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Abstract

The biophysically-meaningful neuron models can be used to simulate human brain be-
havior. The understanding of neuron behaviours is expected to have prominent role
in the fields such as artificial intelligence, treatments of damaged brain, etc. Mostly,
the high level of realism of spiking neuron networks and their complexity require a
considerable computational resources limiting the size of the realized networks. Con-
sequently, the main challenge in building complex and biologically accurate spiking
neuron network is largely set by the high computational and data transfer demands.
In this thesis, I implement several efficient models of the spiking neuron with char-
acteristics such as axon conduction delays and spike timing-dependent plasticity in a
real-time data-flow learning network. With the performance analysis, the trade-offs
between the biophysical accuracy and computation complexity are defined for the dif-
ferent models. The experimental results indicate that the proposed real-time data-flow
learning network architecture allows the capacity of over 1,188 (max.6,300, depending
on the model complexity) biophysically accurate neurons in a single FPGA device.
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Introduction 1
The spiking neural networks (SNNs) [42] replicate the dynamic behaviors and infor-
mation processing mechanisms of a biological neural system [39], and exhibit temporal
pattern processing [33] and fault-tolerant capabilities [11]. Subsequently, the main chal-
lenge in designing complex and biologically accurate SNNs is primarily set by the high
data transfer and computational demands. Nevertheless, it is only through largescale
networks and/or real-time simulation that biological dynamics for specific experiments
e.g. brain-machine interfaces, can suitably be modeled. Execution of such networks on
CPUs with generic programming suites or neuromodeling-specific languages, however,
require a prohibitive amount of time to complete. Field-programmable gate arrays (FP-
GAs), although slower than custom-made ASICs, due to the inherent high parallelism,
are capable of providing enough performance for real-time and even hyperreal-time neu-
ron network simulations. Additionally, via (partial) reconfigurations of the hardware,
various neuron models, (e.g. Hodgkin-Huxley model [13], Integrate-and-Fire model
[30], and Izhikevich model [28, 29]), as well as different network topologies and cell in-
terconnect schemes can be simulated. This flexibility is substantially enhanced by the
use of high-level synthesis tools (e.g. Vivado HLS), which speed up the development
process.

In this thesis, I implement three models of the spiking neurons representing different
trade-offs between the biophysical accuracy and computation complexity, whose charac-
teristics such as axon conduction delays, spike timing-dependent plasticity (STDP) [21],
electrochemical state descriptions [16], etc, are implemented in a real-time data-flow
learning network. These models are Hodgkin-Huxley model, Integrate-and-Fire model,
and Izhikevich model, respectively. Each one of them can be used for the different pur-
pose in the network. Integrate-and-Fire model is one of the most simple neuron model
in the world, which has only one variable. It is employed to investigate the maximal
amount of neurons stably working in the learning network. On the contrary, Hodgkin-
Huxley model, one of the most biophysically accurate neuron models [13], has high
complexity of computation (e.g. huge exponential computations). Thus, the simulated
number of neurons is quite limited, due to the expensive requirement of computing
and storing resources. Indeed, it is usually applied for the examination of the various
research questions related to the interplay between ionic currents, synaptic integration,
dendrite cable ltering and other issues on single neuron dynamic. Additionally, the
system is set to support for the inspection of the responses generated by the neurons
in the network, which depends on the input signals and their own parameters. Izhike-
vich concludes 20 properties of neurons related to the spike train, and compared them
among the different neuron models [27]. Although Hodgkin-Huxley model can simulate
18 properties in theory, it is not appreciate for the research on the spike train, due to
the difficulties in specifying the suitable stimuli and ranges for the tens of parameters.
Instead, Izhikevich model is a better choice, which can exhibit almost 20 properties. In
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comparison with Hodgkin-Huxley model, it just needs to specify the correct values for
4 parameters, to output the expected spike train in the network.

In the system, the input is localized for each neuron cell, i.e. the input signals can be
transmitted to the specific neuron cells at the same cycle. Concurrently, the parameters
are also localized for each cell, when the neurons are initialized. Additionally, the
implemented system offers configurable on- and off-chip communication latencies as
well as neuron calculation latencies.

With the tool of Vivado HLS, (partial) reconfigurations of hardware, as well as differ-
ent network topologies and cell interconnect schemes, are simulated to find the optimal
configurations of the three neuron models. The experimental results indicate that the
proposed network architecture can implement over 1,188 (max.6,300, depending on the
model complexity) biophysically accurate neurons in a single FPGA device.

1.1 Problem Description

Because the different neuron models have their own features (e.g. computations of
spike, required parameters, etc), the system should be capable of recognizing different
external inputs for corresponding neuron model and translating the external analog
signal into digital signal. Subsequently, the types and amount of parameters of each
neuron model are different, so the computations referring to parameters on each cycle
should be localized in the modules, where each module corresponds to one particular
neuron model. In total, three kinds of computational modules are designed (function-
ing as a plug-in component), and each specific module is independent from the other
modules in the system. Depending on the application requirement, the corresponding
computational module can be incorporated (plugged-in) into the general structure of
the network.

One design constrain is the communication costs. The extended Hodgkin-Huxley
model in [15] has a communication costs which grow linearly with the amount of neu-
rons, e.g., multiple FPGAs (up to 8) can be connected without limiting the performance.
Although the implementation of three neuron models in the same network increases
complexity of architecture, the communication costs are still expected to grow linearly
with the number of cells.

Additionally, as the computational speed of system is much faster than the human
being’s brain, multiple neurons can perform the calculations sequentially on each cycle.
The appreciate amount of time shared neurons should be evaluated, in case that the
sum of execution time exceed the real brain time.

The proposed learning network is aimed to be implemented on the FPGA Xilinx
(xc7vx550tffg1927-2) device. Consequently, the cost-effective resource utilization is
prioritized for the neuron models in the system.

1.2 Goals

The main goals of this thesis are:
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1. The interface is designed to recognize different external inputs offered to each
neuron model, and to translate these signals from an analog into a digital signal.
The data in the form of packets is then transmitted over the network.

2. The input is localized for each neuron cell, i.e., multiple packets can be transmitted
to the specific neuron cells at the same cycle. Concurrently, the parameters are
also localized for each cell. The localization of parameters can better simulate the
biological meaningful models in a real circumstance. [15].

3. Several models of the spiking neurons representing different trade-offs between the
biophysical accuracy and computation complexity are implemented in a real-time,
data-flow learning network, as well as the characteristics of neuron models such as
axon conduction delays, spike timing-dependent plasticity (STDP), electrochem-
ical state descriptions, etc.

4. Using Vivado HLS to synthesize and validate the new network and implement it
on the FPGA. Via (partial) reconfiguration hardware, as well as different network
topologies and cell interconnect schemes, the optimal configurations are defined
for the neuron models.

1.3 Contribution

The contributions of the work presented in this thesis are the following:

• Several models of the spiking neuron are implemented in a real-time data-flow
learning network [15]. The input is localized for each neuron cell, i.e., multi-
ple packets can be transmitted to the specific neuron cells at the same cycle.
Concurrently, the parameters are also localized for each cell. The system offers
configurable on- and off-chip communication latencies as well as neuron calcula-
tion latencies. All parts of the system are generated automatically based on the
neuron interconnection scheme in use.

• To implement the proposed network architecture on the aimed FPGA. Meanwhile,
the optimal configuration for the neuron models are specified.

1.4 Thesis Outline

• Chapter 2 introduces related neuron cell models and integration of these models
in the network. The previous work in [15, 4], which is the base of this thesis, is
also be presented in this chapter.

• Chapter 3 presents an overview of the system design, excluding details of imple-
mentation.

• Chapter 4 presents the details of implementation of proposed system omitted in
Chapter 3.

• Chapter 5 presents an evaluation of implementation results.

3



• Chapter 6 concludes the thesis based on the experimental results and give some
suggestions for the future work.
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Background and previous
model description 2
In this chapter, a short introduction to Spiking Neural Network(SNN) and related
work are given [42]. Next, some basic brain information and several SNN neuron models
are highlighted, and subsequently, the tools to implement these neuron models in the
neural network presented. Finally, the summary of the architecture in [6, 15, 4], which
forms a basic architecture for this thesis, will be given.

2.1 Spiking Neural Network

Spiking neural network (SNN) is classified as the third generation of neural network
model, increasing the level of realism in a neural simulation [23]. Besides only simulating
the frequency of spikes, the concept of time and shape of the spikes are also taken
consideration into the models in SNN. The former can be better used to investigate
the brain, and the latter is that the neuron in SNN only generates the spike when
the membrane potential exceeds specific threshold. When a neuron files, it generate a
spike and transmit it to the other neurons, which increase or decrease their potential
according to the signals.

The SNNs replicate the dynamic behaviors and information processing mechanisms
of a biological neural system, and exhibit temporal pattern processing and fault-tolerant
capabilities. Consequently, it requires more computational resources, in comparison
with artificial neural networks (ANNs). Field-programmable gate arrays (FPGAs),
although slower than custom-made ASICs (do not allow to alter the neuron model after
manufacturing), due to the inherent high parallelism, are capable of providing enough
performance for real-time and even hyperreal-time neuron network simulations.

2.2 State of the Art

IBM produced a neuromorphic CMOS integrated circuit in 2014, which is named
TrueNorth. The TrueNorth, is a multi-core processor network on a chip design, with
4096 parallel and distributed neural cores. Each one can simulate 256 programmable
silicon, and the total amount of simulated neurons is over one million [26]. In turn,
each neuron has 256 synapses. Subsequently, it just consumes 70 miliwatts, which is
about 1/10000 the power density required by the conventional microprocessors.

The NepteronCore, has been implement on the Virtex 4 FPGA, with up to 400
physiologically realistic neurons of the Hodgkin-Huxley model [25]. A PC-FPGA in-
terface is designed to adjust the parameters and on-line display basic synchronization
measures, e.g. potential, spike time, etc.

In [32], a Piecewise Linear Approximation of Quadratic Integrate and Fire
(PLAQIF) neuron model, is simulated and verified on a Virtex 5 FPGA. The net-
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work consists of 161 neurons and 1610 synapses with 4210 times real-time speed, in
which the real time is defined as 1 ms per simulation step. The PLAQIF is a simple
SNN model, and only generates the spike when the membrane potential exceeds cer-
tain threshold. In comparison with the Hodgkin-Huxley model, none parameters on
biologically-meaningful information are included in PLAQIF.

Another design on the Izhikevich model, is proposed in [19]. The authors present
a parallel SNN accelerator for producing large-scale cortical simulation on the FPGA.
This system performs synaptic processing in parallel, with run time proportional to
the firing rate of the network. 64,000 neurons can be simulated on a single FPGA,
with 2.48 times real time speed. Compared with a recent GPU accelerator, the spike
delivery rate in the network can achieves 1.45 times faster.

