
IN3405 Bachelor Thesis

SwiftTV

Bringing 4th generation P2P to SmartTV

Authors:
S.E. Austin (4005996)
A. Drif (4030532)
W.K.H. Ko (4005686)
J.E.T. Tan (4032918)

Supervisor:

Dr.Ir. J.A. Pouwelse

July 13, 2012

Preface

In the third year of the Computer Science curriculum at Delft University of
Technology, students have to do their Bachelor project where they have to work
under supervision of a client being a company or a professor at the university.
This project consists of creating a software solution for a given realistic problem
with the skills and knowledge that are obtained during the Bachelor programme.

This report is part of our Bachelor Project, carried out in the academic year
2011-2012. The goal of this project is to develop a 4th generation peer-to-peer
application to be used on a Samsung SmartTV.

We would like to thank our supervisor, J.A. Pouwelse, and the Tribler team,
who helped us with this project. In particular, we would like to thank for their
help:

� Dr. Arno Bakker;

� Ir. R. Petrocco;

� P.B. Schoon;

� T.M. Schaap;

� Ir. N.S.M. Zeilemaker;

� The SamyGO Community.

1

Contents

1 Introduction 6

2 Problem Statement 8

3 Requirements Analysis 9

3.1 Requirements . 9
3.1.1 Functional requirements 9
3.1.2 Non-functional requirements 10
3.1.3 Constraints . 11

3.2 Use Cases . 11
3.2.1 Use Case Descriptions . 13

3.3 Business Class diagram . 19
3.3.1 FileManager . 19
3.3.2 File . 19
3.3.3 Media . 19
3.3.4 MediaPlayer . 19
3.3.5 Sendable . 19
3.3.6 Download . 19
3.3.7 Upload . 20
3.3.8 Stream . 20
3.3.9 DownloadManager . 20

3.4 MosCoW . 20

4 Design 22

4.1 Standard Samsung Software Architecture 22
4.2 Extended Software Architecture 24
4.3 Class Diagram . 25

4.3.1 Download . 25
4.3.2 Stream . 25
4.3.3 DownloadManager . 25
4.3.4 SearchEngine . 25

5 Implementation 26

5.1 JavaScript . 27
5.2 C++ . 27
5.3 Python . 27
5.4 Changes during development . 27

5.4.1 Software Improvement Group 28

2

5.4.2 Upload visibility . 28
5.4.3 Number of downloads . 28
5.4.4 Excluded features . 29

6 Process 30

6.1 Planning . 30
6.2 Division of work . 33
6.3 Decision taking . 33
6.4 Testing . 34
6.5 Problems encountered . 35

6.5.1 Rooting the television . 35
6.5.2 Installing missing dependencies 36
6.5.3 TCP RST packages . 36
6.5.4 Fork() and thread problem 38
6.5.5 Communication between JavaScript and C++ 38
6.5.6 Starting the HTTP server 39
6.5.7 USB write speed . 39

7 Results 40

7.1 SwiftTV . 40
7.2 Measurements . 43

7.2.1 Memory/CPU usage of SwiftTV 44

8 Conclusion 47

9 Recommendations 48

A UML Models 49

A.1 Business Class Diagram . 49
A.2 Use Case Dynamic Models . 50
A.3 Class diagram . 55
A.4 Dynamic models . 56

B SIG feedback 59

B.1 First feedback . 59
B.2 Second feedback . 60

C Scripts 61

C.0.1 01_01_catch_crap.init 61
C.0.2 02_04_vusb.init . 61

D Sintel video mediainfo 62

E Screenshots 63

F Terms of reference 66

G Orientation Report 69

H Code API 83

3

Summary

Since their invention, TV's have become one of the most popular media devices
and can be found in almost every livingroom in the world. For a long time,
the functionality of the TV stayed the same: the ability to view television
programs at certain �xed times of the day. Recently there has been development
in the television market adding computing power and internet connectability to
televisions. These new features open a whole new world of possibilities.

The goal of this project was to create an application that runs on a Samsung
SmartTV and uses the libswift peer-to-peer engine to download, upload and
stream �les. To create an application for a Samsung SmartTV a software devel-
opment kit has been provided which allows programmers to create apps using
JavaScript, HTML, CSS and Flash. This software development kit was used
to create the front-end of our application. The front-end consists of an inter-
nal media player to handle streaming content and media playback found on an
external USB device.

A Samsung SmartTV runs a linux kernel in which we can properly run our
download-engine which is written in C++. To be able to do this we gained root
access to the TV, so it became possible to operate in the linux environment.
After this was done, the back-end for our application was implemented in C++.
In order to make the front-end communicate with the back-end, we used the
client-server architecture where the front-end acts as a client and the back-end
as a server.

It was also needed to provide a communication mechanism between TV's, so
that content could be found and shared between TV's. This was achieved by
using the Dispersy and DHT modules developed by the tribler team. These
modules were, however, implemented in Python. In order to make use of this,
a part of our application is implemented in Python.

Several steps were taken in order to develop this application. An analysis of
requirements was made, which serves as the foundation of the design of our
application. A design following the client-server pattern was made, after which
class and sequence diagrams were created.

During development we encountered a lot of problems, mostly because the TV
runs a stripped version of the linux kernel. The consequence was that a lot of
things were not available on the TV, so we had to cross-compile the necessities
for the TV or use a binary compatible development platform. Other problems
we encountered were for example that the TV sends TCP RST packages to

4

itself. Also, problems during implementation occured when we used threads for
the implementation of the HTTP server.

Even though we encountered these problems, we were still able to maintain
our schedule and develop everything in time. By doing several things together
and by dividing the work correctly we were able to overcome the mentioned
problems. The result is the �rst fourth generation peer-to-peer application in
the world running natively on a Samsung SmartTV. Even though this is an
achievement we are proud of, the application is still a proof of concept since
current TV's are not strong enough to run the application smoothly. This
might change in the future, when TV's become more powerful.

5

Chapter 1

Introduction

Since their invention, TV's have become one of the most popular media devices
and can be found in almost every livingroom in the world. For a long time,
the functionality of the TV stayed the same: the ability to view television pro-
grams at certain �xed times of the day. Recently there has been development
in the television market adding computing power and internet connectability to
televisions. These new features open a whole new world of possibilities. One
of these possibilities, and the one our project focusses on, being the ability to
stream video content on demand over the Internet.

The reason peer-to-peer streaming is such an attractive feature is because it
is at the base of video on demand technology. It has always been possible to
view video content on televisions but the programs are always at set times and
people are not always available at certain times to watch the programs they
would like to see. Streaming content on demand would solve this problem com-
pletely by allowing users to view the content they are interested in whenever
they like. Current technology is capable of providing this service now but it has
not yet become popular in televisions. Our goal is to create an application that
ful�lls this need and set a step in the direction of on demand peer-to-peer video
content.

The client, but also supervisor of this project is Dr.Ir. Johan Pouwelse from
the Parallel and Distributed Systems group on the faculty of EEMCS of the
Delft University of Technology. He is the scienti�c director of several peer-to-
peer research initiatives and also the founder and leader of the Tribler[9] [14]
peer-to-peer research team. Tribler is an open source peer-to-peer client that
is completely decentralised. The application to be implemented is required to
have the same download-engine, libswift,[8] as Tribler excluding the part that
handles torrents. The application comes along with an internal media player
to handle streaming content and possibly media playback found on an external
USB device and should run natively on the TV.

Libswift is a lightweight 4th generation peer-to-peer based transport protocol
for content dissemination that can run on top of other protocols, such as UDP,

6

TCP, HTTP, or as RTP pro�le. It can be used for both live streaming and con-
ventional downloading purposes. 4th generation peer-to-peer software means
that it is fully self-organised, removing the need for any server.[13]

Because libswift is a very generic protocol, it is easy to merge with the ex-
isting technology of the TV. Since the smart TV has limited memory and CPU
resources, it is necessary that the application is built as lightweight as possible.
The streaming capabilities also enables the user to maximise utility of the TV,
while still being able to download data and store it. A major drawback is how-
ever that downloading and streaming content is limited to the memory of the
TV. Because of this limitation, we were only able to create a proof of concept
application, rather than an application which can be used immediately by end
users.

7

Chapter 2

Problem Statement

The goal of this project is to create an application that runs on a Samsung
SmartTV and uses the libswift peer-to-peer engine to download, upload and
stream �les.1 To create an application for a Samsung SmartTV2 a software
development kit has been provided which allows programmers to create apps
using JavaScript, HTML, CSS and Flash (See terms of reference).

A Samsung SmartTV however runs a linux kernel in which we can properly
run our download-engine which is written in C++. To be able to do this we
must gain root access to the TV, so it becomes possible to operate in the linux
environment (See also orientation report). A problem that arises here is that the
SDK front-end will be completely separated from the back-end where libswift
will run. A solution has to be found to escape from this sandboxed environment.
It is also needed to provide a communication mechanism between TV's, so that
content can be found and shared between TV's.

Problems to be solved

� Root a Samsung television

� Create a C++ back-end with swift

� Break out of the sandbox

� Create a JavaScript front-end

� Inter-TV communication

This application will be a proof of concept to show that televisions are capable
of running peer-to-peer software natively, without any attached devices, in this
case with the help of the libswift download-engine. Therefore usability is not
the primary goal of this application, although the application will be designed
to be as usable as possible.

1http://www.tribler.org/trac/wiki/SwiftTV
2http://www.samsung.com/nl/experience/tv/smarttv/

8

http://www.tribler.org/trac/wiki/SwiftTV
http://www.samsung.com/nl/experience/tv/smarttv/

Chapter 3

Requirements Analysis

In this chapter our requirement elicitation is provided. Here we discuss the
elements the client wants to see back in the end-product. For this purpose
the client, who also took the role of supervisor upon himself together with
the Tribler team, was interviewed. The requirements that were gathered from
this interview were supplemented with additional requirements from our side
to complete the product. The requirements were separated into functional and
non-functional requirements. Then, use cases for our application were designed,
which correspond with the clients wishes. In this phase, a business class diagram
was also made which is easier to understand for the client than the complete
class diagram of the whole application. After researching the framework present
on the Samsung SmartTV and the possibilities of libswift, a design for the
software architecture could be made. Lastly, implementation models such as
sequence diagrams and class diagrams were made, which serve as blueprints for
the application. Also a MosCoW model was made where the priority o� the
features to be implemented are stated.

3.1 Requirements

The requirements can be split in two kinds, functional and non-functional re-
quirements. These requirements correspond to the use cases as mentioned in
section 3.2. The non-functional requirements can then again be split in quality
and platform requirements. In this section, the constraints the application has
to deal with are also discussed.

3.1.1 Functional requirements

Functional requirements specify the core functionality of the application. These
requirements are covered by the use cases in the next section. The functional
requirements are as follows:

1. By using the libswift protocol, given two peers A and B :

9

1.1. A is able to download from B (UC 12);

1.2. A is able to upload to B (Should happen automatically after down-
load is �nished);

1.3. A is able to stream to/from B (UC 11);

2. The users should be able to search for �les other peers own by using
Dispersy[10] (UC 9, 10);

3. The users should be able to search/browse �les they own themselves (UC
2, 8, 10);

4. The users should be able to playback media content. Media in this context
means any kind of video or audio �le supported by the TV (UC 6); Media
in this context means any kind of video or audio �le (UC 6);

5. Users should be able to:

5.1. Move �les on the �le system (UC 5);

5.2. Edit �les on the �le system, i.e. rename �les (UC 3);

5.3. Remove �les on the �le system (UC 4);

6. Users should be able to sort �les by name, size, date and type (UC 13, 14,
15, 16, 17);

7. Users should be able to separate private �les from public �les (UC 7);

8. Users should be able to limit the upload/download speed (UC 1).

3.1.2 Non-functional requirements

Non-functional requirements are those requirements that have to do with the
operation of the system. Unlike functional requirements, they do not describe
what the services the system should provide, but more how the system should
work. We identi�ed two kinds of non-functional requirements for our applica-
tion, quality and platform requirements.

Quality requirements

9. The response time of the system should be as low as possible since TVs
are real-time systems. We aim to limit the response time to 300 ms;

10. The RAM memory used by the application should not exceed 256 MB.
This includes the size of the application itself and the memory needed for
calculations;

11. The application may use 100% CPU power since no other applications
should run along the application to be built;

12. Downloads should be continued without loss of data after a failure;

13. Un�nished downloads should be resumed at start up;

10

14. The application should be able to cope with external devices, memory
sticks and other external storage devices in particular;

15. The user should be able to make use of (part of) the application at any
time, even when no Internet connection is available.

Platform requirements

1. The C++ back-end which makes use of the libswift library should be
implemented so that it is reusable for other systems that work with other
front-ends (such as Android);

2. The application is made to run on a rooted Samsung SmartTV. To see
whether a Samsung TV is rootable or not, please check http://www.

samygo.tv/;

3.1.3 Constraints

The constraints specify what our own limitations are we have to take into ac-
count when implementing the application. These can be limitations put by the
software we use, or put by ourselves to reduce the application's complexity.

1. Due to the limited memory available on the TV, it is not possible to
download or stream and store great amounts of data on the TV. There-
fore, usage of external storage devices is mandatory to make use of the
application;

2. The application must be integrated with the Samsung framework, meaning
that it should be recognised by the TV as JavaScript app developed with
the Samsung SDK.

3.2 Use Cases

The use case models describe interactions between one or more actors and the
system. The models are used to depict what the users can do with the system
and how they should operate it. In our case, we only have one actor, which is the
user who watches TV. This is because our application should always maintain
the same behaviour for everyone who uses it; everyone using the application
has the same rights, privileges and use cases of the system. The use cases are
shown in �gure 3.1, in which the relations between them are also shown. The
user should be able to carry out all the use cases, these relations are left out
for clarity. The use cases in �gure 3.1 are explained in further detail in their
descriptions and with the use of UML sequence diagrams in sections 3.2.1 and
appendix respectively.

11

http://www.samygo.tv/
http://www.samygo.tv/

Figure 3.1: Use case diagram of the application to be built. Note that the
associations from the user to the use cases are left out in order to keep the
diagram clear.

12

3.2.1 Use Case Descriptions

Name Limit upload/download speeds
Goal Save bandwidth and memory.
Preconditions �
Summary The user adjusts the upload or download speed.
Steps 1. User clicks the settings button;

2. System shows the settings page;
3. User sets the download and upload speeds;
4. User clicks OK button;
5. System saves the settings and applies the new speeds;

Postconditions Downloads and uploads will never exceed the new speeds.

Table 3.1: Use Case 1: Limit upload/download speeds. See appendix for the
sequence diagram.

Name Browse File System
Goal Getting an overview of the �les in the �le system.
Preconditions One or more external storage devices are connected.
Summary The user browses through the directories on the �le system.
Related Cases Play Media File, Move File, Update File, Delete File,

Sort Files, Change File Visibility.
Steps 1. User selects the device to browse;

2. System shows list of �les and directories of the selected device.
Postconditions -

Table 3.2: Use Case 2: Browse File System. See appendix for the sequence
diagram.

Name Update Files
Goal Change the properties of a �le.
Preconditions A changeable �le is available locally.
Summary The user changes the properties of a local �le.
Related Cases Includes Browse File System and Search locally.
Steps 1. User selects the �le to update;

2. System shows the properties of the �le;
3. User changes the properties and clicks the OK button;
4. System changes the properties and saves them.

Postconditions File properties are changed locally and if uploading, also online.

Table 3.3: Use Case 3: Update Files. See appendix for the sequence diagram.

13

Name Delete Files
Goal Delete one or more �les.
Preconditions A deletable �le is available locally.
Summary The user deletes a �le.
Related Cases Includes Browse File System and Search locally.
Steps 1. User selects the �les to delete;

2. System asks for con�rmation;
3. User clicks the OK button;
4. System deletes selected �les.

Postconditions Files are deleted locally and if uploading, also online.

Table 3.4: Use Case 4: Delete Files. See appendix for the sequence diagram.

Name Move Files
Goal Move one, multiple �les or directories.
Preconditions A moveable �le or directory is available locally.
Summary The user selects �les or directories and moves them in the �le system.
Related Cases Includes Browse File System and Search locally.
Steps 1. User selects the �les or directories to move;

2. User browses to the new location;
3. System moves the selected �les and directories.

Postconditions Files are moved to another directory.

Table 3.5: Use Case 5: Move Files. See appendix for the sequence diagram.

Name Play Media File
Goal Play a music or video �le or display a picture.
Preconditions A playable �le is available.
Summary The user opens a stream or a locally available �le.
Related Cases Includes Browse File System and Search locally.
Steps 1. User selects the �le to play;

2. System either starts the photo viewer or media player to open the �le.
Postconditions File is opened and is viewable/listenable.

Table 3.6: Use Case 6: Play Media File. See appendix for the sequence diagram.

Name Change File Visibility
Goal Start or stops the uploading of a �le.
Preconditions An uploadable �le is available.

Also, the system must be connected to the Internet.
Summary The user checks/unchecks the visibility box

of a �le to control �le uploads.
Related Cases Includes Browse File System and Search locally.
Steps 1. User checks or unchecks the visibility box of a �le;

2. System either starts uploading the �le and adds the upload to the Upload
Manager or stops uploading the �le and removes the upload from the Upload
Manager.

Postconditions File is uploaded or removed from the Upload Manager.

Table 3.7: Use Case 7: Change File Visibility. See appendix for the sequence
diagram.

14

Name Search locally
Goal Find a �le on an external storage device.
Preconditions One or more external storage devices are connected.
Summary The user searches with keywords for �les in a �le system.
Related Cases Play Media File, Move File, Update File, Delete File,

Change File Visibility. Inherits Search File

Steps 1. User presses Search button;
2. System shows Search menu;
3. User sets search range on �Local�;
4. User selects the �le type to search;
5. User puts keywords in the textbox and presses Start button;
6. System returns with a list and number of found �les.

Postconditions A list of found �les is returned together with the number of found �les.

Table 3.8: Use Case 8: Search locally. See appendix for the sequence diagram.

Name Search on the net
Goal Find a �le to download or stream on the Internet.
Preconditions The system is connected to the Internet.
Summary The user searches with keywords for media content on the Internet.
Related Cases Stream File, Download File. Inherits Search File

Steps 1. User presses Search button;
2. System shows Search menu;
3. User sets search range on �Online�;
4. User selects the �le type to search;
5. User puts keywords in the textbox and presses Start button;
6. System returns with a list and number of found �les.

Postconditions A list of found �les is returned together with the number of found �les.

Table 3.9: Use Case 9: Search on the net. See appendix for the sequence
diagram.

Name Search File
Goal Find a �le by using keywords.
Preconditions A keyword with length > 0 is provided by the user.
Summary The user searches for a �le.
Related Cases Generalizes Search locally and Search on the net.
Steps 1. User inputs a keyword;

2. User selects the �le type to search;
3. System returns the list and number of found �les.

Postconditions A list and number of found �les is returned.

Table 3.10: Use Case 10: Search File. See appendix for the sequence diagram.

15

Name Stream File
Goal Listen to a stream and play its content.
Preconditions A network connection is established.

Also, an external storage device must be connected.
Summary The user plays the content of a stream.

This can happen either online or within the local network.
Related Cases Includes Search on the net.
Steps 1. Selects an uploaded �le;

2. System shows options �Download� and �Open�;
3. User selects �Open�;
4. System starts the videoplayer and plays the stream.

Postconditions A stream is opened and played by the videoplayer.
Temporary �les are removed after playing the stream.

Table 3.11: Use Case 11: Stream File. See appendix for the sequence diagram.

Name Download File
Goal Download a �le and puts it in the �le system.
Preconditions A network connection is established.

Also, an external storage device must be connected.
Summary The user plays the content of a stream.

This can happen either online or within the local network.
Related Cases Includes Search on the net.
Steps 1. Selects an uploaded �le;

2. System shows options �Download� and �Open�;
3. User selects �Download�;
4. System adds the Download to the Download Manager and starts download.

Postconditions A �le is retrieved from the Internet and stored on the �le system.

Table 3.12: Use Case 12: Download File. See appendix for the sequence dia-
gram.

Name Sort Files
Goal Arrange the �les in a coherent way.
Preconditions An external storage device is connected.
Summary The user sorts the �les.
Related Cases Generalizes Sort by type, Sort by name,

Sort by date, Sort by size .
Steps 1. User clicks on attribute �type�, �name�, �date� or �size�;

2. System sorts the �les and returns the sorted list.
Postconditions A sorted list is returned.

Table 3.13: Use Case 13: Sort Files. See appendix for the sequence diagram.

16

Name Sort by date
Goal Arrange the �les by date.
Preconditions An external storage device is connected.
Summary The user sorts the �les by date.
Related Cases Inherits Sort �les.
Steps 1. User clicks on attribute �date�;

2. System sorts the �les by their dates of creation
and returns the sorted list (ascending);
3. User clicks on attribute �date� again;
4. System sorts the �les by their dates of creation
and returns the sorted list (descending).

Postconditions A list sorted by date is returned.

Table 3.14: Use Case 14: Sort by date. See appendix for the sequence diagram.

Name Sort by type
Goal Arrange the �les by type.
Preconditions An external storage device is connected.
Summary The user sorts the �les by type.
Related Cases Inherits Sort �les.
Steps 1. User clicks on attribute �type�;

2. System sorts the �les by their types
and returns the sorted list (ascending);
3. User clicks on attribute �type� again;
4. System sorts the �les by their types
and returns the sorted list (descending).

Postconditions A list sorted by type is returned.

Table 3.15: Use Case 15: Sort by type. See appendix for the sequence diagram.

Name Sort by name
Goal Arrange the �les by name.
Preconditions An external storage device is connected.
Summary The user sorts the �les by name.
Related Cases Inherits Sort �les.
Steps 1. User clicks on attribute �name�;

2. System sorts the �les by their names
and returns the sorted list (ascending);
3. User clicks on attribute �name� again;
4. System sorts the �les by their names
and returns the sorted list (descending).

Postconditions A list sorted by name is returned.

Table 3.16: Use Case 16: Sort by name. See appendix for the sequence diagram.

17

Name Sort by size
Goal Arrange the �les by size.
Preconditions An external storage device is connected.
Summary The user sorts the �les by size.
Related Cases Inherits Sort �les.
Steps 1. User clicks on attribute �size�;

2. System sorts the �les by their sizes
and returns the sorted list (ascending);
3. User clicks on attribute �name� again;
4. System sorts the �les by their sizes
and returns the sorted list (descending).

Postconditions A list sorted by size is returned.

Table 3.17: Use Case 17: Sort by size. See appendix for the sequence diagram.

18

3.3 Business Class diagram

The business class diagram is meant to explain the structure of the system to
be built. It depicts the components of the system and their relationships, the
diagram can be found in the appendix. This section explains the classes of the
business class diagram in more detail.

3.3.1 FileManager

As the name implies, the FileManager class manages �les. With this, users
are able to browse and search for �les. Also, users will be able to add and
manipulate them. The FileManager holds a list containing all �les and their
data, which can be sorted either by date, �le name, �le type or size.

3.3.2 File

Files are being managed by the FileManager, as mentioned earlier. They are
data structures for �les on the disk, containing all necessary information about
them. Files can be wrapped into a Sendable class, after which it can be published
online. Also, �les can be media �les which can be opened by the MediaPlayer
class.

3.3.3 Media

A special case of a File, which can be opened and played by the MediaPlayer.
Media can be any kind of video or music �le.

3.3.4 MediaPlayer

Is able to open Media �les and Streams, which can then be showed on the TV.
This is one of the more important classes since we are working on a TV, which
is meant for displaying videos and such.

3.3.5 Sendable

Wrapper class for Files, so that the user is able to transfer the Files over the
Internet. Contains basic data about the peers and the transfer speed. Sendables
can be started, paused, stopped or resumed. A Sendable can then be either an
Upload, Download or a Stream.

3.3.6 Download

Data structure for all incoming transfers, extends from the Sendable class. This
class is made to hold special data its siblings (Upload and Stream) do not own,

19

such as the download percentage. Also, this class is made so that it is easier to
distinguish the di�erent kinds of Sendable classes.

3.3.7 Upload

Data structure for all outgoing transfers, extends from the Sendable class. This
class is made to hold special data its siblings (Download and Stream) do not
own, such as the upload amount. Also, this class is made so that it is easier to
distinguish the di�erent kinds of Sendable classes.

3.3.8 Stream

Data structure for all �les being streamed, extends from the Sendable class.
This class is made to hold special data its siblings (Download and Upload) do
not own, such as the length of the streamed �le. Also, this class is made so that
it is easier to distinguish the di�erent kinds of Sendable classes.

3.3.9 DownloadManager

A manager for all Sendable classes, except for Streams. This class holds all
downloaded and uploaded �les and is able to exercise the methods of a speci�c
Download or Upload. This class is also one of the more important classes, since
the project revolves around the libswift engine, which is meant for sharing �les
over the Internet.

3.4 MosCoW

Must have

Stream functionality (req. 1.3);
Download/upload functionality (req. 1.1 and 1.2);
Media playback (req. 4);
Should have

Browse in local �le system (req. 3);
Add, remove and rename �les (req. 5);
Seperate private and public �les (req. 7);
Limit upload/download speeds (req. 8);
Could have

Sort �les by name/date/size/type (req. 6);
Would have

External access to application;
Possibility to minimise app;
Download continuation without loss of data (req 12);
Download continuation at start up (req 13);

Table 3.18: List of priorities.

20

Stream functionality and media playback are the reasons to build this appli-
cation on a smart TV rather than on a pc. TV's are machines specialised in
displaying media content, so it would only be appropriate to make use of this
�power� of the TV. Moreover, it would be wasted not to use this feature of TV's,
because then we could just develop a normal application for the pc (which saves
a lot of trouble, such as cross compiling).

Since we are building a peer-to-peer application for the Samsung SmartTV,
download and upload functionality are also must haves for our application.

The �Should haves� are things we have to implement, but which are less impor-
tant than the core features mentioned in the must haves. These are supporting
features to make the application more user friendly and more advanced. For
example, if the user downloaded a �le (which is a must have feature), then it
would also be nice if the user could browse to that �le.

The only �Could have� we have is the ability to sort the �les. This feature is less
important because the application will not be rendered useless if this feature
was not to be implemented. It will of course add more user friendliness to the
application, but it is not that the users will not be able to use the application
without this feature. Thus, sorting �les is one of the less important features
which we could consider implementing if we have time left.

