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1 | INTRODUCTION

Transmission switching (TS) involves the opening or closing of
circuits or substations in a transmission network and has been
used as a control mechanism by power system operators (SO)
to improve voltage profiles and manage congestion on the elec-
tric network [1, 2]. Although power networks are planned with
redundancies to handle multiple contingencies and deal with the
uncertainty of future operating conditions (OCs), in real-time
operation, SOs could use TS to efficiently operate the network
infrastructure according to the loading conditions and generator
costs. From a reliability perspective, circuits can be switched off
to improve cost in normal operations and brought back during
contingencies [1, 3]. Otherwise, TS happens while considering
possible contingencies. Further work by Hedman [4] showed
that TS does not inherently deteriorate reliability in the event of
contingencies and Morsy [5] investigated the use of post con-
tingency bus bar splitting to improve N-1 security after network
reconfiguration. Importantly the short-term operations savings
can be up to 25% of dispatch costs on the IEEE 118-bus sys-
tem [1]. Other use cases of TS in power systems operations
include reducing operating costs in a security-constrained unit
commitment formulation that considers circuit breaker reliabil-
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The classical formulation of the transmission switching problem as a mixed-integer prob-
lem is intractable for large systems in real-time control settings. Several heuristics have
been proposed in the past to speed up the computation time, which only limits the number
of switchable lines. In this paper, a real-time switching heuristic based on neural net-
works that provides almost instantaneous switching actions, are presented. The findings
are shown on case studies of the IEEE 118-bus test system, and the results show that the
proposed heutistic is robust to out of distribution data. Additionally, the proposed heuristic
has significant computational savings while all other performance metrics like accu-
racy are similar to state-of-the-art machine learning methods proposed for transmission

ity [6] and boosting resilience of power grids to extreme weather
events [7].

Fisher’s flagship paper [1] formulated the TS problem as
a mixed-integer problem (MIP) that considers a DC optimal
power flow (DCOPF) with binary vatiables tracking the state
of lines as on or off. The formulation adopts the big-M method
that constrains the line flows on switched-off lines to zero. As
the SO schedules new dispatches every 5 min for the power
system [8], solving for this optimised network topology and ver-
ifying as AC feasible ought to be done within that time frame.
However, the computational burden of solving even the DC
formulation of the TS problem in real-time prevents the adop-
tion of TS in the control room as it is an NP-hard problem
[9][10]. To quantify the magnitude of the search space, the IEEE
118-bus test case, which is small compared to real-wotld power
systems, has 186 lines and thus 2'%¢ switching possibilities.
Exploring such a search space is intractable with modern-day
computing power.

Heuristic approaches based on greedy local search using
sensitivity-based algorithms [11, 12], constraint identifica-
tion techniques [13], and power transfer distribution factors
(PTDFs) [14], have been proposed to improve the computa-
tion speed. The sensitivity-based heuristics involve reducing the
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large search space of the original MIP problem into a com- 5
putationally tractable problem by ranking candidate switching ML-model 3
actions. This ranking allows the easy exploration of possible . 2

‘relevant’ line switches with the computationally inexpensive
solution of multiple DCOPF problems. In refs. [11] and [12] the
dual problem of the DCOPF informs how the authors rank the
switchable lines based on a line’s tendency to improve the base-
line dispatch cost. The baseline cost considers a topology with
all lines as closed. A greedy local search of such a sensitivity-
based ranking involves solving all possible DCOPFs for every
possible line switching action [15, 8]. High performance com-
puting (as in ref. [16]) and priority listing (as in refs. [11] and
[17]) may be used to reduce the computation burden. The main
drawback of these heuristics is their scalability to large networks,
as they only provide a limitation on the number of switching
options and then greedily search the reduced solution space.
Granted, very few lines result in the largest cost reductions
[1, 18]. An alternative sensitivity-based heuristic involves active
constraint identification proposed by Crozier [13] to determine
the need for TS in a congestion setting. The approach ranks
the sensitivity of constraints on the dispatch cost when there is
a mismatch between the DCOPF with economic dispatch (ED)
and iteratively eliminates the constraints while solving a series of
DCOPEF problems. A different approach to the sensitivity-based
heuristics avoids solving multiple DCOPFs and instead com-
putes the power transfer distribution factors (PTDFs) as done
in ref. [19]. However, these heuristics only work for a limited
number of line switches and introduce sub-optimality resulting
in higher normal operating costs than necessary.

