
ADP3: Affordance-Guided
Generalizable

Visuomotor Policies through 3D
Action Diffusion

by

Karthik Biju Nair

Supervisors: Prof. Dr. Jens Kober1

Dr. Milad Malekzadeh2

Dr. Jeyhoon Maskani2

Thesis Committee: Prof. Dr. Jens Kober

Dr. Jeyhoon Maskani

Dr. J. Micah Prendergast

Dr. Chirag Raman

Project Duration: Nov 2024 - Aug 2025

Programme: MSc. Robotics

Department & Faculty: Cognitive Robotics, Mechanical Engineering

Defense Date: August 8, 2025, 10:00 AM

1 Cognitive Robotics, TU Delft 2 Neura Robotics GmbH

ADP3: Affordance-Guided Generalizable

Visuomotor Policies through 3D Action Diffusion

Karthik Biju Nair∗†

∗TU Delft
†Neura Robotics GmbH

Extract affordance
heatmaps from images

"hold"

Train and run closed-
loop policies on 3D

affordance heatmaps

Generalizes to
unseen objects

Robust
to clutter

Improved
object-part

understanding

Fig. 1: We introduce Affordance-Guided 3D Diffusion Policy (ADP3), a generalizable and robust policy that uses 3D interaction heatmaps
as the visual representation. By conditioning action generation on these heatmaps, ADP3 attains strong generalization abilities, robustness
to clutter, and improved object-part understanding.

Abstract—Recent progress in visual imitation learning has
shown that diffusion models are a powerful tool for train-
ing robots to perform complex manipulation tasks. While 3D
Diffusion Policy uses a point cloud representation to improve
spatial reasoning and sample efficiency, it still struggles to
generalize across novel objects and environments due to spurious
correlations learned from irrelevant visual features. In this work,
a novel approach, Affordance-guided 3D Diffusion Policy (ADP3)
is introduced, which integrates task-relevant affordance cues
into the policy’s point cloud input. By conditioning the policy
on 3D affordance heatmaps instead of raw point clouds, the
policy is biased to attend to task-relevant object regions. Using
affordance heatmaps reduced the success rate drop to just 3% on
unseen objects in 4 Meta-World tasks, compared to a 35% drop
when using raw point clouds. ADP3 also demonstrates impressive
performance in our real-world experiments, showing resilience to
cluttered scenes and novel object-orientations.

I. INTRODUCTION

In recent years, visual imitation learning, specifically behav-

ioral cloning, has resurged as a powerful technique to teach

robots complex manipulation tasks. A major contributor to this

rise is the use of diffusion models for policy representation [1].

These policies offer stable training dynamics and can model

multimodal action distributions, making them perfect for real-

world tasks that have multiple ways to achieve the same goal.

It is desirable to teach robots manipulation skills that can

be transferred to different objects and environments. However,

diffusion-based policies that condition the action generation

on RGB images are sensitive to changes in the object’s

appearance and the background. For instance, Diffusion Policy

[1] trained to pour water from only one type of bottle is found

to fail to transfer this knowledge to a different bottle [2]. It

is cumbersome to train policies on a wide range of objects

of the same category, requiring thousands of demonstrations

for a single task. To overcome this limitation, policies such

as DP3 [3] use a point cloud representation that allows for

efficient learning, improved scope for spatial reasoning, and

robustness to slight shape variations.

Despite the use of a point cloud representation, significant

changes in the object’s appearance still adversely affect the

policy performance. The main reason for this is the joint

training of the vision encoder and the policy head, leading

to the policy learning spurious correspondences. For instance,

a policy trained to open a drawer might focus on geometric

features such as the drawer’s frame or edge instead of focusing

on the handle. This hampers the ability of the policy to

generalize to novel objects, since variations in the irrelevant

parts of the observation can cause the policy to fail.

Humans, on the other hand, have an excellent understanding

of how to manipulate objects. We know that a knife needs

to be held at the handle, which way to rotate the cap of a

bottle to open it, and where to hold a bag to lift it. The term

“affordance” is used to define such task-specific interaction

possibilities with an object [4]. Most importantly, we can

transfer object interaction knowledge across instances quite

easily, even if the instances look dissimilar, by focusing on

task-relevant information. Inspired by this idea, we intro-

duce a simple yet effective strategy to address the issue of

spurious correspondences by integrating affordances into the

point cloud representation. Current foundation models have

abundant open-world understanding, which we use to extract

affordance heatmaps from images. These heatmaps implicitly

guide the policy, indicating the task-relevant regions in an

object, leading to the policy learning to focus on important

visual information.

Specifically, we leverage the object interaction knowledge

of OOAL [5] to obtain 2D affordance heatmaps that are lifted

to 3D as an additional point cloud channel. We condition

the Affordance-guided 3D Diffusion Policy (ADP3) on latent

scene and affordance representations obtained from a point

cloud using a two-stream encoder. This enables the policy

to focus on task-specific regions in the observation while

retaining visual context from the scene.

Even though we leverage large-scale pretraining to extract

affordances through the use of a vision transformer, our

method differs from Vision-Language-Action (VLA) models

such as OpenVLA [6], Pi-Zero [7], and Gr00t N1 [8]. We focus

on injecting semantic information into 3D observations rather

than semantic grounding through large-scale vision-language-

action pretraining.

Our contributions and results can be summarized as follows:

1) Affordance guidance as a mechanism to guide the diffu-

sion policy’s focus on task-specific object parts.

2) Simulated experiments that reveal the robustness of the

policy to distractors and in generalizing to novel objects

that look very different from the training object.

3) Real world experiments that showcase the effectiveness

of ADP3 in realistic scenarios and in cluttered scenes.

II. RELATED WORK

A. Visual Imitation Learning

Visual imitation learning (VIL) forgoes extensive hand

engineering and reward definition, allowing for easily teach-

ing manipulation skills through demonstrations. While 2D

image-based policies are widely used [9, 10, 11, 1], 3D

representations are becoming increasingly prevalent since they

enable sample-efficient policies that can generalize spatially

[12, 13, 14, 15, 3].

Another common technique to improve generalization is to

use pretrained visual representations: features extracted from

raw observations to make policy learning easier [16, 17, 18].

These representations are extracted by either training on in-

domain data using latent dynamics models [19, 20, 21] or out-

of domain internet-scale images [22, 23, 24, 25] and videos

[26, 27, 28]. While such representations succeed in capturing

semantic features, they also include irrelevant features and are

task agnostic. In contrast, we extract 3D affordance heatmaps

that act as a low-dimensional, task-specific semantic map,

helping the policy to ignore irrelevant features.

B. Affordance Learning

Affordance learning refers to the task of segmenting regions

in a scene pertaining to an object interaction, such as the

handle of a kettle for holding or the cap of a bottle for

opening. Early work in affordance learning relied on simulated

interactions using predefined motion primitives [29, 30, 31] or

used dense annotations on large datasets [32]. However, the

former is slow due to its reliance on simulated environments,

and the latter requires thousands of annotations even when re-

stricted to a closed set of affordance labels. Recent approaches

leverage semantic knowledge of foundation models to reduce

manual affordance annotations. OOAL [5], trained by aligning

affordance text embeddings with visual features, can predict

affordance scores by learning from just one annotated image

per category.

Transferring object-interaction knowledge to robotic manip-

ulation to enable generalization has been an active research

topic. Some approaches achieve this by just predicting affor-

dance regions [33, 34], while others additionally predict post-

contact trajectories [35, 36, 37, 38, 39]. In contrast, we inject

affordance information into the observation space to provide

additional guidance, instead of regressing trajectory waypoints

directly.