The list shown in table 3.18 consists mainly of requirements as speci�ed in
the requirements. However, some features were also added to �Would have�
because of their potential usefulness, but which would not be feasible within the
current time or with use of the current technology. We recommend to add these
features in the future if possible, since it would improve the user-friendliness of
the application.

External access to application

Our system runs a HTTP webserver on the TV, so external devices can ac-
cess our application by as a web application. This means that devices such as
tablets, laptops and smart phones can interact with our application via HTTP.
A use case scenario would for example be that the user searches for a video on
a tablet and then streams it to the TV. This provides a lot more features which
can improve the usability of the system.

Possibility to minimise app

It could be useful to be able to minimise to the application while downloading
content, so other things can be done in the meantime. There are two main rea-
sons we did not implement this. The �rst is that the TV is not powerful enough
to support this. It takes too much processing power to run the application we
built (mainly because Dispersy and DHT[6] are fairly heavy modules), so let
alone running something else alongside. The second reason is that the Samsung
framework does not provide this functionality; it is not possible to minimise a
web application in the Samsung framework. If this becomes supported in the
future -and if the TV's become more powerful-, this would be a nice feature to
add.

21

Chapter 4

Design

This chapter describes the design of the application to be built, this design is
based on the requirements gathered previously. The design has to incorporate
solutions to the problems mentioned in section Problems. This means the design
has to include classes for a back-end using swift, a frontend using Samsung's
SDK, a sandbox workaround and a means for inter-TV communication. First we
will discuss the current software archictecture on the TV. Then we will discuss an
extended version of this architecture which will allow us to implement solutions
for the aforementioned problems. Finally the class diagram and other UML
models will be discussed.

4.1 Standard Samsung Software Architecture

As mentioned before in section Problems the Samsung SDK for the SmartTV
only allows programmers to create applications using HTML, CSS, Javascript
and Flash. All operations to be performed in the root �le system will go via the
SDK as a middle layer between our app and the root �le system. This is because
the Samsung SDK provides a set of methods in which this can be realised.

22

Figure 4.1: The original architecture created by Samsung.

23

4.2 Extended Software Architecture

The solution for being able to run custom made code has already been men-
tioned, namely getting root access to the TV. This was already done in the
orientation phase of this project. This leaves only one problem, the sandbox.
The frontend and back-end of our application need a way to communicate. It is
not possible to perform direct calls to the back-end, because the Samsung SDK
is completely sandboxed. Therefore we decided to use a networking approach,
so the frontend and back-end will act as seperate applications, communicating
via a network (client-server architecture).

In the Samsung SDK it is possible to send HTTP GET messages to any server
and since we already have root access, it is possible to implement our own HTTP
web server. This way one can create a bridge between the client software using
Samsung's framework and our own made HTTP Server. Since the TV does not
support HTML5 we were not able to use websockets which provide an open
connection in which a reply can be received asynchronously at any time. Thus,
we are restricted to the client-server architecture where you have to keep polling
to obtain an updated value for the progress of a download for example or an
updated list of search results.

The server is seperated in three subsystems. These are the HTTP server, which
handles HTTP requests and acts as a controller, the Download Engine and
the Search Engine, which makes use of dispersy and DHT implemented by the
tribler team (which are, like libswift, fully-organised). This can also be seen in
�gure 4.2.

Figure 4.2: The adjusted architecture with our application. Our application is
injected as a webserver daemon, here seen in red. The purple part is developed
by the Tribler team, with which we have to communicate.

24

4.3 Class Diagram

Figure A.9 shows the class diagram for the webserver. These classes are then
explained in more detail.

4.3.1 Download

A data structure to store all information regarding downloads from the swift en-
gine and as an interface to the swift methods. This information can be accessed
by the DownloadManager, which publishes the information of all Downloads to
the web interface via the HttpServer class. This information can be retrieved
by using swift methods. Core functionality of this class is based on the swift
engine. In that sense, it is a wrapper class which makes use of swift methods.

4.3.2 Stream

This class serves as a data structure to store all information regarding streams
from the swift engine and as interface to the swift methods. It is in essence
the live-on-demand counterpart of the Download class, which is used to retrieve
�les from the Internet to store them on disk. Since there will always be only
one stream opened at a time (assuming that people only watch one �lm at the
same time), this class is designed according to the Singleton pattern.

4.3.3 DownloadManager

The DownloadManager, as the name implies, holds a list of Downloads and
manages them. It can be accessed by the HttpServer, which controls this class
whenever needed. It retrieves information from all Downloads and calls the
methods of the correct Download. The DownloadManager also manages the
Stream class. In order to save bandwidth, all Downloads are paused when a
stream is opened. This is why the Stream class is also managed by the Down-
loadManager, because that way the DownloadManager is able to access both
the Stream class and the Download class. For similar reasons as the HttpServer
class, the DownloadManager is designed to be a static class.

4.3.4 SearchEngine

This class serves as the interface to the search functionality developed by the
Tribler team. It starts dispersy and DHT, with which �les can be sought on
the net by calling the methods in the dispersy module. For similar reasons as
the HttpServer class and DownloadManager class, this class is designed to be a
static class.

25

Chapter 5

Implementation

The implementation of the application required the use of three di�erent pro-
gramming languages each with their own speci�c task. In order to create a GUI
we were forced to use JavaScript as this is the only option Samsung has made
available for creating apps. However, the peer-to-peer engine, libswift, is writ-
ten in C++ which meant that no matter what, we would also have to run C++
code in harmony with JavaScript. As we would be running C++ anyway and
due to the complexity of the core of the application we decided to build the core,
which manages downloads, uploads and streams, in C++ as well. This made
managing the libswift library easier than it would have been from JavaScript.
Documentation for the C++ code can be found in the appendix

A language wrapper between C++ and JavaScript was not found, and could
not have been used anyway because of the sandboxed environment. A solution
we found to connect the JavaScript front-end with the C++ back-end was to
use HTTP GET requests. By running an HTTP web server written in C++,
a client-server communication mechanism could be built between the two lan-
guages. The JavaScript client can send HTTP requests to the server, and the
server can perform the necessary function calls to the libswift engine and the
other code necessary for the project. A small drawback is that the current
�rmware version of the tv does not have HTML5, which has support for web-
sockets. Websockets remove the need of continuous polling, and allow the server
to send responses(results) back whenever he's ready, without blocking the client.

In order to implement search functionality we made use of dispersy(message
handling system used in Tribler) and a DHT (distributed hash table), both of
which are written in python. In order to initialise both services and execute
searches we needed a small amount of Python to manage dispersy and DHT.
For this purpose a language wrapper was su�cient.The link between C++ and
Python was provided by the Python/C API1.

1http://docs.python.org/c-api/

26

http://docs.python.org/c-api/

5.1 JavaScript

The JavaScript front-end consists of 5 scenes (classes), namely Main, Browse,
Downloads, Player and Settings. These scenes are the �ve graphical elements the
front-end is able to switch to and from. In the Browse scene, functionality is built
to: search remotely, browse usb devices, download or stream �les, upload �les
and add �les to a playlist. In the Downloads scene, the progress of downloads
and uploads is visualized. In the Player scene, videos in the playlist can be
played, and the streams can be watched. In the Settings scene some settings
can be set, like the download path and limitations to upload and download
speed. Most of this functionality is actually done by the C++ code, but in the
scenes HTTP GET requests are sent to the webserver to execute the functions.

5.2 C++

The implementation of the C++ part ended up being quite di�erent from the
business class diagram, which can be found in the requirements chapter. The
main reason for this is that the functionality of the �lemanager could be done
in JavaScript and as a result the necessity for that functionality in C++ dis-
sapeared. There was also no need for a seperate download and upload class
because in libswift a download and an upload are essentially the same thing.
When you are downloading you are also automatically uploading and an upload
is just a download at 100% completion. These changes meant that the end
product looks a lot like the the class diagram in the design chapter.

5.3 Python

Implementing the Python part was as easy as it should be, since everything
was already available from Tribler. The only thing needed to do was to call the
methods we need and disable all other parts we do not use. Some patches were
required in Tribler code, but were very easy to apply. The only �le we made in
Python was the DispersyInterface, which actually starts a Tribler session with
only DHT and dispersy. To save resources, we were recommended to disable all
the other parts of Tribler, since they are not used in our software.

5.4 Changes during development

During development it is almost inevitable that there will be changes from the
original design. In this part we will discuss the largest changes we decided to
make or were forced to make.

27

5.4.1 Software Improvement Group

Our code was evaluated by the Software Improvement Group2, which checks the
overall quality of software projects such as ours. During this project, we sent
them our code twice. In general, they were satis�ed with the quality of our code
and documentation, meaning that our code is maintained well. Our only �aw
was that certain methods were implemented in too many lines, making them
complex. The solution to this was to break these methods up in submethods,
which are then called in the original method. Also, we were not aware that the
testsuite had to be sent as well, so they were not able to check our testsuite. At
the time we sent our code for the �rst time to SIG, however, we already had a
test suite testing the crucial parts of our system.

The second feedback con�rmed our e�orts in improving the code according to
the guidelines the group gave us the �rst time. Even though our code scored
better at some parts, it also scored less on other parts. Compared to the code
we gave the �rst time, the code for the second feedback contained a lot of code
which depend on each other. In other words, the coupling was a bit tighter
than before. One of the reasons for this is that we extracted duplicate code
from di�erent �les and implemented them in Settings.cpp, making Settings.cpp
a generic �le containing helper-functions. The result was that most �les depend
on Settings.cpp, because it contains a lot of generic functions. Even though our
code grew a lot, we still managed to maintain the code well in general.

Their feedback can be found in the appendix.

5.4.2 Upload visibility

There were a number of options when it came to choosing how to decide which
�les would be uploaded. In the design we chose for a setting per �le which could
be set to true or false by the user which determined whether the �le would be
shared with others. Due to limited time and the fact that FileManager was no
longer going to be implemented in C++ we decided to change the way users
determine what should be uploaded.

All �les in the default dowload folder automatically start uploading on startup.
The user can browse to �les on the tv and choose to upload them. Any �les
in the list of uploads and downloads can also be stopped and removed by the
user to stop them from uploading. This implementation saved us some time by
using functionality that was already implemented rather than needing to add
another setting and having to remember whether a �le has been set to visible
or not.

5.4.3 Number of downloads

In the original design the plan was to allow the user to be able to download
multiple �les at the same time. This would be possible in principle and could

2http://www.sig.eu/nl/

28

http://www.sig.eu/nl/

easily be implemented in our application. However, in order to save processor
power on the TV we decided to limit the user to one download at a time. The
user is able to switch between downloads and the application automatically
starts downloading the next download in the list after it has �nished.

5.4.4 Excluded features

Due to limited time and hardware some features were not implemented at all
so that we could focus more on the features we believed to be most important.
One of these features was the ability to rename �les which was a should have
according to our design. However, we decided to drop this functionality as it
is a very minor feature which would take a relatively large amount of time to
implement. At the time there were more major features that needed to be im-
plemented.

Another feature that was not implemented was sorting �les by name, date,
size and type. Just like renaming �les this feature was not worth spending a lot
of time on as it would not be a signi�cant improvement to the application. Both
of these features would be more important for a �nished product but because
we were focussing on creating a proof of concept other features took priority.

29

Chapter 6

Process

6.1 Planning

In the orientation report we proposed a planning where the workload was di-
vided into di�erent phases. We were able to keep up with this planning.

The �rst step was to create an environment in which to develop and test the
application. This meant gaining root access to a Samsung television and cross
compiling the necessary libraries for it. This was achieved before the project
had o�cially started which allowed us to begin development immediately.

Our application heavily depends on libswift so the �rst goal was to be able
to call libswift and use the library to stream and download �les. This was
achieved fairly quickly which meant we could start developing the fully func-
tioning application. At the same time we also started development of the GUI
in JavaScript. The main issue was creating the link between JavaScript and
C++. Once we had settled for HTTP requests the development of the GUI and
C++ side could be done in parallel although in the beginning the focus was on
creating a command line controlled C++ application.

As soon as there was a basic C++ application we also began writing tests using
gtest. This made further development easier and bug tracking faster. Once the
C++ part of the application was as good as �nished, the last phase was to im-
plement search functionality which required Python to be run on the television
in order to run dispersy and DHT. Getting Python, including all the required
modules, working on the television did not take long. Soon after that we were
able to use dispersy and DHT to return search results.

Once that all elements had been completed it was a matter of connecting them
to create a fully functioning application. In the table below there is a more
detailed week by week description of when what was done.

30

Week Date Tasks completed

0 Third quarter
� Gain root access to TV
� Compile libswift for the TV
� Make a demo video

1 30-04-2012
� Create orientation report
� Design system architecture
� Decide on communication method between
JavaScript and C++

� Decide on message structure for HTTP re-
quests

� Create JavaScript structure

2 07-05-2012
� Make class diagrams and sequence diagrams
� Make a video player in JavaScript
� Get familiar with libswift
� Create HTTP web server
� Fix TCP RST bug
� Implement download handler in HTTP server
� expand HTTP server to support streaming
� Run HTTP server as daemon

3 14-05-2012
� Fix forking and thread issues
� Call the httpgw closecallback
� Filebrowsing in JavaScript
� Clean HTTP server code
� Link HTTP server against streamer
� Update SamyGO init scripts
� IPtables only block our own RST packets

4 21-05-2012
� Create testsuite
� Fix aspect ratio of the video player
� Link swift against HTTP server
� Implemented Download.cpp

5 28-05-2012
� Start implementing application as designed
� Create DownloadManager
� Make Streaming work as singleton
� Create tests for Download.cpp

Table 6.1: Order of events

31

Week Date Tasks completed

6 04-06-2012
� Add exceptions
� Handle mutliple downloads
� make pasuing downloads possible
� Add ability to build XML �les
� Add pseudo search functionality
� Add mutex in DownloadManager
� prepare code for SIG
� Continue adding testcases

7 11-06-2012
� Add speedlimiting
� Make switching between downloading and
streaming possible

� Get IP address dynamically in C++
� Start uploading �les automatically on startup
� Fixed bug when adding the same download
twice

� Created main menu in JavaScript

8 18-06-2012
� Create Utils
� use FileTransfer in libswift to get statistics
about downloads

� make uploading on demand possible
� Settings are automatically loaded at startup
� Added Python binding in SearchEngine
� Process SIG feedback
� Parse XML �les in JavaScript
� Get Python working on TV
� Get Dispersy working on QEMU
� Get Dispersy working on TV and make search-
ing possible

� Get DHT working on the TV
� Continue adding testcases

Table 6.2: Order of events

32

Week Date Tasks completed

9 25-06-2012
� Create progress bar in JavaScript
� Clean JavaScript code
� Create DownloadManager in JavaScript
� Create mock for SearchEngine
� Finish testsuite

10 02-07-2012
� Get IP address dynamically in JavaScript
� Prepare code for SIG
� Finish �nal report

Table 6.3: Order of events

See http://youtu.be/cNaLfay73TE?hd=1 to view the development process of
the application. Up until week 4, we committed everything under one name
since we did everything together. Also, Jethro and Anass commited using the
same account.

6.2 Division of work

In week 4, we had a simple, working application with the basic features. This
was a good basis to further develop our application on, so we began to build the
real application. In order to speed up the development, we started to divide the
tasks so that we could work in parallel. Each time we encountered a problem or
something we still had to implement, we wrote it down on sticky notes and put
it on the whiteboard. 6.1 Whenever someone was done with his task, he could
then take another task from the board.

Most of the time, we worked in groups of two people, but there were also times
that we worked individually. As so, Anass led the development of the client
side of the application. The server side was mostly implemented by Samuel and
Wilson, while Jethro worked on di�erent things (wherever help was needed).
For example, even though we �xed the platform dependent problems together,
Jethro was often the one in charge of �xing these problems.

6.3 Decision taking

The way we decided to implement certain features was rather simple. We �rst
determined whether it was possible to implement the feature for the TV. If
multiple solutions were proposed by the group, the complexity of the solution
and the time it would take to implement it were taken into consideration. If all
conditions were met, we just started to implement as much as possible.

33

http://youtu.be/cNaLfay73TE?hd=1

Figure 6.1: The whiteboard used to keep track of tasks.

6.4 Testing

We only wrote tests for C++ as this was the core of our application. We made
use of the google test library which allowed for easy implementation of unit
tests. The tests were developed in parallel with the development of the applica-
tion which allowed for constant checking for bugs with every change. This way
most bugs were immediately discovered and removed as soon as they appeared.
Writing the tests also helped making the system robust and able to handle un-
expected input and calls without crashing.

Every class has its own test class and almost every method has its own tests,
usually a trivial test and additionally a couple of tests with unexpected input or
unexpected situations. Certain classes, especially DownloadManager, required
test cases to call multiple di�erent methods in order to test certain situations.
Although this resulted in some relatively long test cases it did guarantee a solid
application capable of handling a large range of exceptional situations.

We chose not to fully test SearchEngine, the reason being that SearchEngine
relies on dispersy and DHT. Both of these services are unreliable when it comes
to returning search results, you do not always get the same results and some-
times you get no results. The testing environment requires a �xed return value
every time. In order to achieve this we created a mock of the SearchEngine
class which has the same functionality as the real SearchEngine except when it
comes to searching. The mock always returns the exact same results which are

34

hard coded in the mock. This allowed us to test HttpServer without having to
worry about dispersy and DHT returning di�erent values every time.

6.5 Problems encountered

This section focusses on all the important problems we encountered while devel-
oping the application for the TV. A brief explanation will be given per problem
together with the solution we came up with. Some of these solutions were found
with the help of the tribler team.

6.5.1 Rooting the television

The �rst hurdle before we could even start developing was gaining root access
to the television. We needed this to be able to install libraries and execute code.
Rooting the television should not have been an issue as there are tutorials and
an app that roots the television for you from SamyGO[3]. The problem we ran
into is that the televisions we got had a new �rmware for which there was no
way to root yet.

We had a quick look into �nding a vulnerability in the new �rmware that would
allow us to execute arbitrary code and gain root access. We did �nd a possible
vulnerability in �mpeg, in the part used to decode Matroska video �les, but
developing an exploit for this would have taken too long as we did not have any
experience in this �eld.

Another option was to downgrade the �rmware to a previous version that would
allow us to use the SamyGO app to gain root access. Samsung has not made
the option of downgrading available, it is only possible to upgrade, so we had
to trick the TV into thinking it was upgrading while actually it was installing
old �rmware. It is possible to install new �rmware via a USB device which is
what we initially tried. We took some old �rmware, unpacked it, changed the
version numbers inside, repacked it and recalculated the MD5 hash and changed
that too so that they would match. Sadly, this is when we found out that the
�rmware also required a signature from Samsung which is something we did not
have. This made downgrading via a USB device impossible.

We contacted SamyGO to ask whether there was any way to downgrade to
an older �rmware. Initially the answer was no but after some prodding they
allowed us to make use of a server they had set up which pretends to be the
Samsung �rmware update server. Apparently the online �rmware update did
not require a Samsung signature or they had access to it. Either way, we now
had a television with an old �rmware which allowed us to run the SamyGO app
and root the TV.

35

6.5.2 Installing missing dependencies

Even though the SmartTV runs a linux kernel, not everything was available
from the start, so we had to install a great number of packages on the TV. For
this purpose, we used cross-compiling toolchains to build executables compati-
ble with the ARM [5] processors which resides in the TV. However, we failed to
fully compile some of these packages, of which the Python interpreter is one of
the most important. The Python interpreter was needed because the dispersy
and DHT modules developed by the Tribler team were written in Python. Since
we had to use these modules in our application, we also needed to install Python
on the TV.

We succeeded in cross-compiling and running the interpreter on the TV, but not
in cross-compiling the standard Python-modules we need to run simple Python
executables. Our solution was to emulate the ARMv7 processor with QEMU
[2]. Within this emulator, we installed a copy of Ubuntu, [4] which functioned
as a binary compatible development platform and with which we were able to
install the Python package with the apt tool. To achieve this, it was also needed
to enable networking within QEMU. [11] Then we copied the binary �les to the
TV, after which we could succesfully run the Python interpreter together with
all its dependencies.

Aside from Python, we also installed other applications via QEMU such as bash,
sshd etc. to make it easier to work on the TV to accelerate the development.

6.5.3 TCP RST packages

It appeared that the Samsung TV sent TCP RST packages to itself after each
HTTP request. TCP RST packages can be distinguished by looking at the
fourth �ag in the TCP header. This �ag is the reset �ag, which was activated
in our case (see �gure 6.2). Because of this, TCP connections to swift were in-
terrupted each time a RST package was received, because the TCP connection
was reset. This was a problem for �le streaming, because the connection used
by libswift to download the stream was continually interrupted, so the stream
could not be played correctly.

We solved this problem by cross-compiling iptables[12] for the TV, so we could
set up some rules to block these TCP RST packages. This required us to in-
sert several kernel modules. Because this needs to be done each time the TV
reboots, we added some rules to the init script of the TV so that these kernel
modules are loaded automatically, together with the rules written for iptables
(see appendix).

36

Figure 6.2: Screenshot of wireshark. The RST package is highlighted in orange.
Also, in the lower part of the screen it can be seen that the RST �ag is set.

37

6.5.4 Fork() and thread problem

For testing purposes, we used a webserver written in C++ we found on the
Internet. We were not aware, however, that this webserver was implemented so
that it would call the fork() method each time a HTTP request was received.
We were using p_threads[7] to start several libevent[1] loops needed for down-
loading �les and p_threads cannot access data directly within other processes.
So we got the problem that the threads were not able to access the correct data.

The problem was that fork() creates a new process, which is an exact copy
of the parent process (See �gure 6.3). So all global variables and threads run-
ning within the process were also copied. Now, each time we tried to access
a global variable, we noticed that the values of the variables were inconsistent
because we were setting and reading the wrong variables. Unconsciously, we
would set the value of a global variable, but read out the value of its copy in-
stead, which has not been set yet. This caused unexpected behaviour of our
application, on which we spent a lot of time. Strangely enough, this problem
did not occur when we compiled and ran the program for our own pc's, but only
when we tried it on the TV.

A solution is to implement pipes, which provide inter-process communication.
With this, threads are able to access data outside their own process scope so
the correct variables can be read.

In the end, we solved this problem by implementing a new HTTP server by
ourselves, which makes use of the libevent library. This version of the webserver
does not call the fork() method, so we did not have the problem of threads not
being able to access the same data.

6.5.5 Communication between JavaScript and C++

One of the �rst issues we encountered was how to link JavaScript to C++ so that
we could call C++ functions from within the GUI and get return values back.
Initially we wanted to use a language binder like SquirrelFish or a JavaScript
engine for C++ like google V8. However due to the restrictions set by Samsung
you are forced to develop the JavaScript app using their SDK and it is impos-
sible to add any additional tools. This left us with the standard JavaScript
functionality and the Samsung API. As Samsung does not allow any develop-
ment outside of JavaScript there was no support for calling C++ applications in
their API either. The only remaining option was to use HTTP requests which
is part of the standard functionality in JavaScript.

This did require us to be running an HTTP server in C++ which needs to
be running before the Javascript app had even been started. Newer version of
the �rmware also support HTML5 and websockets. This would allow for better
two way communication betweem JavaScript and C++ rather than JavaScript
constantly polling the HTTP server when it needs updates. The downside of

38

Figure 6.3: The fork()-thread problem. Threads are accessing the wrong data.

this newer �rmware is that there is no known way to gain root access yet which
is why we could not use it.

6.5.6 Starting the HTTP server

Sending HTTP requests was the only way to communicate between JavaScript
and C++ but there was no way to start the HTTP server in C++ from JavaScript.
We needed to start the HTTP server as soon as the television was switched on.
In principle it would have been possible to run the HTTP server as a daemon
on start-up but it was not possible to edit the Samsung init scripts. SamyGO,
however, also uses init scripts when they root the television which we could
edit. Now whenever you root the television using SamyGO you also automati-
cally start running the HTTP server for our application. This does mean that
running SamyGO is required to be able to use our application.

6.5.7 USB write speed

Initially we were planning to use a USB storage device to store downloads and
streams. As it turned out, the write speed of the TV to the USB device was so
slow that streaming was not possible when using it to store the data. Down-
loading to an external USB device was also so slow that it was not practical to
do so. This left us with only the internal memory of the TV for downloads and
streams which is a very limited amount. This caused large �les to be impossi-
ble to stream as they would �ll the memory and cause the TV to hang. The
maximum �le size that can be downloaded is also very low as a result of this.

39

Chapter 7

Results

This chapter discusses the results of our project. A description of the built
application will be given, alongside with screenshots. Also, graphs will be used
to show the performance of our application.

7.1 SwiftTV

Since we built a download and stream application for the Samsung SmartTV
based on libswift, we dubbed our application SwiftTV. The name is kept simple
because other existing applications based on libswift have similar names. This
section explains how SwiftTV works. Bigger screenshots can be found in the
appendix.

Figure 7.1: Screenshot of the Main scene.

The main menu points to the four di�erent pages in the application, browse,
downloads, player and settings. When selecting one of these pages the main
menu remains visible.

40

Figure 7.2: Screenshot of the Browse/Search scene.

Browse is where you can either browse your local �lesystem to play a media
�le or search the internet for �les to download or stream. Browsing the local
�lesystem is done with features included in the Samsung API and is therefor all
done in JavaScript. When choosing a �le from the browser it can be added to
the playlist in the player page to be played. The search functionality sends a
"/search:searchTerm" request to the HTTP server which in turn starts a search
using Dispersy. After some time the search results are requested by JavaScript
using a �/results� request. The results are returned in the form of an XML �le
and shown on screen.

The user can select one of these results and choose to either download ot stream
it. JavaScript either sends a �/add:hash� or �/stream:hash request� depending
on the choice. If download is chosen the the download is added to the list
in DownloadManager and start downloading. If stream is chosen a stream is
opened and is added to the playlist on the player page.

Figure 7.3: Screenshot of the Media Player scene.

41

Player is where videos and streams can be viewed. To view videos or streams
they must �rst be added to the playlist while in the browser. Videos will start
playing in the small screen but full screen can be enabled afterwards.

Figure 7.4: Screenshot of the Downloads scene.

Downloads is where the current list of downloads can be viewed. Downloads
can be paused, stopped and resumed. JavasScript will send �/pause:hash�, �/re-
move:hash� and �/resume:hash� requests to do this. When stopping a download
it will be removed from the list.