Beyond numerous efforts to improve the solution quality
of TS solutions, for instance in ref. [20] where an approxi-
mate model of the TS problem is proposed to speed up the
computation time and improve solution quality was proposed,
recently, the authors in ref. [21] propose an asynchronous algo-
rithmic design that exploits domain-specific knowledge and
heuristics in parallel to speed up the full NP-hard TS problem.
New challenges that arise in uncertainty in variable renewable
energy production [22] and in markets [23] have spurred fur-
ther research into TS. For instance, the authors [22] consider
a distributionally robust optimisation framework that consid-
ers uncertainty in power outputs of renewable energy sources
and thereby aim to reduce the curtailment of renewable energy.
The authors [23] formulate the day ahead and real-time zonal
electricity market with TS as an adaptive robust optimisation
mixed integer problem and present a new approach to solve
the adversarial min-max problem which follows an interdiction
game. However, overcoming the computational requirements
to implement these methods in real-time settings remains
a challenge.

Machine learning (ML) is promising to outperform heuristics
in power system applications or make completely new applica-
tions feasible for the first time. For example, ML can simplify
power system reliability studies [24] so they can run in real-
time while avoiding sub-optimalities otherwise introduced by
heuristics. There, when selecting a supervised ML model for
real-time reliability studies [25], the topological configuration
can result in discrete changes in the underlying data distributions
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FIGURE 1 ML workflow for real-time topology change
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that challenge the learned ML models [26]. Hence, explot-
ing these discrete topological changes is an alternative that is
then trained to a ML model through reinforcement rather than
supervision [21]. Such explorations can enhance the operator’s
experience and heuristics that would otherwise never use the
explored actions.

To use supervised ML within the optimal transmission
switching (OTS) framework is a new proposal to improve
solution times of the OTS problem, as the canonical MIP for-
mulation introduced by Fisher [1] is intractable in practical
settings. A major advantage of the ML approach is the reduc-
tion in computation time required to select a candidate topology,
which makes it a suitable approach to applying in real-time
by the SO. The proposed ML workflow for TS is shown in
Figure 1. There, the ML model is trained offline on historical
operating data, and neat-real time, proposes feasible topologi-
cal configurations for possible operating conditions. After the
physical feasibility of the proposed topology is confirmed, the
proposed topology is configured in real-time. Previously, the
authors in ref. [15] use ML to predict a list of high priority candi-
date line switches. There, ML models including a decision tree, a
k-nearest neighbour (KNN), and a feed-forward multilayer per-
ceptron artificial neural network (ANN) identify sets of suitable
lines for TS. Moving the research further, Johnson [8] proposed
a KNN heuristic to explicitly learn £-best candidate topologies
for different load profiles, in similar fashion as the authors in ref.
[27] that proposed two data-driven big-M bound strengthening
methods (&-shortest path and £-nearest neighbour) that account
for network topology, load demand and dispatch costs in the
formulation. There, a classifier learns the relationship between
operating conditions and their optimal topologies and proposes
£ nearest candidate topologies to evaluate the best topology for
a new load profile. The results show that the KNN heuristic
has negligible computational bottlenecks and can provide signif-
icant cost savings on dispatch costs. However, the KINN model
faces scalability issues related to &-neighbours in higher dimen-
sions [28]. Additionally, the robustness of the KINN heuristic to
out of distribution data is in question.

Neural networks have previously been used in power sys-
tem classification problems. [29] reviewed fault detection
methodologies in power systems, and ANNs are suitable non-
parametric models for the fault detection classification problem.
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Due to the non-linear activation functions of ANNSs, they
can capture non-linear dependencies of complex dynamic sys-
tems as power systems [15]. The perceptron-layered network
has been a popular ANN architecture for classification prob-
lems in power systems. Particularly, the 3-layered radial basis
function neural networks (RBFNN) architecture is robust to
inputs not in the training data [30]. This robustness makes
it a favourite for power systems classification problems such
as fault detection. RBFNNs [31] have been shown to per-
form well in terms of accuracy, interpretability, training data
and time over other feed-forward architectures like multilayer
perceptron and probabilistic neural networks in other fields
as well.
The contributions in this paper are as follows:

1. We propose an RBFNN heuristic that is robust to noisy data
to predict the TS solution in real-time settings consideting J
maximum line switches. The proposed RBFNN architecture
is a modification of the standard RBFNN architecture that
includes K output layers instead of the original one layer to
represent the transmission lines in a power system, and intro-
duces a sigmoid activation function after each output layer to
guarantee that all outputs lie in the range of [0,1] to represent
the status of the transmission lines. The proposed heuristic
provides significant computational savings with similar accu-
racy performance as state-of-the-art ML heuristics for TS
while outperforming line selection heuristics.

2. We propose a modified optimisation formulation of the TS
problem to speed up the offline generation of training data
by explicitly considering the switching action in the objective
function.

The rest of the paper is structured as follows: Section 2
introduces the proposed RBFNN heutistic and describes the
RBFNN architecture. We also briefly describe the KNN and
greedy search heuristics we consider for comparison. Sec-
tion 3 presents a case study that compares the performance of
the proposed RBFNN heuristic with KNN and greedy-search
heuristics relative to a baseline best-known solution obtained
using Gurobi-based heuristics. Section 4 concludes the paper
with an outlook for future work.

2 | HEURISTIC APPROACHES

This section introduces the proposed RBFNN heuristic and
other state-of-the-art heuristics in the literature. We also present
the computational complexity of the heuristic approaches
we consider.

MIL-based heuristics assume the availability of solved TS
instances Q° to learn the mapping between input features
(loading conditions) and output vectors (topology). Generat-
ing this set of solved TS instances Q' often requires solving
a relaxed MIP problem. This paper adopts the MIP formulation
in Fisher [1] slightly modified to penalise the objective function.
The formulation considers a single period economic dispatch
problem with binary variables to track switching decisions,

where (37 = 1) and (3, = 0) indicate available and unavailable
lines, respectively.

The proposed modified objective function in Equation (1)
explicitly considers the switching action alongside minimising
the generation costs C,/;, thereby improving the solution time
of the MIP problem. This explicit consideration of switching
actions is the minimisation of the Euclidean distance (3 —
;) between the binary variables z; and the base topology
that considers all lines as available alﬂl e {1119 where », is
a weighting parameter. The physical constraints that ensure the
capacity of power systems are met are in Equations (2)—(5) and
the big-M method in Equations (6) and (7) ensures that when a
line is switched off (g, = 0), the line flow constraints on other
lines that share same bus connections remain active. J in Equa-
tion (8) sets an upper bound for the number of transmission
lines that can be switched at all times.

All ML-based heuristics consider a set of TS solved instances
QF generated using the formulation in Equations (1)—(9).

minimize 2 C, P+ 2 wy () — ay)?
I3 2 © 9

)
subject to
eznin < 9” < e;r?nax’v P (2)
]?gmin S ]?g S ](ggmax’vg (3)
])/min%/ S]_—)/ S])[male’v/ (4)
SO EDNEDWELRY ©
/ g d
B/(e;z_e/ﬂ)_])/_(l_%’/>MSO,v/ (7)
Ya-z<J ®)
/
v €1{0,1}, a, € {1} ©9)

In the rest of this section, we present the proposed
RBFNN heuristics and desctibe other heuristics we consider for
comparison as follows.

2.1 | Proposed RBFNN heuristic

The proposed RBFNN heutistic is presented in Algorithm 1.
The heuristic assumes the availability of many solved instances
of the TS problem Q° = {{X}, V1},{X5, Y2}, ..., {X, Y} }} that

covers a range of possible operating conditions, where X,
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ALGORITHM 1 Proposed RBFNN heuristic for real-time TS

Degne set of solved TS instances
0° = {{X1,Y1},{Xo, Yo}, {Xp, Y7 }}

Train RBFNN using 2
To solve a new instance X1, use X, as input into
RBFNN to get Y41
Solve:
|| o
minimize Yi,-Y'
Yr*+1 Z:l( r+1 r+1)

s.t Eq. (2)-(9) are satisfied

where Yri+1 € {0,1},

Yr-i—l — Yr*—l-l
return Yy 41

X B FXx)