C. Generalization in Diffusion Policies

Diffusion policy [1] has shown impressive performance in

a variety of day-to-day tasks through a simple behavioral

cloning formulation. Nevertheless, it is subject to the distri-

butional shift problem and is sensitive to factors such as the

camera viewpoint, object geometry, and spatial layout. A 3D

observation representation [15, 3, 41] improves generalization

by capturing spatial structure more directly, but the policy

still struggles when the object is significantly different in

appearance. Some approaches rely on equivariance [42, 43],

motivated by the idea that the transformation in the observation

space results in the same transformation in the action space.

However, these methods heavily rely on scene symmetry,

making them sensitive to distractors. Others use keypoints [44]

or object-centric representations [45] to simplify perception,

but they remain limited in real-world applicability. GenDP

[46] utilizes 3D descriptor fields for policy learning, that are

representations that remain consistent across objects of the

same category. However, the approach requires a reference

image per category and does not incorporate task-specific

guidance. Lan-o3dp [47] is the closest to our approach, using

object segmentation masks to discard background information.

Unlike Lan-o3dp, rather than completely discarding visual

context, we highlight task-specific regions while retaining the

full scene, allowing the policy to attend selectively to the

information it requires.

Action Diffusion
at

at+1

at+h

RGB image

Affordance
Segmentation

Depth image Encoder

2D Affordance
Heatmap

3D Affordance
Heatmap

Observation
History Ot

1D U-Net
Denoiser

Action
sequence At

a)

Perception

affordance
point
cloud

3D Affordance
Heatmap

robot
state

scene
point
cloud

MLP

MLPP(affordance) > 0.3

Yolo World OOAL

"bottle"

Detection

"open"

2D Affordance
Segmentation

Two-Stream Processing

b) c)

Fig. 2: Method overview of Affordance-Guided Diffusion Policy (ADP3). (a) The ADP3 Pipeline. We obtain affordance

heatmaps from RGB images captured by a single-view depth camera and lift them to 3D using depth. The result is passed

to a two-stream encoder to produce an observation encoding ot. The diffusion head conditions on an observation history Ot,

observation encodings stacked across timesteps, to generate an action sequence At (the future robot states); (b) Affordance

Segmentation Module. We use YOLO-World [40] to extract a crop of the target object and assign pixel-level affordance

scores using OOAL; (c) Two-Stream Processing. The final observation is a 1D vector concatenating robot state features and

observation features. The latter is obtained by processing scene features (96 channels) and affordance features (32 channels)

separately and stacking them, capturing both global context and task-specific information for the diffusion policy.

III. METHOD

A. Problem Formulation

The goal is to learn a single-task policy πθ(at | st) from

N expert demonstrations D = {τi}
N
i=1, where st is the state

and at represents the action corresponding to that state. Each

trajectory is denoted by τi = {(s0, a0), ..., (sT , aT)}.

An overview of our method is illustrated in Figure 2. Our

formulation is targeted towards short-horizon tasks, where

we assume only one affordance type, which is preselected.

Multi-step tasks require sequential and complex reasoning over

multiple affordances which is outside the scope of our work.

The state st ∈ S is a combination of robot states and

observations. The robot state consists of the robot pose and

gripper state, while the observation includes a 3D affordance

heatmap (N, 4). The spatial coordinates of the points make up

the first three dimensions of the heatmap, while the affordance

score ϕa ∈ [0, 1] is the last dimension. We obtain 3D heatmaps

from 2D affordance heatmaps using depth information.

B. Affordance-Guided Diffusion Policy

We aim to model the conditional distribution Pθ(At|Ot, Qt)
of a short-horizon action sequence At = at:t+n using a

denoising diffusion process, similar to Diffusion Policy [1].

Here, Ot = ot−h:t denotes the sequence of the h most recent

observations, where each ot is a 3D affordance heatmap;

Qt = qt−h:t denotes the corresponding robot states.

At each denoising step k, the reverse process is defined as:

At

k−1 = αk

(

At

k − γkϵθ(A
t

k, Ot, Qt, k)
)

+ σkN (0, I),

where ϵθ is the denoising network conditioned on both the

visual observations Ot and robot states Qt, and αk, γk, and

σk are noise schedule parameters.

C. Training Objective

During training, we randomly sample a timestep k ∈
{1, . . . ,K}. For that timestep, we generate a noisy action

sequence At

k
from a clean action sequence At

0 by perturbing

the clean action sequence At
0 with Gaussian noise. The clean

actions are obtained from the training data. Specifically, we

sample ϵk ∼ N (0, I) and obtain the noised sequence as:

At

k = ᾱkA
t

0 + β̄kϵk,

where ᾱk and β̄k are scalar coefficients from the diffusion

noise schedule.

Fig. 3: Noisy heatmaps predicted by OOAL for the affordance

hold in the Meta-World benchmark.

The denoising network ϵθ is then trained to minimize the

difference between the predicted and actual noise:

LMSE = MSE
(

ϵk, ϵθ
(

At

k, k, Ot, Qt

))

.

D. Visual Encoder

The visual encoder plays an integral role in extracting

a compact visual representation from the observations for

the downstream task: policy learning. It captures essential

information from the point cloud as a one dimensional latent

vector. We train the visual encoder along with the policy head

on a behavioral cloning loss. The encoder is trained from

scratch since pretraining only leads to a marginal improvement

in performance.

We use a two-stream architecture (see Figure 2) in order to

integrate 2D affordance heatmaps with the point cloud repre-

sentation. We first transform pixel-level affordance heatmaps

to the corresponding points in 3D using depth information.

This is then processed by our adapted point cloud encoder,

which we call the ADP3 encoder.

The ADP3 encoder consists of two parallel streams: 1) a

scene encoder that processes the entire point cloud to extract

global features, and 2) an affordance encoder that focuses on

task-relevant regions extracted using affordance scores. The

scene encoder is a pyramidal encoder, introduced in [41],

that captures hierarchical geometric patterns across different

scales. Interestingly, we observed that using a simple MLP

as the affordance encoder led to the best success rates in

comparison to traditional point cloud encoders. The affordance

and scene features are concatenated and serves as the compact

observation representation.

Nevertheless, simply adding affordance features to the ob-

servation is often not sufficient to guarantee that: 1) the policy

avoids overfitting to irrelevant scene details and, 2) it attends

to relevant local geometry. To address this, we randomly zero

out scene features, forcing the policy to learn from the specific

local geometry. This way, once trained, the policy can transfer

the learned skill to different objects that have similar local

geometry.

E. Implementation Details

We adopt the conditional U-Net from Diffusion Policy [1]

as the backbone denoising network. For diffusion sampling,

basketball coffee push bin picking

Fig. 4: To assess encoder performance, we select three tasks

from the Meta-World benchmark.

we use a DDIM noise scheduler for faster sampling with

fewer inference steps compared to DDPM. We use dense point

clouds as observations, which are first cropped to the relevant

workspace area and then downsampled to 4096 points, as

in [3]. We use uniform sampling instead of Farthest Point

Sampling (FPS) in all our experiments for efficient point cloud

processing.

IV. SIMULATION EXPERIMENTS

In this section, we describe the experiments conducted in

order to assess the effectiveness and the generalization capabil-

ities of affordance-guided policies. Through carefully designed

experiments, we compare our method with the baseline, 3D

Diffusion Policy (DP3) [3]. Our experiments aim to investigate

the fine-grained geometric understanding of point cloud-based

policies and their ability to generalize to different instances

from the same category.

We start by first validating our method in simulation through

experiments that validate the usefulness of affordance input.

For this purpose, we use the Meta-World benchmark [48] and

select tasks with varying difficulty. For all our experiments in

Meta-World, we use 10 demonstrations generated using the

hard-coded policies provided within the benchmark. We use

ground truth affordances in simulated environments instead

of extracting affordance heatmaps using OOAL. Since OOAL

was trained on a small set of real images, it cannot consistently

extract high quality affordance heatmaps from objects in sim-

ulation as illustrated in Figure 3. We obtain the 3D affordance

heatmaps by assigning high affordance scores to all points

within a distance of 0.03 m from the grasp location.

