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Abstract

Session types are a formal method to describe communication protocols between
two or more actors. Protocols that type check are guaranteed to respect communica-
tion safety, linearity, progress, and session fidelity. Basic session types, however, do
not in general guarantee anything about the contents of messages, while real-life appli-
cations of structured communication, such as money transfers at the ING bank, could
benefit greatly from content safety. In this work, we show how to state, verify, and run
session-typed protocols with dependent variables in Idris, using Idris’ ST library.

We also present an extension to the protocol description language Scribble. Scribble
is a language for defining high-level global protocols between multiple actors and comes
with a tool that automatically generates type signatures of local protocols for each actor
in Java, in a way that these type signatures ensure that local actors follow the global
protocol specification. We describe a new variant of the Scribble language which adds
support for dependent variables, and a new tool for automatically generating Idris type
signatures of local protocols for actors in a way that enforces dependent invariants.

Thesis Committee:

Chair: Prof. Dr. E. Visser, Faculty EEMCS, TU Delft
Committee Member: Prof. Dr. P. D. Mosses, Swansea University, United Kingdom
Committee Member: Dr. N. Yorke-Smith, Faculty EEMCS, TU Delft
Committee Member: J. Bosman, ING
University Supervisor: Dr. C. Bach Poulsen, Faculty EEMCS, TU Delft

W.R.vanGeest@student.tudelft.nl




Preface
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Finally, if all else failed, my friends from Åsene were always ready to grab a beer and forget
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I hope it will be a learning experience as well, albeit on a more academic level.

Enjoy the read.
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Chapter 1

Introduction

IT landscapes in big corporations involve interaction and communication between many ac-
tors. Ensuring that an implementation of this communication structure is correct is an impor-
tant aspect of its development, especially in sensitive environments such as banking, where
errors in transactions can have severe consequences. Session types (Honda, Yoshida, and
Carbone 2008) are a type discipline that statically provide guarantees regarding communi-
cation protocols. They ensure that in asynchronous, multi-party protocols: messages are
handled in the correct order; no deadlock can occur; all actors adhere to the protocol; and
message content is of the expected type. These properties are called linearity; progress; session
fidelity; and communication safety, respectively1.

While these properties provide guarantees regarding the structure of communication,
they provide little information regarding the content of messages within that communica-
tion. Consider a simple example where a customer requests a bank to transfer an amount
of money to a seller. A session typed version of this protocol ensures that the seller will re-
ceive an amount, but does not ensure whether that amount is equal to the amount initially
requested by the buyer. This project introduces invariants to session types to help solve the
aforementioned problem.

This improvement to session types is not new. Toninho and Yoshida (2017) provide an
extensive theoretical addition of invariants to multi-party session types, but do not (yet) have
an implementation of this theory. Wu and Xi (2017) provide the theory and implementation
of invariants with session types, but only for binary session types, not multi-party. Instead,
this project provides a method for implementing multi-party session types with message
content invariance.

The method uses Idris, a dependently typed language, to implement the protocols. De-
pendent types allow types to become dependent on their values, enabling the static checking
of not only content type, but also its value. Idris is, however, a language for which expertise
is required. For this project, two actors are considered: (communication) protocol designers,
who design and describe the protocol; and programmers, who end up creating the program
that represents said protocol. The latter are required for their aforementioned programming
expertise, but do not necessarily know the full workings of the protocol. This knowledge
needs to be communicated by the protocol designers, and this transfer of information intro-
duces the risk of errors regarding the safety or fidelity of the original protocol. Therefore, a
method is desired to not only enable designers to define a protocol, but also make a resulting
machine executable implementation.

The goal of this project is therefore to:

Support development of declarative machine executable implementations for multi-party
protocols with dependently typed invariants.

1See section 6.1 for more information on session types.
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1. Introduction

This goal breaks down into a number of objectives:

• Safe communication protocols

• Declarative machine-executable protocols

• Enable design by non-programmers

It is important that the protocols are safe. Session types provide a solid basis for this
safety, but the goal is to extend such guarantees into the implementation, including the newly
introduced invariants. This implementation, or machine-executable protocol, is desired to
provide not only a method of protocol design, but also a working program that can be used
to execute the results safely. Finally, as much of this process as possible should be automated
to ensure that the translation from protocol design to implementation is correct with respect
to safety and protocol fidelity. This has led to three contributions:

• A method for implementing session types with invariants in Idris

• ScribbleI, an extension of Scribble including invariants

• A translation tool from ScribbleI to Idris

In chapter 2, a method for implementing multi-party session types in Idris is shown, us-
ing an example protocol that will be used throughout the report. This is followed by showing
how invariants can be modelled by dependent types in these implementations. Idris was cho-
sen due to its support for dependent types, which can be used to model and statically check
invariants, and its ST Library, which provided existing tools to handle stateful programs.

Chapter 3 then introduces Scribble, a protocol design language designed by Honda2. This
language is much more comprehensible for non-experts and allows for the quick design
and checking of new protocols. Additionally, we propose an extension to Scribble, Scrib-
bleI. ScribbleI extends Scribble with support for defining invariants in a protocol. Its syntax
is created using SDF3 Vollebregt, Kats, and Visser 2012, a language that provides support
for declarative definition of the syntax of programming languages and domain-specific lan-
guages.

While the original Scribble program can generate Java code that can be used to create a
machine executable implementation, its compatibility with invariants is unclear. Therefore,
we developed a method to generate Idris code from a ScribbleI protocol. Currently, this
method generates the function signatures and protocol execution in Idris, which ensure that
no deviation from either the protocol or invariant specifications is possible. However, while
generating parts of the implementation of the functions is feasible, it is not supported by
the current version. The code generation is performed by Stratego, an abstract syntax tree
transformation language. This process is described in chapter 4.

Chapter 5 concludes the description of the current project by providing an evaluation.
This consists of a description of the method of testing throughout the development process,
and a more general evaluation of the state of the current project with respect to the desired
goals.

In chapter 6, a more detailed explanation of session types is given for those unfamiliar
with them. It then provides an overview of related research publications.

The missing pieces are elaborated upon in chapter 7, where a number of desired features
are given.

Finally, chapter 8 gives a conclusion of the project.

2As described by Yoshida, Hu, et al. 2013
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Chapter 2

Implementing Session Types

Session types have been implemented in a number of languages, like Haskell, C, and Java.
This project shows that multi-party, asynchronous session types can also be implemented in
the dependently typed language Idris1 (Brady 2013b). Dependent types are types that are,
as their name suggests, dependent on values. This property is useful when looking for static
methods of checking invariant values. Moreover, Idris provides support for implementing
stateful programs through the ST Library, as this chapter describes.

To help with understanding the implementation of a communication protocol, an exam-
ple protocol is provided in section 2.1. This example is used throughout the report when
new concepts are introduced. Section 2.2 then shows how this example can be implemented
in Idris. After the reader is familiarized with session types in Idris, the use of invariants in
such implementations is explained in section 2.3.

2.1 Running Example
This report will explain a number of different concepts. To help understand these, a running
example setting will be used throughout the whole report. The example covers a transaction
between a Customer who wants to buy an item from a Seller. Upon agreement of the trans-
action, the Customer requests its Bank to transfer the required funds to the Seller. Figure 2.1
shows this protocol as a transaction diagram.

First, a price request is sent from Customer to Seller (reqPrice). This request contains a
String representing the name of the item the Customer is interested in. The Seller replies
with an Integer in the message priceInfo, providing the price of the requested product. A
money transfer is then requested by the Customer from its Bank, with an Integer amount as

Customer Seller Bank

reqPrice(String)

priceInfo(Int)

reqTransfer(Int)

ackTransfer(Int)

Figure 2.1: A multi-party protocol

1Idris (n.d.). url: https://www.idris-lang.org/.
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2. Implementing Session Types

a parameter, and the Bank acknowledges this transaction by sending the funds to the Seller
in ackTransfer.

This is the basic example. Later in this report this example will be modified slightly to
explain more elaborate concepts, such as presenting an actor with a choice, or introducing
recursion. The setting, however, will remain the same.

This protocol can be defined as a session typed protocol. More specifically, it is a multi-
party session type protocol (Honda, Yoshida, and Carbone 2008), since it covers more than
two actors. As Honda, Yoshida, and Carbone (2008) describe, valid session type protocol are
guaranteed to have the following properties: linearity, progress, session fidelity, and communi-
cation type safety.

There is, however, one requirement that the current example does not account for. It
should be obvious that the price of the product that is discussed does not change during this
interaction, and hence, that the value of the price passed between the actors in the last three
interactions should always be the same. However, all that is guaranteed is that the content
is of the same type. This thesis presents a solution to this problem.

2.2 Session Types in Idris
This section elaborates on how session types can be implemented in Idris. Idris is a depen-
dently typed languages designed by Brady (2013a), designed from the start to emphasise
general purpose programming. Its development is open-source2, with Brady being the lead
contributor and designer.

Implementing a stateful protocol such as session types in a dependently typed language is
a challenge in itself. Thankfully, Idris has the ST Library (Brady 2016), an embedded domain-
specific language for the specification and implementation of stateful programs. While Brady
mentions the library was inspired by session types, the examples in his paper and the tuto-
rial3 do not provide exact instruction on how to implement them.

This section is split into four subsections. The first gives a short introduction to local pro-
tocols, a subset of protocols based on the previously introduced multi-party protocol. After-
wards, the use of the ST Library in this project is explained. An ST based program is broadly
divided into three parts: the interface, where function signatures are defined; the protocol,
where these signatures are used to describe the required protocol; and finally the implemen-
tation, where the functions are given an executable implementation. The subsections in this
chapter follow this pattern.

2.2.1 Local protocols

Implementing a multi-party session type protocol first requires generating local protocols for
each actor, based on the global protocol. In short, a local protocol is a version of the proto-
col from the viewpoint of one actor. How these protocols are generated exactly is discussed
in chapter 3. For now, it suffices to know that an actor is only aware of the interactions it
is involved in. The state transition system that represents the local protocols of each actor
for the running example can be seen in figure 2.2. A sending interaction is denoted with an
exclamation mark (!), and a receiving interaction with a question mark (?). The Seller, for
example, transitions from the initial state to state S1 upon receiving the reqPrice interaction
(?reqPrice(String)). The Idris implementations are implementations of these local protocols.
This makes it possible to create three distributed programs, as real life communication proto-
cols would require. In the following sections, the protocol for the Customer is implemented.

2Idris on Github (n.d.). url: https://github.com/idris-lang/Idris-dev.
3Idris ST tutorial: http://docs.idris-lang.org/en/latest/st/state.html
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2.2. Session Types in Idris

start

C1

C2

C3

!reqPrice(String)

?priceInfo(Int)

!reqTransfer(Int)

(a) Customer state transitions

start

S1

S2

S3

?reqPrice(String)

!priceInfo(Int)

?ackTransfer(Int)

(b) Seller state transitions

start

B1

B2

?reqTransfer(Int)

!ackTransfer(Int)

(c) Bank state transitions

Figure 2.2: Three transition system specifications for the three actors in Figure 2.1

� �
1 STrans :
2 (m : Type -> Type) ->
3 (resultType : Type) ->
4 (in_res : Resources) ->
5 (out_res : resultType -> Resources)

-> Type� �
(a)

� �
1 ST :
2 (m : Type -> Type) ->
3 (resultType : Type) ->
4 List (Action resultType) -> Type� �

(b)

Figure 2.3: Types of STrans and ST

The protocols for the Bank and Seller can be implemented in a similar manner. Their imple-
mentations can be included in the same program (file) by making use of separate namespaces
to avoid name conflicts, or created in a completely different program.

2.2.2 Interface

Before a protocol can be described in Idris, the function signatures of the interactions need
to be specified. This is done in the interface. An Idris interface is similar to a Haskell type
class or trait in Rust.

The type of stateful computations in the ST library, STrans, is given in Figure 2.3(a). Fig-
ure 2.3(b) shows the sugared version ST. The type STrans represents a sequence of actions
which can manipulate state. In it, m represents an underlying computation context that state-
ful operations are parameterized by (usually a monad such as the IO monad); resultType
is the result type of the computation; in_res is a list of resources available before executing
the actions, representing the pre-state; and out_res is the list of resources available after ex-
ecuting the actions, representing the post-state. To avoid the necessity of listing all available
resources, the ST type level function computes this list given a list of actions. An Action can
take several forms, which will be shown in the examples in this section.

Figure 2.4 shows the interface for the Customer transition system from Figure 2.2(a). The
state transition functions for each interaction is given, along with two functions that start
and end the protocol safely: start and done respectively. The state is given by the State
dependent type StateT. The required resources and resulting state transitions can be seen
in the signatures. reqPrice, for example, takes l and s as inputs. l is a label variable pointing
to the resource that holds the state, referred to as the stateholder. s is a String, in this case

5



2. Implementing Session Types

� �
1 data State = Ready | C1 | C2 | C3
2

3 interface Customer (m : Type -> Type) where
4 StateT : State -> Type
5

6 start : ST m (Maybe Var) [addIfJust (StateT Ready)]
7

8 done : (l : Var) -> ST m () [remove l (StateT C3)]
9

10 reqPrice : (l : Var) -> (s : String) -> ST m () [l ::: StateT Ready :-> StateT C1]
11

12 priceInfo : (l : Var) -> ST m (Maybe Int) [l ::: StateT C1 :->
13 \p => StateT (case p of
14 Just _ => C2
15 Nothing => C3)]
16

17 reqTransfer : (l : Var) -> (p : Int) -> ST m () [l ::: StateT C2 :-> StateT C3]� �
Figure 2.4: Interface for Customer

the name of the product the Customer is interested in. The ST signature specifies that there is
no return type (as indicated by the unit type ()), and that the resource at label l must be in
state Ready at the moment that this function is called. After the actions are executed, l will
be in state C1.

Transitioning from one state to another is straight-forward, but sometimes this is not suf-
ficient to represent all possible outcomes of a function. One example is handling unexpected
communication errors. Even though session types help prevent errors through design, the
possibility of network errors still exist. The ST library provides an Action form handle this:� �

1 l ::: ty_in :-> (\res -> ty_out)� �
In this form, the resulting state ty_out may depend on the function res. Figure 2.4 shows
this form by augmenting the function signature of priceInfo with simple error handling: in
case something goes wrong, the state transitions to the final state C3 and the protocol aborts.
This transition is dependent on the result of the return type: the Maybe type expects either a
Just Int value, or Nothing. In case of the former, the state transitions to the next state. In
case of the latter, it skips to the final state.

Figure 2.4 has shown an interface for the Customer protocol. The ST library has a larger
set of possibilities than shown here, but the provided explanation is sufficient for the im-
plementation of session type protocols. While the interface specifies the state transitions, it
does not explicitly specify the order of interactions or handling of variables, nor does it state
how to handle the expected variables or what the state changes entail. The following sections
explain how this functionality is added.

2.2.3 Protocol

The protocol section of an Idris session type implementation is where the execution order of
interactions is specified. It uses the type signatures from the interface, as well as additional
functions, to set up the protocol and communication between actors.

Figure 2.5 shows the protocol for the running example’s Customer. The first line lists the
interfaces used in this block, in this case ConsoleIO, an input/output interface, and the pre-
viously described Customer interface. The protocol function makes use of the do-notation,
familiar from Haskell, which is used to sequence operations. It starts with setting up the
stateholder c using start on line 4. Looking back at the function definition of start as
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� �
1 using (ConsoleIO io, Customer io)
2 protocol : ST io () []
3 protocol =
4 do Just c <- start
5 | Nothing => pure ()
6 let product = "Book"
7 reqPrice c product
8 Just p <- priceInfo c
9 | Nothing => done c
10 reqTransfer c p
11 done c� �

Figure 2.5: Protocol for Customer

specified in the interface (Figure 2.4), a Maybe return type is expected. A Maybe returns ei-
ther a Just v, where v is a value of the type specified in the definition, or it may return a
Nothing. This is usually used to represent a function that may fail. Lines 4 and 5 show how
each of these is handled. When a Just value is returned, this value is assigned to c and used
throughout the protocol. However, when Nothing is returned, pure () is called, a function
which returns its argument and is used here to end the protocol. The next line, 6, defines
the name of a product. The first interaction of the protocol, reqPrice, is a simple call to the
function. The next interaction, as we just saw, has the possibility to fail, returning either a
Just value, or Nothing. Lines 8 and 9 show how this is handled. In case of the exception,
receiving Nothing, the state transitions to the final state and done is called to wrap up the
protocol. If all goes well, a value is received and assigned to p, afterwards continuing the
protocol with reqTransfer. Since that transitions to the last state, the protocol is done and
can also be wrapped up using done.

2.2.4 Protocols with choice and recursion

The previous protocols follow a linear flow: one state generally transitions in the one di-
rectly following it. In reality, most protocols will not follow a single pattern, but require the
possibility of choice. In case of the running example, the Customer should be able to choose
whether to accept the given price. Figure 2.6(a) shows the Customer transition system where
they can pick a new product after making this choice: after receiving price p, the customer
can choose to either Accept or Reject the proposal. When accepted, the protocol proceeds
as before. In case the price is rejected, the state reverts to the initial state and the protocol
restarts.

Figure 2.6(b) shows the signature for a choice function that encodes this pattern. First,
the Accept and Reject options are encoded in a data type, as seen on line 1. As with error-
handling, the result state is dependent on a variable: in this case the value of Choice c.
Should the result be Accept, the state transitions to state C3. On a Reject, the state returns
to the Ready state, so that the protocol may restart. Figure 2.6(c) shows how this definition
is used in the protocol definition on lines 14 to 17. The result of choice is stored in cr,
which is used in a case statement to specify what happens for each possible value of cr.
As explained before, on an Accept, the protocol continues by calling reqTransfer. With a
Reject, the protocol is restarted. This is not done by calling back to protocol, but instead a
new function, recursion, is used.

The introduction of this function is required to be able to repeat either a complete protocol
or part of it. In both cases it is important that the stateholder, here stored in c, remains the
same in case of a repeat and is not redefined by calling start again. In the case of a partial
repeat, only that part which is contained in a recursion block must be repeated. Therefore,
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start C1 C2 C3 C4

!reqPrice(String) ?priceInfo(Int) Accept !reqTransfer(Int)

Reject

(a) Transition system with choice and recursion

� �
1 data Choice = Accept | Reject
2 {- ... -}
3 interface Customer (m : Type -> Type)

where
4 {- ... -}
5

6 choice : (l : Var) ->
7 ST m () [l ::: StateT (C2) :-> StateT

(case c of
8 Accept => (C3)
9 Reject => (Ready))]

10

11 {- ... -}� �
(b) Choice type definition

� �
1 {- ... -}
2 protocol =
3 do Just c <- start
4 | Nothing => pure ()
5 recursion c
6 done c
7

8 recursion : (l : Var) -> ST io () [l
::: StateT {m=io} Ready :-> StateT
{m=io} C4]

9 recursion c =
10 do let product = "Book"
11 reqPrice c product
12 Just p <- priceInfo c
13 | Nothing => pure ()
14 cr <- choice c p
15 case cr of
16 Accept => reqTransfer c p
17 Reject => recursion c� �

(c) Protocol handling of choice

Figure 2.6: Customer has a choice

the recursive block is extracted and defined in a new recursion function. Just like any other
function, a definition including a state transition is required. A recursive function’s state
transition adheres to two rules: 1) its pre-state is the same as the pre-state of the first function
within its do-notation and 2) its post-state is the same as the post-state of the last function
within its block. As such, its pre-state in this case is Ready, like reqPrice. Its post-state is
that of reqTransfer: C4. When a choice is made on line 14, either reqTransfer is executed to
transfer the state to the final state C4, or the recursionmethod is called again to try a different
product4. This extraction of a recursion block into its separate function is how recursion can
be modeled in an Idris protocol.

2.2.5 Implementation

The ST interface provides the building blocks for a protocol, ensuring a correct ordering
through the state transitions. The protocol uses these blocks to define a program. Both
of these are hollow, though, until the functions specified in the interface are given meaning
in the implementation. The Idris ST tutorial5 provides guidance for implementing stateful
functions. Two concepts are extensively used in this project, and thus introduced in this
section: composite resources and the socket library. After these concepts are broadly explained,
an example implementation is shown. Before all that, however, holes are introduced.

4Obviously the product is not changed if it is hardcoded.
5http://docs.idris-lang.org/en/latest/tutorial/index.html
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Holes allow the programmer to partially define a function implementation, then define
a hole and have the Idris type checker tell what type that hole is. Not only does this give
information as to what behavior is required from the function, but a program with holes can
be valid, allowing for the incremental design of a program. In an ST program, holes can be
used to check which stateful resources exist and must be altered, deleted, etc. Holes can be
defined using a question mark (?), followed by a name for the hole. After type-checking,
Idris will list the holes and their types. If we would like to know what is required of the
implementation of StateT, for example, the definition StateT s = ?StateHole gives us the
following information:� �

1 - + Main.StateHole [P]
2 `- io : Type -> Type
3 s : State
4 ----------------------------------------
5 Main.StateHole : Type� �

Here we see that the argument s is of type State. Line 5 tells us the result of StateT should
be a Type.

A state as used with the ST library is thus a definition that holds a stateful type. It pro-
vides us with basic types, such as a State String, but usually more information is useful to
store. This is where composite resources come in. A composite resource is a stateful list of
other resources, such as the previously mentioned State String. It can be split to extract
the individual resources, and combined into a single resource again. The states in a session
type ST program will most likely be composite resources, since networking in this library
requires keeping track of at least one stateful resource: a socket.

The Socket library provides the functions to work with sockets. Sockets are stateful re-
sources, which can be in one of the following states: Ready, Bound, Listening, Open, and
Closed. When a socket is created, it is in the Ready state. It can then either be bound to
a port and wait for incoming connections (through states Bound and Listening), opening
when a socket connects, or it can connect to a listening socket to transition directly to the
Open state. Listening and Open sockets can be closed to disconnect them. This relatively
simple system enables the use of network communication, essential for session types.

Figure 2.7 shows the implementation of the Customer protocol. It starts with giving the
states a type. In this case, the Customer will connect to the Seller and the Bank, and therefore
has a Composite resource comprised of two sockets. Both sockets should be connected before
the protocol is started, so state Ready has two Open sockets, which is continued up until the
final state, Done, where the sockets will be Closed.

At the start of the protocol, the stateholder must be instantiated. This means that a list
of two open sockets must be established. One socket, sockS, connects to the Seller, who is
waiting for this connection. This is established by creating a socket on line 8 and attempting to
connect on line 9. Both of these actions can either succeed (Right) or fail (Left). In the latter
case, the failure method throws an exception and the program is aborted. If the connection
with S is established, the start of a connection with B is made by creating a socket, binding
it to a port, listening for, and finally accepting a connection, as shown on lines 10 to 13. A
new stateful resource is created, called cust, and the new sockets sockS and sockB'6are
combined into cust. The start function now has the right resources to be in the Ready state:
a Composite resource containing two Open sockets: sockS and sockB'. Line 18 can therefore
return cust using the pure keyword.

