had a local minimum with a higher concentration of carbon dioxide, see Figure 3.9
as an example. They assumed a vapor feed.
Finally, for P ≈ 6.4 ·106 . . . 17.1 ·106 a mix consisting of chiefly CO2 and a small portion of 60-40
divided methanol-water formed the global minimum. As the pressure increased, the amount of
CO2 at this global minimum decreased, with a clear minimum around this global minimum, see
Figure 3.10. These last few samples assumed a vapor feed.
For the last two cases that were 2-phase, some apparent discontinuities can be seen in the tpd
plot (see again Figure 3.9).

Figure 3.9: Example of the second case (P ≈ 3 · 106 . . . 5.7 · 106) of the unstable points in the middle
region. The line in the middle shows a discontinuity in the value of the tangent plane distance.

4None of the components have a composition equal to 0 of course, but in these cases the CO2 composition was
negligible.
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Figure 3.10: Example of the third case (P ≈ 6.4 · 106 . . . 17.1 · 106) of the unstable points in the middle
region.

3.2.3 Vapor Region/Right (Red)

50 out of 50 points were (correctly) judged to be stable (single-phase) inputs by tangent plane
analysis, and all assumed a vapor feed with a global minimum at w = z. Aside from very few
samples at low pressures, P ≈ 0.7 · 106, the peaks were found near 100% CO2. This first sample
has a very strong and localised peak at 100% H2O, see Figure 3.11.

3.2.4 Conclusions and Assumptions

From the above, we see that for all tested stable samples, the minimum could be found at
w = z, with no other local minima. This is not surprising, as when a mixture is stable, there
is no possibility for the mixture’s composition to change in the isolated box. Unstable samples
sometimes do have a local minimum. Also, it seems for this feed composition, unstable liquid
feeds have a global minimum at (almost) pure CO2 trial compositions for the new gas phase
being formed.
For this fairly simple 3-component mixture a lot of information can be derived from these plots.
From the points we tested for above, we could minimise 3 times with a straightforward greedy
or local minimisation approach, each time using a pure composition consisting of only one of
the three components as an initial guess to find the global minimum. This idea was considered
because for each of the P , T combinations a purely descending path from at least one of the pure
components can be traced towards the global minimum. In this way information for optimisation-
and algorithmic strategies can be visually derived.
More importantly, we now know for sure that we are tasked with finding the minimum in a set
which might include local minima and discontinuities. We can also use these plots of the tpd to
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Figure 3.11: A strong, localised peak at pure H2O

give us information and form hypotheses on peculiarities. For example, Figure 3.1 and the P, V
and P, T plots in this chapter show problems estimating the bubble- and dew point in the critical
region. As we can see in Figure 3.12, the global minimum is not very “deep”, i.e. the value is
close to surrounding values (or the gradient is small). Additionally, the global minimum and
local minimum share a collective “valley” close to (but below) 0. This might lead an optimisation
algorithm to converge to different solutions and even ones that result in barely non-negative
values.
Another phenomenon can be observed in the P, V plot of Figure 3.3: the curve of data points in
the show a sudden jump halfway. We look to tpd plots before and after this discontinuity for an
explanation.

Looking at and comparing Figures 3.13, 3.14, 3.15 and 3.16, we hypothesise that the cause of
the jump is the mixture going from a more liquid-like state to a more vapor-like state. We draw
this conclusion from the observation that before the jump, a liquid feed has the least negative
global minimum, and afterwards the vapor feed has the least negative global minimum. Both
are unstable, so the phase with the least negative global minimum is the “right” one, as that
means that less drastic phase splitting is required to find the (vapor-liquid-)equilibrium. Another
interesting observation that supports this is that for the liquid feed, the feed composition lies on
the liquid-like H2O-CH4O side of the discontinuity before the jump, and on the vapor-like CO2

side of the discontinuity after the jump. This change from a more liquid-like to a more vapor-like
mixture causes a change in the compressibility factor Z, which is used to compute V .
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Figure 3.12: Plot of the tpd near the critical point. The plot looked the same for both a liquid- and
vapor-assumed feed.

Figure 3.13: Plot of the tpd before the jump in logV (see Figure 3.7), assuming a liquid feed.
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Figure 3.14: Plot of the tpd after the jump, assuming a liquid feed. Notes how the discontinuity has
shifted to above the feed from before the jump.

Figure 3.15: Plot of the tpd before the jump, assuming a vapor feed.
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Figure 3.16: Plot of the tpd after the jump, assuming a vapor feed.



30 CHAPTER 3. THE TANGENT PLANE DISTANCE



Chapter 4

Optimisation Methods

In this chapter, we will look into the optimisation problem associated with tangent plane analysis
(see equation (2.38)). We will consider some prominent global optimisation methods applied to
problem (2.38) in literature. Then, we will discuss the merits of these methods, and choose which
we will implement, going into more detail of the chosen methods.

4.1 Global Optimisation in Literature

Michelsen [25] originally proposed estimating the distribution ratio K using the Wilson equation

Ki =
Pci
P

exp

(
5.42

(
1− Tci

T

))
for low pressures in hydrocarbon systems1, which could then be used to obtain the following as
initial guesses:

yi = Kizi

yi =
zi
Ki

Corresponding to the Wilson Equation’s estimations for the bubble point and dew point of the
pure components, respectively [58]. From these initial guesses, minima would then be found via
direct substitution. Michelsen stated that one of these initial guesses will converge to the trivial
solution, and the other to the desired minimum for a specification on the two-phase region. This
method, however, gives no guarantee on the probability that the global minimum will be found,
or how it deals with peculiarities in the domain. The concept of predicting whether a given
mixture would be stable using tangent plane analysis was a great opportunity to more reliably
work with stability analysis, but the method for finding the global minimum seemed lacking.
Since then, many different ways of finding the global minimum of the tangent plane distance
were implemented in literature, as will be shown in this chapter.

1meaning systems containing Hydrogen (H) and Carbon (C) in their components.

31
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A nice overview for the global optimisation methods applied so far to the phase stability problem
(and other thermodynamic problems) in literature can be found in [57]. This includes both deter-
ministic and stochastic methods, and below some of these methods that have been successfully
applied using cubic equations of state are listed:

• Deterministic methods, which find (a sequence of points converging to) a minimum that is
provably the global optimum, often exploiting properties of the objective function (such as
continuity or convexity, possibly local).

– Homotopy Continuation: these methods are able to find all roots of a set of nonlinear
equations. A relaxed problem is solved first, and a homotopy path and -parameter t
are used to gradually increase nonlinearity [17, 49].

– Branch and Bound : provable upper- and lower bounds to the problem are progres-
sively refined until ε−convergence is guaranteed and achieved [13].

– Tunneling Method : a sequence of 2-phase cycles is used. The problem is (locally)
minimised in the first phase, and in the second phase (the tunneling phase) a zero not
equal to the local minimum is found. This is repeated until convergence [31, 30].

– Dividing Rectangles: for this method, the search space is divided into a hypercube,
which is sequentially divided into smaller hyperrectangles [40].

• Stochastic methods, which require little to no assumptions on the characteristics of the
problem and converge to a global optimum with a high probability. Though they offer no
guarantee of finding the global optimum, they are often less computationally intensive.

– Stochastic Sampling and Clustering Method : starting from an initially generated ran-
dom set of points in the domain, the region of attraction, defined using clustering, of
local minima is searched. Local optimisation is used to cluster different points closer
together [2].

– Simulated Annealing : Starting from an initial point, the minimum is found by ran-
domly selecting a point in its neighbourhood, and selecting that point if it has a
lower objective value, or with a probability p if it has a higher objective value. The
probability p goes down over time [14, 6, 38].

– (Adaptive) Random Search: (Pure) Random Search generates uniformly distributed
random points and keeps track of the minimum. Adaptive Random Search generates
random points around an initial point, keeping track of the best point. Then, new
points are generated around this best point, reducing region size every iteration [19].

– Particle Swarm Optimisation: this is a population-based stochastic optimisation tech-
nique, comparable to a genetic algorithm. The points, or “particles” in this context,
form a swarm, each particle changing position based on velocity and previous position.
From the randomly generated initial population, each particle then adjusts its posi-
tion according to the personal- and global best iteration, converging to an optimum
[5, 37].

– Differential Evolution: Comparable to genetic algorithms. Starting from some point
(or “individual”, in this context), two other individuals are used to generate (“mutate
into”) a fourth individual. The best individuals from the target and trial individuals
are chosen, converging to better (closer to optimal) individuals [45].

– Tabu Search: While searching for the global minimum, points already looked at are
placed in a taboo list and not looked at again. New points will be compared to the
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ones in the taboo list. After a while, the taboo list can be used to find promising
areas for the optimum, which can then be intensively searched [45].

A more thorough overview of these methods can be found in [57] and their respective papers.

It should be noted that it is not always completely necessary to keep looking until a global mini-
mum is found. Whenever a tangent plane distance with negative value is found, any optimisation
strategy could be allowed to terminate, as we have determined the mixture to be unstable [57].
So far, none of the methods explicitly take advantage of this fact in their methodology, aside
from sometimes using it as a stopping criterion.
We will not specifically use this knowledge when implementing solution methdos, as this work
is focused more on the mathematical (research-) side of the problem. Also, finding the actual
global optimum is still useful in determining a better initial guess for the composition (as an
input for the flash).

Because the structure of the TPDplane can differ a lot for different numbers and types of compo-
nents in mixtures, and because we expect them to work better for higher dimensional cases2 we
hypothesise that a stochastic method, or a method that in some way transforms or approximates
the tpd objective function, would be better suited to minimising the tpd than a deterministic
method. To explore this hypothesis, we will choose one deterministic method and one stochastic
method to implement and compare them to each other.
We compare the methods outlined above to each other and come to the following decision:

• For our deterministic method, we choose to go with Dividing Rectangles (DIRECT). We
have chosen this method for its low number of parameters, its stability and its initialisation
independence.

• For our stochastic method, we choose to go with Stochastic Sampling and Clustering (SSC),
because it has been reported to be a reliable method, and SSC being tweakable via the
χ-parameter and UNIRANDI tol value can also be attractive in practice. Additionally, the
clustering part of the algorithm which finds the local minima can provide valuable insights
on what the surface of tpd looks like. Problems could arise thanks to the tpd function’s
nonlinearities with the local optimisation part of the algorithm depending on the procedure
selected, but that problem can be solved by choosing a local optimisation method that is
not affected too much by that (see also Section 4.3).

Also, we discuss an approximation method that could transform/approximate the tpd function
using Taylor series, and solve it using standard Semi-Definite Programming (SDP) methods.
Unfortunately, this proved to be infeasible (see Section 4.4). Finally, we look into a few more
“primitive” (stochastic) methods, as these are claimed and accepted to be inferior to more rigorous
global methods, but a more direct comparison with the more elaborate methods could be useful.
This way, we have different types of methods to compare to each other.
In the sections below, we will discuss the methods that will be implemented more deeply. Specific
notes on the final MatLab implementations of the methods can be found in Appendix E.