Standard point cloud encoders such as PointNet [49] and

PointNet++ [50] produce latent representations that are not

informative enough for policy learning. This was also observed

in [3] when training the encoders from scratch. Hence, the

pyramidal encoder from [41] was selected as the baseline, an

improved version of the MLP-based encoder from [3]. In all

simulated experiments, each policy is trained for 400 epochs,

with 20 evaluation episodes in the environment run every 50

epochs. Our primary performance metric is the task success

rate. We train policies for each task with seeds 0, 1, and 2 to

reliably assess their performance.

Task Object (name, size

(mm))

Distractor Object

(type, size (mm))

Basketball basketball,

r = 30
sphere,

r = 25

Coffee Push mug,

r = 28, h = 33
cylinder,

r = 30, h = 30

Bin Picking cube,

x = y = z = 20
cuboid,

x = y = 25, z = 15

Soccer soccer ball,

r = 26
sphere,

r = 20

Fig. 5: Robustness to distractor objects: the figure shows

the experimental setup with distractor objects for four tasks

(starting from the top-left): basketball, coffee push, bin picking

and soccer. The table lists the main and distractor objects used

for each task.

A. Effects of Affordance Conditioning

1) Improvement in Task Performance: We evaluate the ef-

fectiveness of an affordance input on three manipulation tasks:

basketball, bin picking, and coffee push, depicted in Figure 4.

It is observed that affordances significantly improve the task

performance throughout all tasks. Affordance signals are found

to enhance the latent representation, which becomes especially

evident on tasks that the baseline encoder struggles with. The

ADP3 encoder generates an encoding using the scene encoder,

that is architecturally equivalent to the baseline. In ADP3, this

encoding is later concatenated with the affordance encoding to

form the final observation encoding. The observation encoding

is a vector of size 128 in both cases for fair comparison. By

including affordance information in the observation, the mean

success rates increased from 20% to 73% for the coffee push

task and 17% to 78% for the bin picking task. This highlights

the need to extract a task-relevant representation for policy

learning.

2) Robustness to Distractor Objects: For imitation learning

to be effective in practical real-world applications, the policy

needs to be able to operate in unstructured environments. It

should be able to manipulate the target object even with several

other objects present in the scene. DP3’s ability to generalize

to different object instances (cube, charger, cylinder, etc.) is

Encoder Basketball Coffee Push Bin Picking

DP3 99 20 17
ADP3 100 73 78

TABLE I: Success Rates (%) of different encoders across

tasks.

ADP3

DP3

Time

Encoder Coffee Push Bin Picking Basketball Soccer

ADP3 90 ± 2 95 ± 3 80 ± 0 47 ± 2

DP3 53 ± 7 30 ± 6 36 ± 3 32 ± 10

Fig. 6: Results of distractor robustness experiments: Base-

line DP3 fails to distinguish the distractor cylinder from

the mug in the coffee push task, while affordance guidance

enables the policy to do so. The table reports success rates (in

percentage) across four tasks, averaged over three seeds.

attributed to the downsampling of the point cloud to a few

representative points [3]. However, this also limits the policy’s

ability to distinguish similar objects. This experiment involves

introducing distractor objects to the scene during training in

order to test the policy attention to fine geometric details.

Beyond increasing the task difficulty, distractor objects aid in

evaluating the policy’s ability to identify the target object.

We evaluate our method on 4 diverse Meta-World en-

vironments, modified to spawn both the target object and

the distractor object (see Figure 5). The distractor objects

are primitive shapes resembling the target’s shape but of

different dimensions. We increase the object spawn region

to accommodate both objects without negatively affecting the

expert policies. For each task, the distractor object is spawned

during training as well as evaluation. This setup requires the

encoder to capture local features for the policy to distinguish

the target object from the distractor.

ADP3 consistently performs better than DP3 when dis-

tractor objects are present in the scene during training. In

the coffee push task, the mug can be distinguished from the

cylinder primarily by the presence of a handle, in addition

to the size difference (See Figure 6). However, DP3 fails to

distinguish the two, achieving a success rate of 53%, while

ADP3 reaches 90%. A similar trend can be observed in other

tasks, where the DP3 encoder fails to capture fine-grained

Objects Used
During Training

Novel Objects
for Evaluation

(a) Generalization to novel object instances

Task
DP3 ADP3 (ours)

Orig. Novel ∆ Orig. Novel ∆

drawer open 87 48 -38 97 97 0
door lock 67 10 -57 90 88 -2
handle press 70 50 -20 88 80 -8
door open 97 73 -23 100 100 0

Average Drop -35 -3

TABLE II: Success rates (%) for instance generalization

drawer open door lock handle press door open
0.0

0.2

0.4

0.6

0.8

1.0

SR

DP3
ADP3

drawer open door lock handle press door open
0.0

0.2

0.4

0.6

0.8

1.0

SR

(b) Instance generalization performance

Fig. 8: Instance generalization: (a) For each of the four tasks: drawer open, door lock, handle press, and door open, training

objects (left) and novel test objects (right) with significantly altered geometry. (b) Bar plots of success rates on training (original)

and unseen (novel) objects. ADP3 (red) shows minimal performance degradation; DP3 (blue) struggles to generalize across

shape and size variations.

spatial information without affordance guidance.

3) Instance Generalization: The ability of the policy to

generalize to objects of different shapes and sizes without the

need for retraining remains an active research problem. This

requires the policy to attend to task-relevant salient regions

within the observation. As shown in previous experiments, the

DP3 encoder often fails to extract sufficient spatial information

for the diffusion head. To investigate whether this limitation

persists in scenarios where the object itself varies, we conduct

instance generalization experiments.

In our instance generalization experiments, the policies are

trained on 4 Meta-World tasks using a specific object instance

per task and evaluated on novel object instances (see Figure

7a). The unseen objects are generated by: 1) scaling the

original object, thus altering object size significantly, such as in

door lock, or 2) modifying the contours in task-relevant areas

through warping or scaling, such as the handles in drawer

open and handle press. The purpose of modifying interaction

region geometry is to test whether the policy overfits to a

specific local geometry. The functional aspects, such as the

drawer’s withdrawal distance or the door handle’s rotation,

remain unchanged.

a) Results and Analysis: The trained policy is evaluated

on both objects: seen and unseen. Table II summarizes the

success rates. The performance of both policies is comparable

when the policy is rolled out on the original object, although

ADP3 is consistently superior. However, the performance of

DP3 drops significantly when the novel object is introduced.

For the door lock task, which has the smallest interaction

region among all tasks, we observe the largest success rate

drop of 57%. The lock is represented by a sparse set of points,

which can potentially have a lower influence on the latent

representation. Since the encoders are trained from scratch

alongside the policy head on a behavioral cloning loss, the

policy can learn to complete the task by attending to various

parts of the object. This can be the points on the top and side

surfaces or the handle—and not necessarily the task-relevant

region, i.e., the lock itself. The sparser the task-relevant region,

the lower the probability that the local geometry is captured in

the latent representation. At the same time, the performance

dip is less pronounced when the interaction region is signifi-

cantly larger.