Py B A
>

[

®

[ ]

Q ﬁn
: N
Input Layer Hidden Layer (RBF) Output Layer

FIGURE 2  An example RBFNN architecture

represents the loading condition and /(X;) = Y, € {0, 1}1?l are
optimised topologies. Then, in real-time, the RBFNN considers
active load profiles X, as inputs and outputs a topology Y,
that can minimise the dispatch cost considering TS. An example
architecture of the RBFNN (presented in Figure 2) is composed
of three layers, the input layer, a non-linear hidden radial basis
function (RBF) layer, and an output layer. The activation func-
tion of the non-linear hidden layer of the radial basis function
neural network (RBFNN) architecture maps the input vector
X

D(X) = ¢ Bllxwll (10)

to a Gaussian function such that the feature space spans a set of
Gaussian neural nodes [33]. The node centers u ate initialised
with a K-means clustering algorithm, and the output of each
node depends on ||x — ul|, such that similar inputs X in the
Euclidean space generate similar outputs. § is a hyper-parameter
of the hidden-layer to be tuned. The activation function of the
output layer is a linear transformation of the weighted sum of all
the outputs of the non-linear hidden layer u;;. The training of
the RBFNN with input vector X, hidden layer weights IV, and
output vector Y uses the least squares linear regression (LSLR)
to obtain the weights

w=x"x)y'xTy (11)

‘Deﬁne OCs, e.g. load scenarios Py, Qg ‘

Obtain Q% = {{X,V1},{Xo, Yo}, - . {X,, Y }}
by solving Egs.(1)-(9) V Py, Qqy

Train RBENN with Q5 |

yes

Feasible?

no

2]
EE * i\2
mimmize § Y —Y)

r+1 i—1

Y« Y

s.t Eq. (2)-(9) are satisfied, Y,.j+1 €{0,1}

Y <—Y,
Return f

FIGURE 3  Flowchart of the proposed method showing all parameters

The exponential activation function allows the RBFNN to pro-
vide confidence intervals of predictions which is an important
feature as SOs prefer to be in the decision loop when using
MIL-based approaches [32]. Similar RBFNN architectures are
present in the literature, for example in refs. [33] and [34].
The key difference here is the consideration of K output layers
instead of the original one layer to represent the transmission
lines, and introduces a sigmoid activation function after each
output layer to guarantee that all outputs lie in the range of [0,1].

Finally, in real-time, the RBFNN model accepts as input
the current load profiles X, ,; and instantaneously outputs a
TS solution Y. As it is possible that Y, is not a feasible
solution, the algorithm solves the optimisation

[o)
minimize Y (V¥ =Y/, )2 (12)

r+1 =1

while satisfying the constraints in Equations (2)—(7). Solving
this optimisation returns the neatest feasible topology Y;:-l in
the event that the TS solution obtained Y, is not feasible. A
detailed flowchart of the proposed method is shown in Figure 3
showing all parameters. The proposed method initialises by con-
sidering credible OCs, for example candidate load scenarios,
P, O;, which serve as features X,. Then, for each OC, X,
the proposed method solves Equations (1)—(9) to obtain the
optimal TS solution Y, given J maximum available switching
actions. The set Q¥ comprising of possible OCs as features X,
with their respective optimal topologies Y, as outputs becomes
the training data of the RBFNN. Then, in real-time operation,
for a given OC X, 1, the SO can consider this trained RBFNN
model as a heuristic to obtain a TS solution Y, to relieve
congestion and reduce dispatch cost. The proposed heuristic
performs a quick feasibility test on the new topology Y, , and
returns the nearest feasible topology YI"‘+1 in the event of an
infeasible solution Y.
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2.2 | KNN heuristic

The KNN heuristic is based on Johnson [7] where a map-
ping exists between vectors of OCs X and the known DC
optimal switching instances f(X) resulting in a set Q% of TS
solved instances. The KNNN heuristic trains on the training
data Q°, and in real-time chooses £ instances that are sim-
ilar to a candidate OC X based on the Euclidean distance
of /e-norm. Subsequently, £-DCOPFs are solved and the TS
instance with the lowest dispatch cost is returned as the selected
switching action.