2i.e., mixtures with higher numbers of components.
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4.2 Dividing Rectangles (DIRECT)

DIRECT is based on Lipschitzian methods [18]. The name comes from being a direct optimisation
method, and because DIviding RECTangles is a core component of the algorithm. In Lipschitzian
optimisation, a Lipschitz constant K is used to balance a method between a more global- or
local-based search. The larger K is, the more globally a method is focussed. In this context,
a method being focused “globally” can be seen as the method not trying to exclude any areas
of search, which might happen when using a more “local” focus, i.e. going for the most direct
way of minimising the objective function. Advantages of these methods are that, assuming
a Lipschitz constant K has been found, convergence of the methods is theoretically provable:
they are deterministic methods. Additionally, the methods require no additional parameters to
work aside from the Lipschitz constant K, and they are able to estimate how close they are to
the global minimum via bounds, allowing for specialised stopping criteria [43]. However, these
methods have three main problems [18]:

1. The Lipschitz constant cannot always be determined, and even if it can, it might be com-
putationally too intensive to do so.

2. The method should never be “too local”: to guarantee that a global optimum is found, K
is often quite large (it must exceed the maximum rate of change of the objective function).
This puts a heavy global emphasis on the method, causing a slow convergence.

3. Third, these methods partition the search space into many (hyper)rectangles and squares,
and evaluate on all 2n vertices of each of these hyperrectangles, causing the complexity of
the problem to grow very large with the dimension n.

DIRECT tries to benefit from the pros of Lipschitzian optimisation while getting rid of the cons
by not using one specific Lipschitz constant K, but all of them (this will be more specifically in
Section 4.2.1). Thus, it solves Problem 1 by not requiring to find a K and Problem 2 because
it now operates both locally and globally, allowing it to quickly focus on the more local part of
the algorithm as soon as an area of optimality is found, enabling faster convergence. Problem
3 is solved by not evaluating all the vertices of the hyperrectangles, but instead looking at the
center of the rectangles, a singular point per rectangle.

4.2.1 Univariate DIRECT

The method will be explained by first outlining a univariate version of DIRECT (Algorithm
1), and then extending this to higher dimensions (Algorithm 3).
One way DIRECT is more efficient than the original Lipschitzian methods because it samples
centers of rectangles instead of their vertices. This means that in order to keep center points
in the set of all rectangles from partition to partition, rectangles should be divided into thirds,
and evaluated at the center of each interval, the original center becoming the center of a smaller
interval (but at the same position), see also Figure 4.1.
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Figure 4.1: Partitioning an interval with center points. The top line is before subdivision, the bottom line
is after subdivision.

But how do we now select which intervals are worth looking in to? Suppose the (1-dimensional)
search space has been partitioned into intervals [ai, bi], i = 1, . . . ,m. We can (construct a visual
aid to) evaluate the value of each point by calculating (bi−ai)/2, the distance from the center to
the edges of the interval and f(ci), the objective value at the interval’s center point, and using
these as horizontal- and vertical coordinates, respectively. See also Figure 4.2.

Figure 4.2: In this plot, the potential optimality of each rectangle is represented as a point in R2. A
rectangle j is potentially optimal if ∃K > 0 s.t. its associated point in the plot can be reach by moving
the line with slope K up until it touches any point in the space.

The horizontal coordinate represents the “global goodness” of the interval, based on the amount
of unexplored space it contains. The vertical coordinate represents the “local goodness” of the
interval, based on its objective value. The most promising interval can now be found by posi-
tioning a line with slope K under the cloud of dots, and moving this line up until it intersects
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with a dot (see Figure 4.2). This K then corresponds to a Lipschitz constant, determining how
globally/locally focused the method will be. As mentioned before, DIRECT tries to operate both
locally and globally, in essence using all possible values for K at the same time, which translates
to finding the set of intervals that could be detected using a line with slope K > 0, see Figure
4.3. DIRECT then selects (and samples within) all of these intervals during one iteration. More
formally, this leads to the following definition of a potentially optimal interval:

Definition. (Potentially Optimal)

Suppose we have partitioned the interval [l, u] into intervals [ai, bi] with midpoints ci for i =
1, . . . ,m. Let ε > 0 a constant, and fmin the current best function value. Interval j is said to be
potentially optimal if there exists some rate-of-change constant K̃ > 0 such that

f(cj)− K̃
[
bj − aj

2

]
≤ f(ci)− K̃

[
bi − ai

2

]
for all i = 1, . . . ,m (4.1)

f(cj)− K̃
[
bj − aj

2

]
≤ fmin − ε|fmin| (4.2)

Condition (4.1) forces the interval to be on the lower right of the convex hull of the points, and
(4.2) makes sure that the lower bound for the interval is nontrivially better than the current best
solution. In practice, the performance of the algorithm is insensitive to the value of ε [18].

Figure 4.3: Combining different lines with slopes K > 0 into SOPT . See also Figure 4.2

This process of identifying potentially optimal intervals, and partitioning each of them until
eventually an optimum is reached leads us to DIRECT in one dimension, i.e. Algorithm 1.
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Algorithm 1 Univariate DIRECT
1: procedure Univariate DIRECT
2: INPUT: an interval [l, u], the objective function f
3: OUTPUT: A global optimum fmin, and its input cj , the center of an interval
4: INITIALISE: m = 1, [a1, b1] = [l, u], c1 = a1+b1

2 , fmin = f(c1), iter = 0
5: Determine SOPT the set of potentially optimal intervals
6: Select any interval j ∈ SOPT
7: Let δ =

bj−aj
3 , cm+1 = cj − δ, cm+2 = cj + δ, fmin =min{f(cm), f(cm+1), f(cm+2)}

8: Add intervals [am+1, bm+1] = [aj , aj + δ] with center cm+1 and [am+2, bm+2] = [aj + 2δ, bj ]
with center cm+2

9: Modify j by [aj , bj ] = [aj + δ, aj + 2δ], m = m+ 2
10: SOPT = SOPT \ {j}. If SOPT 6= ∅, go to Step 6
11: iter = iter + 1. If iter = itermax STOP. Else, go to Step 5

In Algorithm 1, the order in which potentially optimal intervals j are chosen is not important,
as long as each of them is eventually chosen. Identifying the set of potentially optimal intervals
SOPT (Step 5) can be done with algorithms such as Graham’s Scan (see Section 4.2.3 for more
details) or solving the system of equations from the definition. In the next section, we will extend
Algorithm 1 to the general n−dimensional case.

4.2.2 Extending to Higher Dimensions

For the eventual algorithm, the n-dimensional unit hypercube is used as a search space: all
variables are assumed to be within the interval3 [0,1], which will be divided into hyperrectangles
with a sampled point at their center. In higher dimensions, dividing hyperrectangles is not as
straightforward as in the univariate case, because now the order of dimensions along which to
divide matters, as can be seen in Figure 4.4.

Figure 4.4: Different ways to subdivide the intervals. The numbers represent function values. Notice how
the order of division matters for the positions of the larger rectangles.

3For the stability problem this is the case, but for other problems this could always be obtained via scaling.
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Instead of choosing this order arbitrarily, it will be done in such a way the best centers lie in the
largest rectangles, as this strengthens the emphasis on local search, and speeds up convergence
without sacrificing consistency [18]. In order to achieve this, it is first noted that if we split first
on dimension i, then the points c + δei, will be at the centers of the biggest subrectangles (see
also Figure 4.4). This leads us to a rule for subdividing hypercubes:
Let pi =min{f(c + δei), f(c − δei)} the best function values sampled along dimension i. Split
along the dimension with the smallest p−value first, and then split the rectangle containing c
into thirds along the dimension with the next smallest p-value and so forth. So in Figure 4.4,
the bottom order (dividing on vertical first) would be chosen. This first subdivision will result in
both hyperrectangles and hypercubes. For subdividing the rectangles, only the long dimensions
will be subdivided, ensuring that the rectangles shrink in every dimension.

Algorithm 2 contains a more formal description on how to divide the rectangles.

Algorithm 2 Dividing Rectangles
1: procedure Procedure for Dividing Rectangles
2: INPUT: a rectangle j with center c
3: OUTPUT: a division of the rectangle, consisting of multiple other rectangles.
4: Identify the set I of dimensions with the maximum side length. Let δ equal one-third of this

maximum side length.
5: Sample the function at the points c± δei ∀i ∈ I
6: Divide the rectangle containing c into thirds along the dimensions in I, starting with the

dimension with the lowest value of p =min{f(c− δei), f(c + δei)}, and continuing in order
along the other dimensions in I.

For each rectangle, f(ci) and di, the distance from ci to the vertices, are known. This allows
us to form a similar figure to Figure 4.2, using d for the horizontal coordinates, and forming a
definition for potentially optimal intervals:

Definition. (Potentially Optimal)

Suppose that we have a partition of the unit hypercube into m hyperrectangles. Let ci denote
the center point of the ith hyperrectangle, and let di denote the distance from the center point to
the vertices. Let ε > 0 a positive constant. A hyperrectangle j is said to be potentially optimal
if there exists some K̃ > 0 such that

f(cj)− K̃dj ≤ f(ci)− K̃di for all i = 1, . . . ,m (4.3)

f(cj)− K̃dj ≤ fmin − ε|fmin| (4.4)

We can now combine all of this theory to extend DIRECT to higher dimensions. After initialis-
ing, by sampling at the center of the unit hypercube, we iteratively identify the set of potentially
optimal hyperrectangles and sample and subdivide those as described, until a prespecified it-
eration limit is reached4. A formal description of the algorithm can be found in Algorithm
3.

4If a Lipschitzian constant has been found, this can be used to form a stopping criterion, but we will assume
that we do not have such a constant here, and thus will not use this fact.
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Algorithm 3 DIRECT
1: procedure DIRECT
2: INPUT: a search space S, an objective function f
3: OUTPUT: a global optimum x∗ = cj with value fmin
4: INITIALISE: Normalise the search space to be the unit hypercube, with center c1, set fmin =
f(c1), m = 1, iter = 0

5: Identify the set SOPT of potentially optimal rectangles
6: Select any rectangle j ∈ SOPT
7: Using Algorithm 2, determine where to sample in rectangle j and how to subdivide it.

Update fmin and set m = m+ ∆m, where ∆m is the number of new points sampled.
8: SOPT = SOPT \ {j}. SOPT 6= ∅, go to Step 6
9: Set iter = iter + 1. If iter = itermax, stop. Otherwise, go to Step 5

Identifying the set of potentially optimal rectangles is done in the same way as in one dimension
(see Section 4.2.3). DIRECT is guaranteed to converge when the objective function is continuous
in the neighbourhood of the global minimum [40].

