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Preface

This report presents the findings of my master’s thesis in Aerospace Structures and Materials conducted
at the Technical University of Delft. The thesis focuses on enhancing damage modeling techniques
for composite materials, which are increasingly prevalent in the aerospace industry. Specifically, the
goal is to address the limitations of the Cohesive Zone Model (CZM) in allowing arbitrary damage
development in composites. The objective is to improve the accuracy of damage description and reduce
its reliance on preliminary experimental data.

The research comprised a comprehensive literature review of damage modeling techniques suitable
for composite structures. This was followed by the development of a novel CZM damage formulation
capable of facilitating arbitrary damage development in composites based solely on the structural stress
state. Subsequently, the novel formulation was implemented in Summit-lite, a Finite Element (FE)
object-oriented research code. The implementation was verified against a simple analytical model and
validated against experimental data to evaluate the method’s suitability for arbitrary damage modeling
in composites.

I extend my gratitude to Bianca Giovanardi and John-Alan Pascoe for their constant and enthusiastic
guidance throughout this project. Their approach of blending step by step critical analysis with a
wider holistic perspective on this research topic was truly inspiring. Additionally, I would like to thank
Sai Kubair Kota for his willingness to address my queries regarding coding and fracture mechanics.
Finally, to my family, friends and colleagues, I am grateful for your unwavering support throughout
this journey.

Filippo Maggioli
Delft, April 2024
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Summary

Composite structures have become increasingly popular in the aerospace industry due to their excep-
tional high specific properties (Shah et al. [2], Bui and Hu [3]). However, compared to traditional metal
structures, composites are more susceptible to sudden failure due to their brittle nature (Davies and
Olsson [4]). This vulnerability is particularly pronounced in scenarios such as impact events, where
detecting damage occurrence during regular inspections can be complex and expensive ([4]). Therefore,
employing accurate damage modeling techniques becomes crucial to ensure structural integrity and
define design allowables that guarantee sufficient residual strength up to the damage detectability
threshold (Shah et al. [2]).

Finite Element Methods (FEMs) are widely employed for damage simulation in composites, with the
Cohesive Zone Model (CZM) being particularly favored for its robustness and scalability (Radovitzky
et al. [5]). The CZM has the potential to capture composites’ complex damage mechanisms including
delaminations, matrix cracking, and simultaneous fiber and matrix cracking (Wisnom [6]). Despite
the CZM’s mesh-dependent nature, the Discontinuous Galerkin Cohesive Zone Model (DG/CZM)
formulation allows for relatively arbitrary crack propagation: the DG/CZM facilitates highly refined
meshes, reducing the mesh-dependency of the CZM (Radovitzky et al. [5]). This is enabled by the
DG/CZM’s extrinsic damage formulation, which allows cohesive damage to evolve at any internal
boundary without introducing inconsistency ([5]). Moreover, the DG/CZM is highly suitable for
parallel implementation, as mesh and data structures reliant on the mesh do not require redefinition
upon crack propagation ([5]). Scalability is crucial for damage simulation in composites due to its high
computational load (Bogenfeld et al. [7]), making the DG/CZM’s parallel implementation particularly
advantageous as it enables drastic reductions in simulation times (Radovitzky et al. [5]).

However, a challenge with the CZM in modeling damage in composites lies in determining which
damage mechanism occurs at a given numerical interface based on the stress state of the structure. This
challenge arises from the anisotropic nature of lamina material fracture properties, which are typically
known only along specific directions such as parallel and transverse to the fiber direction. Numerical
fracture properties defined at a given numerical interface, derived from these material properties, are
likewise anisotropic. When a numerical interface does not align with directions where material fracture
properties are known, it is not clear how to determine numerical properties and, consequently, the
appropriate fracture mechanism to apply.

To date, no solution has been devised to address this limitation. Therefore, modeling damage in
composite laminates has mainly relied on methods designed for isotropic materials (Shi et al. [8], Abrate
et al. [9], Sun et al. [10]). However, these methods come with notable modeling constraints: they limit
the arbitrariness of damage propagation and can only be employed when experimental data on fracture
propagation are available.

In this thesis, a novel approach is proposed to ensure arbitrary damage development solely based
on the stress state of a composite lamina thanks to the DG/CZM approach. The proposed method
involves decomposing numerical interfaces, along with the opening and traction vectors acting on
them, into parallel and transverse directions relative to the fiber direction of the lamina. Specifically,
opening and traction components perpendicular to the virtual numerical interface aligned with the
fiber direction are assumed to contribute to matrix damage along the fiber direction. Conversely,
components perpendicular to the virtual numerical interface transverse to the fiber direction are
assumed to contribute to simultaneous fiber and matrix damage transverse to the fiber direction. By
assuming that damage virtually propagates along these virtual interfaces, where numerical fracture
properties are known, and by considering the discrepancy in energy dissipation caused by the mismatch
in length between the numerical interface and the virtual interface experiencing fracture, it becomes
possible to model damage development along arbitrary numerical interfaces solely based on the stress
state of the structure.

To evaluate the suitability of the method in capturing damage and validate its underlying assump-
tions, the novel damage formulation is first verified against a simple analytical model to confirm that it
accurately represents damage development under controlled conditions. Subsequently, it is validated
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by comparing its predictions against experimental data sourced from relevant literature. While the
novel method qualitatively reproduces experimental data, achieving a quantitative match remains a
challenge, warranting further investigation.
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1
Introduction

Composite structures have become increasingly popular for aerospace applications due to their excep-
tional specific properties, such as specific strength and specific stiffness (Bui and Hu [3], Shah et al.
[2]). These properties enable composite structures to meet the stringent structural requirements of the
aerospace sector, which demands highly strong and stiff structures while maintaining minimal weight.

However, compared to traditional aerospace metal structures, composites are more prone to sudden
and potentially catastrophic damage evolution (Davies and Olsson [4]). In particular, impact damage
presents significant challenges in ensuring structural integrity: impact events typically introduce
loading components transverse to the laminate mid-plane. Given the low out-of-plane mechanical
properties of composite laminates, impact-induced damage can easily initiate and develop (Wisnom [6],
Shah et al. [2]). Moreover, the brittle nature of composites often results in minimal visual evidence of
permanent indentation due to impact, making damage detection difficult (Davies and Olsson [4], Elder
et al. [11], Shah et al. [2]).

When extensive internal damage occurs alongside with surface damage minimally visible with the
naked eye, impact damage is referred to as Barely Visible Impact Damage (BVID) (Davies and Olsson
[4]). In BVID cases, the impactor-induced dent on the surface of the laminate is typically small, on the
order of just a few tenths of 𝑚𝑚, but damage on its inner side may be widespread and inclusive of
damage mechanisms like delaminations, matrix failure, and simultaneous fiber and matrix cracking
([4]), as illustrated in figure (1.1). Further, mechanical properties can be highly reduced due to BVID,
with compression strength after impact being reduced by up to 70% ([4]). Given the critical nature of
BVID, accurate modeling becomes crucial to ensure structural integrity and define design allowables
that guarantee sufficient residual strength up to the BVID detectability threshold (Shah et al. [2]).

A common numerical technique adopted to model fracture is the Finite Element Method (FEM),
which relies on discretizing the domain into sub-elements to resolve the stress state of the structure.

Modeling damage in composite laminates is inherently more challenging compared to metal struc-
tures due to their anisotropic nature: while metals exhibit isotropic material fracture properties, com-
posites display varying material fracture properties depending on the combination of material phases
undergoing damage, determining different damage mechanisms such as matrix fracture alone or simul-
taneous fiber and matrix cracking (Bui and Hu [3]). In isotropic structures, material fracture properties,
intrinsic to the specific material, are not influenced by directionality. This results in numerical fracture
properties, dependent on the damaged numerical interface where they are evaluated, that can be readily
derived from material fracture properties regardless of the interface orientation relative to the real crack
(see figure 1.2). Conversely, in composite laminates, lamina material fracture properties are directionally
dependent and rely on the occurring damage mechanism. As these properties are typically known only
along the principal directions of a lamina, it is not clear how to derive numerical fracture properties
for numerical interfaces not aligned with such directions, thus restricting the possibility for numerical
cracks to arise at arbitrary orientations (see figure 1.3).

As of yet, no solution has been developed to overcome this limitation. Consequently, damage in
composite laminates has been primarily modeled using methods developed for isotropic materials,
albeit with significant modeling limitations (Shi et al. [8], Abrate et al. [9], Sun et al. [10]). These
approaches involve conducting preliminary experimental testing on the structure intended for modeling.
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(a) Hardly noticeable BVID from Laminate Outer Surface

(b) Widespread BVID on Laminate Inner Side

Figure 1.1: BVID refers to an impact scenario where there is minimal visible damage, in the form of a small plastic dent, on the outer surface
of the laminate, while extensive damage, inclusive of delaminations, matrix failure, and fiber cracking, occurs on its inner side. Figure credits:

Davies and Olsson [4].
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Figure 1.2: Isotropic specimen with pre-crack undergoing fracture. The mesh boundaries of the specimen are highlighted to emphasize the
discrepancy between real damage and numerical damage. In isotropic materials, where material fracture properties are the same regardless of
the orientation of the real crack, numerical fracture properties can be readily derived from material fracture properties regardless any mismatch

in orientation between the numerical and the real crack.

Figure 1.3: Anisotropic laminae with pre-crack undergoing fracture. The mesh boundaries of the laminae are highlighted to illustrate the
distinction between real damage and numerical damage. Due to the anisotropy of the laminae, material fracture properties vary depending on

the orientation of the real crack, and are typically known only along the principal axes of the lamina, parallel and transverse to the fiber
direction, as for the real cracks depicted in the two sub-figures. Consequently, numerical fracture properties derived from material fracture

properties are influenced by the mismatch in orientation between the numerical crack and the real crack, and cannot be obtained when
damaged numerical interfaces do not align with the real crack.
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Through these experiments, crack development is determined in advance. Subsequently, potential crack
surfaces with specified numerical fracture properties are manually inserted into the numerical model
at the same locations where real cracks occurred during the experiment. Following this, based on the
structural stress, damage development is assumed to occur exclusively at these designated numerical
interfaces, as depicted in figure (1.4). However, it is important to note that this approach introduces
predetermined crack locations, limiting the arbitrariness of damage propagation. Additionally, it relies
not only on the stress state of the structure but also on experimental observations, potentially limiting
its applicability to scenarios where experimental data is available.

Figure 1.4: Cross-ply laminate with pre-crack undergoing fracture due to load 𝑭 . Based on experimental results, laminae marked with a "1"
experience simultaneous fiber and matrix cracking, while laminae marked with a "2" experience matrix cracking only. The mesh boundaries of

the laminae are highlighted to illustrate that they have been aligned with the crack paths identified in preliminary experimental tests.
Numerical cracks are constrained to propagate along these input paths, allowing for the derivation of numerical fracture properties from the

material fracture properties of the laminae.

To enable accurate and physically realistic damage modeling in composites, this study proposes
a novel damage formulation allowing for arbitrary crack development at any numerical interface of
the mesh according to the evolving stress field of the structure. As detailed in the Literature Review
chapter (2), this novel formulation is developed within a Discontinuous Galerkin Cohesive Zone Model
(DG/CZM) framework implementing highly refined meshes enabled by parallel computation schemes.

The outline of the thesis is as follows. Following this Introduction chapter, the Literature Review
chapter illustrates typical damage mechanisms in composites and presents modeling techniques capable
of capturing them. Based on this review, gaps in the literature regarding arbitrary damage modeling in
composites are highlighted, and a research question is formulated (to find a solution to fill such gaps).
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The next chapter is the Research Methodology chapter, which searches for an answer to the research
question by formulating, implementing, verifying and validating the novel modeling technique for
arbitrary damage in composites. In the Results and Discussion chapter, the results of the novel method
are presented and critically discussed, assessing the potential and the limitations of the new model. The
Conclusions chapter reflects on the entire work, especially assessing the extent to which the research
question was answered. Finally, the Recommendations chapter suggests potential improvements for
the novel model and provides suggestions for better addressing the research question.



2
Literature Review

The focus of this Literature Review chapter is on identifying modeling techniques suitable for accurate
damage simulation in composite structures. The chapter introduces typical damage mechanisms
observed in composites, along with the modeling techniques commonly adopted to capture such
damage mechanisms. The review highlights significant gaps in the literature regarding the modeling of
arbitrary damage in composites: existing damage modeling techniques often pre-determine damage
locations based on input data from experimental tests, thereby hindering spontaneous and arbitrary
damage development, and limit simulations to cases where experimental data are available (Shi et
al. [8], Abrate et al. [9], Sun et al. [10]). To address this limitations, the chapter formulates a research
question aimed at enabling arbitrary damage simulation in composites based solely on the structural
stress state. By addressing this research question, the literature review seeks to advance the current
state-of-the-art in damage modeling in composites and pave the way for more realistic and predictive
simulations in the field.

2.1. Damage Mechanisms in Composites
As previously mentioned in the Introduction chapter (1), damage mechanisms in composites can be
related to multiple combinations of damaged material phases, determining different failure mechanisms
such as matrix damage alone or simultaneous fiber and the matrix damage. The specific damage
mechanism that occurs depends on the stress conditions experienced by the composite laminate. By
considering composite laminate undergoing Barely Visible Impact Damage (BVID) depicted in figure
(2.1), we can gain insight into damage mechanisms typical of composites:

• Plastic dent: It happens at the impact location due to compressive stresses (Tabiei and Zhang [12]);
• Oblique cracks: Matrix cracking oblique to the laminate mid-plane occurs due to out-of-plane

shear stresses ([12]);
• Delaminations: Matrix cracking in between plies occurs due to in-plane shear stresses ([12]). They

most likely occur in between laminae of different fiber orientations ([12]);
• Transverse cracks: Simultaneous fiber and matrix cracking transverse to the laminate mid-plane

occurs due to bending stresses, often at the back of the laminate ([12]).

For damage modelling purposes, as will be further explained in the following section (2.2), the
aforementioned damage mechanisms can be grouped as follows:

• Inter-laminar damage: Delaminations fall within this group, indicating damage occurring in
between laminae;

• Intra-laminar damage: Oblique matrix cracking and simultaneous fiber and matrix cracking
transverse to the laminate mid-plane fall within this group, indicating damage occurring inside a
lamina.

6
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Figure 2.1: Composite laminate cross-section illustrating damage mechanisms typically related to BVID. It is noted that the lamina with
circles inside represents a lamina with fibers oriented perpendicular to the plane of the paper, while the other laminae have their fiber direction

parallel to the horizontal. Figure credits: Tabiei and Zhang [12].

2.2. Damage Modeling Techniques for Composites
When considering the modeling of damage in composite materials, analytical models may initially seem
appealing due to their ability to provide exact solutions, which are generally convenient to interpret and
implement. However, Faggiani and Falzon [13] argue that analytical models often fall short in accurately
capturing the complex damage mechanisms inherent in composites, especially those associated with
impact damage.

In contrast, numerical methods offer greater flexibility and capability in handling complex modeling
scenarios such as general Boundary Conditions (BCs) and dynamic phenomena (Guo et al. [14]).
Finite Element Methods (FEMs), in particular, have been widely employed to model both inter- and
intra-laminar damage in composites (Faggiani and Falzon [13]).

The FEMs for damage simulation in composites can be categorized into discrete and continuum
damage frameworks (Forghani et al. [15], Sun et al. [10]). In the discrete approach, damage is
represented as a discontinuity in the displacement field, typically localized at mesh boundaries ([15]).
Conversely, the continuum approach represents damage in a smeared sense through a damage variable
defined at each point of the domain, indicating the fracture status at that specific location ([15]).

