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3D slope stability analysis with spatially variable and cross-correlated
shear strength parameters

D. Varkey, M.A. Hicks & P.J. Vardon
Section of Geo-Engineering, Faculty of Civil Engineering and Geosciences, Delft University of Technology,
Delft, The Netherlands

ABSTRACT: The paper investigates the stability of slopes with spatially variable and cross-correlated shear
strength parameters in 3D. The influence of various cross-correlation coefficients between these parameters on
the probability of 3D slope failure has been considered for different levels of anisotropy of the heterogeneity in
the shear strength. Specifically, 3D random fields of cohesion and friction angle were generated using the Local
Average Subdivision method, and these were correlated with each other by various degrees. The fields were then
linked to finite element analyses within a Monte Carlo framework. The results indicate that a positive cross-
correlation between the parameters reduces the slope reliability, whereas a negative cross-correlation between
the parameters increases the reliability.

1 INTRODUCTION

The inherent nature of soil is to be spatially variable
(Phoon & Kulhawy 1999). The uncertainty in the spa-
tial variability of parameters arises due to a combina-
tion of various geologic, environmental and physio-
chemical processes. However, quantification of this
heterogeneity is not a trivial task and demands ex-
tensive field and laboratory tests (Jaksa et al. 1999,
de Gast et al. 2017). There can also be other types
of uncertainties, such as geometric uncertainty in the
form of uncertain soil layer boundaries, or epistemic
uncertainties associated with sampling, modeling, and
so on. The uncertainty in the spatial variability of the
shear strength parameters alone has been considered
in this paper.

Conventionally, the stability of slopes is calculated
deterministically, i.e., by ignoring the spatial variabil-
ity in heterogeneity within soil layer(s) and consid-
ering the entire slope to be made up of a single or
multiple homogeneous layers. The outcome of such
an analysis is a single factor of safety (FS), which
gives no information about the reliability. Ignoring the
heterogeneity within the soil has been shown to have
a significant influence on computations of FS (Hicks
& Samy 2002, Hicks 2007, Cho 2007, among others)
and also on the failure mechanisms (Hicks & Spencer
2010). Various reliability-based methods have been
developed to include heterogeneity; for example, the
first order second moment method, first order relia-
bility method, point estimate method, stochastic re-
sponse surface methods and the random finite ele-

ment method (RFEM) (Fenton & Griffiths 2008). The
outcome of RFEM is a range of possible responses
of the structure. Research has also been done to ef-
ficiently use the available data to condition random
fields, for improving the confidence in results (Lloret-
Cabot et al. 2012, Li et al. 2016).

Soils generally exhibit spatial variability in a range
of parameters. These parameters, in addition to be-
ing correlated over certain lengths, may also be corre-
lated to each other. The influence of cross-correlation
between effective cohesion (c′) and effective friction
angle (φ′) on bearing capacity predictions has been
investigated by Cherubini (2000) and Fenton & Grif-
fiths (2003). The influence of this cross-correlation
on the reliability of slopes (Le 2014, Javankhoshdel
& Bathurst 2016, among others), as well as differ-
ent methods for constructing the bivariate distribu-
tions (Tang et al. 2015) and their influence on the re-
liability of retaining walls (Li et al. 2015) have also
been investigated. Griffiths et al. (2009a) identified
critical values of the coefficients of variation of the
shear strength parameters, beyond which ignoring the
spatial variability gives unconservative results with or
without cross-correlation between them.

Research has also been done on the reliability anal-
ysis of slopes in 2D to understand the influence of
various levels of heterogeneity in the mechanical and
hydraulic parameters (Arnold & Hicks 2011), and on
making use of inverse analysis techniques to reduce
the uncertainty in hydraulic conductivity by using
pore pressure measurements (Vardon et al. 2016). All
these studies are based on the assumption that the me-



chanical and hydraulic parameters are correlated over
an infinite distance in the third dimension. Although
this is generally not the case, only a limited amount of
research has been done regarding full 3D probabilis-
tic analysis, possibly due to the large computational
requirements.

