
Frequency-based Bilateral Filter on Graphics Cards

Simeon Atanasov1

Supervisor(s): Elmar Eisemann1, Mathijs Molenaar1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Simeon Atanasov
Final project course: CSE3000 Research Project
Thesis committee: Elmar Eisemann, Mathijs Molenaar, Jing Sun

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
The bilateral filter is an edge-aware image filter.
While it has a variety of applications, its naive im-
plementation is quadratic in nature, hindering the
ability to efficiently process multi-megapixel im-
ages. If performance is needed, like in a real-
time setting, an approximation is necessary. Cur-
rent literature on Fourier series-based approxima-
tions does not explore the capabilities of graph-
ics processing units (GPUs) as viable platforms for
this computational problem. This paper proposes
an approach for implementing such filtering on a
GPU by conducting a series of separable convo-
lutions, and also investigates the use of different
range kernels. Our adaption of the bilateral filter
is found to be more two times faster than readily
available solutions, with frame times showing that
real-time performance is possible for large spatial
kernel sizes and image resolutions.

1 Introduction
Bilateral filtering, a term coined by Tomasi and Manduci [1],
is an image filter that can preserve edges. Applications vary
widely — from simple noise reduction, to low-light photog-
raphy [2], contrast reduction [3], tone mapping [3], creating
cartoon renditions [4], etc. This is achieved through the com-
bination of a spatial and range kernel, ensuring that a given
pixel is represented by a weighted combination of pixels in a
neighbourhood based on spatial and intensity proximity. One
drawback of the filter is the runtime performance – the algo-
rithm has quadratic complexity, stemming from the need to
compare pixels in intensity before applying a spatial weight-
ing. In consequence, filter accelerations like performing a
separable convolution are not applicable. Specialized solu-
tions are needed.

Several approaches have been presented to increase the
speed of the bilateral filter. Durand and Dorsey [3] propose a
piecewise-linear approximation with additional subsampling.
Chen et al. [5] consider a data structure called a bilateral grid,
on which a convolution with a 3D Gaussian kernel is per-
formed. Finally, Gupta et al. [6] propose a Gauss-polynomial
approximation of the range kernel combined with the use of
OpenCL [7] for executing a GPU-based box filter, followed
by post-processing done on the CPU.

The set of approaches, which is the focus of this paper, re-
lies on estimating the range kernel of the bilateral filter using
Fourier series [8–12]. They relate closely to the proposal of
Annen et al. for calculating shadow maps [13], whose adap-
tation to the Bilateral Filter was proposed in [14, p. 169]. An
advantage of such methods is that to achieve an output, sev-
eral images need to be filtered independently and summed
together, as opposed to having to conduct a per-pixel linear
interpolation or 3D convolutions with additional sampling of
a data structure.

Currently, literature on frequency-based approaches ac-
counts mainly for the Gaussian range kernel, or ones with
quickly attenuating tails [12], but do not account for the pos-
sible onset of the Gibbs phenomenon, as observed in [13].

Additionally, the parallelisation aspect of the Fourier series-
based approaches has not been explored. Thus, the contribu-
tions of the paper are as follows:

1. A GPU-based Frequency-based bilateral filter;
2. An analysis of different range kernels, including some

with longer tails, and their impact on execution time;
3. A discussion of different filtering kernel calculations in

the spatial domain.
The paper is structured as follows: Section 2 provides

background knowledge. Section 3 presents our proposed al-
gorithm. Results are presented in Section 4, while Section
5 is reserved for discussion. Finally, ethical implications are
elaborated on in Section 6, followed by conclusion and future
work in 7.

2 Background
This section will be presented as follows: Section 2.1 elab-
orates on linear filtering, and Section 2.2 presents the back-
ground of the bilateral filter. Finally, Section 2.3 presents in
more detail acceleration approaches.

2.1 Linear Filtering
In linear filtering, a pixel’s value is computed as a linear com-
bination of other pixel intensities, as seen in Equation 1:

F [p] =
∑
q∈S

Gσs
(p− q)Iq (1)

where Ip is the intensity of a pixel with coordinates p, S is
the domain of coordinates around pixel p, also called a neigh-
bourhood (S ⊂ Z2), and Gσs(p − q) is the spatial kernel.
This process, also known as convolution, is at the foundation
of image processing [15]. Because we are working with dis-
crete pixel coordinates, the weights of the spatial kernel can
conveniently be organized in a k × k matrix.