Depending on the application, it may be more convenient to adopt either the discrete or the
continuum approach to model damage in composites. When damage is diffused and propagates
along arbitrary directions, which is often the case for intra-laminar damage, a continuum damage
model is generally implemented ([15]). In contrast, when damage is localized in specific areas, such as
inter-laminar damage, a discrete damage model is largely preferred (Mukhopadhyay and Hallett [16]).

Several FEMs are commonly used for simulating damage in composite materials:

• eXtended Finite Element Method (XFEM) (Belytschko and Black [17], Moës et al. [18]): This
discrete framework method extends the capabilities of traditional FEMs by enriching the FE
discretization through discontinuous functions, which make damage evolution relatively inde-
pendent of the underlying mesh;

• Phase Field Method (PFM) (Francfort and Marigo [19], Bourdin et al. [20], Ambrosio and Tortorelli
[21], Tanné et al. [22]): It is a continuum damage model where the crack development results from
the minimization of the total energy of the cracked domain. The method implements a scalar
damage variable referred to as the phase-field, diffusing in the area surrounding the crack. The
width of this diffusion zone is controlled through a characteristic length-scale parameter;

• Cohesive Zone Model (CZM) (Barenblatt [23] and [24], Dugdale [25], Hillerborg [26]): This discrete
method is strictly related to the concept of cohesive zone, an area near the crack tip where damage
is localized and cohesive forces arise to oppose to the separation of the crack surfaces. The model
allows for crack propagation along internal mesh boundaries which gradually open upon reaching
their cohesive fracture properties.
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A depiction of a cracked domain according to the three methods is presented in figure (2.2). The
illustration aims to showcase the differences in how the real crack is approximated with the numerical
crack derived using the various methods.

(a) XFEM Numerical Crack (b) PFM Numerical Crack

(c) CZM Numerical Crack

Figure 2.2: Differences in crack modeling among the XFEM, PFM, and CZM. The real crack is depicted in red, while the numerical crack
approximates it. In the XFEM approach, enriched Degrees of Freedom (DOFs) are incorporated to model displacement discontinuities

relatively independently of the underlying mesh. With the PFM, damage is represented in a smeared sense through a damage variable defined
at each point of the domain. This variable assumes a value of 1 in the central region marked in red, where damage is fully developed, and

gradually decreases towards 0, in white areas. Contrary to the previous methods, damage growth in the CZM is confined to mesh boundaries.
Figure credits: Lecampion et al. [27].

When considering the effectiveness of the XFEM, PFM, and CZM for modeling inter- and intra-
laminar damage in composites:

• Inter-laminar damage modeling: The CZM emerges as the preferred method to model inter-
laminar damage. With potential delamination areas already known beforehand, mesh boundaries
can be aligned with these damage regions to facilitate the determination of numerical fracture
properties (Sun et al. [10]). In contrast, employing the XFEM to capture delaminations would
unnecessarily complicate the model due to the additional DOFs associated with enrichment
functions. Similarly, using the PFM would add complexity to the simulation: attempting to
precisely localize the continuum-based crack at delamination areas by narrowing the diffusion
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zone to obtain accurate damage simulations would significantly escalate computational costs
compared to employing the CZM;

• Intra-laminar damage modeling: All three methods analyzed face challenges in effectively model-
ing intra-laminar damage in composites:

1. The XFEM is particularly ill-suited for this task due to several reasons. Firstly, Radovitzky
et al. [5] highlight that the method has not demonstrated scalability, which is crucial for
damage simulation in composites due to their complex damage patterns and 3D geometries
that require high computational loads to be modeled (Bogenfeld et al. [7]). Secondly, complex
damage patterns involving branching or merging, as well as 3D geometries, make the XFEM
implementation cumbersome (Giovanardi [28], Bui and Hu [3]);

2. Although the PFM shows promise in predicting complex crack paths inclusive of branching,
merging, and dynamic fragmentation thanks to its solid physical formulation (Bui and Hu
[3], Pillai [29]), it is not yet mature enough to effectively capture intra-laminar damage
in composites because of its challenges with the material’s anisotropic behavior ([3], [29]).
Also, fracture behaviors are highly influenced by the length-scale diffusion parameter, and
deriving this is not straightforward and necessitates accurate tuning based on experimental
tests ([3], [29]);

3. Unlike the previous methods, the CZM does not face specific scalability issues, challenges in
capturing complex damage patterns, or difficulties in defining damage numerical parameters.
Despite the CZM’s mesh-dependent nature, its Discontinuous Galerkin Cohesive Zone
Model (DG/CZM) formulation allows for relatively arbitrary damage description: the
DG/CZM facilitates highly refined meshes, reducing the mesh-dependency of the CZM
(Radovitzky et al. [5]). This is enabled by the DG/CZM’s extrinsic damage formulation,
which avoids artificial stiffness introduction in the constitutive damage law and allows
cohesive damage to evolve at any internal boundary without introducing inconsistency
([5]). Moreover, the DG/CZM is highly suitable for parallel implementation, as mesh and
data structures reliant on the mesh do not require redefinition upon crack propagation ([5]).
This makes the DG/CZM’s parallel implementation particularly advantageous for arbitrary
damage modeling in composites, enabling drastic reductions in simulation times distributing
the computational load among multiple processors running concurrently ([5]). Even if its
inherent mesh-dependence can be alleviated, the CZM faces challenges in modeling intra-
laminar damage in composites due to the material’s anisotropic behavior, as outlined in the
Introduction chapter (1).

In composite laminates modeling, addressing both inter- and intra-laminar damage often necessitates
the use of two distinct damage models (Forghani et al. [15], Bui and Hu [3]). However, this dual-model
approach inherently complicates the overall simulation, as it requires intricate coupling mechanisms
between the two diverse methods ([3]). Given that the CZM emerges as the preferred method for inter-
laminar damage, utilizing the CZM for modeling both inter- and intra-laminar damage can streamline
the modeling process and avoid the added complexity of coupling different damage models.

Nevertheless, before fully embracing such an approach, it is paramount to address the CZM’s
limitation in handling the anisotropic nature of composites. This constraint pertains to the challenge
of determining the specific intra-laminar fracture mechanism for cohesive interfaces not aligned with
directions where the lamina material fracture properties are known. Established approaches originally
developed for isotropic materials offer solutions to mitigate this limitation (Shi et al. [8], Abrate et al.
[9], Sun et al. [10]). However, they come at a cost: they introduce predetermined crack locations based
on experimental observations, which constrain the arbitrariness of damage propagation. Additionally,
they rely not only on the structural stress state but also on experimental data, limiting the applicability
of these approaches to scenarios where such data is available.

By adopting a unified CZM-based approach, the simulation complexity is notably reduced while still
facilitating accurate damage modeling in composites. Nonetheless, the acknowledgment and mitigation
of the CZM’s limitation regarding anisotropy are imperative for ensuring the efficacy of this approach.
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2.3. Research Question
In summary, this literature review highlights that the CZM is a promising method for capturing damage
in composite laminates. Among the advantages of the method:

• Robustness: The CZM numerical parameters can be readily derived from experimental results.
Also, the method is able to model complex damage scenarios typical of composites inclusive of
branching, merging, and fragmentation;

• Scalability: The CZM is suitable for parallel implementation, which is crucial for damage simula-
tion in composites due to its high computational load. Especially, the DG/CZM facilitate this task
by avoiding the mesh redefinition upon fracture.

However, the review identifies a major gap in the literature concerning the CZM’s limitation in accu-
rately modeling arbitrary intra-laminar damage in composites, specifically in determining the damage
mechanism occurring at a numerical interface solely based on the stress state of the structure.

Based on this gap, the main research question is formulated as follows:

How can a novel CZM-based damage formulation be developed to facil-
itate arbitrary intra-laminar damage development by distinguishing be-

tween damage mechanisms based on the stress state of the laminate?



3
Research Methodology

The Research Methodology chapter illustrates how to address the research question outlined in the
Literature Review chapter (2) by implementing a novel Cohesive Zone Model (CZM) damage formula-
tion capable of allowing for arbitrary intra-laminar damage in composites based solely on the evolving
stress state of the structure.

The novel damage formulation is derived from an established damage formulation enabling arbitrary
damage in isotropic materials. The novel method considers an alternative decomposition of both
opening and traction at a numerical interface into components parallel and transverse to the fiber
direction of the lamina. The method assumes potential intra-laminar damage mechanisms to be
decoupled, with the parallel traction component assumed to contribute to simultaneous fiber and
matrix cracking of the numerical interface once it reaches the lamina material strength in the direction
parallel to the fibers, while the transverse traction component is assumed to contribute to matrix cracking
of the interface once it reaches the lamina material strength in the direction transverse to the fibers.
Additionally, the method assumes that the two damage mechanisms cannot occur simultaneously.

The structure of this chapter is as follows: First, the chapter discusses the mathematical framework
behind the novel CZM damage formulation (section 3.1). Subsequently, it details the implementation
of the novel formulation in Summit-lite, a Finite Element (FE) object-oriented research code (section
3.2). To ensure the correctness of the implementation under controlled conditions, the novel method is
verified against a simple analytical model (section 3.3). Once verified, the novel CZM formulation is
validated against experimental data sourced from relevant literature (section 3.4).

3.1. Mathematical Framework of Novel Cohesive Zone Model Dam-
age Formulation

This section presents the mathematical framework underlying the novel CZM damage formulation.
The novelty of the proposed method lies in its constitutive law governing damage at the mesh internal
boundaries. Classical CZM damage constitutive laws, developed for isotropic materials, are inadequate
for addressing damage in composites. Specifically, this limit concerns the activation of different intra-
laminar damage mechanisms depending on the stress state of the laminate. Established approaches,
such as the one proposed by Sun et al. [10], offer solutions to mitigate this limitation. However,
these approaches introduce predetermined crack locations based on experimental observations, which
constrain the arbitrariness of damage propagation. Additionally, they rely not only on the stress state of
the numerical model but also on experimental data. The novel CZM damage constitutive law is derived
in this section to address these limitations.

First, the section introduces a CZM damage constitutive law popular in the literature, here referred
to as the standard damage formulation. Then, the section discusses the shortcomings of the standard
formulation in adequately representing arbitrary intra-laminar damage in composites. Finally, based
on the standard damage constitutive law, the section proposes a novel damage constitutive law to
overcome these limitations.

11
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3.1.1. Standard Damage Formulation
The Traction-Separation Law (TSL), or Cohesive Law (CL), serves as the constitutive law governing
damage in the CZM. As illustrated in figure (3.1), the TSL relates the opening of two crack surfaces
at the crack tip to the reaction forces that keep such surfaces together. When the stress at the crack
tip reaches the cohesive strength, the crack surfaces start to open, leading to a reduction in traction.
Upon reaching zero traction at the crack tip, the crack surfaces fully separate, allowing the crack tip to
advance.

Figure 3.1: Crack initiation and evolution according to the CZM proceeds as follows: In region (1), the traction 𝑇 is lower than the cohesive
strength 𝜎𝑐𝑟 , and damage does not initiate. At section (2), when 𝑇 = 𝜎𝑐𝑟 , damage initiates. As damage evolves in region (3), the traction at
the two cohesive interfaces Γ+𝑐 and Γ+𝑐 starts to decrease, while the opening Δ increases. Upon reaching section (4), when Δ = Δ 𝑓 , damage is
fully developed, rendering the two cohesive surfaces incapable of stress transfer. At this point, the crack tip advances. Figure credits: Alfano et

al. [30].

Next, the TSL derived by Ortiz and Pandolfi [31] is presented. As this formulation is widely adopted
in the literature, it is here referred to as the standard TSL. To introduce the standard TSL, let’s determine
the opening 𝚫 and the traction 𝒕 at a point 𝑃 lying on the cohesive interface 𝑠 between two FEs Ω− and
Ω+, as illustrated in figure (3.2). The opening 𝚫 is defined as the difference in displacement 𝒖 between
the Ω+ and the Ω− elements:

𝚫− = 𝒖+ − 𝒖−

𝚫+ = 𝒖− − 𝒖+ (3.1)

The displacement 𝒖 is derived by solving the weak formulation of equilibrium of the linear momentum,
detailed in the appendix chapter (C) for the Discontinuous Galerkin Cohesive Zone Model (DG/CZM).
The traction at the elements interface is defined as

𝒕− =𝑷−𝒏−

𝒕+ =𝑷+𝒏+ (3.2)

where 𝑷 is the Piola-Kirchhoff (PK) stress tensor, and 𝒏 is the unit vector normal to the interface of the
Ω element in the deformed configuration, defined so that it points outward to the FE region. Assuming
small deformations, the actual configuration can be approximated with the reference configuration,



3.1. Mathematical Framework of Novel Cohesive Zone Model Damage Formulation 13

meaning that the PK stress tensor can be approximated with the Cauchy stress tensor 𝝈, and the unit
normal vector in the deformed configuration with the one in the reference configuration:

𝑷 = 𝝈 (3.3)

Additionally, by imposing the linear elastic material assumption, 𝝈 is determined as a linear function of
𝒖, as derived in equation (C.2).

Figure 3.2: Definition of the opening 𝚫 and the traction 𝒕 at a point 𝑃 on the cohesive interface 𝑠 between two FEs Ω+ and Ω−. 𝚫 is defined
as the difference in displacement 𝒖 between points 𝑃+ and 𝑃−. The unit vector 𝒏 is defined as the normal to the numerical interface in the
deformed configuration and points outward to the FE region. Note that vectors 𝚫+ and 𝒕+ are evaluated at point 𝑃+ and are opposite in

direction to 𝚫− and 𝒕−.

Once 𝚫 and 𝒕 have been determined, Ortiz and Pandolfi [31] decompose them along the unit vectors
normal and tangential to the cohesive interface 𝒏 and 𝝉:

Δ𝑛 =𝚫 · 𝒏
Δ𝜏 =𝚫 · 𝝉 (3.4)

𝑡𝑛 = 𝒕 · 𝒏
𝑡𝜏 = 𝒕 · 𝝉 (3.5)

The normal components Δ𝑛 and 𝑡𝑛 are related to mode I opening, while the tangential components Δ𝜏

and 𝑡𝜏 are related to mode II opening. The components are illustrated in figure (3.3).
Based on the normal and tangent components, the effective values for the opening and the traction

are obtained (Wu et al. [32]) as

Δ𝑒 𝑓 𝑓 =

√
⟨⟨Δ𝑛⟩⟩2 + 𝛾2(Δ𝜏)2 (3.6)

and

𝑡𝑒 𝑓 𝑓 =

{√
𝑡2𝑛 + 1

𝛾2 𝑡
2
𝜏, 𝑡𝑛 ≥ 0

1
𝛾 ⟨⟨|𝑡𝜏 | − 𝜂|𝑡𝑛 |⟩⟩, 𝑡𝑛 < 0

(3.7)

In equations (3.7) and (3.6), the normal and tangential components contribute with different weights to
the values of Δ𝑒 𝑓 𝑓 and 𝑡𝑒 𝑓 𝑓 . The weight is determined by the parameter 𝛾 = 𝜎𝑐𝐼𝐼/𝜎𝑐𝐼 , representing the
ratio of the cohesive strengths in pure mode II and in pure mode I. 𝜂 denotes the friction coefficient,
introduced in case of compressive stresses 𝑡𝑛 < 0. The operator ⟨⟨·⟩⟩ returns its argument when this is
positive, and 0 otherwise.
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Figure 3.3: Decomposition of opening 𝚫− and traction 𝒕− of the Ω− element along the unit vectors 𝒏− and 𝝉− normal and tangent to the
cohesive interface 𝑠−.

