master thesis presentation

Development of an Atomic Force Microscope

author

Jan W. Obrębski

supervisors

Eric S. Buice Jonathan D. Ellis Jo W. Spronck

AFM technology introduction

Yacoot A, Koenders L. topical review: Aspects of scanning force microscope probes and their effects on dimensional measurement. Journal of Physics. 2008 May; 41(10)

Assignment description

- Design of an AFM vertical scanner
- Surface topography measurement
- System requirements

Range	> 10 µm	human cell
1σ uncertainty	< 10 nm	haemoglobin molecule
Resolution	< 0.1 nm	atom diameter
Bandwidth	> 2 kHz	80 g
Volume	10 cm cube	

Working principle

Probe mount

NANOSENSORS™, Rue Jaquet-Droz 1, Case Postale 216 CH-2002 Neuchatel, Switzerland

Flexure stage

- Monolithic design
- AI 7075 T6
- Elastic guidance
- Overconstrained
- PZT preload
- High $f_0 > 6$ kHz
- Low mass (6.6 g)
- High PZT stiffness
- Low deformation
- Low actuation forces (5 N)

Metrology sensitive

Deflection shaping

ANSYS modal analysis

1st mode 5.2 - 6.8 kHz

TUDelft

3rd mode 7.9 kHz

Capacitive sensor

Squeeze film damping ANSYS, Green's function

Pressure distribution 2 vented edges

Elastic deformation

Pressure distribution 4 vented edges

F = 0.1 N, b = 0, r = 0.4 nm

Capacitive sensor electronics

- AC transformer bridge
- Implementation issues
 - Grounding loops elimination
 - Shielding

Capacitive sensor calibration by laser interferometer

Calibration results

- 1 nm traceable uncertainty calibration
- Capacitive sensor : 2nd order fit
- Actuator open loop hysteresis

Frequency response analysis

- Three methods used
 - Laser vibrometer
 - Multisine feed
 - Sine sweep
- Capacitance sensing
- PZT stiffness variation
- Stiffening cover effect

System identification

Feedback controller

- Based on ARX [10, 10, 3] system model
- Digital Proportional Integral (PI) and notch filter, 100 kHz sampling
- Robust design for loop gain variation
- Piezoelectric hysteresis elimination (I)

Closed loop performance

Stage resolution

Uncertainty sources

Structural frame deformation	1.2 nm
Thermal expansion	0.8 nm
Abbé and cosine error	0.71 nm
Static stage calibration	1 nm
Sensor elastic deformation	0.4 nm
Capacitive sensor noise	0.7 nm
Overall uncertainty (1σ)	2 nm

Conclusions (1)

- START: specifications
- Concept, modelling, design
- Stage, sensor, AFM probe, probe mount
- Actuator, driving amplifier
- PCB design
- Manufacturing
- Assembly
- Integration

Conclusions (2)

- Electronics implementation
- Calibration
- Frequency response
- System identification
- Feedback control

Conclusions (3)

- END: working hardware
- 2.5 kHz bandwidth
- 2 nm uncertainty (1σ)
- 13 µm steps
- 2.8 nm resolution

THANK YOU FOR YOUR ATTENTION!

DISCUSSION