In contrast, ADP3 showcases impressive performance when

evaluated on novel object instances, with a mean performance

0 1 2 3 4 5 6 7
Training Steps (k)

0%

20%

40%

60%

80%

100%

Su
cc

es
s R

at
e

Basketball

Encoder Architecture
ADP3-CA
ADP3-EF
ADP3-LF
DP3

0 1 2 3 4
Training Steps (k)

0%

20%

40%

60%

80%

Su
cc

es
s R

at
e

Coffee Push

Encoder Architecture
ADP3-CA
ADP3-EF
ADP3-LF
DP3

0 1 2 3 4 5 6 7
Training Steps (k)

0%

20%

40%

60%

80%

Su
cc

es
s R

at
e

Bin Picking

Encoder Architecture
ADP3-CA
ADP3-EF
ADP3-LF
DP3

Encoder Basketball Coffee Push Bin Picking

DP3 99 20 17

ADP3-EF 99 58 53

ADP3-LF 100 73 78

ADP3-CA 73 69 86

TABLE III: Success rates(%) for different encoder architec-

tures

Fig. 9: Results from our experiments comparing different methods across tasks. Learning curves showing success rate vs.

training steps for different affordance integration methods on three tasks. Late fusion achieves the best balance between

training efficiency and task success rate.

drop of just 3% in comparison to DP3’s 35%. It succeeds

in ignoring changes to task-irrelevant features in the scene.

Additionally, ADP3’s performance remains stable even when

the interaction region geometry is modified. No performance

drop is observed for drawer open, while there is only a minor

drop of 8% in the success rates on handle press, indicating

that the policy does not overfit to a specific local geometry.

B. Ablation Studies

1) Encoder Architecture: We aim to integrate affordances

into the observation representation to enable the policy to

transfer the learned skill to unseen objects and environments.

However, combining geometric information from the point

cloud with semantics from affordance scores to form a good

representation for policy learning is a challenging task. As

illustrated in Figure 10, we evaluate three approaches for

integrating affordance information into the observation: early

fusion, late fusion, and cross-attention.

Besides the baseline pyramidal encoder, we evaluated the

standard point cloud encoder PointNet++ and an ROI-seeded

variant that ensures high-affordance points are not lost during

downsampling. However, these did not outperform the baseline

encoder and are discussed in further detail in Appendix A.

We evaluate each affordance integration method on three

manipulation tasks: basketball, bin picking, and coffee push

(See Figure 4).

Table III presents the performance metrics for each encoder

architecture across the three tasks. We report the success rates

by averaging over five best policy checkpoints and three seeds

as in [3]. The main findings from this experiment are:

a) Late Fusion extracts the best latent representation for

policy learning: Although affordance signals aid in forming

effective representations, the integration mechanisms plays an

equally significant role. Despite being the most straightforward

method for integrating affordances, early fusion performs rel-

atively poorly on all tasks, albeit better than the baseline. The

encoder struggles to extract a good latent representation and

in separating affordance information from geometric features.

This indicates that simply adding affordance as an additional

channel is not enough to provide sufficient guidance. On the

other hand, the late fusion approach consistently achieves

excellent success rates on all tasks. Explicitly separating the

processing paths for geometry and affordance allows the policy

to quickly learn effective representations.

The cross-attention approach passes the separately pro-

cessed scene and affordance encodings through a cross-

attention layer instead of simply concatenating them. Although

intuitively, a cross-attention layer at the end could better

encode the relationship between geometry and semantics, the

approach still falls behind. Except for the bin picking task for

which it does exceptionally well, its overall performance is

inferior to that of the late fusion approach. We hypothesize

that this is due to the lack of information in the scene

encoding extracted by the pyramidal encoder. The PointNet-

style pyramidal encoder extracts a global feature vector from

No Affordance Early Fusion

scene affordancescene

scene affordance

Late Fusion

scene affordance

Cross Attention

cross
attention
layer

Fig. 10: Experiments in Simulation. We experiment with

various mechanisms to integrate affordances with 3D observa-

tions. The main approaches are: (1) No Affordance (Baseline):

process only geometric information without affordance; (2)

Early Fusion: concatenate affordance as an additional input

channel before it is passed to the encoder; (3) Late Fusion:

process geometric information and affordance separately, and

combine at the last layer; (4) Cross-Attention: late fusion with

a cross-attention layer to improve the association between

geometry and semantics.

the entire point cloud using max-pooling. This leads to a loss

of local geometry information, which the cross-attention layers

have no way of recovering.

V. REAL WORLD EXPERIMENTS

We include experiments on a real robot for opening a bottle

and picking a knife to gauge the real-world effectiveness of our

approach.

Hardware Setup. We use a 7-dof MAiRA7M robot and

single-view observations obtained from an Orbbec Femto Bolt

depth camera, which we choose for its good point cloud

quality. Demonstrations are collected via teleoperation using

a gamepad: 40 demonstrations for simple tasks.

Action Processing. We observed that absolute positions are

more suitable as the action representation compared to delta

positions. The action has 10 dimensions: 3 for position, 6 for

orientation [51], and 1 for the gripper width.

Observation Processing. Point clouds are cropped to dis-

card points from the background and the table. downsam-

pled using uniform sampling to 4096 points. 2D affordance

heatmaps, a key component of our approach, are obtained

from RGB images using OOAL [5]. However, a single image

could contain multiple objects with parts corresponding to the

same affordance: for example, one can hold the handle of a

cup as well as the strap of a bag. To avoid such ambiguity,

we first obtain a bounding box using the Yolo World model

[40] for open-vocabulary object detection before segmenting

affordances. We transform the observations to the robot frame

using the extrinsic calibration parameters in order to make it

easy to define cropping bounds.

Orbbec Femto Bolt

MAiRA 7M

OnRobot RG2

Fig. 11: Hardware setup

Inference. The entire pipeline operates at approximately 10

Hz, after parallelized observation and action processing, while

running inference on an Nvidia RTX 3090 GPU. We addition-

ally chunk action sequences across multiple inferences [11] to

prevent sudden jerks when switching from one sequence to

the next.

A. Evaluation in Clutter

A generalizable policy must be able to handle irrelevant

changes in the environment that do not affect the task at hand.

In this experiment, we train ADP3 and DP3 on the bottle open

task with no other objects present and by randomizing the

object position in every demonstration. We then evaluate the

policy in two test scenarios: 1) one where only the target object

in the scene serves as a benchmark, and 2) another where the

scene is cluttered with objects of different shapes and sizes.

The spatial arrangement of all objects is randomized during

every run.

a) Results and Analysis: We run 15 policy rollouts for

each trained policy, and the results are reported in Table IV. An

evaluation run is counted as a success if the robot successfully

grasps the cap and lifts it to a distance of 5 cm above the bottle.

Only bottle In clutter

DP3 100 0
ADP3 100 100

TABLE IV: Success rates (in percentage) with and without

clutter for 15 evaluation episodes.

It is observed that both policies achieve a perfect task

completion rate when only the bottle is present. However,

once the clutter is introduced, the performance of DP3 dips

drastically. Although DP3 was able to smoothly inch closer to

the bottle without clutter, it struggled to generate meaningful

action sequences, slowly drifting away from the object (see

Figure 12). This is an expected phenomenon since training

DP3

ADP3

Fig. 12: Evaluation in clutter. Left: The demonstrations for

the open bottle task consist of two motion segments that

involve the robot: (1) starting from a fixed position, moving

towards the bottle and aligning itself with the lid (green), and

(2) closing the gripper and moving vertically upwards (red).

Right: Both policies are rolled out in a cluttered scene. From

the very start of the DP3 rollout, the robot starts drifting away

from the target object and misses the grasp by a large margin.

On the other hand, ADP3 is not affected by the clutter and

manages to pick up the cap successfully.

without clutter and testing with clutter creates a major distribu-

tion shift. The performance degradation of DP3 can be linked

to the information bottleneck due to the max pooling layers in

the pyramidal encoder. The max pooling operation only selects

the highest activation per feature channel present in the scene

encoding (128 channels for DP3 and 96 for ADP3). In clut-

tered scenes, other objects can create strong feature activations

that can easily overpower the bottle’s feature activations.