Fracture initiation occurs as soon as 𝑡𝑒 𝑓 𝑓 reaches the cohesive strength 𝜎𝑐 of the numerical interface:

𝑡𝑒 𝑓 𝑓 ≥ 𝜎𝑐 (3.8)

where 𝜎𝑐 can be assumed for simplicity to be equal to the highest value between 𝜎𝑐𝐼 and 𝜎𝑐𝐼𝐼 when
𝑡𝑛 ≥ 0, and equal to 𝜎𝑐𝐼𝐼 when 𝑡𝑛 < 0. 𝑡𝑒 𝑓 𝑓 can be related to Δ𝑒 𝑓 𝑓 according to the linear extrinsic CL
depicted in figure (3.4), which considers an irreversible softening phase during opening and a reversible
phase during unloading:

𝑡𝑒 𝑓 𝑓 =

{
𝜎𝑐

(
1 − Δ𝑒 𝑓 𝑓

Δ𝑐
), softening

𝑡𝑚𝑎𝑥
Δ𝑒 𝑓 𝑓

Δ𝑚𝑎𝑥
, unloading

(3.9)

where Δ𝑚𝑎𝑥 and 𝑡𝑚𝑎𝑥 are the opening and traction reached at maximum damage extension upon
irreversible softening, and Δ𝑐 is the critical opening defined as

Δ𝑐 =
2𝐺𝑐
𝜎𝑐

(3.10)

where 𝐺𝑐 is the cohesive toughness. Equation (3.10) can be easily obtained through geometrical
considerations on the linear TSL defined in figure (3.4). It is important to emphasize that, in case of a
Discontinuous Galerkin (DG) formulation, Δ𝑒 𝑓 𝑓 has to be re-scaled so that its value is 0 at fracture onset.
This rescaling guarantees that the traction at Δ𝑒 𝑓 𝑓 = 0 corresponds to the cohesive strength:

Δ
′

𝑒 𝑓 𝑓 = Δ𝑒 𝑓 𝑓 −Δ𝑜𝑛

𝑡𝑒 𝑓 𝑓 (Δ
′

𝑒 𝑓 𝑓 = 0) = 𝜎𝑐 (3.11)

Based on 𝑡𝑒 𝑓 𝑓 , the effective traction vector 𝒕 𝑒 𝑓 𝑓 is defined as

𝒕 𝑒 𝑓 𝑓 =

{
𝑡𝑒 𝑓 𝑓

(
Δ𝑛
Δ𝑒 𝑓 𝑓

𝒏 + 𝛾 Δ𝜏
Δ𝑒 𝑓 𝑓

𝝉), 𝑡𝑛 ≥ 0

𝑡𝑒 𝑓 𝑓 𝛾
Δ𝜏
Δ𝑒 𝑓 𝑓

𝝉, 𝑡𝑛 < 0
(3.12)
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Figure 3.4: Linear extrinsic TSL describing damage initiation and propagation within the DG/CZM framework. When the effective traction
𝑡𝑒 𝑓 𝑓 reaches the cohesive strength 𝜎𝑐 , irreversible damage starts to form. Upon reaching final failure of the numerical interface at the critical
opening Δ𝑐 , the amount of cohesive energy release rate gets equal to the cohesive toughness 𝐺𝑐 . In case where, after damage onset and before
complete failure, unloading occurs, 𝑡𝑒 𝑓 𝑓 decreases reversibly from the point of maximum damage extension (Δ𝑚𝑎𝑥 , 𝑡𝑚𝑎𝑥 ) to 0. If reloading

occurs after this unloading, the effective opening Δ𝑒 𝑓 𝑓 must reversibly return to Δ𝑚𝑎𝑥 before further irreversible damage occurs. The
irreversible path is indicated by an arrow pointing in the direction of increasing Δ𝑒 𝑓 𝑓 , while the reversible path is marked by arrows pointing

in both directions.

3.1.2. Limitations of Standard Damage Formulation in addressing Intra-laminar
Damage in Composites

Expanding on the discussion of the Introduction chapter (1), this sub-section elucidates why the standard
damage formulation proves inadequate for modeling arbitrary damage in composite laminates. The
primary reason of this unsuitability stems from the anisotropic nature of composites: given a cohesive
interface oriented at an arbitrary angle relative to lamina directions where material fracture properties
are known, it becomes unclear how to define the cohesive fracture parameters for such interface based
solely on the structural stress state.

To highlight these limitations of the standard TSL, let’s revisit the case of the cross-ply laminate
with a pre-crack under fracture, which was previously introduced in the Introduction chapter (1) and
depicted in figure (3.5). The figure illustrates a cross-ply laminate containing a pre-existing crack,

Figure 3.5: Cross-ply laminate subjected to load. A pre-crack, depicted in black, is introduced into the laminate. Under the influence of the
applied tensile load 𝑭 , damage, shown in light blue, propagates along the pre-crack direction. The fiber angle of the plies, indicated in green, is

either 90◦ when fibers are transverse to 𝑭 , or 0◦ when fibers are parallel to 𝑭 .
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subjected to a tensile load inducing crack propagation parallel to the pre-existing crack direction.
Directing attention to the mesh solution for the cross-ply laminate shown in figure (3.6), where mesh
boundaries of the 90◦ and 0◦ plies align with the expected crack path, and cohesive interfaces are
exclusively placed at mesh boundaries coinciding with these expected crack paths. This arrangement
facilitates numerical crack development along the crack direction determined from experimental data.
Consequently, for a 90◦ lamina, a numerical crack parallel to the fiber direction occurs. Here, the
cohesive fracture properties of the numerical interface 𝜎𝑐 and 𝐺𝑐 are set equal to lamina tensile fracture
properties for matrix cracking 𝜎𝑐∥ and 𝐺𝑐∥ . Conversely, for a 0◦ lamina, a numerical crack transverse
to the fibers occurs. In this instance, the cohesive fracture properties are set equal to lamina tensile
fracture properties for simultaneous fiber and matrix cracking 𝜎𝑐⊥ and 𝐺𝑐⊥ . The resulting TSLs for
the 90◦ and the 0◦ laminae are depicted in figure (3.6). Essentially, this method represents a classic

Figure 3.6: Laminae of the cross-ply laminate with mesh boundaries aligned with the expected crack, and cohesive interfaces placed only at
mesh boundaries where damage is expected based on preliminary experimental observations. Consequently, numerical damage coincides with
expected damage, both depicted in light blue here. Since numerical damage is only allowed to form along the directions where lamina material
fracture properties are known, cohesive fracture properties 𝜎𝑐 and 𝐺𝑐 of the cohesive interfaces can be determined from the material fracture
properties. Specifically, we can set cohesive fracture properties equal to lamina tensile fracture properties for matrix cracking 𝜎𝑐∥ and 𝐺𝑐∥ for
numerical damage parallel to the fiber direction, and lamina tensile fracture properties for simultaneous fiber and matrix cracking 𝜎𝑐⊥ and

𝐺𝑐⊥ for numerical damage transverse to the fiber direction.

CZM damage formulation developed for isotropic materials but commonly utilized in the literature to
model intra-laminar damage. The approach restricts numerical damage development to predetermined
directions established through preliminary experimental testing on the structure intended for modeling.
Through these experiments, crack development, including both location and fracture mechanism, is
determined. Subsequently, potential crack surfaces with specified numerical fracture properties are
manually inserted into the numerical model at the same locations where real cracks occurred during
the experiment.

Now, let’s consider the alternative damage formulation presented in figure (3.7) characterized by a
different meshing strategy. Here, the mesh of the 90◦ and 0◦ laminae is assumed to be entirely arbitrary
and in general not aligned with the crack path observed in experimental data. In this scenario, cohesive
interfaces are placed at every mesh boundary, and numerical cracks are free to develop at any mesh
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boundary. Consequently, numerical damage is not bound to propagate along directions where lamina
material fracture properties are known, as was the case previously. This variability in the numerical
crack orientation relative to the directions along which lamina fracture parameters are known implies
that the cohesive fracture properties of the cohesive interface cannot be always determined from the
lamina fracture properties, as indicated by the undefined TSL in figure (3.7).

Figure 3.7: Laminae of the cross-ply laminate with mesh boundaries not required to coincide with the expected crack. Cohesive interfaces are
placed at every mesh boundary, allowing numerical damage to arise according to the stress state of the laminate. Consequently, numerical

damage, depicted in red, is not constrained to coincide with expected damage, depicted in light blue. Since numerical damage can form
anywhere, not only along the directions where lamina material fracture properties are known, the cohesive fracture properties 𝜎𝑐 and 𝐺𝑐 of the

cohesive interfaces cannot always be determined from lamina material fracture properties.

3.1.3. Novel Damage Formulation
As the standard TSL developed for isotropic materials is incapable of modelling arbitrary damage
in composite laminates, this sub-section proposes an adaptation of the standard TSL to address this
limitation.

Instead of decomposing the traction and the opening into normal and a tangential components to
the numerical interface, as done in the standard case, it is proposed to decompose them into parallel
and transverse components to the fiber direction of the lamina. Under this framework, if the transverse
traction reaches the lamina material strength for matrix cracking parallel to the fiber direction, the
parallel virtual interface opens. Conversely, if the parallel traction reaches the lamina material strength
for simultaneous fiber and matrix cracking transverse to the fiber direction, the transverse virtual
interface opens. It is assumed that only one damage mechanism can be activated for a given numerical
interface, which is either matrix cracking along the parallel virtual interface, or simultaneous fiber and
matrix cracking along the transverse virtual interface. The proposed approach allows the numerical
fracture properties of an arbitrary cohesive interface not aligned with directions where lamina material
fracture properties are known to be related to the lamina material fracture properties.

Let’s delve into a more detailed analysis of the proposed damage formulation and identify all its
underlying assumptions and limitations. The opening and traction components according to the novel
formulation are as follows:

Δ∥ =𝚫 · 𝒏∥
Δ⊥ =𝚫 · 𝒏⊥ (3.13)

𝑡∥ = 𝒕 · 𝒏∥
𝑡⊥ = 𝒕 · 𝒏⊥ (3.14)

where 𝒏∥ and 𝒏⊥ represent the unit vectors parallel and transverse to the fiber direction, and are
determined purely based on the fiber angle 𝜃. The proposed decomposition can be observed in figure
(3.8). Upon closer inspection of the decomposition, it was realized that the 𝒏∥ and 𝒏⊥ vectors were



3.1. Mathematical Framework of Novel Cohesive Zone Model Damage Formulation 18

Figure 3.8: (Wrong) Decomposition of the traction and the opening according to the novel damage formulation. The traction 𝒕− and the
opening 𝚫− of the Ω− element are decomposed along the unit vectors parallel and transverse to the fiber direction 𝒏∥ and 𝒏⊥. These vectors
are determined based on the fiber orientation 𝜃 of the lamina. The arbitrary numerical interface is decomposed into virtual interfaces parallel

and transverse to the fiber direction 𝑠∥ and 𝑠⊥.
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defined improperly. Two sets of the two vectors needed to be defined, one for the Ω− and one for the
Ω+ element (𝒏+

∥ and 𝒏+
⊥, and 𝒏−

∥ and 𝒏−
⊥) in a way that they pointed outward to the respective FE’s

region. The adjusted decomposition, which could not be implemented due to time constraints, can be
observed in figure (3.9).

Figure 3.9: (Correct) Decomposition of the traction and the opening according to the novel damage formulation. Compared to the
decomposition shown in figure (3.8), a set of 𝒏∥ and 𝒏⊥ vectors is defined per each element Ω, so that both vectors point outwards to the FEs’

region.

Considering the proposed (wrong) decomposition, it is assumed that the parallel traction 𝑡∥ con-
tributes to the parallel opening Δ∥ of the transverse virtual interface 𝑠⊥, while the transverse traction
𝑡⊥ contributes to the transverse opening Δ⊥ of the parallel virtual interface 𝑠∥ . This implies that both
virtual interfaces are assumed to open in pure mode I, with no contribution from mode II. Figure (3.10)
illustrates more clearly which traction and opening components are associated with the parallel and
virtual interfaces.

Another assumption is that the sign of the components in the standard damage formulation controls
the sign of the parallel and transverse components in the novel formulation. However, right when
the error in vectors 𝒏∥ and 𝒏⊥ was discovered, it was realized that this assumption was incorrect, and
that this adjustment was justified by the improper assumptions for the vectors 𝒏∥ and 𝒏⊥ that did not
necessarily point outwards to the FEs’ region. Nevertheless, due to a lack of time to implement the
latest improvement, the improper sign adjustment was implemented, and the opening and traction
components were re-defined as

Δ∥/⊥ =

{
|Δ∥/⊥ |, Δ𝑛 ≥ 0
−|Δ∥/⊥ |, Δ𝑛 < 0

(3.15)

and

𝑡∥/⊥ =

{
|𝑡∥/⊥ |, 𝑡𝑛 ≥ 0
−|𝑡∥/⊥ |, 𝑡𝑛 < 0

(3.16)
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Figure 3.10: The opening of virtual interfaces is assumed to be caused by mode I components transverse to them. Focusing on the Ω−
element, it is assumed that the parallel traction 𝑡−∥ contributes to the parallel opening Δ−

∥ of the transverse virtual interface 𝑠−⊥, while the
transverse traction 𝑡−⊥ contributes to the transverse opening Δ−

⊥ of the parallel virtual interface 𝑠−∥ . Note that the figure is based on the
adjusted decomposition of figure (3.9), but what is stated above is still valid for the original decomposition of figure (3.8).

The illustration of the sign correction for the novel decomposition is shown in figure (3.11). To explain
why the sign correction is wrong, consider the correct decomposition of figure (3.9), where the correct
definition for the vectors 𝒏∥ and 𝒏⊥ is employed. By focusing on the traction 𝑡−∥ acting on 𝑠−⊥, we see that
it is negative, as its scalar product with the 𝒏−

⊥ vector is negative. This means that 𝑡−∥ effectively closes
the gap in between Ω− and Ω+. This makes perfect sense, and there is no need of a sign correction of
the opening and traction components based on the sign of the standard components when the normal
unit vectors relative to the virtual interfaces are defined correctly.

Once the sign of the traction and the opening for the novel formulation has been (wrongly) adjusted,
it is possible to formulate the novel TSL. It is assumed that only one damage mechanism can be active
for a given numerical interface, which is either matrix cracking along the parallel virtual interface or
simultaneous fiber and matrix cracking along the transverse virtual interface. The novel TSL is based
on this active damage mechanism. Additionally, it is assumed that if a damage mechanism is activated
but does not lead to complete failure, the other cannot be activated afterwards. To determine the TSL,
the following procedure is assumed. First, it is checked if 𝑡⊥ reaches the cohesive strength of the parallel
virtual interface, which is assumed to be equal to the lamina tensile strength for matrix cracking 𝜎𝑐∥ . If
so, the TSL for matrix cracking is activated. If not, it is checked if 𝑡∥ reaches the cohesive strength of the
transverse virtual interface, which is assumed to be equal to the lamina tensile strength for simultaneous
fiber and matrix cracking 𝜎𝑐⊥ . If so, the TSL for simultaneous fiber and matrix cracking is activated.
If not, no TSL is activated. The various conditions for the TSL selection are illustrated in figure (3.12).
Based on the equations for the standard TSL illustrated in sub-section (3.1.1), the equations for the novel
TSL become

Δ𝑒 𝑓 𝑓 =

{
Δ⊥, matrix failure
Δ∥ , fiber and matrix failure

(3.17)

𝑡𝑒 𝑓 𝑓 =

{
𝑡⊥, matrix failure
𝑡∥ , fiber and matrix failure

(3.18)

𝜎𝑐 and 𝐺𝑐 =

{
𝜎𝑐∥ and 𝐺𝑐∥ , matrix failure
𝜎𝑐⊥ and 𝐺𝑐⊥ , fiber and matrix failure

(3.19)
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Figure 3.11: (Wrong) Adjustment of the traction and opening components for the novel damage formulation based on the standard
formulation. On the left, considering the opening along the transverse virtual interface 𝑠−⊥, it is observed that the parallel traction and opening
𝑡−∥ and Δ−

∥ are defined to be negative with respect to the unit vector parallel to the fiber direction 𝒏∥ . On the middle, we see that the sign of the
normal components according to the standard decomposition 𝑡−𝑛 and Δ−

𝑛 are both positive. On the right, 𝑡−𝑛 is assumed to control the sign of
𝑡−∥ , while Δ−

𝑛 is assumed to control the sign of Δ−
∥ .