Now that the connections have been established, they can be used for the interactions
between actors. Line 20 of figure 2.7 shows the definition of the reqPrice function. In this
interaction, the customer sends the name of a product to the seller. The two arguments, cust

6The accept function creates a new Open socket, rather than changing the listening socket into it. The listening
socket is closed and discarded, while the open socket is used for the protocol.
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� �
1 implementation (Sockets io, ConsoleIO io, ConsoleExcept String io, Monad io) =>

CSB_Customer io where
2 StateT Ready = Composite[Sock {m=io} Open,Sock {m=io} Open]
3 {- ... -}
4 StateT C5 = Composite[Sock {m=io} Open,Sock {m=io} Open]
5 StateT Done = Composite[Sock {m=io} Closed,Sock {m=io} Closed]
6

7 start =
8 do Right sockS <- socket Stream | Left _ => failure ""
9 Right _ <- connect sockS (Hostname "localhost") 9442 | Left _ => failure ""
10 Right sockB <- socket Stream | Left _ => failure ""
11 Right _ <- bind sockB Nothing 9443 | Left _ => failure ""
12 Right _ <- listen sockB | Left _ => failure ""
13 Right sockB' <- accept sockB | Left _ => failure ""
14 cust <- new ()
15 combine cust [sockS,sockB']
16 close sockB;remove sockB
17 putStr "Customer started\n"
18 pure cust
19

20 reqPrice cust s =
21 do [sockS,sockB] <- split cust
22 Right _ <- send sockS s | Left _ => failure "could not send"
23 combine cust [sockS,sockB]
24 pure()
25

26 priceInfo cust =
27 do [sockS,sockB] <- split cust
28 Right string <- recv sockS | Left _ => failure "could not receive"
29 case (parsePositive {a=Integer} string) of
30 Just x => do combine cust [sockS,sockB]; pure x
31 _ => failure "parse error"
32

33 choice cust p =
34 do [sockS,sockB] <- split cust
35 case (p > 50) of
36 True =>
37 do Right _ <- send sockS "1" | Left _ => failure ""
38 Right _ <- send sockB "1" | Left _ => failure ""
39 combine cust [sockS, sockB]
40 pure Option1
41 False =>
42 do Right _ <- send sockS "2" | Left _ => failure ""
43 Right _ <- send sockB "2" | Left _ => failure ""
44 combine cust [sockS, sockB]
45 pure Option2
46

47 reqTransfer = ?reqTransfer
48

49 done cust =
50 do [sockS,sockB] <- split cust
51 remove sockS; remove sockB
52 delete cust
53 pure ()� �

Figure 2.7: Idris implementation example of the running example’s Customer role
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and s, represent the stateholder and the product name respectively. s is simply a string,
and cust is the previously created composite resource. Line 21 shows how this resource is
split into its separate parts, so that the socket to the seller can be accessed. s is sent to the
seller using the send function on line 22, with the Seller socket and s as arguments. If this
was successful, the two sockets are combined into one resource again, to comply with the
definition of state C1. In priceInfo, the buyer receives the price of the requested product
from seller, using the recv function on line 28. The received string is then parsed to an
Integer x and returned. At this point, the customer can make the choice to accept the price
or not. Line 35 shows this choice based on price p. In case the price is too high (True),
the customer sends that option’s number ("1") to both the seller and bank, before returning
Option1 to ensure the right state change. If the price is acceptable, a "2" is sent and Option2
is returned.

Line 47 shows how a hole can be used. There is no implementation for the reqTransfer
function yet, but the hole ensures the program can typecheck, assuming everything else is
fine. If so, Idris provides the type of the hole:� �

1 - + Main.reqTransfer [P]
2 `- io : Type -> Type
3 constraint : Sockets io
4 constraint1 : ConsoleIO io
5 constraint2 : ConsoleExcept String io
6 constraint3 : Monad io
7 ---------------------------------------------------------------------
8 Main.reqTransfer : (l : Var) ->
9 Integer ->

10 STrans io
11 ()
12 [MkRes l (Composite [Sock Open, Sock Open])]
13 (\result => [MkRes l (Composite [Sock Closed, Sock Closed])])� �

Lines 3 to 6 list the interfaces this implementation uses, which every implementation should
adhere to. The type of reqTransfer starts at line 8. It shows that it requires the (l : Var)
parameter and an Integer as arguments, resulting in an STrans type, or an ST state transi-
tion. Line 12 shows a list of current stateful resources, based on the implementation of the
current state as seen in figure 2.7. There is some unspecified l, which is a Composite with
two Open sockets. Seeing as reqTransfer is the last interaction in this protocol, the post-state
requires not open, but Closed sockets, as shown on line 13. Adding the parameters is a quick
fix for part of the hole, as is the standard splitting of the resource:� �

1 reqTransfer cust p =
2 do [sockS,sockB] <- split cust
3 ?reqTransfer� �

This provides us with the following hole:
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� �
1 - + Main.reqTransfer [P]
2 `- io : Type -> Type
3 sockS : Var
4 sockB : Var
5 cust : Var
6 p : Integer
7 {- ... -}
8 -------------------------------------------------------------------------
9 Main.reqTransfer : STrans io

10 ()
11 [MkRes sockS (Sock Open),
12 MkRes sockB (Sock Open),
13 MkRes cust (State ())]
14 (\result => [MkRes cust (Composite [Sock Closed, Sock Closed])])� �

The first lines show that we now have more resources: the Vars sockS, sockB, and cust,
gained by splitting the cust parameter , and the Integer p. These variables are recognized
to be stateful, as seen on lines 11 to 13 . Sockets sockS and sockB are Open, and cust has the
identity State type. The result is to end up with Closed sockets. This is easily achieved with
the Socket interface’s close function:� �

1 reqTransfer cust p =
2 do [sockS,sockB] <- split cust
3 close sockS; close sockB
4 ?reqTransfer� �� �
1 - + Main.reqTransfer [P]
2 `- {- ... -}
3 -------------------------------------------------------------------------
4 Main.reqTransfer : STrans io
5 ()
6 [MkRes sockS (Sock Closed),
7 MkRes sockB (Sock Closed),
8 MkRes cust (State ())]
9 (\result => [MkRes cust (Composite [Sock Closed, Sock Closed])])� �

The hole now indeed shows that sockS and sockB are closed. All that is left now is to combine
the two sockets into the cust argument again and return the required return type (()), and
the function is done:� �

1 reqTransfer cust p =
2 do [sockS,sockB] <- split cust
3 close sockS; close sockB
4 combine cust [sockS,sockB]
5 pure ()� �

This example shows the advantages of programming with holes: one can simply follow the
steps listed by the type checker to comply with the pre- and post-states and create a func-
tion that adheres to the restrictions in its declaration, without having to fully implementing
a function at once. It also shows the limitations of type declarations: this function now does
nothing but close some sockets. The intent, however, was to send a transfer request to the
bank, something that the current implementation completely lacks. The problem can be
solved with one line, but this limitation is something to be aware of.
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� �
1 data State = Ready | S1 | S2 Int | S3 Int
2

3 interface Seller (m : Type -> Type) where
4 {- ... -}
5

6 reqPrice : (l : Var) ->
7 ST m String [l ::: StateT Ready :-> StateT S1]
8

9 priceInfo : (l : Var) -> (p : Int) ->
10 ST m () [l ::: StateT S1 :-> StateT (S2 p)]
11

12 ackTransfer : (l : Var) ->
13 ST m (p' : Int ** p' = p)
14 [l ::: StateT (S2 p) :-> StateT (S3 p)]� �

Figure 2.8: Example of an Idris interface with invariants, for the Seller role

� �
1 reqTransfer cust p =
2 do [sockS,sockB] <- split cust
3 Right _ <- send sockB (cast {to=String} p) | Left _ => failure "p not sent"
4 close sockS; close sockB
5 combine cust [sockS,sockB]
6 pure ()� �

The final function used in the protocol is the done function. It wraps up all stateful
resources and ensures that there are none left at the end of the protocol. Lines 49 to 53
in figure 2.7 show the implementation of this message. It removes the resources from the
Composite resource, and finally deletes the stateholder.

2.3 Invariants in Idris
The implementation as discussed in the previous section is still ignorant of the contents of
any of the variables. There are no checks to ensure which variables should match, something
which the example makes clear can be required for protocols. Toninho and Yoshida (2017)
introduced a theoretical framework for adding message content invariants as singleton types.
This work proposes a similar idea: the content of messages is represented by a dependent
type, which effectively acts as a singleton type. This section will discuss how the addition of
invariant affects each stage of an Idris program.

To ensure that the content is invariant for an actor at every point in the communication,
it is added as a parameter to its states. Figure 2.8 shows an example of such parameters for
the Seller7. As can be seen on line 1, some states now have an Int parameter, which is added
to the states following the introduction of the invariant. In this case price p is introduced
by the Seller in priceInfo, a function that transitions from state S1 to S2. Because of this
introduction, S2 is now parameterized by an Int. To ensure this value remains the same
throughout the protocol, all following states are parameterized with the same type. Since
the parameters are dependent types, their type becomes dependent on the value they are
initiated with. In this case, price p is used as the value for state S2. The type of S2 is now
effectively S2 p, rather than the more generic S2 Int. This means that S2 40 and S2 50 are
recognized by the typing system as two different types.

While this parameterization ensures that a single state’s type is dependent on the as-
signed value, it does not mean that the remaining states’ types are dependent on that same

7The previously used choice function is omitted for brevity.
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� �
1 data State = Ready | S1 Integer | S2 Integer | S3 Integer String | S4 Integer String Bool
2 {- ... -}
3

4 receiveNew: (l : Var) -> ST m (Integer)
5 [l ::: StateT Ready :-> (\res => StateT (S1 res))]
6

7 receiveKnown : (l : Var) -> ST m (i' : Integer ** i' = i)
8 [l ::: StateT (S1 i) :-> StateT (S2 i)]
9

10 receiveAll : (l : Var) -> ST m (String, (i' : Integer ** i' = i),Bool)
11 [l ::: StateT (S2 i) :-> (\res => StateT (case res of
12 (s,_,_) => (S3 i s))]� �

Figure 2.9: Generic forms of possible receiving interaction function signatures: receiving a
new invariant, receiving a known invariant, and receiving a combination thereof

value. For this to be guaranteed, the interface needs to adhere to a simple rule: the parameter
value of the end-state of a function must be the same as the parameter value of the start-state
of said function. Line 14, for example, shows how the state transition of ackTransfer trans-
fers from S2 p to S3 p, using value p for both parameters.

This change to the states affects the functions as well. All function signatures need to
adapt their pre- and post-state declarations to include the state parameters. For all but the
message interactions, this inclusion is the only change, and thus easily done. Message inter-
actions, however, are affected both in the interface and the implementation.

2.3.1 Invariants in the Interface

Since messages are the only interactions that influence invariants other than adding parame-
ters to states, only they are discussed. There are two types of message interactions on a local
level: sending and receiving interactions.

Line 9 in figure 2.8 shows the sending interaction priceInfo for the Seller. With this func-
tion, the seller informs the Customer of price p and with that, introduces p as an invariant. As
discussed before, this means that its post-state now includes p, whose value must come from
somewhere. In the case of sending interactions, a parameter is simply added to the function
that specifies this value. The state parameter p, associated with S2, will take the value of the
function parameter p. This method also works when an invariant is already known. In that
case, the invariant will match values with both the pre- and post-state, ensuring that the sent
value equals that of the known invariant.

This is different for receiving interactions. These may receive a single value, which might
be a new or known invariant, or a combination of these, possibly with unnamed variables as
well.

Figure 2.9 shows example function signatures for these cases. Line 4 shows a way to use
an unknown invariant as a state argument. On line 5, the function’s return value is captured
in res. That value, in this case a single Integer value, can then be used as an argument for
S1.

When a known invariant is received, it must be ensured that the received and known
value are equal. Line 7 shows a function declaration with a dependent pair, written as (_ **
_) in Idris. Dependent pairs allow the type of the second element of a pair to depend on
the value of the first element8. In this case, the pair is used to ensure that the value of i',
the return value, is equal to the known invariant i, by requiring a proof of this fact from the
implementation of the function.

8http://docs.idris-lang.org/en/latest/tutorial/typesfuns.html
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� �
1 ackTransfer {p} sel =
2 do [sockC,sockB] <- split sel
3 Right msg <- recv sockB | Left _ => failure "Could not receive ack"
4 case (parsePositive {a=Integer} msg) of
5 Just x =>
6 do case decEq x p of
7 Yes eq => do close sockC; close sockB; combine sel [sockC,sockB];
8 pure (x ** eq)
9 _ => failure "Invariant error"

10 _ => failure "Price not received correctly"� �
Figure 2.10: Implementation of ackTransfer for Seller

In case a combination of these is received, the naive method using \res does not work
anymore, since the return type is now a tuple of return values. The solution is to use a case
expression to use the individual elements of the tuple. Line 10 shows that a tuple of values
of a new invariant String, the known invariant i, and unnamed type Bool is expected. The
case analysis on line 12 names the unnamed String and uses it as an argument for state S3.
The values of the dependent pair and unnamed type are not considered in the case analysis,
since they do not interact with the state transition. With this method, all combinations of
received values can be handled.

2.3.2 Invariants in the Implementation

In general, the implementation interacts very little with state transitions. The implementa-
tion of the states make the rules defined by the transitions concrete, and dictate what re-
sources should be available at the start and end of an implementation. Therefore, there is
not much change with respect to the implementation of most interactions.

The most notable difference is in providing the dependent pair that is expected as a return
type for interactions receiving a known invariant. The ackTransfer function declaration for
the Seller on line 12 in figure 2.8 states that a value p' is expected, along with the proof that
p' = p. Figure 2.10 shows the implementation for ackTransfer. The first thing to note is
that it has a parameter not declared in the function signature: {p}. A parameter between
curly braces is an implicit parameter. It tells Idris to look for a value of p within the current
context. In this case, the closest parameter p will be the one specified as state parameter in
the function declaration and, hence, have the invariant’s value. This value will be used later
in this function. Lines 2 and 3 show how a message msg is received using the socket to B. This
message is parsed on line 4 using parsePositive, a function that expects a number value,
in this case explicitly an Integer. If the function would have just an Integer as a return
type, this would be the end of the function. However, a proof showing that this return value
equals p is required as well. decEq on line 6 checks whether the received Integer x does
indeed equal p. If so, it returns Yes with the proof of this equality, called eq on line 7. After
performing the actions to comply with the end-state, in this case closing the sockets, the
dependent pair of value and proof can be returned, as seen on line 8. The remaining two
lines specify that an error is thrown when either the parsing or equality checking fails.

As mentioned, other interactions have less surprising implementations. Sending inter-
actions that introduce an invariant simply require a value for the invariant as an argument,
and receiving interactions either receive simple types or tuples.
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2.3.3 Global invariance

As mentioned in 2.2.1, the protocols in Idris are all local: they represent a single actor’s per-
spective. The guarantees regarding invariants are therefore only true for a local protocol, not
necessarily for the protocol as a whole. There are two cases to distinguish when consider-
ing the global validity: all actors are generated from the same global protocol in the same
manner or there is one or more external actors, who adheres to the communication contract
(i.e. messages arrive in the specified order), but its internals are unknown. In the first case
global invariant holding is guaranteed: each actor generated from a global protocol is sure
to have invariants remain unchanged, so all actors collectively do not internally change the
invariants and thus, globally, no invariants are changed. This works perfectly in theory, but
in practice network errors may occur, so a more robust system is desired. The second case
assumes that the external actor adheres to the general structure of the protocol, i.e. the or-
dering of interactions and reactions thereto, since anything else would make it impossible
to execute a session. However, the contents of the message are not guaranteed, nor is the
internal knowledge of the external actor. Both cases can be solved by actors passing their
local environments along with messages to other actors. The current implementation sends
the complete environment with each message, but this could be improved upon by using,
for example, blockchain technology. Chapter 7, Future Work, expands on this idea.

2.4 Conclusion
This section showed, step by step, how a simple session type protocol can be implemented in
Idris. It used an example protocol, introduced in section 2.1, which describes the interactions
between a customer, seller, and bank and will be used throughout the report. Section 2.2 in-
troduced Idris’ ST library. Its stateful programming allows for the design of functions with
which only a single correct protocol can be created. This protocol is easily designed after
the functions are declared, and recursion can be added in the protocol design. In the im-
plementation, the Sockets library was used to design the implementation of an interface,
with full networking capabilities. In section 2.3 invariants were introduced to the Idris pro-
tocol. These affect all aspects of an Idris program differently, and together they assure that
invariants remain invariant throughout a local protocol.

When an Idris program properly implements a session type with invariants, it is now
impossible to create a protocol and implementation for a single actor that does not adhere to
the invariant restrictions, since:

• The invariants stay the same during a state transition.

• When a parameter representing an invariant is used, it is guaranteed to coincide with
the state’s invariant value

• When a known invariant value is received, the program only continues as normal when
said value equals the known value

As such, this implementation of protocols not only provides an implementation for protocols,
but ensures that invariant knowledge remains invariant for an actor.

Idris, however, does not provide a way to quickly design and implement global multi-
party session types. It introduces language-specific challenges and the management of intri-
cate details that are not associated with generic session types. The next chapter will therefore
introduce Scribble (Yoshida, Hu, et al. 2013), a developer-friendly language created specifi-
cally to design protocols and check their correctness according to multi-party session type
theory.
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Chapter 3

Scribble: a developer-friendly
representation

Scribble is a simple protocol language designed to easily implement session types. According
to Yoshida, Hu, et al. (2013), it was designed by Honda as an alternative to the cumbersome
manner of implementing them in existing programming languages. Its syntax is small and
simple, the regular session type guarantees are checked, and it is possible to generate Java
code from a Scribble protocol, which can be used as a structure for implementing the pro-
tocol. Section 3.1 expands on the Scribble language. We illustrate how to use it using the
previously introduced running example with the Buyer, Seller, and Bank.

The original Scribble is a useful language for implementing session types as presented
by Honda, Yoshida, and Carbone (2008), but as such does not possess the ability to define
named variables, let alone invariants. It was therefore necessary to extend the existing Scrib-
ble language. Section 3.2 shows how the syntax for invariants was introduced to the Scribble
syntax, and discusses how this affects other Scribble features.

3.1 Original Scribble

Scribble’s main strenghts are its developer-friendly syntax and its ability to check if a pro-
gram is a valid session type and, as such, provides the guarantees of session types. This
section will introduce the reader to the subset of Scribble’s syntax relevant to this project, by
implementing the running example in Scribble in section 3.1.1. Section 3.1.2 then expands on
the previously mentioned difference between global and local protocols, and the importance
of their relation for multi-party protocols. Section 3.1.3 then explains how Scribble checks
the safety of a protocol.

3.1.1 Scribble Syntax

As mentioned before, Scribble is designed to be simple and easy to use. Its syntax reflects
this ambition: all basic interactions are represented as intuitive commands, with only a small
number of rules to adhere to. Figure 3.1(a) shows a Scribble example, representing the run-
ning example of the interaction between Customer, Seller, and Bank (C,S, and B, respectively).
Figure 3.1(b) shows the local protocol for one of the actors, which will be discussed in sec-
tion 3.1.2 and can be disregarded for now.

In Figure 3.1(a), the module declaration names the presented module, used for referring
to it in other files. The type lines are a requirement for the proper functioning of Scribble’s
Java code generation.

A protocol starts by declaring it, using the global or local, and protocol keywords,
followed by the name of the protocol and a list of roles. A role is an actor participating
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in the interactions and is denoted using the role keyword and a name. The main body
of the protocol consists of the interaction sequence; a list of interactions that represent the
communication structure. All supported interactions are listed in the Scribble tutorial1. A
subset of those is used in this project and described here.

The example in figure 3.1 contains three interaction types:

• Message interaction

• Choice

• Recursion

Message interactions are highlighted green in the example, such as reqPrice on line 8.
They consist of a name, a message payload (which can be empty), and a sender and receiver(s)
pair. As the name suggests, these interactions represent the messages passed between actors
and are the most basic interactions in a protocol.

A choice interaction provides one actor with the ability to choose a course of action. The
options are presented as interaction sequences, one of which is executed. In the running
example, the choice of the Customer to either accept the proposed price or restart the protocol
is encoded in a choice interaction. A choice only has two elements: an actor and a list of
interaction sequences. The actor parameter indicates which single actor is responsible for
making the choice and thus deciding which interactions are executed. The two or more
interaction sequences define the actions to be taken when choosing for that option. They are
separated by the or keyword and have the same structure as the main interaction sequence,
being lists containing any of the above interactions. Line 10 shows a choice followed by two
sequences.

A recursion declaration consists of two parts: the indicator of the start of the recursion,
denoted by rec, and one or more references to this declaration using continue. On Line 7 the
recursion block named r is specified. The block to be repeated is encased in curly braces ({}).
In this case, the whole program is contained in the block, since the whole protocol restarts
on a repeat. Line 11 shows that recursion r is invoked as one of the choice options, using the
continue keyword with the name of the recursion, r.

3.1.2 Global and Local Protocols

In Scribble, the notions of global and local protocols exist. This section will explain their dif-
ferences.

The first iteration of session types, the field of research on which Scribble is based, was bi-
nary, meaning only two actors were involved in the communication. Only in 2008 did Honda,
Yoshida, and Carbone introduce multi-party protocols, enabling the design of session type pro-
tocols involving three or more actors.

One of the key features that makes this possible is the notion of projection: transforming
a global protocol, which sees the protocol from an all-knowing perspective, to a local pro-
tocol, which only represents the viewpoint of a single actor. Figure 3.1(b) shows the local
protocol for our Customer, generated from the global protocol in Figure 3.1(a). Apart from
a new name and the local keyword, not much has changed in the preamble. The message
interactions, however, are now missing an actor. Since a local protocol is described from a
single actor’s viewpoint, it is a given that one of the parties in an interaction is the local actor.
Hence, it is only necessary to describe the relation to the other party using from and to. Ad-
ditionally, any interaction that takes place without, in this case, the Customer is outside of
its scope and is therefore not present in the local protocol. An example of this can be seen on

1Scribble Tutorial (n.d.). url: http://www.scribble.org/docs/scribble-java.html#SCRIBCORE.
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3.1. Original Scribble

� �
1 module Shopping;
2

3 type <java> "java.lang.Integer" from
"rt.jar" as Integer;

4 type <java> "java.lang.String" from
"rt.jar" as String;

5

6 global protocol Shopping(role C, role S,
role B){

7 rec r {
8 reqPrice(String) from C to S;
9 priceInfo(Integer) from S to C;

10 choice at C {
11 continue r;
12 } or {
13 reqTransfer(Integer) from C to B;
14 ackTransfer(Integer) from B to S;
15 }}}� �

(a) Global Protocol

� �
1 module Shopping_C;
2

3 type <java> "java.lang.Integer" from
"rt.jar" as Integer;

4 type <java> "java.lang.String" from
"rt.jar" as String;

5

6 local protocol Shopping_C(role C, role S,
role B) {

7 rec r {
8 reqPrice(String) to S;
9 priceInfo(Integer) from S;
10 choice at C {
11 continue r;
12 } or {
13 reqTransfer(Integer) to B;
14

15 }}}� �
(b) Local Protocol for Customer

Figure 3.1: A simple Scribble example

line 14, where the ackTransfer interaction between the Bank B and Seller S is omitted from
the local protocol.