2.3 | Sensitivity-based greedy search heuristic
We consider the heuristic proposed in Fuller [11] to rank the
lines according to the sensitivity parameter of the dual of the
DCOPF (nodal price). Subsequently, the algorithm iterates over
half the ranked lines in a sequential manner as done by Yang [15]
termed the line enumeration algorithm. The algorithm starts
with a baseline cost considering a topology with all lines in
service. At the /th iteration, the algorithm then solves |Q] — 7
DCOPF problems by opening single lines according to the line
ranking and permanently switching off the line that results in
the most cost improvement. Starting with 7 = 0, the algorithm
continues until there is no cost improvement or the upper limit
of switchable lines Z/ (1 —z) = J is satisfied.

2.4 | Gurobic heuristic
The Gurobi heuristic solves for the optimal TS problem
described in Equations (1)—(9). We consider this formulation as
a heuristic as there is a limit to the upper-bound of switched
lines Z/(l — z7) < J. This heuristic serves as the yardstick to
compare the different heuristics.

2.5 | Computational complexity

The computational complexity of the different heuristics differ
depending on whether the comparison is offline or online. In
the offline setting, the ML approaches generally require a signif-
icant amount of time that increases relative to the size of the test
network, as computationally expensive MIPs need to be solved
to curate the set Q. Training the RBFNN varies with the num-
ber of neurons in the architecture and the number of epochs,
but the simple architecture of the RBFNN allows for a linear
training time. The offline training time for the KNN heuristic
is dependent on the £-neigbours. The offline computation for
the sensitivity-based greedy local search heuristic is trivial as it
requires only solving a DCOPE.

In the online setting where there is a huge constraint in time,
an exhaustive search for the greedy search heuristic requires
O(12|%) DCOPF solves and thus scales poorly in large systems.
The KNN heuristic depends on the £ DCOPFs required to be

solved. The RBFNN heuristic provides almost instantaneous
solutions that requires at most a single DCOPF solve to verify
feasibility. Thus, we expect that the proposed RBFNN heuris-
tic will provide significant computational improvements in the
online setting even with the feasibility verification step.

3 | CASE STUDY

In this section, we carry out case studies to compare the
proposed RBFNN heuristic with the KNN, sensitivity-based
greedy search, and Gurobi-based heuristics. The first study
investigates the performance of the heuristics to out of dis-
tribution data as a measure of robustness. In the second
and third study, we compare the real-time performance of
the heuristics in respect to computational time and cost sav-
ings, respectively. The fourth case study highlights the offline
computational improvements of the modified MIP formula-
tion. Finally, a discussion section concludes the case study
section with key findings.

3.1 | Testsystem and assumption

The case studies use the modified IEEE 118-bus test case
in Blumsack [35]. The load profiles are generated via Monte
Catlo sampling. We sampled the active loads from a multivari-
ate Gaussian distribution and assume the correlation between
loads to follow Pearson’s correlation with a correlation coeffi-
cient of 0.75. The distribution was then converted to a marginal
Kumaraswamy (1.6,2.8) distribution using inverse transforma-
tion. We consider +10% wvariation in the load distribution for
the training data-set. We then run the optimisation in Equa-
tions (1)—(9) for each load profile with an upper-bound on
switching actions J < 5. The choice of J < 5is from the liter-
ature, as only a few lines result in the largest cost savings [1, 3]
and the average congestion cost savings plateau around J =5
lines for the IEEE 118 bus test system [11]. However, we also
extend the maximum number of switchable lines to J < 10 in
a case study to show that the performance of the proposed
algorithm is scalable. The training data is then a feature space
comptising 1000 active load profiles X, € {F,;} and labels that
cotrespond to a binary sequence Y, € {0, 11191 where Y, = 0
and Y = 1 represents the /th line as absent and present, respec-
tively. In studying the real-time computational performance, all
previously introduced heuristics are tested on 200 active load
profiles with +35% variation in the load distribution. Unless
otherwise stated, all studies consider the +35% variation in the
testing data.