𝑡𝑒 𝑓 𝑓 =

{
𝜎𝑐

(
1 − Δ𝑒 𝑓 𝑓

Δ𝑐
), softening

𝑡𝑚𝑎𝑥
Δ𝑒 𝑓 𝑓

Δ𝑚𝑎𝑥
, unloading

(3.20)

where
Δ𝑐 =

2𝐺𝑐
𝜎𝑐

(3.21)

and Δ𝑚𝑎𝑥 and 𝑡𝑚𝑎𝑥 are the effective opening and traction reached at maximum damage extension upon
irreversible softening. Finally, based on equation (3.20), the effective traction vector is obtained as

𝒕 𝑒 𝑓 𝑓 =

{
𝑡𝑒 𝑓 𝑓 𝒏⊥, matrix failure
𝑡𝑒 𝑓 𝑓 𝒏∥ , fiber and matrix failure

(3.22)

As a final remark for the proposed TSL, it is essential to correct the cohesive toughness 𝐺𝑐 for the
mismatch in length between the numerical interface and the active virtual interface, so that the correct
amount of energy is dissipated. First, the active fracture toughness is set to be equal either to the lamina
tensile toughness parallel to the fiber direction 𝐺𝑐∥ , or to the lamina tensile toughness transverse to the
fiber direction 𝐺𝑐⊥ , depending on the active fracture mechanism. Then, the adjustment of the active
toughness is achieved by dividing it by the cosine of the angle between the numerical surface and the
active virtual surface cos 𝛼∥ or cos 𝛼⊥. Referring to figure (3.13), the equation for the adjusted 𝐺𝑐 is
expressed as:

𝐺𝑐 =

{ 𝐺𝑐∥
cos 𝛼∥

, matrix cracking
𝐺𝑐⊥

cos 𝛼⊥
, fiber and matrix cracking

(3.23)

3.2. Implementation Aspects
The present section details the implementation of the novel CZM damage formulation for arbitrary
damage in composites within the Summit-lite framework. Summit-lite already incorporates a suite of
functions for the CZM standard damage formulation illustrated in sub-section (3.1.1) which is designed
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Figure 3.12: Selection of the novel TSL based on the active damage mechanism. First, it is checked whether the transverse traction 𝑡⊥ reaches
the lamina tensile strength for fracture parallel to the fiber direction 𝜎𝑐∥ . If that is the case, the TSL for matrix cracking is activated.

Otherwise, it is checked whether the parallel traction 𝑡∥ reaches the lamina tensile strength for fracture transverse to the fiber direction 𝜎𝑐⊥ . If
that is the case, the TSL for fiber and matrix cracking together is activated. If neither condition is met, no TSL is activated. (Δ𝑚𝑎𝑥 , 𝑡𝑚𝑎𝑥 )

represents the point of maximum damage reached upon irreversible softening.

Figure 3.13: Adjustment of the cohesive toughness 𝐺𝑐 . Despite introducing virtual interfaces 𝑠∥ and 𝑠⊥ to compute the cohesive fracture
properties for an arbitrary numerical interface 𝑠, the crack is still assumed to occur along this original numerical interface. Due to the

mismatch in length between the numerical interface and the active virtual interface, 𝐺𝑐 needs to be adjusted with the cosine of the angle
between these two interfaces. In case of matrix cracking, 𝐺𝑐 is set equal to the lamina tensile toughness parallel to the fiber direction 𝐺𝑐∥ and
adjusted by dividing it by cos 𝛼∥ , the cosine of the angle between 𝑠 and the active virtual interface 𝑠∥ , while in the case of simultaneous fiber

and matrix cracking, 𝐺𝑐 is set equal to the lamina tensile toughness transverse to the fiber direction 𝐺𝑐⊥ and adjusted by dividing it by
cos 𝛼⊥, the cosine of the angle between 𝑠 and the active virtual interface 𝑠⊥.
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for damage in isotropic structures. Many of these functions are reusable for implementing the novel
method, thus simplifying the development process.

Summit-lite organizes CZM utilities into functions, each handling specific aspects of the model.
These functions are specific for material assignment, solver selection for the linear momentum equilib-
rium equation, space discretization, and more. Building upon the existing infrastructure, this section
focuses on implementing two key functions within the Summit-lite material functions.

The first function concerns the novel damage formulation proposed in sub-section (3.1.3) that
controls the damage constitutive behavior at internal mesh boundaries. Additionally, the novel method
necessitates the implementation of a function within the material library to govern the orthotropic stress-
strain constitutive behavior of the bulk elements of the mesh. Unlike the cohesive elements at the mesh
boundaries, which are affected by damage, these bulk elements remain undamaged. The orthotropic
stress-strain equations are readily available in the literature and are provided in the appendix chapter
(A).

By integrating these two functions into the material functions, Summit-lite aims to offer capabilities
for simulating arbitrary intra-laminar damage in composite materials based solely on the evolving
stress state of the lamina.

3.2.1. Orthotropic Stress-Strain Equation Implementation for Bulk Material
This sub-section implements the orthotropic stress-strain equations for the constitutive behavior of the
bulk elements within the Summit-lite framework.

The 3D stress-strain equations for a composite lamina, as derived in the appendix chapter (A), are
utilized here. Equations (A.1) are implemented into the novel Summit-lite function named orthotropic.
In this function, the 5 independent elastic parameters of the lamina, along with the mode (plane stress,
plane strain, or 3D), and the strain vector 𝜺(𝑥𝑦𝑧) at the given quadrature point are provided. Based on
these inputs, the function yields the stress vector 𝝈(𝑥𝑦𝑧) at the specified quadrature point.

3.2.2. Novel Damage Formulation Implementation for Cohesive Interface Material
This sub-section implements the novel damage formulation proposed in sub-section (3.1.3) for sim-
ulating damage in cohesive elements at internal mesh boundaries of the numerical model within
the Summit-lite framework. Notably, Summit-lite already implements the standard CZM damage
formulation illustrated in sub-section (3.1.1) through the function cohesive_dg. This sub-section creates
a variant of cohesive_dg, named fiber_matrix_cohesive_dg to implement the novel damage formulation.
Unlike cohesive_dg, fiber_matrix_cohesive_dg tailors the numerical fracture properties of the cohesive
interface to the specific fracture mechanism activated at the cohesive interface, namely matrix crack-
ing, or simultaneous fiber and matrix cracking. The subsequent discussion will illustrate how the
fiber_matrix_cohesive_dg function operates, including comparisons with the cohesive_dg function.

The flowchart depicted in figure (3.14) illustrates the damage constitutive update process for both the
cohesive_dg and the fiber_matrix_cohesive_dg functions. This update process evaluates whether fracture
has occurred at a specific quadrature point of a cohesive element and, if so, computes the cohesive
traction at that quadrature point. Figure (3.14) provides a detailed explanation of each step in the
damage constitutive update process.

The main differences between the cohesive_dg and fiber_matrix_cohesive_dg functions in the damage
constitutive update are highlighted as follows:

1. Opening and traction components: For the standard implementation, the assessment of the
opening and traction components involves determining the normal and tangential components
relative to the numerical interface. Conversely, in the case of the novel implementation, the
evaluation focuses on the components parallel and transverse to the fiber direction. Depending
on the active failure mechanism, either the parallel or the transverse components are identified as
the components contributing to the virtual opening of the active virtual interface. The detailed
process of evaluating these components is outlined in figure (3.15).

2. Fracture initiation and evolution: In cohesive_dg, fracture initiation and evolution consider both
normal and tangential components to the numerical interface, effectively describing a mixed-
mode opening fracture, while in fiber_matrix_cohesive_dg, only normal components to the active
virtual interface contribute to virtual fracture, which configures as a mode I opening scenario.
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Figure 3.14: The damage constitutive update process is formally the same for both the standard and the novel implementations. The
constitutive update function, applied at a specific quadrature point of the cohesive interface of interest, accepts input variables such as traction
𝒕 , opening 𝚫, unit normal vector 𝒏, and boolean variables 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑒𝐹𝑟𝑎𝑐𝑡𝑢𝑟𝑒 and 𝑖𝑠𝐹𝑟𝑎𝑐𝑡𝑢𝑟𝑒𝑂𝑝𝑒𝑛. The value of 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑒𝐹𝑟𝑎𝑐𝑡𝑢𝑟𝑒 is

determined by a fracture criterion specific to each case. If 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑒𝐹𝑟𝑎𝑐𝑡𝑢𝑟𝑒 is equal to 𝑌𝐸𝑆, fracture initiation occurs, and
𝑖𝑠𝐹𝑟𝑎𝑐𝑡𝑢𝑟𝑒𝑂𝑝𝑒𝑛 is subsequently set to 𝑌𝐸𝑆. When 𝑖𝑠𝐹𝑟𝑎𝑐𝑡𝑢𝑟𝑒𝑂𝑝𝑒𝑛 is equal to 𝑌𝐸𝑆, it indicates that fracture is ongoing. If fracture is

active, the function assesses whether the normal opening Δ𝑛 is greater than 0. In such case, the TSL is evaluated, yielding the effective
cohesive traction 𝒕 𝑒 𝑓 𝑓 as output for the function. Conversely, if Δ𝑛 is less than 0, the function deals with re-contact scenarios.
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Δ𝑛 = 𝚫 · 𝒏
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(b) Components for Novel Implementation

Figure 3.15: The evaluation of the opening and traction components differs between the standard and the novel damage implementations. In
the standard case, the components normal and tangential to the numerical interface, denoted as Δ𝑛 , Δ𝜏, 𝑡𝑛 , 𝑡𝜏, need to be determined. Instead,
for the novel case, the components parallel and transverse to the fiber direction, denoted as Δ∥ , Δ⊥, 𝑡∥ , 𝑡⊥, need to be determined. Additionally,
Δ𝑛 and 𝑡𝑛 are required to assess the sign of the opening and traction components normal to the active virtual interface, denoted as Δ∗

𝑛 and 𝑡∗𝑛 .
The determination of Δ∗

𝑛 and 𝑡∗𝑛 , the unit vector normal to the active virtual interface 𝒏∗, and the cohesive fracture parameters 𝜎𝑐 and 𝐺𝑐 , all
depend on the value of the 𝑔𝑒𝑡𝐴𝑐𝑡𝑖𝑣𝑒𝐹𝑎𝑖𝑙𝑢𝑟𝑒𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚 parameter, which is determined by the fracture initiation criterion (see figure

(3.16)). The parameter is set to ∥ if matrix fracture along the parallel virtual interface occurs, or ⊥ if simultaneous fiber and matrix fracture
along the transverse virtual interface occurs. The sign of Δ∗

𝑛 is dictated by the sign of Δ𝑛 , while the sign of 𝑡∗𝑛 is determined by the sign of 𝑡𝑛 .



3.3. Verification against Analytical Model 26

This differences are illustrated in figure (3.16) for fracture onset and figure (3.17) for damage
evolution.

3.3. Verification against Analytical Model
The objective of this section is to verify the CZM Summit-lite implementation outlined in section (3.2)
based on the novel method for arbitrary damage in composites. Specifically, the focus is on verifying
the novel damage formulation implemented in sub-section (3.2.2) through comparison with a simple
analytical configuration. This configuration comprises two elements joined by a cohesive interface and
subjected to tensile traction normal to the interface. Additionally, the orthotropic stress-strain equations
implemented in sub-section (3.2.1) are subjected to verification against analytical results derived from
the Classical Laminate Theory (CLT).

3.3.1. Orthotropic Stress-Strain Equation Verification
This sub-section illustrates the verification of the orthotropic stress-strain equations implemented in
sub-section (3.2.1). The verification process consists of two steps.

The first step involves verifying the stress calculation at a single quadrature point to identify potential
errors in the constitutive equations (A.1) implemented in the orthotropic function. A pre-defined strain
vector 𝜺 is input into the orthotropic function, and the resulting stress vector 𝝈 is computed. Any
discrepancies between the numerical and hand-calculated stress results would indicate errors in the
implemented equations.

In the second step, a simple Finite Element Method (FEM) setup relying on the orthotropic function is
established to verify the orthotropic stress-strain equations against analytical results obtained from the
CLT. The main idea is to apply the same Boundary Conditions (BCs) in both the FEM and the CLT, and
check whether the strain results in the two models are consistent. More details on the CLT are given in
the appendix chapter (B). The FEM setup is as follows:

• Spatial discretization: The mesh configuration depicted in figure (3.18) is selected, consisting of
2D triangular linear FEs with translational Degrees of Freedom (DOFs) for the nodes 𝑢𝑥 and 𝑢𝑦 ;

• Time discretization: An explicit Newmark solver is employed for time discretization. The load
rate is adjusted to achieve quasi-static simulation conditions closely matching the static loading
conditions of the CLT. The stable time step for the chosen dynamic solver is estimated in equation
(3.24);

• Material assignment: The elements are assigned orthotropic material properties from function
orthotropic;

• BCs assignment: Neumann BCs are prescribed at the nodes on the external boundaries of the
mesh.

The stable time step is estimated based on the major Young’s modulus of the lamina 𝐸1 to ensure
conservative results:

𝑡𝑠 = 𝐿𝑐

√
𝜌

𝐸1
(3.24)

where 𝐿𝑐 is the characteristic length of the FEs, defined as the radius of the circumference inscribed to
the elements, and 𝜌 is the material density.

The strain results from the FE analysis are compared to those obtained from the CLT. The goal is to
ensure that the error in strain between the two models decreases as the loading conditions approach the
static conditions of the CLT. Figure (3.19) illustrates the strain error between the FE analysis and the
CLT at different load rates. The convergence of strain results between the two models by reducing load
rates verifies the accuracy of the implemented orthotropic stress-strain equations.

3.3.2. Novel Damage Formulation Verification
This sub-section aims to verify the novel damage formulation implemented in sub-section (3.2.2) by
comparing the results of a FEM built upon this novel formulation with analytical results for a simple
configuration consisting of two elements joined by a cohesive interface.