The projection generally follows the rules for projection as described by Honda, Yoshida,
and Carbone (2008). Informally, they can be described as:

• If the actor takes part in an interaction, that interaction is added to the protocol as either
a sending or receiving interaction(to or from)

• If the actor is involved in a choice option, the choice and the projection of all options is
included in the protocol

• If the actor in involved in a recursion block, the recursion and projection of said block
is added to the protocol

Using these rules, almost any global protocol2 can be projected unto a set of local protocols
for each actor. Since these protocols define the exact interactions one actor can expect to send
and receive, without knowledge outside its scope, these local protocols can be used to create
the separate, distributed programs that, together, represent the protocol as a whole.

The syntax ensures that a protocol description makes some basic sense, and the projection
rules guarantee that a valid global protocol can be used to generate valid local protocols.
However, these rules are not enough to ensure that a protocol is valid in itself. The next
section describes some of Scribble’s checks to provide this assurance.

3.1.3 Protocol Safety

Session types and their advantages have been named a number of times, and this section will
expand on these concepts and their effects on Scribble.

As described in the introduction, session types offer four guarantees regarding commu-
nication:

2One rule regarding parallel compositions is omitted, since it is not used in this project.
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• Linearity guarantees that all messages are handled in the specified order, even in an
asynchronous setting.

• Progress means that all valid protocols are deadlock-free.

• Session fidelity says that all actors adhere strictly to the protocol as defined.

• Communication safety guarantees that no errors will occur due to unexpected mes-
sages or payload types.

These are powerful guarantees, especially in a multi-party asynchronous setting. Even better
is the fact that Scribble can check for these properties automatically. In order to benefit from
session type properties, a number of rules need to be adhered to. The Scribble documenta-
tion3 provides information regarding the more abstract rules required to adhere to session
type wellformedness, but there is one relevant rule that we will encounter in this project that
requires some attention.

This rule pertains to choices, and is discussed since it will affect a design choice for the
translation described in the next chapter. After a choice is made, actors must be enabled be-
fore being able to act. The actor making the choice is the only one enabled by default, and
other actors can be enabled by receiving a message from an enabled actor. This is based on
the notion that an actor is unaware of the result of the choice until it receives a message,
confirming which branch has been picked. Consequently, the interaction type (sending or
receiving) and peer (sender or receiver) of an enabling interaction must be the same in all
choice branches. This will be explained using the running example which, in fact, does not
adhere to these rules.

Figure 3.2(a) shows the global protocol as previously seen. When a choice is made, in this
case by the Customer, the other actors do not know which message is to be expected, since
they are unaware of the result of the choice until they are enabled. When the first choice
option is chosen, the protocol is repeated and Seller S can expect to receive the reqPrice
message from Customer C, as seen on line 8. However, when the second option is chosen,
the first message it would receive would be the ackTransfer message from the Bank B from
line 14. As such, Sdoes not know whether it will receive a message from C or from B, breaking
communication safety.

There are multiple ways to deal with these situations. One is trying to redesign the whole
process. A much simpler solution is to use dummy messages in one branch such that all choice
enable the actors in the same order. Figure 3.2(b) shows this solution. In both branches, S
now expects an incoming message from B. Depending on which message is received, dummy2
or ackTransfer, it knows which branch has been chosen by C.

When this and the other rules are adhered to, Scribble can verify whether a protocol is and
the session types guarantees hold. None of these guarantees, however, provide information
regarding the content of messages, other than their type. The next section will show how
Scribble is extended to allow the specification of more detailed payload information and
how this affects Scribble’s functionality.

3.2 ScribbleI: Invariants in Scribble
Chapter 2 explained how session types can be implemented in Idris and how invariants can
be added to them. The previous section showed that Scribble is capable of describing session
typed protocols, and now it is time to show how invariants are added to it.

Initially, only a simple syntax extension is required. Section 3.2.1 describes the process
of introducing the new syntax to the existing set. It should be clear by now, however, that

3Scribble Tutorial (n.d.). url: http://www.scribble.org/docs/scribble-java.html#SCRIBCORE.

20

http://www.scribble.org/docs/scribble-java.html#SCRIBCORE


3.2. ScribbleI: Invariants in Scribble

� �
1 module Shopping;
2

3 type <java> "java.lang.Integer" from
"rt.jar" as Integer;

4 type <java> "java.lang.String" from
"rt.jar" as String;

5

6 global protocol Shopping(role C, role S,
role B){

7 rec r {
8 reqPrice(String) from C to S;
9 priceInfo(Integer) from S to C;

10 choice at C {
11 continue r;
12 } or {
13 reqTransfer(Integer) from C to B;
14 ackTransfer(Integer) from B to S;
15 }}}� �

(a) Global Protocol

� �
1 module Shopping;
2

3 type <java> "java.lang.Integer" from
"rt.jar" as Integer;

4 type <java> "java.lang.String" from
"rt.jar" as String;

5

6 global protocol Shopping(role C, role S,
role B){

7 rec r {
8 reqPrice(String) from C to S;
9 priceInfo(Integer) from S to C;
10 choice at C {
11 dummy() from C to B;
12 dummy2() from B to S;
13 continue r;
14 } or {
15 reqTransfer(Integer) from C to B;
16 ackTransfer(Integer) from B to S;
17 }}}� �

(b) Valid Global Protocol

Figure 3.2: Enabling Actors

Scribble is more than a syntax. Such an extension has consequences for its other features.
Section 3.2.2 describes how projection was affected. Section 3.2.3 describes the simple solu-
tion to retaining Scribble’s sophisticated validity checking features.

3.2.1 Syntax

An extension to an existing syntax can take several forms. In this case, Scribble’s syntax is
implemented in ANTLR 24, a deprecated language. Since this project is designed in Spoofax5

and ANTLR 2 is an outdated format, the choice was made to reimplement a subset of Scrib-
ble’s syntax in SDF3 (Vollebregt, Kats, and Visser 2012). This subset, later extended with
invariant support, is called ScribbleI.

Scribble’s syntax can be divided in three sections: lexical syntax, containing keywords,
whitespace handling, etc.; structural syntax, covering module names, imports, and type dec-
larations; and lastly the syntax for operations, where the protocol specifications and inter-
actions are defined. The first is straightforward and not covered in this report, just like the
structural syntax, which is useful to know for the creation of protocols, but is also rather
simple to implement. The syntax of operations, however, is explained in more detail in this
section.

Figure 3.3 shows the structure of the syntax as implemented in SDF3. Here, the angle
brackets (< ... >) mean a template is defined for the constructor on the left-hand side. In a
template, symbols are either placeholders or literal strings, where placeholders are enclosed
in angle brackets within the template. Placeholders are of the form6:

• <Sort?> : Optional placeholder

4ANTLR (n.d.). url: http://www.antlr.org/.
5Spoofax (n.d.). url: http://www.metaborg.org/.
6SDF3 Reference Manual: http://www.metaborg.org/en/latest/source/langdev/meta/lang/sdf3/reference.

html
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3. Scribble: a developer-friendly representation

� �
1 Module.Mod =
2 <<Moduledecl>
3 <{Protocoldecl "\n"}*>>
4

5 ProtocolDecl.GProtDecl = <<GProtHeader> <GProtDefinition>>
6 GProtHeader.GSimplePHeader = <global protocol <ProtocolName> <RoleList>>
7

8 RoleList.Roles = <( <{Roledecl ", "}+> )>
9 Roledecl.Role = <role <Rolename>>
10

11 GProtDefinition.GPDef = GProtocolblock
12

13 GProtocolblock.GPBlock = <{<GInteractionsequence>}>
14 GInteractionsequence.GIntSeq = <<{GInteraction "\n"}*>>
15

16 GInteraction.GIMsgTransfer = GlobalMessageTransfer
17 GInteraction.GIChoice = GlobalChoice
18 GInteraction.GIRecursion = GlobalRecursion
19 GInteraction.GIContinue = GlobalContinue
20

21 GlobalMessageTransfer.GTrans = <<Message> from <Rolename> to <{Rolename ", "}+>;>
22 GlobalChoice.GChoice = <choice at <Rolename> <{GProtocolblock "or"}+>>
23 GlobalRecursion.GRecursion = <rec <RecursionName> <GProtocolblock>>
24 GlobalContinue.GContinue = <continue <RecursionName>>
25

26 LocalMessageTransfer.LRecv = <<Message> from <Rolename>>
27 LocalMessageTransfer.LSend = <<Message> to <Rolename>>
28

29 Message.MessagePlID = <<MessageName>(<Payload?>)>
30 Payload.Load = <<{Payloadelement ", "}+>>
31 Payloadelement.PLType = <<TypeName>>
32

33 Payloadelement.PLDeclaration = <<VarName> : <TypeName>>
34 Payloadelement.PLName = <<Payloadname>>� �

Figure 3.3: ScribbleI syntax in SDF3. The highlighted lines at the bottom are the new syntax
additions

• <Sort*> : Repetition (0...n)

• <Sort+> : Repetition (1...n)

• <{Sort "s"}*> : Repetition with separator s

As a note, most of the presented syntax is for global protocols, indicated by a G. Unless
otherwise stated, its local equivalent also exists, but is omitted for brevity. Anything not
annotated with a G or L is common for both types.

At the root of the syntax is a declaration, which contains a header and the definition
of the protocol, represented by a GSimplePHeader and GProtDefinition respectively. The
definition is simply an interaction block, which line 14 shows is a list of interactions. These
interactions can take the familiar forms of message interactions, (lines 16 and 21), choices
(lines 17 and 22), recursion declarations (lines 18 and 23), and continue statements (lines 19
and 24). Lines 26 and 27 show the local variants of message interactions. Choices and recur-
sions have one or more interaction blocks as a parameter. As seen in the syntax, these are
equivalent to the main interaction block and treated as such during, for example, projection.
As such, they act as the roots of their own branches. Message interactions do not have such

22
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expansive children, and can be seen as leaf nodes. Messages can carry a Payload, as seen on
lines 29 to 31. This payload is an optional list of one or more payload elements.

So far, nothing is inherently different from the existing Scribble syntax. Recall that what
is needed is the possibility to express that the payload of one message should be equal to the
payload of another. To accommodate this, the naming of payloads is added to the syntax.
These additions to the original Scribble syntax are shown on lines 33 and 34, highlighted in
yellow. In addition to using generic types as a payload, payloads can now introduce and use
named payloads.

Lines 1 to 31 thus show a subset of the original Scribble language. Lines 33 and 34 show
the only addition to the syntax required to allow for the use of named invariants.

3.2.2 Projection

While what is presented is a syntactically tiny extension, it affects certain Scribble function-
ality. Especially the projection of global to local protocols in a multi-party environment be-
comes important. In addition to the projection rules mentioned in section 3.1.2, the projec-
tion for the extended syntax requires taking into account the new invariants. For those, the
following restrictions are followed:

1. Invariants’ names must be unique within a protocol

2. Invariants must be declared before use

3. An actor cannot reference an invariant unless it has knowledge of it

4. Invariants are limited to their scope

These restrictions must be true for both global and local protocols. From restriction 1 it
follows that in a global protocol, an invariant can be declared only once. The second restric-
tion is a matter of course and almost trivial to check in a global setting. However, as the ex-
ample afterwards will show, this is an important rule to ensure during and after projection
as well, especially in multi-party environments. The third restriction mentions knowledge.
Actor knowledge is a set of invariants known to an actor. Each actor may only reference an
invariant that is known. Knowledge is gained by either declaring an invariant, or receiving
the invariant from an actor that has knowledge of it. This restriction ensures that an actor
unfamiliar with the value of an invariant can not reference it and, as such, only one value
for an invariant is propagated to each actor. The last restriction is designed to make sure
that an invariant declared within a limited scope is not used outside of it. This scope can
be limited by, for example, being declared in a choice or recursion block. These restrictions
are enforced by creating an environment, consisting of the knowledge sets of all actors. The
details of this environment can be found in section 4.1: Environment.

To illustrate these restrictions and their importance during projection, the projection for
the running example’s actor Bank B is described. Figure 3.4(a) shows the running example’s
protocol extended with the named invariant p, representing the price of the requested item.
It is declared on line 6 using the (Name : Type) syntax. Now, the interactions requesting
and confirming the money transfers to and from the Bank can reference p in order to ensure
that they are the same value as the original declaration. Note that this declaration involved
both the Seller S and Customer C, but not the Bank. A naive projection retaining the payloads
precisely results in the protocol in Figure 3.4(b). There, the Bank receives reference p from
the Customer. In this protocol, restriction 2 is not true: Bank was never introduced to p. One
solution could be to broadcast a declaration to all actors. However, since actor knowledge is
already kept track of, it is known that reqTransfer is the first time that Bank has come in
touch with p. For the local protocol, reqTransfer’s payload is therefore updated to become a
declaration of p: (p : Integer). The Bank’s local protocol now complies with all restrictions
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� �
1 module Shopping;
2

3 global protocol Shopping(role C, role S,
role B){

4 rec r {
5 reqPrice(String) from C to S;
6 priceInfo(p : Integer) from S to C;
7 choice at C {
8 dummy() from C to B;
9 dummy2() from B to S;

10 continue r;
11 } or {
12 reqTransfer(p) from C to B;
13 ackTransfer(p) from B to S;
14 }}}� �

(a) Global Protocol with Invariants

� �
1 module Shopping_B;
2

3 local protocol Shopping_B(role C, role S,
role B){

4 rec r {
5

6

7 choice at C {
8 dummy() from C;
9 dummy2() to S;
10 continue r;
11 } or {
12 reqTransfer(p) from C;
13 ackTransfer(p) to S;
14 }}}� �

(b) Local B Protocol with Invariants

Figure 3.4: Projection with Invariants

and is a safe protocol. This new declaration is safe to add since, on a global level, restriction 3
ensures that the actor introducing another actor to a new invariant has the same knowledge
of the invariant as its originator.

3.2.3 Validity Checks

Scribble’s validity checks for communication protocols are one of the main reasons to use
it. Since the syntax of the extended Scribble violates that of the original, it is not possible to
use Scribble to check the validity of protocols with invariant declarations. Therefore, a tool
was created that removes the new syntax from a protocol, so that it is a syntactically valid
Scribble protocol. Scribble can then be used to check whether the protocol is a valid session
type.

The tool works by creating placeholder type definitions for the types encountered in the
protocol and replacing the invariant declarations and references with the invariant’s type.
Since all other syntax is a subset of Scribble’s original syntax, all other constructs can simply
be pretty-printed.

This tool was tested by generating Scribble files from the test cases mentioned in 5.1.2,
both for the global and local protocols, and type checking those with the Scribble program.
Additionally, the projection function was tested by generating a Scribble global protocol from
a ScribbleI protocol, projecting both using their respective tools and comparing the results.
This comparison was done by generating a Scribble local protocol from the result of the Scrib-
bleI projection and comparing it to the original Scribble’s projection, as shown in figure 3.5.

3.3 Conclusion

This chapter introduced Scribble, a simple protocol design language. Its syntax is easy to
pick up, yet it can provide strong guarantees for protocols designed with it.

When invariants are added to Scribble, this does not only affect the syntax, but also pro-
jection and the inherent session type features. It was explained what the impacts of these
effects is and how they are handled.

The reader is now familiar with two ways of designing protocols: one is an implemen-
tation in Idris, which provides a machine executable program, but does not provide global
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3.3. Conclusion

ScribbleI Global Scribble Global

ScribbleI Local Scribble Local

Generate

Project (Stratego tool) Project (Scribble)

Generate

Figure 3.5: Verifying ScribbleI to Scribble transformation tool

guarantees, and it can be somewhat cumbersome. On the other hand, Scribble is a developer-
friendly language that allows for quick prototyping, but does not offer an implementation
with invariants. It is therefore time to bring those together. The next chapter, chapter 4,
shows how Idris code is generated from a Scribble protocol.
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Chapter 4

Generating Idris code from Scribble

Scribble and Idris each have their own strengths and weaknesses, several of which are
each others mirror opposites. An ideal situation would therefore be if it is possible to profit
from both. This chapter describes how the larger, more intricate Idris code can be generated
from a smaller, simpler Scribble protocol.

Idris and Scribble syntax and semantics differ greatly. Generating one from the other
therefore requires multiple steps. The first step is to generate local protocols from global
protocols, since those represent a single actor’s protocol, enabling a distributed implementa-
tion of each individual actor. Chapter 3 covered how this could be done. The next step is to
gather the information regarding states and invariants that is required to correctly parame-
terize each function. Then the translation can happen. The translation is performed using a
small, specific syntax representing the relevant parts of Idris’ syntax. Like Scribble’s syntax,
this was created using SDF3. Having both languages available in the Spoofax workbench
allows the use of Stratego to perform the translation. Stratego is a language for program
transformation and is used to transform the AST of a Scribble protocol into an AST of the
intermediary syntax. This transformation happens separately for each of the three Idris ST
program parts: the interface, the protocol, and the implementation. Finally, Idris code is
generated by using Spoofax’ built-in pretty-printer.

This section describes each of the steps in detail. First, the intermediary syntax is de-
scribed in section 4.2. It presents the formal definition and resulting Idris code of the new
syntax. After this, the reader is shown how the environment, which keeps track of states
and invariant scope, is generated in section 4.1. This environment is used extensively in
other parts of the translation, making it a crucial aspect, even in its relative simplicity. Then
the code generation for the interface and protocol parts of the code generation are discussed
in sections 4.3 and 4.4, respectively. The automatic generation of implementation details for
the signatures in the interface proved to bring more challenges than expected. Section 4.5
discusses these challenges and how the now missing generation of this part could be de-
signed.

4.1 Environment

All parts of the desired Idris code are highly dependent on their context: the function spec-
ifications in the interface must have the correct state transitions assigned, along with the
possible invariants associated with those states; the protocol needs to list the methods in the
correct order, dealing with choice branches and recursions; and the implementation must
use the appropriate parameters. As such, the first step in the code generation is collecting
the necessary information in an environment.
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The two main pieces of information required for the code generation are the states and the
invariants associated with each of them. Since this data is related, they can be stored in the
same structure. A list of lists is used to represent the state space, with different interactions
affecting the state space differently.

The environment is created for a specific actor, since an environment is dependent on the
actor associated with it: an interaction in which an actor does not take part should not affect
that actor’s environment. This could be done by using the actor’s local protocol as a basis for
generating the code. However, a local protocol might miss important information. Figure 3.4,
for example, showed that Bank B receives price p for the first time with the reqTransfer(p)
interaction. Since p is already declared in the global protocol, its type is not sent with the
payload. However, as B was not involved in the initial declaration, it is missing in the naively
projected protocol in Figure 3.4(b), and an environment generated from this local protocol
would not be able to infer the type of p.

The environment generation is therefore done at a global level, but does not create one
global environment. Instead, the local environments for each actor are simultaneously gen-
erated, so that these can be directly used in the projection. The result of the environment
generation is therefore a set of local environments, with the global information used to en-
sure a number of restrictions:

1. Invariants’ names must be unique

2. Invariants must be declared before use

3. An actor can not reference an invariant unless it has knowledge of it

4. Invariants are limited to their scope

These rules are enforced using the actor knowledge. Actor knowledge is the set of invari-
ants and their types of which an actor is aware. It is represented by a tuple with the name
of the actor, and a list of known invariants and their types. Each time an actor is involved in
an interaction, its knowledge may be updated, depending on the information introduced by
the interaction and whether the actor takes part in it.

Restriction 1 is checked by scanning the combined knowledge of all actors when a new
invariant is declared. If any actor has knowledge of an invariant with the same name, the
restriction does not hold. Similarly, all knowledge is scanned to find information about an
invariant when it is referenced. If no actor has knowledge regarding a referenced invariant,
it has not been declared and restriction 2 is not true. A single actor’s knowledge is checked
to ensure the third restriction. Finally, the last restriction holds by construction, as will be
seen in the rest of this section.

The rest of this section is split in two. First, the individual Stratego rules for updating
the environment for each interaction will be discussed: messages, choices, recursions, and
continues. Afterwards, the result of these rules applied to the running example is discussed.

4.1.1 Building the environment

Each interaction type has its own unique influence on the environment: Message interac-
tions may introduce or receive new invariants, choices create branches in a program, and
recursion and continue statements introduce interaction blocks that can be looped. When
the environment is updated, either a list of lists, representing a block of states, or a list of
tuples, representing a single state, is added to each actor’s environment. A list of states rep-
resents the states for a block of interactions, like a choice block or recursion block. The up-
dates to the environment caused by interactions within such a block are applied to the new

1Integer is shortened to Int in the examples
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4.1. Environment

� �
1 /* ... */
2 rec r {
3 reqPrice(String) from C to S;
4 priceInfo(p : Integer) from S to C;
5 choice at C
6 {
7 dummy() from C to B;
8 dummy2() from B to S;
9 continue r;

10 } or {
11 reqTransfer(p) from C to B;
12 ackTransfer(p) from B to S;
13 }
14 }
15 /* ... */� �

(a) Scribble Protocol

� �
[
[
[],
[],
[(p,Int)],[
[
[(p,Int)],

[(p,Int)]
],[
[(p,Int)]

]]
]

]� �
(b) Customer

� �
[
[
[],
[],
[(p,Int)],[
[

[(p,Int)],
[(p,Int)]
],[

[(p,Int)]
]]
]

]� �
(c) Seller

� �
1[
2[
3

4

5[],[
6[
7[],
8[],
9[]
10],[
11[]
12[(p,Int)]
13]]
14]
15]� �

(d) Bank� �
1 [ ... ,[("C",[(p,Int)]),("S",[(p,Int)]),("B",[])],[[("C",[(p,Int)]),("B",[])], ... ], ...]� �

(e) intKs for lines 5 to 7

Figure 4.1: Environment Generation for Customer, Seller, and Bank1

list. A single state for a single actor consists of a list of tuples, with each tuple representing
invariant knowledge: its name and type. As such, when a new state is added to an actor’s
environment, such a list of tuples is added to an actor’s environment. These states represent
the pre-states of the interaction that spawned them. Figure 4.1 shows an example of such
environments for the actors of the running example. In a later stage, all states are named for
use in the Idris code.

The transformation is carried out using Stratego, an abstract syntax tree transformation
language. Stratego uses rules to apply a transformation. Rules transform the left hand side
of a rule into its right hand side. A rule’s name is not unique, but may have multiple ver-
sions with different left hand side arguments. When one matches the input, it is applied. To
allow for more complex transformation, the where and with keywords may be used. where
is followed by a number of strategies that should succeed for the rule to succeed. If it fails,
the rule fails and an attempt is made to use another rule. with is similar, but instead of try-
ing to apply another rule, the program is terminated. Within these strategies, assignments
of the form var := S can be defined, as well as conditionals. Conditionals take the form
C < S1 + S2, where S1 is executed if C is true, and S2 otherwise. With the following rules, a
named variable is often checked to contain a certain value or pattern. This is done using the
? (question mark), followed by the desired pattern and the strategy or variable to be tested.
For example, <?[]> x tests whether x is the empty list [].