Different functions can be used to define the weights in the
matrix depending on the use case. For image blurring, two
functions are most prominent – the 2D Gaussian (Equation 2)
and the box kernel (Equation 3):

Gσs(p) =
1

σ2 · 2π
e

−||p||2

2σ2
s (2)

Bn(p) =

{
1
n2 if ||p||∞ ≤ n

0 otherwise
(3)

with n being the kernel size in Equation 3 and ||p||∞ rep-
resenting the l∞ norm – the value of the largest coordinate
within the vector p. The amount of blurring is controlled via
the parameter σs for the Gaussian and n for the box filter,
with higher values yielding more blurring.

In the frequency domain, convolution is expressed only as
multiplication. Therefore, the effects of different filters can
be observed through their Fourier transforms. The Gaussian
remains a Gaussian in the frequency domain, meaning that
it smoothly attenuates high-frequency components. On the
other hand, the box filter becomes a sinc function that exhibits
an oscillating behaviour. As a consequence, artefacts within
the output will appear, which we typically perceive as lower-
quality filtering.
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2.2 Bilateral Filter
The bilateral filter (BF) is a method for edge-aware image
blurring, defined in [1]. Mathematically, it can be described
for an arbitrary pixel with coordinates p ∈ Z2 as follows:

BF [p] =
1

Wp

∑
q∈S

Gσs
(p− q)Rσr

(Ip − Iq)Iq (4)

It differs compared to linear filtering in Equation 1 by the
presence of a range kernel Rσr

(Ip − Iq) that weighs each
of the pixels in the spatial region S by a value based on the
intensity difference with the centre pixel, and a normalisation
factor Wp. It is computed similarly:

Wp =
∑
q∈S

Gσs(p− q)Rσr (Ip − Iq) (5)

ensuring that the resulting pixel weights sum up to one.
The need for this factor arises because of the range kernel –
within each neighbourhood, the elements of the spatial kernel
will be weighed differently, thus the total norm will vary per
filtered pixel.

Both the spatial and the range kernels are usually defined as
a Gaussian. Nevertheless, especially for the range kernel, var-
ious choices are common, as outlined in Table 1 and shown
in Figure 1. Samples of the bilateral filter’s output can be
observed in Figure 2.

Table 1: A table of possible range kernels. In order to ensure a
consistent scale among them, the σ parameter needs to be multiplied
by the value in the column labelled ‘Scale’ [3].

Name Definition Scale

Gaussian Rσ(x) = e
−x2

2σ2 1

Tukey Rσ(x) =

{
1
2

(
1−

(
x
σ

)2)2

|x| ≤ σ

0 otherwise

√
5

Huber Rσ(x) =

{
1
σ |x| ≤ σ
1
|x| otherwise

1

Lorentz Rσ(x) =
2

2+( x
σ )

2
1√
2
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Figure 1: The curves of the different range kernels illustrated in
Table 1 for σr = 0.25.

(a) Input image [15] (b) Gaussian blur (c) Gaussian

(d) Tukey (e) Huber (f) Lorentz

Figure 2: Example of an image filtered using the bilateral filter with
σs = 5, 17 × 17 spatial kernel and different range kernels with
parameter σr = 0.1. Figure 2b shows as a comparison Gaussian
linear blurring

2.3 Approaches for Acceleration
When naively implemented, both linear and bilateral filtering
are quadratic algorithms. This subsection explores alterna-
tive approaches for executing them that have a lower time
complexity.

Linear Filters
For arbitrary spatial kernels, acceleration is achieved by cal-
culating convolutions in the frequency domain, where they
are linear operations. By using the Fast Fourier Transform,
which is O(n log n), the time complexity of linear filtering
can be reduced by one order of magnitude.

A property that both the Gaussian and the box filter (Equa-
tions 2 and 3) exhibit is separability. For example, the Gaus-
sian can be separated like in Equation 6:

Gσs(p) =
1

σ2 · 2π
e

−||p||2

2σ2
s

=
1

σ2 · 2π
e

−p2x−p2y

2σ2
s

=
1

σ ·
√
2π

e
−p2x
2σ2

s · 1

σ ·
√
2π

e
−p2y

2σ2
s

(6)

This means that a convolution with a separable kernel of size
n×n can be done in two passes – first with a 1×n kernel and
then a n× 1 or vice versa. This so-called separable convolu-
tion allows performing close to linear-time spatial filtering.