Contrastingly, ADP3 retains the same performance even in

clutter and manages to successfully complete the task on all

15 trials. ADP3 uses the same scene encoder architecture

as DP3 to generate scene encodings. In cluttered scenes

with completely randomized spatial arrangements, the scene

encoding generated should experience a similar disruption as

observed for DP3. However, ADP3 can handle significant

distribution shifts by using the affordance encoding to obtain

sufficient information.

B. Generalization to Novel Object Configurations

Besides robustness to clutter, ADP3 additionally demon-

strates the ability to generalize to object configurations unseen

during training. The policy is trained on demonstrations of

the robot picking a specific knife (see Figure 13), in which

the knife’s location is altered without changing its orientation

(with the blade pointing toward the robot base). Once trained,

the policy is rolled out for two object configurations, similar to

[46]: 1) normal configuration (the blade pointing towards the

robot base), and 2) flipped configuration (the blade pointing

away from the robot base). The policy is evaluated through 15

trials for each policy and configuration.

Table V reports the results for both configurations. Besides

the SR, we additionally include the number of “unsafe” grasps

attempted by the policy. A grasp attempt is counted as unsafe

if the robot touches the blade. In the normal configuration,

affordance guidance does not offer a noticeable performance

gain, with both policies achieving an SR of 80%. However, the

(a) (b)

Normal Flipped
(c)

DP3 ADP3

Fig. 13: Picking a knife: (a) Task Description. The robot

moves towards the knife, aligning the end-effector with the

knife handle, closes the gripper and moves upwards by about 5

cm. (b) Two Evaluation Configurations. The figure illustrates

the normal configuration that the policy was trained on and

the flipped configuration to test object-part understanding. (c)

Safe Behavior. DP3 does not differentiate the handle from the

blade and grasps the blade. ADP3 exhibits safe and predictable

behavior, never attempting to grasp the blade.

Config. DP3 ADP3
SR Unsafe Grasps SR Unsafe Grasps

Normal 80.0 0/15 80.0 0/15
Flipped 13.3 7/15 53.0 0/15

TABLE V: Success Rate (SR) and Unsafe Grasps (n/15) for

different knife orientations.

performance of DP3 drops to just 13% in the flipped configu-

ration. In the failure cases, the robot either drifts away from the

object or attempts to grasp the blade. This indicates that DP3

fails to effectively capture the intent behind the demonstration

which is to grasp the handle, and almost consistently attempts

to grasp the blade. Moreover, in the two trials (out of 15)

in which DP3 managed to grasp the knife handle, the knife

was placed at the extremities of the demonstration distribution.

The trained diffusion head outputs absolute positions that

approximately lie within these extremities. The successful

grasps were only recorded at object positions in which only

the handle points are inside this distribution. Hence, even in

the few successful grasps, DP3 does not demonstrate object

part-level understanding. In contrast, ADP3 never attempts to

grasp the blade even though the SR drops to 53%.

VI. CONCLUSION

In this work, we introduce Affordance-Guided 3D Diffusion

Policy (ADP3), an approach that tackles the current challenges

in training generalizable visual imitation learning policies. By

fusing object interaction knowledge from foundation models

into point clouds, we generate 3D affordance heatmaps that

improve generalization. By evaluating the policy in 8 simu-

lated tasks and real-world experiments, we demonstrate the ef-

fectiveness of affordance guidance in policy learning. Through

extensive encoder ablations, we report the effectiveness of a

two-stream approach in fusing affordance information to form

meaningful latent representations. Moreover, we conduct var-

ious experiments that indicate the robustness of the approach

to the presence of distractors in the scene. We also showcase

the ability of our method to generalize to novel objects in

simulated environments with no retraining, even when the

interaction region geometry drastically varies. Finally, we con-

duct real-world experiments that evaluate ADP3 in cluttered

scenes and novel object orientations, further highlighting the

efficacy of affordance guidance.

Limitations and Future Work. Although our work im-

proves the generalization abilities of 3D Diffusion Policy,

our method has several limitations. Firstly, obtaining accurate

2D affordance heatmaps for all objects encountered in the

real-world is still a challenge. Occlusions and the presence

of several objects in close proximity can make affordance

regions harder to extract. Moreover, the use of 3D semantic

maps leads to a loss of visual context in comparison to

images, and the policy could struggle with tasks that require

complex understanding of color and texture. Future work can

address this issue by exploring ways to inject task-specific

visual context, beyond affordances, through pretrained visual

representations.

VII. ACKNOWLEDGMENTS

I would like to extend my gratitude to Dr. Jens Kober for

his valuable guidance and support. I am equally grateful to

Jeyhoon Maskani for the frequent and thought-provoking dis-

cussions that often resulted in good ideas. A special thanks to

Milad Malekzadeh for giving me the opportunity to carry out

my research, and for providing me with necessary hardware

and computing resources. Finally, I thank Anna Vorontsova

for the insightful discussions and reviews that significantly

improved my work.

REFERENCES

[1] C. Chi, Z. Xu, S. Feng, E. Cousineau, Y. Du,

B. Burchfiel, R. Tedrake, and S. Song, “Diffusion

policy: Visuomotor policy learning via action diffu-

sion,” The International Journal of Robotics Research,

p. 02783649241273668, Oct. 2024. Publisher: SAGE

Publications Ltd STM.

[2] F. Lin, Y. Hu, P. Sheng, C. Wen, J. You, and Y. Gao,

“Data Scaling Laws in Imitation Learning for Robotic

Manipulation,” Oct. 2024. arXiv:2410.18647 [cs].

[3] Y. Ze, G. Zhang, K. Zhang, C. Hu, M. Wang, and H. Xu,

“3D Diffusion Policy: Generalizable Visuomotor Policy

Learning via Simple 3D Representations,” in Robotics:

Science and Systems XX, Robotics: Science and Systems

Foundation, July 2024.

[4] J. J. Gibson, The ecological approach to visual percep-

tion: classic edition. Psychology press, 2014.

[5] G. Li, D. Sun, L. Sevilla-Lara, and V. Jampani, “One-shot

open affordance learning with foundation models,” in

Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pp. 3086–3096, 2024.

[6] M. J. Kim, K. Pertsch, S. Karamcheti, T. Xiao, A. Balakr-

ishna, S. Nair, R. Rafailov, E. Foster, G. Lam, P. Sanketi,

et al., “Openvla: An open-source vision-language-action

model,” arXiv preprint arXiv:2406.09246, 2024.

[7] K. Black, N. Brown, D. Driess, A. Esmail, M. Equi,

C. Finn, N. Fusai, L. Groom, K. Hausman, B. Ichter,

S. Jakubczak, T. Jones, L. Ke, S. Levine, A. Li-Bell,

M. Mothukuri, S. Nair, K. Pertsch, L. X. Shi, J. Tanner,

Q. Vuong, A. Walling, H. Wang, and U. Zhilinsky, “π0:

A vision-language-action flow model for general robot

control,” 2024.

[8] J. Bjorck, F. Castañeda, N. Cherniadev, X. Da, R. Ding,

L. Fan, Y. Fang, D. Fox, F. Hu, S. Huang, et al., “Gr00t

n1: An open foundation model for generalist humanoid

robots,” arXiv preprint arXiv:2503.14734, 2025.

[9] N. M. Shafiullah, Z. Cui, A. A. Altanzaya, and L. Pinto,

“Behavior transformers: Cloning k modes with one

stone,” Advances in neural information processing sys-

tems, vol. 35, pp. 22955–22968, 2022.

[10] P. Florence, C. Lynch, A. Zeng, O. Ramirez, A. Wahid,

L. Downs, A. Wong, J. Lee, I. Mordatch, and

J. Tompson, “Implicit Behavioral Cloning,” Sept. 2021.

arXiv:2109.00137 [cs].

