
 
 

Delft University of Technology

Optimizing security patrolling scheduling in chemical industrial parks by using game
theory

Zhang, L.; Reniers, G. L.L.

Publication date
2018
Document Version
Final published version
Published in
Safety and Reliability - Safe Societies in a Changing World - Proceedings of the 28th International European
Safety and Reliability Conference, ESREL 2018

Citation (APA)
Zhang, L., & Reniers, G. L. L. (2018). Optimizing security patrolling scheduling in chemical industrial parks
by using game theory. In Safety and Reliability - Safe Societies in a Changing World - Proceedings of the
28th International European Safety and Reliability Conference, ESREL 2018 (pp. 3001-3006). CRC Press /
Balkema - Taylor & Francis Group.
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.



3001

Safety and Reliability – Safe Societies in a Changing World – Haugen et al. (Eds)
© 2018 Taylor & Francis Group, London, ISBN 978-0-8153-8682-7

Optimizing security patrolling scheduling in chemical industrial parks 
by using game theory

L. Zhang & G.L.L. Reniers
Faculty of Technology, Policy and Management, Safety and Security Science Group (S3G), TU Delft,  
Delft, The Netherlands

ABSTRACT: Protecting chemical clusters from intentional attacks has been a hot topic during the last 
decade. Besides intrusion security countermeasures such as cameras, entrances control etc., patrolling 
also fulfils an important role in the security of chemical facilities and industrial parks. Current patrolling 
strategies in industry are mainly single-plant driven and purely randomized or based on the patroller’s 
preference. Such an approach in a chemical industrial park is on the one hand not able to cover the more 
hazardous facilities more than the less hazardous plants within the park, and on the other hand is not 
able to deal with strategic (intelligent) human adversaries w.r.t. terrorism. This paper therefore investi-
gates a game theoretic model for optimizing the schedule of patrolling in chemical clusters. The industrial 
defender and the intelligent/adaptive attackers are modelled as two players in the game. The defender 
aims at increasing the probability of detecting the attacker, by randomly but strategically scheduling her 
patrolling route. The attacker aims at causing maximal consequences with highest success probabilities, by 
choosing a proper attack time and a proper target. The model is further illustrated by a case study.

deal with intelligent attackers. Some patrollers fol-
low a fixed patrolling route, and the attacker thus 
can predict the patroller’s position at a certain time. 
Other patrollers purely randomize their patrolling, 
without taking into consideration the hazardous 
level that each facility/plant holds, and the attacker 
can attack more dangerous facilities/plants since all 
the facilities/plants are equally patrolled.

Game theory has been introduced to the 
security domain to optimally allocate security 
resources. In a security problem, the attacker 
(human beings) is able to plan his attack accord-
ing to the defender’s defence, while the defender 
knows the fact and thus she can also defend 
accordingly. This procedure is called the ‘intelli-
gent interactions’ between the defender and the 
attacker. Game theory was invented to model 
strategic decision making in multiple actor sys-
tems, thus it perfectly fits the necessity of  mod-
elling the ‘intelligent interactions’ in the security 
domain. Tambe and his co-authors [4] employed 
game theory for optimizing patrolling of  protect-
ing ferries, of  protecting wild animals etc. Alpern 
and his co-authors [5] theoretically studied the 
optimization problem of  patrolling in a graph. 
Amirali et  al. [6] introduced a game theoretic 
model for optimally scheduling pipeline patrol-
ling. No literature has investigated the use of 
game theory to optimize patrolling in chemical 
clusters, neither for the single plant patrolling nor 
for the multiple plants patrolling.

1 INTRODUCTION

Since the unfortunate 9/11 attack, the protection 
of critical infrastructures has been an urgent topic, 
both in academia and in practice. Chemical indus-
tries have an important role in modern society. 
They provide materials for human being’s daily 
necessities such as clothes, food, energy, etc. How-
ever, chemical facilities may also pose huge threat 
to modern society. The sadly Bhopal disaster (toxic 
gas leakage), among others, caused more than 3000 
deaths and life-long suffering for over 300,000 [1]. 
In the security aspect, the malicious attack to a 
chemical plant in France reminded people that 
there is a possibility of a successful attack to chem-
ical facilities. An investigation carried out by Orum 
and Rushing [2] concluded that a successful attack 
to a top 101 dangerous chemical plant in U.S. may 
result in more than one million casualties.