Figure 7.5: Screenshot of the Settings scene.

In the settings page users can set their maximum download and upload speed
as well as the download location. These settings are saved in memory and
loaded on startup. When the settings are changed JavaScript sends a �/set-
tings:upspeed:downspeed:downloadpath� request to the HTTP server.

42

7.2 Measurements

For this section, we measured the CPU and memory usage of the application
against the time. This way, we can see how much resources our application
needs. The measurements were done on a Samsung D7000 TV, 1 while playing
a stream. The Sintel videoD was used for the tests. Several measurements were
made, where we varied the download speed limits for the streams. Then the
same measurements were done for the total CPU and memory usage, so we can
see how much resources the TV needs in total while running our application.
Also, measurements were taken while the TV was being idle, to show the exact
di�erences between normal circumstances and situations that require more CPU
and memory resources.

Figure 7.6: Screenshot of the video used. Video and screenshot are made by the
developers of the Sintel project.

1http://www.samsung.com/uk/consumer/tv-audio-video/television/led-tv/

UE40D7000LUXXU

43

http://www.samsung.com/uk/consumer/tv-audio-video/television/led-tv/UE40D7000LUXXU
http://www.samsung.com/uk/consumer/tv-audio-video/television/led-tv/UE40D7000LUXXU

7.2.1 Memory/CPU usage of SwiftTV

Figure 7.7: CPU and memory usage of the application, while being idle.

Figure 7.8: CPU and memory usage while streaming at 500 kB/s. The stream
was stopped around 140 s.

44

Figure 7.9: CPU and memory usage while streaming at 700 kB/s. This is
approximately the bitrate of the video used. 7.6 The stream was stopped around
110 s.

Figure 7.10: CPU and memory usage while streaming at 1 MB/s. The stream
was stopped around 110 s.

45

Figure 7.7 shows the CPU and memory usage of only the application, while being
idle. The peak in the beginning depicts the initialisation of the application,
where modules such as Dispersy are started up. Figure 7.8 shows the CPU and
memory usage while streaming the video at 500 kB/s. It can be seen that the
CPU usage is always under 16%, while this upper limit grows with the bitrate
we set, as shown in 7.9 and 7.10.

As expected, the lower the bitrate, the lower the CPU usage. However, the
memory usage always stays the same, even when the application is idle. This
goes against our expectations of memory usage of getting progressively higher
the faster you stream. This means that our goal of limiting the memory usage
to 256 MB has been achieved, since the TV has 350 MB of RAM, while we are
only using 10% of it. Our goal of having a response time of 300 ms has not
been achieved, however. From our own experience, we see that the application
responds too slow (between 1 and 2 seconds). Even though we allowed the
program to use 100% of CPU resources, we see that this was not even necessary
since it only uses up to 23% when streaming at 1 MB/s.

46

Chapter 8

Conclusion

The constant struggle against the constraints of the TV was one of the things
that made the project challenging and enjoyable. This is one of the reasons
we started the project in the third quarter, working part-time to set up a TV
ready to use in the fourth quarter. Developing on a device that nobody has
really developed for before and having to solve new and unexpected problems
along the way made this a very educational project. In the end, we succeeded
in implementing a peer-to-peer application that runs natively on the TV, unlike
other solutions using for example a set-top box. 1 With this, we are the �rst
in the world to have implemented a fourth generation peer-to-peer application
that runs natively on a TV.

Based on the �nal product it is safe to say that peer-to-peer applications involv-
ing streaming, downloading and uploading of �les are possible on smart TV's.
Due to hardware limitations the application was never able to reach its full
potential but the results are very promising for future televisions with better
hardware. Despite the hardware issues, the technology does work which makes
our application the �rst fourth generation peer-to-peer �le sharing application
on a smart tv in the world.

Another important aspect, next to better hardware, as to whether more ad-
vanced applications will be developed for televisions is the amount of freedom
manufacturers are willing to give to developers. As it stands, television man-
ufacturers seem very wary of giving any access to their TV's, which is very
understandable from a security point of view. However, if the full potential of
the smart TV is to be reached, developers must be given full access to develop
advanced programs or else the smart TV will remain a gimmick with limited
functionality.

1http://durao.net/2010/06/01/oplay-hdp-r1-%E2%80%93-bittorrent-client-with-firmware-1-27/

47

http://durao.net/2010/06/01/oplay-hdp-r1-%E2%80%93-bittorrent-client-with-firmware-1-27/

Chapter 9

Recommendations

A major limitation during this project was the hardware in the television. The
application we built depends on reasonably heavy python programs and requires
quite a lot of memory when streaming. Although the CPU seemed to be able to
keep up, the lack of memory was very noticeable when streaming. Thankfully, as
technology improves and becomes cheaper, televisions will get better hardware
and it will not be long until they will be able to easily run application like
this one. For future versions of peer-to-peer applications on televisions, better
hardware is a must.

Once televisions are powerful enough to handle high quality video streaming, a
better version of the application can be created. Although we were very happy
with the back-end of our application, the GUI part was not as re�ned because
our focus was on the back-end. In order to make the application more user
friendly the GUI needs to be improved. Thanks to the way our application is
made, any GUI that can send HTTP requests and parse XML is able to interface
with our application which makes changing to a completely di�erent GUI very
easy if necessary.

At the moment Dispersy and DHT are built into Tribler. When we needed both
these services we were forced to run Tribler with a bunch of modules switched
o�, just leaving Dispersy, DHT and some other necessary elements. It would be
better if Dispersy and DHT could be run as independent modules. This would
save a lot of resources that unecessary parts of Tribler may be using.

48

Appendix A

UML Models

A.1 Business Class Diagram

1

1

1

*

1

*

1

*

Sendable

- trackers : list<tracker>
- seeders : list<seeder>
- speed : double

+ start() : void
+ stop() : void
+ pause() : void
+ resume() : void

FileManager

- list<File>

+ remove(File �le) : void
+ add(File �le) : File
+ rename(File �le) : File
+ sort() : void
+ search(File �le) : list<File>

File

- name : String
- date : String
- extension : String
- size : double
- visible : bool

+ setVisibility(bool value) : void
+ isVisible() : bool
+ setName(String name) : void
+ getSize() : double
+ getDate() : String
+ getName() : String

Media

- length : double

Download

- percentage : double

Upload

- amount : double

Stream

- length : double

DownloadManager

- downloaded : double
- uploaded : double
- downloads : list<Download>
- uploads : list<Uploads>

+ startDownload(String link) : void
+ stopDownload(String link) : void
+ pauseDownload(String link) : void
+ resumeDownload(String link) : void
+ startUpload(String name) : void
+ stopUpload(String name) : void

MediaPlayer

+ open(Media �le) : void
+ open(Stream stream) : void

Figure A.1: Part of the class diagram. This part only shows the business classes
comprehensible for end-users.

49

A.2 Use Case Dynamic Models

getSettings()

goToSettings()

setSpeeds(dspeed, uspeed)

setSpeeds(dspeed, uspeed)

User: Samsung App Interface: DownloadManager:

Figure A.2: Use Case 1: Limit upload/download speeds.

50

get()

getFiles()
browse

update()

update(int �le_id)

update

destroy()

delete(int �le_id)

delete

changeLocation(string location)

move(string location, int �le_id)

move

play()

play(int �le_id)

play

User: Samsung App Interface: FileManager: MediaPlayer: File:

[Delete]

[Move]

[Play]

alt

[Update]

Figure A.3: Use Cases 2 to 6: Basic browsing and �le manipulation

51

change visbility

visible(true)

changeVisibility(�le, true)

visible(false)

changeVisibility(�le, false)

User: Samsung App Interface: FileManager: File:

[invisible]

alt

[visible]

Figure A.4: Use Case 7: Change File Visibility

goToSearch

get()

search(�le)

searchLocal(�le)

get()

search(�le)

searchOnline(�le)

User: Samsung App Interface: FileManager: DownloadManager: File:

[Online]

alt

[Local]

Figure A.5: Use Cases 8 to 10: Search.

52

play

start()

playStream(string tracker)

User: Samsung App Interface: DownloadManager: Stream:

Figure A.6: Use Case 11: Stream File.

download

create

start()

add(download)

User: Samsung App Interface: DownloadManager:

download:Download

Figure A.7: Use Case 12: Download File.

53

sortName()

sortName()

sortSize()

sortSize(), with return

sortType()

sortType(), with return

sortDate()

sortDate(), with return

User: Samsung App Interface: FileManager:

[Type]

[Date]

alt

[Size]

Figure A.8: Use Cases 13 to 17: Sort Files.

54

A.3 Class diagram

1

*

1

1

1

1

1

*

1 1

Download

- tracker : char*
- id : int
- seeders : int
- peers : int
- ratio : double
- download_speed : double
- size : double
- upload_speed : double
- download_percentage : double
- upload_amount : double
- is_visible : bool
- status : Status

+ start() : void
+ resume() : void
+ pause() : void
+ setVisible(bool visible) : void

Stream

- tracker : char*

+ start() : void
+ resume() : void
+ pause() : void
+ stop() : void

DownloadManager

- downloaded : double
- uploaded : double
- downloads : list<Download>
- uploads : list<Download>

+ getInstance() : void
+ startStreaming(string tracker) : void
+ stopStreaming() : void
+ add(Download download) : void
+ setVisible(Download download) : void
+ setUnvisible(Download download) : void
+ resumeDownload(Download download) : void
+ removeFromList(int download_id) : void
+ removeFromDisk(int download_id) : void
+ setSpeed(double dspeed, double uspeed)

HttpServer

+ InstallHTTPGateway() : bool
+ sendResponse() : void
+ sendXMLResponse() : void
+ handle_request(struct evhttp_request *req, void *arg) : void

SearchEngine

+ search(char* �lename) : void
+ getResults() : char*

Figure A.9: Class diagram of the webserver subsystem.

55

A.4 Dynamic models

create

setStatus(READY)

push(download)

add(download)

sendRequest(add download)
Samsung SDK client: HttpServer: DownloadManager:

download:Download

Figure A.10: Add download

get(download)

setStatus(DOWNLOADING)

getTrackerAddress()

getRootHash()

Open(�lename, root_hash, tracker_address)

start(download)

start(download)

sendRequest(start download)
Samsung SDK client: HttpServer: DownloadManager: Download: Swift:

Figure A.11: Start download

56

get(download)

setStatus(PAUSED)

getID()

Checkpoint(id)

Close(id)

pause(download)

pause(download)

sendRequest(pause download)
Samsung SDK client: HttpServer: DownloadManager: Download: Swift:

Figure A.12: Pause download

get(download)

getID()

setVisible(false)

Close(id)

removeFromList(id)

setUnvisible(download)

sendRequest(setUnvisible download)
Samsung SDK client: HttpServer: DownloadManager: Download: Swift:

Figure A.13: Set unvisible

57

get(download)

getTrackerAddress()

getRootHash()

Open(�lename, root_hash, tracker_address)

resumeDownload(download)

setVisible(download)

sendRequest(setVisible download)
Samsung SDK client: HttpServer: DownloadManager: Download: Swift:

Figure A.14: Set visible

setTracker(tracker_address)

evtimer_assign(event, evbase, closeCallback, this)

evtimer_add(event, swift::tint2tv(TINT_SEC)

event_base_dispatch(evbase)

start()

startStreaming(tracker_address)

sendRequest(startStream)
Samsung SDK client: HttpServer: DownloadManager: Stream:

Figure A.15: Start streaming

evtimer_del(swift::Channel::evbase)

stop()

stopStreaming()

sendRequest(stopStream)
Samsung SDK client: HttpServer: DownloadManager: Stream:

Figure A.16: Stop streaming

58

Appendix B

SIG feedback

B.1 First feedback

[Aanbevelingen] De code van het systeem scoort vier sterren op ons onderhoud-
baarheidsmodel, wat betekent dat de code bovengemiddeld onderhoudbaar is.
De hoogste score is niet behaald door een lagere score voor Unit Size en de Unit
Complexity.

Voor Unit Size wordt er gekeken naar het percentage code dat bovengemid-
deld lang is. Het opsplitsen van dit soort methodes in kleinere stukken zorgt
ervoor dat elk onderdeel makkelijker te begrijpen, te testen en daardoor een-
voudiger te onderhouden wordt. Binnen de extreem lange methodes in dit sys-
teem, zoals bijvoorbeeld de 'HttpServer::handleRequest'-methode, zijn aparte
stukken functionaliteit te vinden welke ge-refactored kunnen worden naar aparte
methodes. Commentaarregels zoals bijvoorbeeld '// Message will look like:
"/pause:roothash"' en ' // Some garbage collecting.' zijn een goede indicatie
dat er een autonoom stuk functionaliteit te ontdekken is. Ook aan de kant
van de 'swift_p2ptv' zijn langere methoden te vinden, bijvoorbeeld 'Scene-
Player.prototype.handleKeyDown'. In dit type methoden is het aan te raden om
de afhandeling van een bepaalde 'keyCode' in een aparte methode te zetten, dit
maak het makkelijker om de afzonderlijke stukken functionaliteit te begrijpen
en te testen. Het is aan te raden kritisch te kijken naar de langere methodes
binnen dit systeem en deze waar mogelijk op te splitsen.

Voor Unit Complexity wordt er gekeken naar het percentage code dat bovengemid-
deld complex is. Ook hier geldt dat het opsplitsen van dit soort methodes in
kleinere stukken ervoor zorgt dat elk onderdeel makkelijker te begrijpen, makke-
lijker te testen en daardoor eenvoudiger te onderhouden wordt. In dit geval
komen de meest complexe methoden ook naar voren als de langste methoden,
waardoor het oplossen van het eerste probleem ook dit probleem zal verhelpen.

Over het algemeen scoort de code bovengemiddeld, hopelijk lukt het om dit
niveau te behouden tijdens de rest van de ontwikkelfase. Als laatste nog de op-
merking dat er geen (unit)test-code is gevonden in de code-upload. Het is sterk
aan te raden om in ieder geval voor de belangrijkste delen van de functionaliteit

59

automatische tests gede�nieerd te hebben om ervoor te zorgen dat eventuele
aanpassingen niet voor ongewenst gedrag zorgen.

B.2 Second feedback

[Hermeting] In de tweede upload zien we dat de omvang van het systeem fors
is gestegen, maar dat daarbij de score voor onderhoudbaarheid vrijwel gelijk is
gebleven. Er is een lichte stijging te zien in de scores voor Unit Size en Unit
Complexity, met name aan de kant van de 'swift_p2ptv' lijken de units iets
korter gemaakt te zijn. Door een daling van de score voor Module Coupling,
welke het percentage van code wat relatief vaak wordt aangeroepen meet, blijft
de score voor onderhoudbaarheid gelijk. Als laatste zien we in deze aanlevering
ook test-code voor de server-kant.

Uit deze observaties kunnen we concluderen dat de aanbevelingen van de vorige
evaluatie zijn meegenomen in het ontwikkeltraject. Mochten er nog aanpassin-
gen worden gedaan dan is het aan te raden kritisch naar 'Settings.cpp' te ki-
jken en de functionaliteit die speci�ek is voor de settings los te trekken van
algemenere helper-functies.

60

Appendix C

Scripts

These scripts are already available in the TV when it is rooted. These �les
are provided by the SamyGO community and are loaded at startup. We edited
these �les and added the code snippets below to start certain applications and
set up certain rules.

C.0.1 01_01_catch_crap.init

Bash s h e l l f o r the TV.
$SYSROOT/bin /busybox nc − l − l −p 1024 −e /mtd_down/widgets / user /SamyGO/SamyGO/bin /bash − i &

cp −f a /dtv/usb/sd*/ smb_userdata /mtd_rwarea/smb_userdata

Star t sshd to enable s f t p mounting o f the whole system .
cp /mtd_down/widgets / user /SamyGO/SamyGO/modules/ssh_host_* /dtv/
chmod 600 /dtv/ssh_host_dsa_key
chmod 600 /dtv/ssh_host_rsa_key
s l e ep 1

/mtd_down/widgets / user /SamyGO/SamyGO/bin / sshd −f /mtd_down/widgets / user /SamyGO/SamyGO/ sshd_conf ig

C.0.2 02_04_vusb.init

s l e e p 3

Run th ings f o r the l i b s w i f t based TV widget .
F i r s t i n j e c t some modules so i p t a b l e s work .
insmod /mtd_down/widgets / user /SamyGO/SamyGO/modules/ i p t a b l e_ f i l t e r . ko
s l e e p 3
insmod /mtd_down/widgets / user /SamyGO/SamyGO/modules/ xt_state . ko
s l e e p 3
insmod /mtd_down/widgets / user /SamyGO/SamyGO/modules/xt_conntrack . ko
s l e e p 3
Drop a l l RST packets on port 1337 .
i p t a b l e s −A INPUT −p tcp −−dport 1337 −−tcp−f l a g s RST RST −m sta t e −−s t a t e RELATED,ESTABLISHED −j DROP
s l e ep 3
i p t a b l e s −A FORWARD −p tcp −−dport 1337 −−tcp−f l a g s RST RST −m sta t e −−s t a t e RELATED,ESTABLISHED −j DROP
s l e ep 3

Set the Python environment v a r i a b l e s
export PYTHONHOME=/mtd_down/widgets / user /SamyGO/SamyGO/opt/ p r i v a t e e r /
export PYTHONPATH=$PYTHONPATH:/mtd_down/widgets / user /SamyGO/SamyGO/ t r i b l e r
export PYTHONOPTIMIZE=yes

Star t our HTTP webserver . Also the main app .
/mtd_rwcommon/widgets / user /SamyGO/SamyGO/ t r i b l e r /ws &

61

Appendix D

Sintel video mediainfo

General
Complete name : s inte l_360p .mp4
Format : MPEG−4
Format p r o f i l e : Base Media / Vers ion 2
Codec ID : mp42
F i l e s i z e : 62 .1 MiB
Duration : 14mn 48 s
Overa l l b i t r a t e mode : Var iab le
Overa l l b i t r a t e : 587 Kbps
Encoded date : UTC 2010−09−29 13 : 12 : 54
Tagged date : UTC 2010−09−29 13 : 12 : 54
g s s t : 0
gstd : 888510
gssd : B4A7D0FC4HH1340707962860946
gshh : o−o . p r e f e r r e d . ams03s11 . v14 . l s c a che2 . c . youtube . com

Video
ID : 2
Format : AVC
Format/ In f o : Advanced Video Codec
Format p r o f i l e : Baseline@L2 . 0
Format s e t t i n g s , CABAC : No
Format s e t t i n g s , ReFrames : 1 frame
Format s e t t i n g s , GOP : M=1, N=30
Codec ID : avc1
Codec ID/ In f o : Advanced Video Coding
Duration : 14mn 48 s
Bit ra t e : 480 Kbps
Maximum b i t ra t e : 1 915 Kbps
Width : 480 p i x e l s
Height : 204 p i x e l s
Display aspect r a t i o : 2 . 3 5 : 1
Frame ra t e mode : Constant
Frame ra t e : 24 .000 fp s
Color space : YUV
Chroma subsampling : 4 : 2 : 0
Bit depth : 8 b i t s
Scan type : Prog r e s s i v e
Bi t s /(P ixe l *Frame) : 0 .204
Stream s i z e : 50 .9 MiB (82%)
T i t l e : (C) 2007 Google Inc . v08 . 1 3 . 2 0 0 7 .
Encoded date : UTC 2010−09−29 13 : 12 : 54
Tagged date : UTC 2010−09−29 13 : 12 : 55

Audio
ID : 1
Format : AAC
Format/ In f o : Advanced Audio Codec
Format p r o f i l e : LC
Codec ID : 40
Duration : 14mn 47 s
Bit ra t e mode : Var iab le
Bit r a t e : 104 Kbps
Maximum b i t ra t e : 187 Kbps
Channel (s) : 2 channe l s
Channel p o s i t i o n s : Front : L R
Sampling ra t e : 44 .1 KHz
Compression mode : Lossy
Stream s i z e : 11 .0 MiB (18%)
T i t l e : (C) 2007 Google Inc . v08 . 1 3 . 2 0 0 7 .
Encoded date : UTC 2010−09−29 13 : 12 : 54
Tagged date : UTC 2010−09−29 13 : 12 : 55

62

Appendix E

Screenshots

Figure E.1: Screenshot of the Main scene.

63

Figure E.2: Screenshot of the Media Player scene.

Figure E.3: Screenshot of the Downloads scene.

64

Figure E.4: Screenshot of the Settings scene.

65

Appendix F

Terms of reference

66

P2P on Samsung TV
Student names
Anass Drif 4030532
Wilson Ko 4005686
Jethro Tan 4032918
Samuel Austin 4005996

Projectmanager and client
Dr. Johan Pouwelse and TU Delft P2P team.

General Goal
Our goal is to develop a P2P application for a Samsung TV, which runs Linux. In order to do so, it is
needed to port a P2P engine (libswift engine) to the TV. First, it is necessary to root the Samsung TV to
have access rights, using SamyGo. We will use BusyBox for this purpose, which enables us to add simple
UNIX commands to the system.

Context
This paragraph describes and explains the technologies and projects related to this project.

Description P2P
Peer-to-peer computing or networking is a distributed application architecture that partitions tasks
or workloads between peers. Peers are equally privileged, equipotent participants in the application.
(en.wikipedia.org/wiki/Peer-to-peer).

Libswift project outline
Swift is a multiparty transport protocol; making use of swarming, it is basically an expansion on the TCP/
IP protocol. Its mission is to disseminate content among a swarm of peers, it can be seen as bittorrent at
the transport layer. Libswift is a cross-platform, C++ library which provides swift. With this, developing
swift based applications in C++ becomes easier since the protocol is already available in libswift. The
protocol is developed at Delft University of Technology, by dr. Johan Pouwelse, dr. Victor Grishchenko
and dr. Arno Bakker and is deliverd as part of the P2P-next (http://p2p-next.org/).
(http://libswift.org/)

Linux busybox + ARM cross-compile
BusyBox is a small executable containing many common UNIX utilities. It provides replacement for most
of the utilities you usually find in GNU fileutils, shellutils etc. BusyBox is perfect for embedded systems
such as TVs, because it provides a fairly complete “UNIX” environment. BusyBox has been written with
size-optimization and limited resources in mind. It is also extremely modular so you can easily include or
exclude commands (or features) at compile time. (www.busybox.net). For our project, we need to make
a Samsung TV compatible with BusyBox, so we need to find a cross-compiler for the ARM processor to

compile BusyBox.

http://wiki.samygo.tv/index.php5/Setting_up_a_cross-compilation_toolchain

SamyGo project
SamyGO is a project for legal reverse engineering and research on Samsung Television firmwares which
is Open Sourced, partially. (www.samygo.tv).) With SamyGo, we can obtain root access and privileges
needed to customize the Samsung TV to our needs. This is needed to install BusyBox for example.

Libswift dependencies
It is possible that libswift needs one or more applications in order to work correctly. It goes without
saying that it will be our task to find out what the dependencies are and to install them to make libswift
work.

Target roadmap
0) Download a cross-compile build environment for ARMv7
1) Get multiple (rootable) Samsung TVs.
2) Root these TVs with SamyGo.
3) Access TV via network or input device.
4) Port libswift to TV and make it work correctly.
5) Build application around libswift engine. (in quarter 4)

Steps 0 to 3 are not really part of the Bachelor project, but will function as preparation for step 5, which
is the main goal of the Bachelor project. Therefore, steps 0 to 3 (additionally 4) will be executed in
quarter 3 part time, so that the official assignment can start in quarter 4.

Student background knowledge and draft generic work division
The student team consists of four computer science students, two Software Technology students and
two Media Knowledge Technology students. All students have experience with c++ and linux. The ST
students will mainly concentrate on the low-level parts of the project, such as the firmware and the TV
itself (hardware). On the other hand, the MKT students will focus on the interaction and features of the
app to build. This does not mean that the students will only concentrate on their part, our goal is for
everyone to work at all components of the project.

Appendix G

Orientation Report

69

IN3405 Bachelor Project

Orientation Report

Authors:
S.E. Austin (4005996)
A. Drif (4030532)
W.K.H. Ko (4005686)
J.E.T. Tan (4032918)

Supervisor:
Dr.Ir. J.A. Pouwelse

Contents

1 Introduction 2

2 Usage of Libswift 3

3 Solutions 4
3.1 Develop a native application . 4
3.2 Developing an application for the Raspberry Pi 5
3.3 Develop an application for the Galaxy Nexus 5

4 Study of Feasibility 6

5 Target Roadmap 7
5.1 Phase 1 . 7
5.2 Phase 2 . 8
5.3 Phase 3 . 8
5.4 Phase 4 . 8

5.4.1 Phase 4A . 9
5.4.2 Phase 4B . 9
5.4.3 Phase 4C . 9
5.4.4 Planning . 10

6 Current Progress 11
6.1 Gaining root access to the TV . 11
6.2 Compiling libswift for the TV . 12
6.3 Running libswift on the TV . 12

1

Chapter 1

Introduction

In the third year of the Computer Science course in Delft, students have to do
their Bachelor project, where they have to work under supervision of a professor.

This report is an orientation report for our Bachelor Project 2011-2012. The
goal of this project is to develop a 4th generation peer-to-peer application to be
used on a Samsung Smart TV. In this report we will set out the possible solutions
that were explored for this goal, the final solution chosen and progress made
to begin development of the application itself. Additionally, some technical
background information and a planning for the rest of the project are included.

The client, but also supervisor of this project is Dr.Ir. Johan Pouwelse from the
Parallel and Distributed Systems group on the faculty of EEMCS of the Delft
University of Technology. He is the scientific director of several peer-to-peer
research initiatives and also the founder and leader of the Tribler peer-to-peer
research team. Tribler is an open source peer-to-peer client that is completely
decentralised. The application to be implemented is required to have the same
download-engine, libswift, as Tribler along with an internal media player to
handle streaming content and possibly media playback found on an external
USB device.

Libswift is a lightweight 4th generation peer-to-peer based transport protocol
for content dissemination that can run on top of other protocols, such as UDP,
TCP, HTTP, or as RTP profile. It can be used for both live streaming and
conventional downloading purposes. 4th generation peer-to-peer software means
that it is fully self-organised, removing the need for any server1.

Because libswift is a very generic protocol, it should be easy to merge with the
existing technology of the TV. Since the Smart TV has limited memory and
CPU resources, it is necessary that the application to be build is as lightweight
as possible. The streaming capabilities also enables the user to maximise utility
of the TV, while still able to download data and store it. A major drawback is
however that downloading and streaming content is limited to the memory of
the TV.