The analytical results are derived for the configuration depicted in figure (3.20). The figure illustrates
two triangular elements joined by a cohesive interface of infinitesimal thickness. It is assumed that
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(b) Fracture Initiation for Novel Implementation

Figure 3.16: The fracture initiation criterion differs between the standard and the novel damage implementations. In the standard case,
fracture initiation is determined by evaluating the effective traction 𝑡𝑒 𝑓 𝑓 , which is derived from both the normal and transverse traction

components 𝑡𝑛 and 𝑡𝜏, along with the mixed-mode coefficient 𝛾, and the friction coefficient 𝜂. If 𝑡𝑒 𝑓 𝑓 surpasses the cohesive strength 𝜎𝑐 of the
numerical interface, fracture initiation occurs, and the variable 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑒𝐹𝑟𝑎𝑐𝑡𝑢𝑟𝑒 is flagged as 𝑌𝐸𝑆. Otherwise, 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑒𝐹𝑟𝑎𝑐𝑡𝑢𝑟𝑒 is set to
𝑁𝑂. For the novel case, fracture initiation depends on the traction components parallel and transverse to the fiber direction 𝑡∥ and 𝑡⊥. The
signs of 𝑡∥ and 𝑡⊥ are assumed to be controlled by 𝑡𝑛 . 𝑡∥ is compared to the lamina tensile strength for fracture transverse to the fiber direction
𝜎𝑐⊥ , and 𝑡⊥ is compared to the lamina tensile strength for fracture parallel to the fiber direction 𝜎𝑐∥ . Upon either traction component reaching
its respective strength fracture initiation occurs, and the variable 𝑠𝑒𝑡𝐴𝑐𝑡𝑖𝑣𝑒𝐹𝑟𝑎𝑐𝑡𝑢𝑟𝑒𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 is adjusted based on the active fracture

mechanism, with 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑒𝐹𝑟𝑎𝑐𝑡𝑢𝑟𝑒 set to 𝑌𝐸𝑆. If neither 𝑡∥ and 𝑡⊥ reaches its respective strength, 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑒𝐹𝑟𝑎𝑐𝑡𝑢𝑟𝑒 is set to 𝑁𝑂.



3.3. Verification against Analytical Model 28
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(b) Fracture Evolution for Novel
Implementation

Figure 3.17: The fracture evolution differs between the standard and novel damage implementations. In the standard TSL, the effective
opening Δ𝑒 𝑓 𝑓 is computed based on both the openings normal and tangent to the numerical interface Δ𝑛 and Δ𝜏, and subsequently, the

effective traction 𝑡𝑒 𝑓 𝑓 is calculated using the linear extrinsic DG TSL 𝑡𝑒 𝑓 𝑓 - Δ𝑒 𝑓 𝑓 . Finally, the effective traction vector 𝒕 𝑒 𝑓 𝑓 is determined
considering contributions from both Δ𝑛 and Δ𝜏. In contrast, for fiber_matrix_cohesive_dg, no shear contributions are considered. The

effective virtual opening Δ∗
𝑒 𝑓 𝑓

is assumed to be equal to the virtual opening Δ∗
𝑛 normal to the active virtual interface. Similarly, the effective

virtual traction vector 𝒕∗
𝑒 𝑓 𝑓

is aligned with the unit normal vector 𝒏∗ to the active virtual interface.

Figure 3.18: Mesh considered for verifying the orthotropic stress-strain equations. 4 triangular FEs are considered. The characteristic length
𝐿𝑐 is estimated as the radius of the inscribed circumference to the FEs. The BCs specified in terms of forces per unit width 𝑁𝑥 , 𝑁𝑦 , 𝑁𝑥𝑦

according to the CLT are converted into concentrated forces for the FEM analysis and applied as Neumann BCs at the mesh boundary nodes.
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Figure 3.19: Strain error between the FEM and the CLT at different load rates. As shown, the strain error between the two models diminishes
as the load rate decreases, approaching the static loading conditions of the CLT.

the two elements follow a linear elastic stress-strain relation and are made of an isotropic material
of Young’s modulus 𝐸. The cohesive interface possesses cohesive fracture properties 𝜎𝑐 and 𝐺𝑐 . A
displacement 𝒅 is applied at the right node of the right element, while the displacement at the left node
of the left element is set to 0. As a consequence of the applied displacement, the two elements start to
deform elastically, resulting in the emergence of a tensile traction 𝝈 normal to the cohesive interface.
Once the traction reaches the cohesive strength 𝜎𝑐 of the interface, this begins to open by a quantity 𝛿,
and fails completely when the critical opening 𝛿 = 𝛿𝑐 is reached. According to the linear stress-strain

Figure 3.20: Reference configuration for the verification of the anisotropic damage formulation. Two triangular elements of size 𝐿 are joined
by a cohesive interface, highlighted in pink. A displacement 𝒅 is applied to the right node, while the left node is kept fixed. The elements have
Young’s modulus 𝐸, and the cohesive interface has cohesive strength 𝜎𝑐 and cohesive fracture toughness 𝐺𝑐 . 𝛿 represents the opening of the

cohesive interface after fracture onset, and 𝝈 is the traction that arises at the cohesive interface.

assumption, the traction at the interface is given by

𝜎 = 𝐸𝜀 (3.25)

Before fracture onset of the cohesive interface, the contribution to 𝑑 is solely due to the elastic deforma-
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tion 𝑑𝑒 of the elements, as 𝛿 = 0 according to the extrinsic DG TSL:

𝑑 = 2𝑑𝑒 + 𝛿 = 2𝑑𝑒 , 𝑑 ≤ 𝑑𝑜𝑛 (3.26)

where
𝑑𝑜𝑛 =

√
2
𝐿𝜎𝑐
𝐸

(3.27)

represents the displacement at fracture onset. Before fracture onset, the strain at the right node is
estimated as

𝜀 =
𝑑𝑒

𝐿/
√

2
(3.28)

Substituting equation (3.28) into (3.25), we find:

𝑑𝑒 =
1√
2

𝐿𝜎
𝐸

(3.29)

Substituting (3.29) in (3.26), the traction before damage onset is given by

𝜎 =
1√
2

𝐸𝑑

𝐿
(3.30)

Considering the post-fracture regime, the opening 𝛿 of the cohesive interface is assumed to be regulated
by the linear extrinsic DG TSL:

𝛿 = 𝛿𝑐
(
1 − 𝜎

𝜎𝑐

)
(3.31)

Substituting (3.31) into equation
𝑑 = 2𝑑𝑒 + 𝛿 (3.32)

we obtain
𝜎 = (𝛿𝑐 − 𝑑)

𝐸𝑑

𝐿

𝐸𝜎𝑐

𝐸𝛿𝑐 −
√

2𝐿𝜎𝑐
(3.33)

Considering both equations before and after fracture onset ((3.30) and (3.33)), the TSL becomes:

𝜎(𝑑) =
{

1√
2
𝐸𝑑
𝐿 , 𝑑 ≤ 𝑑𝑜𝑛

(𝛿𝑐 − 𝑑)𝐸𝑑𝐿
𝐸𝜎𝑐

𝐸𝛿𝑐−
√

2𝐿𝜎𝑐
, 𝑑𝑜𝑛 < 𝑑 ≤ 𝑑𝑐

(3.34)

where
𝑑𝑐 = 𝛿𝑐 (3.35)

is the displacement at complete failure.
The FEM setup for the damage formulation verification includes the following:

• Weak formulation: The weak formulation of the equilibrium of linear momentum (C.7), which
forms the foundation of this DG/CZM FE formulation, is established. The equation is derived in
the appendix chapter (C);

• Spatial discretization: Triangular linear 2D FEs with translational DOFs for the nodes 𝑢𝑥 and 𝑢𝑦
are selected;

• Time Discretization: An explicit Newmark solver is employed for time discretization. The
displacement rate is adjusted to achieve quasi-static simulation conditions closely matching the
static loading conditions assumed for the analytical configuration of figure (3.20). The stable time
step for the chosen dynamic solver is estimated in equation (3.24);

• Material assignment: The bulk elements are assigned isotropic material properties, while the
cohesive interface between the two elements is set to behave according to the novel damage
formulation of function fiber_matrix_cohesive_dg;

• BCs assignment: Dirichlet BCs are prescribed at the left and right nodes of the mesh.
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The verification was done in incremental steps to facilitate the development the FEM setup. Initially,
the simulation was conducted up to 𝑑 < 𝑑𝑜𝑛 , without including the cohesive interface, allowing for the
verification of the FE setup in the pre-fracture regime. Upon achieving a match between the results of
the two models, the investigation extended to the post-fracture regime by incorporating the cohesive
interface. Initially, the interface material was defined according to the cohesive_dg function, enabling
the verification of the FE setup also in the post-fracture regime. Once the results of the two models
aligned, the analysis progressed to the novel interface material defined in fiber_matrix_cohesive_dg. The
simulation was conducted with two different fiber orientations: parallel and transverse to the cohesive
interface. It is noted that selecting a fiber angle other than these two would render it impossible to
define the cohesive fracture properties for the cohesive interface in the analytical formulation. The two
specific analytical configurations for the verification are illustrated in figure (3.21). It is also noted that
for the configuration of figure (3.20), the opening is a pure mode I opening, as the traction is transverse
to the interface. This means that, even if mode I opening is assumed in the novel damage formulation
(sub-section (3.1.3)), fiber_matrix_cohesive_dg and cohesive_dg functions are expected to yield the same
results here.

(a) Cohesive Interface Parallel to Fibers

(b) Cohesive Interface Transverse to Fibers

Figure 3.21: Special analytical configurations for novel damage formulation verification. The fiber direction is indicated in green and can be
either parallel or transverse to the cohesive interface. Consequently, the Young’s modulus of the elements is set to either the minor or the major
Young’s modulus 𝐸2 or 𝐸1, and the cohesive fracture properties of the interface are set equal to the lamina tensile fracture properties parallel or

transverse to the fiber direction 𝜎𝑐∥ and 𝐺𝑐∥ , or 𝜎𝑐⊥ and 𝐺𝑐⊥ .

3.4. Validation against Experimental Data
This section outlines the process for validating the novel CZM damage formulation for arbitrary damage
in composites developed in this work. To accomplish this, the novel damage formulation is incorporated
into the DG/CZM framework available in Summit-lite. Subsequently, the FEM utilizing the novel
formulation is employed to simulate damage in composite laminates subjected to Compact Tension
(CT) testing. The results obtained from the numerical model are then compared to experimental data
sourced from relevant literature.

The subsequent sub-section details the experimental setup for the CT test, which serves as the
reference for validating the method. Guided by the experiment specifications, the numerical setup is
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established to ensure its assumptions align with the experimental conditions.

3.4.1. Experimental Setup
In this sub-section, the experimental setup by Jose et al. [33] is presented. The experiment involved CT
tests of Uni-Directional (UD) laminates. Two types of laminates, each consisting of 30 plies, were tested:
a [90◦]30 laminate, with the fiber direction perpendicular to the applied load, and a [0◦]30 laminate,
with the fiber direction parallel to the applied load. It is important to note that the convention used for
[90◦]30 and [0◦]30 in this thesis is opposite to that used in the article. FD curves were derived from the
two CT tests, which serve as experimental references for the numerical results obtained from the novel
DG/CZM setup discussed in sub-section (3.4.2).

The CT test of composites is one of the methods adopted for evaluating their material fracture
properties. According to Monticeli et al. [34], one of the primary objective of CT tests is to determine
the fracture toughness of the laminate under examination. In CT specimens, a pre-notch is created
at the middle of one edge of the laminate, along with two holes drilled at an equal distance from the
notch. The test involves the application of an equal force to the two holes using tensile clevises. The
damage mechanisms induced by this loading include matrix damage parallel to the fiber direction, as
well as simultaneous fiber and matrix cracking transverse to the fiber direction. Monticeli et al. [34]
provide an extensive review of the CT test of composites, inclusive of the fracture mechanisms that can
be observed according to the specific test settings.

The specimen geometry is illustrated in figure (3.22). Concerning the notch geometry, initially, a

𝑎 𝑊 𝐵

Dimension (mm) 25.4 50.8 3.0

Figure 3.22: The geometry of the CT specimens in the article’s experiment is defined by the parameters 𝑎, 𝑊 , 𝐵. Figure credits:
Jose et al. [33].

straight notch is created using a straight head disc cutter of 1.5𝑚𝑚 thickness, followed by refining with
a razor blade to achieve a symmetric and sharp starter notch.

The plies composing the laminates are made of M55J/M18 carbon/epoxy material. The elastic and
fracture properties of this material are presented in table (3.1). It is worth noting that 𝜌 and 𝜈23 from
table (3.1) have been estimated from sources other than the article, with their values observed to have
a minimal effect on the numerical results obtained from the novel model setup in sub-section (3.4.2).
Additionally, the mode I tensile fracture toughnesses of the lamina, denoted as 𝐺𝑐∥ and 𝐺𝑐⊥ , have been
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Parameter Value
𝜌 1610.0 𝐾𝑔/𝑚3

𝐸1 329.0 𝐺𝑃𝑎
𝐸2 6.0 𝐺𝑃𝑎
𝐺12 4.4 𝐺𝑃𝑎
𝜈12 0.346
𝜈23 0.500
𝜎𝑐∥ 22.0 𝑀𝑃𝑎

𝜎𝑐⊥ 1327.0 𝑀𝑃𝑎

𝐺𝑐∥ 0.168 𝐾𝐽/𝑚2

𝐺𝑐⊥ 31.678 𝐾𝐽/𝑚2

Table 3.1: Material parameters for a M55J/M18 carbon/epoxy lamina.
𝜌: density of the lamina; 𝐸1, 𝐸2, 𝐺12, 𝜈12, 𝜈23: elastic properties of the lamina; 𝜎𝑐∥ , 𝜎𝑐⊥ : tensile strengths of the lamina; 𝐺𝑐∥ , 𝐺𝑐⊥ :

mode I tensile fracture toughnesses of the lamina.

estimated using mode I fracture toughness Finite Element (FE) results provided in Jose et al. [33]’s
article:

𝐺𝑐∥ = 𝐺𝐼𝑐[90◦]30

𝐺𝑐⊥ = 2𝐺𝐼𝑐[0◦/90◦]15 −𝐺𝐼𝑐[0◦]30 (3.36)

𝐺𝑐⊥ in equations (3.36) is derived by assuming that the energy released by the cross-ply laminate tested
in the article equals the sum of the energy released by half of its plies failing due to simultaneous fiber
and matrix tensile failure and the other half failing due to matrix tensile failure.

The tests are conduced using an Instron machine, with two pins inserted into the specimen’s holes.
A quasi-static load is applied to one pin, while the other remains fixed. Specifically, the applied load
rate is 3 𝑘𝑔/𝑚𝑖𝑛 for the [90◦]30 laminate and 25 𝑘𝑔/𝑚𝑖𝑛 for the [0◦]30 laminate.

Regarding the experimental results, in both cases, matrix cracking is observed to align with the fiber
direction, as depicted in figure (3.23). No fiber cracking is reported in either case. It is also noted that no
delamination between plies occurs. Two FD curves are generated from the two laminates, as illustrated

(a) 90 Laminate Crack (b) 0 Laminate Crack

Figure 3.23: Crack surfaces observed in the [90◦]30 and [0◦]30 CT tests. In the [90◦]30 laminate a mode I crack occurs, as the crack surface is
transverse to the applied load. Conversely, in the [0◦]30 laminate, a mode II crack occurs, as the crack surface is parallel to the applied load.
Both fractures involve matrix cracking alone, with no fiber fracture. Also, in both cases, cracking occurs along the fiber direction. Figure

credits: Jose et al. [33].

in figure (3.24). It is noteworthy that the displacement in these curves is measured in terms of COD,
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(a) 90 Laminate FD Curve

(b) 0 Laminate FD Curve

Figure 3.24: FD curves generated from the CT specimens depict the force applied at the pin versus the COD far end to the crack tip. Figure
credits: Jose et al. [33].
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with readings obtained by applying a clip gauge between the two gauge blocks shown in figure (3.25).