This section discusses how the environment is built by visiting each interaction, and what
each type of interaction add to the environment being built.

Message Interactions

Message interactions are, from a state change point of view, almost trivial: they always trans-
fer from one state to the next. They are, however, the only interactions that make use of in-
variants, which directly affects the states from and to which they transition. It also means
that the checks for the previously mentioned restrictions are enforced when message inter-
actions are encountered during environment generation.
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� �
1 create-environments: ([GMsgTransfer(msg,sender,receivers) | ints], actorKs) ->
2 [intKs | <create-environments> (ints, actorKs'')]
3 with
4 intKs := <create-intKs> (actorKs, [sender|receivers])
5 ; invs := <collect-all(?VariableDecl(_,_))> msg
6 ; refs := <collect-all(?PLName(_))> msg
7 ; (not(<?[]> invs)
8 < actorKs' := <add-invariants> (invs, [sender|receivers], actorEs)
9 + actorKs' := actorEs)
10 ; (not(<?[]> refs)
11 < actorKs'' := <add-invariants> (refs, [sender|receivers], actorKs')
12 + actorKs'' := actorKs')� �

Figure 4.2: Stratego rule for message interaction environment creation

Since message interactions transition from one state to the next, a single new state is in-
troduced for them. This is done by adding a list of known invariants to the environment
being built. Recall that states in the environment represent the pre-state of interactions. This
means that new invariants introduced by the current interaction, either by sending or receiv-
ing them, does not affect the state added to the state space. The involved actors’ knowledge,
however, should be updated, so that following states do take into account the new invari-
ants. For a message interaction, therefore, a generation rule should introduce a new state to
each involved actors’ environment with each of their respective ’old’ knowledge, and each
actors’ knowledge should be updated for following interactions.

Figure 4.2 shows the rule that applies this logic and generates the environment for a
message interaction. Line 2 shows that the result is a list whose head is the newly added
state for each actor, intKs, and the tail to the rest of the environment to be generated, using
the remaining interactions.

The list of known invariants representing the new state is generated using the create-intKs
rule. For message interactions, create-intKs returns the current knowledge sets of those ac-
tors involved in the interaction, ensuring that the environment of actors not involved is not
changed. This set of knowledge is added to the environment, representing a state for each of
the local environments. An example of such a knowledge set, Figure 4.1(e) shows an excerpt
of the raw environment additions, of which Figures 4.1(b) to 4.1(d) are formatted versions
created by extracting a specific actor’s environment.

The remainder of the rule has to do with the possible updates to the actor knowledge
this message interaction may induce. Lines 5 and 6 collect the invariant declarations and
references present in the payload of this message. Lines 7 to 12 specify that if invariants or
references exist, then add them to the set of actor knowledge using the add-invariants rule
(discussed hereafter). This (possibly) updated set of actor knowledge is used as an argument
for creating the environment for the successors of this interaction.

The add-invariants rule, shown in figure 4.3, adds invariants to each actor’s knowledge,
if required. Additionally, this is also where the restrictions mentioned before are checked.
The rule on line 1 covers the case for payload declarations. First, it checks whether the invari-
ant is known for any actor, by looking for its name in the set of all actors’ knowledge. If the
name already exists, the rule fails with an error message. If the name is new, the actor knowl-
edge set is updated using the add-to-Ks rule, which simply adds the supplied invariant to
the knowledge set of the provided actors.

Line 9 shows the rule for invariant references. This rule starts with finding the knowledge
of the actor, which is then used on line 12 to both check if the sender has knowledge of an
invariant with name ref and find its type. The latter is required because the message only
carries a reference to, not the type of the invariant. If no such knowledge can be found for the
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� �
1 add-invariants: ([PLDeclaration(var,type)|invs], actors, actorKs) -> newactorKs
2 with
3 (not(<?[]> <collect-all(?(var,_))> actorKs)
4 < <debug> ["Duplicate invariant declaration for ", var];fail
5 +
6 ; actorKs' := <add-to-Ks> ((var,type), actors, actorKs)
7 ; newactorKs := <add-invariants> (invs,actors,actorKs') )
8

9 add-invariants: ([PLName(ref)|refs], [sender|receivers], actorKs) -> newactorKs
10 with
11 senderE := <lookup> (sender, actorKs)
12 ; (<?[(ref,refType)|_]> <collect-all(?(ref,_))> senderE
13 < actorKs' := <add-to-Ks> ((ref,refType),receivers,actorKs)
14 + <debug> ["Unknown reference ", ref, " in message for sender ", sender]; fail)
15 ; newactorKs := <add-invariants> (refs, [sender|receivers], actorKs')
16 add-invariants: ([],_,actorKs) -> actorKs� �

Figure 4.3: add-invariants rule. The first rule adds invariant information to an actor’s envi-
ronment if said invariant does not already exist. The second rule does the same for references
to known invariants.� �

1 create-environments: ([GIChoice(_,blocks) | ints], actorKs) ->
2 [intKs, blockRes | intRes]
3 with
4 intKs := <create-intKs> (actorKs, blocks)
5 ; blockRes := <create-environments> (blocks,intKs)
6 ; intRes := <create-environments> (ints,actorKs)
7

8 create-environments: ([GPBlock(seq) | blocks], actorKs) -> [res1 | res2]
9 where

10 res1 := <create-environments> (seq, actorKs)
11 ; res2 := <create-environments> (blocks, actorKs)� �

Figure 4.4: Stratego rule for choice interaction environment creation

sender, the rule fails with an error message. If it is found, the invariant information is added
to the knowledge (K) of the appropriate actors using the add-to-Ks rule. The result of this
rule is thus a set of updated actor knowledge, guaranteed to not contain duplicate invariant
names or references to invariants unknown to an actor. On top of that, since add-to-Ks adds
information to the knowledge of all actors involved in the message interaction, including
receivers, receiving actors can now refer to the invariants introduced to them as well.

In summary, the rules used for the environment generation for message interactions en-
sure that all involved actors have a state added to their respective environments, and that
their knowledge is updated with any newly received information. Due to the importance
of this invariant knowledge, these rules became rather intricate. Since other interactions can
neither introduce nor reference invariants, their rules are much shorter, focused on the struc-
ture of the environment rather than its contents.

Choice Interactions

While choice interactions do not involve invariants, their effect on an environment is promi-
nent. Choices introduce a number of options which the program may choose. Each option is
represented by a block containing more interactions. These options are contained in a single
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� �
1 create-environments: ([GIRecursion(_,block) | ints], actorKs) ->
2 [blockRes | intRes]
3 where
4 intKs := <create-intKs> (actorKs, [block])
5 ; blockRes := <create-environments> (block,intKs)
6 ; intRest := <create-environments> (ints,actorKs)
7

8 create-environments: ([GIContinue(_) | ints], actorKs) -> [actorKs | res]
9 with (<?[]> ints < res := []
10 + debug(!"interaction after continue statement");fail)� �

Figure 4.5: Stratego rule for recursion and continue interaction environment creation

list and represented by lists themselves, so that the states introduced by interactions within
the blocks can be added to their respective lists. Processing the different options’ interaction
blocks is initiated using the same current set of actor knowledge, ensuring that any invari-
ants introduced in one block are not known to a block following it. This is important, since
only one block can be executed, so only invariants introduced before the choice interaction
or within the current block can be used. This enforces the scoping restriction mentioned in
section 4.1. Figure 4.4 shows the rule for handling choices. The result consists of three parts.

First, a choice interaction introduces its own state, created using the same create-intKs
rule as message interactions. In this case, the rule returns the knowledge sets of all actors
represented in any of the choice blocks, and thus taking part in the choice. This set is added
to the environment to represent a new state.

The last result, intRes, is familiar from other interactions as well: it is simply the result
of processing the interactions following the current one. Since a choice interaction does not
affect actor knowledge, the current knowledge set actorKs can be used. Note that this also
enforces restriction 4 from section 4.1: any invariant declared within the scope of the choice
blocks is unknown to the interactions following them.

The result in between, blockRes, and its place in the overall result, are unfamiliar and
carry consequences regarding scope. Applying create-environments to a list of blocks re-
sults in a list of those blocks’ environments, each of which is a nested list. This rule, shown on
line 8 uses the same set of actor knowledge for each block, ensuring the scoping mentioned
before.

A choice interaction thus has no effect on actors’ knowledge, but introduces a new nested
list to the environment, containing the state information for the interactions in its choice
blocks.

Recursion and Continue Interactions

A recursion interaction is modeled as a pointer to the pre-state of the first function in its block
and, as such, introduces no new state of its own. Its enclosed block of interactions resembles
the choice construct. It should therefore not come as a surprise that the environment gener-
ation rule shown in figure 4.5, line 1 has the same structure as the choice rule, except for not
introducing a new state. It gathers a new set of actor knowledge based on the actors present
in its recursion block, and uses only that set of knowledge to process the interactions within.
The remaining interactions are processed with the current actor knowledge, ensuring the
scoping rules hold.

A continue interaction simply creates a state using the current actor knowledge. Other
than that, it only checks whether any interactions follow it, which should not occur. If it does,
the code generation terminates with an error message.
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4.1.2 Environment Generation for Running Example

This section will show the rules explained in the previous sections applied to the running
example. Looking back at Figure 4.1(a) the global protocol of the interactions between Cus-
tomer C, Seller S, and Banker B is shown. The resulting environments for each actor are
shown in Figures 4.1(b) to 4.1(d).

Line 2 shows a recursion declaration. Section 4.1.1 explained that recursions do not in-
duce a new state, but only a list containing the state information for the interactions with its
interaction block. This list can be seen spanning between lines 2 and 14.

The next interaction is a message, containing an unnamed String. First, a state is added
with the current actor knowledge for the actors involved in the interaction, in this case the
empty lists for actors C and S on line 3. Since no new invariant information was introduced,
actor knowledge is not updated. The state generated for priceInfo is an empty state as well.
Here, p is introduced, so while the state generated for priceInfo is empty, the invariant
information for p is passed as actor knowledge for actors C and S.

The choice interaction on line 5 introduces its own pre-state, as discussed in section 4.1.1.
For actors C and S, this information contains p, as can be seen in their environments in Fig-
ures 4.1(b) and 4.1(c). The environment for B, however, contains only the empty list. A state
is introduced for the choice interaction because B takes part in the choice options, but it has
never been introduced to p, so the list of invariants representing the state is empty. Further-
more, a new list is started on this line, 5. This list encompasses all choice options, closing on
line 13. This is the block containing the choice options discussed in section 4.1.1.

Lines 6 to 10 encompass the states for the interactions within the first choice block. The
two dummy methods introduce states with the knowledge of the involved actors, and the con-
tinue statement introduces a state for all actors, since this interaction is relevant to all actors
within the recursion block.

Lines 10 to 13 cover the states for the interactions within the second choice option. On
line 11, B is involved in an interaction referencing p, but has never been introduced to it.
According to the rules in figure 4.2, the sender, C, is searched for information regarding p.
Since Cwas introduced to p and thus has its type information, B’s knowledge is updated with
p. This shows in the state transition added for ackTransfer on line 12.

Since no interactions follow the choice or recursion interactions, the lists close and the
environment generation is finished.

4.2 Idris Syntax Subset
Idris’ syntax is not available in SDF format. Instead of trying to recreate it completely, a
smaller syntax specifically for this project was designed that serves as an intermediate lan-
guage, before pretty-printing Idris code with it. Figure 4.6 shows a simplified version of
this syntax2. It serves as a target for the code generation based on a Scribble protocol and
ensures the correct Idris keywords are used. Taking this responsibility away from the code
generator itself reduces both the code size and possibility for errors. SDF’s automatic pretty
printing functionality allows for the use of proper indentation for the whitespace-sensitive
Idris language.

As mentioned before, an Idris ST program consists of three parts: interface, protocol, and
implementation. The syntax for a program, as seen in Figure 4.6(a), reflects this structure.
Each of these parts is generated separately from the same Scribble protocol.

The Interface syntax shown in Figure 4.6(b) shows that each interface consists of a set
of data declarations, such as the data declaration for the states; an interface declaration, in
which the name and parameters of the interface are listed; and, representing the root of the

2The full syntax has more variations for pretty-printing specific state transitions, function structures, etc.
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� �
1 Program.Program =
2 <<Interface>
3 <Protocol>
4 <Implementation>� �

(a) General Syntax� �
1 Interface.IFace =
2 <{DataDecl "\n"}+>
3 interface <IFaceDecl> where
4 <IBlock>>
5

6 IFaceDecl.IFaceDecl = <<IName> (<Name>)>
7 IBlock.IBlock = <<{FunctionDecl "\n\n"}+>>
8

9 FunctionDecl.FunctionDecl = <<FunctionName> : <FunctionState>>
10 FunctionDecl.PFunctionDecl = <<FunctionName> : <{FunctionParam " -> "}+> -\>

<FunctionState>>
11

12 FunctionState.MState = <ST <VarName> (<IReturnValue>) [<FunctionStateDecl>]>
13 FunctionState.MStatePH = <StatePlaceHolder>
14

15 FunctionStateDecl.MEmptyState = <>
16 FunctionStateDecl.MStateChange = <<VarName> ::: <PreState> :-\> <PostState>>
17 FunctionStateDecl.MStateSame = <<VarName> ::: <PreState>>
18 FunctionStateDecl.MStateAdd = <add (<DataName> (<DataElement>))>
19 FunctionStateDecl.MStateAddIfJust = <addIfJust (<DataName> (<DataElement>))>
20 FunctionStateDecl.MStateRemove = <remove <VarName> (<DataName> <DataElement>)>
21

22 PreState.PreState = <<DataName> (<DataElement>)>
23 PostState.PostState = <<DataName> (<DataElement>)>
24 PostState.CPostState = <\\res =\> <DataName>
25 (case res of <{StateCaseDecl "\n"}+>)>
26

27 StateCaseDecl.CaseNothing = <Nothing =\> (<DataElement>)>
28 StateCaseDecl.CaseJust = <Just <TypeName> =\> (<DataElement>)>
29 StateCaseDecl.CaseJustAny = <Just _ =\> (<DataElement>)>
30 StateCaseDecl.CasePure = <<TypeName> =\> (<DataElement>)>� �

(b) Interface Syntax� �
1 Protocol.Protocol = <using (<{IFaceRef ", "{+>)
2 <{FunctionAny "\n\n"}*>>
3

4 IFaceRef.IFaceRef = <<IName> <VarName>>
5

6 FunctionAny.AFunctionImpl = <<FunctionImpl>>
7 FunctionAny.AFunctionDecl = <<FunctionDecl>>
8

9 FunctionImpl.FunctionImpl = <<FunctionName> <{Var " "}*> = <FunctionBlock>>
10 FunctionBlock.FunctionBlock = <<{FunctionLine "\n"}+>>
11 FunctionLine.Assignment = <<Var> \<- <FunctionCall>>
12 FunctionLine.LineDo = <do {<FunctionBlock>};>
13 FunctionLine.JustNothing = <<JustNothing>>
14 FunctionLine.LFunction = <<FunctionCall>>
15 FunctionLine.Hole = <?<FunctionName>>� �

(c) Protocol Syntax

Figure 4.6: Simplified intermediary syntax used as target syntax for translation from Scrib-
bleI to Idris34
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interface structure, an interaction block: IBlock. The block consists of function declarations
representing the interactions, defining a name, optional parameters, and a state transition.
Lines 15 to 20 represent the different forms a state transition can take. Here, the <DataName>
(<DataElement>) pair represents the state, e.g. StateT (C1). The remaining rules elaborate
on the different forms of pre- and post-states. With these building blocks, the required func-
tion definitions can be described with the proper state transitions. How these are generated
is explained in section 4.3.

A protocol consists mainly of functions with do-blocks. Figure 4.6(c) shows that a protocol
consists of references to used interfaces followed by a list of functions. Unlike an interface, a
protocol may contain both function declarations and implementations. The declarations have
the same form as those in the interface, as seen in Figure 4.6(b) on line 9. The implementation
form is shown in Figure 4.6(c) on line 9. It consists of a name, optional parameters, and the
block defining the function’s body. Lines 11 to 15 show the possible types of calls that can
be made within a function’s implementation. Section 4.4 elaborates on how this is used to
generate the protocol for Idris.

The intermediary syntax for the implementation is not shown here, since the choice was
made not to generate the implementation due to time constraints.

It should be made clear that this syntax is not representative of the full Idris syntax,
mainly in that this syntax is very limited in its applicability and possibilities: it is solely
used to generate code required for communication protocols in Idris. More importantly, it is
ambiguous and allows constructions that would not be valid in Idris. These limitations are
accepted since this syntax is not intended to parse Idris code, but only to print it. It is meant
to only be used in one direction, with full control over the syntactical structures created with
it.

The following sections elaborate on how this syntax is used to generate the Idris code for
each of the ST program parts: interface, protocol, and implementation.

4.3 Interface
This section will describe how an Idris interface is generated from a Scribble protocol. Sec-
tion 2.2.2 explained how a protocol’s state transitions are defined in the Idris interface, as
well as the input and output parameters for functions. These function signatures provide
the structure for all the code in the protocol and implementation parts of the program and it
is therefore critical that it is correct with respect to the original protocol.

Since the interface only contains function signatures, its main body consists of a single flat
list. As such, generating an intermediary AST from Scribble means that for each visited in-
teraction, its signature should be generated and simply added to the list. The main challenge
for the interface, therefore, is not maintaining the Scribble AST structure, but rather assign-
ing the correct parameters and states to the signatures. For this, the previously constructed
environment is used.
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� �
1 /* ... */
2 rec r {
3 reqPrice(String) to S;
4 priceInfo(p : Integer) from S;
5 choice at C
6 {
7 dummy() to B;
8 continue r;
9 } or {
10 reqTransfer(p) to B;
11 }
12 }
13 /* ... */� �

(a) Scribble Protocol for Customer

� �
1 [
2 [
3 ("Ready",[]),
4 ("C1",[]),
5 ("C2",[(p,Integer)]),
6 [
7 ("C3",[(p,Integer)]),
8 ("C4",[(p,Integer)])
9 ],[
10 ("C5",[(p,Integer)])
11 ]
12 ]
13 ]� �

(b) Environment for Customer� �
1 {- ... -}
2 data State = Ready | C1 | C2 Int | C3 Int | C4 Int | C5 Int
3 data Choice = Option1 | Option2
4 interface Customer (m : Type -> Type) where
5 {- ... -}
6 reqPrice : (l : Var) -> (s : String) ->
7 ST m () [l ::: StateT Ready :-> StateT C1]
8

9 priceInfo : (l : Var) ->
10 ST m Int [l ::: StateT C1 :->
11 \res => StateT (case res of
12 p => (C2 p)]
13

14 choice : (l : Var) ->
15 ST m Choice [l ::: StateT (C2 p) :-> \res => StateT
16 (case res of
17 Option1 => StateT (C3 p)
18 Option2 => StateT (C5 p))]
19 {- ... -}� �

(c) Translated to Idris

Figure 4.7: The origin, environment, and Idris result of a protocol translation

Each of the previously mentioned types of interactions (message, choice, recursion, and
continue) result in different types of functions in the Idris interface. This section is split up
into separate sections for each of them.

4.3.1 Message Interactions

Message interactions are the most basic interactions in a session type protocol. Section 2.2.2
explained how they transition from one state to the next, possibly with the introduction of
an invariant. A Scribble message interaction has three attributes: its direction (sending/re-
ceiving), its name, and its payload. The name is used as the name for the new Idris function,
and the payload influences either the function’s parameters or return type, depending on its
direction.
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There are four types of payload:

• Empty payload ()

• Base type T, where T is a valid type

• Invariant introduction x : T, where x is the name and T the type of the new invariant

• Invariant reference x, where x is the name of a known invariant

When a new invariant is introduced by a message interaction, that interaction’s post-state
and the states following it are parameterized by that new invariant’s value. Where this value
is defined depends on the direction of the interaction: either sending or receiving. This, and
how the other payloads are handled, is discussed in the following sections dedicated to the
directions.

Sending

As a message interaction, a sending interaction transfers only from one state to the next. The
type of payload affects the parameters for the Idris function to be constructed, and the pa-
rameters of its post-state. A sending interaction has the following general signature structure
in Idris, where the color boxes are placeholders for generated code:� �

1 ID : (l : Var) -> PARAMETERS ->
2 ST m () [l ::: StateT PRE-STATE :-> StateT POST-STATE ]� �

Here, ID is the name of the original interaction. The PARAMETERS are created based on the
payload type(s) in the message:

• Empty payload () creates no parameter.

• Generic type T creates an unnamed parameter T.

• Invariant introduction x : T creates a named parameter (x : T), where x equals a
new parameter in the POST-STATE with the same name.

• Invariant reference x creates a dependent pair (x' : T ** x' = x), where x is a pa-
rameter of type T of PRE-STATE.

The pre- and post-states are those states in the previously generated environment asso-
ciated with this interaction. Section 4.1 explained how these states contain the invariant in-
formation they are parameterized by. The Stratego code used to perform this transformation
can be found in appendix B.1.

Receiving

As opposed to sending interactions, receiving interactions only have one function parameter.
Their return type and state transition, however, do depend on the expected payload type. If
no new invariant declaration is defined in the payload, the return type and its effect on the
state transition is very similar to that of a sending interaction, the main difference being that
the function’s return type is a tuple consisting of the payload types, rather than the list of
parameters.� �

1 ID : (l : Var) -> ST m RETURN [l ::: StateT PRE-STATE :-> StateT POST-STATE ]� �
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When a new invariant is declared in the payload, however, the POST-STATE requires a
value for its new invariant parameter, which is now enclosed in a variable in the tuple that
is the return type. This variable is accessed using a case statement, pattern matching on the
pattern of the RETURN tuple:� �

1 ID : (l : Var) -> ST m RETURN [l ::: StateT PRE-STATE :-> \res => StateT
2 (case res of
3 PATTERN => POST-STATE )]� �

An example of such a function is multipleReturns, which has an unnamed String, known
invariant i of type Integer, and new invariant b of type Bool as a payload:� �

1 multipleReturns : (l : Var) -> ST m (String, (i' : Integer ** i' = i), Bool)
2 [l ::: StateT (T1 i) :-> \res => StateT (
3 case res of
4 (_,_,b) => (T2 i b))]� �

The known invariant i is represented by a dependent tuple, ensuring its value is equal to that
of state T1’s parameter. The new invariant is identified in the pattern of the case statement.
The value of the other return types is irrelevant for his pattern match.

The Stratego code used to perform this transformation can be found in appendix B.2.