4.2.3 Potentially Optimal Intervals

As mentioned above, DIRECT requires a way to identify which of the rectangles is potentially
optimal. One way to do this is Graham’s Scan [12]. Graham’s Scan is an algorithm that can
be used to determine the convex hull of a set of points. This can be used to determine the set
SOPT of potentially optimal intervals by representing the intervals in a two-coordinate system as
mentioned in Sections 4.2.1 and 4.2.2, and shown inFigure 4.2: the underside of the convex hull
of these points now is all the points that can be reached by placing a line with positive slope K
underneath the cloud of points and moving it up.
Graham’s Scan is formally described in Algorithm 4.

Note that in Step 6 of Algorithm 4, thanks to the choice of P , we have that φk−1 − φk ≤ π
(indices module n). Each time Step 8 is performed, either the number of possible points in the
convex hull of S is reduced by one, or the total number of points considered in S′ reduces by
one. Because of this, we can stop the procedure after Step 8 has been performed 2n′ times [12].

Figure 4.5: The triangles determining α and β, used to check whether point k + 1 is part of the interior
of the convex hull of S.
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Algorithm 4 Graham’s Scan
1: procedure Graham’s Scan
2: INPUT: a set S to find the convex hull of
3: OUTPUT: conv(S)
4: find a point P ∈ int(conv(S)). This can be done by finding {s1, s2, s3} ∈ S a set of three

points, and testing them for colinearity. If they are colinear, discard the middle point and
find a new point in S to get a three point set. Repeat until we have a set of three points
that are not colinear, e.g. {s1, s2, s3}. P can then be chosen as the middle of the triangle
between x, y, z

5: Express each point in S in polar coordinates with origin P and θ = 0 in the direction of an
arbitrary half-line L from P

6: Order the elements ρk exp (iθk) of S in terms of increasing θk. Now, S =
{r1 exp (iφ1), . . . , rn exp (iφn), where 0 ≤ φ1 ≤ · · · ≤ φn ≤ 2π, ri ≥ 0, i = 1, . . . , n}.

7: If φi = φi+1 then the point with smaller amplitude is not part of the convex hull
and can be deleted, just like any points with ri = 0. This gives us a set S′ =
{r1 exp (iφ1), . . . , rn exp(iφn′)} ⊆ S, n′ ≤ n.

8: Start with three consecutive points in S′, rk exp (iφk), rk+1 exp (iφk+1), rk+2 exp (iφk+2).
There are two possibilities for α + β, the sum of the angles that are at the base of
the triangle formed by rk exp (iφk), rk+1 exp (iφk+1) and P and the triangle formed by
rk+2 exp (iφk+2), rk+1 exp (iφk+1) and P , respectively (see also Figure 4.5):

9: (i) α + β ≥ π: in this case, delete rk+1 exp (iφk+1) from S′, and return to the start of
Step 8, now with points rk−1 exp (iφk−1), rk exp (iφk), rk+2 exp (iφk+2), indices module n′

10: (ii) α + β < π: in this case, return to the start of Step 8, now with points
rk+1 exp (iφk+1), rk+2 exp (iφk), rk+3 exp (iφk+3), indices modulo n′

Thus, what Graham’s Scan effectively does, is use polar coordinates to order the points in S,
and check for each set of three points whether the middle point lies to the left of the line between
the first and last point, i.e. whether the middle point lies in the interior of the convex hull of S.
If so (if α+ β ≥ π), the point is deleted out of the set of points that potentially form the convex
hull of S, and a previous point is added to the start to check again. If not (if α + β < π), then
the check is again performed for the next pair of three points.

4.3 Stochastic Sampling and Clustering

Like most stochastic methods, SSC starts from a sample of points drawn randomly from S, the
space containing all possible inputs w:

S = {(w1, . . . , wC)|wi ∈ (0, 1),
C∑
i=1

wi = 1}

In addition to this sampling phase, or global phase, it also contains a local phase, where a local
search procedure is used, starting from sampled points. We want to avoid finding the same local
minimum multiple times, which would cause unnecessary computation and could prevent other
local minima from being found. Thus a region of attraction of a local minimum x∗ is defined as
the set of all x ∈ S that converge to the local minimum x∗ using the local search procedure. The
aim is to start the local search procedure no more than once in each region of attraction. This
method is modifiable in the sense that a user can specify the parameter γ (see also below). A γ
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closer to 1 means a higher computation time as more samples have to be considered (assuming
the same n as for a lower γ), but also means a higher likelihood of finding the correct global
minimum.
A pseudoalgorithm of the method is described in Algorithm 5.

Algorithm 5 SSC
1: procedure Stochastic Sampling and Clustering
2: INPUT: n (the number of points), S, SK (the current sample), ST (the transformed sample),
γ.

3: OUTPUT: a global minimum y
4: INITIALISE: SK = ∅, ST = ∅
5: Draw n points uniformly at random from S and add them to SK .
6: Obtain ST by taking the γ% points with lowest function value.
7: Use the clustering procedure on each known local minimum x∗ ∈ ST to cluster ST . If all

points in ST are clustered, go to Step 10.
8: while ∃x ∈ ST , where x unclustered. do
9: Apply local search to x to assign it to a cluster. If a new local minimiser is found, go

to Step 5
10: Determine the smallest local minimum, this is the returned global minimum.

Algorithm 5 includes both a local search and clustering a procedure. We will discuss these
procedures in Sections 4.3.1 and 4.3.2.

4.3.1 Local Search

Different local search procedures are possible to quickly and reliably find a local minimum, for
example a quasi-Newton method with Davidon–Fletcher–Powell update formula and UNIRANDI,
a random walk type direct search method [9]. Analysis in literature has shown that UNIRANDI
is well-suited for SSC as a robust method that is derivative-free (as it only relies on function
evaluations), among other things. This local search method will also inform our clustering method
later, see Section 4.3.2. The method operates in two steps: first, a trial direction to search in
is generated, and then a line search is performed, both performed iteratively until a stopping
condition is met. When, starting in some function value, the function value cannot be improved
in some search direction d, the direction is reversed. If both of these directions are unsuccessful,
the step size h is halved, until eventually a local minimum is found. A pseudoalgorithm for
UNIRANDI is described in Algorithm 6 [3].

In Algorithm 6, h is the step size, d is the search direction and x0 is a point in ST that is
unclustered. The LineSearch method mentioned in Steps 9 and 15 of Algorithm 6 is described
as a pseudoalgorithm in Algorithm 7.

Thus, the LineSearch procedure starts if the line in direction d has improvement, and searches
along the line in the direction d through xtrial, until a local minimum is found.

4.3.2 Clustering

The clustering procedure tries to exclude points from which the local search would find a local
minimum that has been found before. Clusters are formed around so-called seed points. Multiple
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Algorithm 6 UNIRANDI local search
1: procedure UNIRANDI
2: INPUT: objective function f (tpd(w), in this case), starting point x0, tol the threshold value

of the step length
3: OUTPUT: fbest,xbest, the local minimum value and its location.
4: INITIALISE: h = 0.001, fails=0, xbest = x0

5: while Convergence criterion has not been met do
6: d ∼ N(0, 1)
7: xtrial = xbest + h · d
8: if f(xtrial < f(xbest) then
9: [xbest, fbest, h] =LineSearch(f,xtrial,xbest,d, h)

10: h = h/2
11: else
12: d = −d
13: xtrial = xbest + h · d
14: if f(xtrial) < f(xbest) then
15: [xbest, fbest, h] =LineSearch(f,xtrial,xbest,d, h)
16: h = h/2
17: else
18: fails = fails+1
19: if fails≥ 2 then
20: h = h/2
21: fails = 0
22: if h < tol then
23: RETURN fbest,xbest

possible clustering procedures are possible, but considering arguments from literature we choose
to use single-linkage clustering [4, 9]. Single linkage clustering partitions the set into single
element subsets, and then it repeatedly fuses two subsets with minimal distance. A definition of
distance is required, and defined as follows:

d(x,x′) = ((x− x′)TH(x∗)(x− x′))1/2 (4.5)

where H(x∗) is the Hessian of the objective function. For UNIRANDI, the identity matrix I can
be used instead of H(x∗) [4]5. A point x is only added to a cluster G if:

∃x′ ∈ G s.t. (4.6)

d(x,x′) ≤
Γ(1 + 1

2C)|H(x∗)|1/2m(S)

πC/2
(1− α1/(n′−1))]1/C (4.7)

where m(S) is a measure of S, n′ is the total number of sampled points, Γ is the gamma-function

Γ(z) =

∫ ∞
0

ξz−1e−ξdξ (4.8)

and 0 < α < 1 is a parameter of the clustering procedure [4].
For this specific case, we will let m(S) be the Lebesgue measure of S. A pseudoalgorithm of the
method can be found at Algorithm 8.

5For most other local search methods, other approximations of the Hessian exist
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Algorithm 7 Line Search
1: procedure LineSearch
2: INPUT: objective function f (tpd(w), in this case), the current point xtrial, the best point

found so far xbest, and d and h, the current direction and step length
3: OUTPUT: fbest,xbest, h the local minimum value, its location and the step length.
4: while f(xtrial) < f(xbest) do
5: xbest = xtrial
6: fbest = f(xbest)
7: h = 2h
8: xtrial = xbest + hd

Algorithm 8 Single Linkage
1: procedure Single Linkage Clustering
2: INPUT: x∗ the seed point.
3: OUTPUT: a clustering around x∗, cluster K
4: INITIALISE: Cluster K = {x∗} ∪ x′, where x′ =argminx∈ST

{d(x∗,x)}
5: find the x ∈ ST closest to K.
6: while D(x,K) =minx∈K{d(x,x′)} ≤threshold and x conforms to gradient criterion

(Equation (4.9)) do
7: add x to K
8: find a new x

Algorithm 8 is applied until all points in ST have been sampled. During this procedure, a set
X∗ is maintained, containing all local minima found so far. The seed points mentioned in Line
2 are used to grow clusters around, in this case we use the local minima as seed points.
Line 6 of Algorithm 8 references a “gradient criterion”. This is used to make sure that local
search from a point x points towards the correct local minimum in the cluster 6, making sure
clusters are correctly build around the correct local minimum. A condition for a point x to be
added to the cluster around x∗ is

tpd(x + ε(x∗ − x))− tpd(x)

ε||x∗ − x||
< 0 (4.9)

for ε a small value. The threshold value in line 6 of Algorithm 8 is equal to the value in equation
(4.7).

4.4 Transforming Using Taylor Series

The idea behind this solution method is to first transform (approximate) the tpd function using
Taylor (MacLaurin) series. This then simplifies the objective function to a polynomial, after
which the problem can be solved using standard Semidefinite Programming methods. This will
also demonstrate a “third” class of methods, next to the deterministic and stochastic classes: one
where the objective function is transformed. It is interesting to see if the solutions to a trans-
formed method are useful for the solution for the overall optimisation problem. Transforming
the function into an easier to identify form might also help with researching how to best solve it.