1http://www.tribler.org/trac/wiki/4thGenerationP2P

2

Chapter 2

Usage of Libswift

Libswift comes as a command line application, the version we use can be found at
https://github.com/jettan/swiftarm/tree/master/swift. With this ap-
plication, it is possible to upload and download files. Streaming audio and
video also belongs to the possibilities. These streams can be bound to a port
which can be used on a media player to play back the content. Control of
libswift can also be done via TCP. Unlike conventional peer-to-peer systems,
libswift does not require a centralised tracker to operate. This allows libswift
to work completely decentralised, which makes it very robust. A short video
where the command line usage of libswift is demonstrated can be found on
YouTube1. For more information on how libswift works, we refer the reader to
https://datatracker.ietf.org/doc/draft-ietf-ppsp-peer-protocol/.

For our own application, we will have to use the same functionality as the
command line application of libswift, but then stripped down to fit our needs.
In short, we will use the swift.cpp file as an example to develop the basics for
our application.

1http://www.youtube.com/watch?v=MUCUMA0LVgc

3

Chapter 3

Solutions

To improve the feasibility of this project, multiple solutions to develop the ap-
plication were explored. In this section, we will list 3 solutions for the Samsung
Smart TV.

3.1 Develop a native application

The first solution is to implement the peer-to-peer application so that it can be
run natively on the TV itself. The TVs to be used are the models UE40D70001

and UE46D80002. In order to run the application natively on the TV, root
access is required, as the TV does not allow external libraries, like libswift, to
be used in the Samsung SDK. In fact, one can only develop applications with
HTML, DOM, CSS or JavaScript with Flash support and the built-in media
player3.

To gain root access, one must follow the steps on http://wiki.samygo.tv/

index.php5/Rooting_D_series_arm_cpu_models.

These are the steps to gain root access:

Create the developer account.

1. Enter recovery menu on the TV (press info, menu, mute, power while TV
is turned off)

2. Set the RS232 on debug and the watchdog off.

3. Save settings and reboot the TV normally.

4. Enter SmartHub.

5. Go to Settings.

1http://www.samsung.com/nl/consumer/tv-audio-video/televisions/led-tv/

UE40D7000LSXXN-spec
2http://www.samsung.com/nl/consumer/tv-audio-video/televisions/led-tv/

UE46D8000YSXXH-spec
3http://www.samsungdforum.com/Devtools/Spec

4

6. Create a developer account (name = develop, password any)

7. Exit SmartHub and reboot the TV.

Now install the hack:

1. Enter SmartHub.

2. Login on your developer account.

3. Go to Settings, Development, Setting Server IP

4. Enter 46.4.199.222 as IP.

5. Press User Application Synchronization (This could take a long time).

6. Exit Developer menu and SmartHub.

7. Reboot TV.

8. Enter SmartHub.

9. Execute the SamyGo widget.

With this the TV will be rooted. To cross-compile code for the Samsung
TV, a cross-compilation toolchain is needed, which can be found at https:

//opensource.samsung.com. With this, we can cross-compile libswift for the
TV. Further development will then involve the use of the Samsung SDK with
another daemon that handles the libswift calls.

3.2 Developing an application for the Raspberry
Pi

The second solution is to implement an application for an embedded system
sporting an arm processor such as the Raspberry Pi4 and using the Raspberry
Pi as a set-top box on the Samsung Smart TV. Since the Raspberry Pi already
runs a Linux distribution such as Fedora, development can be done on the device
itself. Lots of libraries are already present and we can even make use of strong
media players such as mplayer. In short, the application to be developed would
then be a Tribler clone, but only for arm Linux.

3.3 Develop an application for the Galaxy Nexus

The main idea of this solution is to develop an application that runs on the
Samsung Galaxy Nexus with Android Ice Cream Sandwich. Display will be
forwarded to the TV screen by using an MHL cable5. Since the Tribler team
already ported libswift for the Android successfully, we can proceed with the
development of the application itself when choosing this solution.

4http://www.raspberrypi.org
5http://www.handtec.co.uk/product.php/6075/samsung-galaxy-nexus-official-mhl-microusb-to-hdmi-adapter

5

Chapter 4

Study of Feasibility

In this section, we will evaluate all solutions to study the feasibility of the whole
project. Afterwards, we will select one solution to carry out and use the other
solutions as backup plans.

The preparations for the first solution should not be hard to carry out, especially
since all the steps needed to be taken are well documented on the Internet. Also,
we can get help from the SamyGo developers when needed1.

The second solution is in essence the same as the first solution, but on another
platform than a TV (such as the Raspberry Pi).

As for the third solution, our client already possesses knowledge regarding lib-
swift applications for Android. Furthermore, developing applications for An-
droid is not hard because its extensive API and the many possibilities it offers2.
So the third solution is also feasible.

The diversity of possibilities makes the project very feasible, because if the first
solution really does not work out we can use the second solution as backup plan.
Because the software written for the TV will be the same as the software written
for a board like Raspberry PI, it is easy to switch between the two solutions.
The only thing that needs to be done is to cross-compile the software for the
correct platform. The third solution also makes use of the same Samsung TV
model as the previous solutions, so switching to the third solution is easy.

Since the first solution is already quite feasible itself, it is best to try that and
to use the other solutions as backup plans.

1http://forum.samygo.tv
2http://developer.android.com/reference/packages.html

6

Chapter 5

Target Roadmap

In order to keep the development of the application structured we have divided
the functionality we would like to achieve into separate phases. Each phase im-
plements a relatively small and overseeable chunk of functionality which builds
upon and requires the previous phase to be completed. Each phase also guaran-
tees a complete and fully functional piece of software. For example, this means
that if by the end of the project we are unable to implement phase 4 we will
still have a fully functional application, although with less functionality, as we
have finished phase 3.

The phases as described now are aimed primarily at solution 1 although they
can be easily modified to apply to the other solutions.

The functionality described in the phases could be categorised as must have,
should have, would have and could have functionality. What exactly each phase
will entail is explained below.

5.1 Phase 1

This phase concentrates on getting the very basics up and running. Our ap-
plication will be built around the libswift library and therefore libswift must
be compiled and executable on the TV. As libswift is for file transfer over the
Internet we will also need to make the TV internet connectible and be able to
download files. To access the TV easier we want to be able to access the TV
remotely by Telnet, SSH or something similar.

To summarise:

� The TV is Internet connectible;

� The TV is remotely accessible;

� Libswift runs on the TV;

� You can download files from the Internet via the command-line.

7

At the moment, this phase is already finished as we already succeeded in gaining
root access and have libswift up and running on the TV. See here6 for more
about the current progress. Although we already have root access on the TV, we
would like to find a method to gain root access on the newest firmware currently
available so that our application will be compatible with the latest software.

5.2 Phase 2

The next step is to build our own application using functionality from the lib-
swift library. This step will also be run from the command-line. We want to be
able to download files using the libswift library and be able to pass them on to a
media decoder and play them on the screen. Another feature that libswift offers
is streaming of video rather than downloading a file completely and playing it
once the download is complete. We would like to implement that in this phase
as well.

� Downloaded files are passed on to a media decoder;

� Video plays on the screen;

� Download and play functionality;

� Full streaming functionality.

5.3 Phase 3

This phase is aimed at making a more user friendly application rather than the
command line interface that was being used up until this point. The advantage
is that all the download functionality has been implemented in the previous
phases so all that needs to be done is build a GUI around the the previous
phases. We would like the application to be controlled using the TV remote
control and have some hard coded test swarms from which you can download
files for demonstration purposes.

� A GUI controlled by the TV remote control;

� A file browser;

� A list of test swarms (hard coded) from which you can download and play.

5.4 Phase 4

In phase 4 we have a number of options. Due to the fact that it is probably
unrealistic to implement them all within the given time we have decided to
split them up into three groups. Which one we will choose will be decided at a
later time during the project based on the amount of time we have left and our
personal preference.

8

5.4.1 Phase 4A

The first option is to get Python, SQLite and M2Crypto working on the TV.
This would enable us to run ‘Dispersie’, made by the Tribler team and let us
implement searching, browsing and sharing functionality.

� Get Python, SQLite and M2Crypto to run;

� Use this to implement searching, browsing, streaming and sharing func-
tionality.

5.4.2 Phase 4B

Another option is to expand the application by adding a more advanced GUI
with search functionality. Also TV to TV download and upload would be inter-
esting rather than downloading from a central server. We could also add more
demo applications and functions.

� Expanding the GUI;

� Add Search functionality;

� TV to TV uploading and downloading;

� More demo apps;

5.4.3 Phase 4C

The last option is to connect a web cam to the TV and support streaming to
multiple other TV's from the TV with the web cam.

� Live streaming from a web cam to multiple TV's using the libswift library.

9

5.4.4 Planning

Week Goals
23th – 29th April Finish Orientation report.

Attempt to gain root access to newest firmware version of TV.
Create design for the back-end of our application.
Create design for the front-end of our application
and find out how to integrate it with the back-end.

30th April – 6th May Finish design of application.
Create basic application with calls to libswift.

7th – 13th May Start implementation of our application and test suite.
14th – 20th May Continue implementation.
21st – 27th May Continue implementation.
28th May – 3rd June Start working towards finished product.
4th –10th June Start writing report.

Prepare code for SIG.
11th – 17th June Write report.

Improve code based on SIG feedback.
18th – 24th June Prepare code for SIG.

Table 5.1: General planning for the whole project

10

Chapter 6

Current Progress

In this section, we will describe what we have been working on during the third
quarter as preparation for the development of the TV application. Our first
choice was to implement the application to run on the TV natively. Not only
because it’s challenging, but also because we believe it is possible for the TV to
run it natively. The idea of having a TV without a set-top box or another device
running the to be implemented application attracted us to do so. Moreover,
since the Tribler team already ported libswift for Android and made a demo
application, it wouldn’t be as interesting as implementing the application to
run native on the TV. Should the TV be unrootable, we would have chosen this
solution. Implementing the application to run on the Raspberry Pi was our last
backup solution. Not only due to the unknown availibility of the device, but
also because developing an application for it wouldn’t be much different than
developing an application for your own computer.

6.1 Gaining root access to the TV

Initially we believed getting root access of the TV would be a simple step, but
it turned out to be harder than we thought. To root the TV we planned on
using the method provided by SamyGo (See how to root3.1), but because the
firmware version of our TV was the latest, we could not use the SamyGo tool1.

Since there was no official way to downgrade to a lower firmware version, we
decided to try to trick the TV into downgrading. The idea was to create our
own firmware which would be an old version of the firmware repackaged with a
higher version number. Since Samsung provided access to the source of all the
firmware versions on the Internet, all that needed to be done was to change the
version number and repackage it. Sadly Samsung incorporates a salted signature
into the packaging of the firmware. While the SamyGo team possesses a tool to
decrypt the packages succesfully, there was no way to repackage them back, so
this plan ended up failing.

1The SamyGo tool requires the TV to be at firmware ≤ 1019.0, whereas our TV was at
1021.0.

11

During our own attempts to downgrade the firmware we had contacted the
developers at SamyGo to ask whether they had a solution for our firmware
version or an approximate date for a new root kit. After some conversation
they agreed to give us access to a server they used to spoof the Samsung online
firmware updating server. Using the same technique we attempted offline, the
idea was to trick the TV into downgrading by making it think it is upgrading.
The online version however, succeeded to downgrade the TV to firmware 1015.0.
Apparently a signature was not needed or was circumvented in some other way.
In return of this favour, we promised we would put some time and effort into a
method for gaining root access to the newest firmware version. The end result,
however, was a TV with root access with which we could continue to the next
step, getting libswift to run. After rooting the TV, it was possible to transfer
files from and to the TV using FTP and to log into the TV using a netcat shell.

6.2 Compiling libswift for the TV

Even though we have compiled libswift for ARM machines before, this still
proved to be a non-trivial task. Because the root file system on the TV is
read-only, adding libraries like libevent, on which libswift depends was out of
the question. This caused problems when trying to dynamically link libraries.
By setting the ’static’ flag on, libraries can be linked statically and solving this
problem.

The problem that costed most of our time, however, had to do with the transfer
of the compiled libswift to the TV. The libswift library would be compiled
on a laptop and then transferred to the TV using FileZilla, an FTP client.
After a long time of wondering why the compiled library would not run or even
recognized as executable file by GDB2 on the TV, we discovered that FileZilla
automatically decides whether the file to be transferred is an ASCII file or a
binary file. For some reason, FileZilla treated our compiled library as an ASCII
file. Once we switched to using FTP in the command line and setting the
transfer mode to binary this problem was resolved and got libswift running.

6.3 Running libswift on the TV

Once libswift was compiled and running on the TV we were finally able to
actually test whether the TV could handle it. For this we tried a number of
video and music files of different quality streamed from a laptop to the TV
and from the TV to the laptop. Videos up to 720p with 24 frames per second
streamed and played seamlessly. The TV’s media player limitations, however,
still apply.3 When feeded 1080p video files, the TV began to have some troubles.
We made a demonstration video of these results which can be seen on YouTube4,
this is the same video mentioned earlier.

2GNU debugger
3http://www.samsung.com/uk/consumer/learningresources/media2.0/usb_faq.html
4http://www.youtube.com/watch?v=MUCUMA0LVgc