In this thesis, several SNN neuron models with characteristics such as axon conduc-
tion delays, spike timing-dependent plasticity (STDP), electrochemical state descrip-
tions, etc, are implemented in a real-time data-flow learning network, using a Virtex 7
FPGA. The real time rate is specified in the range from 50 us to 5 ms, depending on
the types of neuron models. In comparison with the other designs above, this system
can seamlessly switch the neuron models, according to the different purposes.

2.3 The Brain

The brain is the most complex part of human body. It can be divided into three
parts (Figure 2.1): brainstem, forebrain and cerebellum [8]. Brainstem maintains the
characteristics of life, including heartbeat, digestion, body temperature, sleep, breath
and so on. This part can be further subdivided into 4 major parts: i) Medulla is at
the bottom of brain and connected with spinal cord, and it controls heartbeat, breath,
digestion, ii) Pons is involved in motor control and sensory analysis; some parts of
pons are connected to cerebellum, involved in movement and posture, iii) Midbrain,
is related with hearing, vision, eyemovement and body movement, and iv) Reticular
system, is a mesh structure constructed by massive complex neurons; the functions of
this part is about states of consciousness.

The forebrain consists of the cerebrum, thalamus, hypothalamus and limbic sys-
tem. i) Cerebrum is the largest part of the human brain, associated with higher brain
function such as thought and action. The cerebral cortex is divided into four sections,
called ”lobes”: the frontal lobe, parietal lobe, occipital lobe, and temporal lobe. ii)
Thalamus can be seen as interchange station in the brain. The spikes from cerebellum
and brainstem will first stop in thalamus, form where these spikes will be transmitted
to cerebral cortex. iii) Hypothalamus plays an important role in control of endocrine
system and keeping metabolism normal. iv) Limbic system, often referred to as the
”emotional brain”, is found buried within the cerebrum.

Cerebellum has two hemispheres and has a highly folded surface or cortex. This
structure is associated with regulation and coordination of movement, posture, and
balance.
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Figure 2.1: The brain structure [2]

2.4 Inferior Olivary Nucleus

The Inferior Olivary Neurons, (ION) situated in Inferior Olive (IO), are parts of
the medulla oblongata and are located in the brainstem [6]. The IO is closely associated
with the cerebellum, and is involved in control and coordination of body movement.

The IONs are connected with each other by synapses. Basic ION cell structure
can be divided into three parts, dendrites, soma, axon. The dendrites receive the
stimuli from the other IONs. These spikes will be transmitted to soma via synapse(s).
Together with the states of neuron cell stored in soma, a response is given through
axon (Figure 2.2). The axons leave medially through the hilum, cross the midline, and
ascend into the cerebellum via the inferior cerebellar peduncle (climing fibers). Finally,
they terminate by synapsing in the cerebellar cortex.

When the people want to move part of his/her body, a signal will be sent from
Celebrum, to the Cerebellum through Pons. At the same time, ION will generate a
action potential and send it via axon to Cerebellum, which is referred as climing fibers.
The signal of desiring movement of body and action potential will be compared in the
Cerebellum, to control and coordinate the desired movement of human body [43].

2.5 The Neuron Model

Izhikevich compared properties of neuron models and complexity of computations [28]
(Figure 2.3). In this thesis, the three SNN neuron models are implemented in the
neuron network.

2.5.1 The extended Hodgkin-Huxley Model

The extended Hodgkin-Huxley model is based on the Hodgkin-Huxley model [22],
which is one of the most biophysically accurate neuron models [13]. The model consists
of four equations and tens of parameters, including the membrane potential, activation
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Figure 2.2: Structure of neuron [5]

Figure 2.3: Implementation cost vs. biological plausibility [28]

of Na and K currents, and inactivation of Na current. The complexity involved allow
examination of the various research questions related to the interplay between ionic
currents, synaptic integration, dendrite cable filtering and other issues on single neuron
dynamic.

The disadvantage of Hodgkin-Huxley model is the high complexity of computation.
In other words, this model is extremely expensive to realized.i.e. huge exponential
calculations are needed and approximately 1200 operations should be executed in 1
ms [28]. Thus, if the simulation time is considered, the number of neuron cells can be
simulated is quietly limited.

2.5.2 Integrate and Fire Model

The Integrate and Fire model is one of the earliest and widely used neuron models,
which is proposed in 1907 by Louis Lapicque [1]. The mechanism is quite simple:
when the membrane potential reaches the threshold value, a new spike will be fired via
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Figure 2.4: STDP Rule [29]

synapse to the neighbors of spiking neuron. Meanwhile, membrane of spiking neuron
will be reset. The neuron of this model can fire tonic spikes with constant frequency.

Because Integrate and Fire model is relatively simple and has only one variable,
only few properties of neuron can be exhibited. Thus, this model is usually employed
to investigate the network of huge amount of neurons, if the biophysical meaningful
features of the neuron cell is not an issue.

2.5.3 Izhikevich Model

The Izhikevich model is developed based on Integrate and Fire model [28, 29]. It
can exhibit multiple types of properties of cortical neurons with the choice of specific set
of parameters. Meanwhile, the computations are not very complex (about 12 operations
needed in 1 ms simulation), in comparison with Hodgkin-Huxley model. As a result,
it is efficient in large-scale simulation of cortical network.

2.5.3.1 Spike-timing-dependent Plasticity

The Spike-timing-dependent Plasticity(STDP) is a biological process that adjusts
the strength of synapses among neurons in the brain (Figure 2.4). It adjusts the
synaptic weights based on the relative timing of a specific neuron’s input and output
spikes [21]. The STDP partially explains the activity-dependent development of neuron
models, especially with regards to long-term potentiation and long-term depression.
The STDP rule is: if an input spike to a neuron occurs before that the neuron’s output
spike, then the input spike makes somewhat of synaptic weight stronger. On the other
hand, if an input spike arrives on a neuron after the generation of spike, this particular
input spike makes somewhat weak. The process continues until a subset of the initial
set of synaptic weights remains, while the influence of all the others is reduced to 0
[38].
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2.5.3.2 Delays

Axonal Conduction delays refers to time required for an action potential transmitted
from soma to the terminals of axon, where synapses are formed with other neurons.
The axonal conduction delays can vary greatly (depending on the axonal velocity and
distance, respectively), and can be as large as 44 ms and as small as 0.1 ms [29].

2.6 Implementation Tools

2.6.1 SystemC

SystemC is a set of C++ classes and marcos that allows functional modeling of system,
which can be compiled and executed as a normal C++ program. All the data types
offered by C++, can also be used in SystemC. Additionally, some extra data types
offered by SystemC library, as well as user defined, are available. A complex system
design can be hierarchical decomposed into modules in SystemC. Among modules, this
language provides an event-driven simulation interface, enable designer to simulate
concurrent processes. The modules can be connected using ports and exports, passing
simulated time and signals [14].

SystemC is a Hardware Description Language(HDL) with design capabilities at
several levels: i) Register Transfer Level(RTL), is a design abstraction modeling a
synchronous digital circuit in terms of the flow of digital signals (data) between hard-
ware registers, and the logical operations performed on those signals. ii) Behavioural
Level, describes the entire system with functions. iii) Transaction Level. In this
thesis, the system first is modeled at behavioural level. Then the implementation of
RTL will be generated automatically by High level Synthesis (HLS) tool [18].

2.6.2 Vivado HLS

Vidado HLS accelerates IP creation by enabling C, C++ and System C specifications to
be directly targeted into Xilinx All Programmable devices without the need to manually
create RTL.

The Vivado HLS synthesis a SystemC project can be implemented at the following
steps. i) Importing a SystemC project, Vivado HLS will first automatically generate
RTL simulation to validate design. ii) A VHDL description will be generated and
co-simulated. iii) Using directives, Vivado HLS can explore different possibilities of
hardware architectures. Comparing each performance, the best cost-efficient solution
can be defined. iv) Finally, Vivado HLS will generate the FPGA netlist from previous
VHDL description.

2.7 Previous work

The basis for the system of this thesis is in [15, 4, 6]. A system using SystemC was
designed to simulate extended Hodgkin-Huxley. The external stimuli is converted
from analog signal into digital signal in the module of input. Then this digital signals
are encapsulated in packets and transmitted into network. The network in system is
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Figure 2.5: Overview of Structure of PhC [6]

constructed as the way of binary tree. The nodes in the tree consist of routers and
clusters. Each router includes one upstream port and two downstream ports, where
each port has its own routing table. When a router receive packet, it will look up its
routing table to confirm whether this packet will be forwarded or not. Thus, the router
can decide to forward the packet to next intermediate node or directly to destination
of cluster, or to discard the receiving packet.

Communication cost among neuron cells is a key point affecting the overall per-
formance of system. To reduce communication costs, time-sharing is introduced [6,
7] (Figure 2.5). Furthermore, multiple Physical Cell(PhC)s can be grouped into
one cluster, sharing the same memory. These PhCs can access sharing memory in a
Round-Robin order, and hence, communication latency between neuron cells in the
same cluster can be significantly reduced. Consequently, the communication cost is
proportional to the number of neuron cells whose computations and communications
are localized in one cluster.

Based on the evaluation of the performance [15], this original simulator achieves the
expectations. The communication cost increases approximately linearly with increase
in the amount of the neuron cells. Additionally, this system can support the simulation
over multiple FPGAs (up to 8), while growth of the communication cost is still kept
linear. However, this design is only allowed to simulate the behaviors of the extended
HH model at the simulation level using SystemC, while it can not be implemented in
the FPGA with the tool of Vivado HLS.

To overcome the problem above, the work [4], based on the simulator [15], is pro-
posed. It simplifies the design of the network in the system, and only focus on the
implementation of single FPGA. The evaluation shows that this new design can imple-
ment maximal 1100 neurons of the extended Hodgin-Huxlay model in the FPGA.

Both systems are the costumed designs for the extend Hodgkin-Huxlay model. In
today’s world, tens of neuron models are developed, and each of them has its own
biophysical features [28]. Designing the particular simulator for each neuron model,
will be inconvenient and costs much time. So the requirement of a new system is
needed, which can generally support for the simulations of multiple neuron models.
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2.8 Summary

In this section, a brief description of SNN, related work, and basic biological brain
information is given. The characteristics of three SNN neuron models, and the imple-
mentation tools, including SystemC and Vivado HLS are listed as well. At the end, a
neuron network, which forms the basis for the work performed in this thesis is included.
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System Design 3
This chapter presents the features of high-level system design. Firstly, requirements of
designed system are listed, and then corresponding solutions are introduced. Finally,
some adjustments are made to implement the designed system on a FPGA board,
within time and resource constraints.

3.1 Requirements

In this thesis, the designed system should generally simulate multiple neuron models in
the same architecture. Each neuron model is designed as an independent module using
SystemC, and can be individually selected and plug in the system. Compared with
a system with single neuron models [15, 4], this designed system encounters several
important challenges.

• When given input stimuli, the neuron cell starts computing. For each neu-
ron model, the values and frequencies of external stimuli, as well as the types
of input data are different. Contrary to the Integrate and Fire model and
the Izhikevich model where the current is given as a stimuli, Hodgkin-Huxley
model receives the data in the form of potential difference.