6It is a check to verify that the negative gradient at x is verified to point in the direction of x∗.
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After some initial testing, this method turned out to not be viable. The objective function
(2.32) is too complicated to easily be approximated. The logarithms and the quadratic wi terms
(e.g. a(m) =

∑
wiwjaij) make approximating it into a quadratic function not feasible. The

terms for the fugacity function were attempted to be approximated. Writing Z, the solution
to Z3 − Z2 − (A − B − B2)Z − AB = 0, explicitly for the two-component (two-dimensional)
case, and using the matlab taylor function to generate the MacLaurin series for Z resulted in
an expression that, when written out, was about 14.000 characters long. Additionally, it might
be hard to formulate a positive semidefinite matrix for the constraints for this function, because
for example the bij would form a matrix that is not positive semidefinite. Using some kind of
approximating function to write the problem as a semidefinite programming one might still be
useful for finding lower bounds and obtaining a relaxation, or to solve the problem using branch
and bound [13]. Approximating log φi using a polynomial in wi and wj could further improve on
the accuracy of such lower bounds. Due to time constraints and the hypothesis that an approxi-
mation would not prove fruitful, no other way of transforming the objective function was found.

4.5 Stochastic Local Methods

Most of the methods discussed in this chapter are quite elaborate in their conception. This
is logical seeing as the problem, as has been shown, can get quite complicated and each case
can be quite different from the next. Still, it might be interesting to test the effect of more
“primitive” methods. It is hypothesised that these primitive methods offer the advantage of
easy implementation, while having the possibility of being sufficiently robust and fast, especially
for low-dimension cases. Some possible methods are outlined below. Each of these methods in
essence comes down to “naively” applying local optimisation from a set of starting points, chosen
in particular (random) way.

4.5.1 Shotgun Search

The idea here is to sample n points uniformly at random points in the domain, and then apply
local search starting from each of the n points to converge to local minima in the domain. After
this has been done, a list of local minima has been obtained, and the smallest one is then chosen
as the global minimum. This is, in essence, comparable to what SSC does but with a less
intelligent way of assigning points to “clusters”.

4.5.2 Grid Search

The idea for this initialisation of the local search method is partially derived from the DIRECT
method. What if, instead of going through the process of deciding which rectangles are optimal,
we just divide the domain (which has been transformed into the unit hypercube) in n parts
along each dimension, creating a grid, and then perform local search from the center of each of
the rectangles? At least one of these rectangles should contain the global minimum, if it exists.
If this square does not contain a too strong local minimum (or one close to the center of the
triangle, the global minimum should be found. Local search can also be unrestricted, allowing the
local search method to go outside a grid square. This method then becomes a more structured
approach to Shotgun Search.
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4.5.3 Pure Component Search

In this method, local optimisation is started from each pure component. The example studied
in Chapter 3 spawned this idea, as the global minimum was in the same continuous area as at
least one of the pure components, local search should find the global minimum when started
from at least one of the local minima. When a local minimum is situated “in between” the pure
component and the global minimum, the global minimum might not be reached, as the local
search likely gets stuck inside the local minima.

4.5.4 Hypothesis for Results

Looking over the theory, it is hypothesised that between SSC and DIRECT, SSC will perform
better in general, with SSC being expected to also always find the global minimum but requiring
less computations (see Section 4.1). As for the Stochastic Local Methods, Grid- and Shotgun
Search are expected to be able to find the global minimum in all cases, but to be a bit slower
than DIRECT and SSC. Pure Search is expected to be the fastest out of all the methods, but
to not be completely robust, likely failing to find the global minimum in some cases.
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Chapter 5

Testing and results

In this chapter, we will go over the methods we have implemented and their results. All algo-
rithms were implemented using Matlab 2020a, and run on a HP ProBook 400 G6 laptop with
Intel Core I5-8265U. Fugacities were calculated according to the SRK equation of state using
the Matlab library by Martín et al. [23]. In the following sections, we will first discuss the
mixtures the methods will be tested on, then discuss some notes on the implementation of each
of the methods chosen in Chapter 4. Then, the results will be listed, and observations that came
from these results will be discussed. Appendix E contains some additional information for the
implementation of the methods.
To more accurately represent the computation time, we will not only measure the computation
time in seconds, but in number of function calls that were made to calculate the objective func-
tion tpd. Calculating tpd(w) of some composition vector w involves calculating the fugacity
coefficient φ, which is usually heaviest calculation done in these algorithms (see also Appendix
D). This time measure more uniformly represents the calculation time across different devices,
programs, etc.
Calculations were made to a precision of order of magnitude 10−4. This was judged to be precise
enough for most practical cases, while allowing to circumvent rounding errors present in MatLab
(which for long calculations routinely estimates values equal to 0 to a value in order of magnitude
10−17), and was large enough to save time.

5.1 The Test Mixtures

Recall that an [x1 . . . xC ] C1 − · · · − Cn mixture means an input mixture (or feed mixture)
consisting of x1 substance C1, x2 substance C2 and so forth, and that the “global minima at
w” for these mixtures are the lowest value for their associated tangent plane distance if a new
phase with composition w would be formed, i.e. what the composition of a hypothetical new
phase would look like when the mixture reaches equilibrium. When the tangent plane distance
is negative for that composition, a new phase is formed because the mixture is unstable, and
otherwise it is stable and no new phase is formed. We have decided to consider the following
three mixtures as test cases in this work:

1. The [0.4 0.4 0.2] H2O-CH4O-CO2 mixture. This mixture was chosen because it is specifi-
cally used in ZEF’s case, and was used to test much of the theory and algorithms on. It is

47
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also interesting because we know it has some interesting properties we want our algorithms
to overcome (see also Chapter 3). A downside of this mixture is that it does not have much
precedent in literature like our next two mixtures. In this case we chose T = 400K and
P = 2 · 106Pa, for its discontinuity and two local minima (including the global minimum,
see Figure 2.32). The global minimum is at [0.8520, 0.1476, 4 ·10−4] with a minimum value
of -1.2007.

2. The [0.68, 0.32] CH4O-C3H8 mixture at T = 277.6K and P = 107. This is a low-component
mixture that is near-critical, and has been tested on before in literature [40]. It has a global
minimum at [0.7657, 0.2343] with a value of -0.5332·10−3, barely unstable.

3. Next, the six component mixture [0.3, 0.55, 0.07, 0.03, 0.03, 0.02] N2-CH4-C2H6-C3H8-
C4H10-C5H12 at T = 151K and P = 40 · 105Pa will be used for testing. This mixture also
has precedent in literature [2, 40]. It is also interesting because of the large number of com-
ponents, while still being compatible with the SRK equation of state [40]. This mixture was
also studied by Michelsen [26]. The global minimum is at [0.2909,0.5564,0.0730,0.0379,0.0215,0.0204],
with a value of 0 (thus, this mixture is stable).

Binary interaction parameters for these mixtures were found using [20] and [52].

5.2 Dividing Rectangles

In accordance with literature, we set ε = 10−4 [40], though the specific value of ε should not have
much effect on the performance of the algorithm. As a convergence criterion, we used a tolerance
for the change in objective value, tol (see also Appendix E). In this case, we set tol = 10−8.

5.2.1 Notes on Implementation

In this case, Graham’s Scan was used to find potentially optimal rectangles, as solving the sys-
tem of equations to find potentially optimal rectangles turned out to be very slow time wise
(Graham’s Scan was 8 to 9 times faster, though the number of tpd function evaluations was the
same). The procedure is as follows:
First, a picture comparable to Figure 4.3 was made. If only one rectangle was considered (in
the first iteration), that rectangle was automatically chosen to be potentially optimal. Then, the
convex hull was determined using Graham’s scan (Algorithm 4). This gave us a set of points
larger than the set of potentially optimal ones, as points that lie above and to the left of another
point could still not be touched first by a line with slope K > 0. Thus, after determining the
convex hull, all points in the hull lying above and to the left of at least one other point where
deleted, obtaining the set of potentially optimal rectangles.
Choosing the iteration limit itermax is not completely straightforward either. Jones et al. [18]
gave a proof that for a number of iterations Titer and a constant δ > 0, then for every number
of iterations t > Titer, the center-to-vertex distance is less than δ, such that every point in the
hypercube lies within a distance δ of some sampled point, meaning the global minimum will be
found. What the value of Titer is however, is not fully clear. Thus in our implementation, we
stop the algorithm not after a certain number of iterations, but when a sufficiently small change
in objective function is observed. This also gives a tunable parameter tol by which focus on the
speed or precision of the algorithm can be tuned, if required.
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For DIRECT to work, the domain must be equal to the unit hypercube. Transforming the do-
main to the unit hypercube required the problem to be “unconstrained”, or else large sections of
the eventual hypercube would not be viable solutions, which would require the algorithm to be
adjusted in order to still work. Saber and Shaw [40] proposed working in one dimension lower,
effectively only using w1, . . . , wC−1 as variables, and defining wC as wC = 1−

∑C−1
i=1 wi. However,

it is still possible to now find a point w′ = (w′1, . . . , w
′
C−1) such that

∑C−1
i=1 w′i ≥ 1, which would

then not give a valid value for wC and by extension w. We solve these problems in this case by
searching in the unit hypercube, and normalising each test solution w. Experiments showed that
the flash algorithm used to calculate φ gives the same result for w with

∑
wi 6= 1 and for the

vector w∑
wi
, i.e. the vector w normalised. This allows us to search the full hypercube. DIRECT

is a deterministic method, meaning that, if started from the same point, it will always take the
same path towards the global optimum. Thus, DIRECT was only tested once (as opposed to the
100 times for the SSC method, see Section 5.3 below). For mixture 2, a convergence tolerance
of 10−6 was used. This proved insufficient for mixture 1, where a tolerance of 10−8 was applied
instead.

Figure 5.1 shows how DIRECT progressed for Mixture 1.

Figure 5.1: Plot showcasing how DIRECT progressed for Mixture 1. Each × shows a point that DIRECT
sampled.

5.3 Stochastic Sampling and Clustering

It should be noted that during the clustering procedure (Algorithm 8), when tested, the gradient
criterion seemed a lot stronger than the threshold (when checking to see if a point could be added
to a cluster): when testing for n = 100 and γ = 1, 100 out of 100 clustering procedures were
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terminated because of the gradient criterion preventing a point from being added. We discuss
the values of the different parameters below:

• ε in the gradient criterion, equation (4.9), is chosen to be 10−5.

• h, the (starting) step size, h = 10−6.

• tol, the tolerance of the stepsize h UNIRANDI local search method, was chosen to be 10−8.
Testing showed that this combination of tol and h achieved the desired consistency without
causing unnecessary calculations.