While the box filter is also separable, it enables another
approach involving summed-area tables [16]. They can be
interpreted as a cumulative distribution over an image, allow-
ing for a constant-time filtering per pixel using two addition
and two subtraction operations.

Bilateral Filter
Because of the introduction of Rσr

(Ip − Iq), the bilateral
filter is not a linear filter. Therefore, approximations of equa-
tion 4 need to be used to reduce the time complexity below
quadratic.
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One approach to accelerating the bilateral filter, explored
by [8–11] is to decompose the range kernel using Fourier se-
ries:

Rσr (x) =
a0
2

+

∞∑
k=1

(
ak cos

(
2πk

T
x

)
+ bk sin

(
2πk

T
x

))
(7)

where

ak =
2

T

∫ T/2

−T/2

Rσr
(x) cos

(
2πk

T
x

)
dx (8)

and

bk =
2

T

∫ T/2

−T/2

Rσr (x) sin

(
2πk

T
x

)
dx (9)

are the Fourier coefficients, and T is the period of approxi-
mation.

If the range kernel is an even function (like the examples
given in Table 1), the sine component will attenuate to zero.
Finally, after limiting the number of coefficients to a value N ,
the final form of the approximation will be given by:

R̂σr
(x) =

a0
2

+

N∑
k=1

ak cos

(
2πk

T
x

)
(10)

Now R̂σr can be substituted within equations 4 and 5. Ad-
ditionally, from the identity

cos(α− β) = cos(α) cos(β) + sin(α) sin(β) (11)

and from rearranging the obtained terms, the following is
yielded:

BF [p] ≈ 1

Wp

∑
q∈S

Gσs(p− q)Iq
a0
2

+
1

Wp

N∑
k=1

ak cos(ξkIp)
∑
q∈S

Gσs
(p− q)Iq cos(ξkIq)

+
1

Wp

N∑
k=1

ak sin(ξkIp)
∑
q∈S

Gσs
(p− q)Iq sin(ξkIq)

(12)
where ξk = 2πk

T , and Wp is computed similarly but with-
out multiplying by Iq. Thus, each coefficient ak corresponds
to four different component images – two for the numerator in
Equation 12, and two for Wp. According to this formulation,
each component image is filtered, and then element-wise mul-
tiplied by its unfiltered counterpart and Fourier coefficient.

Importantly, two new variables are introduced: the num-
ber of coefficients N and the period of the approximation
T . Higher values of N result in a smaller error between the
frequency-based bilateral filter and the naive implementation.
Yet, a larger T necessitates a higher N , so as to achieve con-
vergence in the Fourier series, leading to higher computation
costs.

The advantage of approximating the range kernel using
Fourier series is expressed in the presence of four inde-
pendent linear filtering operations, which are weighted and

summed together. The improvement of the time complexity
is therefore achieved by using fast algorithms for each convo-
lution.

3 Method
The approach we propose looks at Equation 12 as a se-
quence of spatial filtering and accumulation operations, each
of which is done using a GPU, as outlined in Algorithm 1.

Algorithm 1 GPU implementation of the frequency-based bi-
lateral filter
Require: R(x) – range kernel, σs, σr, N – number of coef-

ficients, T – period of approximation
1: compute Fourier coefficients a0 . . . ak
2: precompute lookup table with trigonometric values
3: for k = 0, . . . , N − 1 do
4: compute the current component images
5: filter the current 4 component images and accumulate

in a common buffer
6: end for
7: process the accumulator into the final output
8: return final image

Details about each step of Algorithm 1 will be presented
separately. Section 3.1 discusses aspects regarding the calcu-
lation of coefficients and their number (line 1). Section 3.2
covers the GPU-based filtering (lines 2 to 7).

3.1 Coefficients
When evaluating the coefficients that are used for the filtering,
one has to consider their count, the period over which they are
calculated, and the method for computing them.

This paper treats images as two-dimensional arrays of
floating-point numbers in the range [0, 1]. This implies that
the values within the argument of the range kernel are in the
range [−1, 1]. Therefore, for our calculations, a fixed period
T = 2 is chosen, which excludes the ability to do period
length optimisation [8, 10]. The reason for doing so relates
to kernels with tails that do not quickly attenuate, which im-
plies that large intensity differences can be overrepresented
through the periodicity of the Fourier approximation (see Fig-
ure 3).