Vanmarcke (1977) pioneered 3D reliability assess-
ments of slopes by assuming the governing soil pa-
rameter to be the spatial average of the randomly
varying parameter over a predefined surface. In con-
trast, 3D RFEM does not make any assumption re-
garding equivalent soil parameter or failure mecha-
nism, although it requires a large computational ef-
fort to carry out multiple realisations. Spencer (2007),
Griffiths et al. (2009b), Hicks & Spencer (2010)
and Li et al. (2015) used 3D RFEM to investigate
the influence of anisotropy of the heterogeneity in
undrained shear strength and slope length in the third
dimension on the estimation of failure probability.
Hicks & Spencer (2010) grouped the failure modes
into three different categories based on the anisotropy
of the heterogeneity in shear strength relative to the
slope dimensions. Strategies for quantification of the
failure consequences have also been developed (Hicks
et al. 2008, Huang et al. 2013, Hicks et al. 2014).

This paper considers the spatial variability and
cross-correlation between shear strength parameters
(c′ and φ′) for an idealised long slope. The random
fields of the parameters were generated using the 3D
Local Average Subdivision method, and linked with
the finite element model within a Monte Carlo frame-
work. Different values of anisotropy of the hetero-
geneity in the shear strength were considered. The in-
fluence of different cross-correlation coefficients be-
tween these parameters on the probability of failure
of a 3D slope has been investigated.

2 RANDOM FINITE ELEMENT METHOD
(RFEM)

The mathematical representation of the spatial vari-
ability of soil parameters can be made in the form of
a random field. This can be univariate or multivariate,
depending whether the field value at a point in space
is a random variable or a random vector. The field is
said to be stationary if the mean (µ) and variance (σ2)
of the random variables are constant and the autocor-
relation coefficient (ρ) is only dependent on the sep-
aration between the points (t, t′) under consideration.
The correlation structure for the random variable (X)
between these points is given as:

ρ(Xt,Xt′) =

E
[
(Xt − E[Xt])(Xt′ − E[Xt′ ])

]
σtσt′

(1)

where Xt and Xt′ are the respective values of X at t
and t′, and E[Xt], E[Xt′ ] and σt, σt′ are the expecta-
tions and standard deviations of X , respectively. For

a stationary random field, E[Xt] = E[Xt′ ] = µ and
σtσt′ = σ2.

In the context of finite element analysis, the me-
chanical response of a system is approximated by the
spatial discretization of the geometry. RFEM com-
bines random fields with finite elements and hence
discretization of the random fields is required, as car-
ried out in this paper by Local Average Subdivision
(LAS) (Fenton & Vanmarcke 1990). In this method,
a local integral process is obtained by integrating X
over a moving window (T ), such that the new process
has the same average as X and is smoother than X ,
i.e. with a reduced variance to account for local av-
eraging. The variance reduction (Γ(T )) is dependent
on the correlation function (ρ(τ)) for a stationary pro-
cess, and is given in 1D as:

Γ(T ) =
2

T

∫ T

0

ρ(τ)dτ − 2

T 2

∫ T

0

τρ(τ)dτ (2)

where τ is the lag distance. A 3D separable Gauss
Markov correlation structure is used in this paper,
with the correlation in the vertical (z) direction sep-
arated from the two horizontal (x and y) directions.
The 3D covariance function (β = σ2ρ) is:

β(τx, τy, τz) = σ2exp

(
− 2τz
θz

−

√(
2τx
θx

)2

+

(
2τy
θy

)2
)

(3)

where θx, θy and θz are the scales of fluctuation and
τx, τy and τz are the lag distances in the respective
directions.

The separation of the vertical correlation structure
from the two horizontal directions was done to model
the long-term depositional characteristic in the soil. It
is assumed that the horizontal layers were deposited
at the same instant, whereas the vertical deposition
occurs over time.

LAS is a top-down recursive approach, which be-
gins with generating a random number (from a stan-
dard Gaussian distribution) which is assigned as the
initial global mean for the entire domain. Proceed-
ing downwards, the domain is subdivided into equal
halves in each direction, i.e. each cell is divided into
23 cells at each subdivision level in 3D LAS. In the
subdivision process, the global average is preserved
by the top-down approach, whereas the variance of
the local average reduces and tends towards the tar-
get variance as the number of subdivision levels in-
creases. In this paper, the minimum required subdivi-
sion level is determined in order to have a variance
reduction value not less than 0.8, i.e. as given by the
scale of fluctuation of the process being at least four
times the averaging window in the last sub-division
level (Li 2017).