• n, the number of points sampled, was chosen according to the mixture, based on literature
or testing to find out what number was the most appropriate. For Mixture 1., we chose
n = 50, for Mixture 2., n = 100. For Mixture 3., we chose n = 100.

• γ, the percentage of sampled points used in the algorithm, was set to 1 for each mixture,
to put the emphasis of the algorithm of trying to find the global minimum.

5.3.1 Notes on Implementation

UNIRANDI

UNIRANDI is derivative free, and running it from the same x0 multiple times might yield different
results every time because of the randomness involved with finding the search direction d.
UNIRANDI (and its LineSearch method) find the next point on the line with direction d and a
step size of h by permuting w = w + dh. Here, this is achieved by first generating a random
vector d ∈ RC such that di ∼ N(0, 1). Now applying w = w + dh would usually not achieve a
new vector w on the line in S, because often one or both of the criteria that wi > 0 or

∑
wi = 1

no longer holds. Drawing a random d with ||d|| = 1, adding it to w and then forcing w to again
be in S via wi = wi∑

wi
for each component of w causes the effective step size to become smaller

each time it is applied, see Figure 5.2. Instead, if we generate d as a vector such that ||d|| = 1
and

∑
di = 0, we make sure that

∑
(wi + dih) = 1. This can also be seen by realising that the

plane of all these d and the plane of all w such that
∑
wi = 1 are parallel (see Figure 5.3). Now,

it is still possible for w = w + dh to result in a w 6∈ S, by one of the wi becoming greater or
equal to 1, or smaller or equal to 0. When this would happen, we terminate the LineSearch or
treat the direction as unviable in the case of UNIRANDI, see also Figure 5.4.

SSC

SSC is slightly tricky to implement. The high degree of variability in the different parameters
that can be set (h, γ, tol, n) allows for tuning the algorithm with a focus on speed or accuracy,
but as a subsequence, this allows for “wrong” choices. If h and tol are not small enough, in such
away that UNIRANDI might terminate close to a local minimum instead of directly on the local
minimum for example, then SSC might get stuck in a loop were less points in ST get clustered
than n, a “new” local minimum (one close to but not equal to an already existing one) is found,
n new points are drawn, and so forth. This means that implementing SSC requires some testing
beforehand to determine the correct range for these parameters, making SSC less flexible than
it would seem at first glance. For calculating the threshold value (see Section 4.3.2), a definition
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Figure 5.2: Plot showing the progression of x = x + dh, when normalised to enforce
∑
xi = 1.. h = 0.1

was set in this case to more easily visually identify the change in step size.

Figure 5.3: Plot showing that the plane of all d such that ||d|| = 1 (the red circle) and the plane of all w
such that 0 < wi < 1 and

∑
(wi) = 1 (the black triangle) are parallel.

of the measure m(S) is required. m(S) is chosen to be the Lebesgue measure as suggested by
Boender et al. [4]. In our case, S is a C−simplex in RC+1, for which the volume can be used as
the Lebesgue measure:

m(S) = (−1)C−12C−1C (5.1)

A derivation for m(S) can be found in Appendix E. α is also required to calculate the threshold
value, and by convention is chosen to be equal to 0.025 (see also Appendix E)

5.4 Stochastic Local Methods

Each of the methods below came down to generating a set of initial points, and performing
UNIRANDI from each of these methods. The parameters were set to h = 1 ·10−6 and tol = 10−8,
for an honest comparison to DIRECT and SSC. The number of points we start the searches, n,
from for each of the methods are chosen as follows:
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Figure 5.4: A plot showing a line with search direction d (red), and said line terminating at the edge
of the space of possible vectors w (the black ×). The red line shows the effect of repeatedly applying
w = w + dh, starting from the blue * w = [0.4 0.4 0.2]

• Shotgun Search: The cloud of n = 100 points were generated uniformly at random in
the same way as with SSC.

• Grid Search: n = 5 in this case, meaning that for Mixture 1 we perform UNIRANDI
35 = 125 times for Mixture 3, and 25 times for Mixture 2.

• Pure Search: Because our algorithm (and formulation of the tpd, see equation (2.38))
assumes none of the components has a composition equal to either 0 or 1, the composition
of each component other than the “pure” one was set to 10−4, and consequently the “pure”
component had a composition of 1− (C − 1) · 10−4.

5.4.1 Notes

Because they are expected to not be scalable to six dimensions, Grid- and Shotgun Search were
not applied to Mixture 31. The notes on UNIRANDI in Section 5.3.1 are applicable to these
methods as well.

5.5 Results and Observations

In Tables 5.5 and 5.6, the results for each of the methods on each of the mixtures is documented.
Figure 5.8 presents the results more visually using bar graphs.

1This was tried, and acquiring results for these methods took longer than was ultimately deemed feasible.
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Mixture Method Average
Steps

Maximum
Steps

Minimum
Steps

Global Min
Found

1. SSC 1861 3053 1145 100%
DIRECT 3762 3762 3762 100%
Pure 3880 5260 2222 100%
Shotgun 115219 118993 110031 100%
Grid 150990 154625 146847 100%

2. SSC 1802 145559 622 100%
DIRECT 308 308 308 100%
Pure 587 599 575 100%
Shotgun 30044 31027 29789 100%
Grid 7575 7612 7528 100%

3. SSC 3794 7727 2337 100%
DIRECT 39566 39566 39566 100%
Pure 20910 22984 19668 100%
Shotgun × × × ×
Grid × × × ×

Figure 5.5: The number of steps, i.e. number of function calls to the objective function tpd, of each of
the methods and mixtures, and their accuracy.

Mixture Method Average
Time (s)

Max Time (s) Min Time (s)

1. SSC 405 902 102
DIRECT 596.8 596.8 596.8
Pure 499 676 282
Shotgun 14564 15033 13872
Grid 19191 19665 18680

2. SSC 252 10890 23
DIRECT 17.62 17.62 17.62
Pure 30 49 28
Shotgun 1826 2602 995
Grid 363 751 249

3. SSC 2758 5677 1672
DIRECT 21672 21672 21672
Pure 14971 16534 14059
Shotgun × × ×
Grid × × ×

Figure 5.6: The amount of time each method took. The time is mostly included for completeness’ sake,
as this might vary from device to device.

Local Minima
Found

1 2 3 4 5 6 7 12 27

Times out of
100

32 4 16 33 11 1 1 1 1

Figure 5.7: Table depicting how many local minima were detected by SSC for Mixture 1.
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Figure 5.8: Bar graphs representing the results. Bar graphs excluding the higher numbers of evaluations
and using a logarithmic scale were included for an easier visual comparison of the methods.
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Looking over these results, DIRECT seems to not scale well. This is not completely unexpected,
as the number of rectangles per division grows quickly with the number of dimensions.
SSC, while it in theory “promises” to find all of the local minima and form clusters around them,
it is not always able to, see Table 5.7. In the case of Mixture 1. for example, almost every
point w ∈ S satisfied the gradient criterion for the global minimum because of having a rela-
tively “deep” global minimum, sometimes causing the first n points to all be clustered around
the global minimum. Additionally, if the local minimum was hard to locate or particularly deep,
such as in the case of Mixture 2., it is possible for more clusters to be formed than the number
of local minima that exist as can be seen in Table 5.7. This is directly related to the precision
of UNIRANDI. For our examples, we optimised to about 10−4, which caused local minima (i.e.,
seed points for clusters) to not always technically be equal, causing more clusters to be formed.
In rare cases, this could cause a large spike in the number of clusters formed, and thus the com-
putation times, hence the single case of a very large number of steps and clusters for Mixture 2.
This problem could be resolved by forcing a higher precision in UNIRANDI, however. On the
other hand, some stability could be sacrificed for speed by using a different local optimisation
method (though it would still have to be derivative free).
Finally, the stochastic local methods scale not too well, and frequently use a lot more start-
ing points than needed, as Pure Search was able to find the global minimum by performing
UNIRANDI only C times (as opposed to the large number of initial points used for Grid- and
Shotgun Search).

Comparing the different methods to each other, it is immediately evident that, every method
is sufficiently stable to find the global minimum 100% of the time, even the Stochastic Local
methods. Thus, the quality of the methods will be compared on the basis of speed (number of
function evaluations).

5.5.1 Comparison with Literature

Saber and Shaw [40] reported a number of function evaluations for DIRECT for Mixture 2 that
was 6 to 10 times lower than the numbers found in this work.

This difference is could be due to Saber and Shaw having their code more optimised than the one
that was used for this work, and MatLab likely being less efficient than FORTRAN, which they
used. Also, their method of working in one dimension lower (see Section 5.2.1) than the number
of components might also have drastically reduced the total number of function evaluations.
However, their number of function evaluations for DIRECT for Mixture 3 is in the same order
of size as reported here. The cause of this is unknown. Additionally, Saber and Shaw compared
DIRECT to SSC for the hydrogen sulfide-methane system at T = 190K and P = 40.5 · 106Pa,
where they showed DIRECT being 31 to 75 times faster than SSC (for different feed compo-
sitions). Sadly, this mixture proved too complicated for the flash calculation library that was
used in this work [23], and thus could not be implemented or reproduced. Their SSC generally
reported higher numbers of function evaluations than were found here, up to 10 times more.
The original paper on SSC [2] was applied to only two mixtures, neither of which has been in-
cluded in this work.
Thus, the amount of data on DIRECT and SSC has been expanded.

We can summarise our findings as follows:

SSC is the fastest method, because of its scalability: it is about as fast for the 6-dimensional
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case as DIRECT is for the 3-dimensional one.
For mixture 2., DIRECT is about 6 times faster than SSC, and Pure Search is about 3
times faster.
However, SSC is twice as fast as DIRECT and Pure Search (which are about equal) for
mixture 1.
For mixture 3., SSC is about 7 times faster than Pure Search, and more than ten times
faster than DIRECT.
Grid- and Shotgun Search are not competitive.
Pure Search is stable enough to always find the global minimum despite the low number
of initial points.
It scales better than DIRECT, breaking even on performance with DIRECT for the mixture
1. and being about 1.5 times as fast as DIRECT for mixture 3.



Chapter 6

Conclusions and Discussion

In this chapter, conclusions are drawn from the findings in this work using the research goals and
-questions from Chapter 1. It is checked whether the former have been reached, and the latter
can be answered. Finally, some notes on the research and conclusions are discussed, and some
possibilities for continuing this research are shared.

6.1 Conclusions

The results and findings in this work will now be compared with the research goals and -questions
of Chapter 1.

6.1.1 Research Goals

1. Frame the VLE and the problems surrounding it in a mathematics focused way,
as opposed to a more thermodynamics focused one.