Figure 3.25: Illustration of the measurement of the COD at the far end to the crack tip. A clip gauge is positioned between the gauge blocks in
the figure to ensure the measurement. Figure credits: Jose et al. [33].

3.4.2. Numerical Setup
To validate the novel damage formulation verified in sub-section (3.3.2), this was integrated into
the DG/CZM framework available in Summit-lite, along with the orthotropic stress-strain equations
(appendix chapter (A)). The resulting numerical model illustrated in this sub-section was then validated
against the experimental data presented in sub-section (3.4.1). This sub-section outlines the novel
numerical model setup, along with its underlying assumptions.

The numerical model involves several key components:

• Weak formulation: The weak formulation of the equilibrium of linear momentum (C.7), which
forms the foundation of this DG/CZM FE formulation, is established. The equation is derived in
the appendix chapter (C);

• Spatial discretization: A mesh with no bias direction is employed to allow for arbitrary intra-
laminar damage. Triangular quadratic DG 2D FEs with translational DOFs for the nodes 𝑢𝑥
and 𝑢𝑦 are selected. The mesh size is adjusted based on the expected regions of damage from
experimental results. The mesh adopted is shown in figure (3.26);

• Time discretization: An explicit Newmark solver is employed for time discretization. The load
rate is adjusted to achieve quasi-static simulation conditions matching the loading conditions
of the experimental setup. The stable time step for the chosen dynamic solver is estimated in
equation (3.24), being 𝐿𝑐 the lowest characteristic length among all the FEs of the mesh;

• Material assignment: The orthotropic material is assigned to the bulk elements of the mesh,
while the novel damage formulation is assigned to the cohesive elements at the mesh internal
boundaries;

• BCs Assignment: The BCs are applied at the nodes where the pins are assumed to be in contact
with the specimen. A horizontal force is applied as a Neumann BC at the right hole, while Dirichlet
BCs are prescribed at the left hole to keep it fixed. The BCs imposed are illustrated in figure (3.26);

• Parallel implementation: Parallel implementation is preferred to serial implementation due to the
high number of DOFs of the mesh, allowing simulations to run much faster by taking advantage
of multiple Central Processing Units (CPUs).

The mesh size is determined as 𝑙𝑚𝑠 = 𝑙𝑐𝑧/3 in regions where damage is expected based on experimental
results, and 𝑙𝑚𝑠 = 𝑤/10 where damage is not expected. Here, 𝑙𝑐𝑧 represents the length of the cohesive
zone, and 𝑤 is a geometrical parameter defined in figure (3.22). Considering matrix cracking alone, as
observed in both tests in sub-section (3.4.1), Turon et al. [35] estimate 𝑙𝑐𝑧 using Hillerborg’s model:

𝑙𝑐𝑧 =
𝐸2𝐺𝑐∥

𝜎2
𝑐∥

(3.37)
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To accurately capture cohesive fracture, Pascoe et al. [36] suggest that at least 3 elements should be
present along the cohesive zone. This reflects on the choice for 𝑙𝑚𝑠 .

It is highlighted that the DG formulation chosen for the numerical setup is best suitable for parallel
implementation as it does not require mesh redefinition upon cracking, unlike the Continuous Galerkin
(CG) formulation.

Regarding the laminate material model, the single lamina orthotropic model implemented in sub-
section (3.2.1) is selected. This choice is based on the fact that both laminates from the tests in sub-section
(3.4.1) are UD laminates, with no delamination occurring between their plies. Additionally, the plane
stress mode is chosen due to the laminate’s thickness being significantly smaller compared to its other
dimensions.
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(a) Mesh and BCs for the CT Specimen

(b) Detail of Mesh Size where Fracture is Expected

Figure 3.26: Mesh and BCs considered for the numerical model of the CT specimens. The mesh is designed to be fine in regions where fracture
is expected based on experimental observations and coarse elsewhere. A horizontal force 𝑭 is applied to the right hole to simulate the load

applied through the pin, while the left hole is kept fixed.



4
Results and Discussion

This chapter presents the results of the verification (performed in sub-section 3.3.2) and validation
(illustrated in sub-section (3.4.2)) of the novel damage formulation for arbitrary damage in composites.
The results are critically discussed, assessing the potential and the limitations of the new method.

4.1. Verification Results
The verification results for the the two interface configurations in sub-section (3.3.2) are illustrated
in the graphs of figure (4.1). These graphs qualitatively demonstrate the error between the Finite
Element (FE) formulation and the analytical formulation in terms of traction at the cohesive interface
versus displacement applied at the right node of the model. The parameters selected for the analytical
curves in figure (4.1) are summarized in table (4.1). The results indicate that setting a sufficiently low
displacement rate 𝑑𝑟 enables the traction-displacement curves for the two models to closely match.
Small deviations from the analytical curve may be observed due to dynamic effects related to the chosen
dynamic solver, especially upon damage onset, with these deviations expected to decrease further with
a reduced 𝑑𝑟 .

Parallel Transverse
𝐸 10.3𝐺𝑃𝑎 147.0𝐺𝑃𝑎
𝜎𝑐 57.0𝑀𝑃𝑎 2280.0𝑀𝑃𝑎

𝐺𝑐 0.2𝐾𝐽/𝑚2 50.0𝐾𝐽/𝑚2

𝐿
√

2/10𝑚𝑚
√

2𝑚𝑚

Table 4.1: Parameters chosen for the analytical curves of figure (4.1).

It is noted that despite the errors in the novel damage formulation, specifically the improper
definition of the vectors normal to the virtual cohesive interfaces and the incorrect sign correction of
opening and traction components (detailed in sub-section (3.1.3)), the verification results appears to be
correct.

Based on observations made in figure (4.2) an explanation is provided for why the verification
results are correct despite the incorrect novel damage formulation. Firstly, it is highlighted that the
verification results have been presented for the left element of figure (3.20), denoted as Ω+. Considering
the simultaneous fiber and matrix cracking scenario, the (wrong) parallel unit vector 𝒏∥ points in the
same direction as the (correct) unit outward vector 𝒏+

∥ normal to the transverse virtual interface 𝑠+⊥,
indicating that the parallel components 𝑡+∥ and Δ+

∥ implemented are correctly defined. Additionally,
having 𝑡+∥ and Δ+

∥ the same sign as the normal traction and opening 𝑡+𝑛 and Δ+
𝑛 defined according to

the standard decomposition, the sign of 𝑡+∥ and Δ+
∥ is left unaltered by the (wrong) sign correction.

This explains why the verification for the cohesive interface transverse to the fiber direction does not
present issues. However, for the case of the cohesive interface parallel to the fiber direction, it is pointed
out that the (incorrect) transverse unit vector 𝒏⊥ points in the opposite direction to the (correct) unit
outward vector 𝒏+

⊥ normal to the parallel virtual interface 𝑠+∥ , leading to the transverse components 𝑡+⊥

38
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(a) Parallel interface configuration

(b) Transverse interface configuration

Figure 4.1: Comparison between the numerical and the analytical solution for the damage formulation verification. The numerical results are
shown for the left element of figure (3.20). The figures qualitatively show the difference between the two solutions in terms of traction at the

cohesive interface versus the displacement applied at the right node of the model.



4.2. Validation Results 40

and Δ+
⊥ being defined with the wrong sign. Additionally, due to these 𝑡+⊥ and Δ+

⊥ components having the
opposite sign compared to the normal traction and opening 𝑡+𝑛 and Δ+

𝑛 , 𝑡+⊥ and Δ+
⊥ are reversed in sign

during the (wrong) sign correction. Consequently, the verification for the cohesive interface parallel to
the fiber direction appears to be correct despite the double mistake in the novel damage formulation.

It is noted that similar observations regarding the verification results could be made by considering
the element Ω−

Figure 4.2: The verification outcomes for the Ω+ element, as illustrated in figure (4.1), remain accurate for both cohesive interfaces parallel
and transverse to the fiber direction, despite the errors within the implemented damage formulation. These errors concern the sign definition of
vectors 𝒏∥ and 𝒏⊥, affecting the sign of components 𝑡+∥ , Δ+

∥ , 𝑡+⊥, and Δ+
⊥ evaluated on the virtual interfaces 𝑠+⊥ and 𝑠+∥ , and the (incorrect)

sign correction of 𝑡+∥ , Δ+
∥ , 𝑡+⊥ and Δ+

⊥ based on the sign of 𝑡+𝑛 and Δ+
𝑛 .

While the specific verification case examined in this study yielded satisfactory results, it’s important
to acknowledge the possibility of traction components at the virtual interfaces being defined with
incorrect signs, even after the wrong sign adjustments. Such mismatch in sign could lead to cohesive
interfaces opening when they should not or failing to open when they should. To exclude this potential
issue and ensure the mismatch does not influence validation results presented in section (4.2), it
is advisable to repeat the verification procedure with additional configurations where the traction
components are defined with the wrong sign after sign adjustments. This would help establish the
effect of the errors identified in the novel damage formulation.

4.2. Validation Results
Continuing with the examination of the results obtained for the novel Discontinuous Galerkin Cohesive
Zone Model (DG/CZM) implemented in sub-section (3.4.2), aimed at replicating the experimental
outcomes presented in sub-section (3.4.1), this section will analyze both the Force-Displacement (FD)
curves and the numerical crack evolution.

Let’s first compare the numerical and experimental FD curves depicted in figure (4.3). It is immedi-
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ately apparent that the stiffness of the numerical curves does not match the experimental data retrieved
from figure (3.24) even before damage onset when the novel damage formulation is not involved at all.
The mismatch in stiffness before damage onset prompted an investigation into parameters related to
the pre-fracture regime, excluding those solely related to the post-fracture regime:

• Material model definition: The orthotropic material model considered for validation is imple-
mented in sub-section (3.2.1) and verified in sub-section (3.3.1). Since this model was successfully
verified, it is not considered the cause of the stiffness mismatch;

• Crack Opening Displacement (COD) definition: The COD estimation in the numerical model is
based on the difference in displacement of the two nodes at the opposite end to the crack tip,
instead of the clip gauge reading done in the experiment and depicted in figure (3.25). However,
this difference was proven not to significantly influence the stiffness;

• Pre-crack geometry definition: The pre-crack definition as a line with virtually no thickness,
instead of a 1.5𝑚𝑚 thick notch as in the experiment of Jose et al. [33], was not considered
responsible for the difference in the slope of the curves;

• Material parameters selection: The variation of the material parameters 𝜌 and 𝜈23, which are the
only ones not retrieved from Jose et al. [33] but estimated in the present work, had a minor effect
on the slope of the FD curves;

• Plane stress assumption: The thickness of the specimens being about 20 times smaller than the
other dimensions, the plane stress mode assumed for the numerical model is not expected to
deviate significantly from the 3D mode;

• Loading rate: Even with loading rates lower than those considered in the experiments of Jose et
al. [33], no significant improvements on the stiffness were observed;

• Mesh size: Alternatively to implementing a coarse mesh in areas where damage is not anticipated,
as illustrated in figure (3.26a), the mesh size of the entire specimen was selected to be sufficiently
fine to ensure at least 3 FEs along the cohesive length 𝑙𝑐𝑧 , as estimated in equation (3.37). However,
despite the refinement in these areas, no major effects on stiffness were observed;

• Element order: Elements of order up to cubic order were used, but they did not show appreciable
improvement in stiffness compared to the quadratic elements used for the simulations whose
results are shown.

Despite all the efforts in tracking down the issues, the discrepancy in the pre-fracture regime of the FD
curves remains an open question.

Since the post-fracture results rely on pre-fracture results, any quantitative mismatch might propa-
gate into the pre-fracture results as well. For this reason, the quantitative mismatch in the post-fracture
regime is not analyzed. Instead, qualitative observations on damage behavior are provided through the
visualization of the crack evolution.

Regarding the crack evolution for the [90◦]30 laminate depicted in figure (4.4), the numerical crack
tends to follow the expected crack propagation observed in the experimental results illustrated in figure
(3.23a). However, for the [0◦]30 laminate shown in figure (4.5), cracks propagate in two main directions,
slightly biased towards the positive 𝑦 direction. This contrasts with the experimental results shown in
figure (3.23b), where the crack propagates along a single main direction parallel to the fiber direction.

The following remarks are made on the visualization of the numerical crack propagation:

• Stiffness mismatch in pre-fracture regime: Discrepancies observed in the pre-fracture FD curves,
as illustrated in figure (4.3), might propagate into the post-fracture regime, casting doubt on the
reliability of fracture behavior observations;

• Errors in novel damage formulation implementation: The results of figures (4.4) and (4.5), might
be affected from errors in the novel damage formulation (sub-section (3.1.3)), namely the improper
definition of the unit vectors normal to the virtual interfaces, together with the parallel and
transverse opening and traction components, and the wrong sign correction applied to the parallel
and transverse traction and opening components based on the sign of the components in the
standard damage formulation. As pointed out in section (4.1), the mismatch in sign for the traction
components could lead to cohesive interfaces opening when they should not or failing to open
when they should;
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(a) 90 laminate FD curves

(b) 0 laminate FD curves

Figure 4.3: The comparison between numerical and experimental FD curves for both the [90◦]30 and [0◦]30 laminates reveals a substantial
discrepancy in stiffness. The numerical plot for the [90◦]30 laminate exhibits evident waviness, attributed to an excessively high load rate.
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Applied Load 𝐹 = 22.84𝑁 Applied Load 𝐹 = 24.08𝑁

Applied Load 𝐹 = 24.42𝑁 Applied Load 𝐹 = 25.10𝑁

Figure 4.4: Numerical crack evolution for the [90◦]30 laminate shown at different values of the applied load 𝑭 . To aid visualization of the
crack, the displacement vector has been magnified by 20 times. 𝜎0 represents the 𝜎𝑥 stress in 𝑃𝑎 for the plane stress laminate of the simulation,

considered to be 1𝑚 thick. These stress values need to be scaled by the thickness ratio between the numerical thickness and that of the
experiment. It is noted that the crack consists of matrix cracking only, and overall evolves along the fiber direction as expected from

experimental data.
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Applied Load 𝐹 = 54.94 N Applied Load 𝐹 = 55.22 N

Applied Load 𝐹 = 55.50 N Applied Load 𝐹 = 56.06 N

Figure 4.5: Numerical crack evolution for the [0◦]30 laminate shown at different values of the applied load 𝑭 . To aid visualization of the crack,
the displacement vector has been magnified by 20 times. 𝜎0 represents the 𝜎𝑥 stress in Pa for the plane stress laminate of the simulation,

considered to be 1𝑚 thick. These stress values need to be scaled by the thickness ratio between the numerical thickness and that of the
experiment. It is noted that the crack consists of matrix cracking only, and overall does not evolve along the fiber direction as expected from
experimental data. Instead, there is a slight bias for the propagation along the 𝑦 positive direction. Moreover, in contrast to experiments, the

crack propagates along two distinct main directions, instead of one.
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• Novel damage formulation assumptions: It is likely that crack evolution is sensitive to the assump-
tions underlying the novel damage formulation (sub-section (3.1.3)), especially the neglect of shear
opening effects. Taking into account these effects through a renewed and more comprehensive
verification process considering interface configurations opening due to shear would probably
improve both crack initiation and evolution results;

• Matrix cracking only: In both configurations depicted in figures (4.4) and (4.5), it is emphasized
that only matrix cracking occurs. It is important to note that cracks appearing to cross the fiber
direction are attributed to the assumptions underlying the novel damage formulation. This
formulation relies on crack propagation along virtual interfaces parallel and transverse to the fiber
direction, which then translates into propagation along the actual numerical interfaces. This may
result in artificial propagation of matrix cracks across the fiber direction. By refining the mesh size,
this tendency within the novel damage formulation framework is assumed to gradually diminish,
aligning more closely with crack propagation observed in experiments;

• Propagation bias towards 𝑦 direction for [0◦]30 laminate: As shown in figure (4.5), the crack
propagation for the [0◦]30 laminate exhibits a slight bias towards the 𝑦 positive direction instead
of being along the 𝑥 direction as observed in experiments. This bias may be caused by a mesh
that is too structured, as indicated in figure (4.6) where many consecutive interfaces for the [0◦]30
laminate are oriented along the same direction, limiting freedom for crack propagation along an
average horizontal direction parallel to the fibers;

• Propagation along two distinct main directions for [0◦]30 laminate: In the experimental case
depicted in figure (3.23b), crack growth for laminate [0◦]30 occurs predominantly along a single
direction. However, in the numerical simulation, the crack propagates in two distinct main
directions. One possible explanation for this disparity could be the presence of material imperfec-
tions in real-world scenarios, which disrupt the symmetrical crack propagation of the numerical
simulation and favor one direction over the other.