• Each neuron model consists of a set of parameters. The biological meaning of
each set of parameters are quite different. In Hodgkin-Huxley model, tens of
parameters (19 parameters are defined in this system) record various states of
neuron, such as membrane potential, activation of Na and K currents and so on.
Sets of parameters in Integrate and Fire model and Izhikevich model decide
the patterns of spike train. Once the value and frequency of external stimuli was
defined, a specific set of parameters can result in a spike train according to one
of 20 properties of neuron model [27].

• The characteristics of each neuron model vary significantly; the system should
handle differences in the implementation of each model within the same network,
while offering the possibilities for the independent modules of computations (e.g.
Izhikevich model should implement axon conduction delay, while zero-conduction
delay is set for the extended Hodgkin-Huxley model and Integrate and Fire model).

• When implementing the system on a FPGA board, resource and time constraints
should be taken into consideration. With the tool of Vivado HLS, some directives
can be added to optimize the design. Furthermore, localizing the individual design
of neuron model as much as possible is a good solution to reduce resource cost, in
case redundant parts take up too much hardware resources when switching within
three models.
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3.2 Input and Output

Any potential or current, which originates from the outside world, and represents the
measurements of the physical quantity, is an analog signal. Before the stimuli is sent
to the neuron cells, it should be converted to digital signal first, which is discrete time
signal generated by digital modulation.

The interface connecting to external environment in this system can recognize both
types of input (potential or current). It only focus on the value of signal and data format
(e.g. fixed point, floating point), recognition of data types is determined manually while
simulator switches to one specific neuron model. Once conversion of signal is done, the
corresponding digital signal will be assigned with id and transmitted to destination of
neuron cell in the network.

In the real world, a nerve system should receive multiple external stimuli concur-
rently. In order to be close to the real situation, this interface is capable of localizing
input for each neuron cell. In each simulation cycle, the designed interface can deal with
multiple external sources and send these packets with id one by one to the destinations.
The id in packet is corresponding to a specific neuron cell in system, which is given
at the initializing stage. After the packet is sent into the network, routers utilize the
look-up routing tables to forward them to the next node. Finally, the cluster containing
the destination of neuron cell will accept the packet and store it in the shared memory,
so that the corresponding neuron cell can read it before calculation.

Additionally, the designed interface is also responsible to change the results of cal-
culation back into analog signal, and write them to external files at the end of each
simulated time cycle. Meanwhile, these results can be locally chosen to store. Once the
range of selected neurons are defined in the configuration module, the other packets of
result outside the range will be filtrated by the interface.

3.3 Parameters

Sets of parameters are locally stored in the memory of independent module for each
neuron model. This design has two advantages. i) It is convenient to switch the neuron
models in the network, otherwise the configuration module should be rewritten each
time. ii) Because the calculations in the neuron need to read or write parameters at
each cycle, localizing storage of parameters can significantly reduce latency, in particular
communication cost.

For each neuron cell, the parameters are set individually (e.g. a set of parame-
ters represents various states of neuron cell). Before the system start working, the
parameters are initialized by several random functions. Thus, each neuron can have its
own states. These functions specify the parameters within some certain ranges for the
neurons, whose max and min values are pre-defined in the configuration file.

3.4 Scalability of Network

Nowadays, there are many different methods connecting components in the system.
One popular method, which promises high performance and efficiency, as well as low
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Figure 3.1: Typical Topology For Network [35]

resource cost, is Network-on-Chip (NoC) [35, 17]. Some typically topology of NoC are
presented in Figure 3.1. In this thesis, a topology of binary tree is selected to implement
the network (Figure 3.2), because the tree structure can be scaled up or down easily. In
the designed network, leaf nodes represent clusters which contain multiple PhCs inside,
while the other intermediate nodes are routers. Each router consists of 3 input and
3 output ports. One input (output) port is corresponding to be upstream in the tree,
while the others are downstream. Routing tables are attached to each port, so that
routers can forward the receiving packets, and avoid the sending packets to loop back.
Additionally, several FIFO buffers are designed in the router to handle congestion. Each
input or output port has a corresponding write- or read-buffer. Once write buffers are
full, the following packets will be stored in the delayed buffer first. As soon as the write
buffer is empty, the packets in the delayed buffer will be picked up and forwarded to
destinations via write buffer. In order to simplify the design, all packets are defined
with the same size and priority in the network. Hence, there is no need to split packets
into several flits.

In this thesis, the amount of simulated neurons is dependent on three dimensions:
the number of clusters, the amount of PhyCs in one cluster, and the time shared factor
(the number of neurons allowed to work together in one PhyC). These parameters are
all pre-defined in configuration file. Once system starts, it firstly initializes the network
based on the parameters of configuration. A recursive function is designed to generate
new branch from root node, until the number of leaf nodes is equal or larger than the
pre-defined parameter. Consequently, by changing the parameters in the configuration
file, the network can scale up or down conveniently.

3.5 Implementation of Neuron Models

The aim of this thesis is to design a system, which supports three SNN neuron models:

• The extended Hodgkin-Huxley model

• Integrate and Fire model

• Izhikevich(2006) model
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Figure 3.2: Structure of the Network

Implementation of the extended Hodgkin-Huxley model is based on [4, 15]. Ex-
ternal inputs and parameters are localized to achieve the overall goals of system de-
sign. This means that multiple inputs can be accepted at each cycle and sent to the
destinations individually. Additionally, each neuron cell is initialized with a set of pa-
rameters, where the values are different within some specific ranges. Calculation of
Hodgkin-Huxley model can be separated into two parts [16]. The first half is comput-
ing potential of dendrite and internal current. At each simulated time step, component
of dendrite will firstly access the share memory in a cluster, to read the potentials from
its neighbors and from the external source (Vi). Once all these potentials are calculated,
the potential difference can be used to generate the current as:

Ic = C ∗ (0.8 ∗
N−1∑
i=0

(Vi ∗ e
−1∗V 2

i
100 ) + 0.2 ∗

N−1∑
i=0

∗Vi) (3.1)

where C is the conductance and N is the number of connected neighbours.
On the other hand, as long as receiving current via internal channel, the component

of axon will generate a new potential of axon and update the parameters. At the end
of cycle, new potential of dendrite will be stored in the local memory, and the axon
potential will be sent upstream into network via the module of cluster.

Compared with Hodgkin-Huxley model, the computation of Integrate and Fire

model is much more simple. The mathematical expression is below:

vnew = I + a− bv, if v ≥ vthresh, then v ← c (3.2)

where v is the membrane potential, I is the input current, and a, b, c and vthresh are
parameters. When the membrane potential v reaches the threshold value vthresh, the
neuron will fire a spike, and v is reset to c.

In this thesis, a single neuron of Integrate and Fire model is designed to connect
with (n+m) nodes, where n is the amount of neurons sending the responses to the
specific cell via the pre-synapse, and m are the ones receiving responses from the neuron
via post-synapse. Both n and m are random values defined by a connecting matrix.
This matrix is automatically generated using Python [37] and loaded by the system as
a script (JSON) [20], when the simulator starts to work. Hence, in each cycle, a neuron
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of Integrate and Fire model will detect whether there are some spikes coming from
its neighbors or external sources first. Then, a new input current can be calculated,
depending on the receiving spikes and external signals. Afterwards, this current will
be taken into the function (3.2), resulting in a new potential of dendrite. If this new
potential exceeded specific threshold, soma will generate a spike and pass it to all
relative neighbours via post-synapses. Concurrently, the potential of dendrite is reset
to a constant, which is specified by the parameter in the configuration file. On the
contrary, if the new potential of dendrite can not satisfy the requirement generating a
spike, it will be stored locally in the memory, waiting for the next round of calculation.

In the Izhikevich model, the idea of generating spikes are quite similar to the
Integrate-and-Fire model. The differences are the parameters and equations, which are
expressed below:

v = 0.04v2 + 5v + 140− u + I, if v ≥ 30, then v ← c, u← u + d (3.3)

u = a(bv − u) (3.4)

where variable v represents the membrane potential of neuron and u represents a mem-
brane recovery variable, which accounts for the activation of K+ ionic currents and
inactivation of Na+ ionic currents, and provides negative feedback to u.

Beside the characteristic of spikes, the neuron of Izhikevich model should also
implement axon conduction delay and STDP [29]. In this thesis, the delay between
two neighbors is randomly assigned from 0 to a pre-defined max value, and is stored
in the local memory (local delay information). Because the generation of spikes and
transmission to the neighbors are performed within the same cycle, the spikes will be
stored in the delay buffers first. Subsequently, they are re-marked with actual arriving
time, according to the local delay information. In each cycle, the neuron checks whether
there are some spikes in delay buffer meeting the real injecting time. Hence, all suitable
spikes will be fetched and used in spiking functions above.

Finally, the system adds a global memory in a top module to record and control
synaptic weights for all neuron cells. This design is aimed to realize dynamic change
of synaptic weights among neurons real-time conveniently. When a neuron generates
a spike, it will store its own STDP parameters in the global memory and notify the
neighbors. When the neuron is informed that some neighbors generating spikes, it will
update the STDP parameters in the memory, according to the STDP functions. In
Izhikevich model, the synaptic weights directly influence the amount of the current
flow through the synapses, which is used to calculate the potential of dendrite. On the
contrary, if no spike is fired between two cells, the relative synaptic weight will decay
proportionally.

3.6 Synthesis

The last section describes synthesis of this SystemC project, so that it can be imple-
mented on the FPGA. To increase the efficiency, several adjustments are made for the
design: i) Arrays are placed in BRAMs to reduce the cost of hardware (LTUs and FFs).
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Figure 3.3: Several PhCs share one ExpC [4]

Arrays which should be accessed in parallel are separately placed in their own memory,
while some other data, such as parameters are assigned the same BRAM, sharing a
signal memory port. ii) Since several PhyCs shared the same memory in a cluster,
some wait states are needed in the SystemC code so that no stalls occur during the
computations of neuron cells. iii) The division calculation is rarely used since the unit
of divider takes up quite a lot of hardware resource. By instructing scheduler to limit
the amount of dividers, multiple neuron cells can share one single divider to perform
the dividing functions, reducing hardware cost iv) In the general network, the hardware
resource consumed by the design of individual neuron model will become redundant,
when the system is switched to another model. Consequently, implementing charac-
teristics of each neuron model, as much as possible, in the independent module, can
significantly decrease the overall resource utilization in the system. v) Either single or
double floating-point precision can be chosen in the system.

The extended Hodgkin-Huxley model involves multiple exponential computations.
To save the resource costs, a particular sub-module named ExpC is designed to perform
the exponential calculations [4]. In this thesis, several PhyCs of the same cluster can
share one ExpC. The number of ExpCs in one cluster is determined by the time-share-
factor, which is pre-defined in the configuration files. In each cycle, the neurons send
the data, including exponent operands and their own addresses, to the corresponding
ExpC in pipeline. Once the ExpC received the data, the exponent operands and address
are stored separately in two FIFO buffers. After an exponent is calculated, the ExpC
will read the address at the top of address buffer first. Subsequently, the data with
specific address will be written back to the corresponding neuron via output buffer.