In order to handle the number of coefficients for arbitrary
range kernels through a single calculation, as opposed to iter-
ating over a search space for finding a proper parameter [10,
12] we attempt to use Equation 13:

N =

⌈
PT

6σr

⌉
+ C (13)

This equation increases N as σr becomes smaller by ensur-
ing the Fourier series’ base functions have P oscillations in
the interval [−3σ, 3σ], which is expected to have the majority
of pixel intensities with a high contribution. The reason for
doing that is in small sigma values – they introduce high fre-
quency components in the range kernel that need to be added
to achieve convergence. If N is insufficient, the Gibbs phe-
nomenon may be observed, as seen in the Huber range kernel
in Figure 3.
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Figure 3: Example of the Gaussian and Huber range kernels with
σr = 0.1 estimated with 10 coefficients for a period T = 1.5,
which does not cover the whole interval [−1, 1]. Notice that a pixel
intensity difference of ±1 will be given a disproportionally higher
weight in the Huber kernel’s approximation (right) compared with
the Gaussian (left). Ringing in the Huber kernel can be observed
around x = ±0.1

Finally, the calculation of ak in equation 8 is handled
via numerical integration using the GNU Scientific Library’s
gsl integration qags function [17]. This was chosen for
ensuring the possibility of working with arbitrary range ker-
nels, which could lead to non-elementary integrals.

3.2 GPU-based Frequency-based Bilateral Filter
Frequency-based bilateral filtering on the GPU starts by copy-
ing the input image from the host (CPU) to the device (GPU).
Afterwards, for each coefficient, four component images (see
Section 2.3) are filtered and added to an accumulator. Finally,
the accumulator’s values are divided (Equation 12), to yield
the final output, which is copied back from the GPU to the
host. Each step will be covered separately in more detail.

Calculating Component Images
The input to the algorithm is a single-channel image. From
each pixel, four different values are computed. Therefore, it
is possible to organize the memory by making a four-channel
single-precision component image using the float4 data
type. The channel order used in our implementation is as fol-
lows: cos (ξkIp), sin (ξkIp), cos (ξkIp) Ip and sin (ξkIp) Ip,
where the first two numbers correspond to the terms of the
normalisation factor Wp, and the last two correspond to the
numerator of Equation 12.

The calculation of component images would involve many
calls to trigonometric functions. Since they are known to be
slow on GPUs [18], a lookup table can be used to precompute
values of cos

(
2πk
T Ip

)
and sin

(
2πk
T Ip

)
. The LUT relies on

both the limited number of pixel intensities Ip for an image of
type uint8 and the presence of discrete Fourier coefficients
ak.

Each entry in the lookup table is a value of type float2
(a vector of two single-precision floating-point numbers), be-
cause per a combination of pixel intensity and coefficient in-
dex, there is one sine and one cosine value. Regarding mem-
ory layout, we opted for making the table with N rows and
256 columns stored in constant memory. Doing so promotes
the reusage of values fetched in each cache line within the
GPU, which benefits performance [19].

Parallel Spatial Filtering
We chose to implement spatial blurring using separable con-
volutions, because they allow one to use either the Gaussian
or box kernels, both of which are separable (see Section 2.3),
and because of the time complexity that allows close to lin-
ear time convolution. Combined with the memory layout that
uses float4 values per pixel, one iteration of the separable
convolution would be needed to filter four images, contribut-
ing to a higher throughput of data. If instead four distinct
single-channel images were computed per coefficient, more
GPU kernel invocations would be necessary, each of which
would contribute to latency.

Separable convolution is implemented using two different
GPU kernels – one doing a vertical pass, the other – hori-
zontal. Importantly, Equation 12 requires accumulating the
results to a common buffer. We integrated the accumulation
into the GPU kernel responsible for the horizontal pass as op-
posed to the vertical one. The reason for that relates to the
row-major memory layout, which gives a lower penalty when
reading and writing to and from a GPU’s global memory in
rows instead of in columns.