[11] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn, “Learn-

ing Fine-Grained Bimanual Manipulation with Low-Cost

Hardware,” Apr. 2023. arXiv:2304.13705 [cs].

[12] A. Zeng, P. Florence, J. Tompson, S. Welker, J. Chien,

M. Attarian, T. Armstrong, I. Krasin, D. Duong, V. Sind-

hwani, et al., “Transporter networks: Rearranging the

visual world for robotic manipulation,” in Conference on

Robot Learning, pp. 726–747, PMLR, 2021.

[13] S. James, K. Wada, T. Laidlow, and A. J. Davison,

“Coarse-to-fine q-attention: Efficient learning for visual

robotic manipulation via discretisation,” in Proceedings

of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pp. 13739–13748, 2022.

[14] T. Gervet, Z. Xian, N. Gkanatsios, and K. Fragki-

adaki, “Act3d: 3d feature field transformers for multi-

task robotic manipulation,” in 7th Annual Conference on

Robot Learning, 2023.

[15] T.-W. Ke, N. Gkanatsios, and K. Fragkiadaki, “3D Dif-

fuser Actor: Policy Diffusion with 3D Scene Represen-

tations,” July 2024. arXiv:2402.10885 [cs].

[16] M. Caron, I. Misra, J. Mairal, P. Goyal, P. Bojanowski,

and A. Joulin, “Unsupervised learning of visual features

by contrasting cluster assignments,” Advances in neural

information processing systems, vol. 33, pp. 9912–9924,

2020.

[17] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton,

“A simple framework for contrastive learning of visual

representations,” in International conference on machine

learning, pp. 1597–1607, PmLR, 2020.

[18] S. Parisi, A. Rajeswaran, S. Purushwalkam, and

A. Gupta, “The Unsurprising Effectiveness of Pre-

Trained Vision Models for Control,” Aug. 2022.

arXiv:2203.03580 [cs].

[19] D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi, “Dream

to Control: Learning Behaviors by Latent Imagination,”

Mar. 2020. arXiv:1912.01603 [cs].

[20] C. Gelada, S. Kumar, J. Buckman, O. Nachum, and

M. G. Bellemare, “DeepMDP: Learning Continuous

Latent Space Models for Representation Learning,” in

Proceedings of the 36th International Conference on

Machine Learning, pp. 2170–2179, PMLR, May 2019.

ISSN: 2640-3498.

[21] A. Zhang, R. McAllister, R. Calandra, Y. Gal, and

S. Levine, “Learning Invariant Representations for Rein-

forcement Learning without Reconstruction,” Apr. 2021.

arXiv:2006.10742 [cs].

[22] L. Yen-Chen, A. Zeng, S. Song, P. Isola, and T.-Y. Lin,

“Learning to See before Learning to Act: Visual Pre-

training for Manipulation,” July 2021. arXiv:2107.00646

[cs].

[23] R. Shah and V. Kumar, “RRL: Resnet as repre-

sentation for Reinforcement Learning,” Nov. 2021.

arXiv:2107.03380 [cs].

[24] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick,

“Masked autoencoders are scalable vision learners,” in

Proceedings of the IEEE/CVF conference on computer

vision and pattern recognition, pp. 16000–16009, 2022.

[25] A. Stone, T. Xiao, Y. Lu, K. Gopalakrishnan, K.-H. Lee,

Q. Vuong, P. Wohlhart, S. Kirmani, B. Zitkovich, F. Xia,

C. Finn, and K. Hausman, “Open-World Object Manipu-

lation using Pre-trained Vision-Language Models,” Oct.

2023. arXiv:2303.00905 [cs].

[26] S. Nair, A. Rajeswaran, V. Kumar, C. Finn, and A. Gupta,

“R3M: A Universal Visual Representation for Robot

Manipulation,” Nov. 2022. arXiv:2203.12601 [cs].

[27] A. Majumdar, K. Yadav, S. Arnaud, J. Ma, C. Chen,

S. Silwal, A. Jain, V.-P. Berges, T. Wu, J. Vakil, et al.,

“Where are we in the search for an artificial visual

cortex for embodied intelligence?,” Advances in Neural

Information Processing Systems, vol. 36, pp. 655–677,

2023.

[28] Y. J. Ma, S. Sodhani, D. Jayaraman, O. Bastani,

V. Kumar, and A. Zhang, “VIP: Towards Universal Vi-

sual Reward and Representation via Value-Implicit Pre-

Training,” Mar. 2023. arXiv:2210.00030 [cs].

[29] K. Mo, L. Guibas, M. Mukadam, A. Gupta, and S. Tul-

siani, “Where2Act: From Pixels to Actions for Articu-

lated 3D Objects,” Aug. 2021. arXiv:2101.02692 [cs].

[30] Y. Wang, R. Wu, K. Mo, J. Ke, Q. Fan, L. J. Guibas, and

H. Dong, “AdaAfford: Learning to Adapt Manipulation

Affordance for 3D Articulated Objects via Few-Shot

Interactions,” in Computer Vision – ECCV 2022: 17th

European Conference, Tel Aviv, Israel, October 23–27,

2022, Proceedings, Part XXIX, (Berlin, Heidelberg),

pp. 90–107, Springer-Verlag, Oct. 2022.

[31] Y. Geng, B. An, H. Geng, Y. Chen, Y. Yang, and

H. Dong, “RLAfford: End-to-End Affordance Learn-

ing for Robotic Manipulation,” in 2023 IEEE Interna-

tional Conference on Robotics and Automation (ICRA),

pp. 5880–5886, May 2023.

[32] T.-T. Do, A. Nguyen, and I. Reid, “AffordanceNet: An

End-to-End Deep Learning Approach for Object Affor-

dance Detection,” Mar. 2018. arXiv:1709.07326 [cs].

[33] M. Goyal, S. Modi, R. Goyal, and S. Gupta, “Human

Hands as Probes for Interactive Object Understanding,”

Apr. 2022. arXiv:2112.09120 [cs].

[34] T. Nagarajan, C. Feichtenhofer, and K. Grauman,

“Grounded Human-Object Interaction Hotspots from

Video,” Apr. 2019. arXiv:1812.04558 [cs].

[35] S. Liu, S. Tripathi, S. Majumdar, and X. Wang, “Joint

Hand Motion and Interaction Hotspots Prediction from

Egocentric Videos,” in 2022 IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), (New

Orleans, LA, USA), pp. 3272–3282, IEEE, June 2022.

[36] S. Bahl, R. Mendonca, L. Chen, U. Jain, and D. Pathak,

“Affordances from Human Videos as a Versatile Repre-

sentation for Robotics,” in 2023 IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR),

(Vancouver, BC, Canada), pp. 01–13, IEEE, June 2023.

[37] Y. Ju, K. Hu, G. Zhang, G. Zhang, M. Jiang, and

H. Xu, “Robo-ABC: Affordance Generalization Beyond

Categories via Semantic Correspondence for Robot Ma-

nipulation,” Jan. 2024. arXiv:2401.07487 [cs].

[38] Y. Kuang, J. Ye, H. Geng, J. Mao, C. Deng, L. Guibas,

H. Wang, and Y. Wang, “RAM: Retrieval-Based Af-

fordance Transfer for Generalizable Zero-Shot Robotic

Manipulation,” July 2024. arXiv:2407.04689 [cs].

[39] H. Chen, B. Sun, A. Zhang, M. Pollefeys, and

S. Leutenegger, “VidBot: Learning Generalizable 3D Ac-

tions from In-the-Wild 2D Human Videos for Zero-Shot

Robotic Manipulation,” Mar. 2025. arXiv:2503.07135

[cs].

[40] T. Cheng, L. Song, Y. Ge, W. Liu, X. Wang, and

Y. Shan, “Yolo-world: Real-time open-vocabulary object

detection,” in Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pp. 16901–

16911, 2024.