As there is only one exponential calculation in the Integrate and Fire model and
none in the Izhikevich model, the sub-module of ExpC is removed in their independent
modules to reduce the hardware costs. Instead, some additional resource utilization is
required to perform the characteristics of delays, and STDP in the Izhikevich model.
e.g. some more memories are required to store the delayed spikes, delay information,
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Figure 3.4: Overview of data flow as designed in chapter 3 and 4

and synaptic weights,etc.
This optimized system can find a suitable trade-off between the performance and

resource cost. Using Vivado HLS, the FPGA netlist is finally generated automatically.
(The data flow is in the Figure 3.4, and the overview of system is in the Figure 3.5 ).

3.7 Summary

This chapter proposed the requirements of system design in section 3.1, and then the
corresponding designs are present. Section 3.6 introduces some adjustments, which
helps the neuron network to find a cost-efficient solution of implementation on FPGA
board.
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Figure 3.5: The NeuronNet system overview. The computing elements (the PhyCs) are
grouped inside a cluster to make communication between neighboring cells fast. These clusters
are connected in a tree topology NoC. The router fan-out in this case is 2, and can be changed
according to the requirements of the implementation. The same holds true for the number of
PhyCs in any cluster [15].
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System Implementation 4
This chapter presents the details of system design derived in chapter 3. Several sections
are given below, including interface connecting external sources, implementations of
three neuron models, and optimized design for the synthesis.

4.1 Interface connecting to outside world

In this system, the interface is designed to read the signals from external sources, and
write the simulation results back into the specific files. This input/output module
consists of three sub-modules, ADC, DAC, and Inout (Figure 4.1).

Figure 4.1: Data flow of external interface
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Figure 4.2: Example of external inputs or outputs stored in the text file

4.1.1 Inputs and Outputs

The ADC is responsible for conversion of the arriving analog signals into digital signal.
The external inputs are modeled, and pre-defined in a text file (Figure 4.2). Each
line represents the injection of all outside data at one time step, and multiple external
stimuli are separated by comma. On the contrary, the DAC writes the results back to
the specific external sources.

When the module Inout receives data from the ADCs, it assigns the data with a
unique id starting from n + 2 (n is the number of neuron cells in the system, and the
id with n or n + 1 is set for the control of synchronization ). Afterwards, the data is
sent into network in the form of packet, with the same size and priority. On the other
side, the packet containing result from network is extracted in the Inout. According to
packet id, this result will be written back to the specific external address.

4.1.2 Locality of data

4.1.2.1 Localization of inputs

The localization of inputs means that multiple external signals can be sent to the specific
neurons in each cycle. This adjustment improves the simulation of neuron model more
close to the real situation in human brain (neuron network usually is given multiple
motivation simultaneously).

A matrix of connectivity is defined before system starts, based on the parameters
in configuration file. This matrix is a two-dimension (N×N) array (N = nc + ninput +
noutput + 2, where 2 is a constant for the control of synchronization, nc is the number
of neuron cells, ninput and noutput represents the amount of external inputs or outputs,
respectively). An example of matrix is given below:

aij =


0 0 0 1 1
0 0 1 0 0
0 1 0 0 0
0 0 1 0 1
0 0 1 1 0

 (4.1)

The aij = 1 means that the neuron i links to the neuron j, otherwise, 0 strands for
no connection between the corresponding two neuron cells.

When initializing the network, the construction of routing tables are based on the
matrix of connectivity. The range of id from nc + 2 to nc + 2 +ninputs− 1 is assigned to
the external inputs, each one is relative to a specific input address. By setting the value
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to 1(0) in the matrix, a pair of input and neuron, can be connected (disconnected).
Hence, the system is capable of specifying each input for the required neurons.

As mentioned in section 4.1.1, the id nc or nc + 1 is reserved for the control of
synchronization. At the beginning of each cycle, the module of controller (control
bus) will sent out the packets containing the id nc to all clusters. Once the clusters
received these packets, they will issue the new starting signals to their own neuron
cells immediately. On the other side, the packets with id nc + 1 are used to notify the
controller that all clusters have already finished calculations, which are generated by
each cluster. A count register is placed in the controller, in order to account for the
number of arriving packets with id nc + 1. As long as this count equals to the number
of clusters, the controller will give out the new iteration command in the form of packet
(id= nc).

4.1.2.2 Localization of Outputs

The localization of outputs can helps the researchers to selectively investigate some
specific cells. The id starting with nc + 2 + ninputs belongs to the external outputs.
When setting the value to 1(0) for a pair of neuron and output address in the matrix,
the simulation result from the neuron can (not) be written back to the corresponding
output files via network.

4.2 Implementation of The Neuron Models

The characteristics of the neuron models are already introduced in Chapter 2, and in
Chapter 3 the basic ideas of system design are derived. In this section, the details
of implementations in the network are present, which are divided into three parts,
according to the three different neuron models.

4.2.1 The extended Hodgkin-Huxley Model

4.2.1.1 Neuron Cell

The data flow of the extended Hodgkin-Huxley model is illustrated in Figure 4.3. Before
the calculations start, the parameters are initialized by some random functions, where
the values are specified within defined ranges. Concurrently, the value of initial VDend

(potential of dendrite) is given via control bus, reading from the configuration file. Due
to parameters and VDend accessed frequently during the computations, both of them
are stored in the local memory individually.

The inputs for a single neuron involve two parts; the potential from the neighbors,
and the external stimuli. The cluster receives the inputs via the network and records
them in the share memory at each time step first. Then, the neuron cells in the cluster
can access the share memory to get their own inputs in the Round-Robin order.

The computation of Hodgkin-Huxley model can be split into two sub-computations.
The first one can calculate the new VAxon (potential of axon) and the states, based on
the current VDend and parameters in the local memory. The other one, about generation
of new VDend, should wait for the new VAxon to continue with the calculation, together
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Figure 4.3: Data flow of a Hodgkin-Huxley model cell

with inputs and current VDend. After the calculation is performed, this new VDend

will be transmitted to the neighbors, and the VAxon is sent upstream directly into the
network, which will be stored in the output files.

4.2.1.2 Physical Cell

Physical Cell (PhyC) calculates multiple time-shared neuron cells sequentially, due to
the real brain time is slower than the clock frequency on FPGA [6]. The structure of
PhyC is already introduced in Section 2.5 (Figure 2.5), and implementation of PhyC
in the network can increase the amount of neurons simulated on FPGA.

4.2.1.3 Cluster

A single cluster in the system consists of several PhyCs, a share memory, and controller.
A simple structure of cluster is shown in Figure 4.4.

In one cluster, several PhyCs are grouped and share one memory. At each step,
the PhyC accesses this shared memory via a single memory port in the Round-Robin
order. The shared memory is split into two sub-memories. All writes are done to one
memories, while all reads are done from the other memory. After one system step,
these two memories exchange their tasks.

The controller in the cluster is designed to implement several functions: i) The
controller receives the packets and store them in the shared memory, according to the
address contained in the packets. Meanwhile, the packets from PhyCs are sent upstream
to the network by the controller. ii) When receiving a packet with id nc, the controller
will send a start signal to all PhyCs. On the other hand, when the controller received
all calculation done signals from its PhyCs, it will issue a done packet (id=nc + 1) to
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Figure 4.4: A simple structure of cluster [4]

the system controller. iii) The controller can check whether all required packets are
received or sent out already at each step.

4.2.2 Integrate and Fire Model

In the Integrate and Fire model, the design of the cluster is almost the same as the one
of the Hodgkin-Huxley model, except the implementations of the PhyC. A data flow of
Integrate and Fire model is given in Figure 4.5.

The inputs are in the form of current, consisting of spikes from the neighbors, and
the external stimuli. All the inputs are added together to derive a total current. This
current is used in the potential function to calculate a new V (membrane potential),
together with parameters and current membrane potential. Afterwards, the parameters
are updated in the memory, and the new V is compared with a defined threshold. If
V exceeds it, a new spike will be generated and transmitted to the neighbors via the
network, meanwhile, the V and parameter u will be reset and stored in the local memory,
respectively. On the contrary, if no spike is fired, the new V will be written back to its
local memory, waiting for the next step.

1 V_dend_tmp = V_dend_buf [ i ] ; // read the current potential of

// dendrite in the memory for the

//neuron i

V_inf_tmp=E_L_tmp + I_tmp∗R_m_tmp ; // after the potential of

//dendrite exponentially decaying ,

//the temporary potential V_inf_tmp is

//calculated. E_L_tmp, R_m_tmp are the

//parameters read from the local memory,

//I_tmp is the input current of neuron i.

6
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Figure 4.5: The data flow of Integrate and Fire model

V_dend_tmp = V_inf_tmp +(V_dend_tmp−V_inf_tmp ) ∗ exp_fun ((0.0− dt_tmp ) /
tau_tmp ) ; // the new current potential is calculated.

if ( V_dend_tmp>−55.0) // compared the potential with the threshold

{
11 V_dend_tmp=V_reset_tmp ;

Axon_tmp=20.0; // neuron i fire a spike, the dendrite potential is

// reset.

}else{
Axon_tmp=V_dend_tmp ; // potential of axon

}
16

// Store the new potential of dendrite to local memory

slice_V_dend [ i ]=V_dend_tmp ;

In general, the computation of Integrate and Fire model is the most simplest among
three neuron models. Consequently, it is applicable for simulation of large amount of
neuron cells in the network, if the biophysically meaningful features of the neuron cell
is not an issue.
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Figure 4.6: The data flow of the delay implementation

4.2.3 Izhikevich Model

The Izhikevich model is usually used to investigate the patterns of the spike train. Ad-
ditionally, in this system, provisions are made to dynamically changes synaptic weights.
The whole design of Izhikevich model can be sub-divided as three parts: spike genera-
tion, delays, and STDP.

4.2.3.1 Axonal Conduction Delay

The implementation of axonal conduction delay includes three basic functions; fdelay
(defines the exact delay time for each arriving spike), fcheck(check whether spikes in
delay buffer are compatible with simulation time step), and fcurrent (generates the
current).

At each step, all arriving inputs from neighbors should be compared first. Only the
input, whose potential is larger than the defined threshold, is recognized as a spike from
neighbor. The delay information is stored in a local memory, which record the exact
delay time for each neighbor. If the spikes are accepted, the fdelay accompany these
spikes with delay information, and then store them in a delay buffer. Next, according
to the current system simulation time, fcheck checks whether there are some spikes can
be fetched out of the buffer. Afterwards, the total input current can be calculated in
the fcheck, together with the external signal. The basic data flow is presented in Figure
4.6 .