All optimisation problems were implemented using the pack-
age Pyomo 5.6.8 [36] in Python 3.7.4 and solved using Gurobi
9.5.0 [37]. The RBFNN is implemented using Keras package
2.8.0, with root mean squared propagation (RMSprop) as the
optimiser and mean squared error as the loss function. The
activation function between the input and hidden layer, and
between the hidden and output layer is linear. We also include
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a sigmoid activation function after the output layer such that all
outputs lie in the range [0,1]. The § parameters of the hidden
layer were 0.001, and the training considered an epoch length of
200 and a batch size of 5.

3.2 | Performance of heuristics on out of
distribution data

This case study investigates the performance of the pro-
posed RBFNN heuristic to out of distribution data. This
study compares the proposed RBFNN heuristic against the
KNN heuristic and a feed-forward perceptron ANN. The feed-
forward ANN follows Algorithm (1) similar to the proposed
RBFNN with the difference only in the model architecture
of five as opposed to three layers. All the heuristics were
trained considering a +10% wvariation in the load distribution
as described in Section 3.1. The baseline performance is con-
sidered using data not in the training set but following a similar
+10% variation. Subsequently, we compare the relative change
in performance of the heuristics on test instances that differ
from the +10% variation.

The results are shown in Figure 4(a), which presents a scatter-
plot that compares the change in average relative dispatch cost
with different variations (10%, 20%, 30%, ... , 100%) in load dis-
tribution for the proposed RBFNN, KNN and feed-forward
ANN heuristics. The average relative change in dispatch costs
considers a baseline where the training and testing data come
from the same distribution of +10% variation. Subsequently we
test the heutistics for each variation in load distribution and
compute the change (Ag = %) from the baseline relative cost

125" i
i=1

. % -
g for 200 test cases in Q" , where 7 = —
> |Q»‘H |

is the average

relative cost for an heuristic.

The results in Figure 4(a) show a minimum and maximum
change in relative costs Az of 2.5% and 34.6%, respectively,
corresponding to the £20% and £100% load variation for the
proposed RBFNN heuristic. The linear regression line is hot-
izontal, which denotes little to no change and thus robustness
to out of distribution data. In contrast, the KNN heuristic has
a minimum and maximum change Az of 224% and 1000%,

200 test instances using different heuristics

100
C
o 50
£
e
S
0 —_—
Gurobi RBF KNN GS
Heuristic
FIGURE 6 Computational time to obtain TS solutions for 200 test

instances using different heuristics
2

respectively, corresponding to the +20% and +100% load vari-
ation. Additionally, the linear regression line makes an & £45
with the horizontal axis, which suggests that the heuristic per-
formance changes with different load variations. A further
comparison between the proposed RBFNN heuristic with a
feed-forward ANN heutistic for similar changes in load distri-
bution in Figure 4(b) shows that the proposed RBFNN has a
similar regression line as a feed-forward ANN. There, the feed-
forward ANN has a minimum and maximum change of 10.9%
and 45.2%, respectively. While both the proposed RBFNN
and the feed-forward ANN have an average relative cost <2
of < 5%, the average change Ag over the different Variatioés
(10%, 20%, ... , 100%) for the proposed RBFNN is 9.7% while
that of the feed-forward ANN is 26.7%. These results support
the robustness of the proposed RBFNN heuristic.

3.3 | Real-time computational performance

This case study shows the computational results of the heuris-
tics introduced in Section 2 in terms of computational time.
While the ML-based heuristics training was on data from the
+10% variation, the testing data had a +35% variation. The box
plots in Figure 6 and the data in Table 1 summarise the compu-
tational time results. The box plot indicates the median value as
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TABLE 1  The relative cost and computation time for different heuristics TABLE 3 Handling infeasible TS of the proposed RBFNN heuristic for

on 200 TS test instances considering J < 5 switching actions J <5

Heuristic Relative cost (ﬂ Time Heuristic Infeasible TS Time Relative cost (ﬂ
q q

Gurobi 0.00 £ 0.00 31.31 £ 61.385 RBFNN 4/200 1.32 £+ 0.055 0.08 £0.10

RBFNN 0.03 = 0.03 0.57 £ 0.21s5 Gurobi 0/200 7.25 + 2.625 0.00 £ 0.00

KNN 0.01 = 0.02 6.25 £ 0.25¢

Greedy search 0.04 + 0.03 21.93 + 0.32s

TABLE 2  The relative cost and computation time for different heuristics
on 200 TS test instances considering J < 10 switching actions

Heuristic Relative cost (ﬂ) Time

q
Gurobi 0.00 £ 0.00 31.31 £61.38s
RBFENN 0.03 +0.03 0.57 £ 0.21s5
KNN 0.01 £0.02 6.25 + 0.255
Greedy search 0.04 £ 0.03 21.93 +0.32s

the middle line in the box, the first and third quartiles as the
top and bottom lines in the box, respectively, and the outliers as
individual points.