This goal was more a matter of finding and collecting, as opposed reframing what was already
there. With the definitions in Chapters 2 and 3, as well as Appendices D and E, the problem
has been reframed in a way that is purely about the mathematics of the problem, as opposed
to one that requires the thermodynamical context and -definitions. Because this has not been
clearly collected in this work thus far, a purely mathematical formulation without any of the
thermodynamical context has been included in Appendix F.

2. Provide an overview for the more prominent optimisation techniques used in rela-
tion to flash calculations.

This goal was achieved, and this outline can be found in Chapter 4.

3. Compare different optimisation techniques on their value for the modelling of
VLEs.
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This goals was achieved and the comparison can be found in Chapter 5. In short, it seems that
stochastic methods are better suited for solving the stability problem than deterministic ones,
which was found by comparing Stochastic Sampling and Clustering to Dividing Rectangles. The
choice for these methods as “representatives” for stochastic or deterministic methods was made
by considering arguments in literature. See also Chapters 4 and 5.

While we did find a clear mathematical definition, the “holy grail” in the form of a new method
improving on the state-of-the-art could sadly not be found. This was partially due to time
constraints. One other side of this problem is that the stability problem has a clear mathematical
definition. This is very nice for having a clear path to solving the problem, as can be seen in this
work, but also means that solutions to this problem are “constrained” by the solution brought
forth by the field of nonlinear programming, and as such a method specifically taylored to stability
problems can be hard to find.

6.1.2 Research Questions

1. How up to date is the field of thermodynamics on the use of (mathematical)
optimisation techniques, specifically in the case of flash calculations?

Throughout this project, the focus has shifted from the overarching flash calculations to stabil-
ity problems specifically as that is more suited to our mathematics-focused approach (see also
Chapter 3). Contrary to the hypotheses at the start of this project (see Chapter 1), literature on
the stability problem seems to be fairly up to date. The literature on the flash problem specifi-
cally is still relatively old as mentioned in Chapter 1, perhaps because others have also decided
that improving the problem with flash calculations can be done through the improving of other
methods, such as solving the stability problem. Aside from the methods mentioned in Chapter
4, other methods have been attempted and compared to each other by other researchers, and
most of the more prominent methods (such as Branch and Bound and Simulated Annealing)
have been applied to the stability problem. Thus, the state-of-the-art for the stability problem
seems fairly up to date, though a deeper dive into quadratic programming methods could be
taken.

2. Can the stability- and accuracy problems of flash calculations be improved using
state-of-the-art (NLP-)optimisation techniques?

This question is answered in a less direct way. As discussed, finding the global minimum of
the tpd can be done using optimisation techniques such as mentioned in Chapter 4, improving
the accuracy of stability tests, which in turn would improve the accuracy of flash calculations,
and consequently the accuracy and stability of dynamic simulations. It is no panacea for the
problems associated with the dynamic simulations of VLEs, but certainly offers an improvement.

3. Can the stability- and accuracy problems of flash calculations be improved when
approached from an almost purely mathematical point of view, as opposed to a more
thermodynamics-oriented one?
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As the problem can be formulated using only language from mathematics, and as a consequence of
Research Question 2., this is an option, and possibly even the best approach for the problem from
the side of stability problems, though the “perfect” solution likely lies somewhere in between: a
tailored method inspired by thermodynamics and implemented using mathematics (that is mostly
conjecture, however).

6.1.3 Further Conclusions

As was seen in Chapter 3, current theories (equations of state in combination with e.g. tangent
plane analysis) in combination with modelling software is fairly accurate in predicting (theoreti-
cal) behavior of mixtures. This however, only holds provided that the number of phases and the
“logical” feed phase are known beforehand. It has also been observed that the properties of a
mixture (such as the global minimum to the tangent plane distance) are harder to determine for
a combination of P and T close to the critical point. On a more abstract level, this is because
solutions to phase equilibrium equations look similar to the trivial solution. Also relevant for
dynamic simulations where the P and/or T can vary, the surface of the tpd seems to shift fairly
gradually when the temperature and pressure are shifted only slightly 1 , except when the mixture
shifts from a more liquid-like to a more vapor-like substance (even more so than when going from
the two-phase region to the single-phase region), at least for the [0.4 0.4 0.2] H2O-CH4O-CO2

mixture.
As can be seen from Chapters 3 and 5, on a more concrete level this is a consequence of near-
critical mixtures having global minima that are relatively shallow (close to zero) in surfaces that
include local minima and discontinuities.
Going off of the results of Chapter 5, it seems that the hypothesis in Chapter 4 that a stochastic
method would work better than a deterministic one was fairly correct. For low dimensional
cases (2 or 3 components), finding the global minimum can be done fairly quickly regardless of
the method, but a deterministic method such as DIRECT performs rather fast for these cases,
2 to 6 times faster than the stochastic method (contrary to what we hypothesised). Repeated
local search can also be quite efficient in these cases (when performed from less than 10 ini-
tial points). However, for the higher dimensional (and perhaps more interesting) methods the
stochastic method shows a better scalability, performing more than 10 times as well for C = 6.
From this, we conclude that, as often with complicated problems like these, there is no “one size
fits all” method to find the global minimum of the tpd in all cases However, a stochastic method
seems suitable in its absence.

6.2 Discussion

There is still improvements to be made both on the thermodynamics- and the mathematics sides
of the problem. Not only is the efficiency of the optimisation methods dependent on the number
of components in the mixture and the interaction between the components of the mixture2, but
the chosen equation of state can have quite the effect on which method to apply and how to
formulate it. For quadratic equations of state such as SRK and Peng-Robinson, the optimisation
methods work comparably, but when more complicated (but more physically accurate) equations

1For the [0.4 0.4 0.2] H2O-CH4O-CO2 mixture, changes around 5·105Pa in P and 5K in T are small enough.
2Even for cases with a small number of components, problems can be quite complex, see for example the 2

component H2S-CH4 mixture [2].
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are used, such as SAFT, a direct formulation of φ would no longer be feasible, among other things.
Another thing to note is that solutions to Gibbs Energy minimisation/tpd minimisation are only
candidate solutions, because the number and kind of phases present in equilibrium must be
assumed beforehand to formulate the stability problem.

6.3 Suggestions for Future Work

This is not the first research on stability tests and ways of improving the stability of dynamic
simulations, and it is not expected to be the last. Below some recommendations for possible
future research directions are given.
In Chapter 4 and 5, we have discussed that the choice of local optimisation method is important
for many (all but DIRECT) of the tested methods. To further study the methods with e.g. a
faster but less stable local optimiser, other local optimisation methods than UNIRANDI could
be tested For example, Quasi-Newton with a David-Fletcher-Powell update formula can be tried
which is faster than UNIRANDI but more stable. As UNIRANDI was sufficiently stable even
for repeated local optimisation, testing a less stable method could prove interesting.
Additionally, the field of nonconvex- and quadratic programming in optimisation is still expand-
ing, and improvements in this field should be studied for VLE modelling to stay up to date.
Also interesting is expanding stability tests beyond VLEs, or research methods that are able to
predict what kind of equilibrium will be formed. In this work only mixtures attaining a Vapor-
Liquid Equilibrium have been considered, but in practice some mixtures under the right P and T
might achieve a Liquid-Liquid Equilibrium, an equilibrium containing at least one solid, or more
than two phases. These equilibria have been studied less extensively than VLEs. The results of
performing calculations on different types of equilibria could force a more generally applicable
method to be required, such as methods that are able to predict the kind of equilibrium.
In this case, quadratic equations of state (such as SRK) might no longer be sufficient for the
modelling, which leads us to our next point. While we have mentioned that we expect the perfor-
mance of the methods to be roughly equal for quadratic equations of state (see Chapter 2), and
in the methods discussed in Chapter 5 any type of equation of state can be used to calculate the
fugacity, it could be interesting to see if methods can be devised that incorporate an equation of
state more directly (aside from calculating the objective function). Using more accurate equa-
tions of state (like e.g. SAFT) could enable a more “direct” minimisation of the state functions
by staying in a more physics-focused realm, instead of “translating” to mathematics.
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Appendix A

List of Symbols

a. Attraction parameter in the equation of state.

ai.Attraction parameter in the equation of state
for mixtures.

aij . Combined attraction parameter in the equa-
tion of state for mixtures.

α. A parameter in the equation of state, depen-
dent on the acentric factor ω.

α (SSC). A parameter of the clustering proce-
dure. See also section 5.3.1.

b. Repulsion parameter in the equation of state.

bi. Repulsion parameter in the equation of state
for mixtures.

bij . Combined attraction parameter in the equa-
tion of state for mixtures.

β. The vapor fraction, the amount of vapor in
relation to the amount of liquid.

C. The total number of components in the mix-
ture.

CH4. Methane.

CH4O. Methanol.

C2H6. Ethane.

C3H8. Propane.

C4H10. n-butane.

C5H12. n− Pentane.

Ci. Component i in the mixture.

CO2. Carbon Dioxide.

δ (DIRECT). One third of a rectangle length.
Also δj when referring to rectangle j.

δi. Parameter with which different equations of
state can be defined from the general formula P

RT =
1
v−b − α

b
(v+δ1b)(v+δ2b)

.

f. The fugacity, sometimes fi (fugacity of com-
ponent i) or f (w) (fugacity of phase w).

φ. The fugacity coefficient, sometimes φi (fu-
gacity coefficient of component i), φ(w) (fugac-
ity coefficient of phase w) or φi(w) (the fugacity
coefficient of component i in the phase associ-
ated to the composition vector w). φ = f

P .

gE . Gibbs Energy. gE = gid + gexcess For an
ideal liquid gid,L =

∑
i xi lnxi, and for an ideal
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vapor gid,V =
∑
yi ln yi

γ. Decision variable used to transform the tan-
gent plane distance function, see Section 2.5.

γ (SSC). The percentage of points with lowest
objective value from the n sampled points that
will be clustered in SSC.

H2O. Water.

K. Ki = yi
xi
, the K−factor, or distribution ra-

tio.

κ. A parameter in the Peng-Robinson equation
of state, dependent on ω.

M. Molar mass, sometimes Mi (molar mass of
component i).

MeOH. Methanol.

µi The chemical potential of component i.

n. The number of points sampled in one go.

n′. In Stochastic Sampling and Clustering, the
total number of points sampled (a multiple of
n).

N2. Nitrogen.

ω. The acentric factor, a theoretical property
useful when performing calculations involving
substances. Sometimes ωi, the acentric factor
of component i.

P. Pressure, in Pascal (Pa).

Pc. Critical pressure, pressure of a substance at
its critical point. Sometimes Pci, the critical

temperature of component i in the mixture.

Pr. Reduced pressure, Pr = Pc
P .

R. The ideal gas constant,
R ≈ 8.31446261815324m3·Pa·K−1·mol−1.

ρ. Density.

tpd. Tangent plane distance.

tpd. The tangent plane distance function. The
objective function that is to be minimised for
solving the stability problem.