Furthermore, due to economic and management 
reasons, chemical plants are nowadays geographi-
cally clustered, forming chemical clusters, e.g., the 
Antwerp port chemical cluster, the Rotterdam 
port chemical cluster etc. Besides intrusion secu-
rity countermeasures within each plant, patrol-
ling is also scheduled, for securing these chemical 
facilities. The patrolling can be either single plant 
oriented, which is scheduled by the plant itself, or 
multiple plants oriented, which should be scheduled 
by a multiple plant council (MPC) [3]. Both types 
of patrolling have a drawback of not being able to 
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This paper proposes a Chemical Cluster Patrol-
ling (CCP) game, which answers the question how 
to optimally randomize the patrolling, to better 
secure a chemical cluster, by using a game theory 
model. The reminder of this paper is organized as 
follows: Section  2 briefly demonstrates the CCP 
game. A case study is introduced in Section 3 and 
the results of the case study are given in Section 4. 
Conclusions are drawn in Section 5.

2 THE CHEMICAL CLUSTER 
PATROLLING (CCP) GAME

2.1 Graphic modelling

A chemical cluster can be descript as a graph G(V, 
E). The vehicle entrances of each plant and the 
cross points of the vehicle road form the nodes 
of the graph. The vehicle roads between differ-
ent plants (to be more specified, they should be 
“between different entrances”) are modelled as 
edges of the graph. Furthermore, all entrance 
nodes which belong to the same plant are modelled 
to be full connected, which means edges also exist 
between every two nodes in these cases.

Based on the graphic model, the chemical clus-
ter patrolling can be descript as a graphic patrolling 
problem: 1) a patroller (team) starts her (In this paper, 
we denote the patroller/defender as she/her/her, and 
denote the attacker as he/him/his.) patrolling from 
a node (the base camp); 2) she moves in the graph; 
3) when arriving a node, she may decide whether 
to stay at the node for a specific period of time tk

p  
(i.e., patrol the plant) or not (i.e., move to another 
plant without patrolling the current plant); 4) after a 
period T, the patroller terminates the patrolling.

A directed patrolling graph pG(pV, pE) is defined 
based on the graphic model of the chemical cluster. A 
node of pG is defined as a tuple of (t, i), in which t ∈ 
denotes time dimension and i V∈ …{ }1 2, , ,  denotes 
a node in graph G(V, E) (i.e., a plant (entrance) in the 
chemical cluster). Node (t, i) means that at time t the 
patroller arrives or leaves node i. A directed edge of 
pG from node (t1, i1) to node (t2, i2) therefore means 
that the patroller moves from node i1 at time t1 to 
node i2, and arrives at t2. Figure 3 shows the patrol-
ling graph of the case study.

2.2 Game theoretic modelling

A game theoretic model consists of players, strate-
gies, and payoffs.

Players
Players of the chemical cluster patrolling (CCP) 

game are the patroller team and the potential 
attackers. The CCP game is a two players game and 
both players are assumed with perfect rationality.

Strategies
An attacker’s strategy consists of three parts: i) 

which plant to attack; ii) when to attack; and iii) what 
attack scenario to use, thus can be expressed as:

s t i ka i= ( ), ,  (1)

In which t denotes the attack start time, i repre-
sents the target plant, ki is the attack period (e.g., 7 
minutes) which should be determined by both the 
attack scenario and the target plant.

A mathematic formulation of the defender’s 
strategy is shown in Formula (2).

s cd s es e pE
= −( )∈∏ ,

 (2)

In which cs–e denotes the probabilistic number 
assigned to the edge (of pG) from node s to node e, 
∏ denotes the Cartesian product of all edges in pG 
(i.e., all s e pE, ).( ) ∈

An important property of these probabilities 
is that, for each node (of pG), the sum of all the 
income probabilities must equal the sum of all the 
outcome probabilities. Formula (3) illustrates the 
abovementioned property.

sP c

c
pv in pvin s pV s pv pE

pv outout e pV pv e pE

=

=
−∈ ∈ ( )∈{ }

−∈ ∈ ( )∈{

∑ |

|

,

, }}∑  (3)

Payoffs
Formulas (4) and (5) define the patroller and the 

attacker’s payoff, in which f is the probability that 
the attacker would fail, and if the attacker failed, 
the patroller gets a reward Rd (e.g., obtaining bonus) 
and the attacker suffers a penalty Pa (e.g., being sent 
to prison). If the attacker succeeds, the patroller suf-
fers a loss Ld and the attacker obtains a gain Ga.

u R f L fd
d d= − −( )⋅ ⋅ 1  (4)

u G f P fa
a a= −( ) −⋅ ⋅1  (5)