Concretely, Figure 6 presents the distribution of the com-
putational time it takes to solve the TS problem for 200 test
instances. The proposed RBFNN heuristic has a median value
of 1.2s, while the Gurobi, KNN and greedy search heuristics
have median values of 13s, 6s, 22s, respectively. This result is
supported by the data in Table 1 that shows the mean and
standard deviation of the computation time for the different
heuristics. There, the proposed RBFNN heuristic outputs a TS
solution on average in 0.57s, while the KNN, Greedy Search
and Gurobi heuristics average 6.25s, 21.93s, and 31.31s respec-
tively. We consider a computational upper bound of 50s to the
solver for the Gurobi heuristic, otherwise, average computa-
tional times are as long as 300s [8]. This massive computational
saving makes the proposed RBFNN a suitable approach for
real-time applications. These results also match our compu-
tational expectations described in Section 2.5. We extend the
maximum allowable switchable lines to J < 10 to investigate
the scalability of the proposed approach, which the results
in Table 2 show similar computational performance for the
proposed RBFNN heuristic and the KNN heuristic. This con-
sistent computational performance is a key feature of ML
methods. On the other hand, there are notable increases in the
computational time for the greedy search and Gurobi heuris-
tics. For J < 10, we consider a computational upper bound of
120s to the solver for the Gurobi heuristic, otherwise, average
computational times are as long as 300s [8].

34 |

Cost performance

This case study compares the savings in the dispatch cost from
using the heuristics introduced in Section 2. Figure 5 com-

pares the relative cost savings using the different heuristics for
200 test instances. The relative costs are calculated according
to the best known dispatch cost (calculated using the Gurobi

heuristic) as £, where § represents the dispatch cost obtained

using an heuristic for TS, and ¢ is the best known cost. Con-
cretely, the figure shows that the proposed RBFNN heuristic
with a median relative cost of 0.8%, outperforms the greedy
search heuristics at 3.3%, and is similar to the KINN heuristic
at 0.3% relative cost. This result is consistent with the data in
Table 1 showing the mean and standard deviation of the relative
costs for the different heuristics. The results in Table 1 show
that the proposed RBFNN heuristic is on average 3% close to
the best known TS solution. This result suggests that the pro-
posed RBFNN heuristic can propose good TS solutions. We
extend the maximum allowable switchable lines to J < 10 to
investigate the scalability of the proposed approach, which the
result in Table 2 shows similar cost performance for the pro-
posed RBFNN heuristic being within 4% of the best-known
solution.

3.5 | Guaranteeing feasible topology near
real-time

This case study investigates the handling of infeasible TS
solutions by the proposed RBFNN heuristic near real-time.
Notably, the crucial comparison is between the proposed
RBFNN and the KNN heuristics, as the scalability of the
greedy search heuristic is poor due to O(|Q|?) DCOPF com-
putations required. While the KNN offers a marginally better
relative cost value, the value of £ determines the number of
DCOPF problems to solve and thus worsens the computa-
tional time. Sometimes, however, the initial predicted solution
by the RBFNN is infeasible and in such cases the feasi-
bility is ensured by solving Equation (12) that returns the
nearest feasible topology. In this case study, these infeasible
solutions appeared in 4 out of 200 test instances (2%). For
these four infeasible TS instances, the proposed heuristic took
an average of 1.32s to obtain the nearest feasible topology
and the obtained result was within 8% of the best-known
solution considering J < 5 line switches, as opposed to an
average of 7.25s required to solve the same MIP formula-
tion with a similar relaxation. These results ate summarised
in Table 3 and importantly the proposed RBFNN solves for
a feasible TS topology within 8% of the best-known solution
while being more than 5X faster than solving Fisher’s [1] MIP
formulation.
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FIGURE 7 Solution time for different MIP formulations