For spatial filtering, a choice regarding the conversion from
σs to a concrete size of a Gaussian convolution kernel is re-
quired. To that end, equation 14 is used not only due to its oc-
currence in the popular image processing library OpenCV1,
but also because values further away from the centre of the
kernel quickly attenuate to zero in single-precision floating-
point numbers.

n = round(σs · 1.5) · 2 + 1 (14)

Finally, for the GPU-side code, the spatial kernel’s coef-
ficients remain unchanged throughout the execution just like
the trigonometric lookup table. Therefore, those can be stored
in a GPU’s constant memory as well, which has a more
streamlined pathway to streaming multiprocessors. Since that
space is limited, there is an upper bound on both the number
of Fourier coefficients and the size of the spatial kernel. In our
method, the upper bound for N was set to 28, which allows
for at most 1× 1024-sized spatial kernel of type float.

4 Results
This section presents results regarding the coefficients ob-
tained from the Fourier series in Section 4.1. Finally, runtime
performance is shown in Section 4.2.

4.1 Number of coefficients
Evaluation of the feasibility of Equation 13 is conducted us-
ing a CPU implementation of the naive bilateral filter and a
GPU implementation of the frequency-based one. The per-
formance metric will be peak signal-to-noise ratio (PSNR)
while excluding the border region of the image due to differ-
ent possible behaviours depending on the underlying convo-
lution technique.

The output of the frequency-based filter is considered vi-
able if its PSNR compared to the naive algorithm is above

1https://github.com/opencv/opencv/blob/4.x/modules/imgproc/
src/bilateral filter.dispatch.cpp
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50 dB [8]. As seen in Figure 4, when using P = 4 with
the provided input image, PSNR values range from 50 to 140
dB. While P could be lowered, which would respectively de-
crease the obtained N , a lower number of coefficients might
lead to an overly low PSNR value for some parameter values.

(a) Input image [20]
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Figure 4: Evaluation of the accuracy of the frequency-based bilateral
filter for different range kernel types and different parameters (σr ∈
[0.05, 1] when using equation 13 with parameters P = 4, C = 1
filter sizing ranging from 3× 3 to 63× 63) for the image shown in
Figure 4a

Moreover, PSNR can vary significantly for other images,
especially where regions of high uncertainty (described by a
low value of Wp [3]) are present. An example of this occur-
ring can be seen in Figure 5, where the input contains small
patches of high intensities surrounded by darker pixels, like
shown in Figure 5c. After limiting the frequency-based fil-
ter’s output to the range [0, 1], salt-and-pepper noise artefacts
could be observed in uncertain pixels. For multi-megapixel
images, those might not be easily visible, but their presence
could be lowering PSNR for an image where the rest of the
details are well-preserved – a phenomenon responsible for the
trends observed in Figure 6. A possible solution would be to
apply an interpolation with the unfiltered image, as noted by
Durand and Dorsey [3], as a post-processing step after the
frequency-based filter’s intensities are limited in the range
[0, 1].

Looking closely at Figure 3, slight ringing can be observed
for the Huber range kernel despite the high coefficient count.
The Gibbs phenomenon observed in this kernel could there-

fore be responsible for the generally lower PSNR noted for it
in Figure 4. This, together with the different behaviours as σr

is varied in Figure 4, alludes to a deficiency of equation 13
in determining the necessary N , as intrinsic properties of the
range kernels are not taken into consideration.

4.2 Runtime performance of the GPU
implementation

The variables that need to be isolated for the GPU implemen-
tation are the size of the filter and the number of coefficients
N . Therefore, unlike for PSNR measurements, the range ker-
nel type and σr are not used in the subsequent benchmarks.

The GPU implementation’s performance was evaluated on
a computer with an NVIDIA RTX 4070 8GB graphics card,
AMD Ryzen 7950X processor, and 64 GB of DDR5 memory.
When doing so, two steps were taken. Firstly, the GPU and
memory clocks were explicitly locked for minimising fluctu-
ations in the observed execution time. Secondly, steps like
memory allocation and precomputing values are not taken
into the measurements. The image used for testing [21] has a
resolution of 4500× 3000 px – a rather large size that makes
sure the GPU’s L2 cache is full, which enables the proper
assessment of memory throughput.

Figure 7 presents the observed runtimes. The importance
of minimising the number of coefficients can be seen in the
linear growth of the execution time for all tested parameters
as more coefficients are added (see Figure 7d). Regarding
spatial filtering, separable convolutions would imply the run-
time will increase linearly with the kernel size. While this
is the case for filter sizes larger than approximately 25 × 25,
smaller ones exhibit a constant behaviour, as seen in Figures
7b and 7c.