Computing the f
The probability that the attacker would be 

detected can be calculated by Formula (6), in which 
fcpp denotes the probability that the intrusion detec-
tion systems (IDS) in the target plant would detect 
the attacker, fp is the probability that the patroller 
would detect the attacker

f f fcpp p= − −( ) ⋅ −( )1 1 1  (6)

Note that fcpp is a plant-specific parameter (a 
number belongs to [0,1]). While fp can be calculated 
by Formula (7), in which r denotes the overlap situ-
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ation of that the patroller’s staying in the plant and 
the attacker’s intrusion and attack procedure, σr is 
the detection probability of situation r. Further-
more, the probability that the patroller would be in 
situation r is denoted as τr.

fp r rr
= ⋅∑ σ τ .  (7)

Denote the defender’s strategy in a vector form 
as �c.  It is worth noting that τr would be a linear 
polynomial of �c,  and fcpp and σr are user provided 
parameters. Therefore, f is a linear polynomial of �c  as well.

Stackelberg equilibrium
In the CCP game, the attacker is assumed 

to be able to collect information of the patrol-
ler’s patrolling route. A Stackelberg equilibrium 

s s c t i kd a i
* * * * * *, , , ,( ) = ( )( )���

 for the CCP game is a 
defender-attacker strategy pair that satisfies the 
following condition:

t i k argmax u c t i ki a i
* * *, , , , ,( ) = ( )( ){ }�  (8)

c argmax u c t i kd i
* * * *, , ,

��� �= ( )( ){ }  (9)

Formula (8) reflects that observing the defend-
er’s strategy �c,  the attacker would play a strategy 
which will maximize his own payoff (i.e., a best 
response). Formula (9) represents that the defender 
can also work out the attacker’s best response to 
her strategy, thus she plays accordingly.

3 ILLUSTRATIVE CASE STUDY

Figure 1 provides the layout of a chemical cluster 
from the Antwerp port (data source: Google map). 
There are 5 plants in this cluster, indexed as plant 
‘A’, plant ‘B’, and so forth. The yellow dot lines 
demonstrate the vehicle routes, and the patroller 
only drives on the vehicle route. Figure  2 shows 
the graph model of the cluster shown in Figure 1. 

As we may see, each plant (i.e., ‘A’, ‘C’, ‘D’, ‘E’) 
in Figure 1 is modelled as a node (with the same 
name) in Figure  2. The cross point of the vehi-
cle road between plant ‘D’ and ‘E’ in Figure 1 is 
also denoted as a node in Figure 2 (i.e., node ‘cr’). 
Moreover, plant ‘B’ has two vehicle entrances, and 
two nodes (i.e., nodes ‘B1’ and ‘B2’) are used in 
Figure 2 to denote the two different entrances of 
plant ‘B’. Edges ‘e1’ to ‘e6’ reflect the vehicle roads 
between different plants, while edge e7 is added 
between node ‘B1’ and ‘B2’ because these 2 nodes 
belong to the same plant and hence should be full 
connected.

We set: t t t t t td d d d d d
1 2 3 4 5 62 3 4 3 2 2= = = = = =, , , , , ,  

and further set ( )pt ‘A’,‘B’,‘C’,‘D’,‘E’  
= [ ]9 7 6 5 7, , , , . ti

d  represents the driving time of 
edge ‘ei’ in Figure 2. For instance, td

1  is the driv-
ing time from node ‘A’ to ‘B1’. ‘ ’)pt X(  denotes the 
time needed to patrol plant ‘ ’X . If  the patroller 
may have multiple patrolling intensity in a plant, 
then the tp should not only be a number, but be 
a set of numbers. In this paper, we only consider 
one patrolling intensity in each plant and all the 
temporal data are unified in minutes.

Table  1 shows the time of moving from one 
node to another node. For instance, from node ‘A’ 
to node ‘B1’ needs td

1 2=  minutes. It is worth not-
ing that i) numbers in the diagonal denote the time 
needed to patrol the plant, e.g., patrolling plant ‘A’ 
needs (‘ ’) 9pt A =  minutes; ii) the number from 
one entrance node to another entrance node of the 
same plant (e.g., from node ‘B1’ to ‘B2’) also repre-
sents the time needed to patrol the plant. Case (ii) 
means that the patroller comes into and leaves the 
plant from different entrances.

Figure 3 shows the patrolling graph pG for the 
chemical cluster shown in Figure 1, with the data 
in Table 1 and further assume a patrolling time T 
= 30. Patroller’s base camp is assumed close to the 
cross road node, thus ‘cr’ is chosen as the patrol-
ler’s base camp.Figure 1. Layout of a chemical park in Antwerp port.

Figure 2. Graphic modelling of the chemical park.