T. Temperature, in Kelvin (K).

Tc. Critical temperature, temperature of a sub-
stance at its critical point. Sometimes Tci, the
critical temperature of component i in the mix-
ture.

Tr. Reduced temperature, Tr = Tc
T .

v. The molar volume, v =
∑N

i=1 xiMi

ρmixture

V. Volume, in m3.

Vc. Critical volume, volume of a substance at
its critical point. Sometimes Vci, the critical
temperature of component i in the mixture.

Vr. Reduced volume, Vr = Vc
V .

w. The composition vector associated with a
test phase (e.g. of the new phase being formed
when doing a stability test), as a vector of frac-
tions of length C, the number of components,
0 ≤ wi ≤ 1. The vector sums to 1.
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x. The composition vector associated with the
liquid phase, as a vector of fractions of length
C, the number of components, 0 ≤ xi ≤ 1. The
vector sums to 1.

y. The composition vector associated with the
vapor phase, as a vector of fractions of length
C, the number of components, 0 ≤ yi ≤ 1. The
vector sums to 1.

z. The composition vector associated with the
(feed) mixture, as a vector of fractions of length
C, the number of components, 0 ≤ zi ≤ 1.

Z. The compressibility factor, sometimes Zi (com-
pressibility of component i) or Z(w) (compress-
ibility of phase w). Z is between 0 and 1, a
measure of how much a substance differs from
an ideal gas.
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Appendix B

List of Terms

Acentric Factor (ω). A measure of the “non-
sphericity” (centricity) of molecules. The higher
ω is, the higher the boiling point.

Attraction parameter (a). A parameter in
an equation of state used to model the attrac-
tion between molecules in a mixture or sub-
stance. F Bubble point. The point where
a (multicomponent) liquid starts to boil/evapo-
rate (point when the first vapor bubble is formed).
For a single component liquid (e.g. pure water),
the bubble point is equal to the dew point, and
it is called the boiling point.

Chemical Potential (µ). Energy that can
be absorbed or released due to a change in the
number of particles of a given substance, such
as in the event of a chemical reaction or phase
transition. When both T and P are set con-
tant, the chemical potential is equivalent to the
molar Gibbs free energy. At phase equilibrium,
we have

∑
i µi = 0, as the free energy is at a

minimum.

Compressibility Factor (Z). A factor which
describes how strongly a gas deviates from an
ideal gas. It is defined as the ratio of the molar
volume of a gas to the molar volume of an ideal
gas at the same temperature and pressure. In
general, a gas will deviate more from an ideal
one the closer it is to a phase change, the lower
the temperature and the higher the pressure. Z
can be obtained from e.g. an EOS. The closer
to 1, the less it differs.

Z =
PV

RT

Corresponding States Principle (CSP).
Also called the Law of Corresponding States. It
states that dimensionless properties of all sub-
stances will follow universal variations of suit-
ably dimensionless variables of state and other
dimensionless quantities. In other words, it states
that for all fluids, if they have the same tem-
perature and pressure, they will also have the
same compressibility, i.e. that all fluids differ
from their ideal version with the same factor.

Critical point (critical state). The end point
of a phase equilibrium, a specific combination
of pressure and temperature before which a liq-
uid and its vapor can coexist.

Critical region. The region close to the crit-
ical point. What “close to” means is context
(and mixture) dependent.

Dew point. The point where a (multicom-
ponent) vapor starts to dew/condensate (when
the first liquid droplet is formed). For a single
component vapor (e.g. pure water steam), the
dew point is equal to the bubble point, and it
is called the boiling point.

Enthalpy. A thermodynamic system’s inter-
nal energy plus the product of its pressure and
volume. In closed systems with processes at
constant pressure, the absorbed/released heat
equals the change in enthalpy.

Entropy. Ameasure of disorder/randomness/ir-
reversibility/energy dispersal in a system. Never
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decreases for an irreversible process in an iso-
lated system. It expresses the number of differ-
ent configurations a system can assume. An-
other way to look at it: when a system is too
hard to look at on a micro scale (position, mo-
mentum, kinetic energy, etc.), we look at it on
a macro scale (in terms of pressure, tempera-
ture, density, etc.). Entropy is then a measure
of how much information we lose in going from
micro to macro. the more exact information
you can use to describe a system, the smaller
your entropy.

Equation of State. An algebraic relation be-
tween (for example) P , V and T , used to model
the behavior of a mixture under certain PV T
conditions.

Equilibrium, phase. A state in which noth-
ing changes. For example, when a compound is
in a phase-equilibrium (between vapor and liq-
uid), there is no change in the number of vapor-
and liquid molecules (every moment an equal
number of molecules go from liquid to vapor
phase as the other way around).

Fugacity. An effective partial pressure which
replaces the mechanical partial pressure in an
accurate computation of the chemical equilib-
rium constant. It is equal to the pressure of an
ideal gas with the same temperature and en-
thalpy. Fugacities are usually determined ex-
perimentally or estimated from models such as
the van der Waals equation. Fugacity is closely
related to thermodynamic activity. Using fu-
gacity instead of pressure in calculations lets
you “pretend” that a real gas behaves like an
ideal gas. The fugacity and the compressibility
factor Z are linked via

f = P exp

∫
Z − 1

P
dP

The fugacity coefficient φ = f
P is often used

instead of the “regular” fugacity.

Gibbs (Free) Energy. See enthalpy.

Ideal Gas. A strictly theoretical gas in which

the particles are points who do not interact
outside of perfectly elastic collisions (collisions
where the total kinetic energy stays the same).
It considerably easier to perform calculations
and theoretical predictions on an Ideal Gas thana
non-ideal one.

Interaction Parameter (Binary-). Param-
eters that give a measure of interactivity be-
tween substances in a mixture. They help model
the “non-ideality” of a mixture (as in a perfect
mixture, there is zero interaction between any
two components). These depend on the sub-
stances involved and the model being used.

Mixing Rules. Not as much a rule as a weighted
mean used to predict properties of mixtures. It
allows for combining e.g. equations of state for
single components into ones for mixtures.

Molality. A measure of the concentration of a
chemical species (solute in a solution). It is in
terms of amount of substance per mass volume
(e.g moles per kg, mol/kg). This is in contrast
with molarity, which looks at the concentration
in terms of volume.

Molarity. A measure of the concentration of
a chemical species (solute in a solution). It is
in terms of amount of substance per unit vol-
ume (e.g. moles per litre, mol/L). This is in
contrast with molarity, which looks at the con-
centration in terms of mass.

Mole. The unit of measurement for the amount
of substance present, equal to 6.02214076 · 1023

particles (atoms, molecules, ions or electrons).
From this, we get the definitions of molar mass
(the mass of one mole of substance) and molar
volume (the volume occcupied by one mole of
substance).

Phase. The physically distinctive form a chem-
ical species takes, e.g. solid, liquid or gas.
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Pure substance. Not a mixture, consisting of
only a single substance.

Rachford-Rice (Equation).∑
i

zi(Ki − 1)

1 + β(Ki − 1)
= 0

with zi the mole fraction of the component i
in the feed liquid (assumed to be known), β
the fraction of the feed that is vaporised, and
Ki = yi

xi
the equilibrium constants. It is solved

for β in flash calculations, from which we can
calculte x and y as follows:

xi =
zi

1 + β(Ki − 1)

yi = Kixi

Multiple solutions for β are possible, but only
one guarantees that xi and yi are positive. If
there is multiple solutions for β for which xi and
yi are positive, then Kmax < 1 or Kmin > 1,
thus there is either no gas phase (β = 0) or no
(liquid)f phase (β = 1).

Repulsion parameter (b). A parameter in an
equation of state used to model the repulsion
between molecules in a mixture or substance,
use.

Saturation Pressure (Vapour Pressure).
The pressure of a vapour in equilibrium with
its solid or liquid. Also, the maximum pressure
possible by vapour at a given temperature.

Species (chemical). A chemical substance,
more accurately a collection of atoms or molecules
of a substance.

SRK. Soave-Redlich-Kwong, a quadratic equa-
tion of state. See also Section 2.2.3.

Supercritical region. The region of combina-
tion of P and T (or P and V ) where the points
lie above the critical point (P > Pc, T > Tc).

State Function. A mathematical expression
which defines the value of a state property (such
as pressure, temperature, volume, etc).

Trial phase composition (w). The compo-
sition of a theoretical phase. Used for example
to calculate the Gibbs Energy if a new phase
with composition w would be formed.

Vapor. Different word for gas.

Vapor-liquid-equilibrium (VLE).Describes
the distribution of a species between the vapor-
and liquid phase when in equilibirum. In non-
pure systems, often fugacity is employed.
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Appendix C

Block Diagram of Flash
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Where

• Tr, Pr the reduced temperature and pressure, respectively, the fraction of the critical tem-
perature Tc to the temperature T (and likewise for P ).

• ω the acentric factor, a property of the substance

• z the feed composition.

• BIP the binary interaction parameters, which represent the interaction between the two
substances.

• xguess,yguess, βguess the initial guesses for x,y, β.

• xold,yold the values of x,y in the previous iteration.

• xnew,ynew the values of x,y calculated at the end of the current iteration.

• φ
(liquid)
i , φ

(vapor)
i the fugacity coefficients for component i in the liquid- or vapor phase,

respectively.

• T
(i)
r , P

(i)
r the reduced temperature and pressure for component i, T (i)

r = T
(i)
c
T and likewise

for P.

• αi, ai, bi, aij , bij , am, bm, A,B parameters of the equation of state

• Z(liquid), Z(vapor) the mixture compressibility factors for the liquid- or gas phase, measures
of how much a substance (in a specific phase) differs from an ideal gas.

• β the vapor fraction, the fraction of total amount of substance that is in vapor phase.