In terms of memory performance, Nvidia’s Nsight Com-
pute profiler [22] was used to observe the amount of IO oper-
ations to and from global memory, with percentages of read
and write operations relative to the theoretical bound (number
of pixels times the size of the data type) in Figure 8. Notably,
it shows a significant discrepancy between the read ratio of
the horizontal pass of the separable convolution and the verti-
cal one. The reason for that lies in the observed L2 cache hit
ratio, which is observed to be two times lower for the vertical
pass as opposed to the horizontal pass.

In order to compare performance, we used the GPU-based
bilateral filter found in OpenCV2 as it is a readily available
implementation that can handle single-colour images. Fig-
ure 9 indicates that the quadratic filter’s execution time can in
some cases be lower than the frequency-based filter. The ad-
vantage of our approach, though, is most apparent for extreme
spatial filter sizes, where the difference in execution time can
differ by more than a factor of two in the case when N = 28,
and by more than a factor of 6 times when N = 10, shown
by Figure 9. This highlights the importance of choosing a
number of coefficients, as it can have a significant influence
on performance.

2https://docs.opencv.org/4.8.0/d0/d05/group cudaimgproc.html
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(a) Input image with the location of overshoot marked with a
red rectangle; the resolution is 4500× 3000px
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(b) The range kernel overlaid with its approximation. Purple
lines mark the intensity difference between the centre pixel and
an arbitrary surrounding pixel in 5c
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(e) After filtering with the
frequency-based filter, be-
fore clamping
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Figure 5: Example of the occurrence of overshoots after filtering with a kernel size of 51× 51, Tukey range kernel (σr = 0.1), approximated
with 10 coefficients. Before clamping, the PSNR measured at 36.862 dB, and after clamping – 51.602 dB.

5 Discussion
This work deviates from current literature about the
frequency-based bilateral filter in two main ways – the time
complexity depends on the filter size and no period length op-
timisation was applied, which could make convergence of the
Fourier series approximation of the range kernel more diffi-
cult, as shown in Section 4.1.

Firstly, separable convolutions were chosen as opposed to
the FFT for linear filtering after taking into account the time
complexities and the amount of input-output operations that
could arise in the already highly memory-bound problem of
image filtering. The concern with the DFT is the number of
transitions to and from the frequency domain (in or approach,
per coefficient, 4 FFTs need to be applied, 4 elementwise
multiplications carried out, and 4 inverse FFTs afterwards,
thus amounting to 8 O(n log n) operations).

Secondly, period length optimisation was omitted from this
work, though it can provide great results for kernels with
quickly attenuating tails (like the Gaussian or in [12]). Here,
we explore the effects of other range kernels where this is not
guaranteed (like in the Huber or Lorentz kernels, presented
in Table 1 and in Figure 3). Unfortunately, the fixed period
length leads to difficulties regarding convergence in kernels
with points that introduce high-frequency components (like
Huber or Tukey) and for small σr values. Such cases would
require a high number of coefficients, which would negatively
impact runtime performance.

An important aspect that was not covered so far is the han-
dling of colour. The colour version of the Equation 4 in-
volves the Euclidean distance of a colour difference vector

as the argument of the range kernel [15]. If Fourier series are
to be used directly, a rapid growth in the number of coeffi-
cients is predicted, thus deeming them infeasible for work-
ing with colour images without resorting to other approxi-
mations. Some papers like [23, 24] indicated that naively
handling channels separately can lead to a sufficient result.
Alternatively, the cross-bilateral filter [2] could be adapted
to work with the image’s intensity as the range kernel, but
that approach will lead to blurring across edges with different
colours but similar intensity.

Due to time constraints, only PSNR was used as a metric
for assessing the precision of the frequency-based bilateral fil-
ter’s approximations. This excludes metrics tailored towards
human perception like SSIM [25] or FLIP [26].

Finally, performance measurements are presented in terms
of frame times for a 13.5 MP image. While directly con-
verting them to a measure of frames per second might not
seem like great performance, the measure of throughput in
MP/s gives a better insight into the capabilities of this ap-
proach. The reason for showing frame times is to clearly
present asymptotic behaviour.