3004

In Figure 3, the x axis denotes the time dimen-
sion, while the y axis represents the different nodes 
in Figure 2. Therefore, any coordinates in Figure 3 
can be a possible node for pG. As we may see, node 
1 (at the left hand side of the figure) in Figure 3 
is (0, cr), and it means that at time 0, the patroller 
starts from her base camp (i.e., ‘cr’). Thereafter she 
has 3 choices: i) to come to plant ‘B’ (more accu-
rately, entrance ‘B2’) with a driving time td

4 ,  and 
reaches node 2; ii) to come to plant ‘D’ with a driv-
ing time td

5 ,  and reaches node 3; and iii) to come 
to plant ‘E’ with a driving time td

6 ,  and reaches 
node 4. Subsequently, at new nodes (e.g., 2, 3, or 
4), the patroller has the same choice problem, that 
is, to patrol the current plant or to come to another 
plant. In Figure 3, the indexes of some nodes and 
the weight of some edges are not shown, for the 
clarity of the figure.

For example, the bold (and black) line 
in the figure, denotes a patrolling route as: 
‘ ’ ‘ ’ ’cr C C→ → →  patrol plant ‘ ’ ‘ ’C B1→ →  
patrol plant ’B →  leave plant  ‘B’ from 
‘ 2’ ‘ ’ ‘ ’ ‘ ’.B cr E cr→ → →

Finally, when time comes to the end of the patrol, 
the patroller terminates the patrolling and comes 
back to her base camp. In this research, to keep the 
continuity of coverage of each plant, the patroller 
is required to prolong their patrolling in the plant 
until that the next patroller team might be able to 
arrive the plant. For instance, in Figure 3, though 
the patrolling time is set as T = 30, however, the 
patrolling in plant ‘A’ is not stopped until t = 41. 
The reason is that, the shortest time that the next 
patrolling team can arrive plant ‘A’ (from ‘cr’) is 11 
(By following a path ‘ ’ ‘ 2’ ‘ 1’ ‘ ’).cr B B A→ → →  If  
the current patroller team does not prolong their 
patrolling, and the next patroller team starts at time 
30 and stars from their base camp (i.e., ‘cr’), then 
plant ‘A’ will definitely not be covered during time 
(30, 41). This approach may increase the patroller’s 
workload. However, if we set T slightly smaller than 
the patroller’s real workload, the problem will be 
solved. For example, if a patroller team’s workload 
is 240 minutes per day, and we may set T = 220.

Table 1. Superior connection matrix for Figure 2 with 
the illustrative numbers.

Table 2. Model inputs.

Rd Ld Ga Pa fcpp

‘A’ 1 16 10 3 0.45
‘B’ 1 11.2 6 3 0.3
‘C’ 1 14 8.3 3 0.42
‘D’ 1 12 7.1 3 0.45
‘E’ 1 15 10 3 0.5

Figure 3. Patrolling graph of the illustrative example.
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For the sake of clarity, only one type of attacker 
and only one attack scenario is considered. Fur-
ther assume that the intrusion and attack proce-
dure of the employed scenario would last for 10 
minutes. For instance, the two horizontal bold dot 
red lines in Figure 3 represent attack strategies that 
attack plant ‘A’ start at time 9 (the line at below) 
and attack plant ‘E‘ start at time 4 (the line at 
above), with an intrusion and attack period of ten 
time units, respectively.

Table  2 gives the model inputs, i.e., the defend-
er’s reward (loss) of (not) detecting an attacker; 
the attacker’s gain (penalty) from a (not) successful 
attack; the probability that the intrusion detection 
system (IDS) can detect the attacker. The probabil-
ity that the patroller can detect the attacker (i.e., σr) 
should also be provided by security experts. How-
ever, in this paper, we simply assume that in each time 
unit, if the attacker and the patroller stay in the same 
plant (i.e., overlap), there is a probability of 0.05 that 
the attacker would be detected by the patroller.

4 RESULTS

4.1 Stackelberg equilibrium

Figure  4 shows the Stackelberg equilibrium 
(SE) of the case study. The black (and narrow) 
lines demonstrate the patroller’s optimal patrol-
ling strategy. The associated numbers on the line 
denotes the probability that the defender will take 
this action. For instance, c1 = 0.22747 means that 
at time 0, the patroller should drive to node ‘B2’ 
at probability 0.22747. Furthermore, in patrolling 
practice, if  the patroller arrives at a node in the 

figure, the conditional probabilities of following 
actions can be calculated as cP c sP= / ,  in which 
c denotes the probability assigned to the edge, sPv 
denotes the probability that the patroller would 
be at the node. For instance, the probability that 
the patroller would arrive at the red node ( ),6 ′ ′C  
in Figure 4 is sPv = 0 41734. ,  and the conditional 
probabilities that she should take the 2 actions are 
cP cP1 20 4979 0 5021= =. , . .