• K (Ki), the distribution ratio (of component i), K = y
x .
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Appendix D

Fugacity Coefficient

For the SRK equation of state:

lnφi(w) =
bi

b(m)
(Z − 1)− log(Z −B)− A

B

(
2

∑
j wjaij

a(m)
− bi

b(m)
log

1 +B

Z

)
(D.1)

Z obtained from Z3 − Z2 + (A−B −B2)−AB = 0 (D.2)

A = a(m) P

R2T 2
(D.3)

B = b(m) P

RT
(D.4)

R ≈ 8.31446261815324 (D.5)

a(m) =
∑
i,j

wiwjaij (D.6)

b(m) =
∑
i,j

wiwjbij (D.7)

aij = (1− kij)
√
aiaj (D.8)

ai = 0.42747
R2T 2

c

Pc
αi (D.9)

bij = (1− kij)
bi + bj

2
(D.10)

bi = 0.08554
RTc
Pc

(D.11)

kij a constant associated with the substances (D.12)

αi = (1 + (0.37464 + 1.65226ωi − 0.26992ω2
i )(1−

√
Tr))

2 (D.13)

where Tr =
T

Tc
, Pr =

P

Pc
, ω a property of the substances (D.14)

where Tc, Pc properties of the substances. (D.15)

other expressions for the fugacity coefficient for the van der Waals, Virial, RK, Peng-Robinson
and other cubic equations of state can be found in the book by Walas [54].
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Below, we estimate the order of magnitude of evaluations required to calculated equation (D.1):

all ai, bi → O(C) (D.16)

all aij , bij → O(C2) (D.17)

a(m), b(m) → O(aij)O(C2) = O(C4) (D.18)

A,B → O(a(m)) = O(C4) (D.19)

Z → O(A) = O(C4) to formulate the equation, O(1)vto solve it[41] (D.20)

which allows us to estimate the order of magnitude for each of the terms of equation (D.1):

Term bi
b(m) (Z − 1) log(ZB) A

B

(∑
wjaij
a(m)

)
A
B

(
bi
b(m) log

(
1+B
Z

))
Magnitude O(C4) O(C4) O(C4) O(C4)

and thus

O(

C∑
i=1

lnφi) = O(C)O(C4) = O(C5) (D.21)



Appendix E

Notes on the Implementation of the
Methods

E.1 DIRECT (Dividing Rectangles)

E.1.1 Graham’s Scan

The coordinates in S, (x, y), were converted to polar coordinates (Step 5 in Algorithm 4) via
r2 = (x−Px)2+(y−Py)2 (Pythagorean theorem) and tan(θ) =

Py+y
Px+x

, or r =
√

(Px + x)2 + (Py + y)2,

θ =


cos−1

(
y−Py

x−Px

)
if (y − Py) ≥ 0

− cos−1
(
y−Py

x−Px

)
if (y − Py) < 0

undefined if r = 0

,

where Px, Py are the horizontal and vertical coordinates of P respectively.
The angles α and β (see Figure 4.5) where calculated using the sine- and the cosine rule: via the
cosine rule, the distance between points k + 1 and k is

dk+1,k =
√
r2k+1 + r2k − 2rk+1rk cos(θk+1 − θk)

and via the cosine rule

α = arccos

(
d2k+1,k + d2k+1,P − d2k,P

2dk+1,k · dk+1,P

)

Similarily, we obtain

β = arccos

(
d2k+1,k+2 + d2k+1,P − d2k+2,P

2dk+1,k+2 · dk+1,P

)

E.1.2 Procedure for Dividing Rectangles

In this procedure, and in DIRECT as a whole, the rectangles are saved by their center cj and the
lengths of each of their dimensions as such: j = (c, l1, . . . , lC), where li is the length of the side
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of the rectangle in dimension i. This is in opposition to what was recommended by Jones et al.
[18], namely to save each rectangle by just storing information on the “search tree” of rectangles
and subrectangles: the parent nodes, search tree depth, child type (left or right) etc. to save on
storage space. As memory space was not a requirement in this case, and the dimensions do not go
very high for chemical mixtures (less than 20 usually), it was decided for ease of implementation
to store triangles as a 2×C matrix, where the first row represent the center, and the second row
the length of each dimension.

E.1.3 DIRECT

Checking whether a rectangle is potentially optimal (Definition 4.2.2) was done both using a
system of equations solver, and with the determination of the convex hull in MatLab (see also
Section 5.2.1) for sake of comparison (see also Section 5.3). Finding the potentially optimal
rectangles using a system of equations is done as follows. We will rewrite equations (4.3) and
(4.4) as

K̃(dj − di) ≥ f(cj)− f(ci) (E.1)

K̃dj ≥ f(cj)− (fmin − ε|fmin|) (E.2)

In this case, we solve with K̄ as the only variable, and

A =


dj − d1
dj − d2

...
dj − dm
dj

 (E.3)

b =


f(cj)− f(c1)
f(cj)− f(c2)

...
f(cj)− f(cm)

f(cj)− (fmin − ε|fmin|)

 (E.4)

wherem is the total number of rectangles. This system is then solved using the fmincon function1.

E.2 Stochastic Sampling and Clustering

We give the derivation of m(S) = Vol(S)2 =
(

(−1)C
(C!)22C

(CM(v1, . . . , vC)
)

where the vi are the
vertices of the simplex and CM is the Cayley-Menger determinant

CM(v1, . . . , vC) = det



0 d212 d213 · · · d21C 1
d212 0 d223 · · · d22C 1
d213 d223 0 · · · d23C 1
...

...
...

. . .
...

...
d21C d22C d23C · · · 0 1
1 1 1 · · · 1 0


(E.5)

1The solve function proved unable to solve the system for numbers of rectangles over 500, which was frequently
reached
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where dij is the distance between vi and vj . The vertices of the simplex are affinely independent
(if S has volume greater than 0), thus (−1)CCM(v1, . . . , vn) > 0. Because S is the standard
simplex in this case, the vertices vi are equal to ei, the standard unit vectors. Thus,

dij = d(vi, vj) (see Section 4.3) (E.6)

= ((vi − vj)T (vi − vj))1/2 (E.7)

= ((ei − ej)T (ei − ej))1/2 (E.8)

=
√
e2i + e2j =

√
2 (E.9)

Giving us CM(v1, . . . , vC) = (−1)C2C−1C.
α (from the threshold value (4.7))is defined as follows: let H0 be the hypothesis that a cluster
K ⊆ S is a subset over which the same distribution as over S still holds. In this case, that means
that he hypothesis states that the points inK are uniformly distributed. H0 is rejected if no point
x ∈ K ⊆ S exists such that m(K) = m(S)(1−α1/n), where α corresponds to the probability of a
so-called type I error, i.e. a false positive. Effectively this means that α represents the probabil-
ity of rejecting a truth, i.e. the probability that we reject hypothesis H0 while it actually holds.
In practice, α is a chosen parameter, usually around α = 0.025 (this is a convention in statistics).

Note that the clustering procedure might have some trouble expanding the cluster around a local
minimum for some specific cases. Take a look, for example at the tpd surface for [0.4 0.4 0.2]
H2O-MeHOH-CO2, Figure E.1 (see also Figure 3.6). Because the local minimum lies next to
a discontinuity and a large jump, this causes the points in ST of minimal distance to the local
minimum x∗ (and thus to its cluster K) to be highly likely to lie beyond the discontinuity. The
approximated gradient will (correctly) not point in the direction of the local minimum, and the
point will be rejected.

Figure E.1: The red o is the local minimum referred to in the text.
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E.3 Transforming tpd Using Taylor Series

E.3.1 MacLaurin Series of Separate Parts

lnφi(w) =
bi

b(m)
(Z − 1)− log(Z −B)− A

B

(
2

∑
j wjaij

a(m)
− bi

b(m)
log

1 +B

Z

)
(E.10)

where A,B, a(m), b(m), Z and
∑

wi
are the parts dependent on w.

a(m)(0) = 0 (E.11)

∂a(m)

∂wi
(0) = (

C∑
i 6=j;i,j=1

wjaij)(0) + (2aijwi)(0) = 0 (E.12)

∂2a(m)

∂wi∂wj
(0) =i 6=j aij (E.13)

∂2a(m)

∂wi∂wi
(0) = 2aij (E.14)

∂ka(m)

∂ · · ·
(0) = 0 for higher orders (E.15)

⇒ T (a(m)) =
∑
i 6=j

wiwj
1

aij +
∑ w2

i

2
aii =

∑
wiwjaij = a(m) (E.16)

T (b(m)) = b(m) (E.17)
T (A) = A (E.18)
T (B) = B (E.19)

where T (f) is the MacLaurin series of the function f . Using online mathematical solver Wolfra-
mAlpha, we find that

Z3 − Z2 + (A−B −B2)Z −AB = 0 (E.20)

⇒ Z =
0.41997(3A− 3B2 − 3B − 1)

ZAB
+ 0.26457ZAB +

1

3
(E.21)

(0.20999 + 0.36371i)(3A− 3B2 − 3B − 1)

ZAB
− (0.13228− 0.22912i)ZAB +

1

3
(E.22)

(0.20999− 0.36371i)(3A− 3B2 − 3B − 1)

ZAB
− (0.13228 + 0.22912i)ZAB +

1

3
(E.23)

(E.24)

where

ZAB = {
√

4(3A− 3B2 − 3B − 1)3 + (27AB − 9A+ 9B2 + 9B + 2)2

+ (27B − 9A+ 9B2 + 9B + 2)}
1
3 (E.25)

= (36B − 9A +
√

(9B − 9A+ 9B2 + 27AB + 2)2 − 4(3B2 + 3B − 3A+ 1)3 + 9B2 + 2)
1
3

(E.26)
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Purely Mathematical Description

In stability tests, we are looking to solve the following minimisation problem:

min tpd(w) =
∑
i

wi(lnwi + lnφi(w)− ln zi − lnφi(z) (F.1)

subject to wi > 0, i = 1,2,. . . ,C, (F.2)
C∑
i

wi − 1 = 0 (F.3)

where w ∈ [0, 1]C is a variable vector of fractions, z a constant vector of fractions, and φ is
a nonlinear, nonconvex function. This is a nonconvex quadratic programming problem in the
standard C−simplex in C dimensions. φ is a function dependent on the type of model we are
using, for our case:

lnφi(w) =
bi

b(m)
(Z − 1)− log(Z −B)− A

B
(2

∑
j wjaij

am
− bi

b(m)
log

1 +B

Z
)
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where A,B, a(m), b(m), Z are all dependent onw. A more rigorous enumeration of all the variables
and parameters follows below:

lnφi(w) =
bi

b(m)
(Z − 1)− log(Z −B)− A

B
(2

∑
j wjaij

am
− bi

b(m)
log

1 +B

Z
) (F.4)

Z obtained from Z3 − Z2 + (A−B −B2)−AB = 0 (F.5)

A = a(m) P

R2T 2
(F.6)

B = b(m) P

RT
(F.7)

R ≈ 8.31446261815324 (F.8)

a(m) =
∑
i,j

wiwjaij (F.9)

b(m) =
∑
i,j

wiwjbij (F.10)

aij = (1− kij)
√
aiaj (F.11)

ai = 0.42747
R2T 2

c

Pc
αi (F.12)

bij = (1− kij)
bi + bj

2
(F.13)

bi = 0.08554
RTc
Pc

(F.14)

kij a pre-defined constant (F.15)

αi = (1 + (0.37464 + 1.65226ωi − 0.26992ω2
i )(1−

√
Tr))

2 (F.16)

where Tr =
T

Tc
, Pr =

P

Pc
, ω constants (F.17)

where Tc, Pc constants (F.18)

From experiments, the function tpd(w) has shown to contain local minima and sometimes dis-
continuities (for certain P, T and substances).
For Problem F.4, it is in many cases practically sufficient to know whether the global minimum
is negative. Thus, when any feasible negative value for the objective function is found, the search
can often be terminated.
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