4.3.2 Choice

A choice interaction allows a protocol to choose a course of action based on a decision made
by one of the actors. For the decision-maker, the logic of the decision is programmed in the
function, providing the result as a return value after sending it to the other involved actors.
For the receivers of the decision, the result of the decision is received from the decision-
maker and then returned. This means that, although the implementations are very different,
the signatures generated by the tool are actually the same:� �

1 choice_ ID : (l : Var) -> ST m Choice_ choiceID [l ::: StateT PRE-STATE :-> \res =>
StateT

2 (case res of
3 choiceID1 => POST-STATE1
4 choiceID2 => POST-STATE2
5 BRANCHES )]� �

Here, ID is a unique identification for each choice in the protocol. The return type is a data
type generated for each choice, consisting of a number of choiceIDs equal to the amount
of options available to this choice. The POST-STATEs are dependent on the result and are
gathered from the environment. They represent the pre-states of the first interaction in the
interaction block associated with the resulting decision.

The Stratego code used to perform this transformation can be found in appendix B.3.

4.3.3 Recursion

Recursion and continue statements are used to indicate where a recursion block starts and
ends. Implementing recursion is done by creating a separate function in the protocol section,
as described in section 4.4. As such, they do not create a function signature in the interface.
They do, however, indicate at which state the recursion starts. This is important for the con-
tinue statement. Continue statements are used to indicate when a recursion block is to be
repeated. Since they serve no other purpose, they do not have their own functions. Instead,
when a continue interaction is encountered, the previously mentioned starting state of the
recursion is used as a post-state for the interaction right before the continue statement. This
way, the program transitions to the correct state before repeating the recursion.
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4.4 Protocol

With the interface specified, the protocol can be created. Before the protocol generation is
started, some preparations are made. The required interface references are created, by de-
fault ConsoleIO and, of course, the interface that was just generated. Then, the type of the
protocol function is defined. This is always the same:� �

1 protocol : ST io () []� �
The protocol function returns nothing, and starts and ends statelessly, since it creates and
terminates the stateholder within its implementation. io is, by convention, the name the
protocol section uses for the underlying context. The implementation consists of a set of
calls listed in the Idris do-notation. This list of interactions represents the protocol as defined
in the Scribble protocol, although the exact notation of both languages are different.

As with the interface, the interactions are the most important artifacts to translate and
are thus discussed in this section. First, the message interactions are elaborated upon. The
same cases as the interface will be encountered for the sending and receiving interactions.
The next interaction to be explained is the choice interaction. Its different choice branches
lead to a branching in the Idris protocol as well. Then recursion is discussed. Recursion has
a special place in the protocol section, as will be explained.

4.4.1 Message Interactions

The payload that messages can carry affected is not only the signatures, but also the states in
the interface. This section will show that the different possibilities of payloads discussed in
section 4.3.1 are the same as what the protocol generation deals with. First, the calls gener-
ated for sending interactions are discussed, followed by those for the receiving interactions.

Sending

A sending interaction is a simple call, the structure of which depends on its payload. When a
new invariant is introduced by the interaction, a line is added to introduce it in the program
using a let statement. The general structure is shown here, where the cyan box indicates
the optional code, and the yellow boxes generated code.� �

1 let x = DEFAULT
2 ID PARAMS� �

The ID and PARAMS are the names of the interaction and the payload’s parameter names. The
cyan let statement is added when the sending interaction introduces a new invariant. This
invariant will be referenced in PARAMS and therefore must have a value assigned to it. For
each new invariant declared within the payload, one of the let lines is generated. The value
DEFAULT is a hard-coded default value for the type of x.

Hard-coding the values of new invariants is far from ideal, but the Idris type checker
requires a value for the program to type check. For now, hard-coding is a quick way to
achieve a valid program and automatically type check them. Other options exist, such as
asking the user for a value or obtaining them from an external source, but these require
additional time either when testing or when generating code.

An example of a let binding and sending interaction can be found below in 4.8(b), lines 12
and 13. The Stratego code for performing the transformation for the case of invariants being
present in the payload can be found in appendix C.2.
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Receiving

A receiving interaction is also a relatively simple call, having the same ID and PARAMS as a
sending call:� �

1 x <- ID PARAMS� �
Here, however, there is only one variable assignment. As described in the previous section,
the return type of a receiving interaction is a tuple when more than one return value is de-
fined. In those cases, x is also a tuple, consisting of the parameter names of the expected
return values, so that they can be used later in the protocol. The Stratego rules that perform
this translation can be found in appendix C.3.

4.4.2 Choice

Choice interactions result in the execution of different interactions based on the choice made.
Section 4.3.2 explained that a choice interaction returns a value of a dedicated data type that
determines the course of action. In the protocol, a casematch is used to make this distinction:� �

1 decision <- choice_ ID l
2 case decision of
3 OPTION1 => BLOCK
4 OPTION2 => BLOCK
5 {- ... -}� �

Depending on the value of decision, a certain BLOCK interaction block is executed. This
block is a set of interactions defined in the do-notation.

An example of a choice interaction in a protocol can be seen below in Figure 4.8(b). Line 14
shows the choice call, with the next line starting the case analysis. The exact Stratego rules
can be found in appendix C.4.

4.4.3 Recursion

Recursion requires the possibility to make a call to the starting point of the recursion. This is
modeled in Idris by creating a separate function for a recursion block, which requires both
a signature and implementation. The implementation consists of generating the Idris code
for the interactions within the recursion block, generally as with a normal protocol function.
The signature of the function is a simple state transition. The choice was made to keep any
invariants declared within the recursion block within that block’s scope3 and, as such, the
recursion function has no return value. The signature is therefore of the form:� �

1 recursion_ ID : (l : Var) -> ST io ()
2 [l ::: StateT {m=io} PRE-STATE :-> StateT {m=io} POST-STATE ]� �

Here, ID is the label of the recursion variable declared in the Scribble protocol, and the
PRE-STATE is the state in which the recursion starts. The POST-STATE is the state in which
the recursion should be when it ends. It is therefore the pre-state of the interaction directly
following the recursion block.

In the example in figure 4.8, the original protocol ends after the recursion is finished. As
such, the post-state of the recursion function is the final Done state.

The implementation of the recursion function is similar to the protocol implementation,
only differing in what happens at the end of the block. The implementation therefore looks
like the following:� �

1 recursion_ ID = do BLOCK� �
3All invariants declared before the recursion are available within the block
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Here, ID is the same as the signature, and the BLOCK is generated using the normal proto-
col code generation rules. Figure 4.8(b) shows an example of the recursion_r function on
line 10.

Of course, a recursion should be able to recurse. In Scribble, this is declared using the
continue statement. Section 4.3.3 explained that the interaction right before this statement
has as a post-state the state in which the recursion starts. Therefore, it is possible to directly
call the recursion function from the place the continue is encountered. Line 18 in figure 4.8
shows such a call.

The code for creating the call to the recursion function, the function signature, and its
implementation can be found in appendix C.5.� �

1 /* ... */
2 local protocol Shopping_S (role C, role S, role B){
3 rec r {
4 reqPrice() from C;
5 priceInfo(p : Integer) to C;
6 choice at C {
7 dummy2() from B;
8 continue r;
9 } or {
10 ackTransfer(p) from B;
11 } } }� �

(a) Scribble protocol� �
1 {- ... -}
2 shopping_S : (l : Var) -> ST io () []
3

4 recursion_r : (l : Var) -> ST io () [l ::: StateT {m=io} State1 :-> StateT {m=io}
Done]

5

6 shopping_S l =
7 do recursion_r l
8 done_Shopping_S l
9

10 recursion_r l =
11 do reqPrice l
12 let p = 0
13 priceInfo l p
14 choiceResult <- choice1 l
15 case choiceResult of
16 Option1 =>
17 do dummy2 l
18 recursion_r l
19 Option2 =>
20 do ackTransfer l
21 pure()� �

(b) Resulting Idris protocol

Figure 4.8: Example protocol code generation

41



4. Generating Idris code from Scribble

4.5 Implementation
The implementation has two important responsibilities: one is implementing the logic for
e.g. choices, invariant values, etc. Another is handling the actual communication between
parties.

The first responsibility is based on information that is not currently available in Scribble.
The choices, for example, only specify which actor makes the decision, not how that decision
is made. Considerations on how that may be improved are discussed in chapter 7. Until
then, it is up to the Idris programmers to implement this last piece of information.

The second part, handling the communication, consists of default, boiler-platey code that
should be possible to generate. Exact details such as addresses are, of course, unknown, but
the composite resources seen in chapter 2, used for the sending and receiving of messages,
seem like a possible target for code generation.

For now, however, no implementation is created at all.

4.6 Conclusion
After this chapter, the reader should be familiar with how Idris code is generated from a
protocol specified in Scribble. The syntax to which a protocol is translated is first introduced,
so that readers can follow the rules in later sections. Keeping track of states and invariant
scope is crucial to the proper functioning of the protocol as a whole. The reader is now
familiar with how this is recorded and used. Finally, the transformation from ScribbleI to
Idris is shown. Chapter 5 discusses how this code generation is tested, as well as assessing
how the described tool meets the thesis research objective.
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Chapter 5

Evaluation

The previous chapters described the tools created to provide support for implementing com-
munication protocols with invariants. This section is devoted to evaluating those tools. Sec-
tion 5.1 illustrates the tests performed to evaluate the correctness of the Idris code generation.
The usefulness of the contributions in a more general sense is discussed in section 5.2.

5.1 Testing the Idris Code Generation

The previous sections explained the rules that the code generation tool adheres to in order to
create correct Idris code. Testing the results is an important part of this project. Testing was
an integral part of development. During all stages any additions or modifications of rules was
tested against a small test set to ensure their correctness. Depending on the work at hand,
these tests consisted of protocols with particular interactions, invariants, or combinations
thereof. For the early stages, where no Idris code was yet output, the results were checked
manually against their expected output. Later, when the generated Idris code was expected
to be valid, type checking it in Idris became the main verification method of modifications
to the generator.

This section discusses the testing methods in-depth. In section 5.1.1 the testing method
and its challenges are discussed. Section 5.1.2 discusses what test cases were used. The
results of these tests is discussed in section 5.1.3.

5.1.1 Testing

Testing the code generated by the Stratego rules introduced a number of challenges. This
section discusses these challenges and their solutions, ending with a summary of the testing
methods.

The generator is built to generate an Idris program based on the logic encoded in a Scrib-
ble protocol. For the generation itself, translating the code without too much regard of the
underlying logic suffices. Testing the result, however, should include testing whether the
intended logic is represented in the Idris program. Since no implementation is created yet,
executing the Idris program and checking its results is not an option. Instead of creating
a test suite that could interpret this logic, testing the logic was done by manual inspection.
This was deemed sufficient due to Idris’ strict typing system. each Idris program should, of
course, type check. If it does not type check, it is due to one of the following errors:

• Syntactic or semantic error

• State transition error

– Incorrect state transition definition
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– Missing function call
– Incorrect invariant

General syntactic or semantic errors are considered those that violate syntax or simple typing
rules. Their cause is structural, in the sense that they are often found in the hard-coded
parts of the translation tool, such as a missing required code structure in the intermediary
translation syntax. State transition errors are more to do with the logic of a protocol. The
state transitions represent the order of execution of functions. If one of them is incorrect
in the interface or the protocol definition, the odds of that program passing the Idris type
checker are deemed low.

Another challenge in testing is checking whether an incorrect protocol is rejected for the
proper reason. Logic critical to the proper functioning of the code generator is usually
wrapped in a with clause in Stratego. This ensures the program terminates, but also means
that no result is returned. A debug message is therefore printed, indicating the error encoun-
tered. In case of a failed execution, this last message can be manually checked to correlate to
the expected failure point.

With these challenges in mind, testing was done manually for test cases supposed to
fail and cases testing whether Scribble’s logic was retained. Test cases focusing on technical
aspects of the translation were checked by executing the code generation and automatically
type checking the results with Idris. What these test cases entail is discussed in the next
section.

5.1.2 Test cases

Three sets of test cases were used to test the generator and its results:

• Specific test cases

• Example scenarios

• Scribble demos

The first set consists of small protocols designed to test a specific behavior of the genera-
tor. Appendices D.1 to D.4 list these for choices, recursion, payload types and scope. These
tests were run by generating the Idris code and type checking it.

Example scenarios are bigger tests, useful for testing both the retaining of logic and the
combined use of all interactions. Appendix D.5.1 shows the protocol for an ATM interac-
tion by a user. This protocol was chosen due to its use in session type literature (Bonelli
and Compagnoni 2007; Dezani-Ciancaglini and Liguoro 2009; Bocchi et al. 2013). Appen-
dices D.5.2 and D.5.3 show (adapted versions of) the SEPA Credit Transfer and Direct Debit
protocols1. These protocols are issued by the European Payments Council and used by many
major banks. Finally, the running example is also tested, the Scribble protocol of which can
be found in appendix E.1.

The Scribble demos refer to a set of Scribble demos available on the Scribble Github2.
These demos cover a wide array of scenarios, including an HTTP protocol, a negotiation,
and a loan request. The advantage of using these demos is that they provide a number of
protocols tested for their functionality and making use of the wide range of Scribble potential.
This allows not only the testing of the Idris code generation, but also that of the Scribble
protocol transformation tools discussed in 3.1. The latter is also the downside: since this
report covers a subset of Scribble syntax, some interactions in the demos are not available for

1European Payments Council 2017a; European Payments Council 2017b.
2Scribble on Github (n.d.). url: https://github.com/scribble.
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us. In order to be able to test these demos, they had to be altered to comply with the covered
Scribble subset. This meant removing:

• Type declarations

• do interactions

• connect interactions

• Some keywords of protocol declarations (e.g. aux)

Also, payloads were either converted to unnamed types accepted by our syntax, or converted
into invariant declarations. After these alterations, Idris code could be generated from them.

Notes and observations on these demos, along with the results of the other test cases are
discussed in the next section.

5.1.3 Results

Almost all test cases passed, and all shown scenarios passed the test for code generation,
Idris type checking, and retaining their logic. Still, some tests should be taken a look at.
First, some failing specific test cases are considered. Then the results of the Scribble demos
are discussed. Since the test scenarios are passed, no more mention of them is made.

There are two classes of failed test cases.
One has to do with introducing a variable known to the sender, but unknown to the

receiver in the last interaction of a block. In case InvariantIntroducedAtEnd on line 41 in
appendix D.4, actor B introduces invariant i to actor C. i has been previously introduced to B,
but is unknown to C. Due to the design decision to only model pre-states in the environment,
the information of i is lost to C in the local protocol, and an error occurs. A refactoring of
the environment generation could eliminate this bug. Until then, it can be solved by adding
a dummy() interaction after the violating interaction.

The second set of failed test cases has to do with empty blocks, either choice or continue
statements. An example is NoMessage on line 26 in appendix D.2: Recursion Tests. Here, a
recursion without a message interaction is defined. For now, a message is expected within a
block.

These two cases are bugs in the current implementation. When testing the Scribble de-
mos, on the other hand, it became clear that Scribble is indeed more expressive than Scrib-
bleI. Several demos maintained their logic even after modification, but others lost it. A clear
example is the game.scr demo. This demo depends much on delegating sessions to other
protocols using the do interaction. While a design retaining its logic using only our syntax
may be possible, it would mean much duplicated code and decreased readability.

Similarly, the connect interaction, which is used to connect two actors with each other,
allows for the late introduction of an actor to the conversation. In the running example, dummy
messages are required to handle the Bank’s involvement in the choice, even if the Bank is
actually only supposed to interact in one branch. Not connecting the Bank until it is required
would resolve this issue.

In conclusion, the code generation works for the majority of cases it is currently designed
for. Some edge cases not solved yet have been described. However, extending the syntax
would allow for more complex protocols.

5.2 Contributions

This project presents three contributions: a method for implementing session types with in-
variants in Idris, ScribbleX, and a translation from ScribbleX to Idris. This toolset was created
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to enable protocol developers to design safe protocols with invariants in a developer-friendly
language and generate a working program that is guaranteed to follow that protocol’s spec-
ification. This section will discuss whether the results match the initial intentions.

Idris The first objective was to explore the possibilities of creating an executable program
that implements a communication protocol with invariants. Idris was chosen due to its de-
pendent types, which can be used to statically ensure a value remains invariant, and its ST
Library, which can be used to implement session types. This combination allowed for the
desired implementation, where invariants in a communication protocol are indeed enforced.
What is lacking, however, is an explicit notion of whether the implemented protocol adheres
to session type protocol guarantees. These guarantees (linearity, progress, session fidelity,
and communication safety) are the main strength of session types, and being able to prove
they hold true for an implementation would be useful. Based on the experience gained dur-
ing this project, such a proof may be possible. In Honda, Yoshida, and Carbone (2008), the
proofs of the latter three guarantees are reliant on the linearity property. As mentioned in
section 6.1, a protocol is linear when no message can be mistaken for another. In session
types, this is inherent in the typing system. In an implementation techniques such as mes-
sage queues may lead to the same result. Assuming that this property holds, the other three
can be reasoned to hold as well. Progress is a consequence of the structure of the protocol,
which is enforced by Idris’ state transition system. This is also true for session fidelity: it is
impossible for an actor to deviate from the protocol. Communication safety is a little more
complicated with the introduction of invariants. If all actors are generated from the same
global protocol, the environment generation should ensure that all invariant knowledge is
correct for each actor. As such, no received message content should be unexpected or incor-
rect, and this property should hold as well. Therefore, generating a program from a valid
Scribble protocol increases the likelihood of these properties to transfer to an Idris protocol,
but we have not provided proof to establish a significant claim.

ScribbleI The second objective was to enable relative laymen in programming (with de-
pendent types) to easily design protocols and generate a machine executable program from
them. For this reason, Scribble was chosen as a base language. Scribble’s small and straight-
forward syntax allows for rapid design and prototyping, and its existing algorithms to check
for session type adherence ensure the safety of protocols. Extending its syntax to allow the
specification of invariants was a small, but effective modification. Checking the session type
safety of a ScribbleI protocol is possible, albeit in a roundabout manner. The small tool that
creates a Scribble protocol from a ScribbleI protocol allows the user to use the original Scrib-
ble checker. This was purposely done to be able to rely on the expertise of its creators. The
proper use of invariant declarations and references is also checked and tested, but only with
respect to the actor knowledge and scope. Intuitively, it seems these invariants should not
interfere with session type safety, but we provide no proof regarding this notion.

Translation The Idris code generation from a ScribbleI protocol saves time and reduces
the chance of human-induced errors in the implementation. The test results show that the
generator adheres to the protocol definition for all actors and creates an interface and pro-
tocol that retain the original protocol’s logic. The state transition system used to enforce
message ordering ensures that changes that would invalidate this ordering result in a type
error. However, the lack of an implementation generator means that knowledge of Idris is
still very much required. This lack is due to time constraints and it is our belief that such a
generator can be created, so as to minimize the need for manual completion of the generated
Idris program. Minimize, because, for now, ScribbleI (and Scribble) lack the ability to express
certain logic required in an implementation, such as what the decision logic in a choice inter-
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action. Furthermore, a formal proof of the correctness of the code generator would solidify
its usefulness, especially with respect to maintaining the session type guarantees.
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Chapter 6

Related Work

This research is built upon a number of different research fields. This section will discuss
this relation with respect to relevant existing research.

First, since this work is heavily inspired by them, the multiparty session type theory by
Honda, Yoshida, and Carbone (2008) will be explained in more detail. Then, other projects
involving adding dependent types and/or invariants to session types are discussed. Finally,
Idris and the ST library are discussed.

6.1 Multiparty Asynchronous Session Types
Session types were introduced by Honda, Vasconcelos, and Kubo (1998) as a way to formally
describe communication protocols by typing them. This first iteration used binary protocols:
exactly two actors were involved in the protocol. Since then, session types have been actively
researched and improved. Dezani-Ciancaglini and Liguoro (2009) provide a comprehensive
overview of session types and their growth. A major milestone was fully functional multi-
party asynchronous session types by Honda, Yoshida, and Carbone (2008). This theory is
explained in more detail in this section.

Communication protocols are formal descriptions of communication between two or
more parties. In session types, these protocols consist of a sequence of interactions, which
represent a participant’s (actor’s) actions, such as sending a message or making a choice. Ses-
sion types cover three levels of abstractions: global protocols, local protocols, and processes.
Global protocols describe a communication protocol from an all-knowing perspective: all in-
teractions of all actors are described in it. Local protocols are more specific protocols, which
are described from the perspective of a single actor. This means, for example, that interac-
tions in which the current actor is not involved are not present in its local protocol. Processes
describe the behavior of the actors on a concrete level. The relation between these layers is
formally defined: a global protocol is projected onto an actor to create a local protocol using
a set of rules, and a type system ensures that a process adheres to this local protocol. The for-
mal nature of session types allows for proofs regarding certain properties of such protocols.
Multiparty asynchronous session types allow for communication with two or more actors in
an asynchronous setting, and are proven to provide the following guarantees:

• Communication Safety

• Progress

• Session Fidelity

Communication Safety means that no communication errors will occur. Communica-
tion errors in this context are errors regarding the timing of message sending and reception:
there is never a mismatch between the types of sent and expected messages, even if the same
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Language # Actors Authors
Haskell Binary Neubauer and Thiemann (2004)

Ldoos Binary Dezani-Ciancaglini, Yoshida, et al. (2005)
MOOS Binary Dezani-Ciancaglini, Mostrous, et al. (2006)

MOOS< Binary Dezani-Ciancaglini, Giachino, et al. (2006)
Java Binary Hu, Yoshida, and Honda (2008)
Java Binary Gay et al. (2010)

C Multiparty Ng, Yoshida, and Honda (2012)
Java (Scribble generated) Multiparty Yoshida, Hu, et al. (2013)
Java (Mungo/StMungo) Multiparty Kouzapas et al. (2016)

Scala Binary Scalas and Yoshida (2016)

Table 6.1: Implementations of Session Types

communication channel is used for exchanging messages of different types (Coppo et al.
2015).

Progress is the fact that every message sent is eventually received, and every actor waiting
for a message eventually receives one.

Session fidelity means that, after a session has been started, no actor will deviate from
their prescribed protocol. This is an important feature, considering that messages in session
types have no identity: one message can not be directly distinguished from another.

Session fidelity is inherited from the binary session type theory, since it can be checked at
a local level. The other two guarantees, however, require a global approach. A key property
when proving them is that channels are used linearly. Channels are the communication chan-
nels across which actors communicate with each other and their use plays an important role
in allowing actors to process interactions in the correct order. Channels are linear when no
incoming message content can be mistaken for another, despite messages having no identity
and an asynchronous environment. Honda, Yoshida, and Carbone (2008) provide an excel-
lent example of how this is required using the two-buyer protocol. When channels are used
linearly, both progress and communication safety can be shown to hold for a protocol.

Multiparty session types have two syntaxes: the calculus syntax, which is used to prove
the previously mentioned guarantees, and that of the communication type system, which is
used to check type soundness of the communications and protocol fidelity. Scribble’s syn-
tax is based on that of the communication type system, which it uses to check whether the
previously mentioned guarantees hold.

6.2 Related Research

Session types have inspired a multitude of research directions since their inception in the
late nineties. This section will provide an overview of research related to this project.