In the designed network, the generation, and transmission of packets are performed
in the same cycle. Consequently, to implement the delay between neurons, an additional
spike delay buffer is placed in the module, which enables that the spikes can be received
at the expected time. The thesis assumes that the currents of spikes from neighbors
are depending on the pre-synapse weights, thus, the delayed spike buffer only need
to record the actual arriving time for each pre-synapse neighbor. When the spikes
are picked from buffer, the corresponding input currents are calculated based on their
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Figure 4.7: Basic data flow of STDP in the system(rename the functions )

synaptic weights. The basic delay implementation in SystemC can be showed as below:

if ( v_tmp==35) // check whether the receiving signal is a spike

2 {

D=(∗iter ) . delay [ neighbours . ID ]+t−1; // calculate the actual time step,

// according to delay information. t is the current system time step.

(∗ iter ) . fire [ D ] . neighbours [ neighbours . ID ]=1; // Store the spike in

// delay buffer. At time step D, spike of neighbor.ID can be fetched.

7
}

for ( int i=0;i<config . getCellCount ( ) ; i++)
{

12 if ( (∗ iter ) . fire [ t ] . neighbours [ i ]>0) // whether spike from neuron i can

// be fetched at time t

{

slice [ ( ∗ iter ) . Infoli_ID ] . I_c +=Sweight [ i ] . s [ ( ∗ iter ) . ID ] ;
// with synaptic weight, the current of spike i is calculated. Then

// it is added to the total input current.

17
}

4.2.3.2 STDP

The implementation of STDP refers to several important variables, e.g. long term po-
tentiation (LTP), long term depression (LTD), pre-synapse weight, pre-synapse deriva-
tives, post-synapse weight, and post-synapse derivatives. A global memory is employed
for the general learning network, to perform the dynamic change of parameters of STDP
(Figure 4.7).

When a single neuron of Izhikevich model receives the spike from a pre-synapse
neighbor, the pre-synapse derivative will be depressed by the variable LTD. Next, it
updates the new value of STDP parameter in the global memory, so that the neuron
firing a spike can know the change of its post-synapse derivative immediately (the pre-
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synapse weight/derivatives of former equals to the post-synapse weight/derivatives of
latter). In the case that a spike is generated by the neuron itself, the variables LTD
and LTP will be reset. Furthermore, all the post-synaptic weights of spiking neurons,
will be increased. These changes are also written into the global memory, so that the
post-synapse neighbors can share them. On the other hand, if no spikes generated, all
six variables will decay according to STDP rule. The example of STDP implementation
in SystemC is below:

if ( slice [ i ] . V_dend>=30) // check whether neuron i fire a spike

2 {

Sweight [ slice [ i ] . ID ] . LTD=0.12;
Sweight [ slice [ i ] . ID ] . LTP [ t+config . Max_Delay ] = 0 . 1 ; //reset LTP and LTD

7 for ( int k=0;k<config . getCellCount ( ) ;++k )
{
if ( neighbour_list [ k ] . slices [ slice [ i ] . Infoli_ID ] ) {

//check whether the cell k is a neighbor of neuron i.

Sweight [ k ] . sd [ slice [ i ] . ID]+=Sweight [ k ] . LTP [ t+config . Max_Delay−slice [ i
] . delay [ k ] −1 ] ; // update the synaptic weights of neuron k

12 }
}

Sweight [ slice [ i ] . ID ] . LTD=0.95∗Sweight [ slice [ i ] . ID ] . LTD ;
Sweight [ slice [ i ] . ID ] . LTP [ t+config . Max_Delay+1]=0.95∗Sweight [ slice [ i ] .

ID ] . LTP [ t+config . Max_Delay ] ; //if neuron i not fire a spike,

// the parameters decay, according to STDP rule.

4.2.3.3 Spike Generation

The overview of data-flow implementing the Izhikevich model is illustrated in Figure
4.8.The details of delays and STDP are described in the previous two sections. In this
designed module, the total current is calculated first, depending on the external inputs,
pre-synaptic weight, and delays. Then, fV generates the new membrane potential based
on the calculated current, current Vdend, and the parameters. Both the new potential
and parameters are written to the local memory. Afterwards, this new membrane
potential is compared with defined threshold, and determine whether a new spike can
fire. No spike generation means that the parameters of STDP should be decayed
proportionally by the fdecay. Otherwise, the membrane potential and some specific
parameters are reset to the pre-defined values, and fed back to the corresponding local
memories. Concurrently, all the post-synaptic weights of spiking neurons are increased.
The spike generation in SystemC can be described as below:

slice [ i ] . V_dend=slice [ i ] . V_dend+slice [ i ] . tau ∗ (0 . 04∗ slice [ i ] . V_dend∗
slice [ i ] . V_dend+5∗slice [ i ] . V_dend+140−slice [ i ] . u+slice [ i ] . I_c ) ;

// calculating the potential of dendrite for neuron i

4 slice [ i ] . u +=slice [ i ] . tau∗slice [ i ] . a∗( slice [ i ] . b∗slice [ i ] . V_dend−slice
[ i ] . u ) ;

// update the parameter u in the memory
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Figure 4.8: The date flow of Izhikevich model (2006)

if ( slice [ i ] . V_dend>=30) // whether neuron i generate a spike

{
9 slice [ i ] . V_dend=−65; // reset potential of dendrite

slice [ i ] . u +=slice [ i ] . d ; // update the parameter u

slice [ i ] . V_axon=35; // reset potential of axon

} else

{ slice [ i ] . V_axon=slice [ i ] . V_dend ; } // no spike generated

4.3 High-level Synthesis

When implementing the designed network on the FPGA, the resource requirements and
time constraints must be taken into consideration. To insure that the synthesis of the
system fulfills the requirements as well as FPGA implementations, several adjustments
are made in the system.

4.3.1 Optimization with directives

Using Vivado HLS to synthesis the system , various settings can be conveniently defined
by the users. Some main directives used in the system are listed below.

• During the implementation of three neuron models, calculation of divider is the
least amount of times used, which consumes considerable hardware resources.
Consequently, the number of dividers is limited in the SystemC code with:
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#pragma HLS ALLOCATION instances=FDiv limit=1 core

#pragma HLS ALLOCATION instances=DDiv limit=1 core

• An appreciate placement of arrays in the memories can effectively reduce the
hardware cost. According to the requirements, some arrays (e.g. array storing
potential of dendrite) are allocated the local memories individually, which need
to be operated concurrently. Conversely, other arrays (i.e.,array on the state
parameters) can share the same local memory. (neurons in the same PhyC perform
their calculations sequentially )

#pragma HLS RESOURCE variable=slice_V_dend core=RAM_1P_BRAM

#pragma HLS RESOURCE variable=slice_delay core=RAM_1P_BRAM

#pragma HLS RESOURCE variable=spike_delay core=RAM_1P_BRAM

• Several wait() statements are inserted into the code to notify the scheduler of the
arriving of signals outside the scope. e.g. the PhyCs access the shared memory in
the cluster in the Round-Robin order. By instructing wait statements, scheduler
can schedule the access to memory for specific PhyC at each cycle, to ensure that
no stalls occur and that each one can read or write the shared memory in time.

• The calculations of neuron models support both double and single floating point
precision.

4.3.2 Adjustments of System for HLS

4.3.2.1 Hodgkin-Huxley model

The implementation of the extended Hodgkin-Huxley model includes multiple com-
putations of exponential functions. If the neuron cells directly make use of the units
of exponential function to perform the computation, the resource requirement will in-
crease significantly with the growth of the amount of neurons simulated. Consequently,
a special component of exponential calculation is designed [4], which can be shared
by the PhyCs in the cluster. The number of these components is not just limited by
only one in the cluster. Instead, it is up to the integer value of PhyCs/ExpCs (PhyCs
stands of the number of PhyCs in one cluster, and ExpCs means the maximum number
of PhyCs supported by one exponential component.) Both two values can be varied in
the configuration part.

As described in the previous section, the computations of Hodgkin-Huxley model

can be divided into two sub-calculations. The first one is the axon potential and state
parameters computations, which includes multiple exponential calculations. The inputs
to this part are named low priority inputs, and are sent to multiple ports of exponent
core. The second sub-calculation, the generation of dendrite potential only need one
exponential operation. The exponential operand is read by a single port, which is
shared with multiple PhyCs (Figure 4.9).

When the exponential operands arrive at the ExpC, the operations are performed
in pipeline. A shift counter is a FIFO buffer and placed to record the input address.
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Figure 4.9: Structure of exponent core [4]

Once the new input is read, its address will be inserted to the bottom of buffer. While
an exponential results is generated at each cycle, the address on the top of the counter
will be fetched. Thus, this data can be written back to the specific PhyC via the output
buffer. At last, all the entries in the counter shift up one place, and then the bottom
of entry is available to the next input.

4.3.2.2 Integrate and Fire Model

Unlike the Hodgkin-Huxley model, the Integrate and Fire model only needs one
exponential operation in the computations. Consequently, the design of this model
includes two options: either using the exponential component as described above, or
directly performing the operation on the unit of exponential function. In this thesis,
both types of implementations are developed. After comparing the performance using
Vivad HLS, the result shows that the design with ExpC in this model costs about 2.5
times more hardware resource than the other one does. As a result, the design of later
is adopted in this system.

4.3.2.3 Izhikevich Model

The computations of Izhikevich model does not include any exponential operations
(consequently, approximately 10% percents of memory is saved). The STDP parameters
are localized in each PhyC. In comparison with the network saving STDP parameters
in the global memory, this adjustment reduces the memory latency.

The main problem encountered when implementing this model, is how to inform
the neighbors of spiking neuron when the spike is fired. This means that the synaptic
weight between two neurons should be kept consistent, and potentiation or depression
of synaptic weights needs to be scheduled to occur at the right time.

After optimizing the design of this part, an extra connectivity matrix is introduced
in the system. In comparison with original matrix recording the connections from the
pre-synapse neighbor (e.g. aij in the matrix means that node ai connects to the aj),
the new matrix stores the information of post-synapse neuron. Based on [4], the way
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of creating connectivity matrix among neurons is quite simple and fixed. Each neuron
cell is both the pre-synapse and post-synapse neighbor for the connecting node (e.g. if
ai connects to the node aj, then there must be an inverse connection from the node aj
to ai). An optimized design is extended to suit for the more flexible method of creating
the connectivity, which can be developed in the future. After both matrices are defined,
their values are sent to the cluster memory in the form of packets, with the type 4 or
5, ( see Table 4.1 ), respectively.

type 1 Dendrite potential

type 2 Axon potential

type 3 Iapp

type 4 Matrix from pre-neuron

type 5 Matrix to post-neuron

Table 4.1: The different input types

At each step, all the dendrite potentials are updated in the local memories for the
neurons. When a new cycle of calculation starts, the cluster reads the required data in
the shared memory and transmit them to the corresponding neurons via FIFO buffers.
The potentials from pre-synapse nodes are sent first. After the cell receives a packet
with special value (e.g. the data is less than zero), it is informed that the following
packets are from the post-synapse neurons.

In the module of Izhikevich neuron, a counter is placed to distinguish type 4 and
5 potentials. After starting to receive the potentials from neighbors, if one input ex-
ceeds the pre-defined threshold, it means that the corresponding pre- or post-synapse
neighbor fires a spike. Thus, the pre- or post-synapse weight should be increased or
decreased at some time later (this depends on the delay information for this pair of
nodes), which are updated in the local memory.