12

Appendix H

Code API

83

Swiftarm
sig1

Generated by Doxygen 1.7.6.1

Thu Jul 5 2012 19:53:36

Contents

1 Namespace Index 1

1.1 Namespace List . 1

2 Class Index 3

2.1 Class List . 3

3 File Index 5

3.1 File List . 5

4 Namespace Documentation 7

4.1 DownloadManager Namespace Reference 7

4.1.1 Detailed Description . 9

4.1.2 Function Documentation . 9

4.1.2.1 add . 9

4.1.2.2 buildXML . 9

4.1.2.3 calculateDownloadAmount 9

4.1.2.4 calculateRatio . 9

4.1.2.5 calculateUploadAmount 9

4.1.2.6 clearList . 9

4.1.2.7 dispatch . 10

4.1.2.8 downloadFirstInList 10

4.1.2.9 getActiveDownload 10

4.1.2.10 getDownloadAmount 10

4.1.2.11 getDownloads . 10

4.1.2.12 getIndexFromHash 10

4.1.2.13 getMaxDownSpeed 11

ii CONTENTS

4.1.2.14 getMaxUpSpeed . 11

4.1.2.15 getRatio . 11

4.1.2.16 getUploadAmount 11

4.1.2.17 init . 11

4.1.2.18 limitDownSpeeds 11

4.1.2.19 limitUpSpeeds . 11

4.1.2.20 pauseAllDownloads 12

4.1.2.21 pauseDownload . 12

4.1.2.22 removeFromDisk . 12

4.1.2.23 removeFromList . 12

4.1.2.24 resumeAllDownloads 13

4.1.2.25 resumeDownload 13

4.1.2.26 setActiveDownload 13

4.1.2.27 setMaxDownSpeed 13

4.1.2.28 setMaxUpSpeed . 13

4.1.2.29 startDownload . 14

4.1.2.30 startStream . 14

4.1.2.31 startStreamThread 14

4.1.2.32 startUploads . 14

4.1.2.33 stopStream . 14

4.1.2.34 switchDownload . 14

4.1.2.35 updateDownloadStatistics 15

4.1.2.36 upload . 15

4.1.3 Variable Documentation . 15

4.1.3.1 active_download . 15

4.1.3.2 active_download_mutex 15

4.1.3.3 d_pid . 15

4.1.3.4 doc . 15

4.1.3.5 downloaded . 16

4.1.3.6 downloads . 16

4.1.3.7 evcompl . 16

4.1.3.8 max_downspeed . 16

4.1.3.9 max_upspeed . 16

4.1.3.10 mutex . 16

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

CONTENTS iii

4.1.3.11 ratio . 16

4.1.3.12 streaming_thread 16

4.1.3.13 thread . 17

4.1.3.14 uploaded . 17

4.2 HttpServer Namespace Reference . 17

4.2.1 Detailed Description . 17

4.2.2 Function Documentation . 17

4.2.2.1 handleRequest . 17

4.2.2.2 init . 18

4.2.2.3 sendResponse . 18

4.2.2.4 sendXMLResponse 18

4.2.3 Variable Documentation . 18

4.2.3.1 base . 18

4.3 SearchEngine Namespace Reference 18

4.3.1 Detailed Description . 19

4.3.2 Function Documentation . 19

4.3.2.1 buildSearchXML . 19

4.3.2.2 clearSearchResults 20

4.3.2.3 getResults . 20

4.3.2.4 getResultWithHash 20

4.3.2.5 getResultWithName 20

4.3.2.6 init . 20

4.3.2.7 search . 20

4.3.2.8 startDispersy . 20

4.3.3 Variable Documentation . 20

4.3.3.1 dispersy_mutex . 21

4.3.3.2 dispersy_thread . 21

4.3.3.3 gstate . 21

4.3.3.4 gstate_mutex . 21

4.3.3.5 p_args . 21

4.3.3.6 p_function . 21

4.3.3.7 p_function_value . 21

4.3.3.8 p_main . 21

4.3.3.9 p_main_value . 21

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

iv CONTENTS

4.3.3.10 p_module . 21

4.3.3.11 p_module_name . 22

4.3.3.12 p_result_string . 22

4.3.3.13 save . 22

4.3.3.14 search_results . 22

4.3.3.15 searchdoc . 22

4.4 Settings Namespace Reference . 22

4.4.1 Detailed Description . 23

4.4.2 Function Documentation . 23

4.4.2.1 directoryExists . 23

4.4.2.2 getDownloadDirectory 23

4.4.2.3 getIP . 23

4.4.2.4 getMaxDownSpeed 24

4.4.2.5 getMaxUpSpeed . 24

4.4.2.6 init . 24

4.4.2.7 loadSettings . 24

4.4.2.8 replaceSubstring . 24

4.4.2.9 saveSettings . 24

4.4.2.10 setDownloadDirectory 24

4.4.2.11 setIP . 25

4.4.2.12 setMaxDownSpeed 25

4.4.2.13 setMaxUpSpeed . 25

4.4.2.14 split . 25

4.4.2.15 split . 25

4.4.3 Variable Documentation . 25

4.4.3.1 download_directory 25

4.4.3.2 ip_address . 26

4.4.3.3 max_download_speed 26

4.4.3.4 max_mutex . 26

4.4.3.5 max_upload_speed 26

4.4.3.6 mutex . 26

4.4.3.7 settings_file . 26

5 Class Documentation 27

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

CONTENTS v

5.1 AlreadyDownloadingException Class Reference 27

5.1.1 Detailed Description . 27

5.1.2 Constructor & Destructor Documentation 27

5.1.2.1 AlreadyDownloadingException 27

5.1.2.2 ∼AlreadyDownloadingException 27

5.1.3 Member Function Documentation 28

5.1.3.1 what . 28

5.2 DownloadManager::Amount Struct Reference 28

5.2.1 Detailed Description . 28

5.2.2 Member Data Documentation 28

5.2.2.1 amount . 28

5.2.2.2 unit . 28

5.3 CannotResumeException Class Reference 28

5.3.1 Detailed Description . 29

5.3.2 Constructor & Destructor Documentation 29

5.3.2.1 CannotResumeException 29

5.3.2.2 ∼CannotResumeException 29

5.3.3 Member Function Documentation 29

5.3.3.1 what . 29

5.4 Download Class Reference . 29

5.4.1 Detailed Description . 31

5.4.2 Constructor & Destructor Documentation 31

5.4.2.1 Download . 31

5.4.2.2 ∼Download . 31

5.4.3 Member Function Documentation 31

5.4.3.1 calculateEstimatedTime 31

5.4.3.2 calculatePeers . 31

5.4.3.3 calculateSpeeds . 31

5.4.3.4 getFilename . 32

5.4.3.5 getID . 32

5.4.3.6 getRootHash . 32

5.4.3.7 getStatistics . 32

5.4.3.8 getStatus . 32

5.4.3.9 getTrackerAddress 32

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

vi CONTENTS

5.4.3.10 isComplete . 32

5.4.3.11 limitDownSpeed . 32

5.4.3.12 limitUpSpeed . 33

5.4.3.13 pause . 33

5.4.3.14 resume . 33

5.4.3.15 retry . 33

5.4.3.16 setDownloadSpeed 33

5.4.3.17 setID . 33

5.4.3.18 setPeers . 33

5.4.3.19 setProgress . 34

5.4.3.20 setSeeders . 34

5.4.3.21 setStatus . 34

5.4.3.22 setUploadSpeed . 34

5.4.3.23 start . 35

5.4.3.24 stop . 35

5.4.4 Member Data Documentation 35

5.4.4.1 _filename . 35

5.4.4.2 _mutex . 35

5.4.4.3 _root_hash . 35

5.4.4.4 _stats . 35

5.4.4.5 _status . 35

5.4.4.6 _tracker . 35

5.4.4.7 _transfer . 36

5.4.4.8 _transfer_mutex . 36

5.5 DownloadManagerTest Class Reference 36

5.5.1 Detailed Description . 36

5.5.2 Constructor & Destructor Documentation 36

5.5.2.1 ∼DownloadManagerTest 36

5.5.3 Member Function Documentation 36

5.5.3.1 SetUp . 37

5.5.3.2 TearDown . 37

5.6 Download::downloadStats Struct Reference 37

5.6.1 Detailed Description . 37

5.6.2 Member Data Documentation 38

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

CONTENTS vii

5.6.2.1 download_percentage 38

5.6.2.2 download_speed . 38

5.6.2.3 estimated . 38

5.6.2.4 id . 38

5.6.2.5 peers . 38

5.6.2.6 seeders . 38

5.6.2.7 upload_speed . 38

5.7 DownloadTest Class Reference . 39

5.7.1 Detailed Description . 39

5.7.2 Constructor & Destructor Documentation 39

5.7.2.1 ∼DownloadTest . 39

5.7.3 Member Function Documentation 39

5.7.3.1 SetUp . 39

5.7.3.2 TearDown . 39

5.7.4 Member Data Documentation 40

5.7.4.1 download . 40

5.7.4.2 filename . 40

5.7.4.3 id . 40

5.7.4.4 root_hash . 40

5.7.4.5 tracker . 40

5.8 DownloadWhileStreamingException Class Reference 40

5.8.1 Detailed Description . 40

5.8.2 Constructor & Destructor Documentation 41

5.8.2.1 DownloadWhileStreamingException 41

5.8.2.2 ∼DownloadWhileStreamingException 41

5.8.3 Member Function Documentation 41

5.8.3.1 what . 41

5.9 FileNotFoundException Class Reference 41

5.9.1 Detailed Description . 41

5.9.2 Constructor & Destructor Documentation 41

5.9.2.1 FileNotFoundException 41

5.9.2.2 ∼FileNotFoundException 42

5.9.3 Member Function Documentation 42

5.9.3.1 what . 42

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

viii CONTENTS

5.10 HTTPServerTest Class Reference . 42

5.10.1 Detailed Description . 42

5.10.2 Constructor & Destructor Documentation 43

5.10.2.1 ∼HTTPServerTest 43

5.10.3 Member Function Documentation 43

5.10.3.1 getResponse . 43

5.10.3.2 search . 43

5.10.3.3 SetUp . 43

5.10.3.4 TearDown . 43

5.10.3.5 toVector . 43

5.10.4 Member Data Documentation 43

5.10.4.1 easyHandle . 43

5.10.4.2 res . 44

5.10.4.3 response . 44

5.11 InvalidIPException Class Reference 44

5.11.1 Detailed Description . 44

5.11.2 Constructor & Destructor Documentation 44

5.11.2.1 InvalidIPException 44

5.11.2.2 ∼InvalidIPException 44

5.11.3 Member Function Documentation 44

5.11.3.1 what . 44

5.12 SearchEngine::result Struct Reference 45

5.12.1 Detailed Description . 45

5.12.2 Member Data Documentation 45

5.12.2.1 filename . 45

5.12.2.2 hash . 45

5.12.2.3 tracker . 45

5.13 SearchEngineTest Class Reference . 45

5.13.1 Detailed Description . 46

5.13.2 Constructor & Destructor Documentation 46

5.13.2.1 ∼SearchEngineTest 46

5.13.3 Member Function Documentation 46

5.13.3.1 SetUp . 46

5.13.3.2 TearDown . 46

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

CONTENTS ix

5.13.3.3 toVector . 46

5.14 Stream Class Reference . 47

5.14.1 Detailed Description . 48

5.14.2 Constructor & Destructor Documentation 48

5.14.2.1 Stream . 48

5.14.2.2 ∼Stream . 48

5.14.3 Member Function Documentation 48

5.14.3.1 beginStreaming . 48

5.14.3.2 getEvent . 48

5.14.3.3 getInstance . 48

5.14.3.4 getRootHash . 49

5.14.3.5 getStatus . 49

5.14.3.6 getTrackerAddress 49

5.14.3.7 init . 49

5.14.3.8 readStreaming . 49

5.14.3.9 setRoothash . 49

5.14.3.10 setStatus . 49

5.14.3.11 setTracker . 49

5.14.3.12 start . 50

5.14.3.13 stop . 50

5.14.4 Member Data Documentation 50

5.14.4.1 _evclose . 50

5.14.4.2 _hash . 50

5.14.4.3 _instance . 50

5.14.4.4 _mutex . 50

5.14.4.5 _streaming . 50

5.14.4.6 _tracker . 50

5.15 StreamTest Class Reference . 51

5.15.1 Detailed Description . 51

5.15.2 Constructor & Destructor Documentation 51

5.15.2.1 ∼StreamTest . 51

5.15.3 Member Function Documentation 51

5.15.3.1 SetUp . 51

5.15.3.2 TearDown . 51

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

x CONTENTS

5.16 Download::time Struct Reference . 52

5.16.1 Detailed Description . 52

5.16.2 Member Data Documentation 52

5.16.2.1 days . 52

5.16.2.2 hours . 52

5.16.2.3 minutes . 52

5.16.2.4 seconds . 52

6 File Documentation 53

6.1 include/Download.h File Reference . 53

6.1.1 Define Documentation . 54

6.1.1.1 SECONDS_PER_DAY 54

6.1.1.2 SECONDS_PER_HOUR 54

6.1.1.3 SECONDS_PER_MINUTE 54

6.1.2 Enumeration Type Documentation 54

6.1.2.1 Status . 54

6.2 include/DownloadManager.h File Reference 54

6.2.1 Define Documentation . 56

6.2.1.1 UNLIMITED_SPEED 56

6.3 include/Exceptions.h File Reference 56

6.4 include/HttpServer.h File Reference . 57

6.5 include/SearchEngine.h File Reference 57

6.6 include/Settings.h File Reference . 58

6.6.1 Define Documentation . 60

6.6.1.1 DEFAULT_DOWNLOAD_DIR 60

6.6.1.2 DEFAULT_IP . 60

6.6.1.3 DEFAULT_PORT 60

6.6.1.4 DEFAULT_SETTINGS_FILE 60

6.6.1.5 DHT_PORT . 60

6.7 include/Stream.h File Reference . 60

6.8 src/Download.cpp File Reference . 60

6.9 src/DownloadManager.cpp File Reference 60

6.9.1 Function Documentation . 61

6.9.1.1 buildCompletedTag 61

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

CONTENTS xi

6.9.1.2 buildDownloadAmountTag 61

6.9.1.3 buildDSpeedTag . 62

6.9.1.4 buildHashTag . 62

6.9.1.5 buildNameTag . 62

6.9.1.6 buildPeersTag . 62

6.9.1.7 buildProgressTag 63

6.9.1.8 buildRatioTag . 63

6.9.1.9 buildSeedersTag . 63

6.9.1.10 buildSizeTag . 63

6.9.1.11 buildStatusTag . 64

6.9.1.12 buildTimeTag . 64

6.9.1.13 buildUploadAmountTag 64

6.9.1.14 buildUSpeedTag . 64

6.9.1.15 downloadCallback 65

6.9.1.16 fileExists . 65

6.9.1.17 fillXMLValue . 65

6.10 src/HttpServer.cpp File Reference . 65

6.10.1 Function Documentation . 66

6.10.1.1 addRequest . 66

6.10.1.2 clearRequest . 66

6.10.1.3 downloadRequest 66

6.10.1.4 pauseRequest . 66

6.10.1.5 removeRequest . 66

6.10.1.6 resumeRequest . 67

6.10.1.7 searchRequest . 67

6.10.1.8 settingsRequest . 67

6.10.1.9 stopRequest . 67

6.10.1.10 streamRequest . 67

6.10.1.11 uploadRequest . 67

6.11 src/Main.cpp File Reference . 67

6.11.1 Function Documentation . 68

6.11.1.1 InstallHTTPGateway 68

6.11.1.2 InstallStatsGateway 68

6.11.1.3 main . 68

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

xii CONTENTS

6.12 test/testsuite/Main.cpp File Reference 68

6.12.1 Function Documentation . 68

6.12.1.1 InstallHTTPGateway 69

6.12.1.2 main . 69

6.12.1.3 serverCallback . 69

6.12.2 Variable Documentation . 69

6.12.2.1 server_thread . 69

6.13 src/SearchEngine.cpp File Reference 69

6.14 src/Settings.cpp File Reference . 70

6.15 src/Stream.cpp File Reference . 70

6.15.1 Function Documentation . 70

6.15.1.1 closeCallback . 70

6.16 test/testsuite/DownloadManagerTest.cpp File Reference 70

6.16.1 Function Documentation . 71

6.16.1.1 TEST_F . 71

6.16.1.2 TEST_F . 71

6.16.1.3 TEST_F . 71

6.16.1.4 TEST_F . 71

6.16.1.5 TEST_F . 72

6.16.1.6 TEST_F . 72

6.16.1.7 TEST_F . 72

6.16.1.8 TEST_F . 72

6.16.1.9 TEST_F . 72

6.16.1.10 TEST_F . 72

6.16.1.11 TEST_F . 72

6.16.1.12 TEST_F . 72

6.16.1.13 TEST_F . 73

6.16.1.14 TEST_F . 73

6.16.1.15 TEST_F . 73

6.16.1.16 TEST_F . 73

6.16.1.17 TEST_F . 73

6.16.1.18 TEST_F . 73

6.16.1.19 TEST_F . 73

6.16.1.20 TEST_F . 73

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

CONTENTS xiii

6.16.1.21 TEST_F . 74

6.16.1.22 TEST_F . 74

6.16.1.23 testDownloadsAreEqual 74

6.17 test/testsuite/DownloadTest.cpp File Reference 74

6.17.1 Function Documentation . 75

6.17.1.1 TEST_F . 75

6.17.1.2 TEST_F . 75

6.17.1.3 TEST_F . 75

6.17.1.4 TEST_F . 75

6.17.1.5 TEST_F . 75

6.17.1.6 TEST_F . 76

6.17.1.7 TEST_F . 76

6.17.1.8 TEST_F . 76

6.17.1.9 TEST_F . 76

6.17.1.10 TEST_F . 76

6.17.1.11 TEST_F . 76

6.17.1.12 TEST_F . 76

6.17.1.13 TEST_F . 76

6.17.1.14 TEST_F . 77

6.17.1.15 TEST_F . 77

6.17.1.16 TEST_F . 77

6.17.1.17 TEST_F . 77

6.17.1.18 TEST_F . 77

6.17.1.19 TEST_F . 77

6.17.1.20 TEST_F . 77

6.17.1.21 TEST_F . 77

6.17.1.22 TEST_F . 78

6.17.1.23 TEST_F . 78

6.17.1.24 TEST_F . 78

6.17.1.25 TEST_F . 78

6.17.1.26 TEST_F . 78

6.17.1.27 TEST_F . 78

6.18 test/testsuite/HTTPServerTest.cpp File Reference 78

6.18.1 Function Documentation . 79

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

xiv CONTENTS

6.18.1.1 TEST_F . 79

6.18.1.2 TEST_F . 79

6.18.1.3 TEST_F . 79

6.18.1.4 TEST_F . 79

6.18.1.5 TEST_F . 79

6.18.1.6 TEST_F . 80

6.18.1.7 TEST_F . 80

6.18.1.8 TEST_F . 80

6.18.1.9 TEST_F . 80

6.18.1.10 TEST_F . 80

6.18.1.11 TEST_F . 80

6.18.1.12 TEST_F . 80

6.18.1.13 TEST_F . 80

6.18.1.14 TEST_F . 81

6.19 test/testsuite/SearchEngineMock.cpp File Reference 81

6.20 test/testsuite/SearchEngineTest.cpp File Reference 81

6.20.1 Function Documentation . 81

6.20.1.1 TEST_F . 81

6.20.1.2 TEST_F . 81

6.20.1.3 TEST_F . 82

6.20.1.4 TEST_F . 82

6.20.1.5 TEST_F . 82

6.20.1.6 TEST_F . 82

6.21 test/testsuite/StreamTest.cpp File Reference 82

6.21.1 Function Documentation . 83

6.21.1.1 TEST_F . 83

6.21.1.2 TEST_F . 83

6.21.1.3 TEST_F . 83

6.21.1.4 TEST_F . 83

6.21.1.5 TEST_F . 83

6.21.1.6 TEST_F . 83

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

Chapter 1

Namespace Index

1.1 Namespace List

Here is a list of all namespaces with brief descriptions:

DownloadManager . 7
HttpServer . 17
SearchEngine . 18
Settings . 22

2 Namespace Index

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

Chapter 2

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

AlreadyDownloadingException . 27
DownloadManager::Amount . 28
CannotResumeException . 28
Download . 29
DownloadManagerTest . 36
Download::downloadStats

Struct for holding download statistics 37
DownloadTest . 39
DownloadWhileStreamingException . 40
FileNotFoundException . 41
HTTPServerTest . 42
InvalidIPException . 44
SearchEngine::result

Struct holding the data of a search result 45
SearchEngineTest . 45
Stream . 47
StreamTest . 51
Download::time

Struct for holding time data . 52

4 Class Index

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

Chapter 3

File Index

3.1 File List

Here is a list of all files with brief descriptions:

include/Download.h . 53
include/DownloadManager.h . 54
include/Exceptions.h . 56
include/HttpServer.h . 57
include/SearchEngine.h . 57
include/Settings.h . 58
include/Stream.h . 60
src/Download.cpp . 60
src/DownloadManager.cpp . 60
src/HttpServer.cpp . 65
src/Main.cpp . 67
src/SearchEngine.cpp . 69
src/Settings.cpp . 70
src/Stream.cpp . 70
test/testsuite/DownloadManagerTest.cpp . 70
test/testsuite/DownloadTest.cpp . 74
test/testsuite/HTTPServerTest.cpp . 78
test/testsuite/Main.cpp . 68
test/testsuite/SearchEngineMock.cpp . 81
test/testsuite/SearchEngineTest.cpp . 81
test/testsuite/StreamTest.cpp . 82

6 File Index

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

Chapter 4

Namespace Documentation

4.1 DownloadManager Namespace Reference

Classes

• struct Amount

Functions

• void calculateRatio ()
• void calculateDownloadAmount ()
• void calculateUploadAmount ()
• void setActiveDownload (Download ∗download)
• Download getActiveDownload ()
• std::vector< Download > getDownloads ()
• void init ()
• void startStream (std::string tracker, std::string hash)
• void stopStream ()
• void pauseAllDownloads ()
• void resumeAllDownloads ()
• void ∗ startStreamThread (void ∗arg)
• void updateDownloadStatistics ()
• std::string buildXML ()
• void ∗ dispatch (void ∗arg)
• int resumeDownload (std::string download_hash)
• int startDownload (const std::string download_hash)
• int getIndexFromHash (const std::string download_hash)
• struct Amount getDownloadAmount ()
• struct Amount getUploadAmount ()
• double getRatio ()
• double getMaxUpSpeed ()

8 Namespace Documentation

• double getMaxDownSpeed ()
• void setMaxUpSpeed (double speed)
• void setMaxDownSpeed (double speed)
• void limitUpSpeeds (double speed)
• void limitDownSpeeds (double speed)
• void upload (std::string filename)
• void startUploads ()
• void downloadFirstInList ()
• void add (Download ∗download)
• void pauseDownload (const std::string download_hash)
• void switchDownload (std::string hash)
• void removeFromList (const std::string download_hash)
• void removeFromDisk (const std::string download_hash)
• void clearList ()

Variables

• static std::vector< Download > downloads

Vector containing all downloads.

• static struct event evcompl

Event needed to start download loop.

• static Download ∗ active_download

The currently active download.

• static pthread_t streaming_thread

Thread needed to play streams.

• static pthread_t thread

Thread needed to download and upload.

• static pthread_mutex_t mutex

Mutex to make downloads vector thread safe.

• static pthread_mutex_t active_download_mutex

Mutex to make active_download thread safe.

• static ticpp::Document ∗ doc

XML Document for the download statistics.

• static double ratio

Upload amount divided by download amount.

• static double downloaded

Total amount of bytes downloaded this session.

• static double uploaded

Total amount of bytes uploaded this session.

• static int d_pid = -1

Download thread pid.

• static double max_upspeed

Max upload speed.

• static double max_downspeed

Max download speed.

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

4.1 DownloadManager Namespace Reference 9

4.1.1 Detailed Description

Manages all up- and downloads. Also responsible for playing streams.

4.1.2 Function Documentation

4.1.2.1 void DownloadManager::add (Download ∗ download)

Adds a download to the list.

Parameters
download,: The download to be added.

Definition at line 564 of file DownloadManager.cpp.

4.1.2.2 std::string DownloadManager::buildXML ()

Builds the XML response for the HTTP server, providing download statistics.

Definition at line 323 of file DownloadManager.cpp.

4.1.2.3 void DownloadManager::calculateDownloadAmount ()

Calculates the download amount.

Definition at line 49 of file DownloadManager.cpp.

4.1.2.4 void DownloadManager::calculateRatio ()

Calculates the upload/download ratio.

Definition at line 42 of file DownloadManager.cpp.

4.1.2.5 void DownloadManager::calculateUploadAmount ()

Calculates the upload amount.

Definition at line 56 of file DownloadManager.cpp.

4.1.2.6 void DownloadManager::clearList ()

Removes all downloads from the list

Definition at line 893 of file DownloadManager.cpp.

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

10 Namespace Documentation

4.1.2.7 void ∗ DownloadManager::dispatch (void ∗ arg)

Dispatches swift::Channel::evbase to get into the main loop to download files.

Parameters
arg,: Unused argument of p‘thread_create.

Definition at line 421 of file DownloadManager.cpp.

4.1.2.8 void DownloadManager::downloadFirstInList ()

Downloads first element in the download list.

Definition at line 617 of file DownloadManager.cpp.

4.1.2.9 Download DownloadManager::getActiveDownload ()

Only for testing purposes. Returns the active_download variable. Method is not thread
safe, so refrain from using it. Instead, acces active_download directly and lock it with
the _active_download_mutex.

Definition at line 66 of file DownloadManager.cpp.

4.1.2.10 struct DownloadManager::Amount DownloadManager::getDownload-
Amount () [read]

Returns the downloaded amount in kb, MB or GB.

Definition at line 706 of file DownloadManager.cpp.

4.1.2.11 std::vector< Download > DownloadManager::getDownloads ()

Returns a copy of the vector downloads.

Definition at line 21 of file DownloadManager.cpp.

4.1.2.12 int DownloadManager::getIndexFromHash (const std::string download hash)

Finds the index of a download in the list given a root hash.

Parameters
download_-

hash,:
The root hash of a download to be searched.

Definition at line 693 of file DownloadManager.cpp.

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

4.1 DownloadManager Namespace Reference 11

4.1.2.13 double DownloadManager::getMaxDownSpeed ()

Returns the maximum download speed in kb/s.

Definition at line 751 of file DownloadManager.cpp.

4.1.2.14 double DownloadManager::getMaxUpSpeed ()

Returns the maximum download speed in kb/s.

Definition at line 758 of file DownloadManager.cpp.

4.1.2.15 double DownloadManager::getRatio ()

Returns the upload/download ratio.

Definition at line 744 of file DownloadManager.cpp.

4.1.2.16 struct DownloadManager::Amount DownloadManager::getUploadAmount
() [read]

Returns the uploaded amount in kb, MB or GB.

Definition at line 725 of file DownloadManager.cpp.

4.1.2.17 void DownloadManager::init ()

Initialises the download manager.

Definition at line 6 of file DownloadManager.cpp.

4.1.2.18 void DownloadManager::limitDownSpeeds (double speed)

Sets the maximum download speed in kb/s.

Parameters
speed,: speed in kb/s.

Definition at line 802 of file DownloadManager.cpp.

4.1.2.19 void DownloadManager::limitUpSpeeds (double speed)

Sets the maximum upload speed in kb/s.

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

12 Namespace Documentation

Parameters
speed,: speed in kb/s.

Definition at line 820 of file DownloadManager.cpp.

4.1.2.20 void DownloadManager::pauseAllDownloads ()

Pause all the downloads.

Definition at line 932 of file DownloadManager.cpp.

4.1.2.21 void DownloadManager::pauseDownload (const std::string download hash)

Pauses a download with the given root hash.

Parameters
download_-

hash,:
The root hash of the download.

Definition at line 437 of file DownloadManager.cpp.

4.1.2.22 void DownloadManager::removeFromDisk (const std::string download hash)

Removes a download from the hard disk given a root hash.

Parameters
download_-

hash,:
The root hash of the download to be removed.

Definition at line 871 of file DownloadManager.cpp.

4.1.2.23 void DownloadManager::removeFromList (const std::string download hash)

Removes a download from the list given a root hash.

Parameters
download_-

hash,:
The root hash of the download to be removed.

Definition at line 838 of file DownloadManager.cpp.

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

4.1 DownloadManager Namespace Reference 13

4.1.2.24 void DownloadManager::resumeAllDownloads ()

Resume all the downloads.

Definition at line 945 of file DownloadManager.cpp.

4.1.2.25 int DownloadManager::resumeDownload (std::string download hash)

Resumes a paused download given a root hash.

Parameters
download_-

hash,:
The root hash of the download.

Definition at line 455 of file DownloadManager.cpp.

4.1.2.26 void DownloadManager::setActiveDownload (Download ∗ download)

Sets the active download.

Parameters
download,: The download to be the active download.

Definition at line 33 of file DownloadManager.cpp.

4.1.2.27 void DownloadManager::setMaxDownSpeed (double speed)

Sets the maximum download speed in kb/s.

Parameters
speed,: speed in byte/s.

Definition at line 766 of file DownloadManager.cpp.

4.1.2.28 void DownloadManager::setMaxUpSpeed (double speed)

Sets the maximum upload speed in kb/s.

Parameters
speed,: speed in byte/s.

Definition at line 784 of file DownloadManager.cpp.

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

14 Namespace Documentation

4.1.2.29 int DownloadManager::startDownload (const std::string download hash)

Starts a download given a root hash.

Parameters
download_-

hash,:
The root hash of the download.

Definition at line 502 of file DownloadManager.cpp.

4.1.2.30 void DownloadManager::startStream (std::string tracker, std::string hash)

Starts the streaming thread.

Parameters
tracker,: The tracker from which we stream content.

Definition at line 974 of file DownloadManager.cpp.

4.1.2.31 void ∗ DownloadManager::startStreamThread (void ∗ arg)

Starts streaming.

Parameters
arg,: Unused argument of pthread_create.

Definition at line 959 of file DownloadManager.cpp.

4.1.2.32 void DownloadManager::startUploads ()

Starts all Uploads located in the public folder.

Definition at line 672 of file DownloadManager.cpp.

4.1.2.33 void DownloadManager::stopStream ()

Stops streaming.

Definition at line 917 of file DownloadManager.cpp.

4.1.2.34 void DownloadManager::switchDownload (std::string hash)

Switches active download to another download with the given root hash.

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

4.1 DownloadManager Namespace Reference 15

Parameters
hash,: The root hash of the download to be switched to.

Definition at line 533 of file DownloadManager.cpp.

4.1.2.35 void DownloadManager::updateDownloadStatistics ()

Updates the download statistics.

Definition at line 73 of file DownloadManager.cpp.

4.1.2.36 void DownloadManager::upload (std::string filename)

Uploads a file.

Parameters
filename,: Name of the file to be uploaded.

Definition at line 640 of file DownloadManager.cpp.

4.1.3 Variable Documentation

4.1.3.1 Download∗ DownloadManager::active_download [static]

The currently active download.

Definition at line 41 of file DownloadManager.h.

4.1.3.2 pthread mutex t DownloadManager::active_download_mutex [static]

Mutex to make active_download thread safe.

Definition at line 53 of file DownloadManager.h.

4.1.3.3 int DownloadManager::d_pid = -1 [static]

Download thread pid.

Definition at line 68 of file DownloadManager.h.

4.1.3.4 ticpp::Document∗ DownloadManager::doc [static]

XML Document for the download statistics.

Definition at line 56 of file DownloadManager.h.

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

16 Namespace Documentation

4.1.3.5 double DownloadManager::downloaded [static]

Total amount of bytes downloaded this session.

Definition at line 62 of file DownloadManager.h.

4.1.3.6 std::vector<Download> DownloadManager::downloads [static]

Vector containing all downloads.

Definition at line 35 of file DownloadManager.h.

4.1.3.7 struct event DownloadManager::evcompl [static]

Event needed to start download loop.

Definition at line 38 of file DownloadManager.h.

4.1.3.8 double DownloadManager::max_downspeed [static]

Max download speed.

Definition at line 74 of file DownloadManager.h.

4.1.3.9 double DownloadManager::max_upspeed [static]

Max upload speed.

Definition at line 71 of file DownloadManager.h.

4.1.3.10 pthread mutex t DownloadManager::mutex [static]

Mutex to make downloads vector thread safe.

Definition at line 50 of file DownloadManager.h.

4.1.3.11 double DownloadManager::ratio [static]

Upload amount divided by download amount.

Definition at line 59 of file DownloadManager.h.

4.1.3.12 pthread t DownloadManager::streaming_thread [static]

Thread needed to play streams.

Definition at line 44 of file DownloadManager.h.

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

4.2 HttpServer Namespace Reference 17

4.1.3.13 pthread t DownloadManager::thread [static]

Thread needed to download and upload.

Definition at line 47 of file DownloadManager.h.

4.1.3.14 double DownloadManager::uploaded [static]

Total amount of bytes uploaded this session.

Definition at line 65 of file DownloadManager.h.

4.2 HttpServer Namespace Reference

Functions

• static void sendXMLResponse (std::string msg, struct evhttp_request ∗req, struct
evbuffer ∗buf)

• static void sendResponse (struct evhttp_request ∗req, struct evbuffer ∗buf, const
char ∗message)

• static void handleRequest (struct evhttp_request ∗req, void ∗arg)
• int init ()

Variables

• struct event_base ∗ base

4.2.1 Detailed Description

Http request handler. Acts as controller of the webserver subsystem.

4.2.2 Function Documentation

4.2.2.1 static void HttpServer::handleRequest (struct evhttp request ∗ req, void ∗ arg)
[static]

The HTTP GET request handler.

Parameters
req,: The request struct from libevent.
arg,: Ignored argument.

Definition at line 273 of file HttpServer.cpp.

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

18 Namespace Documentation

4.2.2.2 int HttpServer::init ()

Initialises the web server.

Definition at line 419 of file HttpServer.cpp.

4.2.2.3 static void HttpServer::sendResponse (struct evhttp request ∗ req, struct
evbuffer ∗ buf, const char ∗ message) [static]

Sends the HTTP response.

Parameters
req,: The received HTTP request.
buf,: Buffer used to send the reply.

message,: The message to be sent.

Definition at line 36 of file HttpServer.cpp.

4.2.2.4 static void HttpServer::sendXMLResponse (std::string msg, struct
evhttp request ∗ req, struct evbuffer ∗ buf) [static]

Sends the HTTP XML response.

Parameters
msg,: The xml message to be sent.
req,: The received HTTP request.
buf,: Buffer used to send the reply.

Definition at line 13 of file HttpServer.cpp.

4.2.3 Variable Documentation

4.2.3.1 struct event base∗ HttpServer::base

Definition at line 4 of file HttpServer.cpp.

4.3 SearchEngine Namespace Reference

Classes

• struct result

Struct holding the data of a search result.

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

4.3 SearchEngine Namespace Reference 19

Functions

• void ∗ startDispersy (void ∗arg)
• void clearSearchResults ()
• std::string buildSearchXML ()
• void search (std::string search_term)
• std::string getResults ()
• struct result getResultWithHash (std::string hash)
• struct result getResultWithName (std::string name)
• void init ()

Variables

• static pthread_t dispersy_thread

Thread to run dispersy module in.

• static pthread_mutex_t dispersy_mutex

Mutex to protect dispersy thread.

• static std::vector< struct result > search_results

Vector of all search results.

• static ticpp::Document ∗ searchdoc

Document used to build the list of search results.

• PyObject ∗ p_module_name
• PyObject ∗ p_module
• PyObject ∗ p_main
• PyObject ∗ p_function
• PyObject ∗ p_args
• PyObject ∗ p_main_value
• PyObject ∗ p_function_value
• PyObject ∗ p_result_string
• PyGILState_STATE gstate
• pthread_mutex_t gstate_mutex
• PyThreadState ∗ save

4.3.1 Detailed Description

Interface to Dispersy module. Makes use of Dispersy methods to find files online.

4.3.2 Function Documentation

4.3.2.1 std::string SearchEngine::buildSearchXML ()

Builds an XML string from the vector of results.

Definition at line 17 of file SearchEngine.cpp.

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

20 Namespace Documentation

4.3.2.2 void SearchEngine::clearSearchResults ()

Clears the list of search results.

Definition at line 13 of file SearchEngine.cpp.

4.3.2.3 std::string SearchEngine::getResults ()

Returns the current list of results.

Definition at line 57 of file SearchEngine.cpp.

4.3.2.4 struct SearchEngine::result SearchEngine::getResultWithHash (std::string
hash) [read]

Returns the result with a cetain hash.

Definition at line 108 of file SearchEngine.cpp.

4.3.2.5 struct SearchEngine::result SearchEngine::getResultWithName (std::string
name) [read]

Returns the result with a cetain filename.

Definition at line 125 of file SearchEngine.cpp.

4.3.2.6 void SearchEngine::init ()

Init function to set up python calls and start dispersy.

Definition at line 191 of file SearchEngine.cpp.

4.3.2.7 void SearchEngine::search (std::string search term)

Search.

Definition at line 158 of file SearchEngine.cpp.

4.3.2.8 void ∗ SearchEngine::startDispersy (void ∗ arg)

Call the main() from DispersyInterface.

Definition at line 142 of file SearchEngine.cpp.

4.3.3 Variable Documentation

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

4.3 SearchEngine Namespace Reference 21

4.3.3.1 pthread mutex t SearchEngine::dispersy_mutex [static]

Mutex to protect dispersy thread.

Definition at line 23 of file SearchEngine.h.

4.3.3.2 pthread t SearchEngine::dispersy_thread [static]

Thread to run dispersy module in.

Definition at line 20 of file SearchEngine.h.

4.3.3.3 PyGILState STATE SearchEngine::gstate

Definition at line 8 of file SearchEngine.cpp.

4.3.3.4 pthread mutex t SearchEngine::gstate_mutex

Definition at line 9 of file SearchEngine.cpp.

4.3.3.5 PyObject∗ SearchEngine::p_args

Definition at line 6 of file SearchEngine.cpp.

4.3.3.6 PyObject ∗ SearchEngine::p_function

Definition at line 5 of file SearchEngine.cpp.

4.3.3.7 PyObject ∗ SearchEngine::p_function_value

Definition at line 6 of file SearchEngine.cpp.

4.3.3.8 PyObject ∗ SearchEngine::p_main

Definition at line 5 of file SearchEngine.cpp.

4.3.3.9 PyObject ∗ SearchEngine::p_main_value

Definition at line 6 of file SearchEngine.cpp.

4.3.3.10 PyObject ∗ SearchEngine::p_module

Definition at line 5 of file SearchEngine.cpp.

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

22 Namespace Documentation

4.3.3.11 PyObject∗ SearchEngine::p_module_name

Definition at line 5 of file SearchEngine.cpp.

4.3.3.12 PyObject∗ SearchEngine::p_result_string

Definition at line 7 of file SearchEngine.cpp.

4.3.3.13 PyThreadState∗ SearchEngine::save

Definition at line 10 of file SearchEngine.cpp.

4.3.3.14 std::vector<struct result> SearchEngine::search_results [static]

Vector of all search results.

Definition at line 26 of file SearchEngine.h.