6 Responsible Research
The main challenge to reproducibility comes with the choice
of API and device for development. By opting for the propri-
etary CUDA API, we have implicitly excluded other vendors
like AMD or Intel and therefore conformed to the status quo
with NVIDIA’s dominant position in the GPU market [27].
To cater to other device manufacturers, frameworks like HIP3

3https://rocm.docs.amd.com/projects/HIP/en/latest/
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Figure 6: PSNR ratings for image [21] filtered at different sizes with the parameters σs = 8, σr = 0.1, 6 coefficients, Gaussian range kernel.
The significant drop of the PSNR for larger images in Figure 5 could be attributed to the division by the normalisation factor in highly
uncertain areas, which is remedied by clamping (i.e., limiting the output image’s pixel vales to be in the range [0, 1])
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(d) 127×127 kernel

Figure 7: Runtime performance of the GPU implementation for ker-
nel sizes from 3 × 3 to 127 × 127 and number of coefficients N in
the range [1, 28]. Subfigures 7b and 7c show the runtime with error
bars when N remains constant, and 7d shows the behaviour when
the kernel size is fixed at 127× 127, and the number of coefficients
is modified.

have been created that offer tools4 for migrating an existing
CUDA codebases to it, allowing one to compile for AMD de-
vices. For true platform independence, the provided source
code could be translated to the SYCL framework (i.e., via In-
tel’s implementation in their Data Parallel C++ compiler5) at
the cost of developer intervention.

The Turing microarchitecture of the GPU used for devel-
opment introduced changes in thread scheduling that could
lead to different behaviour on older devices [28]. Since our

4https://github.com/ROCm/HIPIFY
5https://www.intel.com/content/www/us/en/developer/tools/

oneapi/data-parallel-c-plus-plus.html
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Figure 8: Percentage of read and write operations compared with the
image size (in bytes) when filtering a 4500×3000 px image with 10
coefficients, Gaussian range kernel with σr = 0.1, 51 × 51 spatial
kernel; values closer to 100% indicate better efficiency. Horizontal
and vertical pass relate to the separable convolution used for spatial
filtering of component images. The large difference between the
horizontal and vertical pass’ read percentages is due to the L2 cache
hit ratio

codebase6, does not benefit from the updated scheduler, com-
patibility with older NVIDIA devices is ensured by targeting
the older compute capabilities through compiler flags.

Replicating the results on graphics processing units from
different vendors may require further tuning of thread blocks
sizes, depending on the underlying architecture. The implica-
tions for performance relate to global memory accesses and
warp/wavefront size, which together affect both the occu-
pancy rate and the memory throughput on the GPU.

Another consideration for reproducibility and comparing
PSNR measurements is the omitted borders. This was done
intentionally due to the many different strategies for handling
the border effect in image filtering. A possible solution is to
pad the input images before applying different implementa-
tions of the bilateral filter for ensuring consistent handling of
border effects.

Finally, during the evaluation, several images have been

6The project can be found at:
https://github.com/simo1427/freq-bf or
https://gitlab.ewi.tudelft.nl/cse3000/2023-2024-q4/Eisemann
Molenaar/satanasov-Image-Processing-with-the-Bilateral-Filter
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Figure 9: Comparing the performance of our implementation (la-
belled FreqBF) for different number of coefficients against a refer-
ence one provided by OpenCV.

used. Sourcing them was achieved by using imagery from
older papers and open databases. The used images are with
suitable licences or are allowed to be used for research pur-
poses.

7 Conclusions and Future Work
This paper focused on three areas: mapping the problem
of frequency-based bilateral filtering on a GPU, discussing
the effects of range kernels with properties different from
the usually chosen Gaussian’s, and analysing different ap-
proaches for doing spatial filtering. By using an accumulator
and by doing separable convolutions for component images
on a GPU, real-time performance can be a possibility for a
large variety of kernel sizes, and the time complexity is also
reduced for large filter sizes.

A possible limitation is the use of separable convolution,
as it is not providing a time complexity that remains constant
as the filter size grows. A solution would be to further ex-
periment with summed area tables, which, combined with a
framework for determining the number of coefficients, could
very positively affect performance. As a baseline for the per-
formance measurements, other GPU implementations like the
bilateral grid [5] could provide an interesting insight into the
behaviour of our approach.

A different direction for future work, due to the ubiquity
of the Gaussian range kernel, is optimising this approach fur-
ther by applying mathematical properties, as done by Deng
[11]. Finally, the use of half-precision numbers could be at-
tempted, in order to further increase performance at the cost
of approximation fidelity.
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