In a neuron itself, if the new membrane potential is smaller than the threshold, the
synaptic weights will decay according to STDP rule. On the other hand, if a spike
is fired, the synaptic weights for all the neighbors are enhanced or reduced at once.
Subsequently, the new membrane potential will be transmitted to both pre- and post-
synapse neighbors via network.(the design before adjustments only sends the potential
to the post-neurons).

In general, each neuron stores the individual STDP parameters in its own local
memory. By receiving the packets from both sides of neighbors and detecting the
generation of fire itself, the dynamic change of STDP can be implemented in the system
(Figure 4.10).

4.4 Summary

This chapter presents the implementation details of system design which is described in
the chapter 3. It mainly introduces the improvement based on the [15], to implement
three neuron models in the real-time, data-flow, learning network. Due to the resource
and time constraint, some adjustments are made in the design to meet the high level
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Figure 4.10: Date flow of STDP design after adjustment

synthesis, so that the system can be implemented on the FPGA . The following chap-
ter presents the performance evaluation with different system configurations, and the
optimal configurations are explored. To the end, the impact on varying the buffer size
is explored.
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Performance Evaluation 5
In this chapter, multiple test cases are designed with different configurations. The
results include accuracy, property, latency, and resource usage, etc, and consequently,
the optimal configurations for the three neuron models are defined. In addition, the
change of buffer depth in the designed system is explored, since it can have potential
effect on the implementation.

5.1 Evaluation method

Within this section, the details of evaluation method are discussed. By changing the
configuration files, multiple neuron cells logic set-ups can be created. After the inputs
are defined, the system can generate and store the results in the DAC files. These
results can be used to verify the correct behaviour of ION, compared to the reference
models [29, 41, 4]. Subsequently, the corresponding properties [27] of neuron cells can
be plotted in the form of graphs with the outputs. In order to calculate the latency for
each test case, a SystemC trace file is added in the system. By tracing some specific
signals, the latency can be calculated with the help of the tool GTKWave [9]. Finally,
after a test case is simulated and synthesized by Xilinx Vivado HLS, the resource usage
reports can be found.

In this thesis, the best case means the maximal number of neuron cells that can be
simulated in the designed network within the required resource and latency limitation.

5.1.1 Simulation configuration

In the system, two configuration files are defined to generate the specific test cases.
The one is used to define the parameters of system simulation, and the other one is
set to describe the properties of neuron cells. (1) The example of the former can be
showed as below

export DIM1=’1’# #PhyC/Cluster

export DIM2=’25’# TSF

export DIM3=’2’# #Clusters

export DO_SIM=FALSE

export DO_SYNTH=TRUE

export DO_COSIM=FALSE

export DO_IMPL=TRUE

export TARGET_PART= xc7vx550tffg1927-2

export PRECISION=SINGLE # FLOAT | DOUBLE
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export SIM_T=1000000 # Simulation time (ns)

export SIM_STEPS_T=120 # Simulation step #

export START_PERIOD_T=60000 # Start pulse period

This configuration file can be split into four parts. i) The first part refers to the size
of the ION. Dimension one is on how many PhyCs are in one cluster, and dimension
two means the time-share-factor (the number of neuron cells in one PhyC). The last
dimension is used to determine the number of clusters in the system, as well as the size
of routing network. According to these three parameters, the total amount of neuron
cells for one test set equals to:

Neuronstotal = DIM1×DIM2×DIM3 (5.1)

ii) The second part relates to the parameters on the steps where the synthesis run
with the tool of Vivado HLS. Once the parameters are set to true, the Vivado HLS will
implement the corresponding operations. The procedure of synthesis stops at the step
where the Boolean value of parameter is false.

iii)The third part is used to select the FPGA to implement the test case, and
determine if the calculations are performed with single or double float precision. In
this thesis, all the test set-ups are operated on the FPGA board xc7vx550tffg1927-2.

iv) The last part informs the system how the simulation progresses. The simulation
time is defined to avoid the endless of operation, in case the deadlock or some other
errors occur. The simulation steps determine how many times each neuron cell should
perform the calculation in this case. At each time step, the corresponding results are
stored in the DAC file, which can be used to generate the graphs of properties and
compare the accuracy with the reference model. The final parameter describes when
the pulse starts in each cycle.

(2)The second configuration file specifies the types of neuron cells simulated in
the system, due to the numbers of parameters in the neuron models are different.
Furthermore, in one model, one set of parameters can determine a specific property
of neuron[28]. Once the parameters are defined, the corresponding property can be
expressed as a specific spike train. e.g. one configuration file of Izhikevich model can
be written as below:

define V_DEND_ -65.0f

define b_ 0.2f

define c_ -65.0f

define d_ 0.01f

define u_ -14.0f

define I_C_ 0.5f

define Tau_ 0.25f

define V_SOMA_ -65.0f
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Figure 5.1: An example of wave diagram

5.1.2 Design simulation

After a test case is configured, the system can be simulated, and the results of selected
neuron cells are stored in the output file (DAC) at each time step. The results are
compared with the ones from reference model [29, 41, 4], to examine the accuracy.
Concurrently, with the number of steps and the corresponding results, the tool of
Matlab can generate one of the twenty properties of neuron cells [27]. By changing the
sets of parameters, Integrate and fire model can exhibit 3 properties, while the
Hodgkin-huxley model and Izhikevich model can perform 19 and 20 different spike
trains (Figure 2.3), respectively.

As introduced in the Chapter 3 and Chapter 4, the cycle time is smaller than the real
time speed of brain. Consequently, multiple neuron cells can be grouped together as
one PhyC to perform the calculations sequentially at each step, as long as the total time
latency does not exceed the threshold. In order to inspect the latency, the signal trace
file is added in the system. By tracing some specific signals, the relative information
can be stored in the trace file after the simulation is completed. The setting of signal
trace can be defined as below:

sc_trace (fp,top.cluster_in_str,"cluster_in_str_s");

sc_trace (fp, top.cluster_in_ack,"cluster_in_ack_s");

sc_trace (fp,top.cluster_out_type,cluster_out_type_s");

sc_trace (fp, top.cluster_out_data,"cluster_out_data_s");

sc_trace (fp, top.cluster_out_new,"cluster_out_new_s");

With the help of GTKWave, the signal timing information can be inspected in the
form of digital wave. Figure 5.1 gives out an example of simulation. At each time step,
the neuron cells in one PhyC perform their own calculations in pipeline (the high pulse
of signal calc means that the corresponding action is completed ). After all the required
data is sent to the neighbours via the routing network, the signal clusterready goes
high. Thus, the final latency of PhyC can be derived as:

Latency = Time1− Time2 (5.2)

where the Time1 stands for the arriving time of starting signal, and Time2 is the time
when the cluster is ready to receive the new signal.
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Figure 5.2: An example of timing performance analysis

Figure 5.3: An example of hardware utilization report

5.1.3 Design synthesis

If a configured logic set-up can be synthesized successfully by the Vivado HLS, some
resource usage files will be created. The report named cell-top-cssynth records the whole
utilization of hardware and timing performance for the simulated test case. Figure
5.2 shows the summary of timing performance in the report. In the Figure 5.3, the
resource usage, including BRAM, DSP, FF, and LUT, are shown. The utilization of
each resource should not exceed the available amount, otherwise the corresponding test
case cannot be really implemented in the corresponding FPGA.

5.2 Evaluation Results

In the section, the evaluated results from multiple test cases are discussed. At the
beginning, the result accuracy and properties gained for the simulated neuron models,
compared with the reference models [29, 41, 4]. Secondly, the relationship between
latencies and different ION logic set-ups are analyzed. Afterwards, the designed network
is synthesized with Vivado HLS, to obtain the reports of hardware utilization. At the
end, the buffer depth is discussed to examine if the size of the buffer can influence the
accuracy.

5.2.1 Accuracy result

Besides the mistakes caused by packet loss, the system precision can also influence the
accuracy, especially when the size of network or system steps is large. In this thesis,
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the original system in SystemC is designed as 16 bit fixed point precision. To meet the
requirement of high-level synthesis, some optimization is made. The adjusted system
is 32 bit or 64 bit floating point precision, which can be switched in the configuration
file. Once the results are gained, these can be compared with the reference results [29,
41, 4], to get the differences (accuracy).

(a) 32-bit Hodgkin-Huxley model (b) 64-bit Hodgkin-Huxley model

Figure 5.4: Maximal 32-bit/64-bit errors compared to the reference results [4], for the
Hodgkin-Huxley model, implemented in the adjusted network

(a) 32-bit Izhikevich model (b) 64-bit Izhikevich model

Figure 5.5: Maximal 32-bit/64-bit errors compared to the reference Matlab results [29], for
the Izhikevich model, implemented in the adjusted network.

The results indicate that there are no differences with the reference ones for the
three neuron models in the original system. However, if the configuration of test case
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(a) 32-bit Integrate and Fire model (b) 64-bit Integrate and Fire model

Figure 5.6: Maximal 32-bit/64-bit errors compared to the reference Matlab results [41], for
the Integrate and Fire model, implemented in the adjusted network.

are beyond some limitations (i.e., the amount of PhyCs should smaller than 13), the
simulated neurons can not generate the correct results. The reason is that the band-
width of network is limited. If too many packets are transmitted concurrently, the
packets loss likely occurs in the network.

The situation is quite same, while multiple cases of neuron models are tested in the
adjusted system. Within the appreciate configurations, the results of 32-bit design have
high accuracy and the 64-bit errors are 0, compared with the reference models (Figure
5.4, Figure 5.5 and Figure 5.6).

5.2.2 Properties

Besides the high accuracy, the simulated neuron models are also expected to output
the correct response of biological behaviours in the designed network (Figure 5.7 and
Figure 5.8). The property of neuron can be defined by setting the specific values to
parameters. Hence, when a suitable pattern of inputs is given, the outputs can be
abstracted as a spikes train by the plot tool. These properties have different important
roles in the brain. e.g. the neurons with tonic bursting contributes to the gamma-
frequency oscillations in the brain, and tonic spiking can be observed in cortical neurons
[27].

5.2.3 Simulation time

In order to compare the simulation time among the neuron models, the same configured
logic set-ups are defined for each of them. The command time is employed before
running the systems. After the simulation step is completed, the total time consumption
can be gained.

Figure 5.9 and 5.10a illustrate the simulation time on different sizes of networks in
the original system. The simulation time of three models increases significantly when
the network size is beyond certain range (about 1000). Given the same configurations in
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(a) (b)

(c) (d)

Figure 5.7: The examples of properties generated by the neurons in the designed network
base on [15]

the network, Integrate and Fire model always costs less time than the other two model
does, which is proportional to the complexity of models. In addition, if the configuration
is beyond some upper bounds which can guarantee the high results accuracy, the growth
of time will become slower, even minus, due to the packets loss. The problem can be
partially fixed by enlarging the buffer depth. i.e., the simulation time with 4096 cells
of Integrate and Fire model, is 33.64s. After double the buffer size of routers in the
network, the packet loss is solved, and the time grows to 44.65s.