4.3.3.15 ticpp::Document∗ SearchEngine::searchdoc [static]

Document used to build the list of search results.

Definition at line 29 of file SearchEngine.h.

4.4 Settings Namespace Reference

Functions

• void init (std::string download_dir)
• void loadSettings (std::string filename)
• void saveSettings (std::vector< std::string > settings)
• void setDownloadDirectory (std::string dir)
• void setIP (std::string ip)
• void setMaxUpSpeed (double speed)
• void setMaxDownSpeed (double speed)
• std::vector< std::string > & split (const std::string &str, char delim, std::vector<

std::string > &elems)
• std::vector< std::string > split (const std::string &str, char delim)
• std::string getIP ()
• std::string getDownloadDirectory ()
• bool directoryExists (std::string path)
• double getMaxUpSpeed ()
• double getMaxDownSpeed ()
• std::string replaceSubstring (std::string str, const std::string from, const std::string

to)

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

4.4 Settings Namespace Reference 23

Variables

• static std::string ip_address

Keeps track of the current ip address.

• static std::string download_directory

Keeps track of the current download directory.

• static pthread_mutex_t mutex

Mutex to make download_directory variable thread safe.

• static pthread_mutex_t max_mutex

Mutex to make max speed variables thread safe.

• static double max_download_speed

Maximum download speed.

• static double max_upload_speed

Maximum upload speed.

• static std::string settings_file

Settings file.

4.4.1 Detailed Description

General Settings manager.

4.4.2 Function Documentation

4.4.2.1 bool Settings::directoryExists (std::string path)

Definition at line 95 of file Settings.cpp.

4.4.2.2 std::string Settings::getDownloadDirectory ()

Returns the current download directory.

Parameters
ip,: The ip to be set.

Definition at line 196 of file Settings.cpp.

4.4.2.3 std::string Settings::getIP ()

Returns the current ip.

Definition at line 150 of file Settings.cpp.

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

24 Namespace Documentation

4.4.2.4 double Settings::getMaxDownSpeed ()

Returns the maximum download speed.

Definition at line 157 of file Settings.cpp.

4.4.2.5 double Settings::getMaxUpSpeed ()

Returns the maximum upload speed.

Definition at line 167 of file Settings.cpp.

4.4.2.6 void Settings::init (std::string download dir)

Initialises Utils.

Definition at line 206 of file Settings.cpp.

4.4.2.7 void Settings::loadSettings (std::string filename)

Loads the settings file.

Parameters
filename,: Settings file to be loaded.

Definition at line 29 of file Settings.cpp.

4.4.2.8 std::string Settings::replaceSubstring (std::string str, const std::string from,
const std::string to)

Replace a substring in a string.

Definition at line 248 of file Settings.cpp.

4.4.2.9 void Settings::saveSettings (std::vector< std::string > settings)

Saves the settings.

Definition at line 77 of file Settings.cpp.

4.4.2.10 void Settings::setDownloadDirectory (std::string dir)

Sets the directory where swift will download files to.

Parameters
dir,: The directory where swift will download files to.

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

4.4 Settings Namespace Reference 25

Definition at line 117 of file Settings.cpp.

4.4.2.11 void Settings::setIP (std::string ip)

Sets the current ip.

Parameters
ip,: The ip to be set.

Definition at line 136 of file Settings.cpp.

4.4.2.12 void Settings::setMaxDownSpeed (double speed)

Sets the maximum download speed.

Definition at line 177 of file Settings.cpp.

4.4.2.13 void Settings::setMaxUpSpeed (double speed)

Sets the maximum upload speed.

Definition at line 186 of file Settings.cpp.

4.4.2.14 std::vector< std::string > & Settings::split (const std::string & str, char delim,
std::vector< std::string > & elems)

Used to tokenize strings.

Definition at line 6 of file Settings.cpp.

4.4.2.15 std::vector< std::string > Settings::split (const std::string & str, char delim)

Used to tokenize strings.

Definition at line 20 of file Settings.cpp.

4.4.3 Variable Documentation

4.4.3.1 std::string Settings::download_directory [static]

Keeps track of the current download directory.

Definition at line 34 of file Settings.h.

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

26 Namespace Documentation

4.4.3.2 std::string Settings::ip_address [static]

Keeps track of the current ip address.

Definition at line 31 of file Settings.h.

4.4.3.3 double Settings::max_download_speed [static]

Maximum download speed.

Definition at line 43 of file Settings.h.

4.4.3.4 pthread mutex t Settings::max_mutex [static]

Mutex to make max speed variables thread safe.

Definition at line 40 of file Settings.h.

4.4.3.5 double Settings::max_upload_speed [static]

Maximum upload speed.

Definition at line 46 of file Settings.h.

4.4.3.6 pthread mutex t Settings::mutex [static]

Mutex to make download_directory variable thread safe.

Definition at line 37 of file Settings.h.

4.4.3.7 std::string Settings::settings_file [static]

Settings file.

Definition at line 49 of file Settings.h.

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

Chapter 5

Class Documentation

5.1 AlreadyDownloadingException Class Reference

#include <Exceptions.h>

Public Member Functions

• AlreadyDownloadingException () throw ()

• ∼AlreadyDownloadingException () throw ()

• virtual const char ∗ what () const throw ()

5.1.1 Detailed Description

Exception thrown when a download is added which was already added before.

Definition at line 40 of file Exceptions.h.

5.1.2 Constructor & Destructor Documentation

5.1.2.1 AlreadyDownloadingException::AlreadyDownloadingException () throw
() [inline]

Definition at line 43 of file Exceptions.h.

5.1.2.2 AlreadyDownloadingException::∼AlreadyDownloadingException ()
throw () [inline]

Definition at line 44 of file Exceptions.h.

28 Class Documentation

5.1.3 Member Function Documentation

5.1.3.1 virtual const char∗ AlreadyDownloadingException::what () const throw ()
[inline, virtual]

Definition at line 46 of file Exceptions.h.

The documentation for this class was generated from the following file:

• include/Exceptions.h

5.2 DownloadManager::Amount Struct Reference

#include <DownloadManager.h>

Public Attributes

• double amount

• std::string unit

5.2.1 Detailed Description

Definition at line 29 of file DownloadManager.h.

5.2.2 Member Data Documentation

5.2.2.1 double DownloadManager::Amount::amount

Definition at line 30 of file DownloadManager.h.

5.2.2.2 std::string DownloadManager::Amount::unit

Definition at line 31 of file DownloadManager.h.

The documentation for this struct was generated from the following file:

• include/DownloadManager.h

5.3 CannotResumeException Class Reference

#include <Exceptions.h>

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

5.4 Download Class Reference 29

Public Member Functions

• CannotResumeException () throw ()
• ∼CannotResumeException () throw ()
• virtual const char ∗ what () const throw ()

5.3.1 Detailed Description

Exception thrown when something went wrong while trying to resume a download.

Definition at line 70 of file Exceptions.h.

5.3.2 Constructor & Destructor Documentation

5.3.2.1 CannotResumeException::CannotResumeException () throw ()
[inline]

Definition at line 73 of file Exceptions.h.

5.3.2.2 CannotResumeException::∼CannotResumeException () throw ()
[inline]

Definition at line 74 of file Exceptions.h.

5.3.3 Member Function Documentation

5.3.3.1 virtual const char∗ CannotResumeException::what () const throw ()
[inline, virtual]

Definition at line 76 of file Exceptions.h.

The documentation for this class was generated from the following file:

• include/Exceptions.h

5.4 Download Class Reference

#include <Download.h>

Classes

• struct downloadStats

Struct for holding download statistics.
• struct time

Struct for holding time data.

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

30 Class Documentation

Public Member Functions

• void retry ()
• void start ()
• void stop ()
• void pause ()
• void resume ()
• const int getID ()
• const int getStatus ()
• std::string getTrackerAddress ()
• std::string getFilename ()
• std::string getRootHash ()
• struct downloadStats getStatistics ()
• void calculateSpeeds ()
• void calculatePeers ()
• void setDownloadSpeed (double speed)
• void setUploadSpeed (double speed)
• void setProgress (double percentage)
• bool isComplete ()
• void setSeeders (int amount)
• void setPeers (int amount)
• void calculateEstimatedTime ()
• void setID (int id)
• void setStatus (int status)
• void limitDownSpeed (double speed)
• void limitUpSpeed (double speed)
• Download (std::string tracker, std::string root_hash, std::string filename)
• ∼Download ()

Protected Attributes

• pthread_mutex_t _mutex

Mutex to prevent download thread and main thread from accessing same data at the
same time.

• pthread_mutex_t _transfer_mutex

Mutex to prevent download thread and main thread from accessing _transfer at the
same time.

• volatile int _status

Current status of the download.

• std::string _filename

Name of the download.

• std::string _tracker

Trackers seeding this download.

• std::string _root_hash

Root hash needed to start swift download.

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

5.4 Download Class Reference 31

• downloadStats _stats

Struct holding the statistics of the download.

• swift::FileTransfer ∗ _transfer

Swift FileTransfer needed to access certain data about swift downloads.

5.4.1 Detailed Description

Data structure to store all data regarding swift downloads. Makes use of swift methods.

Definition at line 33 of file Download.h.

5.4.2 Constructor & Destructor Documentation

5.4.2.1 Download::Download (std::string tracker, std::string root hash, std::string
filename) [inline]

Constructor.

Definition at line 126 of file Download.h.

5.4.2.2 Download::∼Download () [inline]

Destructor.

Definition at line 146 of file Download.h.

5.4.3 Member Function Documentation

5.4.3.1 void Download::calculateEstimatedTime ()

Calculates estimated download time.

Definition at line 211 of file Download.cpp.

5.4.3.2 void Download::calculatePeers ()

Calculates number of peers.

Definition at line 127 of file Download.cpp.

5.4.3.3 void Download::calculateSpeeds ()

Calculates current download and upload speeds.

Definition at line 114 of file Download.cpp.

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

32 Class Documentation

5.4.3.4 std::string Download::getFilename ()

Getter for the filename.

Definition at line 352 of file Download.cpp.

5.4.3.5 const int Download::getID ()

Getter for the download ID.

Definition at line 301 of file Download.cpp.

5.4.3.6 std::string Download::getRootHash ()

Getter for the root hash.

Definition at line 359 of file Download.cpp.

5.4.3.7 Download::downloadStats Download::getStatistics () [read]

Getter for the download statistics.

Definition at line 321 of file Download.cpp.

5.4.3.8 const int Download::getStatus ()

Getter for the status.

Definition at line 311 of file Download.cpp.

5.4.3.9 std::string Download::getTrackerAddress ()

Getter for the tracker address.

Definition at line 345 of file Download.cpp.

5.4.3.10 bool Download::isComplete ()

Determines whether the download is complete

Definition at line 178 of file Download.cpp.

5.4.3.11 void Download::limitDownSpeed (double speed)

Limits download speed.

Definition at line 273 of file Download.cpp.

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

5.4 Download Class Reference 33

5.4.3.12 void Download::limitUpSpeed (double speed)

Limits upload speed.

Definition at line 260 of file Download.cpp.

5.4.3.13 void Download::pause ()

Pauses downloading and uploading.

Definition at line 70 of file Download.cpp.

5.4.3.14 void Download::resume ()

Resumes a paused download.

Definition at line 90 of file Download.cpp.

5.4.3.15 void Download::retry ()

Deletes the downloaded content and try again from the beginning.

Definition at line 29 of file Download.cpp.

5.4.3.16 void Download::setDownloadSpeed (double speed)

Setter for download speed.

Parameters
speed,: The speed in Kb/sec.

Definition at line 140 of file Download.cpp.

5.4.3.17 void Download::setID (int id)

Setter for download ID.

Parameters
id,: The download id given by swift::Open.

Definition at line 246 of file Download.cpp.

5.4.3.18 void Download::setPeers (int amount)

Setter for amount of peers.

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

34 Class Documentation

Parameters
amount,: The amount of peers to be set.

Definition at line 199 of file Download.cpp.

5.4.3.19 void Download::setProgress (double percentage)

Setter for download progress.

Parameters
percentage,: The percentage to be set between 0 and 100.

Definition at line 166 of file Download.cpp.

5.4.3.20 void Download::setSeeders (int amount)

Setter for amount of seeders.

Parameters
amount,: The amount of seeders to be set.

Definition at line 186 of file Download.cpp.

5.4.3.21 void Download::setStatus (int status)

Setter for status

Parameters
status,: The new status to be set.

Definition at line 287 of file Download.cpp.

5.4.3.22 void Download::setUploadSpeed (double speed)

Setter for upload speed.

Parameters
speed,: The speed in Kb/sec.

Definition at line 153 of file Download.cpp.

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

5.4 Download Class Reference 35

5.4.3.23 void Download::start ()

Starts downloading and uploading.

Definition at line 39 of file Download.cpp.

5.4.3.24 void Download::stop ()

Stops the download and removes all content from disk.

Definition at line 6 of file Download.cpp.

5.4.4 Member Data Documentation

5.4.4.1 std::string Download::_filename [protected]

Name of the download.

Definition at line 45 of file Download.h.

5.4.4.2 pthread mutex t Download::_mutex [protected]

Mutex to prevent download thread and main thread from accessing same data at the
same time.

Definition at line 36 of file Download.h.

5.4.4.3 std::string Download::_root_hash [protected]

Root hash needed to start swift download.

Definition at line 51 of file Download.h.

5.4.4.4 downloadStats Download::_stats [protected]

Struct holding the statistics of the download.

Definition at line 86 of file Download.h.

5.4.4.5 volatile int Download::_status [protected]

Current status of the download.

Definition at line 42 of file Download.h.

5.4.4.6 std::string Download::_tracker [protected]

Trackers seeding this download.

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

36 Class Documentation

Definition at line 48 of file Download.h.

5.4.4.7 swift::FileTransfer∗ Download::_transfer [protected]

Swift FileTransfer needed to access certain data about swift downloads.

Definition at line 89 of file Download.h.

5.4.4.8 pthread mutex t Download::_transfer_mutex [protected]

Mutex to prevent download thread and main thread from accessing _transfer at the
same time.

Definition at line 39 of file Download.h.

The documentation for this class was generated from the following files:

• include/Download.h
• src/Download.cpp

5.5 DownloadManagerTest Class Reference

Protected Member Functions

• virtual ∼DownloadManagerTest ()
• virtual void SetUp ()
• virtual void TearDown ()

5.5.1 Detailed Description

This is the class for testing DownloadManager.cpp. The setup clear the download list.
The teardown also clears the download list and removes all downloaded files.

Definition at line 13 of file DownloadManagerTest.cpp.

5.5.2 Constructor & Destructor Documentation

5.5.2.1 virtual DownloadManagerTest::∼DownloadManagerTest () [inline,
protected, virtual]

Definition at line 16 of file DownloadManagerTest.cpp.

5.5.3 Member Function Documentation

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

5.6 Download::downloadStats Struct Reference 37

5.5.3.1 virtual void DownloadManagerTest::SetUp () [inline, protected,
virtual]

Definition at line 18 of file DownloadManagerTest.cpp.

5.5.3.2 virtual void DownloadManagerTest::TearDown () [inline,
protected, virtual]

Definition at line 22 of file DownloadManagerTest.cpp.

The documentation for this class was generated from the following file:

• test/testsuite/DownloadManagerTest.cpp

5.6 Download::downloadStats Struct Reference

Struct for holding download statistics.

#include <Download.h>

Public Attributes

• int id

Download id needed to check the stats.

• double download_speed

Current download speed in kb/s.

• double upload_speed

Current upload speed in kb/s.

• double download_percentage

Download progress in percentage.

• int seeders

Number of seeders uploading this file.

• int peers

Number of peers connected to us for this file.

• struct time estimated

Estimated time left for download to finish.

5.6.1 Detailed Description

Struct for holding download statistics.

Definition at line 62 of file Download.h.

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

38 Class Documentation

5.6.2 Member Data Documentation

5.6.2.1 double Download::downloadStats::download_percentage

Download progress in percentage.

Definition at line 73 of file Download.h.

5.6.2.2 double Download::downloadStats::download_speed

Current download speed in kb/s.

Definition at line 67 of file Download.h.

5.6.2.3 struct time Download::downloadStats::estimated

Estimated time left for download to finish.

Definition at line 82 of file Download.h.

5.6.2.4 int Download::downloadStats::id

Download id needed to check the stats.

Definition at line 64 of file Download.h.

5.6.2.5 int Download::downloadStats::peers

Number of peers connected to us for this file.

Definition at line 79 of file Download.h.

5.6.2.6 int Download::downloadStats::seeders

Number of seeders uploading this file.

Definition at line 76 of file Download.h.

5.6.2.7 double Download::downloadStats::upload_speed

Current upload speed in kb/s.

Definition at line 70 of file Download.h.

The documentation for this struct was generated from the following file:

• include/Download.h

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

5.7 DownloadTest Class Reference 39

5.7 DownloadTest Class Reference

Protected Member Functions

• virtual ∼DownloadTest ()

• virtual void SetUp ()

• virtual void TearDown ()

Protected Attributes

• Download ∗ download

• std::string tracker

• std::string root_hash

• std::string filename

• int id

5.7.1 Detailed Description

This is the class for testing Download.cpp. The setup creates a new Download with
a hard coded tracker, hash and filename. The teardown removes any files that get
created.

Definition at line 11 of file DownloadTest.cpp.

5.7.2 Constructor & Destructor Documentation

5.7.2.1 virtual DownloadTest::∼DownloadTest () [inline, protected,
virtual]

Definition at line 20 of file DownloadTest.cpp.

5.7.3 Member Function Documentation

5.7.3.1 virtual void DownloadTest::SetUp () [inline, protected,
virtual]

Definition at line 22 of file DownloadTest.cpp.

5.7.3.2 virtual void DownloadTest::TearDown () [inline, protected,
virtual]

Definition at line 29 of file DownloadTest.cpp.

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

40 Class Documentation

5.7.4 Member Data Documentation

5.7.4.1 Download∗ DownloadTest::download [protected]

Definition at line 14 of file DownloadTest.cpp.

5.7.4.2 std::string DownloadTest::filename [protected]

Definition at line 17 of file DownloadTest.cpp.

5.7.4.3 int DownloadTest::id [protected]

Definition at line 18 of file DownloadTest.cpp.

5.7.4.4 std::string DownloadTest::root_hash [protected]

Definition at line 16 of file DownloadTest.cpp.

5.7.4.5 std::string DownloadTest::tracker [protected]

Definition at line 15 of file DownloadTest.cpp.

The documentation for this class was generated from the following file:

• test/testsuite/DownloadTest.cpp

5.8 DownloadWhileStreamingException Class Reference

#include <Exceptions.h>

Public Member Functions

• DownloadWhileStreamingException () throw ()

• ∼DownloadWhileStreamingException () throw ()

• virtual const char ∗ what () const throw ()

5.8.1 Detailed Description

Exception thrown when a download attempt is made during streaming.

Definition at line 25 of file Exceptions.h.

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

5.9 FileNotFoundException Class Reference 41

5.8.2 Constructor & Destructor Documentation

5.8.2.1 DownloadWhileStreamingException::DownloadWhileStreaming-
Exception () throw () [inline]

Definition at line 28 of file Exceptions.h.

5.8.2.2 DownloadWhileStreamingException::∼DownloadWhileStreaming-
Exception () throw () [inline]

Definition at line 29 of file Exceptions.h.

5.8.3 Member Function Documentation

5.8.3.1 virtual const char∗ DownloadWhileStreamingException::what () const throw
() [inline, virtual]

Definition at line 31 of file Exceptions.h.

The documentation for this class was generated from the following file:

• include/Exceptions.h

5.9 FileNotFoundException Class Reference

#include <Exceptions.h>

Public Member Functions

• FileNotFoundException () throw ()
• ∼FileNotFoundException () throw ()
• virtual const char ∗ what () const throw ()

5.9.1 Detailed Description

Exception thrown when a file is not found.

Definition at line 10 of file Exceptions.h.

5.9.2 Constructor & Destructor Documentation

5.9.2.1 FileNotFoundException::FileNotFoundException () throw () [inline]

Definition at line 13 of file Exceptions.h.

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

42 Class Documentation

5.9.2.2 FileNotFoundException::∼FileNotFoundException () throw ()
[inline]

Definition at line 14 of file Exceptions.h.

5.9.3 Member Function Documentation

5.9.3.1 virtual const char∗ FileNotFoundException::what () const throw ()
[inline, virtual]

Definition at line 16 of file Exceptions.h.

The documentation for this class was generated from the following file:

• include/Exceptions.h

5.10 HTTPServerTest Class Reference

Protected Member Functions

• virtual ∼HTTPServerTest ()
• void search ()
• std::vector< struct SearchEngine::result > toVector (std::string response)
• virtual void SetUp ()
• virtual void TearDown ()

Static Protected Member Functions

• static size_t getResponse (char ∗response, size_t size, size_t count, void
∗stream)

Protected Attributes

• CURL ∗ easyHandle
• CURLcode res
• std::string response

5.10.1 Detailed Description

This is the test class for HttpServer.cpp. The setup initialises the Http Client in C++.
and also clears the search engine list and downloads list. The teardown is empty.

Definition at line 16 of file HTTPServerTest.cpp.

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

5.10 HTTPServerTest Class Reference 43

5.10.2 Constructor & Destructor Documentation

5.10.2.1 virtual HTTPServerTest::∼HTTPServerTest () [inline,
protected, virtual]

Definition at line 23 of file HTTPServerTest.cpp.

5.10.3 Member Function Documentation

5.10.3.1 static size t HTTPServerTest::getResponse (char ∗ response, size t size, size t
count, void ∗ stream) [inline, static, protected]

Returns the Http response.

Definition at line 28 of file HTTPServerTest.cpp.

5.10.3.2 void HTTPServerTest::search () [inline, protected]

Do a search in SearchEngine.cpp.

Definition at line 37 of file HTTPServerTest.cpp.

5.10.3.3 virtual void HTTPServerTest::SetUp () [inline, protected,
virtual]

Definition at line 84 of file HTTPServerTest.cpp.

5.10.3.4 virtual void HTTPServerTest::TearDown () [inline, protected,
virtual]

Definition at line 94 of file HTTPServerTest.cpp.

5.10.3.5 std::vector<struct SearchEngine::result> HTTPServerTest::toVector (
std::string response) [inline, protected]

Turns an XML string into a vector of results.

Definition at line 47 of file HTTPServerTest.cpp.

5.10.4 Member Data Documentation

5.10.4.1 CURL∗ HTTPServerTest::easyHandle [protected]

Definition at line 19 of file HTTPServerTest.cpp.

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

44 Class Documentation

5.10.4.2 CURLcode HTTPServerTest::res [protected]

Definition at line 20 of file HTTPServerTest.cpp.

5.10.4.3 std::string HTTPServerTest::response [protected]

Definition at line 21 of file HTTPServerTest.cpp.

The documentation for this class was generated from the following file:

• test/testsuite/HTTPServerTest.cpp

5.11 InvalidIPException Class Reference

#include <Exceptions.h>

Public Member Functions

• InvalidIPException () throw ()
• ∼InvalidIPException () throw ()
• virtual const char ∗ what () const throw ()

5.11.1 Detailed Description

Exception thrown when the format of the IP address is incorrect.

Definition at line 55 of file Exceptions.h.

5.11.2 Constructor & Destructor Documentation

5.11.2.1 InvalidIPException::InvalidIPException () throw () [inline]

Definition at line 58 of file Exceptions.h.

5.11.2.2 InvalidIPException::∼InvalidIPException () throw () [inline]

Definition at line 59 of file Exceptions.h.

5.11.3 Member Function Documentation

5.11.3.1 virtual const char∗ InvalidIPException::what () const throw () [inline,
virtual]

Definition at line 61 of file Exceptions.h.

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

5.12 SearchEngine::result Struct Reference 45

The documentation for this class was generated from the following file:

• include/Exceptions.h

5.12 SearchEngine::result Struct Reference

Struct holding the data of a search result.

#include <SearchEngine.h>

Public Attributes

• std::string filename
• std::string tracker
• std::string hash

5.12.1 Detailed Description

Struct holding the data of a search result.

Definition at line 32 of file SearchEngine.h.

5.12.2 Member Data Documentation

5.12.2.1 std::string SearchEngine::result::filename

Definition at line 33 of file SearchEngine.h.

5.12.2.2 std::string SearchEngine::result::hash

Definition at line 35 of file SearchEngine.h.

5.12.2.3 std::string SearchEngine::result::tracker

Definition at line 34 of file SearchEngine.h.

The documentation for this struct was generated from the following file:

• include/SearchEngine.h

5.13 SearchEngineTest Class Reference

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

46 Class Documentation

Protected Member Functions

• std::vector< struct SearchEngine::result > toVector (std::string response)

• virtual ∼SearchEngineTest ()

• virtual void SetUp ()

• virtual void TearDown ()

5.13.1 Detailed Description

This class tests the SearchEngine. It doesn not test the search function because it is
mocked The setup clears the list of search results The tear down is empty

Definition at line 12 of file SearchEngineTest.cpp.

5.13.2 Constructor & Destructor Documentation

5.13.2.1 virtual SearchEngineTest::∼SearchEngineTest () [inline,
protected, virtual]

Definition at line 55 of file SearchEngineTest.cpp.

5.13.3 Member Function Documentation

5.13.3.1 virtual void SearchEngineTest::SetUp () [inline, protected,
virtual]

Definition at line 57 of file SearchEngineTest.cpp.

5.13.3.2 virtual void SearchEngineTest::TearDown () [inline, protected,
virtual]

Definition at line 62 of file SearchEngineTest.cpp.

5.13.3.3 std::vector<struct SearchEngine::result> SearchEngineTest::toVector (
std::string response) [inline, protected]

Turns an XML string into a vector of results

Definition at line 18 of file SearchEngineTest.cpp.

The documentation for this class was generated from the following file:

• test/testsuite/SearchEngineTest.cpp

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

5.14 Stream Class Reference 47

5.14 Stream Class Reference

#include <Stream.h>

Public Member Functions

• ∼Stream ()
• void start ()
• void stop ()
• void init ()
• void setTracker (std::string tracker)
• void setRoothash (std::string hash)
• void beginStreaming ()
• bool readStreaming ()
• const int getStatus ()
• std::string getTrackerAddress ()
• std::string getRootHash ()
• struct event ∗ getEvent ()
• void setStatus (int status)

Static Public Member Functions

• static Stream ∗ getInstance ()

Protected Attributes

• std::string _tracker

Trackers seeding this stream.