2.1 Cross-correlation between variables

The generated random fields, for say n parameters,
can be correlated to each other by using the correla-
tion matrix (R) given in Equation 4, with ρXiXj

be-
ing the correlation coefficient between the randomly
varying parameters, Xi and Xj , at the same point in
space.

R =

 1 ρX1X2 .. ρX1Xn

ρX2X1 1 .. ρX2Xn

.. .. .. ..
ρXnX1 ρXnX2 .. 1

 (4)

The generated n univariate Gaussian random vari-
ables are cross-correlated by using the Cholesky de-
composition (LLT) of R, and using the following ma-
trix transformation to generate the cross-correlated
fields (ζi):

ζ1....
ζn

 = L

X1

..

..
Xn

 (5)

where L is the lower triangular matrix. The above
transformation requires that the individual random
fields are stationary, and the Cholesky decomposition
fails ifR has negative eigenvalues. Figure 1 shows the
random variables for two parameters,X1 andX2, cor-
related to each other with different values of ρX1X2 .

Figure 2 shows the covariance structure obtained
in the field of X2 cross-correlated to X1 for different
values of ρX1X2 . The generated fields coincide with
the exact covariance structure (Eq. 3) for an isotropic
field with θ = 1 m. Hence, cross-correlation does not
affect the covariance structure within the fields.

Note that for generating anisotropic random fields,
the authors have first generated isotropic random
fields for each uncertain parameter by LAS using
θ = θx = θy = θz in Equation 3, followed by cross-
correlating the fields using Equation 5. This field was
then post-processed by squashing and/or stretching
in the respective directions to generate the required
level of anisotropy (ξ = θh/θv); see Hicks & Samy
(2002) and Hicks & Spencer (2010) for details. The
cross-correlated random fields corresponding to each
parameter were then transformed into their physical
space using the point statistics and type of parameter
distribution.

3 PROBLEM DESCRIPTION

A 50 m long slope, with the cross-sectional geometry
shown in Figure 3, was analysed by RFEM. Different
values of the cross-correlation coefficient (ρc′φ′) be-
tween the shear strength parameters (c′ and φ′) were
considered. The parameters of the model are sum-
marised in Table 1. The slope was meshed with a total

(a) (b)

(c) (d)

Figure 1: Cross-correlated fields in standard normal space; (a)
ρX1X2

= 0, (b) ρX1X2
= 0.5, (c) ρX1X2

= −0.5, (d) ρX1X2
=
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Figure 2: Covariance structure obtained in a cross-correlated
isotropic 3D field with θ = 1 m and domain side length of 5 m,
for different cross-correlation coefficients (ρX1X2

)

of 4000 20-node regular hexahedral elements with a
2× 2× 2 Gaussian integration scheme. The elements
were of size 1 m× 1 m in plan and 0.5 m in depth. The
boundary conditions applied to the model were: fixed
along the base, rollers on the side face, and rollers
on the vertical end-faces allowing only vertical move-
ment; see Spencer (2007) for an explanation of these
boundary conditions. The random field variables cor-
responding to each uncertain parameter, after post-
processing, were assigned to the Gauss points within
each element. A linear elastic, perfectly plastic Mohr-
Coulomb model was used to define the stress-strain
conditions within the problem domain. In each real-
isation, the in-situ stresses were generated by apply-



Table 1: List of parameter values
Parameter Mean Standard deviation
Cohesion 10 kPa 2 kPa
Friction angle 25◦ 5◦
Dilation angle 0◦ -
Young’s modulus 1 × 105 kPa -
Poisson’s ratio 0.3 -
Unit weight 20 kN/m3 -

ing gravity loading in a single step, and the slope was
checked for stability under its own weight using the
strength-reduction method. A total of 500 realisations
were carried out for each set of statistics of the param-
eters, and a distribution of the FS was determined.

Figure 3: Sketch of the cross-sectional geometry

A wide range of values for the cross-correlation co-
efficient between c′ and φ′ have been reported in the
literature. The different values of ρc′φ′ are attributed
to different soil types, sampling techniques and test-
ing rates used. The results for different values of ρc′φ′
are summarised in the next section.

4 RESULTS

In this section, the response of the structure, in terms
of FS distributions obtained from 500 realisations of
the problem by RFEM, are presented. For simplicity,
the same value of ξ was used to generate the random
fields for c′ and φ′. The vertical scale of fluctuation θv
was fixed to 1m in all the analyses. A 2D determinis-
tic analysis of the slope for the mean values given in
Table 1 gave a FS of 1.4.