[41] Y. Ze, Z. Chen, W. Wang, T. Chen, X. He, Y. Yuan, X. B.

Peng, and J. Wu, “Generalizable humanoid manipulation

with improved 3d diffusion policies,” arXiv preprint

arXiv:2410.10803, 2024.

[42] J. Yang, Z.-a. Cao, C. Deng, R. Antonova, S. Song,

and J. Bohg, “EquiBot: SIM(3)-Equivariant Diffusion

Policy for Generalizable and Data Efficient Learning,”

Oct. 2024. arXiv:2407.01479 [cs].

[43] D. Wang, S. Hart, D. Surovik, T. Kelestemur, H. Huang,

H. Zhao, M. Yeatman, J. Wang, R. Walters, and

R. Platt, “Equivariant Diffusion Policy,” Oct. 2024.

arXiv:2407.01812 [cs].

[44] S. Wang, J. You, Y. Hu, J. Li, and Y. Gao, “SKIL: Seman-

tic Keypoint Imitation Learning for Generalizable Data-

efficient Manipulation,” Jan. 2025. arXiv:2501.14400

[cs].

[45] K. Rana, J. Abou-Chakra, S. Garg, R. Lee, I. Reid, and

N. Suenderhauf, “Affordance-Centric Policy Learning:

Sample Efficient and Generalisable Robot Policy Learn-

ing using Affordance-Centric Task Frames,” Oct. 2024.

arXiv:2410.12124 [cs].

[46] Y. Wang, G. Yin, B. Huang, T. Kelestemur, J. Wang,

and Y. Li, “GenDP: 3D Semantic Fields for Category-

Level Generalizable Diffusion Policy,” Oct. 2024.

arXiv:2410.17488 [cs].

[47] H. Li, Q. Feng, Z. Zheng, J. Feng, and A. Knoll,

“Language-Guided Object-Centric Diffusion Policy for

Collision-Aware Robotic Manipulation,” July 2024.

arXiv:2407.00451 [cs].

[48] T. Yu, D. Quillen, Z. He, R. Julian, A. Narayan, H. Shiv-

ely, A. Bellathur, K. Hausman, C. Finn, and S. Levine,

“Meta-World: A Benchmark and Evaluation for Multi-

Task and Meta Reinforcement Learning,” June 2021.

arXiv:1910.10897 [cs].

[49] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet:

Deep learning on point sets for 3d classification and

segmentation,” 2017.

[50] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++:

Deep hierarchical feature learning on point sets in a

metric space,” Advances in neural information processing

systems, vol. 30, 2017.

[51] Y. Zhou, C. Barnes, J. Lu, J. Yang, and H. Li, “On the

continuity of rotation representations in neural networks,”

2020.

N x hN x hN x h

Conv1d
(h)

N ⨯ 3

Max-Pool

N ⨯ h

h

C N ⨯ 2h N ⨯ h

Initial Feature Extraction Processing Blocks ⨯4

Conv1d
(h)

N ⨯ 4hC N ⨯ o

Conv1d
(h)

Feature Aggregation

Max-Pool

o

M ⨯ 3 M ⨯ ha
Linear (ha) + ReLU

⨯3
oa

Scene
Point
Cloud

Affordance
Point
Cloud

Affordance
Encoding

Scene
Encoding

Global Feature Vector

Local Features

Scene Encoder

Affordance Encoder

Fig. 14: Detailed Network Architecture The architecture consists of two parallel processing streams. Top: The scene encoder

([41]) processes the entire point cloud using an initial feature extraction layer (Conv1d-h & max-pooling), followed by four

processing blocks that combine local features with global context (features). Note that after the first processing block, the

subsequent processing blocks receive the feature vector processed by the previous processing block. The four feature vectors

from the processing blocks are concatenated and aggregated to extract a scene encoding of dimension o. Bottom: The affordance

encoder processes points above a threshold using three fully-connected layers with ReLU activations, extracting in an affordance

encoding of dimension oa. The final representation concatenates both encodings. Here, N denotes the number of input points,

M the number of affordance points (M ≤ N), h the hidden dimension, o the scene encoding dimension, ha (128) the affordance

hidden dimension and oa the affordance encoding dimension. C represents the concatenation operation.

APPENDIX

A. Detailed Encoder Ablations

In our work, we use a two-stream approach to process the scene and affordance point clouds separately. We found that fusing

the encodings using two streams to form the observation representation was the most effective strategy to integrate affordances.

The scene encoder is a PointNet-style pyramidal encoder (see Figure 14), while the affordance encoder is a simple MLP. The

scene encoder differs from the PointNet encoder in a few significant ways, similar to [41]:

• No Batch Normalization (BN). BN negatively affects Exponential Moving Average (EMA) that stabilizes the training

dynamics of the diffusion model.

• No T-Net layers. T-Net is a small network used inside the PointNet architecture that predicts transformations to align input

point clouds to attain transformation invariance. Such invariance is beneficial in 3D object classification and segmentation

since the embedding does not change with the object’s spatial orientation. However, in our case, the policy needs access to

the exact spatial position and orientation of the target object in order to predict accurate action sequences. Some methods

have experimented with equivariant latent representations as a mechanism to overcome this issue but are still not suitable

for generalizable policy learning [42, 43]. This is because equivariance relies on scene symmetry and works best when

there is a single object in the scene, which is rarely the case in the real world.

• Captures global features more effectively. The PointNet architecture is incapable of capturing local geometry by design

[50]. The pyramidal encoder overcomes this limitation partially by repeatedly sharing global features with local features

as illustrated in Figure 14.

Processing scene and affordance point clouds separately and then fusing the features has already been shown to be more

effective than early fusion. However, a more obvious design decision to encode point clouds would be the use of standard

point-cloud encoders such as PointNet and PointNet++. Even though these cloud encoders performed poorly in the encoder

ablation studies in [3], they are yet to be evaluated on 3D affordance heatmaps. We list the encoders we select for our extended

encoder ablation studies on Meta-World tasks basketball, coffee push, and bin picking:

1) Pyramidal Encoder (DP3): We include the pyramidal encoder which does not leverage affordance information as the

baseline.

ROI-SA1

PointNet (Scene)

PointNet
(ROI)

Scene
encoding

ROI
encoding

(N, d+C) (N', K, d+C)

Sampling
&

Grouping

(N', d+C')

PointNet

ROI-SA2SA1 PointNet EncodingSA2

(a) (b)

(N, d+C) (N', K, d+C)

Sampling

(N', d+C')
PointNet

(N'-1, d+C)

ROI
Extraction

(1, d+C) Grouping

Grouping

PointNet++ ROI-Informed PointNet++

Scene
features

Affordance
features

ROI-Informed Set AbstractionSet Abstraction

Fig. 15: (a) PointNet++ architecture. PointNet++ captures local geometry effectively through a hierarchical approach, using

two SA layers. Centroids are sampled using FPS and the local geometry at these centroids are extracted. The sparse affordance

regions could be discarded in this sampling process, which can detrimentally affect policy learning. (b) ROI-Informed

PointNet++ architecture. Using ROI-Informed SA layers, ensure that the affordance points are not discarded.

2) PointNet++ (PN++): Even though the pyramidal encoder allows for better local geometry awareness than the PointNet

encoder, it misses some key features that PointNet++ possesses. PointNet++ uses Set Abstraction (SA) layers to encode a point

cloud. Our point clouds have d = 3, consisting of the cartesian coordinates, and C = 1 for the affordance channel. In SA

layers, a subset of the points are selected as centroids (sampling), and points in the local neighborhood are gathered (grouping),

as depicted in Figure 15. Subsequently, a small PointNet encoder extracts local features from each group. This hierarchical

approach increases receptive field as the layers get deeper, and effectively captures local as well as global geometry.