Figure 5.10b and 5.11 show the simulation time on different network size gained in
the adjusted system. The results reveal that the behaviors of three neuron models are
quite similar to the ones described above. In addition, simulation time cost by the two
designed network are compared within the same configurations. The results indicate
that the original system run faster. The reason is that, to implement the design on the
FPGA, the system simplifies routing mechanism in the routers, which causes the extra
growth of communication time in the network.
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(a) (b)

(c) (d)

Figure 5.8: The examples of properties generated by the neurons in the adjusted network for
the synthesis, based on [4]

At the end, the relationship between the configuration of network and the simulation
time is discussed. According to the equation 5.2, the size of a test case is determined
by three dimensions, TSF, PhyC, and cluster. Given the same amount of simulated
neurons, the influence of changing the dimension can be concluded as below:

• While increasing the number of clusters, the network size is also enlarged, as more
routers are created in the network. Thus, the growth of network size leads to more
communication time among clusters.

• Time-Share-Factor (TSF) means that multiple cells can be grouped together to
operate sequentially at one time step. Thus, the larger TSFs are defined, the less
total simulation time is required. However, the value of TSF should be limited,
in case that the total latency of time-shared cells exceeds the threshold, which is
the actually biological brain time [6].

• The dimension of PhyC equals to the number of PhyCs working in one cluster.
As multiple PhyCs share one memory in the cluster and access it in Round-Robin
order, the increase of PhyCs also causes more simulation time. After analyzing
different test cases, the maximal number of PhyC is found to be 13. If the value
is larger than 13, segment error will be issued during the simulation.

42



(a) Integrate and Fire model (b) Izhikevich model

Figure 5.9: The simulation time gained in the original network, for Integrate and Fire model
(left), Izhikevich model (right).

(a) Hodgkin-Huxley model (b) Hodgkin-Huxley model

Figure 5.10: The simulation time of Hodgkin-Huxley model gained in the original network
(left), adjusted network (right).

5.2.4 Latency results

The following parts will focus on the analysis of experimental results from the adjusted
system which is design to be implemented on the FPGA, including latency, resource
usage, etc. In the Section 5.1.2, it describes how the latency of PhyCs are calculated in
the network. The latency is dependent on the logic set-up defined by the configuration
file and the size of neuron network. More neurons in the network would absolutely
require extra time to complete the calculations. Moreover, given the same size, the
varying dimension can influence the latency of PhyCs.

Firstly, the relationship between the latency and TSF is explored in Figure 5.12 and
5.13a. In these test cases, all PhyCs are connected to a single cluster. By increasing the
TSFs, the latency of designed neuron models have a nearly linear growth in the learning
network. This effect is implemented by introducing more computational hardware to
the neuron module. In addition, given the same logic set-ups for the three models, the
Integrate and Fire model has a little smaller latency than the others. Consequently,
the latency of neuron is also dependent on the complexity of computations.

Next, the effects on varying PhyCs in the network are presented, where the number
of cluster controller is only one, and the TSFs are also pre-defined. Through the Figure
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(a) Integrate and Fire model (b) Izhikevich model

Figure 5.11: The simulation time gained in the adjusted network, for Integrate and Fire model
(left), Izhikevich model (right).

(a) Integrate and Fire model (b) Izhikevich model

Figure 5.12: The effect on latency by varying TSFs in the neuron network.

5.14 and 5.13a, some conclusions are drawn: i) The latency of neuron models still have
the nearly linear effects in the design, while increasing the number of PhyCs. ii) Due to
computational complexity, the Integrate and Fire model requires the smallest latency
among three models, within the same configurations. iii) when the size of network is
specified, increasing the amount of PhCs costs more latency, in comparison with the
change of TSFs. iv) The maximal number of PhCs allowed in the network is found to
be 13, otherwise, system error will occur.

At the end, the latency on varying the number of clusters is discussed. In the Figure
5.15, the effect on multiple clusters or routers in the network is illustrated. Two PhyCs
are included per cluster in these cases, and the TSF is ten. The experimental results
reveal that scaling up the number of clusters has a very slight effect on the growths of
latency.

If latency is the only constraint in the design, increasing the number of clusters is the
best option, to implement more neurons on the FPGA. Actually, if too many clusters
and routers are placed in the network, the hardware cost will increase significantly.
Consequently, the trade-offs between the hardware resource and time constraints should
be defined. In the following sections, the resource usage will be discussed, according to
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(a) Hodgkin-Huxley model (b) Hodgkin-Huxley model

Figure 5.13: The effect on latency by varying TSFs (left), and varying PhyCs (right), in the
neuron network.

(a) Integrate and Fire model (b) Izhikevich model

Figure 5.14: The effect on latency by varying PhyCs in the neuron network.

multiple logic set-ups. Subsequently, the optimal configurations of neurons models are
explored.

5.2.5 Resource Usage

In this thesis, the system is designed to be implemented in the device xc7vx550tffg1927-
2, which belongs to the Virtex7 product family. The hardware utilization on the FPGA
can be divided into four different resource types, including look-up tables (LTU), flip-
flops (FF), digital signal processors (DSP), and block memories (BRAM). By changing
the configuration parameters, the effect on these four resource types usages are evalu-
ated in this section.

The effects on resource usages with varying number of the neurons of the Integrate-
and-Fire model are show in the Figure 5.16 and 5.17a, and the utilization estimates of
Izhikevich model are in the Figure 5.17b and 5.18. Figure 5.19 and 5.20 are related to
the resource usage of Hodgkin-Huxley model. After inspecting these figures, it is found
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Figure 5.15: The effect on latency by varying the number of clusters in the neuron network.

(a) Integrate and Fire model (b) Integrate and Fire model

Figure 5.16: The effect on resource usage by varying TSFs (left), the amount of PhyCs (right)
in the Integrate-and-Fire model.

that the corresponding trends on the change of these four resource types, are almost
same among three neuron models. In the Figure 5.16a, 5.17b and 5.19a, when adding
the value of TSFs in the system, there is nearly no effect on the resource usage, except
the BRAM. The amount of BRAM increases due to extra memories needed to store
the results of more neurons.

Figure 5.16b, 5.18a, 5.19b, and Figure 5.17a, 5.18b, 5.20 are about varying the
amount of Phycs or clusters in the network, respectively. When placing more PhyCs
or clusters individually in the network, the hardware utilization of four resource types
increase nearly linearly with the growth of neurons (e.g., the original case simulates 500
neurons. After double the amount of clusters, 1,000 neurons are implemented in the
system. The hardware utilization of BRAM, DSP, FF, and LUT, increase from 14%,
12%, 13%, 38% to 30%, 25%, 28%, 79%, respectively. The effect is nearly two times.

According to the experimental results, adding the value of TSFs is the most eco-
nomic way to implement more neurons in the network, while just taking consideration
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(a) Integrate and Fire model (b) Izhikevich model

Figure 5.17: The effect on resource usage by varying the number of clusters in the Integrate
and Fire model (left), TSFs in the Izhikevich model (right).

(a) Izhikevich model (b) Izhikevich model

Figure 5.18: The effect on resource usage by varying the amount of PhyCs (left), clusters
(right) in the Izhikevich model.

on the limitation of hardware resources. In this situation, only additional BRAM is
needed, and the extra requirements of the other three types can be ignored. However,
this method is limited by the available amount of BRAM on the FPGA, as well as the
time constrain. Consequently, varying the number of PhyCs, or clusters is also adopted
to increase the total neurons modeled in the network. Table 5.1 gives the examples
of hardware utilization on the PhyCs and clusters, while the Network size is certain.
Generally, adjustment of clusters costs more hardware resources than varying PhyCs.
This difference is specially on the cost of LUTs. By placing extra clusters in the design,
more routers are created, which raises the demand of LUTs.

At the end, the differences on the resource usage among three models are explored,
due to the complexity of model design. i.e., Izhikevich model is derived from the
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(a) Hodgkin-Huxley model (b) Hodgkin-Huxley model

Figure 5.19: The effect on resource usage by varying the TSFs (left), the amount of PhyCs
(right) in the Hodgkin-Huxley model.

Figure 5.20: The effect on resource usage by varying the number of clusters in the Hodgkin-
Huxley model.

Integrate and Fire model, and improved with its own characteristics (e.g. STDP)
[29]. As a result, additional registers and memories are required, to store the delay
information and STDP parameters. In addition, more look-up tables are created to deal
with the increasing communications between the neighbours. Table 5.2 lists the resource

Model Cluster PhyC TSF BRAM DSP FF LUT

Integrate and Fire model
2 4 25 1% 4% 2% 7%
4 2 25 2% 4% 3% 10%

Izhikevich model
2 4 25 2% 3% 2% 7%
4 2 25 4% 5% 5% 14%

Hodgkin-Huxley model
2 4 25 3% 4% 3% 10%
4 2 25 6% 7% 6% 18%

Table 5.1: The example of effect on varying the number of PhyCs and clusters within the
same network size.
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utilization of multiple configured designs for the simulated models. Within the same
configuration, Hodgkin-Huxley model, the most biophysically-meaningful (complex)
neuron model, costs more hardware resources than the other two models. On the
contrary, Integrate-and-Fire model requires fewest resources.

Model Cluster PhyC TSF BRAM DSP FF LUT

Integrate and Fire model
4 10 50 15% 20% 12% 49%
10 2 25 7% 11% 7% 27%
4 7 18 6% 13% 8% 33%

Izhikevich model
4 10 50 30% 22% 25% 73%
10 2 25 14% 12% 13% 38%
4 7 18 15% 15% 17% 50%

Hodgkin-Huxley model
4 10 50 38% 41% 37 % 124%
10 2 25 18% 21% 16% 55%
4 7 18 21% 28% 20% 67%

Table 5.2: The example of resource utilization on the three models within the same configu-
rations.

5.2.6 Model configuration

Through the previous evaluations, all three configuration parameters have the effect
on both latency and resource utilization, but each with a different degree. Accuracy,
latency, and resources are the critical limitations on the expansion of network size in
the system.

By changing the TSFs, more neurons are grouped to compute the responses over the
same hardware. Only extra memories are required, and the growth of latency has an
nearly linear effect. Varying the number of clusters has an opposite effect. The total
latency slightly increases by the additional communication cycles, which are caused
by the expansion of network. Compared with the other two dimensions, it has the
largest effect on the usage of critical resources. Moreover, the result accuracy is mostly
dependent on the number of clusters in the system. While scaling up the network, the
amount of routers is added in the tree routing network. Due to the routing complexity,
increasing the routers possibly causes the timing violations, and eventually packet loss.
The effect of PhyCs has a medium degree on both latency and required hardware. It
is used to be a supplement of further enlarging the network size in the system.

The aim of this section is to find the maximal amounts of neurons implemented on
the FPGA, for the three neuron models. To find the optimal design, firstly the total
implementable physical cells (TotalPhyC) are decided by the critical resources (5.3).
Due to the limitation of result accuracy, the factor, maximal number of clusters (ϕ), is
introduced to the design, which is dependent on the accuracy. After dividing TotalPhyC

by ϕ, the amount of physical cells per cluster (PPC) can be determined (5.4).