Figure 4 plots the FS obtained in each realisation
using perfectly positive and perfectly negative cross-
correlated c′-φ′ fields, against the FS obtained from
uncorrelated c′-φ′ fields for θh = 12 m. Extreme values
of ρc′φ′ compared to values reported in literature have
been chosen, to highlight the differences between the
solutions. For positively cross-correlated fields of the
shear strength parameters, the weak zones (and the
strong zones) of the shear strength are exaggerated
compared to uncorrelated fields, making it easier to
seek out the failure path. Hence, the positive cross-
correlation decreases (or increases) the safety factor
for each realisation and increases the range of possi-
ble solutions. In contrast, a negative cross-correlation
between the shear strength parameters reduces the
range of possible solutions.
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Figure 4: FS obtained with (a) ρc′φ′ = 1, and (b) ρc′φ′ = −1
against ρc′φ′ = 0 for θh = 12 m

Figure 5 compares the distributions of FS at differ-
ent values of ξ, for different ρc′φ′ . The different val-
ues of ξ considered in Figure 5(a-c) are similar to
deterministic, 3D stochastic and 2D stochastic solu-
tions, respectively, as in Hicks & Spencer (2010) and
Varkey et al. (2017). In Figure 5(b), for the case of
ξ = 12, i.e., for a value of θh lying between the slope
height and half of the slope length, there is the pos-
sibility of discrete weak zones generated within each
realisation (Spencer 2007, Varkey et al. 2017). This
results in the mean FS being lower than 1.4, which is
also the case for other values of θh lying in this range
(not shown in Fig. 5). For positive values of ρc′φ′ , the
failure propagates through even weaker zones and the
mean FS reduces further below 1.4. In contrast, for
negatively cross-correlated fields of c′ and φ′, the av-
erage of the mobilised shear strength over all the re-
alisations increases. This results in the mean FS tend-
ing towards the deterministic FS for ρc′φ′ = −1. Also,
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Figure 5: Probability density functions of FS for different values
of ρc′φ′ ; (a) ξ = 1, (b) ξ = 12, (c) ξ = 2000

the range of possible solutions decreases considerably
compared to the uncorrelated and positively cross-
correlated fields, and the variance of FS therefore re-
duces considerably.

For the case of a very large θh relative to the slope
length (Fig. 5(c)), there is a wide range of possible so-
lutions for uncorrelated fields and an even wider range
for positively correlated fields. This wide range is due
to the relative locations of very extensive weak zones
through which the failure propagates.

For very small scales of fluctuation relative to the
slope height, as in Figure 5(a), extreme averaging
takes place and thus there is a negligible difference
between the responses with different values of ρc′φ′ .
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Figure 6: Reliability of the slope for various values of anisotropy
of the heterogeneity (ξ) in the shear strength; (a) −0.5≤ ρc′φ′ ≤
0, (b) 0 ≤ ρc′φ′ ≤ 0.5

Figure 6 shows the reliability obtained at different
values of F for slopes with ρc′φ′ = −0.5, 0 and 0.5,
for the range of ξ values considered in Figure 5. Here,
F is defined as the factor of safety based only on the
mean shear strength. The reliability at each F for a
given set of input statistics is calculated as:

Reliability = 1 − Nf

N
(6)



where N is the total number of realisations and Nf is
the number of realisations in which the slope fails at
a value less than or equal to F .

A negative cross-correlation between c′ and φ′

increases the reliability, whereas a positive cross-
correlation decreases the reliability of the structure for
all values of ξ considered.

5 CONCLUSIONS

An idealised 50m long slope has been analysed by
RFEM for various degrees of cross-correlation be-
tween the shear strength parameters (c′ and φ′).
It has been shown that assuming a positive cross-
correlation between the parameters reduces the reli-
ability, whereas a negative cross-correlation between
the parameters increases the reliability of the slope.
At intermediate and very large horizontal scales of
fluctuation of c′ and φ′, assuming a perfectly nega-
tive cross-correlation considerably reduces the range
of possible outcomes and makes the mean safety fac-
tor tend towards the plane strain safety factor based on
the mean values alone. Hence, caution is needed when
assigning cross-correlation coefficients between the
shear strength parameters in an analysis.
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