Session Type Implementations Session types have been implemented in multiple lan-
guages, with varying capabilities. Table 6.1 shows a summary of such implementations.
Neubauer and Thiemann (2004) created a Session monad for Haskell. This adhered to all
the type rules of session types, but only handles protocols with exactly two actors (binary).
Ldoos (Dezani-Ciancaglini, Yoshida, et al. 2005) and MOOS (Dezani-Ciancaglini, Mostrous, et
al. 2006; Dezani-Ciancaglini, Giachino, et al. 2006) were two small object-oriented languages
created with the intent to implement session types. This work served as a basis for Hu,
Yoshida, and Honda (2008), who created the first Java implementation of session types by
extending Java with session primitives and subtyping. They used a combination of static and
dynamic checks to ensure the implementation adhered to session type properties. Gay et al.
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(2010) also created an implementation for session types in Java, which provided a modular-
ity not seen in previous work, allowing for more flexible use of channels by actors. These
implementations are all for binary session types. This project provides an implementation
for multiparty session types, next to the addition of invariants.

While previous work could mimic multiparty communication using session delegation,
the first implementation of multiparty session types is by Ng, Yoshida, and Honda (2012),
creating a toolchain for C in which global session types can be expressed, projected unto
local types and finally resulting in endpoint protocols, based on which the resulting C pro-
gram is designed. A similar design pattern resulted from Scribble Yoshida, Hu, et al. (2013),
for which a Java generator was created in cooperation with JBoss1. The generated code rep-
resents the structure of communication, limiting the implementation to interactions speci-
fied by the protocol. In a similar vain, Kouzapas et al. (2016) created Mungo and StMungo.
Mungo extends Java with typestate definitions, which enables a developer to assign states to
classes. StMungo is a tool that generates a typestate definition based on a Scribble protocol.
This project follows the same general structure: create a high-level protocol description and
use a tool to generate an implementation for it. A novel contribution, however, is the addi-
tion of invariants on each level of abstraction, while maintaining session type guarantees on
the global and local protocol levels.

Dependent Types and Session Types Dependent types have been used in combination
with session types before. Yoshida, Deniélou, et al. (2010) use dependent types to model pa-
rameterized multiparty session types. This allows for the design of protocols with dynamic
parameters, like the number of participants taking part. However, only the parameters of
the protocol are modelled with dependent type, not the contents of message payloads. The
limitations with respect to knowledge about the payload is therefore still lacking. Toninho,
Caires, and Pfenning (2011) develop an interpretation of intuitionistic linear type theory as
a dependent session type system, which not only types protocols, but also adds properties
of message payloads. While similar, their work only supports binary session types. Toninho
and Yoshida (2017) have defined a type discipline for session types with value dependent
payload. Like our work, it is based on multiparty session type theory by Honda, Yoshida,
and Carbone (2008) and treats values as singleton types. Moreover, dependent types are
fully supported in their work, including their use as payload. To the best of our knowledge,
however, this theory exists only on pen-and-paper for now, whereas this project provides a
machine executable implementation of invariant payloads.

1JBoss (n.d.). url: http://http://www.jboss.org/.
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Chapter 7

Future Work

Chapter 5 discussed in how far the current contributions provide a solution to the initial
problem statement. The previous chapter put them in context with existing work. This chap-
ter will describe what could be done in the future to improve upon this work.

Correctness Proofs We provide a way to implement communication protocols in Idris,
based on a session type protocol. The lack of a formal description of the code generation
means that there is no proof that the implementation adheres to the original protocol. Tests
show that this is usually the case, but it is our belief that Idris’ formal typing system could
be used to create a formal proof that supports this intuition.

Subprotocols and Parallelism Scribble allows for the specification and execution of sub-
protocols, allowing the design of modular protocols. This should be possible to define in
Idris, but care should be taken when checking for invariant violations in a set of global pro-
tocols like these. The same is true for Scribble’s explicit parallel execution capabilities. Ton-
inho and Yoshida (2017) incorporate this in their theoretical framework, which suggests that
this should be possible in an implementation as well. Even so, the notion of invariants in a
parallel environment may introduce new challenges.

Improved Code Generation The current Idris code generator produces Idris type signa-
tures as output, and it is up to the developer to develop a well-typed implementation of each
function in the interface. Idris has support for programming with holes, that is, at any point
during the development of a program, you can interactively inspect the state of the type
context and see what the rest of the protocol expects in order to type check, which in our
experience is a useful methodology for type-driven implementation of multi-party proto-
cols. In future work, we would like to investigate how to improve the code generation along
several dimensions:

• The safety of a protocol in general depends on which channels actors are communi-
cating along. We expect it would be relatively straightforward to support (or perhaps
even require) channel annotations for each interaction in our variant of Scribble, and
to generate type signatures that guarantee that a given transition must send or receive
a message along the channel.

• Our illustration of how to implement a protocol used the socket module that is a part
of Idris’ ST library. To model something like channels, it is desirable that we imple-
ment better library support for strongly-typed network programming, such as length-
indexed message queues and/or type-indexed heterogeneous message queues.
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• We have no generic method of parsing incoming messages. Creating a parser for ba-
sic session types might be trivial, since messages and types are expected. However,
future work with expanded content capabilities will complicate parser design. There-
fore, a more generic parser, made to handle less regulated communication, is desirable,
possibly as part of the previously mentioned networking library.

• The current Idris code generator generates type signatures and a protocol with holes
for application-specific logic, such as choosing what concrete value to pass from one
actor to another. In future work, it would be interesting to see how far we can take the
code generation approach: could we generate entire implementations of local protocols
and have a dependently typed host language verify that the generated implementation
is safe w.r.t. its specification?

• Our Idris type signatures currently only provide guarantees about local protocols,
whereas the verification of properties about global protocols is delegated to the Scribble
implementation itself. It seems attractive and tractable that we should be able to reason
about the composition of a collection of local protocols, to verify in a dependently typed
host language like Idris that the protocols satisfy global properties like linearity.

Shared Knowledge Management We briefly discussed how the simple customer-seller-
bank protocol was subject to an invariant at a critical point at which all actors should agree
on the state of the singleton type denoting the price of the product that funds were being
exchanged for in the protocol. It is currently beyond both regular Scribble, ScribbleI, and
other frameworks for dependent session types, such as Toninho and Yoshida (2017) and Wu
and Xi (2017), to statically enforce that the knowledge of dependently typed invariants has
been propagated correctly to all actors. As argued and illustrated in connection with the
customer-seller-bank example protocol, it is useful do so. There are several potential strate-
gies for ensuring that actors agree on invariants. One such strategy which is currently en
vogue is block-chain technology where common knowledge is kept track of in a ledger. Less
involved options exist, such as a classification of which actors in a given global protocol are
credible sources to receive knowledge of a singleton type from. Another scheme would be
to annotate data with an unforgeable crypto-signature, whereby an actor at a critical point
in a protocol is able to identify and query the originator of a singleton type, to validate that
the originator agrees with the singleton type state at that point in the protocol.
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Chapter 8

Conclusion

This report has shown the progress made towards this project’s objective to:

Support development of machine executable implementations for multi-party protocols
with dependently typed invariants.

First, Idris’ potential for implementing session types using the ST Library was shown in
chapter 2. Its interface can be used to enforce a fixed ordering of interactions through stateful
signatures. These signatures were used to define a protocol in which the program was made
more concrete. The implementation of the interface uses the Network library to connect a
protocol’s actors and provide a machine executable implementation of the whole protocol.
Finally, invariants were added to this basis. By parameterizing states with known invariants,
their invariance can be guaranteed for each actor individually.

While it is possible to create protocols from scratch in Idris, there is a number of down-
sides to this. It requires expertise to work with Idris, which means that either protocol de-
signers need to learn this expertise, or a designer’s protocol needs to be implemented by a
programmer. This extra step could introduce discrepancies between a designer’s intention
and the final result due to the difficulties of explaining a protocol without a formal method.
Therefore, chapter 3 introduced Scribble, a multi-party session type protocol language. This
small, developer-friendly language enables a developer to quickly design a protocol and test
it for session type safety. Scribble, however, does not support invariants. To extend Scribble
with these, a subset of its syntax was implemented in Spoofax, named ScribbleI, along with
checks to ensure correct use of invariants in a protocol. The projection of a global protocol to
a local protocol was also implemented, as well as a tool that transforms a ScribbleI protocol
to a Scribble protocol. This latter tool is used to check whether a ScribbleI protocol is still a
valid session type.

Finally, a code generation tool was described, which generates Idris code from a ScribbleI
protocol. The generated code represents an interface and protocol definition for Idris’ ST
Library. The tool was shown to be able to translate a variety of ScribbleI protocols to working
Idris code, maintaining both the logic and restrictions of the original protocol.

This project showed that machine executable implementations of multi-party commu-
nication protocols with invariants is possible, using Idris’ ST Library and dependent type
checker to enforce protocol execution rules. Additionally, creating such implementations
was made easier and less error-prone by generating the Idris code from ScribbleI. While
improvements are desirable, the groundwork for full tool support for implementing safe
protocols has been laid.
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Appendix A

Idris Generation Defaults

The Idris code generation rules as explained in chapter 4 all make use of the same names and
constructions to create the required code. For brevity, these defaults have been left out in the
examples. For completion, this section will expand on the missing elements.

A.1 Interface

Figure A.1 shows the full rule for generating the function signature for a sending interaction.
The patterns of the rule are similar to almost all other interaction translation rules. This will
be discussed in appendix A.1.1.

Except for line 8, this rule uses only default values and constructions in the with clause,
all shared by one or more of the other translation rules. Each of these clauses is explained in
appendix A.1.2.

A.1.1 Rule patterns

The left- and right-hand side patterns of a Stratego rule represent the transformation from
one pattern to another. For the code generation rules, a number of arguments are joined in a
tuple to provide the information to generate the correct code.

� �
1 idr-if: ([LISend(msg,receivers)|ints], [state|states], reqVar) ->
2 [newFunction | <idr-if> (ints,states,reqVar)]
3 with
4 stateType := <lookup> ("statetype", reqVar)
5 ; stateHolder := <lookup> ("stateholder", reqVar)
6 ; mName := <lookup> ("mName", reqVar)
7 ; defaultParams := [FParamDecl(VarDecl(stateHolder, "Var"))]
8 ; payloadParams := <create-params> (msg,state)
9 ; <?(curState, curParams)> state

10 ; preState := PreState(stateType, ParametDElement(curState,
11 <state-param-names> curParams))
12 ; (nextState,nextParams) := <next-state> states
13 ; postState := PostState(stateType,ParametDElement(nextState,
14 <state-param-names> nextParams))
15 ; newStateDecl := FStateChange(stateHolder, preState, postState)
16 ; newState := FState(mName, IEmptyReturn(), newStateDecl)
17 ; finalParams := <concat> [defaultParams, payloadParams]
18 ; newFunction := ParamFunctionDecl(<msg-name> msg, finalParams, newState)� �

Figure A.1: Stratego rule for sending interaction
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A. Idris Generation Defaults

The left-hand side consists of a list with at the head the interaction type and its arguments,
in the case of figure A.1 a send interaction (LISend(msg,receivers)). The tail of the list is the
remainder of the interactions. The second argument is a list of the states, with the pre-state of
the current interaction at the head. The simultaneous traversal of these lists, in combination
with their symmetry, ensures that the correct states are used as pre- and post-states for the
interaction. The final argument is a list of required variables for the proper construction of
function signatures and calls, reqVar. This list will come up when a variable shared by the
whole program is required, a number of which will be seen in the next section.

The right-hand side of the rule represents the resulting pattern. For the interface, this
is a list of interactions, with the result of the current interaction, newFunction, at the head,
followed by the results of applying the interface generation rule idr-if to the remaining
interactions. The tails of both the list of interactions and states are used as arguments, as
well as the list of required variables.

A.1.2 with terms

The goal for a rule like the interface generation rule idr-if is to take a Scribble interaction
and transform it into an Idris construct. This transformation requires the construction of a list
of function parameters, possibly a return type, and of course the pre- and post-states. This
information is constructed in the with clause of the generation rules. The rule in figure A.1
comes as close to a ’default’ construction rule as possible: it uses a default parameter, has an
empty return type, and it simply transitions from one state to the next. As such, it is a useful
rule to use to expand on the common clauses used in these types of rules, which are omitted
in the examples in the main report.

First, some basic variables are gathered from the universally used reqVar to ensure the
code remains consistent on lines 4 to 6. The next line generates the default parameter that all
stateful functions need: the stateholder. This is a function parameter with the name of the
stateholder and its type, Var. Line 8 is skipped in this section, since it is unique to the send
interaction rule.

Next is one of the most important elements of a function signature: its pre-state. First,
the current state name and associated parameters are gathered from the state argument
in the rule’s left-hand side. Section 4.1 showed that, after naming the states, a state is rep-
resented by a tuple of its name and parameters. Line 9 extracts these by pattern matching
this tuple. The results are then used to construct a ScIdris PreState construct representing
an ST pre-state. It uses the type of the state (e.g. StateT) and a list consisting of the names
of the associated parameters as arguments, resulting in, for example, StateT (C4 p). The
post-state is constructed similarly, but the state name and parameters are extracted using
the next-state rule. This rule is required to handle the different forms the states tail may
have. For example, the next state might be nested in a parent list, or it may be empty if this
is the last interaction.

The constructed pre- and post-states can be used to define a state transition, in the default
case a transition from one state to one other, represented by FStateChange. Line 15 shows
that this uses the name of the stateholder along with the states to create this transition. An
example of a result may be [l ::: StateT (C3) :-> StateT (C4 p)]. This transition is
then used to construct the whole ST construct on line 16, along with the computation context
name and the empty return construct.

Line 17 joins the default parameters with the specially constructed payload-dependent
parameters into one list of parameters used to create the final parameterized function dec-
laration. ParamFunctionDecl takes a function name, a list of parameters, and an ST state
declaration as arguments to construct a complete function signature.
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A.1. Interface

The constructs explained here are often used in the other code generation rules. As such,
when some lines are missing from a with or where clause for brevity, one may assume that
the rules listed here are used.
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Appendix B

Interface Generation Rules

B.1 Sending Signature Generation

� �
1 idr-if: ([LISend(msg,receivers)|ints], [state|states], reqVar) ->
2 [newFunction | <idr-if> (ints,states,reqVar)]
3 with
4 /* ... */
5 ; payloadParams := <create-params> (msg,state)
6 ; finalParams := <concat> [defaultParams, payloadParams]
7 ; newFunction := ParamFunctionDecl(<msg-name> msg, finalParams, newState)� �

(a) Stratego rule for sending interactions� �
1 create-params: (Message(name,Some(Load(load))),state) -> <create-params> (load,state)
2 create-params: (Message(name,None()),state) -> []
3 create-params: ([PLType(vartype) | load],state) ->
4 [FParam(VVarName(vartype)) | <create-params> (load,state)]
5 create-params: ([PLDeclaration(VariableDecl(varname,vartype))|load],state) ->
6 [FParamDecl(VarDecl(varname,vartype)) | <create-params>(load,state)]
7 create-params: ([PLName(varname) | load],state@(statename,stateVars)) ->
8 [FParamDecl(VarDecl(varname,varType)) | <create-params> (load,state)]
9 with varType := <lookup> (varname,stateVars)
10 create-params: ([],_) -> []� �

(b) create-params rule

Figure B.1: Rules used for generating sending interaction signatures

There is just a single rule for a sending interaction, since only the function parameters
are affected, rather than the whole structure. Figure B.1(a) shows this rule, with the default
parameters discussed in appendix A now omitted. Creating the list of parameters from the
message payload is done using the create-params rule, called on line 5.

The create-params rule takes a message with either no load (None()) or some pay-
load (Some(Load(load))). In case of the former, no extra parameters are required and an
empty list is returned, as seen on line 2. In case of the latter, a distinction is made between
the three remaining payload types. Line 3 shows that if only a generic type is specified
(TypeDecl(type)), said type is used as a parameter. This results in an unnamed parame-
ter for the function signature. Line 5 pertains to new invariant declarations. These contain
the name and type (varname and vartype, respectively) of a new invariant, which are com-
bined and used as a named parameter (e.g. (p : Integer)). For known invariants, whose
payload only consists of a variable name, the type must first be found. Since the invariant is
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B. Interface Generation Rules

known, its type information is contained in the state information. A simple lookup should
therefore return the type, and a named parameter can be added to the list of parameters.

B.2 Receiving Signature Generation

� �
1 idr-if: ([LIRecv(msg,sender)|ints], [state|states],reqVar) ->
2 [newFunction | <idr-if> (ints,states,reqVar)]
3 where <?Message(name,None())> msg
4 with
5 /* ... */
6 ; newFunction := ParamFunctionDecl(<msg-name> msg, finalParams, newState)� �

(a) Receiving interaction with no payload� �
1 idr-if: ([rcv@LIRecv(msg,sender)|ints], s@[state|states],reqVar) ->
2 [newFunction | <idr-if> (ints,states,reqVar)]
3 where <?Message(name,Some(payload))>msg
4 with
5 newPayloads := <collect(?VariableDecl(_,_))> payload
6 ; knownPayloads := <collect-all(?PLName(_))> payload
7 ; anonPayloads := <collect-all(?PLType(_))> payload
8 ; newFunction := <idr-if-recv> (rcv, s, reqVar, newPayloads, knownPayloads,

anonPayloads)� �
(b) Receiving interaction with payload

Figure B.2: Stratego rules for receiving interactions

The function description for a receiving interaction is dependent on the payload it carries.
In case no payload is expected, a default message interaction signature is created, as shown
in Figure B.2(a). Otherwise, the different payload types (new invariants, known references,
and anonymous types) are gathered and used as arguments to call the specific idr-if-recv
rule. This rule has three cases, shown in figures B.3 to B.5. The first case handles incoming
messages that have one or more new invariants, and an arbitrary number of other payload
types. A special exception is made for when a message has only one new invariant, and no
other payload. This case is shown in figure B.4. The other case, shown in figure B.5, handles
the case where no new invariants are declared, but only other payload types are present.

When multiple payload types are present in an incoming message, it needs a return type
that can distinguish them. Each payload type affects the return type and the post-state. The
function’s return type is a tuple containing the information of the payload types: simple
types for new invariants and anonymous types, and dependent pairs for known invariant
references. The post-state is dependent on the payload as well, as the pattern of res is used
to capture new invariants, as described in 2.2.2. The rule in figure B.3 captures this logic. It
first collects the names and types of all payload types on lines 7 to 11. It creates the dependent
pairs for the known invariants using get-dependent-ret-pairs, shown in figure B.6. It also
creates two lists of wildcards (_) from the known and anonymous types on lines 13 and 14,
to be used in the post-state. The tuple that is the final return type is created on line 15. The
list of names and wildcards from line 16 is used to pattern match the result and extract the
invariant names, so that they can be used as arguments for the post-state.

When only one new invariant is received, and no other payload, the return type is a simple
type and a smaller post-state is created.

When no new invariants are introduced at all, the post-state is the default style, and only
a tuple of return types need to be created, as is shown in figure B.5.
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� �
1 idr-if-recv: (LIRecv(msg,sender), [state|states],reqVar, newPayloads, knownPayloads,

anonPayloads, ints) -> newFunction
2 where
3 not(<?[_]> newPayloads;<?[]> knownPayloads;<?[]> anonPayloads)
4 ; not(<?[]> newPayloads)
5 with
6 /* ... */
7 newReturnNames := <get-payload-names> newPayloads
8 ; newReturnTypes := <get-payload-types> newPayloads
9 ; knwReturnNames := <get-payload-names> knownPayloads

10 ; knwReturnTypes := <get-payload-types> (knwReturnNames,
11 ; anonReturnTypes := <get-payload-types> anonPayloads curParams)
12 ; knwReturnDPairs:= <get-dependent-ret-pairs> (knwReturnNames, curParams)
13 ; knwReturnNamesWildCards := <to-wildcards> knwReturnNames
14 ; anonReturnWildCards := <to-wildcards> anonReturnTypes
15 ; returnTypes := IReturn(VarType(Tuple(<concat> [newReturnTypes, knwReturnDPairs,

anonReturnTypes])))
16 ; returnNames := VarType(Tuple(<concat> [newReturnNames, knwReturnNamesWildCards,

anonReturnWildCards]))
17 ; stateCaseDecl := CasePure(returnNames, ParametDElement(nextState, <state-param-names>

nextParams))
18 /* ... */
19 ; newFunction := ParamFunctionDecl(functionName,defaultParams,newState)� �

Figure B.3: Stratego rule for receiving interaction with multiple payload types� �
1 idr-if-recv: (LIRecv(msg,sender), [state|states],reqVar, newPayloads, knownPayloads,

anonPayloads, ints) -> newFunction
2 where
3 <?[VariableDecl(var,type)]> newPayloads
4 ; <?[]> knownPayloads
5 ; <?[]> anonPayloads
6 with
7 /* ... */
8 returnType := IReturn(SimpleType(type))
9 . /* ... */

10 ; newFunction := ParamFunctionDecl(functionName,defaultParams,newState)� �
Figure B.4: Stratego rule for receiving interaction with exactly one new invariant� �

1 idr-if-recv: (LIRecv(msg,sender), [state|states],reqVar, newPayloads, knownPayloads,
anonPayloads, ints) -> newFunction

2 where
3 <?[]> newPayloads
4 with
5 /* ... */
6 knwReturnNames := <get-payload-names> knownPayloads
7 ; knwReturnTypes := <get-payload-types> (knwReturnNames, curParams)
8 ; knwReturnDPairs:= <get-dependent-ret-pairs> (knwReturnNames, curParams)
9 ; knwReturnNamesWildCards := <to-wildcards> knwReturnNames

10 ; returnTypes := IReturn(VarType(Tuple(knwReturnDPairs)))
11 /* ... */
12 ; newFunction := ParamFunctionDecl(functionName,defaultParams,newState)� �

Figure B.5: Stratego rule for receiving interaction with no new payload
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� �
1 get-dependent-ret-pairs: ([VVarName(name)|names],params) ->
2 [depPair | <get-dependent-ret-pairs> (names,params)]
3 with
4 type := <lookup> (name,params)
5 ; newName := <concat-strings> [name,"'"]
6 ; depPair := DepPair(newName,type,newName,name)
7 get-dependent-ret-pairs: ([],_) -> []� �

Figure B.6: Stratego rule for creating dependent pairs
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B.3 Choice Signature Generation

� �
1 idr-if: ([LNIChoice(name,role,blocks)|ints], [state,blockStates|states], reqVar) ->
2 <concat> [[newFunction], blocksRes, intsRes]
3 with
4 ; [postCase|postCases] := <gen-choice-posts> (blockStates,choices)
5 ; postState := CPostState(stateType, postCase,postCases)
6 /* ... */
7 ; newFunction := ParamFunctionDecl(name,defaultParams,newState)
8 ; blocksRes := <idr-if> (blocks,blockStates,reqVar)
9 ; intsRes := <idr-if> (ints,states,reqVar)

10

11 gen-choice-posts: ([block|blocks], [choice|choices]) ->
12 [<gen-choice-case> (block,choice) | <gen-choice-posts> (blocks,choices)]
13 where not(<?(_,_)> block)
14 gen-choice-posts: ([],[_|_]) -> CasePure(WildCard(), ParametDElement("Done",[]))
15 gen-choice-posts: ([],[]) -> []
16

17 gen-choice-case: ([(curState,curParams)|_], DataElement(choice)) ->
18 CasePure(choice, ParametDElement(curState, <state-param-names> curParams))� �

Figure B.7: Stratego rules for choice interaction

Figure B.7 shows the Stratego rule for generating the Idris code for a choice interac-
tion, using the logic explained in section 4.3.2. The states passed as an argument on line 1,
[state,blockStates|states], represent the structure of the environment a choice interac-
tion creates: the state is the pre-state of the choice; blockStates is the list containing the
environments for each choice option; and states represents the remainder of the states for
the remaining interactions. Line 4 calls the gen-choice-posts to gather the states in which
the function might end up, using the blockStates as an argument.

gen-choice-posts extracts the first state of each list in blockStates and associates it
with a choice result, represented by choice1, which it then wraps up in a construct that can
be used to generate the full, return-type dependent post-state. It does so by traversing the
blocks of states of which blockStates consists and calling gen-choice-case for each. This
rule returns a case construct, as seen in section 4.2, which has an argument for the pattern
matching of the case statement (e.g. Option1), and a resulting state (e.g. C3 p).