• std::string _hash

Root hash of the stream.

• pthread_mutex_t _mutex

Mutex to prevent download thread and main thread from accessing same data at the
same time.

• struct event _evclose

Event used by libevent to stop a stream.

• volatile bool _streaming

Boolean to determine whether a stream is opened or not.

Private Member Functions

• Stream ()

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

48 Class Documentation

Static Private Attributes

• static Stream ∗ _instance

Singleton instance of Stream class.

5.14.1 Detailed Description

Singleton class for downloading and binding streams. Makes use of swift methods.

Definition at line 17 of file Stream.h.

5.14.2 Constructor & Destructor Documentation

5.14.2.1 Stream::Stream () [inline, private]

Constructor, made private to implement Singleton pattern.

Definition at line 41 of file Stream.h.

5.14.2.2 Stream::∼Stream () [inline]

Destructor.

Definition at line 51 of file Stream.h.

5.14.3 Member Function Documentation

5.14.3.1 void Stream::beginStreaming ()

Sets stream state to "begin streaming".

Definition at line 16 of file Stream.cpp.

5.14.3.2 event ∗ Stream::getEvent () [read]

Returns the event to start the libevent loop.

Definition at line 79 of file Stream.cpp.

5.14.3.3 Stream ∗ Stream::getInstance () [static]

Returns Singleton instance of own class.

Definition at line 86 of file Stream.cpp.

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

5.14 Stream Class Reference 49

5.14.3.4 std::string Stream::getRootHash ()

Returns the root hash.

Definition at line 56 of file Stream.cpp.

5.14.3.5 const int Stream::getStatus ()

5.14.3.6 std::string Stream::getTrackerAddress ()

Returns the tracker address.

Definition at line 49 of file Stream.cpp.

5.14.3.7 void Stream::init ()

Initialises stream state and mutex.

Definition at line 8 of file Stream.cpp.

5.14.3.8 bool Stream::readStreaming ()

Returns stream state.

Definition at line 26 of file Stream.cpp.

5.14.3.9 void Stream::setRoothash (std::string hash)

Sets the root hash of the stream.

Parameters
hash,: The root hash to be set.

Definition at line 72 of file Stream.cpp.

5.14.3.10 void Stream::setStatus (int status)

5.14.3.11 void Stream::setTracker (std::string tracker)

Sets the tracker address of the stream.

Parameters
tracker,: The tracker address to be set.

Definition at line 64 of file Stream.cpp.

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

50 Class Documentation

5.14.3.12 void Stream::start ()

Starts the stream.

Definition at line 116 of file Stream.cpp.

5.14.3.13 void Stream::stop ()

Stops the stream.

Definition at line 96 of file Stream.cpp.

5.14.4 Member Data Documentation

5.14.4.1 struct event Stream::_evclose [protected]

Event used by libevent to stop a stream.

Definition at line 29 of file Stream.h.

5.14.4.2 std::string Stream::_hash [protected]

Root hash of the stream.

Definition at line 23 of file Stream.h.

5.14.4.3 Stream ∗ Stream::_instance [static, private]

Singleton instance of Stream class.

Definition at line 36 of file Stream.h.

5.14.4.4 pthread mutex t Stream::_mutex [protected]

Mutex to prevent download thread and main thread from accessing same data at the
same time.

Definition at line 26 of file Stream.h.

5.14.4.5 volatile bool Stream::_streaming [protected]

Boolean to determine whether a stream is opened or not.

Definition at line 32 of file Stream.h.

5.14.4.6 std::string Stream::_tracker [protected]

Trackers seeding this stream.

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

5.15 StreamTest Class Reference 51

Definition at line 20 of file Stream.h.

The documentation for this class was generated from the following files:

• include/Stream.h
• src/Stream.cpp

5.15 StreamTest Class Reference

Protected Member Functions

• virtual ∼StreamTest ()
• virtual void SetUp ()
• virtual void TearDown ()

5.15.1 Detailed Description

This is the class that tests Stream.cpp. The setup sets the tracker. The teardown stops
the stream if it is still active.

Definition at line 12 of file StreamTest.cpp.

5.15.2 Constructor & Destructor Documentation

5.15.2.1 virtual StreamTest::∼StreamTest () [inline, protected,
virtual]

Definition at line 15 of file StreamTest.cpp.

5.15.3 Member Function Documentation

5.15.3.1 virtual void StreamTest::SetUp () [inline, protected,
virtual]

Definition at line 17 of file StreamTest.cpp.

5.15.3.2 virtual void StreamTest::TearDown () [inline, protected,
virtual]

Definition at line 22 of file StreamTest.cpp.

The documentation for this class was generated from the following file:

• test/testsuite/StreamTest.cpp

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

52 Class Documentation

5.16 Download::time Struct Reference

Struct for holding time data.

#include <Download.h>

Public Attributes

• int days
• int hours
• int minutes
• int seconds

5.16.1 Detailed Description

Struct for holding time data.

Definition at line 54 of file Download.h.

5.16.2 Member Data Documentation

5.16.2.1 int Download::time::days

Definition at line 55 of file Download.h.

5.16.2.2 int Download::time::hours

Definition at line 56 of file Download.h.

5.16.2.3 int Download::time::minutes

Definition at line 57 of file Download.h.

5.16.2.4 int Download::time::seconds

Definition at line 58 of file Download.h.

The documentation for this struct was generated from the following file:

• include/Download.h

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

Chapter 6

File Documentation

6.1 include/Download.h File Reference

#include <iostream> #include <ctime> #include <string>×
#include <cstdio> #include <cstdlib> #include <float.h>
#include "swift.h" #include "Settings.h"

Classes

• class Download

• struct Download::time

Struct for holding time data.

• struct Download::downloadStats

Struct for holding download statistics.

Defines

• #define SECONDS_PER_MINUTE (60)

• #define SECONDS_PER_HOUR (SECONDS_PER_MINUTE ∗ SECONDS_PE-
R_MINUTE)

• #define SECONDS_PER_DAY (SECONDS_PER_HOUR ∗ 24)

Enumerations

• enum Status { READY, PAUSED, DOWNLOADING, UPLOADING, STOPPED,
SWITCHING, STATUS_SIZE }

All states a Download can be in.

54 File Documentation

6.1.1 Define Documentation

6.1.1.1 #define SECONDS_PER_DAY (SECONDS_PER_HOUR ∗ 24)

Definition at line 16 of file Download.h.

6.1.1.2 #define SECONDS_PER_HOUR (SECONDS_PER_MINUTE ∗
SECONDS_PER_MINUTE)

Definition at line 15 of file Download.h.

6.1.1.3 #define SECONDS_PER_MINUTE (60)

Definition at line 14 of file Download.h.

6.1.2 Enumeration Type Documentation

6.1.2.1 enum Status

All states a Download can be in.

Enumerator:

READY

PAUSED

DOWNLOADING

UPLOADING

STOPPED

SWITCHING

STATUS_SIZE

Definition at line 19 of file Download.h.

6.2 include/DownloadManager.h File Reference

#include <vector> #include <string> #include <dirent.h>
#include <iostream> #include <sstream> #include <cstdio>×
#include <cstdlib> #include <pthread.h> #include <float.-
h> #include "Stream.h" #include "Download.h" #include
"swift.h" #include "ticpp.h" #include "Exceptions.h"

Classes

• struct DownloadManager::Amount

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

6.2 include/DownloadManager.h File Reference 55

Namespaces

• namespace DownloadManager

Defines

• #define UNLIMITED_SPEED 0

Functions

• void DownloadManager::calculateRatio ()
• void DownloadManager::calculateDownloadAmount ()
• void DownloadManager::calculateUploadAmount ()
• void DownloadManager::setActiveDownload (Download ∗download)
• Download DownloadManager::getActiveDownload ()
• std::vector< Download > DownloadManager::getDownloads ()
• void DownloadManager::init ()
• void DownloadManager::startStream (std::string tracker, std::string hash)
• void DownloadManager::stopStream ()
• void DownloadManager::pauseAllDownloads ()
• void DownloadManager::resumeAllDownloads ()
• void ∗ DownloadManager::startStreamThread (void ∗arg)
• void DownloadManager::updateDownloadStatistics ()
• std::string DownloadManager::buildXML ()
• void ∗ DownloadManager::dispatch (void ∗arg)
• int DownloadManager::resumeDownload (std::string download_hash)
• int DownloadManager::startDownload (const std::string download_hash)
• int DownloadManager::getIndexFromHash (const std::string download_hash)
• struct Amount DownloadManager::getDownloadAmount ()
• struct Amount DownloadManager::getUploadAmount ()
• double DownloadManager::getRatio ()
• double DownloadManager::getMaxUpSpeed ()
• double DownloadManager::getMaxDownSpeed ()
• void DownloadManager::setMaxUpSpeed (double speed)
• void DownloadManager::setMaxDownSpeed (double speed)
• void DownloadManager::limitUpSpeeds (double speed)
• void DownloadManager::limitDownSpeeds (double speed)
• void DownloadManager::upload (std::string filename)
• void DownloadManager::startUploads ()
• void DownloadManager::downloadFirstInList ()
• void DownloadManager::add (Download ∗download)
• void DownloadManager::pauseDownload (const std::string download_hash)
• void DownloadManager::switchDownload (std::string hash)
• void DownloadManager::removeFromList (const std::string download_hash)
• void DownloadManager::removeFromDisk (const std::string download_hash)
• void DownloadManager::clearList ()

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

56 File Documentation

Variables

• static std::vector< Download > DownloadManager::downloads

Vector containing all downloads.

• static struct event DownloadManager::evcompl

Event needed to start download loop.

• static Download ∗ DownloadManager::active_download

The currently active download.

• static pthread_t DownloadManager::streaming_thread

Thread needed to play streams.

• static pthread_t DownloadManager::thread

Thread needed to download and upload.

• static pthread_mutex_t DownloadManager::mutex

Mutex to make downloads vector thread safe.

• static pthread_mutex_t DownloadManager::active_download_mutex

Mutex to make active_download thread safe.

• static ticpp::Document ∗ DownloadManager::doc

XML Document for the download statistics.

• static double DownloadManager::ratio

Upload amount divided by download amount.

• static double DownloadManager::downloaded

Total amount of bytes downloaded this session.

• static double DownloadManager::uploaded

Total amount of bytes uploaded this session.

• static int DownloadManager::d_pid = -1

Download thread pid.

• static double DownloadManager::max_upspeed

Max upload speed.

• static double DownloadManager::max_downspeed

Max download speed.

6.2.1 Define Documentation

6.2.1.1 #define UNLIMITED_SPEED 0

Definition at line 21 of file DownloadManager.h.

6.3 include/Exceptions.h File Reference

#include <exception> #include <string>

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

6.4 include/HttpServer.h File Reference 57

Classes

• class FileNotFoundException

• class DownloadWhileStreamingException

• class AlreadyDownloadingException

• class InvalidIPException

• class CannotResumeException

6.4 include/HttpServer.h File Reference

#include <iostream> #include <cstdio> #include <cstdlib>×
#include <string.h> #include <event2/event.h> #include
<event2/http.h> #include <event2/buffer.h> #include <event2/util.-
h> #include <event2/event-config.h> #include <event2/thread.-
h> #include "Exceptions.h" #include "Download.h" #include
"Stream.h" #include "DownloadManager.h" #include "Search-
Engine.h" #include "swift.h" #include "Settings.h"

Namespaces

• namespace HttpServer

Functions

• static void HttpServer::sendXMLResponse (std::string msg, struct evhttp_request
∗req, struct evbuffer ∗buf)

• static void HttpServer::sendResponse (struct evhttp_request ∗req, struct evbuffer
∗buf, const char ∗message)

• static void HttpServer::handleRequest (struct evhttp_request ∗req, void ∗arg)

• int HttpServer::init ()

6.5 include/SearchEngine.h File Reference

#include <vector> #include <string> #include <iostream>
#include <pthread.h> #include "Exceptions.h" #include "-
Settings.h" #include "ticpp.h"

Classes

• struct SearchEngine::result

Struct holding the data of a search result.

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

58 File Documentation

Namespaces

• namespace SearchEngine

Functions

• void ∗ SearchEngine::startDispersy (void ∗arg)

• void SearchEngine::clearSearchResults ()

• std::string SearchEngine::buildSearchXML ()

• void SearchEngine::search (std::string search_term)

• std::string SearchEngine::getResults ()

• struct result SearchEngine::getResultWithHash (std::string hash)

• struct result SearchEngine::getResultWithName (std::string name)

• void SearchEngine::init ()

Variables

• static pthread_t SearchEngine::dispersy_thread

Thread to run dispersy module in.

• static pthread_mutex_t SearchEngine::dispersy_mutex

Mutex to protect dispersy thread.

• static std::vector< struct result > SearchEngine::search_results

Vector of all search results.

• static ticpp::Document ∗ SearchEngine::searchdoc

Document used to build the list of search results.

6.6 include/Settings.h File Reference

#include <cstdio> #include <cstdlib> #include <iostream>×
#include <sstream> #include <fstream> #include <sys/types.-
h> #include <sys/stat.h> #include <unistd.h> #include
<netinet/in.h> #include <arpa/inet.h> #include <ifaddrs.-
h> #include <string.h> #include <vector> #include "-
Exceptions.h"

Namespaces

• namespace Settings

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

6.6 include/Settings.h File Reference 59

Defines

• #define DEFAULT_SETTINGS_FILE "/mtd_down/widgets/user/SamyGO/Samy-
GO/.p2psettings"

• #define DEFAULT_DOWNLOAD_DIR "/dtv/usb/sda1/Downloads"
• #define DEFAULT_IP "127.0.0.1"
• #define DEFAULT_PORT 7758
• #define DHT_PORT 9999

Functions

• void Settings::init (std::string download_dir)
• void Settings::loadSettings (std::string filename)
• void Settings::saveSettings (std::vector< std::string > settings)
• void Settings::setDownloadDirectory (std::string dir)
• void Settings::setIP (std::string ip)
• void Settings::setMaxUpSpeed (double speed)
• void Settings::setMaxDownSpeed (double speed)
• std::vector< std::string > & Settings::split (const std::string &str, char delim, std-

::vector< std::string > &elems)
• std::vector< std::string > Settings::split (const std::string &str, char delim)
• std::string Settings::getIP ()
• std::string Settings::getDownloadDirectory ()
• bool Settings::directoryExists (std::string path)
• double Settings::getMaxUpSpeed ()
• double Settings::getMaxDownSpeed ()
• std::string Settings::replaceSubstring (std::string str, const std::string from, const

std::string to)

Variables

• static std::string Settings::ip_address

Keeps track of the current ip address.

• static std::string Settings::download_directory

Keeps track of the current download directory.

• static pthread_mutex_t Settings::mutex

Mutex to make download_directory variable thread safe.

• static pthread_mutex_t Settings::max_mutex

Mutex to make max speed variables thread safe.

• static double Settings::max_download_speed

Maximum download speed.

• static double Settings::max_upload_speed

Maximum upload speed.

• static std::string Settings::settings_file

Settings file.

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

60 File Documentation

6.6.1 Define Documentation

6.6.1.1 #define DEFAULT_DOWNLOAD_DIR ”/dtv/usb/sda1/Downloads”

Definition at line 21 of file Settings.h.

6.6.1.2 #define DEFAULT_IP ”127.0.0.1”

Definition at line 22 of file Settings.h.

6.6.1.3 #define DEFAULT_PORT 7758

Definition at line 23 of file Settings.h.

6.6.1.4 #define DEFAULT_SETTINGS_FILE ”/mtd down/widgets/user/SamyGO/SamyG-
O/.p2psettings”

Definition at line 20 of file Settings.h.

6.6.1.5 #define DHT_PORT 9999

Definition at line 24 of file Settings.h.

6.7 include/Stream.h File Reference

#include <iostream> #include <string> #include <ctime>
#include <cstdio> #include <cstdlib> #include "Settings.-
h" #include "swift.h"

Classes

• class Stream

6.8 src/Download.cpp File Reference

#include "Download.h"

6.9 src/DownloadManager.cpp File Reference

#include "DownloadManager.h"

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

6.9 src/DownloadManager.cpp File Reference 61

Functions

• template<class Type >

void fillXMLValue (Type value, ticpp::Element ∗tag)
• void buildSizeTag (int index, ticpp::Element ∗download_tag)
• void buildCompletedTag (int index, ticpp::Element ∗download_tag)
• void buildStatusTag (int index, ticpp::Element ∗download_tag)
• void buildNameTag (int index, ticpp::Element ∗download_tag)
• void buildDSpeedTag (int index, ticpp::Element ∗download_tag)
• void buildUSpeedTag (int index, ticpp::Element ∗download_tag)
• void buildProgressTag (int index, ticpp::Element ∗download_tag)
• void buildRatioTag (ticpp::Element ∗download_tag)
• void buildUploadAmountTag (ticpp::Element ∗download_tag)
• void buildDownloadAmountTag (ticpp::Element ∗download_tag)
• void buildSeedersTag (int index, ticpp::Element ∗download_tag)
• void buildPeersTag (int index, ticpp::Element ∗download_tag)
• void buildHashTag (int index, ticpp::Element ∗download_tag)
• void buildTimeTag (int index, ticpp::Element ∗download_tag)
• void downloadCallback (int fd, short event, void ∗arg)
• bool fileExists (const std::string filename)

6.9.1 Function Documentation

6.9.1.1 void buildCompletedTag (int index, ticpp::Element ∗ download tag)

Builds the COMPLETED tag for the statistics XML document.

Parameters
index,: index of the download from which the size is needed.

download_-
tag,:

The DOWNLOAD tag in which the COMPLETED tag is nested.

Definition at line 124 of file DownloadManager.cpp.

6.9.1.2 void buildDownloadAmountTag (ticpp::Element ∗ download tag)

Builds the DOWNLOADAMOUNT tag for the statistics XML document.

Parameters
download_-

tag,:
The DOWNLOAD tag in which the DOWNLOADAMOUNT tag is
nested.

Definition at line 229 of file DownloadManager.cpp.

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

62 File Documentation

6.9.1.3 void buildDSpeedTag (int index, ticpp::Element ∗ download tag)

Builds the DSPEED tag for the statistics XML document.

Parameters
index,: index of the download from which the size is needed.

download_-
tag,:

The DOWNLOAD tag in which the DSPEED tag is nested.

Definition at line 163 of file DownloadManager.cpp.

6.9.1.4 void buildHashTag (int index, ticpp::Element ∗ download tag)

Builds the HASH tag for the statistics XML document.

Parameters
index,: index of the download from which the root hash is needed.

download_-
tag,:

The DOWNLOAD tag in which the HASH tag is nested.

Definition at line 272 of file DownloadManager.cpp.

6.9.1.5 void buildNameTag (int index, ticpp::Element ∗ download tag)

Builds the NAME tag for the statistics XML document.

Parameters
index,: index of the download from which the size is needed.

download_-
tag,:

The DOWNLOAD tag in which the NAME tag is nested.

Definition at line 150 of file DownloadManager.cpp.

6.9.1.6 void buildPeersTag (int index, ticpp::Element ∗ download tag)

Builds the PEERS tag for the statistics XML document.

Parameters
index,: index of the download from which the no. of peers is needed.

download_-
tag,:

The DOWNLOAD tag in which the PEERS tag is nested.

Definition at line 259 of file DownloadManager.cpp.

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

6.9 src/DownloadManager.cpp File Reference 63

6.9.1.7 void buildProgressTag (int index, ticpp::Element ∗ download tag)

Builds the PROGRESS tag for the statistics XML document.

Parameters
index,: index of the download from which the size is needed.

download_-
tag,:

The DOWNLOAD tag in which the PROGRESS tag is nested.

Definition at line 189 of file DownloadManager.cpp.

6.9.1.8 void buildRatioTag (ticpp::Element ∗ download tag)

Builds the RATIO tag for the statistics XML document.

Parameters
download_-

tag,:
The DOWNLOAD tag in which the RATIO tag is nested.

Definition at line 201 of file DownloadManager.cpp.

6.9.1.9 void buildSeedersTag (int index, ticpp::Element ∗ download tag)

Builds the SEEDERS tag for the statistics XML document.

Parameters
index,: index of the download from which the no. of seeders is needed.

download_-
tag,:

The DOWNLOAD tag in which the SEEDERS tag is nested.

Definition at line 246 of file DownloadManager.cpp.

6.9.1.10 void buildSizeTag (int index, ticpp::Element ∗ download tag)

Builds the SIZE tag for the statistics XML document.

Parameters
index,: index of the download from which the size is needed.

download_-
tag,:

The DOWNLOAD tag in which the SIZE tag is nested.

Definition at line 111 of file DownloadManager.cpp.

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

64 File Documentation

6.9.1.11 void buildStatusTag (int index, ticpp::Element ∗ download tag)

Builds the STATUS tag for the statistics XML document.

Parameters
index,: index of the download from which the size is needed.

download_-
tag,:

The DOWNLOAD tag in which the STATUS tag is nested.

Definition at line 137 of file DownloadManager.cpp.

6.9.1.12 void buildTimeTag (int index, ticpp::Element ∗ download tag)

Builds the TIME tags for the statistics XML document.

Parameters
index,: index of the download from which the estimated times are needed.

download_-
tag,:

The DOWNLOAD tag in which the TIME tags are nested.

Definition at line 285 of file DownloadManager.cpp.

6.9.1.13 void buildUploadAmountTag (ticpp::Element ∗ download tag)

Builds the UPLOADAMOUNT tag for the statistics XML document.

Parameters
download_-

tag,:
The DOWNLOAD tag in which the UPLOADAMOUNT tag is nested.

Definition at line 213 of file DownloadManager.cpp.

6.9.1.14 void buildUSpeedTag (int index, ticpp::Element ∗ download tag)

Builds the USPEED tag for the statistics XML document.

Parameters
index,: index of the download from which the size is needed.

download_-
tag,:

The DOWNLOAD tag in which the USPEED tag is nested.

Definition at line 176 of file DownloadManager.cpp.

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

6.10 src/HttpServer.cpp File Reference 65

6.9.1.15 void downloadCallback (int fd, short event, void ∗ arg)

Callback to keep all downloads and uploads running.

Parameters
fd,: The file descriptor used by swift.

event,: The event it gets from libevent.
arg,: Unused argument from libevent.

Definition at line 369 of file DownloadManager.cpp.

6.9.1.16 bool fileExists (const std::string filename)

Checks whether a file exists.

Parameters
filename,: Name of the file to be checked.

Definition at line 627 of file DownloadManager.cpp.

6.9.1.17 template<class Type > void fillXMLValue (Type value, ticpp::Element ∗ tag)

Fills in XML tags with the specified value.

Parameters
value,: The value to be set.

tag,: The tag to be filled with the value.

Definition at line 101 of file DownloadManager.cpp.

6.10 src/HttpServer.cpp File Reference

#include "HttpServer.h"

Namespaces

• namespace HttpServer

Functions

• static std::string searchRequest (std::string search_term)
• static std::string addRequest (std::string hash)

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

66 File Documentation

• static std::string downloadRequest (std::string hash)
• static std::string uploadRequest (std::string filename)
• static std::string stopRequest (std::string hash)
• static std::string removeRequest (std::string hash)
• static std::string pauseRequest (std::string hash)
• static std::string resumeRequest (std::string hash)
• static std::string streamRequest (std::string hash)
• static std::string settingsRequest (std::vector< std::string > result)
• static std::string clearRequest ()

Variables

• struct event_base ∗ HttpServer::base

6.10.1 Function Documentation

6.10.1.1 static std::string addRequest (std::string hash) [static]

Handler for the /add request.

Definition at line 70 of file HttpServer.cpp.

6.10.1.2 static std::string clearRequest () [static]

Handler for the /clear request.

Definition at line 252 of file HttpServer.cpp.

6.10.1.3 static std::string downloadRequest (std::string hash) [static]

Handler for the /download request.

Definition at line 93 of file HttpServer.cpp.

6.10.1.4 static std::string pauseRequest (std::string hash) [static]

Handler for the /pause request.

Definition at line 173 of file HttpServer.cpp.

6.10.1.5 static std::string removeRequest (std::string hash) [static]

Handler for the /remove request.

Definition at line 155 of file HttpServer.cpp.

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

6.11 src/Main.cpp File Reference 67

6.10.1.6 static std::string resumeRequest (std::string hash) [static]

Handler for the /resume request.

Definition at line 191 of file HttpServer.cpp.

6.10.1.7 static std::string searchRequest (std::string search term) [static]

Handler for the /search request.

Definition at line 50 of file HttpServer.cpp.

6.10.1.8 static std::string settingsRequest (std::vector< std::string > result)
[static]

Handler for the /settings request.

Definition at line 234 of file HttpServer.cpp.

6.10.1.9 static std::string stopRequest (std::string hash) [static]

Handler for the /stop request.

Definition at line 137 of file HttpServer.cpp.

6.10.1.10 static std::string streamRequest (std::string hash) [static]

Handler for the /stream request.

Definition at line 213 of file HttpServer.cpp.

6.10.1.11 static std::string uploadRequest (std::string filename) [static]

Handler for the /upload request.

Definition at line 117 of file HttpServer.cpp.

6.11 src/Main.cpp File Reference

#include <iostream> #include "ticpp.h" #include "swift.-
h" #include "DownloadManager.h" #include "HttpServer.h"×
#include "SearchEngine.h" #include "Settings.h" #include
<stdio.h> #include <string.h>

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

68 File Documentation

Functions

• bool InstallHTTPGateway (struct event_base ∗evbase, swift::Address addr,
uint32_t chunk_size, double ∗maxspeed)

• bool InstallStatsGateway (struct event_base ∗evbase, swift::Address addr)

• int main ()

6.11.1 Function Documentation

6.11.1.1 bool InstallHTTPGateway (struct event base ∗ evbase, swift::Address addr,
uint32 t chunk size, double ∗ maxspeed)

Define the InstallHTTPGateway method in httpgw.cpp.

6.11.1.2 bool InstallStatsGateway (struct event base ∗ evbase, swift::Address addr)

6.11.1.3 int main ()

Application main loop.

Definition at line 42 of file Main.cpp.