Table  3. The patroller’s actions that may detect the 
attacker.

Edge τ Overlap σ

 25 0.00220 [9,13] 0.20
 41 0.09935 [9,16] 0.35
 85 0.11143 [11,18] 0.35
159 0.09935 [16,19] 0.15
186 0.00220 [17,19] 0.10
206 0.11143 [18,19] 0.05

Table  4. Comparison of the CCP strategy and the 
purely randomized strategy.

Edge Overlap τc τrc σ

 82 [11,19] 0.1926 0.0046 0.4
 98 [12,19] 0.1942 0.0139 0.35
156 [15,19] 0 0.0019 0.2
176 [16,19] 0 0.0071 0.15
196 [17,19] 0 0.0024 0.1
216 [18,19] 0 0.0039 0.05
425 [9,10] 0 0.0100 0.05
430 [9,11] 0.3358 0.0274 0.1

Figure 4. The optimal patrolling strategy and the attacker’s best response (Stackelberg equilibrium).
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The attacker’s best response in the SE is to 
attack plant ‘E’ at time 9, as shown in the figure as 
a red bold line. The short lines above the attacker’s 
best response line represent the defender’s patrol-
ling actions which would have overlap with the 
attacker’s strategy. Table  3 shows detail informa-
tion of these patrolling actions.

Based on the result in Table  3, we have that: 
fp r rr

= =⋅∑ τ σ 0 089101. ,  f = 1-(1-0.5)*(1-fp) = 
0.09491, ua = 2.88311, ud = -6.24074.

4.2 Comparing to random patrolling

In the current patrolling practise, patrollers may 
randomly schedule their patrol route. This situ-
ation, one looks at Figure  3, is simply assigning 
the same probabilities to edges that start from 
the same node. For instance, at the starting node 
(i.e., (0,’ ’)),cr  the patroller would come to plant 
(entrance) ‘B2’, ‘D’, and ‘E’ at the same probabil-
ity, and the probability is 1/3.

In the case study, if  the defender would purely 
randomize her patrolling, then the attacker’s best 
response would be attacking plant ‘A’ at time 9. 
The attacker and the defender would obtain a pay-
off  of 4.0653 and -8.2393, respectively. Compar-
ing to the result of the CCP game, the defender 
suffers a higher lose.

Table  4 illustrates the differences between the 
CCP strategy and the purely randomized strategy. 
The ‘Edge’ column in Table  4 shows the edges in 
the patrolling graph that have an overlap with the 
attacker’s strategy (i.e., attack plant ‘A’ at time 9). 
The overlap column illustrates which period of the 
attack procedure is overlapped by the edge. The ‘c’ 
and ‘rc’ column show the probability that the patrol-
ler will go the edge, resulting from the CCP game 
and from the randomized strategy respectively. The 
sigma column shows the probability that the attacker 
will be detected by the patroller by this edge and it 
is simply calculated as 0.05 multiplied by the over-
lapped time units. According to the result in Table 4, 
we can calculate the probability that the attacker 
would be detected by the patroller (see Formula 7), 
and the results are: f fp

c
p
rc= =0 17860 0 01183. , . .  

These results reveal that the CCP strategy has a 
higher probability of detecting the attacker at plant 
‘A’, and thus transfers the attacker’s best response 
target from plant ‘A’ to plant ‘E’.

5 CONCLUSION

Terrorism has been a global problem. The chemi-
cal industry can be an attractive target for terror-
ists, due to the existence of hazardous materials. 
A chemical cluster is formed by multiple chemical 
plants, and can be of extra interest for attackers.

Besides intrusion security countermeasures of 
each plant, security countermeasures at the cluster 
level are also recommended. The current patrolling 
in chemical clusters are either single plant based 
or purely randomized, being economically not effi-
cient and theoretically not optimized. The security 
adversaries are human beings, and they may learn 
the patroller’s daily patrolling routes and plan their 
attack accordingly.

This paper therefore proposes a chemical cluster 
patrolling (CCP) game. The CCP game generates 
randomized but strategic patrolling routes for the 
cluster patrolling team. The intelligent interactions 
between the patroller and the potential attackers 
are modelled in the CCP game. An illustrative case 
study shows that the patrolling routes generated 
by our CCP game outperforms the purely rand-
omized patrolling strategy.
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