The second case for gen-choice-posts, where ([],[_|_]) is expected, handles a case
which may occur due to an imperfection in the generation of the Choice datatype: Only a
single one of these types is generated for one protocol, which consists of a number of Options
equal to the maximum number of options of any one choice interaction within the protocol.
As such, it may occur that a case statement for a choice interaction which contains only two
options, pattern matches using a Choice data type which contains three or more options. As
such, a wildcard is used to match the remaining cases and transition to the final Done state,
effectively ending the protocol. The Idris type checker requires this complete matching, but
the return type should always match one of the named cases.

After all the cases have been generated, they are used to create the post-state on line 5.
The new function is generated in the default steps, ending in its declaration on line 7. After
this, the choice’s blocks and the interactions following them can be processed as well.

1Here, choice represents an element of the Choice data type explained in chapter 2.
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Protocol Generation

C.1 Protocol Generation Initiation
� �

1 idr-protocol: (p@LocalProtDec(hdr,block), E, reqVar'') -> translBlock
2 with
3 // Update for the new environment applicable to this protocol
4 reqVar' := <update> ("environment", E, reqVar'')
5 ; stateHolder := <lookup> ("stateholder", reqVar')
6 ; <?(LProtHeader(protName,_))> hdr
7 ; uniqueProtName := protName
8 ; defaultFunctions := <default-p-functions> (uniqueProtName, E, reqVar')
9 ; protBlock := AFunctionImpl(FunctionImpl(uniqueProtName, [VVarName(stateHolder)],

10 FunctionBlock([LineDo(FunctionBlock(<idr-pr> (block,E,reqVar')))])))
11 ; reqVar := <update> ("doDone",2,reqVar')
12 ; recBlocks := <collect-recursion-blocks> (block, E, reqVar)
13 ; translBlock := <declarations-first> <concat> [defaultFunctions, [protBlock],

recBlocks]� �
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C.2 Sending Calls

� �
1 idr-pr: ([LISend(msg,receivers)|ints], [state|states], reqVar) ->
2 <concat> [invDecls,[newCall], <idr-pr> (ints,states,reqVar)]
3 where
4 newInvs := <collect-all(?VariableDecl(_,_))> msg
5 ; not(<?[]> newInvs)
6 with
7 /* ... */
8 invDecls := <declare-new-invariants> newInvs
9 ; localParams := <to-vvar> <to-send-params> msg
10 ; finalParams := <concat> [defaultParams, localParams]
11 ; newCall := LFunction(FunctionCall(functionName,finalParams))
12

13 declare-new-invariants: [VariableDecl(name,type) | decls] ->
14 [Let(VVarName(name),<default-type-value> type) | <declare-new-invariants> decls]
15 declare-new-invariants: [] -> []� �

Figure C.1: Stratego rules for sending interaction

A sending interaction is generally a simple call: it consists of the name of the message and
the names of the required arguments. These can be found easily in the message interaction
and adjoined states. There is, however, one exception to this rule. When a new invariant is
declared by a sending interaction, this invariant’s value must be set by the sender. Figure C.1
shows the rule for a sending interaction with at least one new invariant, collected on line 4.
On line 8, rule declare-new-invariants is invoked with the list of invariants as an argu-
ment. This rule, listed on line 13, creates a Let structure for each new invariant, using its
name and a hard-coded default as a value. This results in, for example, an Idris line stating
let p = 10. Such a line is created for each new invariant, so that all of them have a value.
Line 9 converts the parameters named in the message to a list of names used as arguments
for the function. These, combined with the default parameters (in this case "l" for the state-
holder), serve as an argument in the creation of the function itself on line 11. The result of
the rule, shown on line 2, is a list of the new let bindings, the call to the send interaction,
and the result of processing the remaining interactions.
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C.3 Receiving Calls

� �
1 idr-pr: ([LIRecv(msg,sender)|ints], [state|states],reqVar) -> [newCall | <idr-pr>

(ints,states,reqVar)]
2 where
3 <?Message(name,None())> msg \label{line:apdxGenProtRecNoneNone}
4 with
5 stateholder := <lookup> ("stateholder", reqVar)
6 ; defaultParams := [VVarName(stateholder)]
7 ; newCall := LFunction(FunctionCall(name,defaultParams))� �

(a) Payload is empty� �
1 idr-pr: ([rcv@LIRecv(msg,sender)|ints], s@[state|states],reqVar) ->
2 [newCall | <idr-pr> (ints,states,reqVar)]
3 where
4 <?Message(name,Some(payload))> msg
5 ; newPayloads := <collect(?VariableDecl(_,_))> payload
6 ; knownPayloads := <collect-all(?PLName(_))> payload
7 ; anonPayloads := <collect-all(?PLType(_))> payload
8 with
9 newCall := <idr-pr-recv> (rcv, s, reqVar, newPayloads, knownPayloads, anonPayloads)� �

(b) Payload is not empty

Figure C.2: Stratego rule for receiving interactions

The result of receiving calls depends mostly on its payload. Figure C.2(a) shows the rule
for an empty incoming message, indicated on line 3 by payload None(). In this case, the
return is simply a function call with the stateholder as a parameter.

In case the message does contain a payload, the idr-pr-recv rule is called with all three
types of payload (new declarations, known references, and anonymous types) as added ar-
guments. Figure C.3 shows the three cases for this rule.

These separate cases exist only for creating visually pleasant code. A general rule could
be made that would generate code that would work for all cases, but this would decrease
readability of the Idris code. The first case contains two or more new invariants, and possibly
other payload. The second case has no new invariant information, but perhaps known or
anonymous payload. The third case covers the possibility when a message contains only one
new invariant, and no other information.

The first case is shown in Figure C.3(a), where the message contains multiple payloads.
The where clauses specify that it must not have an empty newPayloads, and it must not have
only one new invariant declaration with no other payloads. In other words, it must have
two or more new invariant declarations, and an arbitrary amount of known and anonymous
payloads. This rule generates a call where the return type is a tuple of the new invariants,
followed by a number of wildcards (_ in Idris) equal to the sum of known and anonymous
invariants. This is because the known invariants are already familiar to the actor and do
not need to redeclare the name, and the anonymous types remain anonymous in this code
generation.

The second case, shown in Figure C.3(b), covers the case where no new invariant is de-
clared. In this case, since the other two payload types do not need a return type, no return
type at all is expected, and this is only a simple call to the function.

The third case is when the message contains only one new invariant, and no other infor-
mation. In this case, the return value is one new invariant.
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� �
1 idr-pr-recv: (LIRecv(msg,sender), [state|states],reqVar, newPayloads, knownPayloads,

anonPayloads) -> newCall
2 where
3 not(<?[]> newPayloads)
4 ; not(<?[VariableDecl(_,_)]> newPayloads ; <?[]> knownPayloads ; <?[]> anonPayloads)
5 with
6 /* ... */
7 ; newReturnNames := <get-payload-names> newPayloads
8 ; wildcards := <to-wildcards> <concat> [knownPayloads,anonPayloads]
9 ; returnVar := Tuple(<concat> [newReturnNames,wildcards])
10 ; call := FunctionCall(<msg-name> msg,defaultParams)
11 ; newCall := Assignment(AssignVar(returnVar,call))� �

(a) Payload has two or more invariants� �
1 idr-pr-recv: (LIRecv(msg,sender), [state|states],reqVar, newPayloads, knownPayloads,

anonPayloads) -> newCall
2 where
3 <?[]> newPayloads
4 with
5 stateHolder := <lookup> ("stateholder", reqVar)
6 ; defaultParams := [VVarName(stateHolder)]
7 ; newCall := LFunction(FunctionCall(<msg-name> msg, defaultParams))� �

(b) Payload has no new invariants� �
1 idr-pr-recv: (LIRecv(msg,sender), [state|states],reqVar, newPayloads, knownPayloads,

anonPayloads) -> newCall
2 where
3 <?[VariableDecl(var,type)]> newPayloads
4 ; <?[]> knownPayloads
5 ; <?[]> anonPayloads
6 with
7 /* ... */
8 ; returnVar := VVarName(var)
9 ; newCall := Assignment(AssignVar(returnVar,FunctionCall(<msg-name> msg,defaultParams)))� �

(c) Payload has only exactly one new invariant

Figure C.3: Stratego rule for receiving interactions with invariant payload

C.4 Choice Interactions
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� �
1 idr-pr: ([LNIChoice(name,role,blocks)|ints], [state,blockStates|states], reqVar)
2 -> [newCall,case|<idr-pr> (ints,states,reqVar')]
3 with
4 /* ... */
5 //Create initial function call
6 returnVar := VVarName("choiceResult")
7 ; newCall := Assignment(AssignVar(returnVar,FunctionCall(name,defaultParams)))
8 // Create cases
9 ; Data(_,choices) := <lookup> ("choice-data", reqVar)
10 ; cases := <create-choice-cases> (blocks, blockStates, choices, reqVar)
11 ; case := JustNothing(Case(returnVar,cases))
12 ; reqVar' := <update> ("doDone",0,reqVar)� �

(a) Choice interaction� �
1 create-choice-cases: ([block@LPBlock(_) | blocks], [blockStates|states],

[DataElement(choice)|choices], reqVar)
2 -> res
3 with
4 blockRes := LineDo(FunctionBlock(<idr-pr> (block, blockStates, reqVar)))
5 ; curChoice := LinePure(VVarName(choice), blockRes)
6 ; res := [curChoice | <create-choice-cases> (blocks, states, choices, reqVar)]
7 create-choice-cases: ([],[],[choice|choices],_) ->
8 [LinePure(WildCard(), LineDo(LFunction(PutStr(VVarName("Incorrect option picked")))))]
9 create-choice-cases: ([],[],[],_) -> []� �

(b) Case generation

Figure C.4: Stratego rules for choice interactions

C.5 Recursion
� �

1 idr-pr: ([LIRecursion(recVarName, block)|ints], [blockStates|states], reqVar)
2 -> [newCall | <idr-pr> (ints,states,reqVar)]
3 with
4 stateHolder := <lookup> ("stateholder", reqVar)
5 ; newCall := LFunction(FunctionCall(<concat-strings>

["recursion_",recVarName],[VVarName(stateHolder)]))� �
Figure C.5: Stratego rule for recursion interaction call
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� �
1 collect-recursion-blocks: ([rec@LIRecursion(recVarName, block)|ints],

[blockStates|states], reqVar)
2 -> <concat> [newFuncs, <collect-recursion-blocks> (ints,states, reqVar)]
3 with
4 /* ... */
5 <?[(curState,curParams)|_]> blockStates
6 ; (nextState,nextParams) := <next-state> states
7 /* ... */
8 // Create function signature
9 ; newFunctionSig :=

AFunctionDecl(ParamFunctionDecl(functionName,defaultParams,newState))
10 // Create function implementation
11 ; newFunctionImpl := AFunctionImpl(FunctionImpl(functionName, [VVarName(stateHolder)],
12 FunctionBlock([LineDo(FunctionBlock(<idr-pr> (block,blockStates,reqVar)))])))
13 ; newFuncs := [newFunctionSig,newFunctionImpl]� �

Figure C.6: Stratego rule for recursion implementation
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Appendix D

Test Cases

D.1 Choice Tests� �
1 module choices;
2

3 /* Multiple choices, with different number of options */
4 global protocol MoreChoices(role A, role B){
5 choice at A {
6 a1() from A to B;
7 } or {
8 a2() from A to B;
9 } or {

10 a3() from A to B;
11 choice at B {
12 a4() from B to A;
13 } or {
14 a5() from B to A;
15 }
16 }
17 choice at B {
18 a6() from B to A;
19 } or {
20 a7() from B to A;
21 }
22 }
23

24 global protocol InteractionsAfterChoice(role A, role B){
25 choice at A {
26 b1() from A to B;
27 } or {
28 b2() from A to B;
29 }
30 b3() from B to A;
31 }
32

33 global protocol ActorNotParticipating(role A, role B, role C){
34 c1() from A to B;
35 c2() from A to C;
36 choice at A {
37 c3() from A to B;
38 } or {
39 c4() from A to B;
40 }
41 c5 from A to C;
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42 }� �
D.2 Recursion Tests� �

1 module recursion;
2

3 global protocol Simple (role A, role B){
4 a1() from A to B;
5 rec ra {
6 a2() from B to A;
7 a3() from A to B;
8 }
9 }

10

11 global protocol FirstLine (role A, role B){
12 rec rb {
13 b1() from A to B;
14 }
15 }
16

17 global protocol Sandwiched (role A, role B){
18 c1() from A to B;
19 rec rc {
20 c2() from A to B;
21 continue rc;
22 }
23 c3() from B to A;
24 }
25

26 global protocol NoMessage (role A, role B){h1() from A to B;rec rh continue rh;global
protocol NoMessageChoice (role A, role B) e1() from A to B;rec ree2() from A to
B;choice at Acontinue re; or continue re;global protocol NestedRecursion (role A, role
B)d1() from A to B;rec rd1 d2() from B to A;d3() from A to B;rec rd2 d4() from B to
A;d5() from A to B;choice at A d6() from A to B;continue rd1; or d7() from A to
B;continue rd2;global protocol MultipleRecursion (role A, role B)rec rf1f1() from A to
B;continue rf1;rec rf2f2() from A to B;continue rf2;global protocol
ActorNotParticipating (role A, roleB, role C)g1() from A to C;rec rgg2() from B to
A;continue rg;g3() from C to A;� �

D.3 Payload and Invariants

D.3.1 Should Pass� �
1 module payload;
2

3 global protocol OneInvariant (role A, role B){
4 a1() from A to B;
5 a2(i : Integer) from B to A;
6 a3(i) from A to B;
7 }
8

9 global protocol TwoInvariantsAtOnce (role A, role B){
10 b1(i : Integer, s : String) from A to B;
11 b2(i,s) from B to A;
12 }
13

14 global protocol TwoInvariants(role A, role B){
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15 c1(i : Integer) from A to B;
16 c2(s : String) from B to A;
17 c3(i,s) from A to B;
18 }
19

20 global protocol InvariantAndKnown(role A, role B){
21 d1(i : Integer) from A to B;
22 d2(i, s : String) from A to B;
23 d3(i,s) from B to A;
24 }
25

26 global protocol TwoInvariantsMulti(role A, role B, role C){
27 e1(i : Integer) from A to B;
28 e2(s : String) from B to C;
29 e3(i) from A to C;
30 e4(i,s) from C to A;
31 dummyRequiredForEdgeCaseECUP1() from C to A;
32 }
33

34

35 global protocol InvariantIntroducedAtEnd(role A, role B){
36 h1() from A to B;
37 h2() from B to A;
38 h3(i : Integer) from A to B;
39 }
40

41 global protocol InvariantIntroducedAtEnd(role A, role B, role C){
42 i1(i : Integer) from A to B;
43 i2(i) from B to C;
44 }
45

46 global protocol GenericReturn(role A, role B){
47 f1(Integer) from A to B;
48 f2(Integer,Integer) from B to A;
49 f3(String,Integer) from A to B;
50 }
51

52 global protocol MultipleReturnTypes(role A, role B){
53 g1(Integer,s : String, String) from A to B;
54 g2(s, i : Integer) from B to A;
55 g3(Integer,s,i) from A to B;
56 g4(x : Integer, i) from A to B;
57 g5(i,x) from A to B;
58 g6(x, Integer, i) from B to A;
59 }� �

D.3.2 Should Fail� �
1 module invariantsbreak;
2

3 global protocol IllegalRef (role A, role B){
4 a() from A to B;
5 b(p) from B to A;
6 }
7

8 global protocol DoubleDec (role A, role B){
9 a(i : Integer) from A to B;
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10 b(i : Integer) from B to A;
11 }
12

13 global protocol DoubleDecMulti (role A, role B, role C, role D){
14 a(i : Integer) from A to B;
15 b() from B to A;
16 c(i : Integer) from C to D;
17 d() from D to C;
18 }� �

D.4 Invariant Scope

D.4.1 Should Pass� �
1 global protocol ChoiceScope(role A, role B){
2 a1(s : String) from A to B;
3 choice at B {
4 a2(s) from B to A;
5 } or {
6 a3(s) from B to A;
7 }
8 }
9

10 global protocol ChoiceScopeTwo(role A, role B){
11 choice at A{
12 b1(s : String) from A to B;
13 b2(s) from B to A;
14 } or {
15 b3(i : Integer) from A to B;
16 b4(i) from B to A;
17 }
18 }
19

20 global protocol RecursionScope(role A, role B){
21 c1(s : String) from A to B;
22 rec rc{
23 c2(s) from B to A;
24 continue rc;
25 }
26 }
27

28 global protocol RecursionScopeTwo(role A, role B){
29 rec rd{
30 d1(s : String) from A to B;
31 d2(s) from B to A;
32 continue rd;
33 }
34 }
35

36 global protocol BothScope(role A, role B){
37 e1(s : String) from A to B;
38 rec re{
39 choice at B{
40 e2(s) from B to A;
41 e3(i : Integer) from B to A;
42 e4(i) from A to B;
43 } or {
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44 e5(s) from B to A;
45 continue re;
46 }
47 }
48 e6(s) from A to B;
49 }� �

D.4.2 Should Fail� �
1 module scoping;
2

3 global protocol ChoiceScope(role A, role B){
4 a1(i : Integer) from A to B;
5 choice at A{
6 a2(s : String) from A to B;
7 a3(i,s) from B to A;
8 } or {
9 a4() from A to B;

10 a5(i,s) from B to A;
11 }
12 }
13

14 global protocol ChoiceScopeTwo(role A, role B){
15 choice at A{
16 b1(s : String) from A to B;
17 } or {
18 b2() from A to B;
19 }
20 b3(s) from B to A;
21 }
22

23 global protocol RecursionScope(role A, role B){
24 rec rc {
25 c1(s : String) from A to B;
26 }
27 c2(s) from A to B;
28 }� �

D.5 sec:Scenarios

D.5.1 ATM� �
1 module ATM;
2

3 global protocol ATM (role Machine, role Client){
4 enterPIN(pin: Integer) from Client to Machine;
5 rec x {
6 choice at Client{
7 pressDeposit() from Client to Machine;
8 insertMoney(amt : Integer) from Client to Machine;
9 updatedBalance(bal : Integer) from Machine to Client;

10 cont x;
11 } or {
12 pressWithdraw() from Client to Machine;
13 chooseAmount(amt : Integer) from Client to Machine;
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14 provideMoney() from Machine to Client;
15 updatedBalance1(bal : Integer) from Machine to Client;
16 cont x;
17 } or {
18 pressBalance() from Client to Machine;
19 showBalance(bal : Integer) from Machine to Client;
20 cont x;
21 } or {
22 quit() from Client to Machine;
23 }
24 }
25 quitProt() from Machine to Client;
26 }� �

D.5.2 SEPA Credit Transfer Protocol� �
1 module SEPA_CTP;
2

3 global protocol CreditTransfer(role Originator, role OBank, role CnS) {
4 sendInstruction(amount : Integer) from Originator to OBank;
5 choice at OBank{
6 //Reject
7 reject() from OBank to Originator;
8 dummy() from OBank to CnS;
9 } or {

10 //Accept
11 debit() from OBank to Originator;
12 sendCredit() from OBank to CnS;
13 choice at CnS {
14 //Reject
15 rej() from CnS to OBank;
16 refundCredit() from OBank to Originator;
17 } or {
18 //Accept
19 acc() from CnS to OBank;
20 choice at CnS {
21 //Late return
22 returnRequest() from CnS to OBank;
23 refundCredit() from OBank to Originator;
24 }
25 or {
26 finalize() from CnS to OBank;
27 dummy() from OBank to Originator;
28 }
29 }
30 }
31 }� �

D.5.3 SEPA Direct Debit Protocol� �
1 module SEPA_DDB;
2

3 global protocol DirectDebit(role Creditor, role CBank, role CnS){
4 query(collAmount : Integer) from Creditor to CBank;
5 choice at CBank {
6 //Reject the collection
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7 rejectCCollection() from CBank to Creditor;
8 dummy() from CBank to CnS;
9 } or {

10 //Continue
11 query() from CBank to CnS;
12 choice at CnS {
13 //Reject the collection
14 rej() from CnS to CBank;
15 rej() from CBank to Creditor;
16 } or {
17 //Continue
18 acc() from CnS to CBank;
19 credit() from CBank to Creditor;
20 choice at CnS {
21 //Receive a reject anyway
22 lateReject() from CnS to CBank;
23 debitRefund() from CBank to Creditor;
24 } or {
25 //Receive a refund request (should be within certain time)
26 refund() from CnS to CBank;
27 debit() from CBank to Creditor;
28 } or {
29 //Time for options expired
30 finalize() from CnS to CBank;
31 dummy() from CBank to Creditor;
32 }
33 }
34 }
35 }� �
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Appendix E

Running Example

E.1 Scribble Protocol� �
1 module Shopping;
2

3 global protocol Shopping(role C, role S, role B)
4 {
5 rec r {
6 reqPrice() from C to S;
7 priceInfo(p : Integer) from S to C;
8 choice at C
9 {

10 dummy() from C to B;
11 dummy2() from B to S;
12 continue r;
13 } or {
14 reqTransfer(p) from C to B;
15 ackTransfer(p) from B to S;
16 }
17 }
18 }� �

E.2 Idris Implementation (handmade)� �
1 import Control.ST
2 import Control.ST.ImplicitCall
3 import Control.IOExcept
4 import Network.Socket
5 import Network
6 import System
7 import Threads
8 import Data.String
9

10 {- Starting order:
11 - Seller
12 - Customer
13 - Bank
14 Command:
15 :exec (unsafePerformIO {ffi=(MkFFI C_Types String String)} (runIOExcept {err=String} (run