3.6 | Offline computational improvements

In this case study, we investigated the effect of penalising the
objective function on the solution times of the MIP. We con-
sidered a thousand solution instances of the MIP problem for
a given load profile with [J < 3. The original formulation does
not consider the penalty term Y. R = a;)? in Equation (1),
while the modified formulation is exactly as presented in Sec-
tion 2. The results are presented as box-plots of solution times
in seconds in Figure 7. Concretely, the results show an average
improvement of 0.90s for the modified formulation, which is
43% faster than the original MIP formulation. This percentage
improvement does not extrapolate a linear relationship as the
maximum number of number of line switches J increase. How-
evet, as the number of crucial line switches are usually few, this
result is still relevant.

3.7 | Key findings

Within ML, the RBFNN model has been shown to be robust
to inputs not in the training data. In our studies, the proposed
RBFNN TS heuristic showed also high accuracy performance
across different data distributions, with a maximum deviation
of 34.6% in contrast to the 1000% deviation of the KNN
model. RBFNN models have been shown to perform well in
terms of accuracy, interpretability, training data, and computa-
tion time. Similarly, RBFNN models show significant benefits
of providing almost instantaneous TS options and thus are
applicable in real-time settings by SOs. The main computa-
tional burden comes from generating the solved TS instances
for training the RBFNN model which is done offline. How-
ever, this offline step is necessary for any ML workflow that
require synthetic data to train a model. A downside of the pro-
posed approach is that sometimes (in 2% cases) the RBFNN
TS heuristics results in infeasible TS in realtime, however, there,
we proposed an efficient optimisation TS formulation that
mitigates the issue, resulting in neatr-real-time TS. On a pos-
itive note, the simplicity of the RBFNN makes training the
model relatively fast and its architecture allows for more inter-
pretability of the model. The proposed RBFNN has an error
margin of 3% relative to the best known solution and pro-

vides the TS solution more than 10X faster than state of the art
MI.-based TS.

4 | CONCLUSION

This work proposed a RBFNN heuristic for real-time TS. The
proposed heuristic outperforms heuristics in the literature such
as KNN models and sensitivity-based greedy search algorithms
in terms of significant savings in computation time. The pro-
posed RBFNN heuristic is fairly robust to noisy data and
performs as well as the state of art ML approach to TS. In
situations where the proposed RBFNN outputs an infeasible
topology, the proposed RBFNN solves for a feasible TS topol-
ogy that is within 8% of the best-known solution while being
more than 5X faster than solving a standard MIP. We test our
approach on the IEEE 118-bus test case and limit the maximum
number of switchable lines to J < 5. As the issue of contin-
gencies is of utmost importance to the SO, further work will
investigate learning a model to propose TS actions that are N-1
secure. Finally, as ML becomes even more crucial in power sys-
tems dominated by converter interfaced generation [38], future
work shall also consider the impact of uncertainties from vati-
able energy sources like photovoltaic and wind turbines under
different operation scenarios.

NOMENCLATURE
Indices

d Index of demands

g Index of generators

/  Index of transmission lines
n Index of buses

Q  Set of transmission lines
QF  Set of transmission switching solution instances
" . . . . . .
Q" Set of transmission switching solution instances for test-
, ing
Q"  Set of transmission switching solution instances
for training

Parameters

g Average dispatch cost using an heuristic
B Shape parameter of neural network activation function
g Dispatch cost using a TS heutistic
J  Maximum number of switchable lines
U Position parameter of neural network activation func-
tion
¢(X) Activation function of neural network hidden layer
a; Status of line /
B, Susceptance of line /
C, Linear cost of generator g
4/ Number of nearest neighbours
M Big-M value
B Maximum power for generator g

A™  Minimum power for generator g
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P, Active power load
Pmax
/

P/mm Minimum flow on line /

Maximum flow on line /

g Best known dispatch cost from transmission switching
w;  Weight of penalty function in optimisation
X Input to neural network

Variables

0, Bus angle variable

P, Generator variable

P, Transmission flow variable

IV Weights for neural network training

Y  Output of neural network

g, Binary variable defining line status as on or off
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