3) ROI-Informed PointNet++ (ROI-PN++): Due to the sampling process within the SA layers of the PN++ encoder, it cannot

be guaranteed that affordance regions are represented in the embedding. To address this, we modify the PN++ architecture

by changing the sampling stage as illustrated in Figure 15. In each SA layer inside the vanilla PN++ encoder, we sample N ′

centroids from N ′ points. Instead of sampling N ′ points, we first extract an Region Of Interest (ROI) point (1, d+ C). ROI

extraction is simply selecting the point (and corresponding features) that has the highest affordance score. We then sample the

rest of the points (N ′ − 1) using FPS, and concatenate it with the affordance point, resulting in N ′ centroids. This explicit

processing step ensures that the output of the SA layer contains the affordance features. This structure is preserved throughout

the first two SA layers. We then process the affordance and scene features through separate PointNets, obtaining two 1D features

vectors. We concatenate these in order to obtain the final observation embedding. This approach allows for improved control

over the affordance signal without increasing the network size significantly, simply by modifying the sampling procedure and

processing the regions of interest separately at the final stage.

4) ADP3 Encoder (ADP3): We also include our best-performing encoder that separately processes scene and affordance

points, followed by late-fusion, for better comparison.

Results and Analysis. We illustrate the learning curves of the policies trained with various encoder architectures in Figure 16.

It is observed that despite providing an affordance signal, PN++ barely outperforms the baseline, which has no access to

affordance information. PN++ is unable to extract task-relevant latent representations which the policy can use to improve task

performance. The affordance points are sparse in comparison to the scene points: on average, 24 out of 4096 points belong to

the affordance region for the bin-picking task.

In contrast, by modifying the sampling process, PN++ improves the ensuring that the task performance by 31% in the bin

picking task and by 15% in the coffee push task. Since the affordance points are ensured to be present and well-represented in

the observation encoding, ROI-PN++ significantly improves the task performance. However, it is still not consistently better

0 1 2 3 4 5 6 7
Training Steps (k)

0%

20%

40%

60%

80%

100%

Su
cc

es
s R

at
e

Basketball

Encoder Architecture
ADP3
DP3
PN++
ROI-PN++

0 1 2 3 4
Training Steps (k)

0%

20%

40%

60%

80%

Su
cc

es
s R

at
e

Coffee Push

Encoder Architecture
ADP3
DP3
PN++
ROI-PN++

0 1 2 3 4 5 6 7
Training Steps (k)

0%

20%

40%

60%

80%

Su
cc

es
s R

at
e

Bin Picking

Encoder Architecture
ADP3
DP3
PN++
ROI-PN++

Encoder Basketball Coffee Push Bin Picking

DP3 99 20 18

PN++ 80 22 21

ROI-PN++ 81 37 52

ADP3 100 73 78

TABLE VI: Success rates (%) for different encoder architec-

tures

Fig. 16: Learning curves and final success rates for different encoder architectures for three manipulation tasks. PointNet++-

based encoders underperform in comparison to the ADP3 encoder (late fusion).

than the DP3 encoder as observed in the basketball task, where ROI-PN++ only reaches an SR 0f 80% in comparison to

DP3’s 99%. Moreover, it is inferior to ADP3, a much simpler approach of processing the scene and affordance point clouds

separately. We hypothesize that this performance gap is due to the lack of a loss function that trains the encoder to generate rich

observation embeddings. We train the encoder from scratch along with the policy on a behavioral cloning loss which is found

to be insufficient on its own to generate meaningful representations. This could get exacerbated as the network complexity

increases, which is the case for ROI-PN++. Future work could involve exploring pretraining strategies with reconstruction or

object-part segmentation objectives, and fine-tune the encoder on the specific task.

B. Sample Efficiency

Sample efficiency is an important aspect of scaling imitation learning policies since collecting several demonstrations can

be a time-consuming and labor-intensive task. We test the sample efficiency of our policies by training on 2n demonstrations,

where n ∈ {1, 2, 3, 4, 5}. We train on two Meta-World tasks: handle press and coffee push and average the results over seeds

0, 1, and 2.

Episodes
SR (%) Normalized SR (%)

DP3 ADP3 DP3 ADP3

2 33 38 71 40
4 42 84 90 88
8 43.5 87 94 91
16 46.5 92 100 96
32 46.5 95.5 100 100

TABLE VII: Comparison of absolute and normalized success rates (%) averaged across two tasks. Normalized SR values are

obtained by scaling the SR with respect to each policy’s peak SR. Both methods have comparable sample efficiencies.

It is observed that although ADP3 significantly outperforms DP3 in terms of peak SR, there is no clear evidence to make

a case for either policy in terms of sample efficiency. As indicated by the normalized SR, both policies cross 90% of their

maximum success rates with just 4 demonstrations.

2 4 8 16 32
Number of Demonstrations

0%

20%

40%

60%

80%

100%

Su
cc

es
s R

at
e

DP3 - Handle Press
DP3 - Coffee Push

ADP3 - Handle Press
ADP3 - Coffee Push

Fig. 17: Success rate as a function of the number of demonstrations for handle press and coffee push.

C. Implementation Details

1) Hyperparameters: We report the hyperparameters of our diffusion model in Table VIII; we use nearly identical

hyperparameters for simulated and real-world tasks. Both states and actions are normalized to the range [−1, 1] during training.

The action horizon denotes the number of future actions predicted by the policy, and the action steps are the number of steps

actually executed by the policy. The observation steps are the number of observation frames which the policy conditions its

actions on. The hyperparameters for the diffusion model not reported here remain the same as in [1].

Hyperparameter Value

General Configuration

Action Horizon 16
Observation Steps 2
Action Steps 8
Latency Steps 0 (sim), 4 (real)

Diffusion Parameters

Diffusion Steps (Training) 50
Inference Steps 16
Noise Schedule Function Squared Cosine

Training Parameters

Batch Size 64
Learning Rate 3.0e-4
Optimizer AdamW
Number of Epochs 401
LR Warmup Steps 500

TABLE VIII: Hyperparameters of the Model

	Introduction
	Research Question
	Literature Research Methodology
	Report Organization

	Diffusion Models
	Background
	Denoising Diffusion Probabilistic Models (DDPMs)
	Score-Based Generative Models (SGMs)
	Stochastic Differential Equations (SDEs)

	Research Landscape
	Conclusion

	Diffusion Models in Robotic Manipulation
	Recent Advances in Policy Learning
	Diffusion in Robotics
	Diffusion Policy
	Diffusion Policy Formulation
	Diffusion Policies and Analysis of Design Choices
	Generalization

	Conclusion

	Affordance Learning
	Learning Affordances through Interaction
	Affordance Learning from Human Videos
	Affordance Learning from 2D/3D Visual Representations
	Conclusion

	Discussion
	Conclusion

	References
	Appendix
	Marginalizing the Joint Distribution

	Introduction
	Related Work
	Visual Imitation Learning
	Affordance Learning
	Generalization in Diffusion Policies

	Method
	Problem Formulation
	Affordance-Guided Diffusion Policy
	Training Objective
	Visual Encoder
	Implementation Details

	Simulation Experiments
	Effects of Affordance Conditioning
	Improvement in Task Performance
	Robustness to Distractor Objects
	Instance Generalization

	Ablation Studies
	Encoder Architecture

	Real World Experiments
	Evaluation in Clutter
	Generalization to Novel Object Configurations

	Conclusion
	Acknowledgments
	Appendix
	Detailed Encoder Ablations
	Pyramidal Encoder (DP3)
	PointNet++ (PN++)
	ROI-Informed PointNet++ (ROI-PN++)
	ADP3 Encoder (ADP3)

	Sample Efficiency
	Implementation Details
	Hyperparameters