{m=IOExcept String} Seller.protocol)))
16 -}
17

85



E. Running Example

18 -- Some convenience boilerplating
19

20 interface ConsoleExcept (e : Type) (m : Type -> Type) where
21 raise : e -> m a
22

23 implementation ConsoleExcept e (IOExcept e) where
24 raise e = ioe_fail e
25

26 data Choice = Option1 | Option2
27

28 --------------
29 -- CUSTOMER --
30 --------------
31

32 namespace Customer {
33

34 data State = Ready | C1 | C2 Integer | C3 Integer | C4 Integer | C5 Integer | Done
35

36 interface CSB_Customer (m : Type -> Type) where
37 StateT : Customer.State -> Type
38 start : ST m Var [add (StateT Ready)]
39

40 reqPrice : (l : Var) -> String -> ST m () [l ::: StateT Ready :-> StateT C1]
41

42 priceInfo : (l : Var) -> ST m Integer [l ::: StateT C1 :-> \p => StateT (C2 p)]
43

44 choice : (l : Var) -> (p : Integer) -> ST m Choice [l ::: StateT (C2 p):->
45 \res => StateT (case res of
46 Option1 => (C3 p)
47 Option2 => (C5 p))]
48

49 dummy : (l : Var) -> ST m () [l ::: StateT (C3 p) :-> StateT (C4 p)]
50

51 continue_r : (l : Var) -> ST m () [l ::: StateT (C4 p) :-> StateT Ready]
52

53 reqTransfer : (l : Var) -> (p : Integer) -> ST m () [l ::: StateT (C5 p) :-> StateT
Done]

54

55 done : (l : Var) -> ST m () [remove l (StateT Done)]
56

57 failure : String -> STrans m t xs r
58

59 using (ConsoleExcept e, ConsoleIO io, CSB_Customer io)
60 protocol : ST io () []
61

62 recursion_r : (l : Var) -> ST io () [l ::: StateT {m=io} Ready :-> StateT {m=io} Done]
63

64 protocol =
65 do cust <- start
66 recursion_r cust
67 done cust
68

69 recursion_r cust =
70 do putStr "Enter product name: \n"
71 name <- getStr
72 reqPrice cust name
73 p <- Customer.priceInfo cust
74 cr <- choice cust p
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75 case cr of
76 Option1 =>
77 do dummy cust
78 continue_r cust
79 recursion_r cust
80 Option2 =>
81 do reqTransfer cust p
82 pure()
83

84 implementation (Sockets io, ConsoleIO io, ConsoleExcept String io, Monad io) =>
CSB_Customer io where

85 StateT Ready = Composite[Sock {m=io} Open,Sock {m=io} Open]
86 StateT C1 = Composite[Sock {m=io} Open,Sock {m=io} Open]
87 StateT (C2 _) = Composite[Sock {m=io} Open,Sock {m=io} Open]
88 StateT (C3 _) = Composite[Sock {m=io} Open,Sock {m=io} Open]
89 StateT (C4 _) = Composite[Sock {m=io} Open,Sock {m=io} Open]
90 StateT (C5 _) = Composite[Sock {m=io} Open,Sock {m=io} Open]
91 StateT Done = Composite[Sock {m=io} Closed,Sock {m=io} Closed]
92

93 start =
94 do Right sockS <- socket Stream | Left _ => Customer.failure "could not open socket"
95 Right _ <- connect sockS (Hostname "localhost") 9442 | Left _ =>

Customer.failure "could not connect socket"
96 Right sockB <- socket Stream | Left _ => Customer.failure "could not open socket

B"
97 Right _ <- bind sockB Nothing 9443 | Left _ => Customer.failure "could not bind

socket B"
98 Right _ <- listen sockB | Left _ => Customer.failure "could not listen socket B"
99 Right sockB' <- accept sockB | Left _ => Customer.failure "could not accept

socket B"
100 cust <- new ()
101 combine cust [sockS,sockB']
102 close sockB;remove sockB
103 putStr "Customer started\n"
104 pure cust
105

106 reqPrice cust s =
107 do [sockS,sockB] <- split cust
108 Right _ <- send sockS s | Left _ => Customer.failure "could not send"
109 combine cust [sockS,sockB]
110 pure()
111

112 priceInfo cust =
113 do [sockS,sockB] <- split cust
114 Right string <- recv sockS | Left _ => Customer.failure "could not receive"
115 putStr ("The price is: " ++ string ++ "\n")
116 case parsePositive {a=Integer} string of
117 Just x => do combine cust [sockS,sockB]; pure x
118 _ => Customer.failure "parse error"
119

120 choice cust p =
121 do [sockS,sockB] <- split cust
122 case (p > 50) of
123 True =>
124 do Right _ <- send sockS "1" | Left _ => Customer.failure "option S1 not

sent"
125 Right _ <- send sockB "1" | Left _ => Customer.failure "option B1 not

sent"
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126 combine cust [sockS, sockB]
127 pure Option1
128 False =>
129 do Right _ <- send sockS "2" | Left _ => Customer.failure "option S2 not

sent"
130 Right _ <- send sockB "2" | Left _ => Customer.failure "option B2 not

sent"
131 combine cust [sockS, sockB]
132 pure Option2
133

134 dummy cust = pure()
135

136 continue_r cust = pure()
137

138 reqTransfer cust p =
139 do [sockS,sockB] <- split cust
140 Right _ <- send sockB (cast {to=String} p) | Left _ => Customer.failure "reqT

not sent"
141 close sockS
142 close sockB
143 combine cust [sockS,sockB]
144 pure()
145

146 done cust =
147 do [sockS,sockB] <- split cust
148 remove sockS; remove sockB
149 delete cust
150 pure ()
151

152 failure {t = t} s =
153 (>>=) {a = t} (lift (raise s)) (\_ => Customer.failure s) -- hack!
154

155 }
156

157 --------------
158 -- SELLER --
159 --------------
160

161 namespace Seller {
162

163 data State = Ready | S1 | S2 Integer | S3 Integer | S4 Integer | S5 Integer | Done
164

165 interface CSB_Seller (m : Type -> Type) where
166

167 StateT : Seller.State -> Type
168

169 start : ST m Var [add (StateT Ready)]
170

171 reqPrice : (l : Var) -> ST m String [l ::: StateT Ready :-> StateT S1]
172

173 priceInfo : (l : Var) -> (p : Integer) -> ST m () [l ::: StateT S1 :-> StateT (S2 p)]
174

175 choice : (l : Var) -> ST m Choice [l ::: StateT (S2 p) :-> \res =>
176 StateT (case res of
177 Option1 => (S3 p)
178 Option2 => (S5 p))]
179

180 dummy2 : (l : Var) -> ST m () [l ::: StateT (S3 p) :-> StateT (S4 p)]
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181

182 continue_r : (l : Var) -> ST m () [l ::: StateT (S4 p) :-> StateT Ready]
183

184 ackTransfer : (l : Var) -> ST m (p' : Integer ** p' = p) [l ::: StateT (S5 p) :->
StateT Done]

185

186 done : (l : Var) -> ST m () [remove l (StateT Done)]
187

188 failure : String -> STrans m t xs r
189

190 using (ConsoleExcept e, ConsoleIO io, CSB_Seller io)
191 protocol : ST io () []
192

193 recursion_r : (l : Var) -> ST io () [l ::: StateT {m=io} Ready :-> StateT {m=io} Done]
194

195 protocol =
196 do sel <- start
197 recursion_r sel
198 done sel
199

200 recursion_r sel =
201 do item <- reqPrice sel
202 let price = (if item == "Book" then 10 else (if item == "DVD" then 60 else 0))
203 priceInfo sel price
204 putStr "Sent priceInfo\n"
205 choiceRes <- choice sel
206 case choiceRes of
207 Option1 => do dummy2 sel
208 continue_r sel
209 recursion_r sel
210 Option2 => do price' <- ackTransfer sel
211 pure()
212

213 implementation (ConsoleIO io,Sockets io, ConsoleExcept String io, Monad io) =>
CSB_Seller io where

214 StateT Ready = Composite [Sock {m=io} Open, Sock {m=io} Open]
215 StateT S1 = Composite [Sock {m=io} Open, Sock {m=io} Open]
216 StateT (S2 p) = Composite [Sock {m=io} Open, Sock {m=io} Open]
217 StateT (S3 p) = Composite [Sock {m=io} Open, Sock {m=io} Open]
218 StateT (S4 p) = Composite [Sock {m=io} Open, Sock {m=io} Open]
219 StateT (S5 p) = Composite [Sock {m=io} Open, Sock {m=io} Open]
220 StateT Done = Composite [Sock {m=io} Closed, Sock {m=io} Closed]
221

222 start =
223 do Right sockC <- socket Stream | Left _ => Seller.failure "could not open socket

C\n"
224 Right _ <- bind sockC Nothing 9442 | Left _ => Seller.failure "could not bind

socket C\n"
225 Right _ <- listen sockC | Left _ => Seller.failure "could not listen socket C\n"
226 Right sockC' <- accept sockC | Left _ => Seller.failure "could not accept socket

C\n"
227 Right sockB <- socket Stream | Left _ => Seller.failure "could not open socket

B\n"
228 Right _ <- bind sockB Nothing 9444 | Left _ => Seller.failure "could not bind

socket B\n"
229 Right _ <- listen sockB | Left _ => Seller.failure "could not listen socket B\n"
230 Right sockB' <- accept sockB | Left _ => Seller.failure "could not accept socket

B\n"
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231 close sockC; remove sockC
232 close sockB; remove sockB
233 sel <- new ()
234 combine sel [sockC',sockB']
235 putStr "Seller started\n"
236 pure sel
237

238 reqPrice sel =
239 do [sockC,sockB] <- split sel
240 Right item <- recv sockC | Left _ => Seller.failure "could not recv price\n"
241 combine sel [sockC,sockB]
242 pure item
243

244 priceInfo sel p =
245 do [sockC,sockB] <- split sel
246 Right _ <- send sockC (cast {to=String} p) | Left _ => Seller.failure "could not

send price\n"
247 combine sel [sockC,sockB]
248 pure ()
249

250 choice sel =
251 do [sockC,sockB] <- split sel
252 Right choice <- recv sockC | Left _ => Seller.failure "could not recv choice\n"
253 combine sel [sockC,sockB]
254 case (parsePositive {a=Int} choice) of
255 Just 1 => pure Option1
256 Just 2 => pure Option2
257 _ => Seller.failure "choice not received correctly\n"
258

259 dummy2 sel = pure()
260 continue_r sel = pure()
261

262 ackTransfer {p} sel =
263 do [sockC,sockB] <- split sel
264 Right msg <- recv sockB | Left _ => Seller.failure "could not recv ack\n"
265 case (parsePositive msg) of
266 Just x =>
267 do putStr ("Received price " ++ (cast x) ++ "!\n")
268 case decEq x p of
269 Yes eq => do close sockC; close sockB; combine sel [sockC,sockB];
270 pure (x ** eq)
271 _ => Seller.failure "invariant error"
272 _ => Seller.failure "price not received correctly\n"
273

274 done sel =
275 do [sockC,sockB] <- split sel
276 remove sockC; remove sockB;
277 delete sel
278 pure()
279

280 failure {t = t} s =
281 (>>=) {a = t} (lift (raise s)) (\_ => Seller.failure s) -- hack!
282

283 }
284

285

286 --------------
287 -- Bank --
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288 --------------
289 namespace Bank {
290

291 data State = Ready | B1 | B2 | B3 | B4 | B5 Integer | Done
292

293 interface CSB_Bank (m : Type -> Type) where
294

295 StateT : Bank.State -> Type
296

297 start : ST m Var [add (StateT Ready)]
298

299 choice : (l : Var) -> ST m Choice [l ::: StateT Ready :-> \res =>
300 StateT (case res of
301 Option1 => B1
302 Option2 => B4)]
303

304 dummy : (l : Var) -> ST m () [l ::: StateT B1 :-> StateT B2]
305

306 dummy2 : (l : Var) -> ST m () [l ::: StateT B2 :-> StateT B3]
307

308 continue_r : (l : Var) -> ST m () [l ::: StateT B3 :-> StateT Ready]
309

310 reqTransfer : (l : Var) -> ST m Integer [l ::: StateT B4 :-> \res => StateT (B5 res)]
311

312 ackTransfer : (l : Var) -> (p : Integer) -> ST m () [l ::: StateT (B5 p) :-> StateT
Done]

313

314 done : (l : Var) -> ST m () [remove l (StateT Done)]
315

316 failure : String -> STrans m t xs r
317

318 using (ConsoleExcept e, ConsoleIO io, CSB_Bank io)
319 protocol : ST io () []
320

321 recursion_r : (l : Var) -> ST io () [l ::: StateT {m=io} Ready :-> StateT {m=io} Done]
322

323 protocol =
324 do bk <- start
325 recursion_r bk
326 done bk
327

328 recursion_r bk =
329 do cr <- choice bk
330 case cr of
331 Option1 =>
332 do dummy bk
333 dummy2 bk
334 continue_r bk
335 recursion_r bk
336 Option2 =>
337 do p <- reqTransfer bk
338 ackTransfer bk p
339

340 implementation (ConsoleIO io, Sockets io, ConsoleExcept String io, Monad io) =>
CSB_Bank io where

341 StateT Ready = Composite [Sock {m=io} Open, Sock {m=io} Open]
342 StateT B1 = Composite [Sock {m=io} Open, Sock {m=io} Open]
343 StateT B2 = Composite [Sock {m=io} Open, Sock {m=io} Open]
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344 StateT B3 = Composite [Sock {m=io} Open, Sock {m=io} Open]
345 StateT B4 = Composite [Sock {m=io} Open, Sock {m=io} Open]
346 StateT (B5 p)= Composite [Sock {m=io} Open, Sock {m=io} Open]
347 StateT Done = Composite [Sock {m=io} Closed, Sock {m=io} Closed]
348

349 start =
350 do Right sockC <- socket Stream | Left _ => Bank.failure "could not open socket\n"
351 Right _ <- connect sockC (Hostname "localhost") 9443 | Left _ => Bank.failure

"could not connect to customer\n"
352 Right sockS <- socket Stream | Left _ => Bank.failure "could not open socketS\n"
353 Right _ <- connect sockS (Hostname "localhost") 9444 | Left _ => Bank.failure

"could not connect to seller\n"
354 bk <- new ()
355 combine bk [sockC,sockS]
356 putStr "Bank started\n"
357 pure bk
358

359 choice bk =
360 do [sockC,sockS] <- split bk
361 Right choice <- recv sockC | Left _ => Bank.failure "could not recv choice\n"
362 combine bk [sockC,sockS]
363 case (parsePositive choice) of
364 Just 1 => pure Option1
365 Just 2 => pure Option2
366 _ => Bank.failure "choice not received correctly\n"
367

368

369 dummy bk = pure()
370 dummy2 bk = pure()
371 continue_r bk = pure()
372

373 reqTransfer bk =
374 do [sockC,sockS] <- split bk
375 Right price' <- recv sockC | Left _ => Bank.failure "could not recv price\n"
376 combine bk [sockC,sockS]
377 case (parsePositive {a=Integer} price') of
378 Just price => do putStr ("Received price " ++ (cast price) ++ "!\n");pure price
379 _ => Bank.failure "could not parse price\n"
380

381 ackTransfer bk p =
382 do [sockC,sockS] <- split bk
383 Right _ <- send sockS (cast p) | Left _ => Bank.failure "could not send price\n"
384 close sockC;close sockS
385 combine bk [sockC,sockS]
386 pure()
387

388 done bk =
389 do [sockC,sockS] <- split bk
390 remove sockC; remove sockS
391 delete bk
392 pure()
393

394

395 failure {t = t} s =
396 (>>=) {a = t} (lift (raise s)) (\_ => Bank.failure s) -- hack!
397

398 }
399 -- Local Variables:
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400 -- idris-load-packages: ("contrib")
401 -- End:� �

E.3 Idris Implementation (generated)

E.3.1 Seller� �
1 import Control.ST
2 import Control.ST.ImplicitCall
3

4 data Choice_choice5 = Choice_choice5_Option1 | Choice_choice5_Option2
5

6 data StateD = State1 | State2 | State3 Integer | State4 Integer | State5 Integer | Done
7

8 interface Shopping_S_IF (m : Type -> Type) where
9 StateT : StateD -> Type

10

11 startShopping_S_IF : ST m (Maybe Var) [addIfJust (StateT (State1))]
12

13 done_Shopping_S : (x : Var) -> ST m ( ) [remove x (StateT Done)]
14

15 reqPrice : (l : Var) -> ST m ( ) [l ::: StateT (State1) :-> StateT (State2)]
16

17 priceInfo : (l : Var) -> (p : Integer) -> ST m ( ) [l ::: StateT (State2) :-> StateT
(State3 p)]

18

19 choice5 : (l : Var) -> ST m (Choice_choice5) [l ::: StateT (State3 p) :-> \res =>
20 StateT
21 (case res of
22 Choice_choice5_Option1 =>
23 (State4 p)
24 Choice_choice5_Option2 =>
25 (State5 p))]
26

27 dummy2 : (l : Var) -> ST m ( ) [l ::: StateT (State4 p) :-> StateT (State1)]
28

29 ackTransfer : (l : Var) -> ST m (((p' : Integer ** p' = p))) [l ::: StateT (State5 p)
:-> StateT (Done)]

30

31 using (ConsoleIO io, Monad io, Shopping_S_IF io)
32 startShopping_S : ST io ( ) [ ]
33

34 Shopping_S : (l : Var) -> ST io ( ) [remove l (StateT {m=io} State1)]
35

36 recursion_r : (l : Var) -> ST io ( ) [l ::: StateT {m=io} (State1) :-> StateT {m=io}
(Done)]

37

38 startShopping_S =
39 do l <- startShopping_S_IF
40 case l of
41 Just s =>
42 Shopping_S s
43 Nothing =>
44 putStr $ "Couldn't start client"
45

46 Shopping_S l =
47 do recursion_r l
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48 done_Shopping_S l
49

50 recursion_r l =
51 do reqPrice l
52 p <- lift $ pure $ 0
53 priceInfo l p
54 choiceResult <- choice5 l
55 case choiceResult of
56 Choice_choice5_Option1 =>
57 do dummy2 l
58 recursion_r l
59 Choice_choice5_Option2 =>
60 do ackTransfer l
61 pure()� �

E.3.2 Customer� �
1 import Control.ST
2 import Control.ST.ImplicitCall
3

4 data Choice_choice4 = Choice_choice4_Option1 | Choice_choice4_Option2
5

6 data StateD = State1 | State2 | State3 Integer | State4 Integer | State5 Integer | Done
7

8 interface Shopping_C_IF (m : Type -> Type) where
9 StateT : StateD -> Type

10

11 startShopping_C_IF : ST m (Maybe Var) [addIfJust (StateT (State1))]
12

13 done_Shopping_C : (x : Var) -> ST m ( ) [remove x (StateT Done)]
14

15 reqPrice : (l : Var) -> ST m ( ) [l ::: StateT (State1) :-> StateT (State2)]
16

17 priceInfo : (l : Var) -> ST m (Integer) [l ::: StateT (State2) :-> \res => StateT
(State3 res)]

18

19 choice4 : (l : Var) -> ST m (Choice_choice4) [l ::: StateT (State3 p) :-> \res =>
20 StateT
21 (case res of
22 Choice_choice4_Option1 =>
23 (State4 p)
24 Choice_choice4_Option2 =>
25 (State5 p))]
26

27 dummy : (l : Var) -> ST m ( ) [l ::: StateT (State4 p) :-> StateT (State1)]
28

29 reqTransfer : (l : Var) -> (p : Integer) -> ST m ( ) [l ::: StateT (State5 p) :->
StateT (Done)]

30

31 using (ConsoleIO io, Monad io, Shopping_C_IF io)
32 startShopping_C : ST io ( ) [ ]
33

34 Shopping_C : (l : Var) -> ST io ( ) [remove l (StateT {m=io} State1)]
35

36 recursion_r : (l : Var) -> ST io ( ) [l ::: StateT {m=io} (State1) :-> StateT {m=io}
(Done)]

37
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38 startShopping_C =
39 do l <- startShopping_C_IF
40 case l of
41 Just s =>
42 Shopping_C s
43 Nothing =>
44 putStr $ "Couldn't start client"
45

46 Shopping_C l =
47 do recursion_r l
48 done_Shopping_C l
49

50 recursion_r l =
51 do reqPrice l
52 p <- priceInfo l
53 choiceResult <- choice4 l
54 case choiceResult of
55 Choice_choice4_Option1 =>
56 do dummy l
57 recursion_r l
58 Choice_choice4_Option2 =>
59 do reqTransfer l p
60 pure()� �

E.3.3 Bank� �
1 import Control.ST
2 import Control.ST.ImplicitCall
3

4 data Choice_choice6 = Choice_choice6_Option1 | Choice_choice6_Option2
5

6 data StateD = State1 | State2 | State3 | State4 | State5 Integer | Done
7

8 interface Shopping_B_IF (m : Type -> Type) where
9 StateT : StateD -> Type

10

11 startShopping_B_IF : ST m (Maybe Var) [addIfJust (StateT (State1))]
12

13 done_Shopping_B : (x : Var) -> ST m ( ) [remove x (StateT Done)]
14

15 choice6 : (l : Var) -> ST m (Choice_choice6) [l ::: StateT (State1) :-> \res =>
16 StateT
17 (case res of
18 Choice_choice6_Option1 =>
19 (State2)
20 Choice_choice6_Option2 =>
21 (State4))]
22

23 dummy : (l : Var) -> ST m ( ) [l ::: StateT (State2) :-> StateT (State3)]
24

25 dummy2 : (l : Var) -> ST m ( ) [l ::: StateT (State3) :-> StateT (State1)]
26

27 reqTransfer : (l : Var) -> ST m (Integer) [l ::: StateT (State4) :-> \res => StateT
(State5 res)]

28

29 ackTransfer : (l : Var) -> (p : Integer) -> ST m ( ) [l ::: StateT (State5 p) :->
StateT (Done)]
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30

31 using (ConsoleIO io, Monad io, Shopping_B_IF io)
32 startShopping_B : ST io ( ) [ ]
33

34 Shopping_B : (l : Var) -> ST io ( ) [remove l (StateT {m=io} State1)]
35

36 recursion_r : (l : Var) -> ST io ( ) [l ::: StateT {m=io} (State1) :-> StateT {m=io}
(Done)]

37

38 startShopping_B =
39 do l <- startShopping_B_IF
40 case l of
41 Just s =>
42 Shopping_B s
43 Nothing =>
44 putStr $ "Couldn't start client"
45

46 Shopping_B l =
47 do recursion_r l
48 done_Shopping_B l
49

50 recursion_r l =
51 do choiceResult <- choice6 l
52 case choiceResult of
53 Choice_choice6_Option1 =>
54 do dummy l
55 dummy2 l
56 recursion_r l
57 Choice_choice6_Option2 =>
58 do p <- reqTransfer l
59 ackTransfer l p
60 pure()� �
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