Figure 4.6: Detail of the overly structured mesh for laminate [0◦]30 which could potentially contribute to bias in crack propagation towards
the positive 𝑦 direction. It is evident that many consecutive interfaces where crack occurs are aligned in the same direction. This alignment

may restrict the freedom of crack propagation along an average horizontal direction parallel to the fibers.
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Conclusions

In this study, a novel Cohesive Zone Model (CZM) damage formulation for arbitrary fracture in
composites was developed (sub-section (3.1.3)), implemented in the Summit-lite research code (section
(3.2)), and verified against an analytical model (section (3.3)). Additionally, qualitative and quantitative
validation against experimental data was conducted (section (3.4)).

The verification results (section (4.1)) initially suggested that the novel method accurately reproduces
fracture onset and evolution for a cohesive interface under a tensile load transverse to it. However,
subsequent analysis revealed errors in the novel damage formulation (sub-section (3.1.3)), particu-
larly concerning the sign of the opening and traction components. Despite these errors, the specific
verification case yielded satisfactory results as the errors partially cancelled each other out.

As the verification was assumed to be successful initially, a validation was conducted. The novel
damage formulation qualitatively captures the fracture behavior observed in experimental data, but
falls short in quantitative agreement (section (4.2)).

The qualitative visualization of crack evolution demonstrates that the novel method reproduces
the overall damage pattern observed in Compact Tension (CT) test of composite Uni-Directional (UD)
laminates. Nonetheless, there are noticeable issues with crack propagation in the [0◦]30 laminate,
especially a slight bias towards a direction transverse to the fiber direction. This issue may be related to
overly-structured meshes which may cause biases in the crack propagation, or to the errors in the sign
definition of opening and traction components in the novel damage formulation, and to its possibly over
simplistic assumptions. These two concerns about the novel damage formulation should be addressed
with a renewed and more comprehensive verification process that establishes their effects on the results.

Quantitative comparisons of Force-Displacement (FD) curves reveal discrepancies from the pre-
fracture regime onwards, indicating that they are not entirely influenced by the novel damage formula-
tion, and not at all up to fracture onset. Reasons for the errors in quantitative agreement before fracture
initiation were thoroughly investigated (4.2), but specific causes could not be identified. The reasons
for the quantitative mismatch in the post-fracture regime are assumed to be the the same as for the
qualitative mismatch, and possibly also due to errors in the pre-fracture regime, as the post-fracture
results rely on pre-fracture results.

Reflecting on the research question formulated in section (2.3) and reported here for convenience,
an answer to it is now provided:
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How can a novel CZM-based damage formulation be developed to facil-
itate arbitrary intra-laminar damage development by distinguishing be-

tween damage mechanisms based on the stress state of the laminate?

The novel damage formulation allows for arbitrary intra-laminar damage devel-
opment based on the lamina stress state by decomposing numerical interfaces,

along with the opening and traction acting on them, into parallel and transverse
directions relative to the fiber direction of the lamina. Opening and traction

components perpendicular to the virtual numerical interface aligned with the
fiber direction are assumed to contribute to matrix damage along the fiber direc-
tion. Conversely, components perpendicular to the virtual numerical interface

transverse to the fiber direction are assumed to contribute to simultaneous fiber
and matrix damage transverse to the fiber direction. By assuming that damage

virtually propagates along these virtual interfaces, where numerical fracture
properties are known, and by considering the discrepancy in energy dissipa-

tion caused by the mismatch in length between the numerical interface and the
virtual interface experiencing fracture, it becomes possible to model damage

along arbitrary numerical interfaces solely based on the structural stress state.

In summary, the damage formulation developed in this study shows promise in qualitatively
capturing arbitrary damage in composites based solely on the structural stress state. However, to assess
the method suitability and validate its underlying assumptions, achieving a quantitative match between
numerical simulations and experimental data is essential. Several factors contribute to the quantitative
mismatch observed, including unidentified issues in the pre-fracture regime that require resolution.
Additionally, errors in the sign of the opening and traction components, together with potentially
overly simplistic assumptions of the novel damage method, contribute to the discrepancy. To ensure the
accuracy and reliability of numerical results, a more comprehensive verification procedure should be
developed. This procedure will assess the effects of these damage formulation errors and assumptions,
helping to exclude any negative impact on the numerical outcomes of this work.



6
Recommendations

Based on the conclusions outlined in chapter (5), the following recommendations are provided:

• Ensure consistency in pre-fracture Force-Displacement (FD) curves: It is crucial to ensure consis-
tency between the pre-fracture portions of numerical and experimental FD curves to effectively
validate the novel damage formulation. Discrepancies observed in this stage may propagate into
the post-fracture regime, potentially impacting the evaluation of the novel damage formulation’s
suitability to capture arbitrary intra-laminar damage in composites based on the structural stress
state. To address this, a thorough examination of critical points mentioned in section (4.2) should
be conducted. Additionally, verifying the reasonableness of test data from Jose et al. [33]’s article
and assessing their compatibility with the numerical model assumptions of sub-section (3.4.2)
is essential. Considering data from alternative sources or conducting new experiments may be
necessary if discrepancies persist;

• Maintain consistency in post-fracture FD curves: Once quantitative agreement in the pre-fracture
regime is achieved, it is possible to check for agreement in the post-fracture regime. Apart from
errors in the pre-fracture regime, other elements are likely to influence the post-fracture results.
To enhance accuracy:

1. Address errors in novel damage formulation: Upon closer inspections, it was realized that
mistakes in the sign of opening and traction components have been made in the novel damage
formulation outlined in sub-section (3.1.3). These errors can be addressed by adjusting the
unit normal vectors to the virtual interfaces, ensuring they point outward with respect to
the Finite Element (FE) region. With this adjustment, there is no requirement to correct
the sign of the opening and traction components based on those obtained for the standard
decomposition, as mistakenly done in the present work. Unfortunately, these problems were
not identified during the verification process outlined in section (3.3), leading to validation
being conducted for the novel method containing errors. To ascertain that these errors do
not adversely affect validation results, a more comprehensive verification process should
be undertaken. This process should involve considering additional interface configurations
with inverted traction components. By assessing the impact of these errors, particularly in
terms of interfaces either erroneously initiating fracture or failing to initiate it when necessary,
we can gain a deeper understanding regarding whether there were instances in the validation
process where cohesive interfaces behaved incorrectly. Such insights are crucial for ensuring
the reliability of the validation results;

2. Revisit novel damage formulation assumptions: It is prudent to reconsider the assumptions
underlying the novel damage formulation, as they may be overly simplistic and potentially
unsuitable for accurately capturing experimental data from relevant literature. Specifically,
reevaluating the contribution of both transverse and parallel components to the opening
of virtual numerical interfaces, thereby incorporating a mixed-mode opening contribution
rather than solely mode I as assumed in this study, could enhance the accuracy of damage
simulation results. A renewed verification process could be developed to extend to interface
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configurations opening under mixed-mode, allowing for observation of new validation
results to assess whether the mode I opening assumption was overly simplistic or not;

3. Make the mesh more unstructured: To address the observed discrepancy in crack propagation
for the [0◦]30 laminate, especially the slight deviation from the fiber direction compared to
experimental data, employing a more unstructured mesh could be beneficial. This adjustment
would provide greater freedom for crack evolution, thereby aligning it more closely with the
expected crack path;

• Explore different fiber angles: Expanding simulations to include Uni-Directional (UD) laminate
configurations with fiber angles other than 90◦ and 0◦ would provide insights into whether
damage propagation patterns remain consistent across different orientations, showing damage
propagation along the fiber direction;

• Extension to impact damage modeling: Future research efforts should focus on expanding the
present approach to incorporate impact damage modeling, which is a significant concern in
aerospace applications. If successful, the model could effectively simulate impact damage in
composite laminates, encompassing both delamination and in-ply damage.
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A
Stress-Strain Equations for Composite

Lamina

The 3D stress-strain equations for a composite lamina are derived by referring to the book of Reddy
[37] as

𝝈(𝑥𝑦𝑧) =



𝜎𝑥
𝜎𝑦
𝜎𝑧
𝜎𝑦𝑧
𝜎𝑥𝑧
𝜎𝑥𝑦


=



𝑄11 𝑄12 𝑄13 0 0 𝑄16
𝑄12 𝑄22 𝑄23 0 0 𝑄26
𝑄13 𝑄23 𝑄33 0 0 𝑄36

0 0 0 𝑄44 𝑄45 0
0 0 0 𝑄45 𝑄55 0
𝑄16 𝑄26 𝑄36 0 0 𝑄66





𝜀𝑥
𝜀𝑦
𝜀𝑧
𝛾𝑦𝑧
𝛾𝑥𝑧
𝛾𝑥𝑦


= 𝑸𝜺(𝑥𝑦𝑧)

(A.1)

where the coefficients 𝑄𝑖 𝑗 are given by

𝑄11 = 𝑚4𝑄0
11 + 2𝑚2𝑛2(𝑄0

12 + 2𝑄0
66) + 𝑛

4𝑄0
22

𝑄22 = 𝑛4𝑄0
11 + 2𝑚2𝑛2(𝑄0

12 + 2𝑄0
66) +𝑚

4𝑄0
22

𝑄12 = 𝑚2𝑛2(𝑄0
11 +𝑄

0
22 − 4𝑄0

66) + (𝑚4 + 𝑛4)𝑄0
12

𝑄13 = 𝑚2𝑄0
13 + 𝑛

2𝑄0
23

𝑄23 = 𝑛2𝑄0
13 +𝑚

2𝑄0
23

𝑄33 = 𝑄0
33

𝑄16 = 𝑚3𝑛𝑄0
11 −𝑚𝑛

3𝑄0
22 + (𝑚𝑛3 −𝑚3𝑛)(𝑄0

12 + 2𝑄0
66)

𝑄26 = 𝑚𝑛3𝑄0
11 −𝑚

3𝑛𝑄0
22 + (𝑚3𝑛 −𝑚𝑛3)(𝑄0

12 + 2𝑄0
66)

𝑄36 = 𝑚𝑛(𝑄0
13 −𝑄

0
23)

𝑄44 = 𝑚2𝑄0
44 + 𝑛

2𝑄0
55

𝑄55 = 𝑛2𝑄0
44 +𝑚

2𝑄0
55

𝑄45 = 𝑚𝑛(𝑄0
55 −𝑄

0
44)

𝑄66 = 𝑚2𝑛2(𝑄0
11 +𝑄

0
22 − 2𝑄0

12) + (𝑚2 − 𝑛2)2𝑄0
66 (A.2)

The fiber angle 𝜃 dependence is expressed through the 𝑚 and 𝑛 parameters:

𝑚 = cos𝜃
𝑛 = sin𝜃 (A.3)
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The quantities

𝑄0
11 =

1 − 𝜈23𝜈32

𝐸2𝐸3Δ

𝑄0
22 =

1 − 𝜈13𝜈31

𝐸1𝐸3Δ

𝑄0
33 =

1 − 𝜈12𝜈21

𝐸1𝐸2Δ

𝑄0
12 =

𝜈21 + 𝜈31𝜈23

𝐸2𝐸3Δ

𝑄0
13 =

𝜈31 + 𝜈21𝜈32

𝐸2𝐸3Δ

𝑄0
23 =

𝜈32 + 𝜈12𝜈31

𝐸1𝐸3Δ

𝑄0
44 = 𝐺23

𝑄0
55 = 𝐺13

𝑄0
66 = 𝐺12 (A.4)

𝜈21 =
𝐸2

𝐸1
𝜈12

𝜈31 =
𝐸3

𝐸1
𝜈13

𝜈32 =
𝐸3

𝐸2
𝜈23

Δ =
1 − 𝜈12𝜈21 − 𝜈23𝜈32 − 𝜈31𝜈13 − 2𝜈21𝜈32𝜈13

𝐸1𝐸2𝐸3
(A.5)

𝐸3 = 𝐸2

𝐺13 = 𝐺12

𝜈13 = 𝜈12

𝐺23 =
𝐸2

2(1 + 𝜈23)
(A.6)

are functions of the lamina elastic parameters. 𝝈(𝑥𝑦𝑧) and 𝜺(𝑥𝑦𝑧) represent the stress and strain vectors in
the laminate coordinate system (𝑥𝑦𝑧), which may not necessarily coincide with the lamina reference
system denoted by (123). The stiffness matrix 𝑸 is a function of the fiber angle 𝜃, and the 5 independent
elastic properties of the lamina: 𝐸1, 𝐸2, 𝐺12, 𝜈12, 𝜈23. Several key assumptions underlie these stress-strain
equations:

• Elastic hypothesis: Stress is assumed to vary linearly with strain;
• Homogeneous material hypothesis: The lamina is treated as macroscopically homogeneous, with

its material properties derived from a weighted average of its constituent materials, namely the
fiber and the matrix constituents;

• Transverse isotropy hypothesis: Isotropic material properties are assumed in the plane transverse
to the fiber direction.

For further clarification, refer to the illustration of the laminate and lamina reference systems, and the
fiber angle provided in figure (A.1).
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Figure A.1: The fiber angle 𝜃 represents the deviation between the laminate reference system (𝑥𝑦𝑧) and the lamina reference system (123). In
this context, direction 1 is aligned with the fiber direction, depicted in green, while direction 2 is orthogonal to the fiber direction.



B
Classical Laminate Theory

The Classical Laminate Theory (CLT) provides an analytical framework for calculating strains and
stresses in a composite laminate. The present derivation of the CLT equations is based on the book of
Kassapoglou [38].