6.12 test/testsuite/Main.cpp File Reference

#include <iostream> #include "curl.h" #include "easy.h"×
#include "gtest.h" #include "swift.h" #include "Download-
Manager.h" #include "HttpServer.h" #include "SearchEngine.-
h" #include "Settings.h" #include <pthread.h>

Functions

• bool InstallHTTPGateway (struct event_base ∗evbase, swift::Address addr,
uint32_t chunk_size, double ∗maxspeed)

• void ∗ serverCallback (void ∗args)

• int main (int argc, char ∗∗argv)

Variables

• pthread_t server_thread

6.12.1 Function Documentation

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

6.13 src/SearchEngine.cpp File Reference 69

6.12.1.1 bool InstallHTTPGateway (struct event base ∗ evbase, swift::Address addr,
uint32 t chunk size, double ∗ maxspeed)

Define the InstallHTTPGateway method in httpgw.cpp.

6.12.1.2 int main (int argc, char ∗∗ argv)

Definition at line 27 of file Main.cpp.

6.12.1.3 void∗ serverCallback (void ∗ args)

Definition at line 22 of file Main.cpp.

6.12.2 Variable Documentation

6.12.2.1 pthread t server_thread

Definition at line 15 of file Main.cpp.

6.13 src/SearchEngine.cpp File Reference

#include "SearchEngine.h" #include <Python.h>

Namespaces

• namespace SearchEngine

Variables

• PyObject ∗ SearchEngine::p_module_name

• PyObject ∗ SearchEngine::p_module

• PyObject ∗ SearchEngine::p_main

• PyObject ∗ SearchEngine::p_function

• PyObject ∗ SearchEngine::p_args

• PyObject ∗ SearchEngine::p_main_value

• PyObject ∗ SearchEngine::p_function_value

• PyObject ∗ SearchEngine::p_result_string

• PyGILState_STATE SearchEngine::gstate

• pthread_mutex_t SearchEngine::gstate_mutex

• PyThreadState ∗ SearchEngine::save

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

70 File Documentation

6.14 src/Settings.cpp File Reference

#include "Settings.h"

6.15 src/Stream.cpp File Reference

#include "Stream.h"

Functions

• void closeCallback (int fd, short event, void ∗arg)

6.15.1 Function Documentation

6.15.1.1 void closeCallback (int fd, short event, void ∗ arg)

Libevent loop for streaming files, also used to close stream.

Parameters
fd,: The file descriptor used by swift.

event,: The event it gets from libevent.
arg,: Argument taken by callback.

Definition at line 39 of file Stream.cpp.

6.16 test/testsuite/DownloadManagerTest.cpp File Reference

#include "DownloadManager.h" #include "Download.h" #include
"Stream.h" #include "Settings.h" #include "gtest.h" #include
<string>

Classes

• class DownloadManagerTest

Functions

• void testDownloadsAreEqual (Download dl1, Download dl2)
• TEST_F (DownloadManagerTest, setDirectoryTrivial)
• TEST_F (DownloadManagerTest, getIndexFromHashTrivial)
• TEST_F (DownloadManagerTest, getIndexFromHashNonexistent)

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

6.16 test/testsuite/DownloadManagerTest.cpp File Reference 71

• TEST_F (DownloadManagerTest, addDownloadTrivial)
• TEST_F (DownloadManagerTest, addDownloadExists)
• TEST_F (DownloadManagerTest, downloadFirstInListTrivial)
• TEST_F (DownloadManagerTest, downloadFirstInListAlreadyDownloading)
• TEST_F (DownloadManagerTest, clearListTrivial)
• TEST_F (DownloadManagerTest, clearListEmpty)
• TEST_F (DownloadManagerTest, getActiveDownloadTrivial)
• TEST_F (DownloadManagerTest, startDownloadTrivial)
• TEST_F (DownloadManagerTest, startDownloadNonexistent)
• TEST_F (DownloadManagerTest, removeFromListTrivial)
• TEST_F (DownloadManagerTest, removeFromListActiveDownload)
• TEST_F (DownloadManagerTest, removeFromListNonexistent)
• TEST_F (DownloadManagerTest, switchDownloadTrivial)
• TEST_F (DownloadManagerTest, switchDownloadSame)
• TEST_F (DownloadManagerTest, switchDownloadNonexistent)
• TEST_F (DownloadManagerTest, startStreamTrivial)
• TEST_F (DownloadManagerTest, startStreamWithActiveDownload)
• TEST_F (DownloadManagerTest, stopStreamTrivial)
• TEST_F (DownloadManagerTest, stopStreamWithActiveDownload)

6.16.1 Function Documentation

6.16.1.1 TEST_F (DownloadManagerTest , setDirectoryTrivial)

Trivial test for setDirectory.

Definition at line 63 of file DownloadManagerTest.cpp.

6.16.1.2 TEST_F (DownloadManagerTest , getIndexFromHashTrivial)

Trivial test for getIndexFromHash.

Definition at line 77 of file DownloadManagerTest.cpp.

6.16.1.3 TEST_F (DownloadManagerTest , getIndexFromHashNonexistent)

Try getting a download with a hash that doesn’t exist.

Definition at line 90 of file DownloadManagerTest.cpp.

6.16.1.4 TEST_F (DownloadManagerTest , addDownloadTrivial)

Trivial test for addDownload.

Definition at line 100 of file DownloadManagerTest.cpp.

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

72 File Documentation

6.16.1.5 TEST_F (DownloadManagerTest , addDownloadExists)

Try downloading something that is already being download.

Definition at line 116 of file DownloadManagerTest.cpp.

6.16.1.6 TEST_F (DownloadManagerTest , downloadFirstInListTrivial)

Trivial test for downloadFirstInList.

Definition at line 134 of file DownloadManagerTest.cpp.

6.16.1.7 TEST_F (DownloadManagerTest , downloadFirstInListAlreadyDownloading)

Try downloading the first download when already downloading the first.

Definition at line 166 of file DownloadManagerTest.cpp.

6.16.1.8 TEST_F (DownloadManagerTest , clearListTrivial)

Trivial test for clearList.

Definition at line 185 of file DownloadManagerTest.cpp.

6.16.1.9 TEST_F (DownloadManagerTest , clearListEmpty)

Try clearing list when it is already empty.

Definition at line 200 of file DownloadManagerTest.cpp.

6.16.1.10 TEST_F (DownloadManagerTest , getActiveDownloadTrivial)

Trivial test for getActiveDownload.

Definition at line 212 of file DownloadManagerTest.cpp.

6.16.1.11 TEST_F (DownloadManagerTest , startDownloadTrivial)

Trivial test for startDownload.

Definition at line 229 of file DownloadManagerTest.cpp.

6.16.1.12 TEST_F (DownloadManagerTest , startDownloadNonexistent)

Try downloading a file that doesn’t exist.

Definition at line 252 of file DownloadManagerTest.cpp.

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

6.16 test/testsuite/DownloadManagerTest.cpp File Reference 73

6.16.1.13 TEST_F (DownloadManagerTest , removeFromListTrivial)

Trivial test for removeFromList.

Definition at line 263 of file DownloadManagerTest.cpp.

6.16.1.14 TEST_F (DownloadManagerTest , removeFromListActiveDownload)

Remove the active download.

Definition at line 285 of file DownloadManagerTest.cpp.

6.16.1.15 TEST_F (DownloadManagerTest , removeFromListNonexistent)

try removing nonexistent file.

Definition at line 311 of file DownloadManagerTest.cpp.

6.16.1.16 TEST_F (DownloadManagerTest , switchDownloadTrivial)

Tivial test for switchDownload.

Definition at line 321 of file DownloadManagerTest.cpp.

6.16.1.17 TEST_F (DownloadManagerTest , switchDownloadSame)

Try switching to the same download.

Definition at line 345 of file DownloadManagerTest.cpp.

6.16.1.18 TEST_F (DownloadManagerTest , switchDownloadNonexistent)

Switch to nonexistent download.

Definition at line 369 of file DownloadManagerTest.cpp.

6.16.1.19 TEST_F (DownloadManagerTest , startStreamTrivial)

Trivial test for starting a stream.

Definition at line 386 of file DownloadManagerTest.cpp.

6.16.1.20 TEST_F (DownloadManagerTest , startStreamWithActiveDownload)

Start a stream while there is an active download.

Definition at line 395 of file DownloadManagerTest.cpp.

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

74 File Documentation

6.16.1.21 TEST_F (DownloadManagerTest , stopStreamTrivial)

Trivial test for stopping a stream.

Definition at line 415 of file DownloadManagerTest.cpp.

6.16.1.22 TEST_F (DownloadManagerTest , stopStreamWithActiveDownload)

Stop a stream while there was an active download.

Definition at line 427 of file DownloadManagerTest.cpp.

6.16.1.23 void testDownloadsAreEqual (Download dl1, Download dl2)

Check whether two downloads are the same.

Definition at line 51 of file DownloadManagerTest.cpp.

6.17 test/testsuite/DownloadTest.cpp File Reference

#include "Download.h" #include "gtest.h" #include <string>×
#include <iostream>

Classes

• class DownloadTest

Functions

• TEST_F (DownloadTest, constructor)
• TEST_F (DownloadTest, setIDTrivial)
• TEST_F (DownloadTest, setIDNegative)
• TEST_F (DownloadTest, setDownloadSpeedTrivial)
• TEST_F (DownloadTest, setDownloadSpeedNegative)
• TEST_F (DownloadTest, setUploadSpeedTrivial)
• TEST_F (DownloadTest, setUploadSpeedNegative)
• TEST_F (DownloadTest, percentageTrivial)
• TEST_F (DownloadTest, percentageNegative)
• TEST_F (DownloadTest, percentageOver100)
• TEST_F (DownloadTest, seedersTrivial)
• TEST_F (DownloadTest, seedersNegative)
• TEST_F (DownloadTest, peersTrivial)
• TEST_F (DownloadTest, peersNegative)
• TEST_F (DownloadTest, statusTrivial)
• TEST_F (DownloadTest, statusWrong)

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

6.17 test/testsuite/DownloadTest.cpp File Reference 75

• TEST_F (DownloadTest, startTrivial)

• TEST_F (DownloadTest, startAlreadyStarted)

• TEST_F (DownloadTest, pauseTrivial)

• TEST_F (DownloadTest, pauseNeverStarted)

• TEST_F (DownloadTest, pauseAlreadyPaused)

• TEST_F (DownloadTest, resumeTrivial)

• TEST_F (DownloadTest, resumeAlreadyDownloading)

• TEST_F (DownloadTest, stopTrivial)

• TEST_F (DownloadTest, stopNotStarted)

• TEST_F (DownloadTest, stopWhilePaused)

• TEST_F (DownloadTest, stopAlreadyStopped)

6.17.1 Function Documentation

6.17.1.1 TEST_F (DownloadTest , constructor)

Test whether the constructor sets values properly.

Definition at line 52 of file DownloadTest.cpp.

6.17.1.2 TEST_F (DownloadTest , setIDTrivial)

Trivial test for setID.

Definition at line 63 of file DownloadTest.cpp.

6.17.1.3 TEST_F (DownloadTest , setIDNegative)

Try setting the ID to a negative number.

Definition at line 73 of file DownloadTest.cpp.

6.17.1.4 TEST_F (DownloadTest , setDownloadSpeedTrivial)

Trivial test for setDownloadSpeed.

Definition at line 89 of file DownloadTest.cpp.

6.17.1.5 TEST_F (DownloadTest , setDownloadSpeedNegative)

Try setting the downloadspeed to a negative number.

Definition at line 101 of file DownloadTest.cpp.

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

76 File Documentation

6.17.1.6 TEST_F (DownloadTest , setUploadSpeedTrivial)

Trivial test for setUploadSpeed.

Definition at line 116 of file DownloadTest.cpp.

6.17.1.7 TEST_F (DownloadTest , setUploadSpeedNegative)

Try setting upload speed to a negative number.

Definition at line 127 of file DownloadTest.cpp.

6.17.1.8 TEST_F (DownloadTest , percentageTrivial)

Trivial test for setPercentage.

Definition at line 142 of file DownloadTest.cpp.

6.17.1.9 TEST_F (DownloadTest , percentageNegative)

Try setting the percentage to a negative number.

Definition at line 153 of file DownloadTest.cpp.

6.17.1.10 TEST_F (DownloadTest , percentageOver100)

Try setting the percentage to a number above 100.

Definition at line 165 of file DownloadTest.cpp.

6.17.1.11 TEST_F (DownloadTest , seedersTrivial)

Trivial test for setSeeders.

Definition at line 179 of file DownloadTest.cpp.

6.17.1.12 TEST_F (DownloadTest , seedersNegative)

Try to set the seeders to a negative.

Definition at line 190 of file DownloadTest.cpp.

6.17.1.13 TEST_F (DownloadTest , peersTrivial)

Trivial test for setPeers.

Definition at line 205 of file DownloadTest.cpp.

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

6.17 test/testsuite/DownloadTest.cpp File Reference 77

6.17.1.14 TEST_F (DownloadTest , peersNegative)

Try setting the peers to a negative number.

Definition at line 216 of file DownloadTest.cpp.

6.17.1.15 TEST_F (DownloadTest , statusTrivial)

Trivial test for setStatus.

Definition at line 235 of file DownloadTest.cpp.

6.17.1.16 TEST_F (DownloadTest , statusWrong)

Try setting the status to a status that doesn’t exist.

Definition at line 245 of file DownloadTest.cpp.

6.17.1.17 TEST_F (DownloadTest , startTrivial)

Trivial test for start.

Definition at line 258 of file DownloadTest.cpp.

6.17.1.18 TEST_F (DownloadTest , startAlreadyStarted)

Try starting a download that has already started.

Definition at line 267 of file DownloadTest.cpp.

6.17.1.19 TEST_F (DownloadTest , pauseTrivial)

Trivial test for pause.

Definition at line 278 of file DownloadTest.cpp.

6.17.1.20 TEST_F (DownloadTest , pauseNeverStarted)

Try pausing a download that has not started yet.

Definition at line 288 of file DownloadTest.cpp.

6.17.1.21 TEST_F (DownloadTest , pauseAlreadyPaused)

Try pausing a download that is already paused.

Definition at line 296 of file DownloadTest.cpp.

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

78 File Documentation

6.17.1.22 TEST_F (DownloadTest , resumeTrivial)

Trivial test for resume.

Definition at line 308 of file DownloadTest.cpp.

6.17.1.23 TEST_F (DownloadTest , resumeAlreadyDownloading)

Try resuming a download that is already downlaoding.

Definition at line 319 of file DownloadTest.cpp.

6.17.1.24 TEST_F (DownloadTest , stopTrivial)

Trivial test for stop.

Definition at line 333 of file DownloadTest.cpp.

6.17.1.25 TEST_F (DownloadTest , stopNotStarted)

Try stopping a download that never started.

Definition at line 342 of file DownloadTest.cpp.

6.17.1.26 TEST_F (DownloadTest , stopWhilePaused)

Stop a download that is paused.

Definition at line 350 of file DownloadTest.cpp.

6.17.1.27 TEST_F (DownloadTest , stopAlreadyStopped)

Stop a download that is already stopped.

Definition at line 359 of file DownloadTest.cpp.

6.18 test/testsuite/HTTPServerTest.cpp File Reference

#include <string> #include "curl.h" #include "easy.h"×
#include "HttpServer.h" #include "gtest.h" #include "-
SearchEngine.h" #include "DownloadManager.h"

Classes

• class HTTPServerTest

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

6.18 test/testsuite/HTTPServerTest.cpp File Reference 79

Functions

• TEST_F (HTTPServerTest, aliveTest)
• TEST_F (HTTPServerTest, searchTrivial)
• TEST_F (HTTPServerTest, searchEmpty)
• TEST_F (HTTPServerTest, downloadTrivial)
• TEST_F (HTTPServerTest, addNonexistent)
• TEST_F (HTTPServerTest, downloadNonexistent)
• TEST_F (HTTPServerTest, downloadTwice)
• TEST_F (HTTPServerTest, pauseResumePause)
• TEST_F (HTTPServerTest, pauseResumeStats)
• TEST_F (HTTPServerTest, removeTrivial)
• TEST_F (HTTPServerTest, removeActiveDownload)
• TEST_F (HTTPServerTest, removeNonexistent)
• TEST_F (HTTPServerTest, startStreamTrivial)
• TEST_F (HTTPServerTest, stopStreamTrivial)

6.18.1 Function Documentation

6.18.1.1 TEST_F (HTTPServerTest , aliveTest)

Test whether the server is running.

Definition at line 105 of file HTTPServerTest.cpp.

6.18.1.2 TEST_F (HTTPServerTest , searchTrivial)

Test whether a search returns results.

Definition at line 119 of file HTTPServerTest.cpp.

6.18.1.3 TEST_F (HTTPServerTest , searchEmpty)

Test whether an empty searh is handled properly.

Definition at line 141 of file HTTPServerTest.cpp.

6.18.1.4 TEST_F (HTTPServerTest , downloadTrivial)

Test whether you can add and download a file after a search.

Definition at line 165 of file HTTPServerTest.cpp.

6.18.1.5 TEST_F (HTTPServerTest , addNonexistent)

Test whether adding a nonexistent download is handled properly.

Definition at line 198 of file HTTPServerTest.cpp.

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

80 File Documentation

6.18.1.6 TEST_F (HTTPServerTest , downloadNonexistent)

Test whether downloading a nonexistent download is handled properly.

Definition at line 210 of file HTTPServerTest.cpp.

6.18.1.7 TEST_F (HTTPServerTest , downloadTwice)

Try downloading the same file twice.

Definition at line 222 of file HTTPServerTest.cpp.

6.18.1.8 TEST_F (HTTPServerTest , pauseResumePause)

Test the infamous pause-resume-pause segfault.

Definition at line 258 of file HTTPServerTest.cpp.

6.18.1.9 TEST_F (HTTPServerTest , pauseResumeStats)

Test the infamous pause-resume-stats segfault.

Definition at line 287 of file HTTPServerTest.cpp.

6.18.1.10 TEST_F (HTTPServerTest , removeTrivial)

Trivial test for remove.

Definition at line 317 of file HTTPServerTest.cpp.

6.18.1.11 TEST_F (HTTPServerTest , removeActiveDownload)

Remove the active download.

Definition at line 345 of file HTTPServerTest.cpp.

6.18.1.12 TEST_F (HTTPServerTest , removeNonexistent)

Try Removing a nonexistent download.

Definition at line 375 of file HTTPServerTest.cpp.

6.18.1.13 TEST_F (HTTPServerTest , startStreamTrivial)

Start a stream.

Definition at line 390 of file HTTPServerTest.cpp.

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

6.19 test/testsuite/SearchEngineMock.cpp File Reference 81

6.18.1.14 TEST_F (HTTPServerTest , stopStreamTrivial)

Stop a stream.

Definition at line 406 of file HTTPServerTest.cpp.

6.19 test/testsuite/SearchEngineMock.cpp File Reference

#include "SearchEngine.h"

6.20 test/testsuite/SearchEngineTest.cpp File Reference

#include "SearchEngine.h" #include "gtest.h" #include "-
Exceptions.h" #include <string>

Classes

• class SearchEngineTest

Functions

• TEST_F (SearchEngineTest, getResultsTrivial)

• TEST_F (SearchEngineTest, getResultsEmpty)

• TEST_F (SearchEngineTest, getResultWithNameTrivial)

• TEST_F (SearchEngineTest, getResultWithNameNonexistent)

• TEST_F (SearchEngineTest, getResultWithHashTrivial)

• TEST_F (SearchEngineTest, getResultWithHashNonexistent)

6.20.1 Function Documentation

6.20.1.1 TEST_F (SearchEngineTest , getResultsTrivial)

Trivial test for getResults

Definition at line 70 of file SearchEngineTest.cpp.

6.20.1.2 TEST_F (SearchEngineTest , getResultsEmpty)

Get resuts when there are none

Definition at line 81 of file SearchEngineTest.cpp.

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

82 File Documentation

6.20.1.3 TEST_F (SearchEngineTest , getResultWithNameTrivial)

Trivial test for getResultWithName

Definition at line 95 of file SearchEngineTest.cpp.

6.20.1.4 TEST_F (SearchEngineTest , getResultWithNameNonexistent)

Try to get a result by name that doesn’t exist

Definition at line 106 of file SearchEngineTest.cpp.

6.20.1.5 TEST_F (SearchEngineTest , getResultWithHashTrivial)

Trivial test for getResultWithHash

Definition at line 118 of file SearchEngineTest.cpp.

6.20.1.6 TEST_F (SearchEngineTest , getResultWithHashNonexistent)

Try to get a result by name that doesn’t exist

Definition at line 130 of file SearchEngineTest.cpp.

6.21 test/testsuite/StreamTest.cpp File Reference

#include "Download.h" #include "Stream.h" #include "gtest.-
h" #include <string> #include <iostream>

Classes

• class StreamTest

Functions

• TEST_F (StreamTest, getInstance)

• TEST_F (StreamTest, startStreamTrivial)

• TEST_F (StreamTest, startTwice)

• TEST_F (StreamTest, startStopStart)

• TEST_F (StreamTest, stopTrivial)

• TEST_F (StreamTest, stopTwice)

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

6.21 test/testsuite/StreamTest.cpp File Reference 83

6.21.1 Function Documentation

6.21.1.1 TEST_F (StreamTest , getInstance)

Check whether Stream always returns the same instance.

Definition at line 34 of file StreamTest.cpp.

6.21.1.2 TEST_F (StreamTest , startStreamTrivial)

Trivial test for start.

Definition at line 45 of file StreamTest.cpp.

6.21.1.3 TEST_F (StreamTest , startTwice)

Start stream twice.

Definition at line 54 of file StreamTest.cpp.

6.21.1.4 TEST_F (StreamTest , startStopStart)

Start, stop and start the stream again.

Definition at line 64 of file StreamTest.cpp.

6.21.1.5 TEST_F (StreamTest , stopTrivial)

Trivial test for stop.

Definition at line 77 of file StreamTest.cpp.

6.21.1.6 TEST_F (StreamTest , stopTwice)

Stop the stream twice.

Definition at line 87 of file StreamTest.cpp.

Generated on Thu Jul 5 2012 19:53:35 for Swiftarm by Doxygen

Bibliography

[1] Blaise Barney and Lawrence Livermore. libevent � an event noti�cation

library. 2012. url: http://libevent.org/.

[2] QEMU community. QEMU wiki. 2012. url: http://wiki.qemu.org/
Main_Page.

[3] SamyGO community. SamyGO. 2012. url: http://www.samygo.tv/.

[4] Ubuntu community. Ubuntu wiki. 2012. url: https://wiki.ubuntu.co
m/.

[5] ARM Holdings. ARM. 2012. url: http://www.arm.com/.

[6] Aaron Kaluszka. �Distributed Hash Tables�. In: (2010).

[7] Nick Mathewson and Niels Provos. POSIX Threads Programming. 2012.
url: https://computing.llnl.gov/tutorials/pthreads/.

[8] Dr. Ir. J.A. Pouwelse, Dr. V. Grischenko, and A. Bakker. Swift, the mul-

tiparty transport protocol. 2012. url: http://libswift.org/.

[9] J. A. Pouwelse et al. �TRIBLER: a social-based peer-to-peer system�.
In: Concurrency and Computation: Practice and Experience 20.2 (2008),
pp. 127�138. issn: 1532-0634. doi: 10.1002/cpe.1189. url: http://dx.
doi.org/10.1002/cpe.1189.

[10] Boudewijn Schoon. �Dispersy: Distributed Permission System�. In: (2010).
url: http://www.scribd.com/doc/81170037/Boudewijn-Dispersy-
Documentation-DRAFT-2010.

[11] P. Shetty. QEMU TAP network setup. 2012. url: http://technology-
shettyprasad.blogspot.nl/2009/01/qemu-tap-network-setup.html.

[12] The net�lter core team. The net�lter.org "iptables" project. 2012. url:
http://www.netfilter.org/projects/iptables/index.html.

[13] Tribler team. 4th Generation of P2P. 2012. url: http://www.tribler.
org/trac/wiki/4thGenerationP2P.

[14] Niels Zeilemaker and Johan Pouwelse. �Tribler: P2P Search, Share and
Stream�. In: (2012).

183

http://libevent.org/
http://wiki.qemu.org/Main_Page
http://wiki.qemu.org/Main_Page
http://www.samygo.tv/
https://wiki.ubuntu.com/
https://wiki.ubuntu.com/
http://www.arm.com/
https://computing.llnl.gov/tutorials/pthreads/
http://libswift.org/
http://dx.doi.org/10.1002/cpe.1189
http://dx.doi.org/10.1002/cpe.1189
http://dx.doi.org/10.1002/cpe.1189
http://www.scribd.com/doc/81170037/Boudewijn-Dispersy-Documentation-DRAFT-2010
http://www.scribd.com/doc/81170037/Boudewijn-Dispersy-Documentation-DRAFT-2010
http://technology-shettyprasad.blogspot.nl/2009/01/qemu-tap-network-setup.html
http://technology-shettyprasad.blogspot.nl/2009/01/qemu-tap-network-setup.html
http://www.netfilter.org/projects/iptables/index.html
http://www.tribler.org/trac/wiki/4thGenerationP2P
http://www.tribler.org/trac/wiki/4thGenerationP2P

	Introduction
	Problem Statement
	Requirements Analysis
	Requirements
	Functional requirements
	Non-functional requirements
	Constraints

	Use Cases
	Use Case Descriptions

	Business Class diagram
	FileManager
	File
	Media
	MediaPlayer
	Sendable
	Download
	Upload
	Stream
	DownloadManager

	MosCoW

	Design
	Standard Samsung Software Architecture
	Extended Software Architecture
	Class Diagram
	Download
	Stream
	DownloadManager
	SearchEngine

	Implementation
	JavaScript
	C++
	Python
	Changes during development
	Software Improvement Group
	Upload visibility
	Number of downloads
	Excluded features

	Process
	Planning
	Division of work
	Decision taking
	Testing
	Problems encountered
	Rooting the television
	Installing missing dependencies
	TCP RST packages
	Fork() and thread problem
	Communication between JavaScript and C++
	Starting the HTTP server
	USB write speed

	Results
	SwiftTV
	Measurements
	Memory/CPU usage of SwiftTV

	Conclusion
	Recommendations
	UML Models
	Business Class Diagram
	Use Case Dynamic Models
	Class diagram
	Dynamic models

	SIG feedback
	First feedback
	Second feedback

	Scripts
	01_01_catch_crap.init
	02_04_vusb.init

	Sintel video mediainfo
	Screenshots
	Terms of reference
	Orientation Report
	Code API