TotalPhyC <
Critical, Resource

Resource, PhyC
(5.3)

49



Figure 5.21: An example of timing diagram for PhyC

PPC = bTotalPhyC ×
1

ϕ
c, where ϕ ≤ 5 (5.4)

To simulate the biological property of neuron models, the latency of physical cells
can not be beyond the real brain time (5ms). For each neuron, the latency cycles
(Cneuron) consist of two parts, calculation cycles (Ccal) and communication cycles (Ccom)
(5.5). The calculation cycles is the time that cell receiving the response, performing the
calculations with parameters, and updating the results in the memories. The duration
cost by transmitting the results to corresponding neighbours via the network, is the
communication cycles.

Cneuron = Ccal + Ccom (5.5)

Because the system frequency is much higher than the human being [15], multiple
cells can be designed as one physical cell and work sequentially inside, as long as the
latency of physical cell is within the required time (5ms). Figure 5.21 shows that the
neurons work in pipeline in the PhyC. Subsequently, the latency of PhyC (CPhyC) can
be derived as below (5.6):

CPhyC = TSF × Ccal + Ccom (5.6)

To improve the efficiency of system, the CPhyC is aimed to be closed to the biological
brain time (Cbrain) as much as possible, so that more neurons can compute the responses
within a given system period (Tsystem) (5.8). From (5.6), an upper bound of the time-
share-factor (TSF) can be calculated by taking consideration on the latency of PhyC,
calculation cycles, and the communication cycles (5.9).

Csystem =
Tsystem

CLKperiod

(5.7)

CPhyC ≤ Cbrain ≤ Csystem, where Cbrain = 5ms (5.8)

TSF ≤ bCPhyC − Ccom

Ccal

c (5.9)

Then, the total neurons implemented in the system is given by:

Totalneurons = ϕ× PCC × TSF (5.10)
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The table 5.3 lists a set of optimal design for the neuron models in the system,
where the data of Hodgkin-Huxley model is referenced from the work done by [4]. The
Integrate-and-Fire model (Izhikevich model) can implement approximately 5.3 (3.7)
times more neurons on FPGA, in comparison with the Hodgkin-Huxley model. It
is noted that the maximal number of PhyCs can not be beyond 12 in this design,
otherwise, system error will likely issue.

Model Cluster PhyC TSF BRAM DSP FF LUT Neurons

Hodgkin-Huxley model 18 2 33 23.60% 35.00% 27.53% 90.01% 1188

Izhikevich model 5 8 110 48% 23% 25% 91% 4400

Integrate and Fire model 5 12 105 42% 31% 20% 94% 6300

Table 5.3: The optimal design of neuron models in the system

5.3 STDP Implementation

The Izhikevich model (2006) includes the characteristic of STDP. Due to the output
files can only store the results of potentials, some cout statements are added in the
system code, to print out the values of LTD and LTP at each step on the terminal.
By recording these values, Figure 5.22a and 5.22b show that the changes of LTD (the
post-synapse neuron generates a spike before the pre-synapse neuron) and LTP (the
pre-synapse neuron generates a spike before the post-synapse neuron) with varying
time interval, respectively. The time interval equals to the time of pre-synapse neuron
generating the spike subtracts the time of post-synapse neuron generating the spike.
Compared with the reference result [29], it proves that the implementation of STDP
can perform correctly in the network.

(a) LTD (b) LTP

Figure 5.22: The effect on LTD (left) and LTP (right) with varying time interval, time
interval equals to time of pre-synapse neuron generating a spike - time of post-synapse neuron
generating a spike
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Figure 5.23: A wave diagram of original design

Figure 5.24: A wave diagram after double the buffer depth

5.4 Buffer Depth

According to the analysis of latency and resource usage, increasing the number of
clusters is nearly linear with the growth of required critical resources, and has little effect
on the latency. Consequently, if the time constant is critical in the design, increasing the
number of clusters in the network is an appreciate choice to implement more neurons
on FPGA. However, in this design, the maximal amount of clusters is specified to 5.
When the logic set-up including more than 5 clusters, the simulation results are likely
incorrect, due to the packet loss. The reason is that, while increasing the clusters,
more routers are created non-linearly in the tree routing network; Due to the bad
routing mechanism (broadcasting), the buffers of routers are likely to overflow and
many packets have to be discarded within the given system period. In this section, first
it will explore whether expansion of buffer depth can improve the accuracy of system.
Next, the relationship between them will be discussed.

The Figure 5.23 gives an example of a test design, where the packets loss issues.
In the first iteration, the neurons can normally generate spikes, depending on their
own parameters and external stimuli. Then, these new neuron responses are sent to
the neighbours via network. At that time, due to too much packets transmitted into
network, some packets have to be discarded. Consequently, the destination cells can
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not receive the spikes from their neighbours, and the corresponding calculations are
suspended. The working mechanism of router is that: when multiple packets arriving
concurrently, the router proceeds one of them, and the others are stored in the buffer
first. Once the router becomes free, it will fetch the packets from the buffer, and
transmit them to the destinations. Based on that, increasing the buffer depth means
that the router can handle more packets, and decrease the possibility of packet loss. To
prove that, in Figure 5.24, within the same design, the buffer depths are doubled for
all the routers in the network. The result reveals that packet loss is successfully solved
(Figure 5.24).

In this system, the buffer depth is defined based on the layer where the corresponding
router is placed in the tree network. In addition, the size of buffer in upstream port is
double times than larger that the downstream ports (5.11)(5.12). If the value of TSF
or PPC is large, this definition possibly fail to work.

Depthdownstream,ith = 2Base+i, where Base = 1, 2, · · ·N (5.11)

Depthupstream,ith = 2Base+i+1, where Base = 1, 2, · · ·N (5.12)

To fix this problem, the worst case (possible maximal number of packets sending to
network concurrently) is analyzed first. In the configuration file, the maximal amount of
connections to the neighbours, (N ), are predefined. Besides the packets with responses,
some other packets (Numother) such as external current, are also needed to be forwarded
by the routers. By taking considerations on physical cells per cluster(PPC ) and time-
share-factor (TSF ), the maximal amount of packets per cluster can be derived (5.13).

Numphyc,cluster = N × PPC × TSF (5.13)

Subsequently, adding the number of clusters (Cluster) in the design, the lower bound
of buffer depth can be given.

Depthdownstream,ith ≥ 2i ×N × PPC × TSF + Numother (5.14)

Depthupstream,ith ≥ 2i+1 ×N × PPC × TSF (5.15)

By analyzing these equations, the resources cost of increasing buffer depth is quite
large. i.e., in a design (8*2*10, base=3, N=8), the size of buffer need to be scaled up
more than 20 times. Figure 5.25 gives an example of resource usage in a logic set-up,
with the change of buffer size. While the buffer size scaling up, there are nearly no
extra requirements for DSPs or FFs, as well as slight effect on the growth of LUTs. On
the other side, the cost of BRAMs keeps growing with the increasing buffer size, due
to additional memories are allocated for the buffer.

Besides the cost of resources, latency is another factor which should be taken into
consideration. In the designed network, if the buffer size scales up, it is found that the
communication latency increases significantly. The reason is that, the packets which
should be discarded by the routers, now are pushed into the buffer and wait to be
transmitted to their neighbours until the router is free. Figure 5.26 gives an example of
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Figure 5.25: An example of resource usage in a test case while varying the buffer size

Figure 5.26: An estimate of communication latency while varying the buffer size

design, in which the packet loss is solved after the buffer size is enlarged by ten times.
In the Figure 5.26, due to the increasing buffer size, more packets can be handled.
Thus, the communication latency also keeps growing. After the depth is large enough,
this latency achieves the peak and stop increasing any more.

In the system, the configured set-ups with 5 (or more) cluster controllers cannot be
guaranteed to generate the correct results. By increasing the buffer size, this situation
can be (partially) improved.

5.5 Summary

In this chapter, the evaluation methods, and some relative tools are introduced first.
Then, the neuron properties, simulation time, accuracy, latency, and resource usage are
discussed in detail. Depending on the performance analysis, the optimal designs for
the simulated neuron models are defined. At the end, the possibility of scaling up the
buffer size to improve the accuracy is supplemented.
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Conclusion and Future Work 6
In this thesis, I implement several neuron models, representing different trade-offs be-
tween the biophysical accuracy and computation complexity. The models with char-
acteristics such as axon conduction delays, spike timing-dependent plasticity (STDP),
electrochemical state descriptions, etc, are implemented in a real-time data-flow learn-
ing network. These simulated models can be seamless switched in the system for
different purposes. e.g. Hodgkin-Huxley model is employed for the research of actual
biophysical properties of neuron; Integrate and Fire model can investigate the behavior
of network within huge amount of neurons simulated; and, Izhikevich model can be
used to inspect the behavior of spike trains (due to tens of parameters and high com-
plexity of computation, Hodgkin-Huxley model is not suitable to generate the specific
spike train).

The experimental results indicate that the designed network can well simulate the
features of multiple neuron models, since a suitable set of parameters and input are
defined. By analyzing the effects on the accuracy, latency, and resource usage, the
optimal configurations are defined for the neuron models. The proposed network ar-
chitecture allow the capacity of over 1,188 (max.6,300, depending on the complexity of
neuron model) biophysically accurate neurons in a single FPGA device.

6.1 Future Work

Some recommendations are given to improve the current design below.
Now there are already three neuron models implemented in the system. In fu-

ture, this network is expected to generally support more neuron models working, e.g.
Hindmarsh-Rose model [34], Morris-Lecar model [3], Wilson Polynomial Neuron [10]
etc. This challenge has two parts: developing an individual calculation module for the
new models, and making a little adjustments on the general architecture to support
some special characteristics of new models.

Packet loss is the limit to make use of more free resources, which is caused by the
insufficient routing algorithm. In the current network, the routers just simply broadcast
the receiving packets to the other nodes. Consequently, the duplication or redundant
packets take up too much bandwidth, leading to the overflow of router buffer. To
improve that, some smart routing algorithm (e.g. Odd-Even routing algorithm [24,
31]) can be introduced instead. This can help the packets arrive at their destinations
in the shortest way, decreasing the workload of routers.

The topology of designed network is the binary tree structure. The advantage of
tree network is flexible to expand the size. On the other side, the packets transmitted
in this network usually cost more time. Matrix is a potential choice to be instead of
current tree structure. The topology of 2D or 3D matrix [36, 40, 12] can better make

55



use of routing algorithms to optimize the communication between neurons.
The original system [15] can implement multi-FPGA working in a ring topology.

However, in order to implement the design on FPGA, this system now is only working
on a single FPGA. If the system can work over multiple FPGAs, more neuron cells
can be implemented. To improve it, some difficulties are waiting to be fixed. First
one is how to define a protocol so that multiple FPGAs can communicate with each
other. Then, the control signal should be re-designed for ensuring all FPGAs work
synchronously
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