The CLT is based on several key assumptions:

• Plane stress mode assumption: The analysis assumes that the laminate experiences plane stress
conditions, simplifying the 3D stress-strain equations for the lamina;

• Linear variation of strain: The strain in each lamina varies linearly along its thickness. This linear
variation is characterized by pure membrane and pure bending deformations of the laminate;

• Standard Kirchhoff plate hypothesis: The theory follows the standard Kirchhoff plate theory,
where plane sections remain plane and perpendicular to the neutral axis even after deformation;

• Uniform membrane strain: Each lamina experiences the same membrane strain, which is equal to
the mid-plane strain of the laminate;

• Absence of intra- and inter-laminar damage: The theory assumes that there is no damage allowed
within each lamina (intra-laminar) or between different laminae (inter-laminar);

The CLT stress-strain relations are obtained by following these steps:

1. Plane stress mode stress-strain equations: Under plane stress mode, the 3D stress-strain equations
for a lamina (A.1) simplify into:

𝝈(𝑥𝑦) =


𝜎𝑥
𝜎𝑦
𝜎𝑥𝑦

 =


𝐶11 𝐶12 𝐶16
𝐶12 𝐶22 𝐶26
𝐶16 𝐶26 𝐶66



𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦

 = 𝑪𝜺(𝑥𝑦) (B.1)

where the 𝐶𝑖 𝑗 coefficients are given by

𝐶11 = 𝑚4𝐶0
11 + 2𝑚2𝑛2(𝐶0

12 + 2𝐶0
66) + 𝑛

4𝐶0
22

𝐶22 = 𝑛4𝐶0
11 + 2𝑚2𝑛2(𝐶0

12 + 2𝐶0
66) +𝑚

4𝐶0
22

𝐶12 = 𝑚2𝑛2(𝐶0
11 + 𝐶

0
22 − 4𝐶0

66) + (𝑚4 + 𝑛4)𝐶0
12

𝐶16 = 𝑚3𝑛𝐶0
11 −𝑚𝑛

3𝐶0
22 + (𝑚𝑛3 −𝑚3𝑛)(𝐶0

12 + 2𝐶0
66)

𝐶26 = 𝑚𝑛3𝐶0
11 −𝑚

3𝑛𝐶0
22 + (𝑚3𝑛 −𝑚𝑛3)(𝐶0

12 + 2𝐶0
66)

𝐶66 = 𝑚2𝑛2(𝐶0
11 + 𝐶

0
22 − 2𝐶0

12) + (𝑚2 − 𝑛2)2𝐶0
66 (B.2)
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and the 𝐶0
𝑖 𝑗

coefficients are given by

𝐶0
11 =

𝐸1

1 − 𝜈12𝜈21

𝐶0
22 =

𝐸2

1 − 𝜈12𝜈21

𝐶0
12 =

𝜈12𝐸2

1 − 𝜈12𝜈21

𝐶0
66 = 𝐺12 (B.3)

2. Linear strain-thickness equations: Due to the linearity of strain along the thickness, the strain at
each ply 𝑘 is expressed as a function of the mid-plane strains and curvatures of the laminate:

𝜺(𝑘)(𝑥,𝑦) =


𝜀(𝑘)𝑥
𝜀(𝑘)𝑦
𝛾(𝑘)
𝑥𝑦

 =


𝜀𝑥0

𝜀𝑦0

𝛾𝑥𝑦0

 +

𝜅𝑥
𝜅𝑦
𝜅𝑥𝑦

 𝑧(𝑘) = 𝜺0 + 𝜿𝑧(𝑘), 𝑧𝑘−1 ≤ 𝑧(𝑘) ≤ 𝑧𝑘 (B.4)

Here, 𝜺0 and 𝜿 represent the pure membrane and pure bending deformations of the laminate, or
mid-plane strains and curvatures of the laminate. 𝑧(𝑘) denotes the position across the thickness of
the 𝑘-th ply;

3. Load-stress equations: The Boundary Conditions (BCs) are related to the stress at the laminate,
where loads per unit width are expressed in terms of stresses integrated over the thickness:

𝑁𝑥 =

∫ ℎ/2

−ℎ/2
𝜎𝑥 𝑑𝑧

𝑁𝑦 =

∫ ℎ/2

−ℎ/2
𝜎𝑦 𝑑𝑧

𝑁𝑥𝑦 =

∫ ℎ/2

−ℎ/2
𝜎𝑥𝑦 𝑑𝑧

𝑀𝑥 =

∫ ℎ/2

−ℎ/2
𝜎𝑥𝑧 𝑑𝑧

𝑀𝑦 =

∫ ℎ/2

−ℎ/2
𝜎𝑦𝑧 𝑑𝑧

𝑀𝑥𝑦 =

∫ ℎ/2

−ℎ/2
𝜎𝑥𝑦𝑧 𝑑𝑧 (B.5)

where ℎ is the thickness of the laminate. Figure (B.1) details the BCs applied to the laminate;
4. Mid-plane strains derivation: The CLT load-strain equations (B.6) are obtained by substitut-

ing strain-thickness equations (B.4) into stress-strain equations (B.1), and then into load-stress
equations (B.5):

[
𝑵
𝑴

]
=



𝑁𝑥

𝑁𝑦

𝑁𝑥𝑦

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦


=



𝐴11 𝐴12 𝐴16 𝐵11 𝐵12 𝐵16
𝐴12 𝐴22 𝐴26 𝐵12 𝐵22 𝐵26
𝐴16 𝐴26 𝐴66 𝐵16 𝐵26 𝐵66
𝐵11 𝐵12 𝐵16 𝐷11 𝐷12 𝐷16
𝐵12 𝐵22 𝐵26 𝐷12 𝐷22 𝐷26
𝐵16 𝐵26 𝐵66 𝐷16 𝐷26 𝐷66





𝜀𝑥0

𝜀𝑦0

𝛾𝑥𝑦0

𝜅𝑥
𝜅𝑦
𝜅𝑥𝑦


=

[
𝑨 𝑩
𝑩 𝑫

] [
𝜺0
𝜿

]
(B.6)
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Figure B.1: Illustration of the BCs in terms of loads per unit width for the CLT. The stretching and shearing loads are denoted by 𝑁𝑥 , 𝑁𝑦 ,
and 𝑁𝑥𝑦 , while the bending and torsion moments are denoted by 𝑀𝑥 , 𝑀𝑦 , and 𝑀𝑥𝑦 . The thickness of the laminate is represented by ℎ.

Figure credits: Kassapoglou [38].

where

𝐴𝑖 𝑗 =

𝑁𝑃∑
𝑘=1

𝐶
(𝑘)
𝑖 𝑗
(𝑧𝑘 − 𝑧𝑘−1)

𝐵𝑖 𝑗 =

𝑁𝑃∑
𝑘=1

𝐶
(𝑘)
𝑖 𝑗

(𝑧2
𝑘
− 𝑧2

𝑘−1)
2

𝐷𝑖 𝑗 =

𝑁𝑃∑
𝑘=1

𝐶
(𝑘)
𝑖 𝑗

(𝑧3
𝑘
− 𝑧3

𝑘−1)
3

(B.7)

and 𝑁𝑃 is the number of plies. The mid-plane strains and the curvatures of the laminate are
obtained by inverting load-strain equations (B.6):[

𝜺0
𝜿

]
=

[
𝒂 𝒃
𝒃 𝒅

] [
𝑵
𝑴

]
(B.8)

where [
𝒂 𝒃
𝒃 𝒅

]
=

[
𝑨 𝑩
𝑩 𝑫

]−1

(B.9)

5. Stress function of mid-plane strains: Finally, mid-plane strains and curvatures of the laminate are
substituted into strain-thickness equations (B.4), and then into stress-strain equations (B.1):

𝝈(𝑘) =


𝜎(𝑘)
𝑥

𝜎(𝑘)
𝑦

𝜎(𝑘)
𝑥𝑦

 =


𝐶
(𝑘)
11 𝐶

(𝑘)
12 𝐶

(𝑘)
16

𝐶
(𝑘)
12 𝐶

(𝑘)
22 𝐶

(𝑘)
26

𝐶
(𝑘)
16 𝐶

(𝑘)
26 𝐶

(𝑘)
66


(

𝜀𝑥0

𝜀𝑦0

𝛾𝑥𝑦0

 +

𝜅𝑥
𝜅𝑦
𝜅𝑥𝑦

 𝑧(𝑘)
)
=

=𝑪(𝑘)(𝜺0 + 𝜿𝑧(𝑘)), 𝑧𝑘−1 ≤ 𝑧(𝑘) ≤ 𝑧𝑘

(B.10)



C
Weak Formulation of Discontinuous

Galerkin Cohesive Zone Model

The derivation of the Discontinuous Galerkin Cohesive Zone Model (DG/CZM) weak formulation of
the equilibrium of the linear momentum is adapted from the one in the article by Radovitzki et al. [5].
The weak formulation provides a solution for the displacement 𝒖 at a given quadrature point of the
cohesive interface. The main assumptions for this formulation include small deformations, linear elastic
stress-strain equations, and linear extrinsic Cohesive Law (CL). The derivation involves several steps,
which are summarized as follows:

1. Strong formulation: The equilibrium of linear momentum entails balancing inertial, internal, and
body forces 𝒃 acting over a domain Ω. This equation is solved in terms of displacement, with BCs
specified as traction 𝒕 at the Neumann boundary Γ𝑛 and displacement �̂� at the Dirichlet boundary
Γ𝑑. The strong formulation is expressed as follows:

𝜌
𝜕2𝒖
𝜕𝑡2

= ∇ · 𝝈 + 𝒃, inΩ

𝝈𝒏 = 𝒕 , onΓ𝑛

𝒖 = �̂�, onΓ𝑑 (C.1)

Here, 𝜌 represents density, 𝝈 denotes Cauchy’s stress tensor, 𝒏 signifies the unit vector normal to
the boundary of the domain Γ. Under the assumptions of small deformations and linear elastic
stress-strain relations, 𝝈 is expressed as a linear function of the displacement 𝒖:

𝝈 = 𝑪𝜺 = 𝑪
1
2
[∇𝒖 + (∇𝒖)𝑇] (C.2)

Here, 𝑪 represents the stiffness tensor, and 𝜺 signifies the strain tensor;
2. Discontinuous Galerkin (DG) weak formulation: The weak formulation is derived from the strong

formulation by multiplying it by a trial function 𝛿𝒖. By integrating by parts and applying the
divergence theorem, we arrive at the weak formulation. Unlike the Continuous Galerkin (CG)
formulation, the DG approach does not strongly enforce the continuity of the displacement across
the inter-element boundaries. Consequently, the test function 𝒖 and the trial function 𝛿𝒖 are
discontinuous at these boundaries. Therefore, integration by parts is performed over each element
Ω𝑒 rather than the entire domain Ω to yield the DG weak formulation:∑

𝑒

∫
Ω𝑒

𝜌
𝜕2𝒖
𝜕𝑡2

· 𝜹𝒖 𝑑𝑉 +
∑
𝑒

∫
Ω𝑒

𝝈 · ∇𝜹𝒖 𝑑𝑉 =

=
∑
𝑒

∫
Γ𝑒

𝜹𝒖 · 𝝈𝒏 𝑑𝑆 +
∑
𝑒

∫
Ω𝑒

𝒃 · 𝜹𝒖 𝑑𝑉 (C.3)
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The domain boundary Γ is now partitioned into Γ𝑛 and Γ𝑑. Additionally, Γ𝑑 is subdivided into the
outer region of the domain Γ𝑒𝑥𝑡 and the inter-element boundaries region Γ𝑖𝑛𝑡 . Assuming that the
trial function 𝛿𝒖 is 0 on Γ𝑒𝑥𝑡 and introducing the jump operator at the interface of two elements
[[·]] = (·+ − ·−), equation (C.3) is modified to∫

Ω

𝜌
𝜕2𝒖
𝜕𝑡2

· 𝜹𝒖 𝑑𝑉 +
∫
Ω

𝝈 · ∇𝜹𝒖 𝑑𝑉 +
∫
Γ𝑖𝑛𝑡

[[𝜹𝒖 · 𝝈]] · 𝒏− 𝑑𝑆 =

=

∫
Γ𝑛

𝜹𝒖 · 𝒕 𝑑𝑆 +
∫
Ω

𝒃 · 𝜹𝒖 𝑑𝑉 (C.4)

3. Inter-element flux term: Further manipulations are conducted on the inter-element boundary term.
By introducing the average operator ⟨·⟩ = 1

2 (·+ − ·−), the inter-element boundary term becomes∫
Γ𝑖𝑛𝑡

[[𝜹𝒖 · 𝝈]] · 𝒏− 𝑑𝑆 =

∫
Γ𝑖𝑛𝑡

[[𝜹𝒖]] · ⟨𝝈⟩ · 𝒏− 𝑑𝑆 +
∫
Γ𝑖𝑛𝑡

⟨𝜹𝒖⟩ · [[𝝈]] · 𝒏− 𝑑𝑆 =

=

∫
Γ𝑖𝑛𝑡

[[𝜹𝒖]] · ⟨𝝈⟩ · 𝒏− 𝑑𝑆 =

∫
Γ𝑖𝑛𝑡

[[𝜹𝒖]] · 𝒉 𝑑𝑆 (C.5)

The inter-element boundary term addresses the discontinuity in displacement across inter-element
boundaries by introducing a numerical flux 𝒉 = ⟨𝝈⟩𝒏−. The flux is proportional to the average
of the stress tensor ⟨𝝈⟩ at the two neighboring elements Ω+ and Ω−, as the stress tensor can
experience discontinuity due to the weak enforcement of displacement continuity. The flux ceases
to operate once fracture is activated at the given quadrature point;

4. Stabilization term: To weakly enforce displacement continuity at inter-element boundaries, a
stabilization term is introduced:∫

Γ𝑖𝑛𝑡

[[𝜹𝒖]] ⊗ 𝒏− · ⟨ 𝛽𝑠
𝑙𝑚𝑠

𝑪⟩ · [[𝒖]] ⊗ 𝒏− 𝑑𝑆 (C.6)

This term is crucial for ensuring numerical stability. The penalty stabilization parameter 𝛽𝑠
determines the strength of displacement continuity enforcement. Notably, by assuming 𝛽𝑠 to be
infinite transitions from the DG to the CG method. In the stabilization term, 𝑙𝑚𝑠 is the mesh size;

5. Cohesive fracture initiation criterion: Upon damage initiation, the operation of the flux term and
the stabilization term ceases, while the Traction-Separation Law (TSL) term comes into effect. To
appropriately handle contributions before and after damage initiation, a boolean parameter 𝛼 is
introduced. 𝛼 transitions from 0 to 1 once the fracture initiation criterion at the quadrature point
is met. The function 𝒕([[𝒖]]) present in the TSL term is explicitly derived in section (3.1);

6. DG/CZM weak formulation: In equation (C.4), the inter-element flux term is rewritten as shown
in equation (C.5). Additionally, the stabilization term (equation (C.6)) and the TSL term are
included. To account fracture initiation, the 𝛼 correction is introduced. The resulting DG/CZM
weak formulation is given by:∫

Ω

𝜌
𝜕2𝒖
𝜕𝑡2

· 𝜹𝒖 𝑑𝑉 +
∫
Ω

𝝈(∇𝒖) · ∇𝜹𝒖 𝑑𝑉 +
∫
Γ𝑖𝑛𝑡

𝛼𝒕([[𝒖]]) · 𝜹𝒖 𝑑𝑆+

+
∫
Γ𝑖𝑛𝑡

(1 − 𝛼)[[𝜹𝒖]] · ⟨𝝈(∇𝒖)⟩𝒏− 𝑑𝑆+

+
∫
Γ𝑖𝑛𝑡

(1 − 𝛼)[[𝜹𝒖]] ⊗ 𝒏− · ⟨
𝛽𝑠
𝑙𝑚𝑠

𝑪⟩ · [[𝒖]] ⊗ 𝒏− 𝑑𝑆 =

=

∫
Γ𝑛

𝜹𝒖 · 𝒕 𝑑𝑆 +
∫
Ω

𝒃 · 𝜹𝒖 𝑑𝑉 (C.7)

It is noted that the present equation is linear in 𝒖, implying that it can be integrated exactly in
space by selecting a linear quadrature rule.
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